xref: /freebsd-14.2/libexec/rtld-elf/rtld.c (revision 279e543d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <[email protected]>.
6  * Copyright 2009-2013 Konstantin Belousov <[email protected]>.
7  * Copyright 2012 John Marino <[email protected]>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <[email protected]>.
39  */
40 
41 #include <sys/cdefs.h>
42 #include <sys/param.h>
43 #include <sys/mount.h>
44 #include <sys/mman.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 #include <sys/ktrace.h>
50 
51 #include <dlfcn.h>
52 #include <err.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <stdarg.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <unistd.h>
60 
61 #include "debug.h"
62 #include "rtld.h"
63 #include "libmap.h"
64 #include "rtld_paths.h"
65 #include "rtld_tls.h"
66 #include "rtld_printf.h"
67 #include "rtld_malloc.h"
68 #include "rtld_utrace.h"
69 #include "notes.h"
70 #include "rtld_libc.h"
71 
72 /* Types. */
73 typedef void (*func_ptr_type)(void);
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 
77 /* Variables that cannot be static: */
78 extern struct r_debug r_debug; /* For GDB */
79 extern int _thread_autoinit_dummy_decl;
80 extern void (*__cleanup)(void);
81 
82 struct dlerror_save {
83 	int seen;
84 	char *msg;
85 };
86 
87 /*
88  * Function declarations.
89  */
90 static const char *basename(const char *);
91 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
92     const Elf_Dyn **, const Elf_Dyn **);
93 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
94     const Elf_Dyn *);
95 static bool digest_dynamic(Obj_Entry *, int);
96 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
97 static void distribute_static_tls(Objlist *, RtldLockState *);
98 static Obj_Entry *dlcheck(void *);
99 static int dlclose_locked(void *, RtldLockState *);
100 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
101     int lo_flags, int mode, RtldLockState *lockstate);
102 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
103 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
104 static bool donelist_check(DoneList *, const Obj_Entry *);
105 static void dump_auxv(Elf_Auxinfo **aux_info);
106 static void errmsg_restore(struct dlerror_save *);
107 static struct dlerror_save *errmsg_save(void);
108 static void *fill_search_info(const char *, size_t, void *);
109 static char *find_library(const char *, const Obj_Entry *, int *);
110 static const char *gethints(bool);
111 static void hold_object(Obj_Entry *);
112 static void unhold_object(Obj_Entry *);
113 static void init_dag(Obj_Entry *);
114 static void init_marker(Obj_Entry *);
115 static void init_pagesizes(Elf_Auxinfo **aux_info);
116 static void init_rtld(caddr_t, Elf_Auxinfo **);
117 static void initlist_add_neededs(Needed_Entry *, Objlist *);
118 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
119 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
120 static void linkmap_add(Obj_Entry *);
121 static void linkmap_delete(Obj_Entry *);
122 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
123 static void unload_filtees(Obj_Entry *, RtldLockState *);
124 static int load_needed_objects(Obj_Entry *, int);
125 static int load_preload_objects(const char *, bool);
126 static int load_kpreload(const void *addr);
127 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
128 static void map_stacks_exec(RtldLockState *);
129 static int obj_disable_relro(Obj_Entry *);
130 static int obj_enforce_relro(Obj_Entry *);
131 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
132 static void objlist_call_init(Objlist *, RtldLockState *);
133 static void objlist_clear(Objlist *);
134 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
135 static void objlist_init(Objlist *);
136 static void objlist_push_head(Objlist *, Obj_Entry *);
137 static void objlist_push_tail(Objlist *, Obj_Entry *);
138 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
139 static void objlist_remove(Objlist *, Obj_Entry *);
140 static int open_binary_fd(const char *argv0, bool search_in_path,
141     const char **binpath_res);
142 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
143     const char **argv0, bool *dir_ignore);
144 static int parse_integer(const char *);
145 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
146 static void print_usage(const char *argv0);
147 static void release_object(Obj_Entry *);
148 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
149     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
150 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
151     int flags, RtldLockState *lockstate);
152 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
153     RtldLockState *);
154 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
155 static int rtld_dirname(const char *, char *);
156 static int rtld_dirname_abs(const char *, char *);
157 static void *rtld_dlopen(const char *name, int fd, int mode);
158 static void rtld_exit(void);
159 static void rtld_nop_exit(void);
160 static char *search_library_path(const char *, const char *, const char *,
161     int *);
162 static char *search_library_pathfds(const char *, const char *, int *);
163 static const void **get_program_var_addr(const char *, RtldLockState *);
164 static void set_program_var(const char *, const void *);
165 static int symlook_default(SymLook *, const Obj_Entry *refobj);
166 static int symlook_global(SymLook *, DoneList *);
167 static void symlook_init_from_req(SymLook *, const SymLook *);
168 static int symlook_list(SymLook *, const Objlist *, DoneList *);
169 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
170 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
171 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
172 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
173 static void trace_loaded_objects(Obj_Entry *, bool);
174 static void unlink_object(Obj_Entry *);
175 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
176 static void unref_dag(Obj_Entry *);
177 static void ref_dag(Obj_Entry *);
178 static char *origin_subst_one(Obj_Entry *, char *, const char *,
179     const char *, bool);
180 static char *origin_subst(Obj_Entry *, const char *);
181 static bool obj_resolve_origin(Obj_Entry *obj);
182 static void preinit_main(void);
183 static int  rtld_verify_versions(const Objlist *);
184 static int  rtld_verify_object_versions(Obj_Entry *);
185 static void object_add_name(Obj_Entry *, const char *);
186 static int  object_match_name(const Obj_Entry *, const char *);
187 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
188 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
189     struct dl_phdr_info *phdr_info);
190 static uint32_t gnu_hash(const char *);
191 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
192     const unsigned long);
193 
194 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
195 void _r_debug_postinit(struct link_map *) __noinline __exported;
196 
197 int __sys_openat(int, const char *, int, ...);
198 
199 /*
200  * Data declarations.
201  */
202 struct r_debug r_debug __exported;	/* for GDB; */
203 static bool libmap_disable;	/* Disable libmap */
204 static bool ld_loadfltr;	/* Immediate filters processing */
205 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
206 static bool trust;		/* False for setuid and setgid programs */
207 static bool dangerous_ld_env;	/* True if environment variables have been
208 				   used to affect the libraries loaded */
209 bool ld_bind_not;		/* Disable PLT update */
210 static const char *ld_bind_now;	/* Environment variable for immediate binding */
211 static const char *ld_debug;	/* Environment variable for debugging */
212 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
213 				       weak definition */
214 static const char *ld_library_path;/* Environment variable for search path */
215 static const char *ld_library_dirs;/* Environment variable for library descriptors */
216 static const char *ld_preload;	/* Environment variable for libraries to
217 				   load first */
218 static const char *ld_preload_fds;/* Environment variable for libraries represented by
219 				   descriptors */
220 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
221 static const char *ld_tracing;	/* Called from ldd to print libs */
222 static const char *ld_utrace;	/* Use utrace() to log events. */
223 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	/* The main program shared object */
225 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
226 static unsigned int obj_count;	/* Number of objects in obj_list */
227 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
228 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
229   RTLD_STATIC_TLS_EXTRA;
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 int npagesizes;
268 static int osreldate;
269 size_t *pagesizes;
270 size_t page_size;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 struct ld_env_var_desc {
348 	const char * const n;
349 	const char *val;
350 	const bool unsecure;
351 };
352 #define LD_ENV_DESC(var, unsec) \
353     [LD_##var] = { .n = #var, .unsecure = unsec }
354 
355 static struct ld_env_var_desc ld_env_vars[] = {
356 	LD_ENV_DESC(BIND_NOW, false),
357 	LD_ENV_DESC(PRELOAD, true),
358 	LD_ENV_DESC(LIBMAP, true),
359 	LD_ENV_DESC(LIBRARY_PATH, true),
360 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
361 	LD_ENV_DESC(LIBMAP_DISABLE, true),
362 	LD_ENV_DESC(BIND_NOT, true),
363 	LD_ENV_DESC(DEBUG, true),
364 	LD_ENV_DESC(ELF_HINTS_PATH, true),
365 	LD_ENV_DESC(LOADFLTR, true),
366 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
367 	LD_ENV_DESC(PRELOAD_FDS, true),
368 	LD_ENV_DESC(DYNAMIC_WEAK, true),
369 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
370 	LD_ENV_DESC(UTRACE, false),
371 	LD_ENV_DESC(DUMP_REL_PRE, false),
372 	LD_ENV_DESC(DUMP_REL_POST, false),
373 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
374 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
375 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
376 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
377 	LD_ENV_DESC(SHOW_AUXV, false),
378 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
379 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
380 };
381 
382 const char *
ld_get_env_var(int idx)383 ld_get_env_var(int idx)
384 {
385 	return (ld_env_vars[idx].val);
386 }
387 
388 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)389 rtld_get_env_val(char **env, const char *name, size_t name_len)
390 {
391 	char **m, *n, *v;
392 
393 	for (m = env; *m != NULL; m++) {
394 		n = *m;
395 		v = strchr(n, '=');
396 		if (v == NULL) {
397 			/* corrupt environment? */
398 			continue;
399 		}
400 		if (v - n == (ptrdiff_t)name_len &&
401 		    strncmp(name, n, name_len) == 0)
402 			return (v + 1);
403 	}
404 	return (NULL);
405 }
406 
407 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)408 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
409 {
410 	struct ld_env_var_desc *lvd;
411 	size_t prefix_len, nlen;
412 	char **m, *n, *v;
413 	int i;
414 
415 	prefix_len = strlen(env_prefix);
416 	for (m = env; *m != NULL; m++) {
417 		n = *m;
418 		if (strncmp(env_prefix, n, prefix_len) != 0) {
419 			/* Not a rtld environment variable. */
420 			continue;
421 		}
422 		n += prefix_len;
423 		v = strchr(n, '=');
424 		if (v == NULL) {
425 			/* corrupt environment? */
426 			continue;
427 		}
428 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
429 			lvd = &ld_env_vars[i];
430 			if (lvd->val != NULL) {
431 				/* Saw higher-priority variable name already. */
432 				continue;
433 			}
434 			nlen = strlen(lvd->n);
435 			if (v - n == (ptrdiff_t)nlen &&
436 			    strncmp(lvd->n, n, nlen) == 0) {
437 				lvd->val = v + 1;
438 				break;
439 			}
440 		}
441 	}
442 }
443 
444 static void
rtld_init_env_vars(char ** env)445 rtld_init_env_vars(char **env)
446 {
447 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
448 }
449 
450 static void
set_ld_elf_hints_path(void)451 set_ld_elf_hints_path(void)
452 {
453 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
454 		ld_elf_hints_path = ld_elf_hints_default;
455 }
456 
457 uintptr_t
rtld_round_page(uintptr_t x)458 rtld_round_page(uintptr_t x)
459 {
460 	return (roundup2(x, page_size));
461 }
462 
463 uintptr_t
rtld_trunc_page(uintptr_t x)464 rtld_trunc_page(uintptr_t x)
465 {
466 	return (rounddown2(x, page_size));
467 }
468 
469 /*
470  * Main entry point for dynamic linking.  The first argument is the
471  * stack pointer.  The stack is expected to be laid out as described
472  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
473  * Specifically, the stack pointer points to a word containing
474  * ARGC.  Following that in the stack is a null-terminated sequence
475  * of pointers to argument strings.  Then comes a null-terminated
476  * sequence of pointers to environment strings.  Finally, there is a
477  * sequence of "auxiliary vector" entries.
478  *
479  * The second argument points to a place to store the dynamic linker's
480  * exit procedure pointer and the third to a place to store the main
481  * program's object.
482  *
483  * The return value is the main program's entry point.
484  */
485 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)486 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
487 {
488     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
489     Objlist_Entry *entry;
490     Obj_Entry *last_interposer, *obj, *preload_tail;
491     const Elf_Phdr *phdr;
492     Objlist initlist;
493     RtldLockState lockstate;
494     struct stat st;
495     Elf_Addr *argcp;
496     char **argv, **env, **envp, *kexecpath;
497     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
498     struct ld_env_var_desc *lvd;
499     caddr_t imgentry;
500     char buf[MAXPATHLEN];
501     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
502     size_t sz;
503 #ifdef __powerpc__
504     int old_auxv_format = 1;
505 #endif
506     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
507 
508     /*
509      * On entry, the dynamic linker itself has not been relocated yet.
510      * Be very careful not to reference any global data until after
511      * init_rtld has returned.  It is OK to reference file-scope statics
512      * and string constants, and to call static and global functions.
513      */
514 
515     /* Find the auxiliary vector on the stack. */
516     argcp = sp;
517     argc = *sp++;
518     argv = (char **) sp;
519     sp += argc + 1;	/* Skip over arguments and NULL terminator */
520     env = (char **) sp;
521     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
522 	;
523     aux = (Elf_Auxinfo *) sp;
524 
525     /* Digest the auxiliary vector. */
526     for (i = 0;  i < AT_COUNT;  i++)
527 	aux_info[i] = NULL;
528     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
529 	if (auxp->a_type < AT_COUNT)
530 	    aux_info[auxp->a_type] = auxp;
531 #ifdef __powerpc__
532 	if (auxp->a_type == 23) /* AT_STACKPROT */
533 	    old_auxv_format = 0;
534 #endif
535     }
536 
537 #ifdef __powerpc__
538     if (old_auxv_format) {
539 	/* Remap from old-style auxv numbers. */
540 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
541 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
542 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
543 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
544 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
545 	aux_info[13] = NULL;		/* AT_GID */
546 
547 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
548 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
549 	aux_info[16] = aux_info[14];	/* AT_CANARY */
550 	aux_info[14] = NULL;		/* AT_EGID */
551     }
552 #endif
553 
554     /* Initialize and relocate ourselves. */
555     assert(aux_info[AT_BASE] != NULL);
556     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
557 
558     dlerror_dflt_init();
559 
560     __progname = obj_rtld.path;
561     argv0 = argv[0] != NULL ? argv[0] : "(null)";
562     environ = env;
563     main_argc = argc;
564     main_argv = argv;
565 
566     if (aux_info[AT_BSDFLAGS] != NULL &&
567 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
568 	    ld_fast_sigblock = true;
569 
570     trust = !issetugid();
571     direct_exec = false;
572 
573     md_abi_variant_hook(aux_info);
574     rtld_init_env_vars(env);
575 
576     fd = -1;
577     if (aux_info[AT_EXECFD] != NULL) {
578 	fd = aux_info[AT_EXECFD]->a_un.a_val;
579     } else {
580 	assert(aux_info[AT_PHDR] != NULL);
581 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
582 	if (phdr == obj_rtld.phdr) {
583 	    if (!trust) {
584 		_rtld_error("Tainted process refusing to run binary %s",
585 		    argv0);
586 		rtld_die();
587 	    }
588 	    direct_exec = true;
589 
590 	    dbg("opening main program in direct exec mode");
591 	    if (argc >= 2) {
592 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
593 		  &argv0, &dir_ignore);
594 		explicit_fd = (fd != -1);
595 		binpath = NULL;
596 		if (!explicit_fd)
597 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
598 		if (fstat(fd, &st) == -1) {
599 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
600 		      explicit_fd ? "user-provided descriptor" : argv0,
601 		      rtld_strerror(errno));
602 		    rtld_die();
603 		}
604 
605 		/*
606 		 * Rough emulation of the permission checks done by
607 		 * execve(2), only Unix DACs are checked, ACLs are
608 		 * ignored.  Preserve the semantic of disabling owner
609 		 * to execute if owner x bit is cleared, even if
610 		 * others x bit is enabled.
611 		 * mmap(2) does not allow to mmap with PROT_EXEC if
612 		 * binary' file comes from noexec mount.  We cannot
613 		 * set a text reference on the binary.
614 		 */
615 		dir_enable = false;
616 		if (st.st_uid == geteuid()) {
617 		    if ((st.st_mode & S_IXUSR) != 0)
618 			dir_enable = true;
619 		} else if (st.st_gid == getegid()) {
620 		    if ((st.st_mode & S_IXGRP) != 0)
621 			dir_enable = true;
622 		} else if ((st.st_mode & S_IXOTH) != 0) {
623 		    dir_enable = true;
624 		}
625 		if (!dir_enable && !dir_ignore) {
626 		    _rtld_error("No execute permission for binary %s",
627 		        argv0);
628 		    rtld_die();
629 		}
630 
631 		/*
632 		 * For direct exec mode, argv[0] is the interpreter
633 		 * name, we must remove it and shift arguments left
634 		 * before invoking binary main.  Since stack layout
635 		 * places environment pointers and aux vectors right
636 		 * after the terminating NULL, we must shift
637 		 * environment and aux as well.
638 		 */
639 		main_argc = argc - rtld_argc;
640 		for (i = 0; i <= main_argc; i++)
641 		    argv[i] = argv[i + rtld_argc];
642 		*argcp -= rtld_argc;
643 		environ = env = envp = argv + main_argc + 1;
644 		dbg("move env from %p to %p", envp + rtld_argc, envp);
645 		do {
646 		    *envp = *(envp + rtld_argc);
647 		}  while (*envp++ != NULL);
648 		aux = auxp = (Elf_Auxinfo *)envp;
649 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
650 		dbg("move aux from %p to %p", auxpf, aux);
651 		/* XXXKIB insert place for AT_EXECPATH if not present */
652 		for (;; auxp++, auxpf++) {
653 		    *auxp = *auxpf;
654 		    if (auxp->a_type == AT_NULL)
655 			    break;
656 		}
657 		/* Since the auxiliary vector has moved, redigest it. */
658 		for (i = 0;  i < AT_COUNT;  i++)
659 		    aux_info[i] = NULL;
660 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
661 		    if (auxp->a_type < AT_COUNT)
662 			aux_info[auxp->a_type] = auxp;
663 		}
664 
665 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
666 		if (binpath == NULL) {
667 		    aux_info[AT_EXECPATH] = NULL;
668 		} else {
669 		    if (aux_info[AT_EXECPATH] == NULL) {
670 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
671 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
672 		    }
673 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
674 		      binpath);
675 		}
676 	    } else {
677 		_rtld_error("No binary");
678 		rtld_die();
679 	    }
680 	}
681     }
682 
683     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
684 
685     /*
686      * If the process is tainted, then we un-set the dangerous environment
687      * variables.  The process will be marked as tainted until setuid(2)
688      * is called.  If any child process calls setuid(2) we do not want any
689      * future processes to honor the potentially un-safe variables.
690      */
691     if (!trust) {
692 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
693 		    lvd = &ld_env_vars[i];
694 		    if (lvd->unsecure)
695 			    lvd->val = NULL;
696 	    }
697     }
698 
699     ld_debug = ld_get_env_var(LD_DEBUG);
700     if (ld_bind_now == NULL)
701 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
702     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
703     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
704     libmap_override = ld_get_env_var(LD_LIBMAP);
705     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
706     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
707     ld_preload = ld_get_env_var(LD_PRELOAD);
708     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
709     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
710     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
711     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
712     if (library_path_rpath != NULL) {
713 	    if (library_path_rpath[0] == 'y' ||
714 		library_path_rpath[0] == 'Y' ||
715 		library_path_rpath[0] == '1')
716 		    ld_library_path_rpath = true;
717 	    else
718 		    ld_library_path_rpath = false;
719     }
720     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
721     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
722 	sz = parse_integer(static_tls_extra);
723 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
724 	    ld_static_tls_extra = sz;
725     }
726     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
727 	ld_library_path != NULL || ld_preload != NULL ||
728 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
729 	static_tls_extra != NULL;
730     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
731     ld_utrace = ld_get_env_var(LD_UTRACE);
732 
733     set_ld_elf_hints_path();
734     if (ld_debug != NULL && *ld_debug != '\0')
735 	debug = 1;
736     dbg("%s is initialized, base address = %p", __progname,
737 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
738     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
739     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
740 
741     dbg("initializing thread locks");
742     lockdflt_init();
743 
744     /*
745      * Load the main program, or process its program header if it is
746      * already loaded.
747      */
748     if (fd != -1) {	/* Load the main program. */
749 	dbg("loading main program");
750 	obj_main = map_object(fd, argv0, NULL);
751 	close(fd);
752 	if (obj_main == NULL)
753 	    rtld_die();
754 	max_stack_flags = obj_main->stack_flags;
755     } else {				/* Main program already loaded. */
756 	dbg("processing main program's program header");
757 	assert(aux_info[AT_PHDR] != NULL);
758 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
759 	assert(aux_info[AT_PHNUM] != NULL);
760 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
761 	assert(aux_info[AT_PHENT] != NULL);
762 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
763 	assert(aux_info[AT_ENTRY] != NULL);
764 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
765 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
766 	    rtld_die();
767     }
768 
769     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
770 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
771 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
772 	    if (kexecpath[0] == '/')
773 		    obj_main->path = kexecpath;
774 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
775 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
776 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
777 		    obj_main->path = xstrdup(argv0);
778 	    else
779 		    obj_main->path = xstrdup(buf);
780     } else {
781 	    dbg("No AT_EXECPATH or direct exec");
782 	    obj_main->path = xstrdup(argv0);
783     }
784     dbg("obj_main path %s", obj_main->path);
785     obj_main->mainprog = true;
786 
787     if (aux_info[AT_STACKPROT] != NULL &&
788       aux_info[AT_STACKPROT]->a_un.a_val != 0)
789 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
790 
791 #ifndef COMPAT_libcompat
792     /*
793      * Get the actual dynamic linker pathname from the executable if
794      * possible.  (It should always be possible.)  That ensures that
795      * gdb will find the right dynamic linker even if a non-standard
796      * one is being used.
797      */
798     if (obj_main->interp != NULL &&
799       strcmp(obj_main->interp, obj_rtld.path) != 0) {
800 	free(obj_rtld.path);
801 	obj_rtld.path = xstrdup(obj_main->interp);
802         __progname = obj_rtld.path;
803     }
804 #endif
805 
806     if (!digest_dynamic(obj_main, 0))
807 	rtld_die();
808     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
809 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
810 	obj_main->dynsymcount);
811 
812     linkmap_add(obj_main);
813     linkmap_add(&obj_rtld);
814 
815     /* Link the main program into the list of objects. */
816     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
817     obj_count++;
818     obj_loads++;
819 
820     /* Initialize a fake symbol for resolving undefined weak references. */
821     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
822     sym_zero.st_shndx = SHN_UNDEF;
823     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
824 
825     if (!libmap_disable)
826         libmap_disable = (bool)lm_init(libmap_override);
827 
828     if (aux_info[AT_KPRELOAD] != NULL &&
829       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
830 	dbg("loading kernel vdso");
831 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
832 	    rtld_die();
833     }
834 
835     dbg("loading LD_PRELOAD_FDS libraries");
836     if (load_preload_objects(ld_preload_fds, true) == -1)
837 	rtld_die();
838 
839     dbg("loading LD_PRELOAD libraries");
840     if (load_preload_objects(ld_preload, false) == -1)
841 	rtld_die();
842     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
843 
844     dbg("loading needed objects");
845     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
846       0) == -1)
847 	rtld_die();
848 
849     /* Make a list of all objects loaded at startup. */
850     last_interposer = obj_main;
851     TAILQ_FOREACH(obj, &obj_list, next) {
852 	if (obj->marker)
853 	    continue;
854 	if (obj->z_interpose && obj != obj_main) {
855 	    objlist_put_after(&list_main, last_interposer, obj);
856 	    last_interposer = obj;
857 	} else {
858 	    objlist_push_tail(&list_main, obj);
859 	}
860     	obj->refcount++;
861     }
862 
863     dbg("checking for required versions");
864     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
865 	rtld_die();
866 
867     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
868        dump_auxv(aux_info);
869 
870     if (ld_tracing) {		/* We're done */
871 	trace_loaded_objects(obj_main, true);
872 	exit(0);
873     }
874 
875     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
876        dump_relocations(obj_main);
877        exit (0);
878     }
879 
880     /*
881      * Processing tls relocations requires having the tls offsets
882      * initialized.  Prepare offsets before starting initial
883      * relocation processing.
884      */
885     dbg("initializing initial thread local storage offsets");
886     STAILQ_FOREACH(entry, &list_main, link) {
887 	/*
888 	 * Allocate all the initial objects out of the static TLS
889 	 * block even if they didn't ask for it.
890 	 */
891 	allocate_tls_offset(entry->obj);
892     }
893 
894     if (relocate_objects(obj_main,
895       ld_bind_now != NULL && *ld_bind_now != '\0',
896       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
897 	rtld_die();
898 
899     dbg("doing copy relocations");
900     if (do_copy_relocations(obj_main) == -1)
901 	rtld_die();
902 
903     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
904        dump_relocations(obj_main);
905        exit (0);
906     }
907 
908     ifunc_init(aux);
909 
910     /*
911      * Setup TLS for main thread.  This must be done after the
912      * relocations are processed, since tls initialization section
913      * might be the subject for relocations.
914      */
915     dbg("initializing initial thread local storage");
916     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
917 
918     dbg("initializing key program variables");
919     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
920     set_program_var("environ", env);
921     set_program_var("__elf_aux_vector", aux);
922 
923     /* Make a list of init functions to call. */
924     objlist_init(&initlist);
925     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
926       preload_tail, &initlist);
927 
928     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
929 
930     map_stacks_exec(NULL);
931 
932     if (!obj_main->crt_no_init) {
933 	/*
934 	 * Make sure we don't call the main program's init and fini
935 	 * functions for binaries linked with old crt1 which calls
936 	 * _init itself.
937 	 */
938 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
939 	obj_main->preinit_array = obj_main->init_array =
940 	    obj_main->fini_array = (Elf_Addr)NULL;
941     }
942 
943     if (direct_exec) {
944 	/* Set osrel for direct-execed binary */
945 	mib[0] = CTL_KERN;
946 	mib[1] = KERN_PROC;
947 	mib[2] = KERN_PROC_OSREL;
948 	mib[3] = getpid();
949 	osrel = obj_main->osrel;
950 	sz = sizeof(old_osrel);
951 	dbg("setting osrel to %d", osrel);
952 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
953     }
954 
955     wlock_acquire(rtld_bind_lock, &lockstate);
956 
957     dbg("resolving ifuncs");
958     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
959       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
960 	rtld_die();
961 
962     rtld_exit_ptr = rtld_exit;
963     if (obj_main->crt_no_init)
964 	preinit_main();
965     objlist_call_init(&initlist, &lockstate);
966     _r_debug_postinit(&obj_main->linkmap);
967     objlist_clear(&initlist);
968     dbg("loading filtees");
969     TAILQ_FOREACH(obj, &obj_list, next) {
970 	if (obj->marker)
971 	    continue;
972 	if (ld_loadfltr || obj->z_loadfltr)
973 	    load_filtees(obj, 0, &lockstate);
974     }
975 
976     dbg("enforcing main obj relro");
977     if (obj_enforce_relro(obj_main) == -1)
978 	rtld_die();
979 
980     lock_release(rtld_bind_lock, &lockstate);
981 
982     dbg("transferring control to program entry point = %p", obj_main->entry);
983 
984     /* Return the exit procedure and the program entry point. */
985     *exit_proc = rtld_exit_ptr;
986     *objp = obj_main;
987     return ((func_ptr_type)obj_main->entry);
988 }
989 
990 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)991 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
992 {
993 	void *ptr;
994 	Elf_Addr target;
995 
996 	ptr = (void *)make_function_pointer(def, obj);
997 	target = call_ifunc_resolver(ptr);
998 	return ((void *)target);
999 }
1000 
1001 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1002 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1003 {
1004     const Elf_Rel *rel;
1005     const Elf_Sym *def;
1006     const Obj_Entry *defobj;
1007     Elf_Addr *where;
1008     Elf_Addr target;
1009     RtldLockState lockstate;
1010 
1011     rlock_acquire(rtld_bind_lock, &lockstate);
1012     if (sigsetjmp(lockstate.env, 0) != 0)
1013 	    lock_upgrade(rtld_bind_lock, &lockstate);
1014     if (obj->pltrel)
1015 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1016     else
1017 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1018 
1019     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1020     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1021 	NULL, &lockstate);
1022     if (def == NULL)
1023 	rtld_die();
1024     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1025 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1026     else
1027 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1028 
1029     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1030       defobj->strtab + def->st_name,
1031       obj->path == NULL ? NULL : basename(obj->path),
1032       (void *)target,
1033       defobj->path == NULL ? NULL : basename(defobj->path));
1034 
1035     /*
1036      * Write the new contents for the jmpslot. Note that depending on
1037      * architecture, the value which we need to return back to the
1038      * lazy binding trampoline may or may not be the target
1039      * address. The value returned from reloc_jmpslot() is the value
1040      * that the trampoline needs.
1041      */
1042     target = reloc_jmpslot(where, target, defobj, obj, rel);
1043     lock_release(rtld_bind_lock, &lockstate);
1044     return (target);
1045 }
1046 
1047 /*
1048  * Error reporting function.  Use it like printf.  If formats the message
1049  * into a buffer, and sets things up so that the next call to dlerror()
1050  * will return the message.
1051  */
1052 void
_rtld_error(const char * fmt,...)1053 _rtld_error(const char *fmt, ...)
1054 {
1055 	va_list ap;
1056 
1057 	va_start(ap, fmt);
1058 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1059 	    fmt, ap);
1060 	va_end(ap);
1061 	*lockinfo.dlerror_seen() = 0;
1062 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1063 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1064 }
1065 
1066 /*
1067  * Return a dynamically-allocated copy of the current error message, if any.
1068  */
1069 static struct dlerror_save *
errmsg_save(void)1070 errmsg_save(void)
1071 {
1072 	struct dlerror_save *res;
1073 
1074 	res = xmalloc(sizeof(*res));
1075 	res->seen = *lockinfo.dlerror_seen();
1076 	if (res->seen == 0)
1077 		res->msg = xstrdup(lockinfo.dlerror_loc());
1078 	return (res);
1079 }
1080 
1081 /*
1082  * Restore the current error message from a copy which was previously saved
1083  * by errmsg_save().  The copy is freed.
1084  */
1085 static void
errmsg_restore(struct dlerror_save * saved_msg)1086 errmsg_restore(struct dlerror_save *saved_msg)
1087 {
1088 	if (saved_msg == NULL || saved_msg->seen == 1) {
1089 		*lockinfo.dlerror_seen() = 1;
1090 	} else {
1091 		*lockinfo.dlerror_seen() = 0;
1092 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1093 		    lockinfo.dlerror_loc_sz);
1094 		free(saved_msg->msg);
1095 	}
1096 	free(saved_msg);
1097 }
1098 
1099 static const char *
basename(const char * name)1100 basename(const char *name)
1101 {
1102 	const char *p;
1103 
1104 	p = strrchr(name, '/');
1105 	return (p != NULL ? p + 1 : name);
1106 }
1107 
1108 static struct utsname uts;
1109 
1110 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1111 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1112     const char *subst, bool may_free)
1113 {
1114 	char *p, *p1, *res, *resp;
1115 	int subst_len, kw_len, subst_count, old_len, new_len;
1116 
1117 	kw_len = strlen(kw);
1118 
1119 	/*
1120 	 * First, count the number of the keyword occurrences, to
1121 	 * preallocate the final string.
1122 	 */
1123 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1124 		p1 = strstr(p, kw);
1125 		if (p1 == NULL)
1126 			break;
1127 	}
1128 
1129 	/*
1130 	 * If the keyword is not found, just return.
1131 	 *
1132 	 * Return non-substituted string if resolution failed.  We
1133 	 * cannot do anything more reasonable, the failure mode of the
1134 	 * caller is unresolved library anyway.
1135 	 */
1136 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1137 		return (may_free ? real : xstrdup(real));
1138 	if (obj != NULL)
1139 		subst = obj->origin_path;
1140 
1141 	/*
1142 	 * There is indeed something to substitute.  Calculate the
1143 	 * length of the resulting string, and allocate it.
1144 	 */
1145 	subst_len = strlen(subst);
1146 	old_len = strlen(real);
1147 	new_len = old_len + (subst_len - kw_len) * subst_count;
1148 	res = xmalloc(new_len + 1);
1149 
1150 	/*
1151 	 * Now, execute the substitution loop.
1152 	 */
1153 	for (p = real, resp = res, *resp = '\0';;) {
1154 		p1 = strstr(p, kw);
1155 		if (p1 != NULL) {
1156 			/* Copy the prefix before keyword. */
1157 			memcpy(resp, p, p1 - p);
1158 			resp += p1 - p;
1159 			/* Keyword replacement. */
1160 			memcpy(resp, subst, subst_len);
1161 			resp += subst_len;
1162 			*resp = '\0';
1163 			p = p1 + kw_len;
1164 		} else
1165 			break;
1166 	}
1167 
1168 	/* Copy to the end of string and finish. */
1169 	strcat(resp, p);
1170 	if (may_free)
1171 		free(real);
1172 	return (res);
1173 }
1174 
1175 static const struct {
1176 	const char *kw;
1177 	bool pass_obj;
1178 	const char *subst;
1179 } tokens[] = {
1180 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1181 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1182 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1183 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1184 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1185 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1186 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1187 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1188 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1189 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1190 };
1191 
1192 static char *
origin_subst(Obj_Entry * obj,const char * real)1193 origin_subst(Obj_Entry *obj, const char *real)
1194 {
1195 	char *res;
1196 	int i;
1197 
1198 	if (obj == NULL || !trust)
1199 		return (xstrdup(real));
1200 	if (uts.sysname[0] == '\0') {
1201 		if (uname(&uts) != 0) {
1202 			_rtld_error("utsname failed: %d", errno);
1203 			return (NULL);
1204 		}
1205 	}
1206 
1207 	/* __DECONST is safe here since without may_free real is unchanged */
1208 	res = __DECONST(char *, real);
1209 	for (i = 0; i < (int)nitems(tokens); i++) {
1210 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1211 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1212 	}
1213 	return (res);
1214 }
1215 
1216 void
rtld_die(void)1217 rtld_die(void)
1218 {
1219     const char *msg = dlerror();
1220 
1221     if (msg == NULL)
1222 	msg = "Fatal error";
1223     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1224     rtld_fdputstr(STDERR_FILENO, msg);
1225     rtld_fdputchar(STDERR_FILENO, '\n');
1226     _exit(1);
1227 }
1228 
1229 /*
1230  * Process a shared object's DYNAMIC section, and save the important
1231  * information in its Obj_Entry structure.
1232  */
1233 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1234 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1235     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1236 {
1237     const Elf_Dyn *dynp;
1238     Needed_Entry **needed_tail = &obj->needed;
1239     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1240     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1241     const Elf_Hashelt *hashtab;
1242     const Elf32_Word *hashval;
1243     Elf32_Word bkt, nmaskwords;
1244     int bloom_size32;
1245     int plttype = DT_REL;
1246 
1247     *dyn_rpath = NULL;
1248     *dyn_soname = NULL;
1249     *dyn_runpath = NULL;
1250 
1251     obj->bind_now = false;
1252     dynp = obj->dynamic;
1253     if (dynp == NULL)
1254 	return;
1255     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1256 	switch (dynp->d_tag) {
1257 
1258 	case DT_REL:
1259 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1260 	    break;
1261 
1262 	case DT_RELSZ:
1263 	    obj->relsize = dynp->d_un.d_val;
1264 	    break;
1265 
1266 	case DT_RELENT:
1267 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1268 	    break;
1269 
1270 	case DT_JMPREL:
1271 	    obj->pltrel = (const Elf_Rel *)
1272 	      (obj->relocbase + dynp->d_un.d_ptr);
1273 	    break;
1274 
1275 	case DT_PLTRELSZ:
1276 	    obj->pltrelsize = dynp->d_un.d_val;
1277 	    break;
1278 
1279 	case DT_RELA:
1280 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1281 	    break;
1282 
1283 	case DT_RELASZ:
1284 	    obj->relasize = dynp->d_un.d_val;
1285 	    break;
1286 
1287 	case DT_RELAENT:
1288 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1289 	    break;
1290 
1291 	case DT_RELR:
1292 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1293 	    break;
1294 
1295 	case DT_RELRSZ:
1296 	    obj->relrsize = dynp->d_un.d_val;
1297 	    break;
1298 
1299 	case DT_RELRENT:
1300 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1301 	    break;
1302 
1303 	case DT_PLTREL:
1304 	    plttype = dynp->d_un.d_val;
1305 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1306 	    break;
1307 
1308 	case DT_SYMTAB:
1309 	    obj->symtab = (const Elf_Sym *)
1310 	      (obj->relocbase + dynp->d_un.d_ptr);
1311 	    break;
1312 
1313 	case DT_SYMENT:
1314 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1315 	    break;
1316 
1317 	case DT_STRTAB:
1318 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1319 	    break;
1320 
1321 	case DT_STRSZ:
1322 	    obj->strsize = dynp->d_un.d_val;
1323 	    break;
1324 
1325 	case DT_VERNEED:
1326 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1327 		dynp->d_un.d_val);
1328 	    break;
1329 
1330 	case DT_VERNEEDNUM:
1331 	    obj->verneednum = dynp->d_un.d_val;
1332 	    break;
1333 
1334 	case DT_VERDEF:
1335 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1336 		dynp->d_un.d_val);
1337 	    break;
1338 
1339 	case DT_VERDEFNUM:
1340 	    obj->verdefnum = dynp->d_un.d_val;
1341 	    break;
1342 
1343 	case DT_VERSYM:
1344 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1345 		dynp->d_un.d_val);
1346 	    break;
1347 
1348 	case DT_HASH:
1349 	    {
1350 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1351 		    dynp->d_un.d_ptr);
1352 		obj->nbuckets = hashtab[0];
1353 		obj->nchains = hashtab[1];
1354 		obj->buckets = hashtab + 2;
1355 		obj->chains = obj->buckets + obj->nbuckets;
1356 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1357 		  obj->buckets != NULL;
1358 	    }
1359 	    break;
1360 
1361 	case DT_GNU_HASH:
1362 	    {
1363 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1364 		    dynp->d_un.d_ptr);
1365 		obj->nbuckets_gnu = hashtab[0];
1366 		obj->symndx_gnu = hashtab[1];
1367 		nmaskwords = hashtab[2];
1368 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1369 		obj->maskwords_bm_gnu = nmaskwords - 1;
1370 		obj->shift2_gnu = hashtab[3];
1371 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1372 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1373 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1374 		  obj->symndx_gnu;
1375 		/* Number of bitmask words is required to be power of 2 */
1376 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1377 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1378 	    }
1379 	    break;
1380 
1381 	case DT_NEEDED:
1382 	    if (!obj->rtld) {
1383 		Needed_Entry *nep = NEW(Needed_Entry);
1384 		nep->name = dynp->d_un.d_val;
1385 		nep->obj = NULL;
1386 		nep->next = NULL;
1387 
1388 		*needed_tail = nep;
1389 		needed_tail = &nep->next;
1390 	    }
1391 	    break;
1392 
1393 	case DT_FILTER:
1394 	    if (!obj->rtld) {
1395 		Needed_Entry *nep = NEW(Needed_Entry);
1396 		nep->name = dynp->d_un.d_val;
1397 		nep->obj = NULL;
1398 		nep->next = NULL;
1399 
1400 		*needed_filtees_tail = nep;
1401 		needed_filtees_tail = &nep->next;
1402 
1403 		if (obj->linkmap.l_refname == NULL)
1404 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1405 	    }
1406 	    break;
1407 
1408 	case DT_AUXILIARY:
1409 	    if (!obj->rtld) {
1410 		Needed_Entry *nep = NEW(Needed_Entry);
1411 		nep->name = dynp->d_un.d_val;
1412 		nep->obj = NULL;
1413 		nep->next = NULL;
1414 
1415 		*needed_aux_filtees_tail = nep;
1416 		needed_aux_filtees_tail = &nep->next;
1417 	    }
1418 	    break;
1419 
1420 	case DT_PLTGOT:
1421 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1422 	    break;
1423 
1424 	case DT_TEXTREL:
1425 	    obj->textrel = true;
1426 	    break;
1427 
1428 	case DT_SYMBOLIC:
1429 	    obj->symbolic = true;
1430 	    break;
1431 
1432 	case DT_RPATH:
1433 	    /*
1434 	     * We have to wait until later to process this, because we
1435 	     * might not have gotten the address of the string table yet.
1436 	     */
1437 	    *dyn_rpath = dynp;
1438 	    break;
1439 
1440 	case DT_SONAME:
1441 	    *dyn_soname = dynp;
1442 	    break;
1443 
1444 	case DT_RUNPATH:
1445 	    *dyn_runpath = dynp;
1446 	    break;
1447 
1448 	case DT_INIT:
1449 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1450 	    break;
1451 
1452 	case DT_PREINIT_ARRAY:
1453 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1454 	    break;
1455 
1456 	case DT_PREINIT_ARRAYSZ:
1457 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1458 	    break;
1459 
1460 	case DT_INIT_ARRAY:
1461 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1462 	    break;
1463 
1464 	case DT_INIT_ARRAYSZ:
1465 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1466 	    break;
1467 
1468 	case DT_FINI:
1469 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1470 	    break;
1471 
1472 	case DT_FINI_ARRAY:
1473 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1474 	    break;
1475 
1476 	case DT_FINI_ARRAYSZ:
1477 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1478 	    break;
1479 
1480 	case DT_DEBUG:
1481 	    if (!early)
1482 		dbg("Filling in DT_DEBUG entry");
1483 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1484 	    break;
1485 
1486 	case DT_FLAGS:
1487 		if (dynp->d_un.d_val & DF_ORIGIN)
1488 		    obj->z_origin = true;
1489 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1490 		    obj->symbolic = true;
1491 		if (dynp->d_un.d_val & DF_TEXTREL)
1492 		    obj->textrel = true;
1493 		if (dynp->d_un.d_val & DF_BIND_NOW)
1494 		    obj->bind_now = true;
1495 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1496 		    obj->static_tls = true;
1497 	    break;
1498 
1499 #ifdef __powerpc__
1500 #ifdef __powerpc64__
1501 	case DT_PPC64_GLINK:
1502 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1503 		break;
1504 #else
1505 	case DT_PPC_GOT:
1506 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1507 		break;
1508 #endif
1509 #endif
1510 
1511 	case DT_FLAGS_1:
1512 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1513 		    obj->z_noopen = true;
1514 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1515 		    obj->z_origin = true;
1516 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1517 		    obj->z_global = true;
1518 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1519 		    obj->bind_now = true;
1520 		if (dynp->d_un.d_val & DF_1_NODELETE)
1521 		    obj->z_nodelete = true;
1522 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1523 		    obj->z_loadfltr = true;
1524 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1525 		    obj->z_interpose = true;
1526 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1527 		    obj->z_nodeflib = true;
1528 		if (dynp->d_un.d_val & DF_1_PIE)
1529 		    obj->z_pie = true;
1530 	    break;
1531 
1532 	default:
1533 	    if (!early) {
1534 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1535 		    (long)dynp->d_tag);
1536 	    }
1537 	    break;
1538 	}
1539     }
1540 
1541     obj->traced = false;
1542 
1543     if (plttype == DT_RELA) {
1544 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1545 	obj->pltrel = NULL;
1546 	obj->pltrelasize = obj->pltrelsize;
1547 	obj->pltrelsize = 0;
1548     }
1549 
1550     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1551     if (obj->valid_hash_sysv)
1552 	obj->dynsymcount = obj->nchains;
1553     else if (obj->valid_hash_gnu) {
1554 	obj->dynsymcount = 0;
1555 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1556 	    if (obj->buckets_gnu[bkt] == 0)
1557 		continue;
1558 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1559 	    do
1560 		obj->dynsymcount++;
1561 	    while ((*hashval++ & 1u) == 0);
1562 	}
1563 	obj->dynsymcount += obj->symndx_gnu;
1564     }
1565 
1566     if (obj->linkmap.l_refname != NULL)
1567 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1568 	  linkmap.l_refname;
1569 }
1570 
1571 static bool
obj_resolve_origin(Obj_Entry * obj)1572 obj_resolve_origin(Obj_Entry *obj)
1573 {
1574 
1575 	if (obj->origin_path != NULL)
1576 		return (true);
1577 	obj->origin_path = xmalloc(PATH_MAX);
1578 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1579 }
1580 
1581 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1582 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1583     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1584 {
1585 
1586 	if (obj->z_origin && !obj_resolve_origin(obj))
1587 		return (false);
1588 
1589 	if (dyn_runpath != NULL) {
1590 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1591 		obj->runpath = origin_subst(obj, obj->runpath);
1592 	} else if (dyn_rpath != NULL) {
1593 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1594 		obj->rpath = origin_subst(obj, obj->rpath);
1595 	}
1596 	if (dyn_soname != NULL)
1597 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1598 	return (true);
1599 }
1600 
1601 static bool
digest_dynamic(Obj_Entry * obj,int early)1602 digest_dynamic(Obj_Entry *obj, int early)
1603 {
1604 	const Elf_Dyn *dyn_rpath;
1605 	const Elf_Dyn *dyn_soname;
1606 	const Elf_Dyn *dyn_runpath;
1607 
1608 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1609 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1610 }
1611 
1612 /*
1613  * Process a shared object's program header.  This is used only for the
1614  * main program, when the kernel has already loaded the main program
1615  * into memory before calling the dynamic linker.  It creates and
1616  * returns an Obj_Entry structure.
1617  */
1618 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1619 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1620 {
1621     Obj_Entry *obj;
1622     const Elf_Phdr *phlimit = phdr + phnum;
1623     const Elf_Phdr *ph;
1624     Elf_Addr note_start, note_end;
1625     int nsegs = 0;
1626 
1627     obj = obj_new();
1628     for (ph = phdr;  ph < phlimit;  ph++) {
1629 	if (ph->p_type != PT_PHDR)
1630 	    continue;
1631 
1632 	obj->phdr = phdr;
1633 	obj->phsize = ph->p_memsz;
1634 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1635 	break;
1636     }
1637 
1638     obj->stack_flags = PF_X | PF_R | PF_W;
1639 
1640     for (ph = phdr;  ph < phlimit;  ph++) {
1641 	switch (ph->p_type) {
1642 
1643 	case PT_INTERP:
1644 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1645 	    break;
1646 
1647 	case PT_LOAD:
1648 	    if (nsegs == 0) {	/* First load segment */
1649 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1650 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1651 	    } else {		/* Last load segment */
1652 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1653 		  obj->vaddrbase;
1654 	    }
1655 	    nsegs++;
1656 	    break;
1657 
1658 	case PT_DYNAMIC:
1659 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1660 	    break;
1661 
1662 	case PT_TLS:
1663 	    obj->tlsindex = 1;
1664 	    obj->tlssize = ph->p_memsz;
1665 	    obj->tlsalign = ph->p_align;
1666 	    obj->tlsinitsize = ph->p_filesz;
1667 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1668 	    obj->tlspoffset = ph->p_offset;
1669 	    break;
1670 
1671 	case PT_GNU_STACK:
1672 	    obj->stack_flags = ph->p_flags;
1673 	    break;
1674 
1675 	case PT_GNU_RELRO:
1676 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1677 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1678 	      rtld_trunc_page(ph->p_vaddr);
1679 	    break;
1680 
1681 	case PT_NOTE:
1682 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1683 	    note_end = note_start + ph->p_filesz;
1684 	    digest_notes(obj, note_start, note_end);
1685 	    break;
1686 	}
1687     }
1688     if (nsegs < 1) {
1689 	_rtld_error("%s: too few PT_LOAD segments", path);
1690 	return (NULL);
1691     }
1692 
1693     obj->entry = entry;
1694     return (obj);
1695 }
1696 
1697 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1698 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1699 {
1700 	const Elf_Note *note;
1701 	const char *note_name;
1702 	uintptr_t p;
1703 
1704 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1705 	    note = (const Elf_Note *)((const char *)(note + 1) +
1706 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1707 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1708 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1709 		    note->n_descsz != sizeof(int32_t))
1710 			continue;
1711 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1712 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1713 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1714 			continue;
1715 		note_name = (const char *)(note + 1);
1716 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1717 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1718 			continue;
1719 		switch (note->n_type) {
1720 		case NT_FREEBSD_ABI_TAG:
1721 			/* FreeBSD osrel note */
1722 			p = (uintptr_t)(note + 1);
1723 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1724 			obj->osrel = *(const int32_t *)(p);
1725 			dbg("note osrel %d", obj->osrel);
1726 			break;
1727 		case NT_FREEBSD_FEATURE_CTL:
1728 			/* FreeBSD ABI feature control note */
1729 			p = (uintptr_t)(note + 1);
1730 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1731 			obj->fctl0 = *(const uint32_t *)(p);
1732 			dbg("note fctl0 %#x", obj->fctl0);
1733 			break;
1734 		case NT_FREEBSD_NOINIT_TAG:
1735 			/* FreeBSD 'crt does not call init' note */
1736 			obj->crt_no_init = true;
1737 			dbg("note crt_no_init");
1738 			break;
1739 		}
1740 	}
1741 }
1742 
1743 static Obj_Entry *
dlcheck(void * handle)1744 dlcheck(void *handle)
1745 {
1746     Obj_Entry *obj;
1747 
1748     TAILQ_FOREACH(obj, &obj_list, next) {
1749 	if (obj == (Obj_Entry *) handle)
1750 	    break;
1751     }
1752 
1753     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1754 	_rtld_error("Invalid shared object handle %p", handle);
1755 	return (NULL);
1756     }
1757     return (obj);
1758 }
1759 
1760 /*
1761  * If the given object is already in the donelist, return true.  Otherwise
1762  * add the object to the list and return false.
1763  */
1764 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1765 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1766 {
1767     unsigned int i;
1768 
1769     for (i = 0;  i < dlp->num_used;  i++)
1770 	if (dlp->objs[i] == obj)
1771 	    return (true);
1772     /*
1773      * Our donelist allocation should always be sufficient.  But if
1774      * our threads locking isn't working properly, more shared objects
1775      * could have been loaded since we allocated the list.  That should
1776      * never happen, but we'll handle it properly just in case it does.
1777      */
1778     if (dlp->num_used < dlp->num_alloc)
1779 	dlp->objs[dlp->num_used++] = obj;
1780     return (false);
1781 }
1782 
1783 /*
1784  * SysV hash function for symbol table lookup.  It is a slightly optimized
1785  * version of the hash specified by the System V ABI.
1786  */
1787 Elf32_Word
elf_hash(const char * name)1788 elf_hash(const char *name)
1789 {
1790 	const unsigned char *p = (const unsigned char *)name;
1791 	Elf32_Word h = 0;
1792 
1793 	while (*p != '\0') {
1794 		h = (h << 4) + *p++;
1795 		h ^= (h >> 24) & 0xf0;
1796 	}
1797 	return (h & 0x0fffffff);
1798 }
1799 
1800 /*
1801  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1802  * unsigned in case it's implemented with a wider type.
1803  */
1804 static uint32_t
gnu_hash(const char * s)1805 gnu_hash(const char *s)
1806 {
1807 	uint32_t h;
1808 	unsigned char c;
1809 
1810 	h = 5381;
1811 	for (c = *s; c != '\0'; c = *++s)
1812 		h = h * 33 + c;
1813 	return (h & 0xffffffff);
1814 }
1815 
1816 
1817 /*
1818  * Find the library with the given name, and return its full pathname.
1819  * The returned string is dynamically allocated.  Generates an error
1820  * message and returns NULL if the library cannot be found.
1821  *
1822  * If the second argument is non-NULL, then it refers to an already-
1823  * loaded shared object, whose library search path will be searched.
1824  *
1825  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1826  * descriptor (which is close-on-exec) will be passed out via the third
1827  * argument.
1828  *
1829  * The search order is:
1830  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1831  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1832  *   LD_LIBRARY_PATH
1833  *   DT_RUNPATH in the referencing file
1834  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1835  *	 from list)
1836  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1837  *
1838  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1839  */
1840 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1841 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1842 {
1843 	char *pathname, *refobj_path;
1844 	const char *name;
1845 	bool nodeflib, objgiven;
1846 
1847 	objgiven = refobj != NULL;
1848 
1849 	if (libmap_disable || !objgiven ||
1850 	    (name = lm_find(refobj->path, xname)) == NULL)
1851 		name = xname;
1852 
1853 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1854 		if (name[0] != '/' && !trust) {
1855 			_rtld_error("Absolute pathname required "
1856 			    "for shared object \"%s\"", name);
1857 			return (NULL);
1858 		}
1859 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1860 		    __DECONST(char *, name)));
1861 	}
1862 
1863 	dbg(" Searching for \"%s\"", name);
1864 	refobj_path = objgiven ? refobj->path : NULL;
1865 
1866 	/*
1867 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1868 	 * back to pre-conforming behaviour if user requested so with
1869 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1870 	 * nodeflib.
1871 	 */
1872 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1873 		pathname = search_library_path(name, ld_library_path,
1874 		    refobj_path, fdp);
1875 		if (pathname != NULL)
1876 			return (pathname);
1877 		if (refobj != NULL) {
1878 			pathname = search_library_path(name, refobj->rpath,
1879 			    refobj_path, fdp);
1880 			if (pathname != NULL)
1881 				return (pathname);
1882 		}
1883 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1884 		if (pathname != NULL)
1885 			return (pathname);
1886 		pathname = search_library_path(name, gethints(false),
1887 		    refobj_path, fdp);
1888 		if (pathname != NULL)
1889 			return (pathname);
1890 		pathname = search_library_path(name, ld_standard_library_path,
1891 		    refobj_path, fdp);
1892 		if (pathname != NULL)
1893 			return (pathname);
1894 	} else {
1895 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1896 		if (objgiven) {
1897 			pathname = search_library_path(name, refobj->rpath,
1898 			    refobj->path, fdp);
1899 			if (pathname != NULL)
1900 				return (pathname);
1901 		}
1902 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1903 			pathname = search_library_path(name, obj_main->rpath,
1904 			    refobj_path, fdp);
1905 			if (pathname != NULL)
1906 				return (pathname);
1907 		}
1908 		pathname = search_library_path(name, ld_library_path,
1909 		    refobj_path, fdp);
1910 		if (pathname != NULL)
1911 			return (pathname);
1912 		if (objgiven) {
1913 			pathname = search_library_path(name, refobj->runpath,
1914 			    refobj_path, fdp);
1915 			if (pathname != NULL)
1916 				return (pathname);
1917 		}
1918 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1919 		if (pathname != NULL)
1920 			return (pathname);
1921 		pathname = search_library_path(name, gethints(nodeflib),
1922 		    refobj_path, fdp);
1923 		if (pathname != NULL)
1924 			return (pathname);
1925 		if (objgiven && !nodeflib) {
1926 			pathname = search_library_path(name,
1927 			    ld_standard_library_path, refobj_path, fdp);
1928 			if (pathname != NULL)
1929 				return (pathname);
1930 		}
1931 	}
1932 
1933 	if (objgiven && refobj->path != NULL) {
1934 		_rtld_error("Shared object \"%s\" not found, "
1935 		    "required by \"%s\"", name, basename(refobj->path));
1936 	} else {
1937 		_rtld_error("Shared object \"%s\" not found", name);
1938 	}
1939 	return (NULL);
1940 }
1941 
1942 /*
1943  * Given a symbol number in a referencing object, find the corresponding
1944  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1945  * no definition was found.  Returns a pointer to the Obj_Entry of the
1946  * defining object via the reference parameter DEFOBJ_OUT.
1947  */
1948 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1949 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1950     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1951     RtldLockState *lockstate)
1952 {
1953     const Elf_Sym *ref;
1954     const Elf_Sym *def;
1955     const Obj_Entry *defobj;
1956     const Ver_Entry *ve;
1957     SymLook req;
1958     const char *name;
1959     int res;
1960 
1961     /*
1962      * If we have already found this symbol, get the information from
1963      * the cache.
1964      */
1965     if (symnum >= refobj->dynsymcount)
1966 	return (NULL);	/* Bad object */
1967     if (cache != NULL && cache[symnum].sym != NULL) {
1968 	*defobj_out = cache[symnum].obj;
1969 	return (cache[symnum].sym);
1970     }
1971 
1972     ref = refobj->symtab + symnum;
1973     name = refobj->strtab + ref->st_name;
1974     def = NULL;
1975     defobj = NULL;
1976     ve = NULL;
1977 
1978     /*
1979      * We don't have to do a full scale lookup if the symbol is local.
1980      * We know it will bind to the instance in this load module; to
1981      * which we already have a pointer (ie ref). By not doing a lookup,
1982      * we not only improve performance, but it also avoids unresolvable
1983      * symbols when local symbols are not in the hash table. This has
1984      * been seen with the ia64 toolchain.
1985      */
1986     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1987 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1988 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1989 		symnum);
1990 	}
1991 	symlook_init(&req, name);
1992 	req.flags = flags;
1993 	ve = req.ventry = fetch_ventry(refobj, symnum);
1994 	req.lockstate = lockstate;
1995 	res = symlook_default(&req, refobj);
1996 	if (res == 0) {
1997 	    def = req.sym_out;
1998 	    defobj = req.defobj_out;
1999 	}
2000     } else {
2001 	def = ref;
2002 	defobj = refobj;
2003     }
2004 
2005     /*
2006      * If we found no definition and the reference is weak, treat the
2007      * symbol as having the value zero.
2008      */
2009     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2010 	def = &sym_zero;
2011 	defobj = obj_main;
2012     }
2013 
2014     if (def != NULL) {
2015 	*defobj_out = defobj;
2016 	/* Record the information in the cache to avoid subsequent lookups. */
2017 	if (cache != NULL) {
2018 	    cache[symnum].sym = def;
2019 	    cache[symnum].obj = defobj;
2020 	}
2021     } else {
2022 	if (refobj != &obj_rtld)
2023 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2024 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2025     }
2026     return (def);
2027 }
2028 
2029 /* Convert between native byte order and forced little resp. big endian. */
2030 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2031 
2032 /*
2033  * Return the search path from the ldconfig hints file, reading it if
2034  * necessary.  If nostdlib is true, then the default search paths are
2035  * not added to result.
2036  *
2037  * Returns NULL if there are problems with the hints file,
2038  * or if the search path there is empty.
2039  */
2040 static const char *
gethints(bool nostdlib)2041 gethints(bool nostdlib)
2042 {
2043 	static char *filtered_path;
2044 	static const char *hints;
2045 	static struct elfhints_hdr hdr;
2046 	struct fill_search_info_args sargs, hargs;
2047 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2048 	struct dl_serpath *SLPpath, *hintpath;
2049 	char *p;
2050 	struct stat hint_stat;
2051 	unsigned int SLPndx, hintndx, fndx, fcount;
2052 	int fd;
2053 	size_t flen;
2054 	uint32_t dl;
2055 	uint32_t magic;		/* Magic number */
2056 	uint32_t version;	/* File version (1) */
2057 	uint32_t strtab;	/* Offset of string table in file */
2058 	uint32_t dirlist;	/* Offset of directory list in string table */
2059 	uint32_t dirlistlen;	/* strlen(dirlist) */
2060 	bool is_le;		/* Does the hints file use little endian */
2061 	bool skip;
2062 
2063 	/* First call, read the hints file */
2064 	if (hints == NULL) {
2065 		/* Keep from trying again in case the hints file is bad. */
2066 		hints = "";
2067 
2068 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2069 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2070 			return (NULL);
2071 		}
2072 
2073 		/*
2074 		 * Check of hdr.dirlistlen value against type limit
2075 		 * intends to pacify static analyzers.  Further
2076 		 * paranoia leads to checks that dirlist is fully
2077 		 * contained in the file range.
2078 		 */
2079 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2080 			dbg("failed to read %lu bytes from hints file \"%s\"",
2081 			    (u_long)sizeof hdr, ld_elf_hints_path);
2082 cleanup1:
2083 			close(fd);
2084 			hdr.dirlistlen = 0;
2085 			return (NULL);
2086 		}
2087 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2088 		dbg("hints file byte-order: %s-endian",
2089 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2090 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2091 		magic = COND_SWAP(hdr.magic);
2092 		version = COND_SWAP(hdr.version);
2093 		strtab = COND_SWAP(hdr.strtab);
2094 		dirlist = COND_SWAP(hdr.dirlist);
2095 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2096 		if (magic != ELFHINTS_MAGIC) {
2097 			dbg("invalid magic number %#08x (expected: %#08x)",
2098 			    magic, ELFHINTS_MAGIC);
2099 			goto cleanup1;
2100 		}
2101 		if (version != 1) {
2102 			dbg("hints file version %d (expected: 1)", version);
2103 			goto cleanup1;
2104 		}
2105 		if (dirlistlen > UINT_MAX / 2) {
2106 			dbg("directory list is to long: %d > %d",
2107 			    dirlistlen, UINT_MAX / 2);
2108 			goto cleanup1;
2109 		}
2110 		if (fstat(fd, &hint_stat) == -1) {
2111 			dbg("failed to find length of hints file \"%s\"",
2112 			    ld_elf_hints_path);
2113 			goto cleanup1;
2114 		}
2115 		dl = strtab;
2116 		if (dl + dirlist < dl) {
2117 			dbg("invalid string table position %d", dl);
2118 			goto cleanup1;
2119 		}
2120 		dl += dirlist;
2121 		if (dl + dirlistlen < dl) {
2122 			dbg("invalid directory list offset %d", dirlist);
2123 			goto cleanup1;
2124 		}
2125 		dl += dirlistlen;
2126 		if (dl > hint_stat.st_size) {
2127 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2128 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2129 			goto cleanup1;
2130 		}
2131 		p = xmalloc(dirlistlen + 1);
2132 		if (pread(fd, p, dirlistlen + 1,
2133 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2134 		    p[dirlistlen] != '\0') {
2135 			free(p);
2136 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2137 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2138 			goto cleanup1;
2139 		}
2140 		hints = p;
2141 		close(fd);
2142 	}
2143 
2144 	/*
2145 	 * If caller agreed to receive list which includes the default
2146 	 * paths, we are done. Otherwise, if we still did not
2147 	 * calculated filtered result, do it now.
2148 	 */
2149 	if (!nostdlib)
2150 		return (hints[0] != '\0' ? hints : NULL);
2151 	if (filtered_path != NULL)
2152 		goto filt_ret;
2153 
2154 	/*
2155 	 * Obtain the list of all configured search paths, and the
2156 	 * list of the default paths.
2157 	 *
2158 	 * First estimate the size of the results.
2159 	 */
2160 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2161 	smeta.dls_cnt = 0;
2162 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2163 	hmeta.dls_cnt = 0;
2164 
2165 	sargs.request = RTLD_DI_SERINFOSIZE;
2166 	sargs.serinfo = &smeta;
2167 	hargs.request = RTLD_DI_SERINFOSIZE;
2168 	hargs.serinfo = &hmeta;
2169 
2170 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2171 	    &sargs);
2172 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2173 
2174 	SLPinfo = xmalloc(smeta.dls_size);
2175 	hintinfo = xmalloc(hmeta.dls_size);
2176 
2177 	/*
2178 	 * Next fetch both sets of paths.
2179 	 */
2180 	sargs.request = RTLD_DI_SERINFO;
2181 	sargs.serinfo = SLPinfo;
2182 	sargs.serpath = &SLPinfo->dls_serpath[0];
2183 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2184 
2185 	hargs.request = RTLD_DI_SERINFO;
2186 	hargs.serinfo = hintinfo;
2187 	hargs.serpath = &hintinfo->dls_serpath[0];
2188 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2189 
2190 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2191 	    &sargs);
2192 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2193 
2194 	/*
2195 	 * Now calculate the difference between two sets, by excluding
2196 	 * standard paths from the full set.
2197 	 */
2198 	fndx = 0;
2199 	fcount = 0;
2200 	filtered_path = xmalloc(dirlistlen + 1);
2201 	hintpath = &hintinfo->dls_serpath[0];
2202 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2203 		skip = false;
2204 		SLPpath = &SLPinfo->dls_serpath[0];
2205 		/*
2206 		 * Check each standard path against current.
2207 		 */
2208 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2209 			/* matched, skip the path */
2210 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2211 				skip = true;
2212 				break;
2213 			}
2214 		}
2215 		if (skip)
2216 			continue;
2217 		/*
2218 		 * Not matched against any standard path, add the path
2219 		 * to result. Separate consequtive paths with ':'.
2220 		 */
2221 		if (fcount > 0) {
2222 			filtered_path[fndx] = ':';
2223 			fndx++;
2224 		}
2225 		fcount++;
2226 		flen = strlen(hintpath->dls_name);
2227 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2228 		fndx += flen;
2229 	}
2230 	filtered_path[fndx] = '\0';
2231 
2232 	free(SLPinfo);
2233 	free(hintinfo);
2234 
2235 filt_ret:
2236 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2237 }
2238 
2239 static void
init_dag(Obj_Entry * root)2240 init_dag(Obj_Entry *root)
2241 {
2242     const Needed_Entry *needed;
2243     const Objlist_Entry *elm;
2244     DoneList donelist;
2245 
2246     if (root->dag_inited)
2247 	return;
2248     donelist_init(&donelist);
2249 
2250     /* Root object belongs to own DAG. */
2251     objlist_push_tail(&root->dldags, root);
2252     objlist_push_tail(&root->dagmembers, root);
2253     donelist_check(&donelist, root);
2254 
2255     /*
2256      * Add dependencies of root object to DAG in breadth order
2257      * by exploiting the fact that each new object get added
2258      * to the tail of the dagmembers list.
2259      */
2260     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2261 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2262 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2263 		continue;
2264 	    objlist_push_tail(&needed->obj->dldags, root);
2265 	    objlist_push_tail(&root->dagmembers, needed->obj);
2266 	}
2267     }
2268     root->dag_inited = true;
2269 }
2270 
2271 static void
init_marker(Obj_Entry * marker)2272 init_marker(Obj_Entry *marker)
2273 {
2274 
2275 	bzero(marker, sizeof(*marker));
2276 	marker->marker = true;
2277 }
2278 
2279 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2280 globallist_curr(const Obj_Entry *obj)
2281 {
2282 
2283 	for (;;) {
2284 		if (obj == NULL)
2285 			return (NULL);
2286 		if (!obj->marker)
2287 			return (__DECONST(Obj_Entry *, obj));
2288 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2289 	}
2290 }
2291 
2292 Obj_Entry *
globallist_next(const Obj_Entry * obj)2293 globallist_next(const Obj_Entry *obj)
2294 {
2295 
2296 	for (;;) {
2297 		obj = TAILQ_NEXT(obj, next);
2298 		if (obj == NULL)
2299 			return (NULL);
2300 		if (!obj->marker)
2301 			return (__DECONST(Obj_Entry *, obj));
2302 	}
2303 }
2304 
2305 /* Prevent the object from being unmapped while the bind lock is dropped. */
2306 static void
hold_object(Obj_Entry * obj)2307 hold_object(Obj_Entry *obj)
2308 {
2309 
2310 	obj->holdcount++;
2311 }
2312 
2313 static void
unhold_object(Obj_Entry * obj)2314 unhold_object(Obj_Entry *obj)
2315 {
2316 
2317 	assert(obj->holdcount > 0);
2318 	if (--obj->holdcount == 0 && obj->unholdfree)
2319 		release_object(obj);
2320 }
2321 
2322 static void
process_z(Obj_Entry * root)2323 process_z(Obj_Entry *root)
2324 {
2325 	const Objlist_Entry *elm;
2326 	Obj_Entry *obj;
2327 
2328 	/*
2329 	 * Walk over object DAG and process every dependent object
2330 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2331 	 * to grow their own DAG.
2332 	 *
2333 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2334 	 * symlook_global() to work.
2335 	 *
2336 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2337 	 */
2338 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2339 		obj = elm->obj;
2340 		if (obj == NULL)
2341 			continue;
2342 		if (obj->z_nodelete && !obj->ref_nodel) {
2343 			dbg("obj %s -z nodelete", obj->path);
2344 			init_dag(obj);
2345 			ref_dag(obj);
2346 			obj->ref_nodel = true;
2347 		}
2348 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2349 			dbg("obj %s -z global", obj->path);
2350 			objlist_push_tail(&list_global, obj);
2351 			init_dag(obj);
2352 		}
2353 	}
2354 }
2355 
2356 static void
parse_rtld_phdr(Obj_Entry * obj)2357 parse_rtld_phdr(Obj_Entry *obj)
2358 {
2359 	const Elf_Phdr *ph;
2360 	Elf_Addr note_start, note_end;
2361 
2362 	obj->stack_flags = PF_X | PF_R | PF_W;
2363 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2364 	    obj->phsize; ph++) {
2365 		switch (ph->p_type) {
2366 		case PT_GNU_STACK:
2367 			obj->stack_flags = ph->p_flags;
2368 			break;
2369 		case PT_GNU_RELRO:
2370 			obj->relro_page = obj->relocbase +
2371 			    rtld_trunc_page(ph->p_vaddr);
2372 			obj->relro_size = rtld_round_page(ph->p_memsz);
2373 			break;
2374 		case PT_NOTE:
2375 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2376 			note_end = note_start + ph->p_filesz;
2377 			digest_notes(obj, note_start, note_end);
2378 			break;
2379 		}
2380 	}
2381 }
2382 
2383 /*
2384  * Initialize the dynamic linker.  The argument is the address at which
2385  * the dynamic linker has been mapped into memory.  The primary task of
2386  * this function is to relocate the dynamic linker.
2387  */
2388 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2389 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2390 {
2391     Obj_Entry objtmp;	/* Temporary rtld object */
2392     const Elf_Ehdr *ehdr;
2393     const Elf_Dyn *dyn_rpath;
2394     const Elf_Dyn *dyn_soname;
2395     const Elf_Dyn *dyn_runpath;
2396 
2397 #ifdef RTLD_INIT_PAGESIZES_EARLY
2398     /* The page size is required by the dynamic memory allocator. */
2399     init_pagesizes(aux_info);
2400 #endif
2401 
2402     /*
2403      * Conjure up an Obj_Entry structure for the dynamic linker.
2404      *
2405      * The "path" member can't be initialized yet because string constants
2406      * cannot yet be accessed. Below we will set it correctly.
2407      */
2408     memset(&objtmp, 0, sizeof(objtmp));
2409     objtmp.path = NULL;
2410     objtmp.rtld = true;
2411     objtmp.mapbase = mapbase;
2412 #ifdef PIC
2413     objtmp.relocbase = mapbase;
2414 #endif
2415 
2416     objtmp.dynamic = rtld_dynamic(&objtmp);
2417     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2418     assert(objtmp.needed == NULL);
2419     assert(!objtmp.textrel);
2420     /*
2421      * Temporarily put the dynamic linker entry into the object list, so
2422      * that symbols can be found.
2423      */
2424     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2425 
2426     ehdr = (Elf_Ehdr *)mapbase;
2427     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2428     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2429 
2430     /* Initialize the object list. */
2431     TAILQ_INIT(&obj_list);
2432 
2433     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2434     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2435 
2436 #ifndef RTLD_INIT_PAGESIZES_EARLY
2437     /* The page size is required by the dynamic memory allocator. */
2438     init_pagesizes(aux_info);
2439 #endif
2440 
2441     if (aux_info[AT_OSRELDATE] != NULL)
2442 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2443 
2444     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2445 
2446     /* Replace the path with a dynamically allocated copy. */
2447     obj_rtld.path = xstrdup(ld_path_rtld);
2448 
2449     parse_rtld_phdr(&obj_rtld);
2450     if (obj_enforce_relro(&obj_rtld) == -1)
2451 	rtld_die();
2452 
2453     r_debug.r_version = R_DEBUG_VERSION;
2454     r_debug.r_brk = r_debug_state;
2455     r_debug.r_state = RT_CONSISTENT;
2456     r_debug.r_ldbase = obj_rtld.relocbase;
2457 }
2458 
2459 /*
2460  * Retrieve the array of supported page sizes.  The kernel provides the page
2461  * sizes in increasing order.
2462  */
2463 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2464 init_pagesizes(Elf_Auxinfo **aux_info)
2465 {
2466 	static size_t psa[MAXPAGESIZES];
2467 	int mib[2];
2468 	size_t len, size;
2469 
2470 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2471 	    NULL) {
2472 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2473 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2474 	} else {
2475 		len = 2;
2476 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2477 			size = sizeof(psa);
2478 		else {
2479 			/* As a fallback, retrieve the base page size. */
2480 			size = sizeof(psa[0]);
2481 			if (aux_info[AT_PAGESZ] != NULL) {
2482 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2483 				goto psa_filled;
2484 			} else {
2485 				mib[0] = CTL_HW;
2486 				mib[1] = HW_PAGESIZE;
2487 				len = 2;
2488 			}
2489 		}
2490 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2491 			_rtld_error("sysctl for hw.pagesize(s) failed");
2492 			rtld_die();
2493 		}
2494 psa_filled:
2495 		pagesizes = psa;
2496 	}
2497 	npagesizes = size / sizeof(pagesizes[0]);
2498 	/* Discard any invalid entries at the end of the array. */
2499 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2500 		npagesizes--;
2501 
2502 	page_size = pagesizes[0];
2503 }
2504 
2505 /*
2506  * Add the init functions from a needed object list (and its recursive
2507  * needed objects) to "list".  This is not used directly; it is a helper
2508  * function for initlist_add_objects().  The write lock must be held
2509  * when this function is called.
2510  */
2511 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2512 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2513 {
2514     /* Recursively process the successor needed objects. */
2515     if (needed->next != NULL)
2516 	initlist_add_neededs(needed->next, list);
2517 
2518     /* Process the current needed object. */
2519     if (needed->obj != NULL)
2520 	initlist_add_objects(needed->obj, needed->obj, list);
2521 }
2522 
2523 /*
2524  * Scan all of the DAGs rooted in the range of objects from "obj" to
2525  * "tail" and add their init functions to "list".  This recurses over
2526  * the DAGs and ensure the proper init ordering such that each object's
2527  * needed libraries are initialized before the object itself.  At the
2528  * same time, this function adds the objects to the global finalization
2529  * list "list_fini" in the opposite order.  The write lock must be
2530  * held when this function is called.
2531  */
2532 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2533 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2534 {
2535     Obj_Entry *nobj;
2536 
2537     if (obj->init_scanned || obj->init_done)
2538 	return;
2539     obj->init_scanned = true;
2540 
2541     /* Recursively process the successor objects. */
2542     nobj = globallist_next(obj);
2543     if (nobj != NULL && obj != tail)
2544 	initlist_add_objects(nobj, tail, list);
2545 
2546     /* Recursively process the needed objects. */
2547     if (obj->needed != NULL)
2548 	initlist_add_neededs(obj->needed, list);
2549     if (obj->needed_filtees != NULL)
2550 	initlist_add_neededs(obj->needed_filtees, list);
2551     if (obj->needed_aux_filtees != NULL)
2552 	initlist_add_neededs(obj->needed_aux_filtees, list);
2553 
2554     /* Add the object to the init list. */
2555     objlist_push_tail(list, obj);
2556 
2557     /* Add the object to the global fini list in the reverse order. */
2558     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2559       && !obj->on_fini_list) {
2560 	objlist_push_head(&list_fini, obj);
2561 	obj->on_fini_list = true;
2562     }
2563 }
2564 
2565 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2566 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2567 {
2568     Needed_Entry *needed, *needed1;
2569 
2570     for (needed = n; needed != NULL; needed = needed->next) {
2571 	if (needed->obj != NULL) {
2572 	    dlclose_locked(needed->obj, lockstate);
2573 	    needed->obj = NULL;
2574 	}
2575     }
2576     for (needed = n; needed != NULL; needed = needed1) {
2577 	needed1 = needed->next;
2578 	free(needed);
2579     }
2580 }
2581 
2582 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2583 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2584 {
2585 
2586 	free_needed_filtees(obj->needed_filtees, lockstate);
2587 	obj->needed_filtees = NULL;
2588 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2589 	obj->needed_aux_filtees = NULL;
2590 	obj->filtees_loaded = false;
2591 }
2592 
2593 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2594 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2595     RtldLockState *lockstate)
2596 {
2597 
2598     for (; needed != NULL; needed = needed->next) {
2599 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2600 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2601 	  RTLD_LOCAL, lockstate);
2602     }
2603 }
2604 
2605 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2606 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2607 {
2608 	if (obj->filtees_loaded || obj->filtees_loading)
2609 		return;
2610 	lock_restart_for_upgrade(lockstate);
2611 	obj->filtees_loading = true;
2612 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2613 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2614 	obj->filtees_loaded = true;
2615 	obj->filtees_loading = false;
2616 }
2617 
2618 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2619 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2620 {
2621     Obj_Entry *obj1;
2622 
2623     for (; needed != NULL; needed = needed->next) {
2624 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2625 	  flags & ~RTLD_LO_NOLOAD);
2626 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2627 	    return (-1);
2628     }
2629     return (0);
2630 }
2631 
2632 /*
2633  * Given a shared object, traverse its list of needed objects, and load
2634  * each of them.  Returns 0 on success.  Generates an error message and
2635  * returns -1 on failure.
2636  */
2637 static int
load_needed_objects(Obj_Entry * first,int flags)2638 load_needed_objects(Obj_Entry *first, int flags)
2639 {
2640     Obj_Entry *obj;
2641 
2642     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2643 	if (obj->marker)
2644 	    continue;
2645 	if (process_needed(obj, obj->needed, flags) == -1)
2646 	    return (-1);
2647     }
2648     return (0);
2649 }
2650 
2651 static int
load_preload_objects(const char * penv,bool isfd)2652 load_preload_objects(const char *penv, bool isfd)
2653 {
2654 	Obj_Entry *obj;
2655 	const char *name;
2656 	size_t len;
2657 	char savech, *p, *psave;
2658 	int fd;
2659 	static const char delim[] = " \t:;";
2660 
2661 	if (penv == NULL)
2662 		return (0);
2663 
2664 	p = psave = xstrdup(penv);
2665 	p += strspn(p, delim);
2666 	while (*p != '\0') {
2667 		len = strcspn(p, delim);
2668 
2669 		savech = p[len];
2670 		p[len] = '\0';
2671 		if (isfd) {
2672 			name = NULL;
2673 			fd = parse_integer(p);
2674 			if (fd == -1) {
2675 				free(psave);
2676 				return (-1);
2677 			}
2678 		} else {
2679 			name = p;
2680 			fd = -1;
2681 		}
2682 
2683 		obj = load_object(name, fd, NULL, 0);
2684 		if (obj == NULL) {
2685 			free(psave);
2686 			return (-1);	/* XXX - cleanup */
2687 		}
2688 		obj->z_interpose = true;
2689 		p[len] = savech;
2690 		p += len;
2691 		p += strspn(p, delim);
2692 	}
2693 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2694 
2695 	free(psave);
2696 	return (0);
2697 }
2698 
2699 static const char *
printable_path(const char * path)2700 printable_path(const char *path)
2701 {
2702 
2703 	return (path == NULL ? "<unknown>" : path);
2704 }
2705 
2706 /*
2707  * Load a shared object into memory, if it is not already loaded.  The
2708  * object may be specified by name or by user-supplied file descriptor
2709  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2710  * duplicate is.
2711  *
2712  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2713  * on failure.
2714  */
2715 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2716 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2717 {
2718     Obj_Entry *obj;
2719     int fd;
2720     struct stat sb;
2721     char *path;
2722 
2723     fd = -1;
2724     if (name != NULL) {
2725 	TAILQ_FOREACH(obj, &obj_list, next) {
2726 	    if (obj->marker || obj->doomed)
2727 		continue;
2728 	    if (object_match_name(obj, name))
2729 		return (obj);
2730 	}
2731 
2732 	path = find_library(name, refobj, &fd);
2733 	if (path == NULL)
2734 	    return (NULL);
2735     } else
2736 	path = NULL;
2737 
2738     if (fd >= 0) {
2739 	/*
2740 	 * search_library_pathfds() opens a fresh file descriptor for the
2741 	 * library, so there is no need to dup().
2742 	 */
2743     } else if (fd_u == -1) {
2744 	/*
2745 	 * If we didn't find a match by pathname, or the name is not
2746 	 * supplied, open the file and check again by device and inode.
2747 	 * This avoids false mismatches caused by multiple links or ".."
2748 	 * in pathnames.
2749 	 *
2750 	 * To avoid a race, we open the file and use fstat() rather than
2751 	 * using stat().
2752 	 */
2753 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2754 	    _rtld_error("Cannot open \"%s\"", path);
2755 	    free(path);
2756 	    return (NULL);
2757 	}
2758     } else {
2759 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2760 	if (fd == -1) {
2761 	    _rtld_error("Cannot dup fd");
2762 	    free(path);
2763 	    return (NULL);
2764 	}
2765     }
2766     if (fstat(fd, &sb) == -1) {
2767 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2768 	close(fd);
2769 	free(path);
2770 	return (NULL);
2771     }
2772     TAILQ_FOREACH(obj, &obj_list, next) {
2773 	if (obj->marker || obj->doomed)
2774 	    continue;
2775 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2776 	    break;
2777     }
2778     if (obj != NULL) {
2779 	if (name != NULL)
2780 	    object_add_name(obj, name);
2781 	free(path);
2782 	close(fd);
2783 	return (obj);
2784     }
2785     if (flags & RTLD_LO_NOLOAD) {
2786 	free(path);
2787 	close(fd);
2788 	return (NULL);
2789     }
2790 
2791     /* First use of this object, so we must map it in */
2792     obj = do_load_object(fd, name, path, &sb, flags);
2793     if (obj == NULL)
2794 	free(path);
2795     close(fd);
2796 
2797     return (obj);
2798 }
2799 
2800 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2801 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2802   int flags)
2803 {
2804     Obj_Entry *obj;
2805     struct statfs fs;
2806 
2807     /*
2808      * First, make sure that environment variables haven't been
2809      * used to circumvent the noexec flag on a filesystem.
2810      * We ignore fstatfs(2) failures, since fd might reference
2811      * not a file, e.g. shmfd.
2812      */
2813     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2814 	(fs.f_flags & MNT_NOEXEC) != 0) {
2815 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2816 	    return (NULL);
2817     }
2818 
2819     dbg("loading \"%s\"", printable_path(path));
2820     obj = map_object(fd, printable_path(path), sbp);
2821     if (obj == NULL)
2822         return (NULL);
2823 
2824     /*
2825      * If DT_SONAME is present in the object, digest_dynamic2 already
2826      * added it to the object names.
2827      */
2828     if (name != NULL)
2829 	object_add_name(obj, name);
2830     obj->path = path;
2831     if (!digest_dynamic(obj, 0))
2832 	goto errp;
2833     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2834 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2835     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2836 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2837 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2838 	goto errp;
2839     }
2840     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2841       RTLD_LO_DLOPEN) {
2842 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2843 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2844 	goto errp;
2845     }
2846 
2847     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2848     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2849     obj_count++;
2850     obj_loads++;
2851     linkmap_add(obj);	/* for GDB & dlinfo() */
2852     max_stack_flags |= obj->stack_flags;
2853 
2854     dbg("  %p .. %p: %s", obj->mapbase,
2855          obj->mapbase + obj->mapsize - 1, obj->path);
2856     if (obj->textrel)
2857 	dbg("  WARNING: %s has impure text", obj->path);
2858     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2859 	obj->path);
2860 
2861     return (obj);
2862 
2863 errp:
2864     munmap(obj->mapbase, obj->mapsize);
2865     obj_free(obj);
2866     return (NULL);
2867 }
2868 
2869 static int
load_kpreload(const void * addr)2870 load_kpreload(const void *addr)
2871 {
2872 	Obj_Entry *obj;
2873 	const Elf_Ehdr *ehdr;
2874 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2875 	static const char kname[] = "[vdso]";
2876 
2877 	ehdr = addr;
2878 	if (!check_elf_headers(ehdr, "kpreload"))
2879 		return (-1);
2880 	obj = obj_new();
2881 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2882 	obj->phdr = phdr;
2883 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2884 	phlimit = phdr + ehdr->e_phnum;
2885 	seg0 = segn = NULL;
2886 
2887 	for (; phdr < phlimit; phdr++) {
2888 		switch (phdr->p_type) {
2889 		case PT_DYNAMIC:
2890 			phdyn = phdr;
2891 			break;
2892 		case PT_GNU_STACK:
2893 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2894 			obj->stack_flags = phdr->p_flags;
2895 			break;
2896 		case PT_LOAD:
2897 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2898 				seg0 = phdr;
2899 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2900 			    phdr->p_vaddr + phdr->p_memsz)
2901 				segn = phdr;
2902 			break;
2903 		}
2904 	}
2905 
2906 	obj->mapbase = __DECONST(caddr_t, addr);
2907 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2908 	obj->vaddrbase = 0;
2909 	obj->relocbase = obj->mapbase;
2910 
2911 	object_add_name(obj, kname);
2912 	obj->path = xstrdup(kname);
2913 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2914 
2915 	if (!digest_dynamic(obj, 0)) {
2916 		obj_free(obj);
2917 		return (-1);
2918 	}
2919 
2920 	/*
2921 	 * We assume that kernel-preloaded object does not need
2922 	 * relocation.  It is currently written into read-only page,
2923 	 * handling relocations would mean we need to allocate at
2924 	 * least one additional page per AS.
2925 	 */
2926 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2927 	    obj->path, obj->mapbase, obj->phdr, seg0,
2928 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2929 
2930 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2931 	obj_count++;
2932 	obj_loads++;
2933 	linkmap_add(obj);	/* for GDB & dlinfo() */
2934 	max_stack_flags |= obj->stack_flags;
2935 
2936 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2937 	return (0);
2938 }
2939 
2940 Obj_Entry *
obj_from_addr(const void * addr)2941 obj_from_addr(const void *addr)
2942 {
2943     Obj_Entry *obj;
2944 
2945     TAILQ_FOREACH(obj, &obj_list, next) {
2946 	if (obj->marker)
2947 	    continue;
2948 	if (addr < (void *) obj->mapbase)
2949 	    continue;
2950 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2951 	    return obj;
2952     }
2953     return (NULL);
2954 }
2955 
2956 static void
preinit_main(void)2957 preinit_main(void)
2958 {
2959     Elf_Addr *preinit_addr;
2960     int index;
2961 
2962     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2963     if (preinit_addr == NULL)
2964 	return;
2965 
2966     for (index = 0; index < obj_main->preinit_array_num; index++) {
2967 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2968 	    dbg("calling preinit function for %s at %p", obj_main->path,
2969 	      (void *)preinit_addr[index]);
2970 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2971 	      0, 0, obj_main->path);
2972 	    call_init_pointer(obj_main, preinit_addr[index]);
2973 	}
2974     }
2975 }
2976 
2977 /*
2978  * Call the finalization functions for each of the objects in "list"
2979  * belonging to the DAG of "root" and referenced once. If NULL "root"
2980  * is specified, every finalization function will be called regardless
2981  * of the reference count and the list elements won't be freed. All of
2982  * the objects are expected to have non-NULL fini functions.
2983  */
2984 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2985 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2986 {
2987     Objlist_Entry *elm;
2988     struct dlerror_save *saved_msg;
2989     Elf_Addr *fini_addr;
2990     int index;
2991 
2992     assert(root == NULL || root->refcount == 1);
2993 
2994     if (root != NULL)
2995 	root->doomed = true;
2996 
2997     /*
2998      * Preserve the current error message since a fini function might
2999      * call into the dynamic linker and overwrite it.
3000      */
3001     saved_msg = errmsg_save();
3002     do {
3003 	STAILQ_FOREACH(elm, list, link) {
3004 	    if (root != NULL && (elm->obj->refcount != 1 ||
3005 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
3006 		continue;
3007 	    /* Remove object from fini list to prevent recursive invocation. */
3008 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3009 	    /* Ensure that new references cannot be acquired. */
3010 	    elm->obj->doomed = true;
3011 
3012 	    hold_object(elm->obj);
3013 	    lock_release(rtld_bind_lock, lockstate);
3014 	    /*
3015 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3016 	     * When this happens, DT_FINI_ARRAY is processed first.
3017 	     */
3018 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3019 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3020 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3021 		  index--) {
3022 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3023 			dbg("calling fini function for %s at %p",
3024 			    elm->obj->path, (void *)fini_addr[index]);
3025 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3026 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3027 			call_initfini_pointer(elm->obj, fini_addr[index]);
3028 		    }
3029 		}
3030 	    }
3031 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3032 		dbg("calling fini function for %s at %p", elm->obj->path,
3033 		    (void *)elm->obj->fini);
3034 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3035 		    0, 0, elm->obj->path);
3036 		call_initfini_pointer(elm->obj, elm->obj->fini);
3037 	    }
3038 	    wlock_acquire(rtld_bind_lock, lockstate);
3039 	    unhold_object(elm->obj);
3040 	    /* No need to free anything if process is going down. */
3041 	    if (root != NULL)
3042 	    	free(elm);
3043 	    /*
3044 	     * We must restart the list traversal after every fini call
3045 	     * because a dlclose() call from the fini function or from
3046 	     * another thread might have modified the reference counts.
3047 	     */
3048 	    break;
3049 	}
3050     } while (elm != NULL);
3051     errmsg_restore(saved_msg);
3052 }
3053 
3054 /*
3055  * Call the initialization functions for each of the objects in
3056  * "list".  All of the objects are expected to have non-NULL init
3057  * functions.
3058  */
3059 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3060 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3061 {
3062     Objlist_Entry *elm;
3063     Obj_Entry *obj;
3064     struct dlerror_save *saved_msg;
3065     Elf_Addr *init_addr;
3066     void (*reg)(void (*)(void));
3067     int index;
3068 
3069     /*
3070      * Clean init_scanned flag so that objects can be rechecked and
3071      * possibly initialized earlier if any of vectors called below
3072      * cause the change by using dlopen.
3073      */
3074     TAILQ_FOREACH(obj, &obj_list, next) {
3075 	if (obj->marker)
3076 	    continue;
3077 	obj->init_scanned = false;
3078     }
3079 
3080     /*
3081      * Preserve the current error message since an init function might
3082      * call into the dynamic linker and overwrite it.
3083      */
3084     saved_msg = errmsg_save();
3085     STAILQ_FOREACH(elm, list, link) {
3086 	if (elm->obj->init_done) /* Initialized early. */
3087 	    continue;
3088 	/*
3089 	 * Race: other thread might try to use this object before current
3090 	 * one completes the initialization. Not much can be done here
3091 	 * without better locking.
3092 	 */
3093 	elm->obj->init_done = true;
3094 	hold_object(elm->obj);
3095 	reg = NULL;
3096 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3097 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3098 		    "__libc_atexit", lockstate);
3099 	}
3100 	lock_release(rtld_bind_lock, lockstate);
3101 	if (reg != NULL) {
3102 		reg(rtld_exit);
3103 		rtld_exit_ptr = rtld_nop_exit;
3104 	}
3105 
3106         /*
3107          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3108          * When this happens, DT_INIT is processed first.
3109          */
3110 	if (elm->obj->init != (Elf_Addr)NULL) {
3111 	    dbg("calling init function for %s at %p", elm->obj->path,
3112 	        (void *)elm->obj->init);
3113 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3114 	        0, 0, elm->obj->path);
3115 	    call_init_pointer(elm->obj, elm->obj->init);
3116 	}
3117 	init_addr = (Elf_Addr *)elm->obj->init_array;
3118 	if (init_addr != NULL) {
3119 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3120 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3121 		    dbg("calling init function for %s at %p", elm->obj->path,
3122 			(void *)init_addr[index]);
3123 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3124 			(void *)init_addr[index], 0, 0, elm->obj->path);
3125 		    call_init_pointer(elm->obj, init_addr[index]);
3126 		}
3127 	    }
3128 	}
3129 	wlock_acquire(rtld_bind_lock, lockstate);
3130 	unhold_object(elm->obj);
3131     }
3132     errmsg_restore(saved_msg);
3133 }
3134 
3135 static void
objlist_clear(Objlist * list)3136 objlist_clear(Objlist *list)
3137 {
3138     Objlist_Entry *elm;
3139 
3140     while (!STAILQ_EMPTY(list)) {
3141 	elm = STAILQ_FIRST(list);
3142 	STAILQ_REMOVE_HEAD(list, link);
3143 	free(elm);
3144     }
3145 }
3146 
3147 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3148 objlist_find(Objlist *list, const Obj_Entry *obj)
3149 {
3150     Objlist_Entry *elm;
3151 
3152     STAILQ_FOREACH(elm, list, link)
3153 	if (elm->obj == obj)
3154 	    return elm;
3155     return (NULL);
3156 }
3157 
3158 static void
objlist_init(Objlist * list)3159 objlist_init(Objlist *list)
3160 {
3161     STAILQ_INIT(list);
3162 }
3163 
3164 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3165 objlist_push_head(Objlist *list, Obj_Entry *obj)
3166 {
3167     Objlist_Entry *elm;
3168 
3169     elm = NEW(Objlist_Entry);
3170     elm->obj = obj;
3171     STAILQ_INSERT_HEAD(list, elm, link);
3172 }
3173 
3174 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3175 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3176 {
3177     Objlist_Entry *elm;
3178 
3179     elm = NEW(Objlist_Entry);
3180     elm->obj = obj;
3181     STAILQ_INSERT_TAIL(list, elm, link);
3182 }
3183 
3184 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3185 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3186 {
3187 	Objlist_Entry *elm, *listelm;
3188 
3189 	STAILQ_FOREACH(listelm, list, link) {
3190 		if (listelm->obj == listobj)
3191 			break;
3192 	}
3193 	elm = NEW(Objlist_Entry);
3194 	elm->obj = obj;
3195 	if (listelm != NULL)
3196 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3197 	else
3198 		STAILQ_INSERT_TAIL(list, elm, link);
3199 }
3200 
3201 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3202 objlist_remove(Objlist *list, Obj_Entry *obj)
3203 {
3204     Objlist_Entry *elm;
3205 
3206     if ((elm = objlist_find(list, obj)) != NULL) {
3207 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3208 	free(elm);
3209     }
3210 }
3211 
3212 /*
3213  * Relocate dag rooted in the specified object.
3214  * Returns 0 on success, or -1 on failure.
3215  */
3216 
3217 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3218 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3219     int flags, RtldLockState *lockstate)
3220 {
3221 	Objlist_Entry *elm;
3222 	int error;
3223 
3224 	error = 0;
3225 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3226 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3227 		    lockstate);
3228 		if (error == -1)
3229 			break;
3230 	}
3231 	return (error);
3232 }
3233 
3234 /*
3235  * Prepare for, or clean after, relocating an object marked with
3236  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3237  * segments are remapped read-write.  After relocations are done, the
3238  * segment's permissions are returned back to the modes specified in
3239  * the phdrs.  If any relocation happened, or always for wired
3240  * program, COW is triggered.
3241  */
3242 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3243 reloc_textrel_prot(Obj_Entry *obj, bool before)
3244 {
3245 	const Elf_Phdr *ph;
3246 	void *base;
3247 	size_t l, sz;
3248 	int prot;
3249 
3250 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3251 	    l--, ph++) {
3252 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3253 			continue;
3254 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3255 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3256 		    rtld_trunc_page(ph->p_vaddr);
3257 		prot = before ? (PROT_READ | PROT_WRITE) :
3258 		    convert_prot(ph->p_flags);
3259 		if (mprotect(base, sz, prot) == -1) {
3260 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3261 			    obj->path, before ? "en" : "dis",
3262 			    rtld_strerror(errno));
3263 			return (-1);
3264 		}
3265 	}
3266 	return (0);
3267 }
3268 
3269 /* Process RELR relative relocations. */
3270 static void
reloc_relr(Obj_Entry * obj)3271 reloc_relr(Obj_Entry *obj)
3272 {
3273 	const Elf_Relr *relr, *relrlim;
3274 	Elf_Addr *where;
3275 
3276 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3277 	for (relr = obj->relr; relr < relrlim; relr++) {
3278 	    Elf_Relr entry = *relr;
3279 
3280 	    if ((entry & 1) == 0) {
3281 		where = (Elf_Addr *)(obj->relocbase + entry);
3282 		*where++ += (Elf_Addr)obj->relocbase;
3283 	    } else {
3284 		for (long i = 0; (entry >>= 1) != 0; i++)
3285 		    if ((entry & 1) != 0)
3286 			where[i] += (Elf_Addr)obj->relocbase;
3287 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3288 	    }
3289 	}
3290 }
3291 
3292 /*
3293  * Relocate single object.
3294  * Returns 0 on success, or -1 on failure.
3295  */
3296 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3297 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3298     int flags, RtldLockState *lockstate)
3299 {
3300 
3301 	if (obj->relocated)
3302 		return (0);
3303 	obj->relocated = true;
3304 	if (obj != rtldobj)
3305 		dbg("relocating \"%s\"", obj->path);
3306 
3307 	if (obj->symtab == NULL || obj->strtab == NULL ||
3308 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3309 		dbg("object %s has no run-time symbol table", obj->path);
3310 
3311 	/* There are relocations to the write-protected text segment. */
3312 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3313 		return (-1);
3314 
3315 	/* Process the non-PLT non-IFUNC relocations. */
3316 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3317 		return (-1);
3318 	reloc_relr(obj);
3319 
3320 	/* Re-protected the text segment. */
3321 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3322 		return (-1);
3323 
3324 	/* Set the special PLT or GOT entries. */
3325 	init_pltgot(obj);
3326 
3327 	/* Process the PLT relocations. */
3328 	if (reloc_plt(obj, flags, lockstate) == -1)
3329 		return (-1);
3330 	/* Relocate the jump slots if we are doing immediate binding. */
3331 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3332 	    lockstate) == -1)
3333 		return (-1);
3334 
3335 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3336 		return (-1);
3337 
3338 	/*
3339 	 * Set up the magic number and version in the Obj_Entry.  These
3340 	 * were checked in the crt1.o from the original ElfKit, so we
3341 	 * set them for backward compatibility.
3342 	 */
3343 	obj->magic = RTLD_MAGIC;
3344 	obj->version = RTLD_VERSION;
3345 
3346 	return (0);
3347 }
3348 
3349 /*
3350  * Relocate newly-loaded shared objects.  The argument is a pointer to
3351  * the Obj_Entry for the first such object.  All objects from the first
3352  * to the end of the list of objects are relocated.  Returns 0 on success,
3353  * or -1 on failure.
3354  */
3355 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3356 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3357     int flags, RtldLockState *lockstate)
3358 {
3359 	Obj_Entry *obj;
3360 	int error;
3361 
3362 	for (error = 0, obj = first;  obj != NULL;
3363 	    obj = TAILQ_NEXT(obj, next)) {
3364 		if (obj->marker)
3365 			continue;
3366 		error = relocate_object(obj, bind_now, rtldobj, flags,
3367 		    lockstate);
3368 		if (error == -1)
3369 			break;
3370 	}
3371 	return (error);
3372 }
3373 
3374 /*
3375  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3376  * referencing STT_GNU_IFUNC symbols is postponed till the other
3377  * relocations are done.  The indirect functions specified as
3378  * ifunc are allowed to call other symbols, so we need to have
3379  * objects relocated before asking for resolution from indirects.
3380  *
3381  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3382  * instead of the usual lazy handling of PLT slots.  It is
3383  * consistent with how GNU does it.
3384  */
3385 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3386 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3387     RtldLockState *lockstate)
3388 {
3389 
3390 	if (obj->ifuncs_resolved)
3391 		return (0);
3392 	obj->ifuncs_resolved = true;
3393 	if (!obj->irelative && !obj->irelative_nonplt &&
3394 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3395 	    !obj->non_plt_gnu_ifunc)
3396 		return (0);
3397 	if (obj_disable_relro(obj) == -1 ||
3398 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3399 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3400 	    lockstate) == -1) ||
3401 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3402 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3403 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3404 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3405 	    obj_enforce_relro(obj) == -1)
3406 		return (-1);
3407 	return (0);
3408 }
3409 
3410 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3411 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3412     RtldLockState *lockstate)
3413 {
3414 	Objlist_Entry *elm;
3415 	Obj_Entry *obj;
3416 
3417 	STAILQ_FOREACH(elm, list, link) {
3418 		obj = elm->obj;
3419 		if (obj->marker)
3420 			continue;
3421 		if (resolve_object_ifunc(obj, bind_now, flags,
3422 		    lockstate) == -1)
3423 			return (-1);
3424 	}
3425 	return (0);
3426 }
3427 
3428 /*
3429  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3430  * before the process exits.
3431  */
3432 static void
rtld_exit(void)3433 rtld_exit(void)
3434 {
3435     RtldLockState lockstate;
3436 
3437     wlock_acquire(rtld_bind_lock, &lockstate);
3438     dbg("rtld_exit()");
3439     objlist_call_fini(&list_fini, NULL, &lockstate);
3440     /* No need to remove the items from the list, since we are exiting. */
3441     if (!libmap_disable)
3442         lm_fini();
3443     lock_release(rtld_bind_lock, &lockstate);
3444 }
3445 
3446 static void
rtld_nop_exit(void)3447 rtld_nop_exit(void)
3448 {
3449 }
3450 
3451 /*
3452  * Iterate over a search path, translate each element, and invoke the
3453  * callback on the result.
3454  */
3455 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3456 path_enumerate(const char *path, path_enum_proc callback,
3457     const char *refobj_path, void *arg)
3458 {
3459     const char *trans;
3460     if (path == NULL)
3461 	return (NULL);
3462 
3463     path += strspn(path, ":;");
3464     while (*path != '\0') {
3465 	size_t len;
3466 	char  *res;
3467 
3468 	len = strcspn(path, ":;");
3469 	trans = lm_findn(refobj_path, path, len);
3470 	if (trans)
3471 	    res = callback(trans, strlen(trans), arg);
3472 	else
3473 	    res = callback(path, len, arg);
3474 
3475 	if (res != NULL)
3476 	    return (res);
3477 
3478 	path += len;
3479 	path += strspn(path, ":;");
3480     }
3481 
3482     return (NULL);
3483 }
3484 
3485 struct try_library_args {
3486     const char	*name;
3487     size_t	 namelen;
3488     char	*buffer;
3489     size_t	 buflen;
3490     int		 fd;
3491 };
3492 
3493 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3494 try_library_path(const char *dir, size_t dirlen, void *param)
3495 {
3496     struct try_library_args *arg;
3497     int fd;
3498 
3499     arg = param;
3500     if (*dir == '/' || trust) {
3501 	char *pathname;
3502 
3503 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3504 		return (NULL);
3505 
3506 	pathname = arg->buffer;
3507 	strncpy(pathname, dir, dirlen);
3508 	pathname[dirlen] = '/';
3509 	strcpy(pathname + dirlen + 1, arg->name);
3510 
3511 	dbg("  Trying \"%s\"", pathname);
3512 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3513 	if (fd >= 0) {
3514 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3515 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3516 	    strcpy(pathname, arg->buffer);
3517 	    arg->fd = fd;
3518 	    return (pathname);
3519 	} else {
3520 	    dbg("  Failed to open \"%s\": %s",
3521 		pathname, rtld_strerror(errno));
3522 	}
3523     }
3524     return (NULL);
3525 }
3526 
3527 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3528 search_library_path(const char *name, const char *path,
3529     const char *refobj_path, int *fdp)
3530 {
3531     char *p;
3532     struct try_library_args arg;
3533 
3534     if (path == NULL)
3535 	return (NULL);
3536 
3537     arg.name = name;
3538     arg.namelen = strlen(name);
3539     arg.buffer = xmalloc(PATH_MAX);
3540     arg.buflen = PATH_MAX;
3541     arg.fd = -1;
3542 
3543     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3544     *fdp = arg.fd;
3545 
3546     free(arg.buffer);
3547 
3548     return (p);
3549 }
3550 
3551 
3552 /*
3553  * Finds the library with the given name using the directory descriptors
3554  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3555  *
3556  * Returns a freshly-opened close-on-exec file descriptor for the library,
3557  * or -1 if the library cannot be found.
3558  */
3559 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3560 search_library_pathfds(const char *name, const char *path, int *fdp)
3561 {
3562 	char *envcopy, *fdstr, *found, *last_token;
3563 	size_t len;
3564 	int dirfd, fd;
3565 
3566 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3567 
3568 	/* Don't load from user-specified libdirs into setuid binaries. */
3569 	if (!trust)
3570 		return (NULL);
3571 
3572 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3573 	if (path == NULL)
3574 		return (NULL);
3575 
3576 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3577 	if (name[0] == '/') {
3578 		dbg("Absolute path (%s) passed to %s", name, __func__);
3579 		return (NULL);
3580 	}
3581 
3582 	/*
3583 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3584 	 * copy of the path, as strtok_r rewrites separator tokens
3585 	 * with '\0'.
3586 	 */
3587 	found = NULL;
3588 	envcopy = xstrdup(path);
3589 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3590 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3591 		dirfd = parse_integer(fdstr);
3592 		if (dirfd < 0) {
3593 			_rtld_error("failed to parse directory FD: '%s'",
3594 				fdstr);
3595 			break;
3596 		}
3597 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3598 		if (fd >= 0) {
3599 			*fdp = fd;
3600 			len = strlen(fdstr) + strlen(name) + 3;
3601 			found = xmalloc(len);
3602 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3603 				_rtld_error("error generating '%d/%s'",
3604 				    dirfd, name);
3605 				rtld_die();
3606 			}
3607 			dbg("open('%s') => %d", found, fd);
3608 			break;
3609 		}
3610 	}
3611 	free(envcopy);
3612 
3613 	return (found);
3614 }
3615 
3616 
3617 int
dlclose(void * handle)3618 dlclose(void *handle)
3619 {
3620 	RtldLockState lockstate;
3621 	int error;
3622 
3623 	wlock_acquire(rtld_bind_lock, &lockstate);
3624 	error = dlclose_locked(handle, &lockstate);
3625 	lock_release(rtld_bind_lock, &lockstate);
3626 	return (error);
3627 }
3628 
3629 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3630 dlclose_locked(void *handle, RtldLockState *lockstate)
3631 {
3632     Obj_Entry *root;
3633 
3634     root = dlcheck(handle);
3635     if (root == NULL)
3636 	return (-1);
3637     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3638 	root->path);
3639 
3640     /* Unreference the object and its dependencies. */
3641     root->dl_refcount--;
3642 
3643     if (root->refcount == 1) {
3644 	/*
3645 	 * The object will be no longer referenced, so we must unload it.
3646 	 * First, call the fini functions.
3647 	 */
3648 	objlist_call_fini(&list_fini, root, lockstate);
3649 
3650 	unref_dag(root);
3651 
3652 	/* Finish cleaning up the newly-unreferenced objects. */
3653 	GDB_STATE(RT_DELETE,&root->linkmap);
3654 	unload_object(root, lockstate);
3655 	GDB_STATE(RT_CONSISTENT,NULL);
3656     } else
3657 	unref_dag(root);
3658 
3659     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3660     return (0);
3661 }
3662 
3663 char *
dlerror(void)3664 dlerror(void)
3665 {
3666 	if (*(lockinfo.dlerror_seen()) != 0)
3667 		return (NULL);
3668 	*lockinfo.dlerror_seen() = 1;
3669 	return (lockinfo.dlerror_loc());
3670 }
3671 
3672 /*
3673  * This function is deprecated and has no effect.
3674  */
3675 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3676 dllockinit(void *context,
3677     void *(*_lock_create)(void *context) __unused,
3678     void (*_rlock_acquire)(void *lock) __unused,
3679     void (*_wlock_acquire)(void *lock)  __unused,
3680     void (*_lock_release)(void *lock) __unused,
3681     void (*_lock_destroy)(void *lock) __unused,
3682     void (*context_destroy)(void *context))
3683 {
3684     static void *cur_context;
3685     static void (*cur_context_destroy)(void *);
3686 
3687     /* Just destroy the context from the previous call, if necessary. */
3688     if (cur_context_destroy != NULL)
3689 	cur_context_destroy(cur_context);
3690     cur_context = context;
3691     cur_context_destroy = context_destroy;
3692 }
3693 
3694 void *
dlopen(const char * name,int mode)3695 dlopen(const char *name, int mode)
3696 {
3697 
3698 	return (rtld_dlopen(name, -1, mode));
3699 }
3700 
3701 void *
fdlopen(int fd,int mode)3702 fdlopen(int fd, int mode)
3703 {
3704 
3705 	return (rtld_dlopen(NULL, fd, mode));
3706 }
3707 
3708 static void *
rtld_dlopen(const char * name,int fd,int mode)3709 rtld_dlopen(const char *name, int fd, int mode)
3710 {
3711     RtldLockState lockstate;
3712     int lo_flags;
3713 
3714     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3715     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3716     if (ld_tracing != NULL) {
3717 	rlock_acquire(rtld_bind_lock, &lockstate);
3718 	if (sigsetjmp(lockstate.env, 0) != 0)
3719 	    lock_upgrade(rtld_bind_lock, &lockstate);
3720 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3721 	lock_release(rtld_bind_lock, &lockstate);
3722     }
3723     lo_flags = RTLD_LO_DLOPEN;
3724     if (mode & RTLD_NODELETE)
3725 	    lo_flags |= RTLD_LO_NODELETE;
3726     if (mode & RTLD_NOLOAD)
3727 	    lo_flags |= RTLD_LO_NOLOAD;
3728     if (mode & RTLD_DEEPBIND)
3729 	    lo_flags |= RTLD_LO_DEEPBIND;
3730     if (ld_tracing != NULL)
3731 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3732 
3733     return (dlopen_object(name, fd, obj_main, lo_flags,
3734       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3735 }
3736 
3737 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3738 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3739 {
3740 
3741 	obj->dl_refcount--;
3742 	unref_dag(obj);
3743 	if (obj->refcount == 0)
3744 		unload_object(obj, lockstate);
3745 }
3746 
3747 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3748 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3749     int mode, RtldLockState *lockstate)
3750 {
3751     Obj_Entry *obj;
3752     Objlist initlist;
3753     RtldLockState mlockstate;
3754     int result;
3755 
3756     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3757       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3758       refobj->path, lo_flags, mode);
3759     objlist_init(&initlist);
3760 
3761     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3762 	wlock_acquire(rtld_bind_lock, &mlockstate);
3763 	lockstate = &mlockstate;
3764     }
3765     GDB_STATE(RT_ADD,NULL);
3766 
3767     obj = NULL;
3768     if (name == NULL && fd == -1) {
3769 	obj = obj_main;
3770 	obj->refcount++;
3771     } else {
3772 	obj = load_object(name, fd, refobj, lo_flags);
3773     }
3774 
3775     if (obj) {
3776 	obj->dl_refcount++;
3777 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3778 	    objlist_push_tail(&list_global, obj);
3779 
3780 	if (!obj->init_done) {
3781 	    /* We loaded something new and have to init something. */
3782 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3783 		obj->deepbind = true;
3784 	    result = 0;
3785 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3786 	      obj->static_tls && !allocate_tls_offset(obj)) {
3787 		_rtld_error("%s: No space available "
3788 		  "for static Thread Local Storage", obj->path);
3789 		result = -1;
3790 	    }
3791 	    if (result != -1)
3792 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3793 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3794 	    init_dag(obj);
3795 	    ref_dag(obj);
3796 	    if (result != -1)
3797 		result = rtld_verify_versions(&obj->dagmembers);
3798 	    if (result != -1 && ld_tracing)
3799 		goto trace;
3800 	    if (result == -1 || relocate_object_dag(obj,
3801 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3802 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3803 	      lockstate) == -1) {
3804 		dlopen_cleanup(obj, lockstate);
3805 		obj = NULL;
3806 	    } else if (lo_flags & RTLD_LO_EARLY) {
3807 		/*
3808 		 * Do not call the init functions for early loaded
3809 		 * filtees.  The image is still not initialized enough
3810 		 * for them to work.
3811 		 *
3812 		 * Our object is found by the global object list and
3813 		 * will be ordered among all init calls done right
3814 		 * before transferring control to main.
3815 		 */
3816 	    } else {
3817 		/* Make list of init functions to call. */
3818 		initlist_add_objects(obj, obj, &initlist);
3819 	    }
3820 	    /*
3821 	     * Process all no_delete or global objects here, given
3822 	     * them own DAGs to prevent their dependencies from being
3823 	     * unloaded.  This has to be done after we have loaded all
3824 	     * of the dependencies, so that we do not miss any.
3825 	     */
3826 	    if (obj != NULL)
3827 		process_z(obj);
3828 	} else {
3829 	    /*
3830 	     * Bump the reference counts for objects on this DAG.  If
3831 	     * this is the first dlopen() call for the object that was
3832 	     * already loaded as a dependency, initialize the dag
3833 	     * starting at it.
3834 	     */
3835 	    init_dag(obj);
3836 	    ref_dag(obj);
3837 
3838 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3839 		goto trace;
3840 	}
3841 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3842 	  obj->z_nodelete) && !obj->ref_nodel) {
3843 	    dbg("obj %s nodelete", obj->path);
3844 	    ref_dag(obj);
3845 	    obj->z_nodelete = obj->ref_nodel = true;
3846 	}
3847     }
3848 
3849     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3850 	name);
3851     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3852 
3853     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3854 	map_stacks_exec(lockstate);
3855 	if (obj != NULL)
3856 	    distribute_static_tls(&initlist, lockstate);
3857     }
3858 
3859     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3860       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3861       lockstate) == -1) {
3862 	objlist_clear(&initlist);
3863 	dlopen_cleanup(obj, lockstate);
3864 	if (lockstate == &mlockstate)
3865 	    lock_release(rtld_bind_lock, lockstate);
3866 	return (NULL);
3867     }
3868 
3869     if (!(lo_flags & RTLD_LO_EARLY)) {
3870 	/* Call the init functions. */
3871 	objlist_call_init(&initlist, lockstate);
3872     }
3873     objlist_clear(&initlist);
3874     if (lockstate == &mlockstate)
3875 	lock_release(rtld_bind_lock, lockstate);
3876     return (obj);
3877 trace:
3878     trace_loaded_objects(obj, false);
3879     if (lockstate == &mlockstate)
3880 	lock_release(rtld_bind_lock, lockstate);
3881     exit(0);
3882 }
3883 
3884 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3885 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3886     int flags)
3887 {
3888     DoneList donelist;
3889     const Obj_Entry *obj, *defobj;
3890     const Elf_Sym *def;
3891     SymLook req;
3892     RtldLockState lockstate;
3893     tls_index ti;
3894     void *sym;
3895     int res;
3896 
3897     def = NULL;
3898     defobj = NULL;
3899     symlook_init(&req, name);
3900     req.ventry = ve;
3901     req.flags = flags | SYMLOOK_IN_PLT;
3902     req.lockstate = &lockstate;
3903 
3904     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3905     rlock_acquire(rtld_bind_lock, &lockstate);
3906     if (sigsetjmp(lockstate.env, 0) != 0)
3907 	    lock_upgrade(rtld_bind_lock, &lockstate);
3908     if (handle == NULL || handle == RTLD_NEXT ||
3909 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3910 
3911 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3912 	    _rtld_error("Cannot determine caller's shared object");
3913 	    lock_release(rtld_bind_lock, &lockstate);
3914 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3915 	    return (NULL);
3916 	}
3917 	if (handle == NULL) {	/* Just the caller's shared object. */
3918 	    res = symlook_obj(&req, obj);
3919 	    if (res == 0) {
3920 		def = req.sym_out;
3921 		defobj = req.defobj_out;
3922 	    }
3923 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3924 		   handle == RTLD_SELF) { /* ... caller included */
3925 	    if (handle == RTLD_NEXT)
3926 		obj = globallist_next(obj);
3927 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3928 		if (obj->marker)
3929 		    continue;
3930 		res = symlook_obj(&req, obj);
3931 		if (res == 0) {
3932 		    if (def == NULL || (ld_dynamic_weak &&
3933                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3934 			def = req.sym_out;
3935 			defobj = req.defobj_out;
3936 			if (!ld_dynamic_weak ||
3937 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3938 			    break;
3939 		    }
3940 		}
3941 	    }
3942 	    /*
3943 	     * Search the dynamic linker itself, and possibly resolve the
3944 	     * symbol from there.  This is how the application links to
3945 	     * dynamic linker services such as dlopen.
3946 	     * Note that we ignore ld_dynamic_weak == false case,
3947 	     * always overriding weak symbols by rtld definitions.
3948 	     */
3949 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3950 		res = symlook_obj(&req, &obj_rtld);
3951 		if (res == 0) {
3952 		    def = req.sym_out;
3953 		    defobj = req.defobj_out;
3954 		}
3955 	    }
3956 	} else {
3957 	    assert(handle == RTLD_DEFAULT);
3958 	    res = symlook_default(&req, obj);
3959 	    if (res == 0) {
3960 		defobj = req.defobj_out;
3961 		def = req.sym_out;
3962 	    }
3963 	}
3964     } else {
3965 	if ((obj = dlcheck(handle)) == NULL) {
3966 	    lock_release(rtld_bind_lock, &lockstate);
3967 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3968 	    return (NULL);
3969 	}
3970 
3971 	donelist_init(&donelist);
3972 	if (obj->mainprog) {
3973             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3974 	    res = symlook_global(&req, &donelist);
3975 	    if (res == 0) {
3976 		def = req.sym_out;
3977 		defobj = req.defobj_out;
3978 	    }
3979 	    /*
3980 	     * Search the dynamic linker itself, and possibly resolve the
3981 	     * symbol from there.  This is how the application links to
3982 	     * dynamic linker services such as dlopen.
3983 	     */
3984 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3985 		res = symlook_obj(&req, &obj_rtld);
3986 		if (res == 0) {
3987 		    def = req.sym_out;
3988 		    defobj = req.defobj_out;
3989 		}
3990 	    }
3991 	}
3992 	else {
3993 	    /* Search the whole DAG rooted at the given object. */
3994 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3995 	    if (res == 0) {
3996 		def = req.sym_out;
3997 		defobj = req.defobj_out;
3998 	    }
3999 	}
4000     }
4001 
4002     if (def != NULL) {
4003 	lock_release(rtld_bind_lock, &lockstate);
4004 
4005 	/*
4006 	 * The value required by the caller is derived from the value
4007 	 * of the symbol. this is simply the relocated value of the
4008 	 * symbol.
4009 	 */
4010 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4011 	    sym = make_function_pointer(def, defobj);
4012 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4013 	    sym = rtld_resolve_ifunc(defobj, def);
4014 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4015 	    ti.ti_module = defobj->tlsindex;
4016 	    ti.ti_offset = def->st_value;
4017 	    sym = __tls_get_addr(&ti);
4018 	} else
4019 	    sym = defobj->relocbase + def->st_value;
4020 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4021 	return (sym);
4022     }
4023 
4024     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4025       ve != NULL ? ve->name : "");
4026     lock_release(rtld_bind_lock, &lockstate);
4027     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4028     return (NULL);
4029 }
4030 
4031 void *
dlsym(void * handle,const char * name)4032 dlsym(void *handle, const char *name)
4033 {
4034 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4035 	    SYMLOOK_DLSYM));
4036 }
4037 
4038 dlfunc_t
dlfunc(void * handle,const char * name)4039 dlfunc(void *handle, const char *name)
4040 {
4041 	union {
4042 		void *d;
4043 		dlfunc_t f;
4044 	} rv;
4045 
4046 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4047 	    SYMLOOK_DLSYM);
4048 	return (rv.f);
4049 }
4050 
4051 void *
dlvsym(void * handle,const char * name,const char * version)4052 dlvsym(void *handle, const char *name, const char *version)
4053 {
4054 	Ver_Entry ventry;
4055 
4056 	ventry.name = version;
4057 	ventry.file = NULL;
4058 	ventry.hash = elf_hash(version);
4059 	ventry.flags= 0;
4060 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4061 	    SYMLOOK_DLSYM));
4062 }
4063 
4064 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4065 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4066 {
4067     const Obj_Entry *obj;
4068     RtldLockState lockstate;
4069 
4070     rlock_acquire(rtld_bind_lock, &lockstate);
4071     obj = obj_from_addr(addr);
4072     if (obj == NULL) {
4073         _rtld_error("No shared object contains address");
4074 	lock_release(rtld_bind_lock, &lockstate);
4075         return (0);
4076     }
4077     rtld_fill_dl_phdr_info(obj, phdr_info);
4078     lock_release(rtld_bind_lock, &lockstate);
4079     return (1);
4080 }
4081 
4082 int
dladdr(const void * addr,Dl_info * info)4083 dladdr(const void *addr, Dl_info *info)
4084 {
4085     const Obj_Entry *obj;
4086     const Elf_Sym *def;
4087     void *symbol_addr;
4088     unsigned long symoffset;
4089     RtldLockState lockstate;
4090 
4091     rlock_acquire(rtld_bind_lock, &lockstate);
4092     obj = obj_from_addr(addr);
4093     if (obj == NULL) {
4094         _rtld_error("No shared object contains address");
4095 	lock_release(rtld_bind_lock, &lockstate);
4096         return (0);
4097     }
4098     info->dli_fname = obj->path;
4099     info->dli_fbase = obj->mapbase;
4100     info->dli_saddr = (void *)0;
4101     info->dli_sname = NULL;
4102 
4103     /*
4104      * Walk the symbol list looking for the symbol whose address is
4105      * closest to the address sent in.
4106      */
4107     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4108         def = obj->symtab + symoffset;
4109 
4110         /*
4111          * For skip the symbol if st_shndx is either SHN_UNDEF or
4112          * SHN_COMMON.
4113          */
4114         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4115             continue;
4116 
4117         /*
4118          * If the symbol is greater than the specified address, or if it
4119          * is further away from addr than the current nearest symbol,
4120          * then reject it.
4121          */
4122         symbol_addr = obj->relocbase + def->st_value;
4123         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4124             continue;
4125 
4126         /* Update our idea of the nearest symbol. */
4127         info->dli_sname = obj->strtab + def->st_name;
4128         info->dli_saddr = symbol_addr;
4129 
4130         /* Exact match? */
4131         if (info->dli_saddr == addr)
4132             break;
4133     }
4134     lock_release(rtld_bind_lock, &lockstate);
4135     return (1);
4136 }
4137 
4138 int
dlinfo(void * handle,int request,void * p)4139 dlinfo(void *handle, int request, void *p)
4140 {
4141     const Obj_Entry *obj;
4142     RtldLockState lockstate;
4143     int error;
4144 
4145     rlock_acquire(rtld_bind_lock, &lockstate);
4146 
4147     if (handle == NULL || handle == RTLD_SELF) {
4148 	void *retaddr;
4149 
4150 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4151 	if ((obj = obj_from_addr(retaddr)) == NULL)
4152 	    _rtld_error("Cannot determine caller's shared object");
4153     } else
4154 	obj = dlcheck(handle);
4155 
4156     if (obj == NULL) {
4157 	lock_release(rtld_bind_lock, &lockstate);
4158 	return (-1);
4159     }
4160 
4161     error = 0;
4162     switch (request) {
4163     case RTLD_DI_LINKMAP:
4164 	*((struct link_map const **)p) = &obj->linkmap;
4165 	break;
4166     case RTLD_DI_ORIGIN:
4167 	error = rtld_dirname(obj->path, p);
4168 	break;
4169 
4170     case RTLD_DI_SERINFOSIZE:
4171     case RTLD_DI_SERINFO:
4172 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4173 	break;
4174 
4175     default:
4176 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4177 	error = -1;
4178     }
4179 
4180     lock_release(rtld_bind_lock, &lockstate);
4181 
4182     return (error);
4183 }
4184 
4185 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4186 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4187 {
4188 	uintptr_t **dtvp;
4189 
4190 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4191 	phdr_info->dlpi_name = obj->path;
4192 	phdr_info->dlpi_phdr = obj->phdr;
4193 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4194 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4195 	dtvp = &_tcb_get()->tcb_dtv;
4196 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4197 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4198 	phdr_info->dlpi_adds = obj_loads;
4199 	phdr_info->dlpi_subs = obj_loads - obj_count;
4200 }
4201 
4202 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4203 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4204 {
4205 	struct dl_phdr_info phdr_info;
4206 	Obj_Entry *obj, marker;
4207 	RtldLockState bind_lockstate, phdr_lockstate;
4208 	int error;
4209 
4210 	init_marker(&marker);
4211 	error = 0;
4212 
4213 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4214 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4215 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4216 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4217 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4218 		hold_object(obj);
4219 		lock_release(rtld_bind_lock, &bind_lockstate);
4220 
4221 		error = callback(&phdr_info, sizeof phdr_info, param);
4222 
4223 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4224 		unhold_object(obj);
4225 		obj = globallist_next(&marker);
4226 		TAILQ_REMOVE(&obj_list, &marker, next);
4227 		if (error != 0) {
4228 			lock_release(rtld_bind_lock, &bind_lockstate);
4229 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4230 			return (error);
4231 		}
4232 	}
4233 
4234 	if (error == 0) {
4235 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4236 		lock_release(rtld_bind_lock, &bind_lockstate);
4237 		error = callback(&phdr_info, sizeof(phdr_info), param);
4238 	}
4239 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4240 	return (error);
4241 }
4242 
4243 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4244 fill_search_info(const char *dir, size_t dirlen, void *param)
4245 {
4246     struct fill_search_info_args *arg;
4247 
4248     arg = param;
4249 
4250     if (arg->request == RTLD_DI_SERINFOSIZE) {
4251 	arg->serinfo->dls_cnt ++;
4252 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4253     } else {
4254 	struct dl_serpath *s_entry;
4255 
4256 	s_entry = arg->serpath;
4257 	s_entry->dls_name  = arg->strspace;
4258 	s_entry->dls_flags = arg->flags;
4259 
4260 	strncpy(arg->strspace, dir, dirlen);
4261 	arg->strspace[dirlen] = '\0';
4262 
4263 	arg->strspace += dirlen + 1;
4264 	arg->serpath++;
4265     }
4266 
4267     return (NULL);
4268 }
4269 
4270 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4271 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4272 {
4273     struct dl_serinfo _info;
4274     struct fill_search_info_args args;
4275 
4276     args.request = RTLD_DI_SERINFOSIZE;
4277     args.serinfo = &_info;
4278 
4279     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4280     _info.dls_cnt  = 0;
4281 
4282     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4283     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4284     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4285     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4286     if (!obj->z_nodeflib)
4287       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4288 
4289 
4290     if (request == RTLD_DI_SERINFOSIZE) {
4291 	info->dls_size = _info.dls_size;
4292 	info->dls_cnt = _info.dls_cnt;
4293 	return (0);
4294     }
4295 
4296     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4297 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4298 	return (-1);
4299     }
4300 
4301     args.request  = RTLD_DI_SERINFO;
4302     args.serinfo  = info;
4303     args.serpath  = &info->dls_serpath[0];
4304     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4305 
4306     args.flags = LA_SER_RUNPATH;
4307     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4308 	return (-1);
4309 
4310     args.flags = LA_SER_LIBPATH;
4311     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4312 	return (-1);
4313 
4314     args.flags = LA_SER_RUNPATH;
4315     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4316 	return (-1);
4317 
4318     args.flags = LA_SER_CONFIG;
4319     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4320       != NULL)
4321 	return (-1);
4322 
4323     args.flags = LA_SER_DEFAULT;
4324     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4325       fill_search_info, NULL, &args) != NULL)
4326 	return (-1);
4327     return (0);
4328 }
4329 
4330 static int
rtld_dirname(const char * path,char * bname)4331 rtld_dirname(const char *path, char *bname)
4332 {
4333     const char *endp;
4334 
4335     /* Empty or NULL string gets treated as "." */
4336     if (path == NULL || *path == '\0') {
4337 	bname[0] = '.';
4338 	bname[1] = '\0';
4339 	return (0);
4340     }
4341 
4342     /* Strip trailing slashes */
4343     endp = path + strlen(path) - 1;
4344     while (endp > path && *endp == '/')
4345 	endp--;
4346 
4347     /* Find the start of the dir */
4348     while (endp > path && *endp != '/')
4349 	endp--;
4350 
4351     /* Either the dir is "/" or there are no slashes */
4352     if (endp == path) {
4353 	bname[0] = *endp == '/' ? '/' : '.';
4354 	bname[1] = '\0';
4355 	return (0);
4356     } else {
4357 	do {
4358 	    endp--;
4359 	} while (endp > path && *endp == '/');
4360     }
4361 
4362     if (endp - path + 2 > PATH_MAX)
4363     {
4364 	_rtld_error("Filename is too long: %s", path);
4365 	return(-1);
4366     }
4367 
4368     strncpy(bname, path, endp - path + 1);
4369     bname[endp - path + 1] = '\0';
4370     return (0);
4371 }
4372 
4373 static int
rtld_dirname_abs(const char * path,char * base)4374 rtld_dirname_abs(const char *path, char *base)
4375 {
4376 	char *last;
4377 
4378 	if (realpath(path, base) == NULL) {
4379 		_rtld_error("realpath \"%s\" failed (%s)", path,
4380 		    rtld_strerror(errno));
4381 		return (-1);
4382 	}
4383 	dbg("%s -> %s", path, base);
4384 	last = strrchr(base, '/');
4385 	if (last == NULL) {
4386 		_rtld_error("non-abs result from realpath \"%s\"", path);
4387 		return (-1);
4388 	}
4389 	if (last != base)
4390 		*last = '\0';
4391 	return (0);
4392 }
4393 
4394 static void
linkmap_add(Obj_Entry * obj)4395 linkmap_add(Obj_Entry *obj)
4396 {
4397 	struct link_map *l, *prev;
4398 
4399 	l = &obj->linkmap;
4400 	l->l_name = obj->path;
4401 	l->l_base = obj->mapbase;
4402 	l->l_ld = obj->dynamic;
4403 	l->l_addr = obj->relocbase;
4404 
4405 	if (r_debug.r_map == NULL) {
4406 		r_debug.r_map = l;
4407 		return;
4408 	}
4409 
4410 	/*
4411 	 * Scan to the end of the list, but not past the entry for the
4412 	 * dynamic linker, which we want to keep at the very end.
4413 	 */
4414 	for (prev = r_debug.r_map;
4415 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4416 	     prev = prev->l_next)
4417 		;
4418 
4419 	/* Link in the new entry. */
4420 	l->l_prev = prev;
4421 	l->l_next = prev->l_next;
4422 	if (l->l_next != NULL)
4423 		l->l_next->l_prev = l;
4424 	prev->l_next = l;
4425 }
4426 
4427 static void
linkmap_delete(Obj_Entry * obj)4428 linkmap_delete(Obj_Entry *obj)
4429 {
4430 	struct link_map *l;
4431 
4432 	l = &obj->linkmap;
4433 	if (l->l_prev == NULL) {
4434 		if ((r_debug.r_map = l->l_next) != NULL)
4435 			l->l_next->l_prev = NULL;
4436 		return;
4437 	}
4438 
4439 	if ((l->l_prev->l_next = l->l_next) != NULL)
4440 		l->l_next->l_prev = l->l_prev;
4441 }
4442 
4443 /*
4444  * Function for the debugger to set a breakpoint on to gain control.
4445  *
4446  * The two parameters allow the debugger to easily find and determine
4447  * what the runtime loader is doing and to whom it is doing it.
4448  *
4449  * When the loadhook trap is hit (r_debug_state, set at program
4450  * initialization), the arguments can be found on the stack:
4451  *
4452  *  +8   struct link_map *m
4453  *  +4   struct r_debug  *rd
4454  *  +0   RetAddr
4455  */
4456 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4457 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4458 {
4459     /*
4460      * The following is a hack to force the compiler to emit calls to
4461      * this function, even when optimizing.  If the function is empty,
4462      * the compiler is not obliged to emit any code for calls to it,
4463      * even when marked __noinline.  However, gdb depends on those
4464      * calls being made.
4465      */
4466     __compiler_membar();
4467 }
4468 
4469 /*
4470  * A function called after init routines have completed. This can be used to
4471  * break before a program's entry routine is called, and can be used when
4472  * main is not available in the symbol table.
4473  */
4474 void
_r_debug_postinit(struct link_map * m __unused)4475 _r_debug_postinit(struct link_map *m __unused)
4476 {
4477 
4478 	/* See r_debug_state(). */
4479 	__compiler_membar();
4480 }
4481 
4482 static void
release_object(Obj_Entry * obj)4483 release_object(Obj_Entry *obj)
4484 {
4485 
4486 	if (obj->holdcount > 0) {
4487 		obj->unholdfree = true;
4488 		return;
4489 	}
4490 	munmap(obj->mapbase, obj->mapsize);
4491 	linkmap_delete(obj);
4492 	obj_free(obj);
4493 }
4494 
4495 /*
4496  * Get address of the pointer variable in the main program.
4497  * Prefer non-weak symbol over the weak one.
4498  */
4499 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4500 get_program_var_addr(const char *name, RtldLockState *lockstate)
4501 {
4502     SymLook req;
4503     DoneList donelist;
4504 
4505     symlook_init(&req, name);
4506     req.lockstate = lockstate;
4507     donelist_init(&donelist);
4508     if (symlook_global(&req, &donelist) != 0)
4509 	return (NULL);
4510     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4511 	return ((const void **)make_function_pointer(req.sym_out,
4512 	  req.defobj_out));
4513     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4514 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4515     else
4516 	return ((const void **)(req.defobj_out->relocbase +
4517 	  req.sym_out->st_value));
4518 }
4519 
4520 /*
4521  * Set a pointer variable in the main program to the given value.  This
4522  * is used to set key variables such as "environ" before any of the
4523  * init functions are called.
4524  */
4525 static void
set_program_var(const char * name,const void * value)4526 set_program_var(const char *name, const void *value)
4527 {
4528     const void **addr;
4529 
4530     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4531 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4532 	*addr = value;
4533     }
4534 }
4535 
4536 /*
4537  * Search the global objects, including dependencies and main object,
4538  * for the given symbol.
4539  */
4540 static int
symlook_global(SymLook * req,DoneList * donelist)4541 symlook_global(SymLook *req, DoneList *donelist)
4542 {
4543     SymLook req1;
4544     const Objlist_Entry *elm;
4545     int res;
4546 
4547     symlook_init_from_req(&req1, req);
4548 
4549     /* Search all objects loaded at program start up. */
4550     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4551       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4552 	res = symlook_list(&req1, &list_main, donelist);
4553 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4554 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4555 	    req->sym_out = req1.sym_out;
4556 	    req->defobj_out = req1.defobj_out;
4557 	    assert(req->defobj_out != NULL);
4558 	}
4559     }
4560 
4561     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4562     STAILQ_FOREACH(elm, &list_global, link) {
4563 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4564           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4565 	    break;
4566 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4567 	if (res == 0 && (req->defobj_out == NULL ||
4568 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4569 	    req->sym_out = req1.sym_out;
4570 	    req->defobj_out = req1.defobj_out;
4571 	    assert(req->defobj_out != NULL);
4572 	}
4573     }
4574 
4575     return (req->sym_out != NULL ? 0 : ESRCH);
4576 }
4577 
4578 /*
4579  * Given a symbol name in a referencing object, find the corresponding
4580  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4581  * no definition was found.  Returns a pointer to the Obj_Entry of the
4582  * defining object via the reference parameter DEFOBJ_OUT.
4583  */
4584 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4585 symlook_default(SymLook *req, const Obj_Entry *refobj)
4586 {
4587     DoneList donelist;
4588     const Objlist_Entry *elm;
4589     SymLook req1;
4590     int res;
4591 
4592     donelist_init(&donelist);
4593     symlook_init_from_req(&req1, req);
4594 
4595     /*
4596      * Look first in the referencing object if linked symbolically,
4597      * and similarly handle protected symbols.
4598      */
4599     res = symlook_obj(&req1, refobj);
4600     if (res == 0 && (refobj->symbolic ||
4601       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4602 	req->sym_out = req1.sym_out;
4603 	req->defobj_out = req1.defobj_out;
4604 	assert(req->defobj_out != NULL);
4605     }
4606     if (refobj->symbolic || req->defobj_out != NULL)
4607 	donelist_check(&donelist, refobj);
4608 
4609     if (!refobj->deepbind)
4610         symlook_global(req, &donelist);
4611 
4612     /* Search all dlopened DAGs containing the referencing object. */
4613     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4614 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4615           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4616 	    break;
4617 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4618 	if (res == 0 && (req->sym_out == NULL ||
4619 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4620 	    req->sym_out = req1.sym_out;
4621 	    req->defobj_out = req1.defobj_out;
4622 	    assert(req->defobj_out != NULL);
4623 	}
4624     }
4625 
4626     if (refobj->deepbind)
4627         symlook_global(req, &donelist);
4628 
4629     /*
4630      * Search the dynamic linker itself, and possibly resolve the
4631      * symbol from there.  This is how the application links to
4632      * dynamic linker services such as dlopen.
4633      */
4634     if (req->sym_out == NULL ||
4635       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4636 	res = symlook_obj(&req1, &obj_rtld);
4637 	if (res == 0) {
4638 	    req->sym_out = req1.sym_out;
4639 	    req->defobj_out = req1.defobj_out;
4640 	    assert(req->defobj_out != NULL);
4641 	}
4642     }
4643 
4644     return (req->sym_out != NULL ? 0 : ESRCH);
4645 }
4646 
4647 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4648 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4649 {
4650     const Elf_Sym *def;
4651     const Obj_Entry *defobj;
4652     const Objlist_Entry *elm;
4653     SymLook req1;
4654     int res;
4655 
4656     def = NULL;
4657     defobj = NULL;
4658     STAILQ_FOREACH(elm, objlist, link) {
4659 	if (donelist_check(dlp, elm->obj))
4660 	    continue;
4661 	symlook_init_from_req(&req1, req);
4662 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4663 	    if (def == NULL || (ld_dynamic_weak &&
4664               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4665 		def = req1.sym_out;
4666 		defobj = req1.defobj_out;
4667 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4668 		    break;
4669 	    }
4670 	}
4671     }
4672     if (def != NULL) {
4673 	req->sym_out = def;
4674 	req->defobj_out = defobj;
4675 	return (0);
4676     }
4677     return (ESRCH);
4678 }
4679 
4680 /*
4681  * Search the chain of DAGS cointed to by the given Needed_Entry
4682  * for a symbol of the given name.  Each DAG is scanned completely
4683  * before advancing to the next one.  Returns a pointer to the symbol,
4684  * or NULL if no definition was found.
4685  */
4686 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4687 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4688 {
4689     const Elf_Sym *def;
4690     const Needed_Entry *n;
4691     const Obj_Entry *defobj;
4692     SymLook req1;
4693     int res;
4694 
4695     def = NULL;
4696     defobj = NULL;
4697     symlook_init_from_req(&req1, req);
4698     for (n = needed; n != NULL; n = n->next) {
4699 	if (n->obj == NULL ||
4700 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4701 	    continue;
4702 	if (def == NULL || (ld_dynamic_weak &&
4703           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4704 	    def = req1.sym_out;
4705 	    defobj = req1.defobj_out;
4706 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4707 		break;
4708 	}
4709     }
4710     if (def != NULL) {
4711 	req->sym_out = def;
4712 	req->defobj_out = defobj;
4713 	return (0);
4714     }
4715     return (ESRCH);
4716 }
4717 
4718 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4719 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4720     Needed_Entry *needed)
4721 {
4722 	DoneList donelist;
4723 	int flags;
4724 
4725 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4726 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4727 	donelist_init(&donelist);
4728 	symlook_init_from_req(req1, req);
4729 	return (symlook_needed(req1, needed, &donelist));
4730 }
4731 
4732 /*
4733  * Search the symbol table of a single shared object for a symbol of
4734  * the given name and version, if requested.  Returns a pointer to the
4735  * symbol, or NULL if no definition was found.  If the object is
4736  * filter, return filtered symbol from filtee.
4737  *
4738  * The symbol's hash value is passed in for efficiency reasons; that
4739  * eliminates many recomputations of the hash value.
4740  */
4741 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4742 symlook_obj(SymLook *req, const Obj_Entry *obj)
4743 {
4744     SymLook req1;
4745     int res, mres;
4746 
4747     /*
4748      * If there is at least one valid hash at this point, we prefer to
4749      * use the faster GNU version if available.
4750      */
4751     if (obj->valid_hash_gnu)
4752 	mres = symlook_obj1_gnu(req, obj);
4753     else if (obj->valid_hash_sysv)
4754 	mres = symlook_obj1_sysv(req, obj);
4755     else
4756 	return (EINVAL);
4757 
4758     if (mres == 0) {
4759 	if (obj->needed_filtees != NULL) {
4760 	    res = symlook_obj_load_filtees(req, &req1, obj,
4761 		obj->needed_filtees);
4762 	    if (res == 0) {
4763 		req->sym_out = req1.sym_out;
4764 		req->defobj_out = req1.defobj_out;
4765 	    }
4766 	    return (res);
4767 	}
4768 	if (obj->needed_aux_filtees != NULL) {
4769 	    res = symlook_obj_load_filtees(req, &req1, obj,
4770 		obj->needed_aux_filtees);
4771 	    if (res == 0) {
4772 		req->sym_out = req1.sym_out;
4773 		req->defobj_out = req1.defobj_out;
4774 		return (res);
4775 	    }
4776 	}
4777     }
4778     return (mres);
4779 }
4780 
4781 /* Symbol match routine common to both hash functions */
4782 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4783 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4784     const unsigned long symnum)
4785 {
4786 	Elf_Versym verndx;
4787 	const Elf_Sym *symp;
4788 	const char *strp;
4789 
4790 	symp = obj->symtab + symnum;
4791 	strp = obj->strtab + symp->st_name;
4792 
4793 	switch (ELF_ST_TYPE(symp->st_info)) {
4794 	case STT_FUNC:
4795 	case STT_NOTYPE:
4796 	case STT_OBJECT:
4797 	case STT_COMMON:
4798 	case STT_GNU_IFUNC:
4799 		if (symp->st_value == 0)
4800 			return (false);
4801 		/* fallthrough */
4802 	case STT_TLS:
4803 		if (symp->st_shndx != SHN_UNDEF)
4804 			break;
4805 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4806 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4807 			break;
4808 		/* fallthrough */
4809 	default:
4810 		return (false);
4811 	}
4812 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4813 		return (false);
4814 
4815 	if (req->ventry == NULL) {
4816 		if (obj->versyms != NULL) {
4817 			verndx = VER_NDX(obj->versyms[symnum]);
4818 			if (verndx > obj->vernum) {
4819 				_rtld_error(
4820 				    "%s: symbol %s references wrong version %d",
4821 				    obj->path, obj->strtab + symnum, verndx);
4822 				return (false);
4823 			}
4824 			/*
4825 			 * If we are not called from dlsym (i.e. this
4826 			 * is a normal relocation from unversioned
4827 			 * binary), accept the symbol immediately if
4828 			 * it happens to have first version after this
4829 			 * shared object became versioned.  Otherwise,
4830 			 * if symbol is versioned and not hidden,
4831 			 * remember it. If it is the only symbol with
4832 			 * this name exported by the shared object, it
4833 			 * will be returned as a match by the calling
4834 			 * function. If symbol is global (verndx < 2)
4835 			 * accept it unconditionally.
4836 			 */
4837 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4838 			    verndx == VER_NDX_GIVEN) {
4839 				result->sym_out = symp;
4840 				return (true);
4841 			}
4842 			else if (verndx >= VER_NDX_GIVEN) {
4843 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4844 				    == 0) {
4845 					if (result->vsymp == NULL)
4846 						result->vsymp = symp;
4847 					result->vcount++;
4848 				}
4849 				return (false);
4850 			}
4851 		}
4852 		result->sym_out = symp;
4853 		return (true);
4854 	}
4855 	if (obj->versyms == NULL) {
4856 		if (object_match_name(obj, req->ventry->name)) {
4857 			_rtld_error("%s: object %s should provide version %s "
4858 			    "for symbol %s", obj_rtld.path, obj->path,
4859 			    req->ventry->name, obj->strtab + symnum);
4860 			return (false);
4861 		}
4862 	} else {
4863 		verndx = VER_NDX(obj->versyms[symnum]);
4864 		if (verndx > obj->vernum) {
4865 			_rtld_error("%s: symbol %s references wrong version %d",
4866 			    obj->path, obj->strtab + symnum, verndx);
4867 			return (false);
4868 		}
4869 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4870 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4871 			/*
4872 			 * Version does not match. Look if this is a
4873 			 * global symbol and if it is not hidden. If
4874 			 * global symbol (verndx < 2) is available,
4875 			 * use it. Do not return symbol if we are
4876 			 * called by dlvsym, because dlvsym looks for
4877 			 * a specific version and default one is not
4878 			 * what dlvsym wants.
4879 			 */
4880 			if ((req->flags & SYMLOOK_DLSYM) ||
4881 			    (verndx >= VER_NDX_GIVEN) ||
4882 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4883 				return (false);
4884 		}
4885 	}
4886 	result->sym_out = symp;
4887 	return (true);
4888 }
4889 
4890 /*
4891  * Search for symbol using SysV hash function.
4892  * obj->buckets is known not to be NULL at this point; the test for this was
4893  * performed with the obj->valid_hash_sysv assignment.
4894  */
4895 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4896 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4897 {
4898 	unsigned long symnum;
4899 	Sym_Match_Result matchres;
4900 
4901 	matchres.sym_out = NULL;
4902 	matchres.vsymp = NULL;
4903 	matchres.vcount = 0;
4904 
4905 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4906 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4907 		if (symnum >= obj->nchains)
4908 			return (ESRCH);	/* Bad object */
4909 
4910 		if (matched_symbol(req, obj, &matchres, symnum)) {
4911 			req->sym_out = matchres.sym_out;
4912 			req->defobj_out = obj;
4913 			return (0);
4914 		}
4915 	}
4916 	if (matchres.vcount == 1) {
4917 		req->sym_out = matchres.vsymp;
4918 		req->defobj_out = obj;
4919 		return (0);
4920 	}
4921 	return (ESRCH);
4922 }
4923 
4924 /* Search for symbol using GNU hash function */
4925 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4926 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4927 {
4928 	Elf_Addr bloom_word;
4929 	const Elf32_Word *hashval;
4930 	Elf32_Word bucket;
4931 	Sym_Match_Result matchres;
4932 	unsigned int h1, h2;
4933 	unsigned long symnum;
4934 
4935 	matchres.sym_out = NULL;
4936 	matchres.vsymp = NULL;
4937 	matchres.vcount = 0;
4938 
4939 	/* Pick right bitmask word from Bloom filter array */
4940 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4941 	    obj->maskwords_bm_gnu];
4942 
4943 	/* Calculate modulus word size of gnu hash and its derivative */
4944 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4945 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4946 
4947 	/* Filter out the "definitely not in set" queries */
4948 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4949 		return (ESRCH);
4950 
4951 	/* Locate hash chain and corresponding value element*/
4952 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4953 	if (bucket == 0)
4954 		return (ESRCH);
4955 	hashval = &obj->chain_zero_gnu[bucket];
4956 	do {
4957 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4958 			symnum = hashval - obj->chain_zero_gnu;
4959 			if (matched_symbol(req, obj, &matchres, symnum)) {
4960 				req->sym_out = matchres.sym_out;
4961 				req->defobj_out = obj;
4962 				return (0);
4963 			}
4964 		}
4965 	} while ((*hashval++ & 1) == 0);
4966 	if (matchres.vcount == 1) {
4967 		req->sym_out = matchres.vsymp;
4968 		req->defobj_out = obj;
4969 		return (0);
4970 	}
4971 	return (ESRCH);
4972 }
4973 
4974 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)4975 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4976 {
4977 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4978 	if (*main_local == NULL)
4979 		*main_local = "";
4980 
4981 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
4982 	if (*fmt1 == NULL)
4983 		*fmt1 = "\t%o => %p (%x)\n";
4984 
4985 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
4986 	if (*fmt2 == NULL)
4987 		*fmt2 = "\t%o (%x)\n";
4988 }
4989 
4990 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)4991 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
4992     const char *main_local, const char *fmt1, const char *fmt2)
4993 {
4994 	const char *fmt;
4995 	int c;
4996 
4997 	if (fmt1 == NULL)
4998 		fmt = fmt2;
4999 	else
5000 		/* XXX bogus */
5001 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5002 
5003 	while ((c = *fmt++) != '\0') {
5004 		switch (c) {
5005 		default:
5006 			rtld_putchar(c);
5007 			continue;
5008 		case '\\':
5009 			switch (c = *fmt) {
5010 			case '\0':
5011 				continue;
5012 			case 'n':
5013 				rtld_putchar('\n');
5014 				break;
5015 			case 't':
5016 				rtld_putchar('\t');
5017 				break;
5018 			}
5019 			break;
5020 		case '%':
5021 			switch (c = *fmt) {
5022 			case '\0':
5023 				continue;
5024 			case '%':
5025 			default:
5026 				rtld_putchar(c);
5027 				break;
5028 			case 'A':
5029 				rtld_putstr(main_local);
5030 				break;
5031 			case 'a':
5032 				rtld_putstr(obj_main->path);
5033 				break;
5034 			case 'o':
5035 				rtld_putstr(name);
5036 				break;
5037 			case 'p':
5038 				rtld_putstr(path);
5039 				break;
5040 			case 'x':
5041 				rtld_printf("%p", obj != NULL ?
5042 				    obj->mapbase : NULL);
5043 				break;
5044 			}
5045 			break;
5046 		}
5047 		++fmt;
5048 	}
5049 }
5050 
5051 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5052 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5053 {
5054 	const char *fmt1, *fmt2, *main_local;
5055 	const char *name, *path;
5056 	bool first_spurious, list_containers;
5057 
5058 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5059 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5060 
5061 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5062 		Needed_Entry *needed;
5063 
5064 		if (obj->marker)
5065 			continue;
5066 		if (list_containers && obj->needed != NULL)
5067 			rtld_printf("%s:\n", obj->path);
5068 		for (needed = obj->needed; needed; needed = needed->next) {
5069 			if (needed->obj != NULL) {
5070 				if (needed->obj->traced && !list_containers)
5071 					continue;
5072 				needed->obj->traced = true;
5073 				path = needed->obj->path;
5074 			} else
5075 				path = "not found";
5076 
5077 			name = obj->strtab + needed->name;
5078 			trace_print_obj(needed->obj, name, path, main_local,
5079 			    fmt1, fmt2);
5080 		}
5081 	}
5082 
5083 	if (show_preload) {
5084 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5085 			fmt2 = "\t%p (%x)\n";
5086 		first_spurious = true;
5087 
5088 		TAILQ_FOREACH(obj, &obj_list, next) {
5089 			if (obj->marker || obj == obj_main || obj->traced)
5090 				continue;
5091 
5092 			if (list_containers && first_spurious) {
5093 				rtld_printf("[preloaded]\n");
5094 				first_spurious = false;
5095 			}
5096 
5097 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5098 			name = fname == NULL ? "<unknown>" : fname->name;
5099 			trace_print_obj(obj, name, obj->path, main_local,
5100 			    NULL, fmt2);
5101 		}
5102 	}
5103 }
5104 
5105 /*
5106  * Unload a dlopened object and its dependencies from memory and from
5107  * our data structures.  It is assumed that the DAG rooted in the
5108  * object has already been unreferenced, and that the object has a
5109  * reference count of 0.
5110  */
5111 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5112 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5113 {
5114 	Obj_Entry marker, *obj, *next;
5115 
5116 	assert(root->refcount == 0);
5117 
5118 	/*
5119 	 * Pass over the DAG removing unreferenced objects from
5120 	 * appropriate lists.
5121 	 */
5122 	unlink_object(root);
5123 
5124 	/* Unmap all objects that are no longer referenced. */
5125 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5126 		next = TAILQ_NEXT(obj, next);
5127 		if (obj->marker || obj->refcount != 0)
5128 			continue;
5129 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5130 		    obj->mapsize, 0, obj->path);
5131 		dbg("unloading \"%s\"", obj->path);
5132 		/*
5133 		 * Unlink the object now to prevent new references from
5134 		 * being acquired while the bind lock is dropped in
5135 		 * recursive dlclose() invocations.
5136 		 */
5137 		TAILQ_REMOVE(&obj_list, obj, next);
5138 		obj_count--;
5139 
5140 		if (obj->filtees_loaded) {
5141 			if (next != NULL) {
5142 				init_marker(&marker);
5143 				TAILQ_INSERT_BEFORE(next, &marker, next);
5144 				unload_filtees(obj, lockstate);
5145 				next = TAILQ_NEXT(&marker, next);
5146 				TAILQ_REMOVE(&obj_list, &marker, next);
5147 			} else
5148 				unload_filtees(obj, lockstate);
5149 		}
5150 		release_object(obj);
5151 	}
5152 }
5153 
5154 static void
unlink_object(Obj_Entry * root)5155 unlink_object(Obj_Entry *root)
5156 {
5157     Objlist_Entry *elm;
5158 
5159     if (root->refcount == 0) {
5160 	/* Remove the object from the RTLD_GLOBAL list. */
5161 	objlist_remove(&list_global, root);
5162 
5163     	/* Remove the object from all objects' DAG lists. */
5164     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5165 	    objlist_remove(&elm->obj->dldags, root);
5166 	    if (elm->obj != root)
5167 		unlink_object(elm->obj);
5168 	}
5169     }
5170 }
5171 
5172 static void
ref_dag(Obj_Entry * root)5173 ref_dag(Obj_Entry *root)
5174 {
5175     Objlist_Entry *elm;
5176 
5177     assert(root->dag_inited);
5178     STAILQ_FOREACH(elm, &root->dagmembers, link)
5179 	elm->obj->refcount++;
5180 }
5181 
5182 static void
unref_dag(Obj_Entry * root)5183 unref_dag(Obj_Entry *root)
5184 {
5185     Objlist_Entry *elm;
5186 
5187     assert(root->dag_inited);
5188     STAILQ_FOREACH(elm, &root->dagmembers, link)
5189 	elm->obj->refcount--;
5190 }
5191 
5192 /*
5193  * Common code for MD __tls_get_addr().
5194  */
5195 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5196 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5197 {
5198 	Elf_Addr *newdtv, *dtv;
5199 	RtldLockState lockstate;
5200 	int to_copy;
5201 
5202 	dtv = *dtvp;
5203 	/* Check dtv generation in case new modules have arrived */
5204 	if (dtv[0] != tls_dtv_generation) {
5205 		if (!locked)
5206 			wlock_acquire(rtld_bind_lock, &lockstate);
5207 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5208 		to_copy = dtv[1];
5209 		if (to_copy > tls_max_index)
5210 			to_copy = tls_max_index;
5211 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5212 		newdtv[0] = tls_dtv_generation;
5213 		newdtv[1] = tls_max_index;
5214 		free(dtv);
5215 		if (!locked)
5216 			lock_release(rtld_bind_lock, &lockstate);
5217 		dtv = *dtvp = newdtv;
5218 	}
5219 
5220 	/* Dynamically allocate module TLS if necessary */
5221 	if (dtv[index + 1] == 0) {
5222 		/* Signal safe, wlock will block out signals. */
5223 		if (!locked)
5224 			wlock_acquire(rtld_bind_lock, &lockstate);
5225 		if (!dtv[index + 1])
5226 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5227 		if (!locked)
5228 			lock_release(rtld_bind_lock, &lockstate);
5229 	}
5230 	return ((void *)(dtv[index + 1] + offset));
5231 }
5232 
5233 void *
tls_get_addr_common(uintptr_t ** dtvp,int index,size_t offset)5234 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5235 {
5236 	uintptr_t *dtv;
5237 
5238 	dtv = *dtvp;
5239 	/* Check dtv generation in case new modules have arrived */
5240 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5241 	    dtv[index + 1] != 0))
5242 		return ((void *)(dtv[index + 1] + offset));
5243 	return (tls_get_addr_slow(dtvp, index, offset, false));
5244 }
5245 
5246 #ifdef TLS_VARIANT_I
5247 
5248 /*
5249  * Return pointer to allocated TLS block
5250  */
5251 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5252 get_tls_block_ptr(void *tcb, size_t tcbsize)
5253 {
5254     size_t extra_size, post_size, pre_size, tls_block_size;
5255     size_t tls_init_align;
5256 
5257     tls_init_align = MAX(obj_main->tlsalign, 1);
5258 
5259     /* Compute fragments sizes. */
5260     extra_size = tcbsize - TLS_TCB_SIZE;
5261     post_size = calculate_tls_post_size(tls_init_align);
5262     tls_block_size = tcbsize + post_size;
5263     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5264 
5265     return ((char *)tcb - pre_size - extra_size);
5266 }
5267 
5268 /*
5269  * Allocate Static TLS using the Variant I method.
5270  *
5271  * For details on the layout, see lib/libc/gen/tls.c.
5272  *
5273  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5274  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5275  *     offsets, whereas libc's tls_static_space is just the executable's static
5276  *     TLS segment.
5277  */
5278 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5279 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5280 {
5281     Obj_Entry *obj;
5282     char *tls_block;
5283     Elf_Addr *dtv, **tcb;
5284     Elf_Addr addr;
5285     Elf_Addr i;
5286     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5287     size_t tls_init_align, tls_init_offset;
5288 
5289     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5290 	return (oldtcb);
5291 
5292     assert(tcbsize >= TLS_TCB_SIZE);
5293     maxalign = MAX(tcbalign, tls_static_max_align);
5294     tls_init_align = MAX(obj_main->tlsalign, 1);
5295 
5296     /* Compute fragmets sizes. */
5297     extra_size = tcbsize - TLS_TCB_SIZE;
5298     post_size = calculate_tls_post_size(tls_init_align);
5299     tls_block_size = tcbsize + post_size;
5300     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5301     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5302 
5303     /* Allocate whole TLS block */
5304     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5305     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5306 
5307     if (oldtcb != NULL) {
5308 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5309 	    tls_static_space);
5310 	free(get_tls_block_ptr(oldtcb, tcbsize));
5311 
5312 	/* Adjust the DTV. */
5313 	dtv = tcb[0];
5314 	for (i = 0; i < dtv[1]; i++) {
5315 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5316 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5317 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5318 	    }
5319 	}
5320     } else {
5321 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5322 	tcb[0] = dtv;
5323 	dtv[0] = tls_dtv_generation;
5324 	dtv[1] = tls_max_index;
5325 
5326 	for (obj = globallist_curr(objs); obj != NULL;
5327 	  obj = globallist_next(obj)) {
5328 	    if (obj->tlsoffset == 0)
5329 		continue;
5330 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5331 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5332 	    if (tls_init_offset > 0)
5333 		memset((void *)addr, 0, tls_init_offset);
5334 	    if (obj->tlsinitsize > 0) {
5335 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5336 		    obj->tlsinitsize);
5337 	    }
5338 	    if (obj->tlssize > obj->tlsinitsize) {
5339 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5340 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5341 	    }
5342 	    dtv[obj->tlsindex + 1] = addr;
5343 	}
5344     }
5345 
5346     return (tcb);
5347 }
5348 
5349 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5350 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5351 {
5352     Elf_Addr *dtv;
5353     Elf_Addr tlsstart, tlsend;
5354     size_t post_size;
5355     size_t dtvsize, i, tls_init_align __unused;
5356 
5357     assert(tcbsize >= TLS_TCB_SIZE);
5358     tls_init_align = MAX(obj_main->tlsalign, 1);
5359 
5360     /* Compute fragments sizes. */
5361     post_size = calculate_tls_post_size(tls_init_align);
5362 
5363     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5364     tlsend = (Elf_Addr)tcb + tls_static_space;
5365 
5366     dtv = *(Elf_Addr **)tcb;
5367     dtvsize = dtv[1];
5368     for (i = 0; i < dtvsize; i++) {
5369 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5370 	    free((void*)dtv[i+2]);
5371 	}
5372     }
5373     free(dtv);
5374     free(get_tls_block_ptr(tcb, tcbsize));
5375 }
5376 
5377 #endif	/* TLS_VARIANT_I */
5378 
5379 #ifdef TLS_VARIANT_II
5380 
5381 /*
5382  * Allocate Static TLS using the Variant II method.
5383  */
5384 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5385 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5386 {
5387     Obj_Entry *obj;
5388     size_t size, ralign;
5389     char *tls;
5390     Elf_Addr *dtv, *olddtv;
5391     Elf_Addr segbase, oldsegbase, addr;
5392     size_t i;
5393 
5394     ralign = tcbalign;
5395     if (tls_static_max_align > ralign)
5396 	    ralign = tls_static_max_align;
5397     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5398 
5399     assert(tcbsize >= 2*sizeof(Elf_Addr));
5400     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5401     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5402 
5403     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5404     ((Elf_Addr *)segbase)[0] = segbase;
5405     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5406 
5407     dtv[0] = tls_dtv_generation;
5408     dtv[1] = tls_max_index;
5409 
5410     if (oldtls) {
5411 	/*
5412 	 * Copy the static TLS block over whole.
5413 	 */
5414 	oldsegbase = (Elf_Addr) oldtls;
5415 	memcpy((void *)(segbase - tls_static_space),
5416 	   (const void *)(oldsegbase - tls_static_space),
5417 	   tls_static_space);
5418 
5419 	/*
5420 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5421 	 * move them over.
5422 	 */
5423 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5424 	for (i = 0; i < olddtv[1]; i++) {
5425 	    if (olddtv[i + 2] < oldsegbase - size ||
5426 		olddtv[i + 2] > oldsegbase) {
5427 		    dtv[i + 2] = olddtv[i + 2];
5428 		    olddtv[i + 2] = 0;
5429 	    }
5430 	}
5431 
5432 	/*
5433 	 * We assume that this block was the one we created with
5434 	 * allocate_initial_tls().
5435 	 */
5436 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5437     } else {
5438 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5439 		if (obj->marker || obj->tlsoffset == 0)
5440 			continue;
5441 		addr = segbase - obj->tlsoffset;
5442 		memset((void *)(addr + obj->tlsinitsize),
5443 		    0, obj->tlssize - obj->tlsinitsize);
5444 		if (obj->tlsinit) {
5445 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5446 			obj->static_tls_copied = true;
5447 		}
5448 		dtv[obj->tlsindex + 1] = addr;
5449 	}
5450     }
5451 
5452     return ((void *)segbase);
5453 }
5454 
5455 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5456 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5457 {
5458     Elf_Addr* dtv;
5459     size_t size, ralign;
5460     int dtvsize, i;
5461     Elf_Addr tlsstart, tlsend;
5462 
5463     /*
5464      * Figure out the size of the initial TLS block so that we can
5465      * find stuff which ___tls_get_addr() allocated dynamically.
5466      */
5467     ralign = tcbalign;
5468     if (tls_static_max_align > ralign)
5469 	    ralign = tls_static_max_align;
5470     size = roundup(tls_static_space, ralign);
5471 
5472     dtv = ((Elf_Addr **)tls)[1];
5473     dtvsize = dtv[1];
5474     tlsend = (Elf_Addr)tls;
5475     tlsstart = tlsend - size;
5476     for (i = 0; i < dtvsize; i++) {
5477 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5478 	        dtv[i + 2] > tlsend)) {
5479 		    free((void *)dtv[i + 2]);
5480 	}
5481     }
5482 
5483     free((void *)tlsstart);
5484     free((void *)dtv);
5485 }
5486 
5487 #endif	/* TLS_VARIANT_II */
5488 
5489 /*
5490  * Allocate TLS block for module with given index.
5491  */
5492 void *
allocate_module_tls(int index)5493 allocate_module_tls(int index)
5494 {
5495 	Obj_Entry *obj;
5496 	char *p;
5497 
5498 	TAILQ_FOREACH(obj, &obj_list, next) {
5499 		if (obj->marker)
5500 			continue;
5501 		if (obj->tlsindex == index)
5502 			break;
5503 	}
5504 	if (obj == NULL) {
5505 		_rtld_error("Can't find module with TLS index %d", index);
5506 		rtld_die();
5507 	}
5508 
5509 	if (obj->tls_static) {
5510 #ifdef TLS_VARIANT_I
5511 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5512 #else
5513 		p = (char *)_tcb_get() - obj->tlsoffset;
5514 #endif
5515 		return (p);
5516 	}
5517 
5518 	obj->tls_dynamic = true;
5519 
5520 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5521 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5522 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5523 	return (p);
5524 }
5525 
5526 bool
allocate_tls_offset(Obj_Entry * obj)5527 allocate_tls_offset(Obj_Entry *obj)
5528 {
5529     size_t off;
5530 
5531     if (obj->tls_dynamic)
5532 	return (false);
5533 
5534     if (obj->tls_static)
5535 	return (true);
5536 
5537     if (obj->tlssize == 0) {
5538 	obj->tls_static = true;
5539 	return (true);
5540     }
5541 
5542     if (tls_last_offset == 0)
5543 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5544 	  obj->tlspoffset);
5545     else
5546 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5547 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5548 
5549     obj->tlsoffset = off;
5550 #ifdef TLS_VARIANT_I
5551     off += obj->tlssize;
5552 #endif
5553 
5554     /*
5555      * If we have already fixed the size of the static TLS block, we
5556      * must stay within that size. When allocating the static TLS, we
5557      * leave a small amount of space spare to be used for dynamically
5558      * loading modules which use static TLS.
5559      */
5560     if (tls_static_space != 0) {
5561 	if (off > tls_static_space)
5562 	    return (false);
5563     } else if (obj->tlsalign > tls_static_max_align) {
5564 	    tls_static_max_align = obj->tlsalign;
5565     }
5566 
5567     tls_last_offset = off;
5568     tls_last_size = obj->tlssize;
5569     obj->tls_static = true;
5570 
5571     return (true);
5572 }
5573 
5574 void
free_tls_offset(Obj_Entry * obj)5575 free_tls_offset(Obj_Entry *obj)
5576 {
5577 
5578     /*
5579      * If we were the last thing to allocate out of the static TLS
5580      * block, we give our space back to the 'allocator'. This is a
5581      * simplistic workaround to allow libGL.so.1 to be loaded and
5582      * unloaded multiple times.
5583      */
5584     size_t off = obj->tlsoffset;
5585 #ifdef TLS_VARIANT_I
5586     off += obj->tlssize;
5587 #endif
5588     if (off == tls_last_offset) {
5589 	tls_last_offset -= obj->tlssize;
5590 	tls_last_size = 0;
5591     }
5592 }
5593 
5594 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5595 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5596 {
5597     void *ret;
5598     RtldLockState lockstate;
5599 
5600     wlock_acquire(rtld_bind_lock, &lockstate);
5601     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5602       tcbsize, tcbalign);
5603     lock_release(rtld_bind_lock, &lockstate);
5604     return (ret);
5605 }
5606 
5607 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5608 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5609 {
5610     RtldLockState lockstate;
5611 
5612     wlock_acquire(rtld_bind_lock, &lockstate);
5613     free_tls(tcb, tcbsize, tcbalign);
5614     lock_release(rtld_bind_lock, &lockstate);
5615 }
5616 
5617 static void
object_add_name(Obj_Entry * obj,const char * name)5618 object_add_name(Obj_Entry *obj, const char *name)
5619 {
5620     Name_Entry *entry;
5621     size_t len;
5622 
5623     len = strlen(name);
5624     entry = malloc(sizeof(Name_Entry) + len);
5625 
5626     if (entry != NULL) {
5627 	strcpy(entry->name, name);
5628 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5629     }
5630 }
5631 
5632 static int
object_match_name(const Obj_Entry * obj,const char * name)5633 object_match_name(const Obj_Entry *obj, const char *name)
5634 {
5635     Name_Entry *entry;
5636 
5637     STAILQ_FOREACH(entry, &obj->names, link) {
5638 	if (strcmp(name, entry->name) == 0)
5639 	    return (1);
5640     }
5641     return (0);
5642 }
5643 
5644 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5645 locate_dependency(const Obj_Entry *obj, const char *name)
5646 {
5647     const Objlist_Entry *entry;
5648     const Needed_Entry *needed;
5649 
5650     STAILQ_FOREACH(entry, &list_main, link) {
5651 	if (object_match_name(entry->obj, name))
5652 	    return (entry->obj);
5653     }
5654 
5655     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5656 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5657 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5658 	    /*
5659 	     * If there is DT_NEEDED for the name we are looking for,
5660 	     * we are all set.  Note that object might not be found if
5661 	     * dependency was not loaded yet, so the function can
5662 	     * return NULL here.  This is expected and handled
5663 	     * properly by the caller.
5664 	     */
5665 	    return (needed->obj);
5666 	}
5667     }
5668     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5669 	obj->path, name);
5670     rtld_die();
5671 }
5672 
5673 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5674 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5675     const Elf_Vernaux *vna)
5676 {
5677     const Elf_Verdef *vd;
5678     const char *vername;
5679 
5680     vername = refobj->strtab + vna->vna_name;
5681     vd = depobj->verdef;
5682     if (vd == NULL) {
5683 	_rtld_error("%s: version %s required by %s not defined",
5684 	    depobj->path, vername, refobj->path);
5685 	return (-1);
5686     }
5687     for (;;) {
5688 	if (vd->vd_version != VER_DEF_CURRENT) {
5689 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5690 		depobj->path, vd->vd_version);
5691 	    return (-1);
5692 	}
5693 	if (vna->vna_hash == vd->vd_hash) {
5694 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5695 		((const char *)vd + vd->vd_aux);
5696 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5697 		return (0);
5698 	}
5699 	if (vd->vd_next == 0)
5700 	    break;
5701 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5702     }
5703     if (vna->vna_flags & VER_FLG_WEAK)
5704 	return (0);
5705     _rtld_error("%s: version %s required by %s not found",
5706 	depobj->path, vername, refobj->path);
5707     return (-1);
5708 }
5709 
5710 static int
rtld_verify_object_versions(Obj_Entry * obj)5711 rtld_verify_object_versions(Obj_Entry *obj)
5712 {
5713     const Elf_Verneed *vn;
5714     const Elf_Verdef  *vd;
5715     const Elf_Verdaux *vda;
5716     const Elf_Vernaux *vna;
5717     const Obj_Entry *depobj;
5718     int maxvernum, vernum;
5719 
5720     if (obj->ver_checked)
5721 	return (0);
5722     obj->ver_checked = true;
5723 
5724     maxvernum = 0;
5725     /*
5726      * Walk over defined and required version records and figure out
5727      * max index used by any of them. Do very basic sanity checking
5728      * while there.
5729      */
5730     vn = obj->verneed;
5731     while (vn != NULL) {
5732 	if (vn->vn_version != VER_NEED_CURRENT) {
5733 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5734 		obj->path, vn->vn_version);
5735 	    return (-1);
5736 	}
5737 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5738 	for (;;) {
5739 	    vernum = VER_NEED_IDX(vna->vna_other);
5740 	    if (vernum > maxvernum)
5741 		maxvernum = vernum;
5742 	    if (vna->vna_next == 0)
5743 		 break;
5744 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5745 	}
5746 	if (vn->vn_next == 0)
5747 	    break;
5748 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5749     }
5750 
5751     vd = obj->verdef;
5752     while (vd != NULL) {
5753 	if (vd->vd_version != VER_DEF_CURRENT) {
5754 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5755 		obj->path, vd->vd_version);
5756 	    return (-1);
5757 	}
5758 	vernum = VER_DEF_IDX(vd->vd_ndx);
5759 	if (vernum > maxvernum)
5760 		maxvernum = vernum;
5761 	if (vd->vd_next == 0)
5762 	    break;
5763 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5764     }
5765 
5766     if (maxvernum == 0)
5767 	return (0);
5768 
5769     /*
5770      * Store version information in array indexable by version index.
5771      * Verify that object version requirements are satisfied along the
5772      * way.
5773      */
5774     obj->vernum = maxvernum + 1;
5775     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5776 
5777     vd = obj->verdef;
5778     while (vd != NULL) {
5779 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5780 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5781 	    assert(vernum <= maxvernum);
5782 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5783 	    obj->vertab[vernum].hash = vd->vd_hash;
5784 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5785 	    obj->vertab[vernum].file = NULL;
5786 	    obj->vertab[vernum].flags = 0;
5787 	}
5788 	if (vd->vd_next == 0)
5789 	    break;
5790 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5791     }
5792 
5793     vn = obj->verneed;
5794     while (vn != NULL) {
5795 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5796 	if (depobj == NULL)
5797 	    return (-1);
5798 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5799 	for (;;) {
5800 	    if (check_object_provided_version(obj, depobj, vna))
5801 		return (-1);
5802 	    vernum = VER_NEED_IDX(vna->vna_other);
5803 	    assert(vernum <= maxvernum);
5804 	    obj->vertab[vernum].hash = vna->vna_hash;
5805 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5806 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5807 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5808 		VER_INFO_HIDDEN : 0;
5809 	    if (vna->vna_next == 0)
5810 		 break;
5811 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5812 	}
5813 	if (vn->vn_next == 0)
5814 	    break;
5815 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5816     }
5817     return (0);
5818 }
5819 
5820 static int
rtld_verify_versions(const Objlist * objlist)5821 rtld_verify_versions(const Objlist *objlist)
5822 {
5823     Objlist_Entry *entry;
5824     int rc;
5825 
5826     rc = 0;
5827     STAILQ_FOREACH(entry, objlist, link) {
5828 	/*
5829 	 * Skip dummy objects or objects that have their version requirements
5830 	 * already checked.
5831 	 */
5832 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5833 	    continue;
5834 	if (rtld_verify_object_versions(entry->obj) == -1) {
5835 	    rc = -1;
5836 	    if (ld_tracing == NULL)
5837 		break;
5838 	}
5839     }
5840     if (rc == 0 || ld_tracing != NULL)
5841     	rc = rtld_verify_object_versions(&obj_rtld);
5842     return (rc);
5843 }
5844 
5845 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5846 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5847 {
5848     Elf_Versym vernum;
5849 
5850     if (obj->vertab) {
5851 	vernum = VER_NDX(obj->versyms[symnum]);
5852 	if (vernum >= obj->vernum) {
5853 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5854 		obj->path, obj->strtab + symnum, vernum);
5855 	} else if (obj->vertab[vernum].hash != 0) {
5856 	    return (&obj->vertab[vernum]);
5857 	}
5858     }
5859     return (NULL);
5860 }
5861 
5862 int
_rtld_get_stack_prot(void)5863 _rtld_get_stack_prot(void)
5864 {
5865 
5866 	return (stack_prot);
5867 }
5868 
5869 int
_rtld_is_dlopened(void * arg)5870 _rtld_is_dlopened(void *arg)
5871 {
5872 	Obj_Entry *obj;
5873 	RtldLockState lockstate;
5874 	int res;
5875 
5876 	rlock_acquire(rtld_bind_lock, &lockstate);
5877 	obj = dlcheck(arg);
5878 	if (obj == NULL)
5879 		obj = obj_from_addr(arg);
5880 	if (obj == NULL) {
5881 		_rtld_error("No shared object contains address");
5882 		lock_release(rtld_bind_lock, &lockstate);
5883 		return (-1);
5884 	}
5885 	res = obj->dlopened ? 1 : 0;
5886 	lock_release(rtld_bind_lock, &lockstate);
5887 	return (res);
5888 }
5889 
5890 static int
obj_remap_relro(Obj_Entry * obj,int prot)5891 obj_remap_relro(Obj_Entry *obj, int prot)
5892 {
5893 
5894 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5895 	    prot) == -1) {
5896 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5897 		    obj->path, prot, rtld_strerror(errno));
5898 		return (-1);
5899 	}
5900 	return (0);
5901 }
5902 
5903 static int
obj_disable_relro(Obj_Entry * obj)5904 obj_disable_relro(Obj_Entry *obj)
5905 {
5906 
5907 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5908 }
5909 
5910 static int
obj_enforce_relro(Obj_Entry * obj)5911 obj_enforce_relro(Obj_Entry *obj)
5912 {
5913 
5914 	return (obj_remap_relro(obj, PROT_READ));
5915 }
5916 
5917 static void
map_stacks_exec(RtldLockState * lockstate)5918 map_stacks_exec(RtldLockState *lockstate)
5919 {
5920 	void (*thr_map_stacks_exec)(void);
5921 
5922 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5923 		return;
5924 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5925 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5926 	if (thr_map_stacks_exec != NULL) {
5927 		stack_prot |= PROT_EXEC;
5928 		thr_map_stacks_exec();
5929 	}
5930 }
5931 
5932 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5933 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5934 {
5935 	Objlist_Entry *elm;
5936 	Obj_Entry *obj;
5937 	void (*distrib)(size_t, void *, size_t, size_t);
5938 
5939 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5940 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5941 	if (distrib == NULL)
5942 		return;
5943 	STAILQ_FOREACH(elm, list, link) {
5944 		obj = elm->obj;
5945 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5946 			continue;
5947 		lock_release(rtld_bind_lock, lockstate);
5948 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5949 		    obj->tlssize);
5950 		wlock_acquire(rtld_bind_lock, lockstate);
5951 		obj->static_tls_copied = true;
5952 	}
5953 }
5954 
5955 void
symlook_init(SymLook * dst,const char * name)5956 symlook_init(SymLook *dst, const char *name)
5957 {
5958 
5959 	bzero(dst, sizeof(*dst));
5960 	dst->name = name;
5961 	dst->hash = elf_hash(name);
5962 	dst->hash_gnu = gnu_hash(name);
5963 }
5964 
5965 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5966 symlook_init_from_req(SymLook *dst, const SymLook *src)
5967 {
5968 
5969 	dst->name = src->name;
5970 	dst->hash = src->hash;
5971 	dst->hash_gnu = src->hash_gnu;
5972 	dst->ventry = src->ventry;
5973 	dst->flags = src->flags;
5974 	dst->defobj_out = NULL;
5975 	dst->sym_out = NULL;
5976 	dst->lockstate = src->lockstate;
5977 }
5978 
5979 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)5980 open_binary_fd(const char *argv0, bool search_in_path,
5981     const char **binpath_res)
5982 {
5983 	char *binpath, *pathenv, *pe, *res1;
5984 	const char *res;
5985 	int fd;
5986 
5987 	binpath = NULL;
5988 	res = NULL;
5989 	if (search_in_path && strchr(argv0, '/') == NULL) {
5990 		binpath = xmalloc(PATH_MAX);
5991 		pathenv = getenv("PATH");
5992 		if (pathenv == NULL) {
5993 			_rtld_error("-p and no PATH environment variable");
5994 			rtld_die();
5995 		}
5996 		pathenv = strdup(pathenv);
5997 		if (pathenv == NULL) {
5998 			_rtld_error("Cannot allocate memory");
5999 			rtld_die();
6000 		}
6001 		fd = -1;
6002 		errno = ENOENT;
6003 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6004 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6005 				continue;
6006 			if (binpath[0] != '\0' &&
6007 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6008 				continue;
6009 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6010 				continue;
6011 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6012 			if (fd != -1 || errno != ENOENT) {
6013 				res = binpath;
6014 				break;
6015 			}
6016 		}
6017 		free(pathenv);
6018 	} else {
6019 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6020 		res = argv0;
6021 	}
6022 
6023 	if (fd == -1) {
6024 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6025 		rtld_die();
6026 	}
6027 	if (res != NULL && res[0] != '/') {
6028 		res1 = xmalloc(PATH_MAX);
6029 		if (realpath(res, res1) != NULL) {
6030 			if (res != argv0)
6031 				free(__DECONST(char *, res));
6032 			res = res1;
6033 		} else {
6034 			free(res1);
6035 		}
6036 	}
6037 	*binpath_res = res;
6038 	return (fd);
6039 }
6040 
6041 /*
6042  * Parse a set of command-line arguments.
6043  */
6044 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6045 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6046     const char **argv0, bool *dir_ignore)
6047 {
6048 	const char *arg;
6049 	char machine[64];
6050 	size_t sz;
6051 	int arglen, fd, i, j, mib[2];
6052 	char opt;
6053 	bool seen_b, seen_f;
6054 
6055 	dbg("Parsing command-line arguments");
6056 	*use_pathp = false;
6057 	*fdp = -1;
6058 	*dir_ignore = false;
6059 	seen_b = seen_f = false;
6060 
6061 	for (i = 1; i < argc; i++ ) {
6062 		arg = argv[i];
6063 		dbg("argv[%d]: '%s'", i, arg);
6064 
6065 		/*
6066 		 * rtld arguments end with an explicit "--" or with the first
6067 		 * non-prefixed argument.
6068 		 */
6069 		if (strcmp(arg, "--") == 0) {
6070 			i++;
6071 			break;
6072 		}
6073 		if (arg[0] != '-')
6074 			break;
6075 
6076 		/*
6077 		 * All other arguments are single-character options that can
6078 		 * be combined, so we need to search through `arg` for them.
6079 		 */
6080 		arglen = strlen(arg);
6081 		for (j = 1; j < arglen; j++) {
6082 			opt = arg[j];
6083 			if (opt == 'h') {
6084 				print_usage(argv[0]);
6085 				_exit(0);
6086 			} else if (opt == 'b') {
6087 				if (seen_f) {
6088 					_rtld_error("Both -b and -f specified");
6089 					rtld_die();
6090 				}
6091 				if (j != arglen - 1) {
6092 					_rtld_error("Invalid options: %s", arg);
6093 					rtld_die();
6094 				}
6095 				i++;
6096 				*argv0 = argv[i];
6097 				seen_b = true;
6098 				break;
6099 			} else if (opt == 'd') {
6100 				*dir_ignore = true;
6101 			} else if (opt == 'f') {
6102 				if (seen_b) {
6103 					_rtld_error("Both -b and -f specified");
6104 					rtld_die();
6105 				}
6106 
6107 				/*
6108 				 * -f XX can be used to specify a
6109 				 * descriptor for the binary named at
6110 				 * the command line (i.e., the later
6111 				 * argument will specify the process
6112 				 * name but the descriptor is what
6113 				 * will actually be executed).
6114 				 *
6115 				 * -f must be the last option in the
6116 				 * group, e.g., -abcf <fd>.
6117 				 */
6118 				if (j != arglen - 1) {
6119 					_rtld_error("Invalid options: %s", arg);
6120 					rtld_die();
6121 				}
6122 				i++;
6123 				fd = parse_integer(argv[i]);
6124 				if (fd == -1) {
6125 					_rtld_error(
6126 					    "Invalid file descriptor: '%s'",
6127 					    argv[i]);
6128 					rtld_die();
6129 				}
6130 				*fdp = fd;
6131 				seen_f = true;
6132 				break;
6133 			} else if (opt == 'o') {
6134 				struct ld_env_var_desc *l;
6135 				char *n, *v;
6136 				u_int ll;
6137 
6138 				if (j != arglen - 1) {
6139 					_rtld_error("Invalid options: %s", arg);
6140 					rtld_die();
6141 				}
6142 				i++;
6143 				n = argv[i];
6144 				v = strchr(n, '=');
6145 				if (v == NULL) {
6146 					_rtld_error("No '=' in -o parameter");
6147 					rtld_die();
6148 				}
6149 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6150 					l = &ld_env_vars[ll];
6151 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6152 					    strncmp(n, l->n, v - n) == 0) {
6153 						l->val = v + 1;
6154 						break;
6155 					}
6156 				}
6157 				if (ll == nitems(ld_env_vars)) {
6158 					_rtld_error("Unknown LD_ option %s",
6159 					    n);
6160 					rtld_die();
6161 				}
6162 			} else if (opt == 'p') {
6163 				*use_pathp = true;
6164 			} else if (opt == 'u') {
6165 				u_int ll;
6166 
6167 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6168 					ld_env_vars[ll].val = NULL;
6169 			} else if (opt == 'v') {
6170 				machine[0] = '\0';
6171 				mib[0] = CTL_HW;
6172 				mib[1] = HW_MACHINE;
6173 				sz = sizeof(machine);
6174 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6175 				ld_elf_hints_path = ld_get_env_var(
6176 				    LD_ELF_HINTS_PATH);
6177 				set_ld_elf_hints_path();
6178 				rtld_printf(
6179 				    "FreeBSD ld-elf.so.1 %s\n"
6180 				    "FreeBSD_version %d\n"
6181 				    "Default lib path %s\n"
6182 				    "Hints lib path %s\n"
6183 				    "Env prefix %s\n"
6184 				    "Default hint file %s\n"
6185 				    "Hint file %s\n"
6186 				    "libmap file %s\n"
6187 				    "Optional static TLS size %zd bytes\n",
6188 				    machine,
6189 				    __FreeBSD_version, ld_standard_library_path,
6190 				    gethints(false),
6191 				    ld_env_prefix, ld_elf_hints_default,
6192 				    ld_elf_hints_path,
6193 				    ld_path_libmap_conf,
6194 				    ld_static_tls_extra);
6195 				_exit(0);
6196 			} else {
6197 				_rtld_error("Invalid argument: '%s'", arg);
6198 				print_usage(argv[0]);
6199 				rtld_die();
6200 			}
6201 		}
6202 	}
6203 
6204 	if (!seen_b)
6205 		*argv0 = argv[i];
6206 	return (i);
6207 }
6208 
6209 /*
6210  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6211  */
6212 static int
parse_integer(const char * str)6213 parse_integer(const char *str)
6214 {
6215 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6216 	const char *orig;
6217 	int n;
6218 	char c;
6219 
6220 	orig = str;
6221 	n = 0;
6222 	for (c = *str; c != '\0'; c = *++str) {
6223 		if (c < '0' || c > '9')
6224 			return (-1);
6225 
6226 		n *= RADIX;
6227 		n += c - '0';
6228 	}
6229 
6230 	/* Make sure we actually parsed something. */
6231 	if (str == orig)
6232 		return (-1);
6233 	return (n);
6234 }
6235 
6236 static void
print_usage(const char * argv0)6237 print_usage(const char *argv0)
6238 {
6239 
6240 	rtld_printf(
6241 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6242 	    "\n"
6243 	    "Options:\n"
6244 	    "  -h        Display this help message\n"
6245 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6246 	    "  -d        Ignore lack of exec permissions for the binary\n"
6247 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6248 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6249 	    "  -p        Search in PATH for named binary\n"
6250 	    "  -u        Ignore LD_ environment variables\n"
6251 	    "  -v        Display identification information\n"
6252 	    "  --        End of RTLD options\n"
6253 	    "  <binary>  Name of process to execute\n"
6254 	    "  <args>    Arguments to the executed process\n", argv0);
6255 }
6256 
6257 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6258 static const struct auxfmt {
6259 	const char *name;
6260 	const char *fmt;
6261 } auxfmts[] = {
6262 	AUXFMT(AT_NULL, NULL),
6263 	AUXFMT(AT_IGNORE, NULL),
6264 	AUXFMT(AT_EXECFD, "%ld"),
6265 	AUXFMT(AT_PHDR, "%p"),
6266 	AUXFMT(AT_PHENT, "%lu"),
6267 	AUXFMT(AT_PHNUM, "%lu"),
6268 	AUXFMT(AT_PAGESZ, "%lu"),
6269 	AUXFMT(AT_BASE, "%#lx"),
6270 	AUXFMT(AT_FLAGS, "%#lx"),
6271 	AUXFMT(AT_ENTRY, "%p"),
6272 	AUXFMT(AT_NOTELF, NULL),
6273 	AUXFMT(AT_UID, "%ld"),
6274 	AUXFMT(AT_EUID, "%ld"),
6275 	AUXFMT(AT_GID, "%ld"),
6276 	AUXFMT(AT_EGID, "%ld"),
6277 	AUXFMT(AT_EXECPATH, "%s"),
6278 	AUXFMT(AT_CANARY, "%p"),
6279 	AUXFMT(AT_CANARYLEN, "%lu"),
6280 	AUXFMT(AT_OSRELDATE, "%lu"),
6281 	AUXFMT(AT_NCPUS, "%lu"),
6282 	AUXFMT(AT_PAGESIZES, "%p"),
6283 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6284 	AUXFMT(AT_TIMEKEEP, "%p"),
6285 	AUXFMT(AT_STACKPROT, "%#lx"),
6286 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6287 	AUXFMT(AT_HWCAP, "%#lx"),
6288 	AUXFMT(AT_HWCAP2, "%#lx"),
6289 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6290 	AUXFMT(AT_ARGC, "%lu"),
6291 	AUXFMT(AT_ARGV, "%p"),
6292 	AUXFMT(AT_ENVC, "%p"),
6293 	AUXFMT(AT_ENVV, "%p"),
6294 	AUXFMT(AT_PS_STRINGS, "%p"),
6295 	AUXFMT(AT_FXRNG, "%p"),
6296 	AUXFMT(AT_KPRELOAD, "%p"),
6297 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6298 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6299 };
6300 
6301 static bool
is_ptr_fmt(const char * fmt)6302 is_ptr_fmt(const char *fmt)
6303 {
6304 	char last;
6305 
6306 	last = fmt[strlen(fmt) - 1];
6307 	return (last == 'p' || last == 's');
6308 }
6309 
6310 static void
dump_auxv(Elf_Auxinfo ** aux_info)6311 dump_auxv(Elf_Auxinfo **aux_info)
6312 {
6313 	Elf_Auxinfo *auxp;
6314 	const struct auxfmt *fmt;
6315 	int i;
6316 
6317 	for (i = 0; i < AT_COUNT; i++) {
6318 		auxp = aux_info[i];
6319 		if (auxp == NULL)
6320 			continue;
6321 		fmt = &auxfmts[i];
6322 		if (fmt->fmt == NULL)
6323 			continue;
6324 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6325 		if (is_ptr_fmt(fmt->fmt)) {
6326 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6327 			    auxp->a_un.a_ptr);
6328 		} else {
6329 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6330 			    auxp->a_un.a_val);
6331 		}
6332 		rtld_fdprintf(STDOUT_FILENO, "\n");
6333 	}
6334 }
6335 
6336 /*
6337  * Overrides for libc_pic-provided functions.
6338  */
6339 
6340 int
__getosreldate(void)6341 __getosreldate(void)
6342 {
6343 	size_t len;
6344 	int oid[2];
6345 	int error, osrel;
6346 
6347 	if (osreldate != 0)
6348 		return (osreldate);
6349 
6350 	oid[0] = CTL_KERN;
6351 	oid[1] = KERN_OSRELDATE;
6352 	osrel = 0;
6353 	len = sizeof(osrel);
6354 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6355 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6356 		osreldate = osrel;
6357 	return (osreldate);
6358 }
6359 const char *
rtld_strerror(int errnum)6360 rtld_strerror(int errnum)
6361 {
6362 
6363 	if (errnum < 0 || errnum >= sys_nerr)
6364 		return ("Unknown error");
6365 	return (sys_errlist[errnum]);
6366 }
6367 
6368 char *
getenv(const char * name)6369 getenv(const char *name)
6370 {
6371 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6372 	    strlen(name))));
6373 }
6374 
6375 /* malloc */
6376 void *
malloc(size_t nbytes)6377 malloc(size_t nbytes)
6378 {
6379 
6380 	return (__crt_malloc(nbytes));
6381 }
6382 
6383 void *
calloc(size_t num,size_t size)6384 calloc(size_t num, size_t size)
6385 {
6386 
6387 	return (__crt_calloc(num, size));
6388 }
6389 
6390 void
free(void * cp)6391 free(void *cp)
6392 {
6393 
6394 	__crt_free(cp);
6395 }
6396 
6397 void *
realloc(void * cp,size_t nbytes)6398 realloc(void *cp, size_t nbytes)
6399 {
6400 
6401 	return (__crt_realloc(cp, nbytes));
6402 }
6403 
6404 extern int _rtld_version__FreeBSD_version __exported;
6405 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6406 
6407 extern char _rtld_version_laddr_offset __exported;
6408 char _rtld_version_laddr_offset;
6409 
6410 extern char _rtld_version_dlpi_tls_data __exported;
6411 char _rtld_version_dlpi_tls_data;
6412