xref: /freebsd-14.2/lib/libvmmapi/vmmapi.c (revision f26c227c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/capsicum.h>
32 #include <sys/sysctl.h>
33 #include <sys/ioctl.h>
34 #include <sys/linker.h>
35 #include <sys/mman.h>
36 #include <sys/module.h>
37 #include <sys/_iovec.h>
38 #include <sys/cpuset.h>
39 
40 #include <capsicum_helpers.h>
41 #include <errno.h>
42 #include <stdbool.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <assert.h>
46 #include <string.h>
47 #include <fcntl.h>
48 #include <unistd.h>
49 
50 #include <libutil.h>
51 
52 #include <vm/vm.h>
53 #include <machine/vmm.h>
54 #include <machine/vmm_dev.h>
55 #include <machine/vmm_snapshot.h>
56 
57 #include "vmmapi.h"
58 #include "internal.h"
59 
60 #define	MB	(1024 * 1024UL)
61 #define	GB	(1024 * 1024 * 1024UL)
62 
63 /*
64  * Size of the guard region before and after the virtual address space
65  * mapping the guest physical memory. This must be a multiple of the
66  * superpage size for performance reasons.
67  */
68 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
69 
70 #define	PROT_RW		(PROT_READ | PROT_WRITE)
71 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
72 
73 struct vmctx {
74 	int	fd;
75 	uint32_t lowmem_limit;
76 	int	memflags;
77 	size_t	lowmem;
78 	size_t	highmem;
79 	char	*baseaddr;
80 	char	*name;
81 };
82 
83 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
84 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
85 
86 static int
vm_device_open(const char * name)87 vm_device_open(const char *name)
88 {
89 	int fd, len;
90 	char *vmfile;
91 
92 	len = strlen("/dev/vmm/") + strlen(name) + 1;
93 	vmfile = malloc(len);
94 	assert(vmfile != NULL);
95 	snprintf(vmfile, len, "/dev/vmm/%s", name);
96 
97 	/* Open the device file */
98 	fd = open(vmfile, O_RDWR, 0);
99 
100 	free(vmfile);
101 	return (fd);
102 }
103 
104 int
vm_create(const char * name)105 vm_create(const char *name)
106 {
107 	/* Try to load vmm(4) module before creating a guest. */
108 	if (modfind("vmm") < 0)
109 		kldload("vmm");
110 	return (CREATE(name));
111 }
112 
113 struct vmctx *
vm_open(const char * name)114 vm_open(const char *name)
115 {
116 	struct vmctx *vm;
117 	int saved_errno;
118 
119 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
120 	assert(vm != NULL);
121 
122 	vm->fd = -1;
123 	vm->memflags = 0;
124 	vm->lowmem_limit = 3 * GB;
125 	vm->name = (char *)(vm + 1);
126 	strcpy(vm->name, name);
127 
128 	if ((vm->fd = vm_device_open(vm->name)) < 0)
129 		goto err;
130 
131 	return (vm);
132 err:
133 	saved_errno = errno;
134 	free(vm);
135 	errno = saved_errno;
136 	return (NULL);
137 }
138 
139 void
vm_close(struct vmctx * vm)140 vm_close(struct vmctx *vm)
141 {
142 	assert(vm != NULL);
143 
144 	close(vm->fd);
145 	free(vm);
146 }
147 
148 void
vm_destroy(struct vmctx * vm)149 vm_destroy(struct vmctx *vm)
150 {
151 	assert(vm != NULL);
152 
153 	if (vm->fd >= 0)
154 		close(vm->fd);
155 	DESTROY(vm->name);
156 
157 	free(vm);
158 }
159 
160 struct vcpu *
vm_vcpu_open(struct vmctx * ctx,int vcpuid)161 vm_vcpu_open(struct vmctx *ctx, int vcpuid)
162 {
163 	struct vcpu *vcpu;
164 
165 	vcpu = malloc(sizeof(*vcpu));
166 	vcpu->ctx = ctx;
167 	vcpu->vcpuid = vcpuid;
168 	return (vcpu);
169 }
170 
171 void
vm_vcpu_close(struct vcpu * vcpu)172 vm_vcpu_close(struct vcpu *vcpu)
173 {
174 	free(vcpu);
175 }
176 
177 int
vcpu_id(struct vcpu * vcpu)178 vcpu_id(struct vcpu *vcpu)
179 {
180 	return (vcpu->vcpuid);
181 }
182 
183 int
vm_parse_memsize(const char * opt,size_t * ret_memsize)184 vm_parse_memsize(const char *opt, size_t *ret_memsize)
185 {
186 	char *endptr;
187 	size_t optval;
188 	int error;
189 
190 	optval = strtoul(opt, &endptr, 0);
191 	if (*opt != '\0' && *endptr == '\0') {
192 		/*
193 		 * For the sake of backward compatibility if the memory size
194 		 * specified on the command line is less than a megabyte then
195 		 * it is interpreted as being in units of MB.
196 		 */
197 		if (optval < MB)
198 			optval *= MB;
199 		*ret_memsize = optval;
200 		error = 0;
201 	} else
202 		error = expand_number(opt, ret_memsize);
203 
204 	return (error);
205 }
206 
207 uint32_t
vm_get_lowmem_limit(struct vmctx * ctx)208 vm_get_lowmem_limit(struct vmctx *ctx)
209 {
210 
211 	return (ctx->lowmem_limit);
212 }
213 
214 void
vm_set_lowmem_limit(struct vmctx * ctx,uint32_t limit)215 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
216 {
217 
218 	ctx->lowmem_limit = limit;
219 }
220 
221 void
vm_set_memflags(struct vmctx * ctx,int flags)222 vm_set_memflags(struct vmctx *ctx, int flags)
223 {
224 
225 	ctx->memflags = flags;
226 }
227 
228 int
vm_get_memflags(struct vmctx * ctx)229 vm_get_memflags(struct vmctx *ctx)
230 {
231 
232 	return (ctx->memflags);
233 }
234 
235 /*
236  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
237  */
238 int
vm_mmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,int segid,vm_ooffset_t off,size_t len,int prot)239 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
240     size_t len, int prot)
241 {
242 	struct vm_memmap memmap;
243 	int error, flags;
244 
245 	memmap.gpa = gpa;
246 	memmap.segid = segid;
247 	memmap.segoff = off;
248 	memmap.len = len;
249 	memmap.prot = prot;
250 	memmap.flags = 0;
251 
252 	if (ctx->memflags & VM_MEM_F_WIRED)
253 		memmap.flags |= VM_MEMMAP_F_WIRED;
254 
255 	/*
256 	 * If this mapping already exists then don't create it again. This
257 	 * is the common case for SYSMEM mappings created by bhyveload(8).
258 	 */
259 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
260 	if (error == 0 && gpa == memmap.gpa) {
261 		if (segid != memmap.segid || off != memmap.segoff ||
262 		    prot != memmap.prot || flags != memmap.flags) {
263 			errno = EEXIST;
264 			return (-1);
265 		} else {
266 			return (0);
267 		}
268 	}
269 
270 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
271 	return (error);
272 }
273 
274 int
vm_get_guestmem_from_ctx(struct vmctx * ctx,char ** guest_baseaddr,size_t * lowmem_size,size_t * highmem_size)275 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
276     size_t *lowmem_size, size_t *highmem_size)
277 {
278 
279 	*guest_baseaddr = ctx->baseaddr;
280 	*lowmem_size = ctx->lowmem;
281 	*highmem_size = ctx->highmem;
282 	return (0);
283 }
284 
285 int
vm_munmap_memseg(struct vmctx * ctx,vm_paddr_t gpa,size_t len)286 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
287 {
288 	struct vm_munmap munmap;
289 	int error;
290 
291 	munmap.gpa = gpa;
292 	munmap.len = len;
293 
294 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
295 	return (error);
296 }
297 
298 int
vm_mmap_getnext(struct vmctx * ctx,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)299 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
300     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
301 {
302 	struct vm_memmap memmap;
303 	int error;
304 
305 	bzero(&memmap, sizeof(struct vm_memmap));
306 	memmap.gpa = *gpa;
307 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
308 	if (error == 0) {
309 		*gpa = memmap.gpa;
310 		*segid = memmap.segid;
311 		*segoff = memmap.segoff;
312 		*len = memmap.len;
313 		*prot = memmap.prot;
314 		*flags = memmap.flags;
315 	}
316 	return (error);
317 }
318 
319 /*
320  * Return 0 if the segments are identical and non-zero otherwise.
321  *
322  * This is slightly complicated by the fact that only device memory segments
323  * are named.
324  */
325 static int
cmpseg(size_t len,const char * str,size_t len2,const char * str2)326 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
327 {
328 
329 	if (len == len2) {
330 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
331 			return (0);
332 	}
333 	return (-1);
334 }
335 
336 static int
vm_alloc_memseg(struct vmctx * ctx,int segid,size_t len,const char * name)337 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
338 {
339 	struct vm_memseg memseg;
340 	size_t n;
341 	int error;
342 
343 	/*
344 	 * If the memory segment has already been created then just return.
345 	 * This is the usual case for the SYSMEM segment created by userspace
346 	 * loaders like bhyveload(8).
347 	 */
348 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
349 	    sizeof(memseg.name));
350 	if (error)
351 		return (error);
352 
353 	if (memseg.len != 0) {
354 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
355 			errno = EINVAL;
356 			return (-1);
357 		} else {
358 			return (0);
359 		}
360 	}
361 
362 	bzero(&memseg, sizeof(struct vm_memseg));
363 	memseg.segid = segid;
364 	memseg.len = len;
365 	if (name != NULL) {
366 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
367 		if (n >= sizeof(memseg.name)) {
368 			errno = ENAMETOOLONG;
369 			return (-1);
370 		}
371 	}
372 
373 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
374 	return (error);
375 }
376 
377 int
vm_get_memseg(struct vmctx * ctx,int segid,size_t * lenp,char * namebuf,size_t bufsize)378 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
379     size_t bufsize)
380 {
381 	struct vm_memseg memseg;
382 	size_t n;
383 	int error;
384 
385 	memseg.segid = segid;
386 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
387 	if (error == 0) {
388 		*lenp = memseg.len;
389 		n = strlcpy(namebuf, memseg.name, bufsize);
390 		if (n >= bufsize) {
391 			errno = ENAMETOOLONG;
392 			error = -1;
393 		}
394 	}
395 	return (error);
396 }
397 
398 static int
setup_memory_segment(struct vmctx * ctx,vm_paddr_t gpa,size_t len,char * base)399 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
400 {
401 	char *ptr;
402 	int error, flags;
403 
404 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
405 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
406 	if (error)
407 		return (error);
408 
409 	flags = MAP_SHARED | MAP_FIXED;
410 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
411 		flags |= MAP_NOCORE;
412 
413 	/* mmap into the process address space on the host */
414 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
415 	if (ptr == MAP_FAILED)
416 		return (-1);
417 
418 	return (0);
419 }
420 
421 int
vm_setup_memory(struct vmctx * ctx,size_t memsize,enum vm_mmap_style vms)422 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
423 {
424 	size_t objsize, len;
425 	vm_paddr_t gpa;
426 	char *baseaddr, *ptr;
427 	int error;
428 
429 	assert(vms == VM_MMAP_ALL);
430 
431 	/*
432 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
433 	 * create another 'highmem' segment above 4GB for the remainder.
434 	 */
435 	if (memsize > ctx->lowmem_limit) {
436 		ctx->lowmem = ctx->lowmem_limit;
437 		ctx->highmem = memsize - ctx->lowmem_limit;
438 		objsize = 4*GB + ctx->highmem;
439 	} else {
440 		ctx->lowmem = memsize;
441 		ctx->highmem = 0;
442 		objsize = ctx->lowmem;
443 	}
444 
445 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
446 	if (error)
447 		return (error);
448 
449 	/*
450 	 * Stake out a contiguous region covering the guest physical memory
451 	 * and the adjoining guard regions.
452 	 */
453 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
454 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
455 	if (ptr == MAP_FAILED)
456 		return (-1);
457 
458 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
459 	if (ctx->highmem > 0) {
460 		gpa = 4*GB;
461 		len = ctx->highmem;
462 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
463 		if (error)
464 			return (error);
465 	}
466 
467 	if (ctx->lowmem > 0) {
468 		gpa = 0;
469 		len = ctx->lowmem;
470 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
471 		if (error)
472 			return (error);
473 	}
474 
475 	ctx->baseaddr = baseaddr;
476 
477 	return (0);
478 }
479 
480 /*
481  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
482  * the lowmem or highmem regions.
483  *
484  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
485  * The instruction emulation code depends on this behavior.
486  */
487 void *
vm_map_gpa(struct vmctx * ctx,vm_paddr_t gaddr,size_t len)488 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
489 {
490 
491 	if (ctx->lowmem > 0) {
492 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
493 		    gaddr + len <= ctx->lowmem)
494 			return (ctx->baseaddr + gaddr);
495 	}
496 
497 	if (ctx->highmem > 0) {
498                 if (gaddr >= 4*GB) {
499 			if (gaddr < 4*GB + ctx->highmem &&
500 			    len <= ctx->highmem &&
501 			    gaddr + len <= 4*GB + ctx->highmem)
502 				return (ctx->baseaddr + gaddr);
503 		}
504 	}
505 
506 	return (NULL);
507 }
508 
509 vm_paddr_t
vm_rev_map_gpa(struct vmctx * ctx,void * addr)510 vm_rev_map_gpa(struct vmctx *ctx, void *addr)
511 {
512 	vm_paddr_t offaddr;
513 
514 	offaddr = (char *)addr - ctx->baseaddr;
515 
516 	if (ctx->lowmem > 0)
517 		if (offaddr <= ctx->lowmem)
518 			return (offaddr);
519 
520 	if (ctx->highmem > 0)
521 		if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem)
522 			return (offaddr);
523 
524 	return ((vm_paddr_t)-1);
525 }
526 
527 const char *
vm_get_name(struct vmctx * ctx)528 vm_get_name(struct vmctx *ctx)
529 {
530 
531 	return (ctx->name);
532 }
533 
534 size_t
vm_get_lowmem_size(struct vmctx * ctx)535 vm_get_lowmem_size(struct vmctx *ctx)
536 {
537 
538 	return (ctx->lowmem);
539 }
540 
541 size_t
vm_get_highmem_size(struct vmctx * ctx)542 vm_get_highmem_size(struct vmctx *ctx)
543 {
544 
545 	return (ctx->highmem);
546 }
547 
548 void *
vm_create_devmem(struct vmctx * ctx,int segid,const char * name,size_t len)549 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
550 {
551 	char pathname[MAXPATHLEN];
552 	size_t len2;
553 	char *base, *ptr;
554 	int fd, error, flags;
555 
556 	fd = -1;
557 	ptr = MAP_FAILED;
558 	if (name == NULL || strlen(name) == 0) {
559 		errno = EINVAL;
560 		goto done;
561 	}
562 
563 	error = vm_alloc_memseg(ctx, segid, len, name);
564 	if (error)
565 		goto done;
566 
567 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
568 	strlcat(pathname, ctx->name, sizeof(pathname));
569 	strlcat(pathname, ".", sizeof(pathname));
570 	strlcat(pathname, name, sizeof(pathname));
571 
572 	fd = open(pathname, O_RDWR);
573 	if (fd < 0)
574 		goto done;
575 
576 	/*
577 	 * Stake out a contiguous region covering the device memory and the
578 	 * adjoining guard regions.
579 	 */
580 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
581 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
582 	    0);
583 	if (base == MAP_FAILED)
584 		goto done;
585 
586 	flags = MAP_SHARED | MAP_FIXED;
587 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
588 		flags |= MAP_NOCORE;
589 
590 	/* mmap the devmem region in the host address space */
591 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
592 done:
593 	if (fd >= 0)
594 		close(fd);
595 	return (ptr);
596 }
597 
598 static int
vcpu_ioctl(struct vcpu * vcpu,u_long cmd,void * arg)599 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
600 {
601 	/*
602 	 * XXX: fragile, handle with care
603 	 * Assumes that the first field of the ioctl data
604 	 * is the vcpuid.
605 	 */
606 	*(int *)arg = vcpu->vcpuid;
607 	return (ioctl(vcpu->ctx->fd, cmd, arg));
608 }
609 
610 int
vm_set_desc(struct vcpu * vcpu,int reg,uint64_t base,uint32_t limit,uint32_t access)611 vm_set_desc(struct vcpu *vcpu, int reg,
612 	    uint64_t base, uint32_t limit, uint32_t access)
613 {
614 	int error;
615 	struct vm_seg_desc vmsegdesc;
616 
617 	bzero(&vmsegdesc, sizeof(vmsegdesc));
618 	vmsegdesc.regnum = reg;
619 	vmsegdesc.desc.base = base;
620 	vmsegdesc.desc.limit = limit;
621 	vmsegdesc.desc.access = access;
622 
623 	error = vcpu_ioctl(vcpu, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
624 	return (error);
625 }
626 
627 int
vm_get_desc(struct vcpu * vcpu,int reg,uint64_t * base,uint32_t * limit,uint32_t * access)628 vm_get_desc(struct vcpu *vcpu, int reg, uint64_t *base, uint32_t *limit,
629     uint32_t *access)
630 {
631 	int error;
632 	struct vm_seg_desc vmsegdesc;
633 
634 	bzero(&vmsegdesc, sizeof(vmsegdesc));
635 	vmsegdesc.regnum = reg;
636 
637 	error = vcpu_ioctl(vcpu, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
638 	if (error == 0) {
639 		*base = vmsegdesc.desc.base;
640 		*limit = vmsegdesc.desc.limit;
641 		*access = vmsegdesc.desc.access;
642 	}
643 	return (error);
644 }
645 
646 int
vm_get_seg_desc(struct vcpu * vcpu,int reg,struct seg_desc * seg_desc)647 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *seg_desc)
648 {
649 	int error;
650 
651 	error = vm_get_desc(vcpu, reg, &seg_desc->base, &seg_desc->limit,
652 	    &seg_desc->access);
653 	return (error);
654 }
655 
656 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)657 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
658 {
659 	int error;
660 	struct vm_register vmreg;
661 
662 	bzero(&vmreg, sizeof(vmreg));
663 	vmreg.regnum = reg;
664 	vmreg.regval = val;
665 
666 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
667 	return (error);
668 }
669 
670 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * ret_val)671 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
672 {
673 	int error;
674 	struct vm_register vmreg;
675 
676 	bzero(&vmreg, sizeof(vmreg));
677 	vmreg.regnum = reg;
678 
679 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
680 	*ret_val = vmreg.regval;
681 	return (error);
682 }
683 
684 int
vm_set_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)685 vm_set_register_set(struct vcpu *vcpu, unsigned int count,
686     const int *regnums, uint64_t *regvals)
687 {
688 	int error;
689 	struct vm_register_set vmregset;
690 
691 	bzero(&vmregset, sizeof(vmregset));
692 	vmregset.count = count;
693 	vmregset.regnums = regnums;
694 	vmregset.regvals = regvals;
695 
696 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
697 	return (error);
698 }
699 
700 int
vm_get_register_set(struct vcpu * vcpu,unsigned int count,const int * regnums,uint64_t * regvals)701 vm_get_register_set(struct vcpu *vcpu, unsigned int count,
702     const int *regnums, uint64_t *regvals)
703 {
704 	int error;
705 	struct vm_register_set vmregset;
706 
707 	bzero(&vmregset, sizeof(vmregset));
708 	vmregset.count = count;
709 	vmregset.regnums = regnums;
710 	vmregset.regvals = regvals;
711 
712 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
713 	return (error);
714 }
715 
716 int
vm_run(struct vcpu * vcpu,struct vm_run * vmrun)717 vm_run(struct vcpu *vcpu, struct vm_run *vmrun)
718 {
719 	return (vcpu_ioctl(vcpu, VM_RUN, vmrun));
720 }
721 
722 int
vm_suspend(struct vmctx * ctx,enum vm_suspend_how how)723 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
724 {
725 	struct vm_suspend vmsuspend;
726 
727 	bzero(&vmsuspend, sizeof(vmsuspend));
728 	vmsuspend.how = how;
729 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
730 }
731 
732 int
vm_reinit(struct vmctx * ctx)733 vm_reinit(struct vmctx *ctx)
734 {
735 
736 	return (ioctl(ctx->fd, VM_REINIT, 0));
737 }
738 
739 int
vm_inject_exception(struct vcpu * vcpu,int vector,int errcode_valid,uint32_t errcode,int restart_instruction)740 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
741     uint32_t errcode, int restart_instruction)
742 {
743 	struct vm_exception exc;
744 
745 	exc.vector = vector;
746 	exc.error_code = errcode;
747 	exc.error_code_valid = errcode_valid;
748 	exc.restart_instruction = restart_instruction;
749 
750 	return (vcpu_ioctl(vcpu, VM_INJECT_EXCEPTION, &exc));
751 }
752 
753 int
vm_apicid2vcpu(struct vmctx * ctx __unused,int apicid)754 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
755 {
756 	/*
757 	 * The apic id associated with the 'vcpu' has the same numerical value
758 	 * as the 'vcpu' itself.
759 	 */
760 	return (apicid);
761 }
762 
763 int
vm_lapic_irq(struct vcpu * vcpu,int vector)764 vm_lapic_irq(struct vcpu *vcpu, int vector)
765 {
766 	struct vm_lapic_irq vmirq;
767 
768 	bzero(&vmirq, sizeof(vmirq));
769 	vmirq.vector = vector;
770 
771 	return (vcpu_ioctl(vcpu, VM_LAPIC_IRQ, &vmirq));
772 }
773 
774 int
vm_lapic_local_irq(struct vcpu * vcpu,int vector)775 vm_lapic_local_irq(struct vcpu *vcpu, int vector)
776 {
777 	struct vm_lapic_irq vmirq;
778 
779 	bzero(&vmirq, sizeof(vmirq));
780 	vmirq.vector = vector;
781 
782 	return (vcpu_ioctl(vcpu, VM_LAPIC_LOCAL_IRQ, &vmirq));
783 }
784 
785 int
vm_lapic_msi(struct vmctx * ctx,uint64_t addr,uint64_t msg)786 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
787 {
788 	struct vm_lapic_msi vmmsi;
789 
790 	bzero(&vmmsi, sizeof(vmmsi));
791 	vmmsi.addr = addr;
792 	vmmsi.msg = msg;
793 
794 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
795 }
796 
797 int
vm_ioapic_assert_irq(struct vmctx * ctx,int irq)798 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
799 {
800 	struct vm_ioapic_irq ioapic_irq;
801 
802 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
803 	ioapic_irq.irq = irq;
804 
805 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
806 }
807 
808 int
vm_ioapic_deassert_irq(struct vmctx * ctx,int irq)809 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
810 {
811 	struct vm_ioapic_irq ioapic_irq;
812 
813 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
814 	ioapic_irq.irq = irq;
815 
816 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
817 }
818 
819 int
vm_ioapic_pulse_irq(struct vmctx * ctx,int irq)820 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
821 {
822 	struct vm_ioapic_irq ioapic_irq;
823 
824 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
825 	ioapic_irq.irq = irq;
826 
827 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
828 }
829 
830 int
vm_ioapic_pincount(struct vmctx * ctx,int * pincount)831 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
832 {
833 
834 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
835 }
836 
837 int
vm_readwrite_kernemu_device(struct vcpu * vcpu,vm_paddr_t gpa,bool write,int size,uint64_t * value)838 vm_readwrite_kernemu_device(struct vcpu *vcpu, vm_paddr_t gpa,
839     bool write, int size, uint64_t *value)
840 {
841 	struct vm_readwrite_kernemu_device irp = {
842 		.access_width = fls(size) - 1,
843 		.gpa = gpa,
844 		.value = write ? *value : ~0ul,
845 	};
846 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
847 	int rc;
848 
849 	rc = vcpu_ioctl(vcpu, cmd, &irp);
850 	if (rc == 0 && !write)
851 		*value = irp.value;
852 	return (rc);
853 }
854 
855 int
vm_isa_assert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)856 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
857 {
858 	struct vm_isa_irq isa_irq;
859 
860 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
861 	isa_irq.atpic_irq = atpic_irq;
862 	isa_irq.ioapic_irq = ioapic_irq;
863 
864 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
865 }
866 
867 int
vm_isa_deassert_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)868 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
869 {
870 	struct vm_isa_irq isa_irq;
871 
872 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
873 	isa_irq.atpic_irq = atpic_irq;
874 	isa_irq.ioapic_irq = ioapic_irq;
875 
876 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
877 }
878 
879 int
vm_isa_pulse_irq(struct vmctx * ctx,int atpic_irq,int ioapic_irq)880 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
881 {
882 	struct vm_isa_irq isa_irq;
883 
884 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
885 	isa_irq.atpic_irq = atpic_irq;
886 	isa_irq.ioapic_irq = ioapic_irq;
887 
888 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
889 }
890 
891 int
vm_isa_set_irq_trigger(struct vmctx * ctx,int atpic_irq,enum vm_intr_trigger trigger)892 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
893     enum vm_intr_trigger trigger)
894 {
895 	struct vm_isa_irq_trigger isa_irq_trigger;
896 
897 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
898 	isa_irq_trigger.atpic_irq = atpic_irq;
899 	isa_irq_trigger.trigger = trigger;
900 
901 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
902 }
903 
904 int
vm_inject_nmi(struct vcpu * vcpu)905 vm_inject_nmi(struct vcpu *vcpu)
906 {
907 	struct vm_nmi vmnmi;
908 
909 	bzero(&vmnmi, sizeof(vmnmi));
910 
911 	return (vcpu_ioctl(vcpu, VM_INJECT_NMI, &vmnmi));
912 }
913 
914 static const char *capstrmap[] = {
915 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
916 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
917 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
918 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
919 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
920 	[VM_CAP_BPT_EXIT] = "bpt_exit",
921 	[VM_CAP_RDPID] = "rdpid",
922 	[VM_CAP_RDTSCP] = "rdtscp",
923 	[VM_CAP_IPI_EXIT] = "ipi_exit",
924 	[VM_CAP_MASK_HWINTR] = "mask_hwintr",
925 	[VM_CAP_RFLAGS_TF] = "rflags_tf",
926 };
927 
928 int
vm_capability_name2type(const char * capname)929 vm_capability_name2type(const char *capname)
930 {
931 	int i;
932 
933 	for (i = 0; i < (int)nitems(capstrmap); i++) {
934 		if (strcmp(capstrmap[i], capname) == 0)
935 			return (i);
936 	}
937 
938 	return (-1);
939 }
940 
941 const char *
vm_capability_type2name(int type)942 vm_capability_type2name(int type)
943 {
944 	if (type >= 0 && type < (int)nitems(capstrmap))
945 		return (capstrmap[type]);
946 
947 	return (NULL);
948 }
949 
950 int
vm_get_capability(struct vcpu * vcpu,enum vm_cap_type cap,int * retval)951 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval)
952 {
953 	int error;
954 	struct vm_capability vmcap;
955 
956 	bzero(&vmcap, sizeof(vmcap));
957 	vmcap.captype = cap;
958 
959 	error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
960 	*retval = vmcap.capval;
961 	return (error);
962 }
963 
964 int
vm_set_capability(struct vcpu * vcpu,enum vm_cap_type cap,int val)965 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
966 {
967 	struct vm_capability vmcap;
968 
969 	bzero(&vmcap, sizeof(vmcap));
970 	vmcap.captype = cap;
971 	vmcap.capval = val;
972 
973 	return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
974 }
975 
976 int
vm_assign_pptdev(struct vmctx * ctx,int bus,int slot,int func)977 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
978 {
979 	struct vm_pptdev pptdev;
980 
981 	bzero(&pptdev, sizeof(pptdev));
982 	pptdev.bus = bus;
983 	pptdev.slot = slot;
984 	pptdev.func = func;
985 
986 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
987 }
988 
989 int
vm_unassign_pptdev(struct vmctx * ctx,int bus,int slot,int func)990 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
991 {
992 	struct vm_pptdev pptdev;
993 
994 	bzero(&pptdev, sizeof(pptdev));
995 	pptdev.bus = bus;
996 	pptdev.slot = slot;
997 	pptdev.func = func;
998 
999 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
1000 }
1001 
1002 int
vm_map_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len,vm_paddr_t hpa)1003 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1004 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1005 {
1006 	struct vm_pptdev_mmio pptmmio;
1007 
1008 	bzero(&pptmmio, sizeof(pptmmio));
1009 	pptmmio.bus = bus;
1010 	pptmmio.slot = slot;
1011 	pptmmio.func = func;
1012 	pptmmio.gpa = gpa;
1013 	pptmmio.len = len;
1014 	pptmmio.hpa = hpa;
1015 
1016 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1017 }
1018 
1019 int
vm_unmap_pptdev_mmio(struct vmctx * ctx,int bus,int slot,int func,vm_paddr_t gpa,size_t len)1020 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1021 		     vm_paddr_t gpa, size_t len)
1022 {
1023 	struct vm_pptdev_mmio pptmmio;
1024 
1025 	bzero(&pptmmio, sizeof(pptmmio));
1026 	pptmmio.bus = bus;
1027 	pptmmio.slot = slot;
1028 	pptmmio.func = func;
1029 	pptmmio.gpa = gpa;
1030 	pptmmio.len = len;
1031 
1032 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1033 }
1034 
1035 int
vm_setup_pptdev_msi(struct vmctx * ctx,int bus,int slot,int func,uint64_t addr,uint64_t msg,int numvec)1036 vm_setup_pptdev_msi(struct vmctx *ctx, int bus, int slot, int func,
1037     uint64_t addr, uint64_t msg, int numvec)
1038 {
1039 	struct vm_pptdev_msi pptmsi;
1040 
1041 	bzero(&pptmsi, sizeof(pptmsi));
1042 	pptmsi.bus = bus;
1043 	pptmsi.slot = slot;
1044 	pptmsi.func = func;
1045 	pptmsi.msg = msg;
1046 	pptmsi.addr = addr;
1047 	pptmsi.numvec = numvec;
1048 
1049 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1050 }
1051 
1052 int
vm_setup_pptdev_msix(struct vmctx * ctx,int bus,int slot,int func,int idx,uint64_t addr,uint64_t msg,uint32_t vector_control)1053 vm_setup_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func,
1054     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1055 {
1056 	struct vm_pptdev_msix pptmsix;
1057 
1058 	bzero(&pptmsix, sizeof(pptmsix));
1059 	pptmsix.bus = bus;
1060 	pptmsix.slot = slot;
1061 	pptmsix.func = func;
1062 	pptmsix.idx = idx;
1063 	pptmsix.msg = msg;
1064 	pptmsix.addr = addr;
1065 	pptmsix.vector_control = vector_control;
1066 
1067 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1068 }
1069 
1070 int
vm_disable_pptdev_msix(struct vmctx * ctx,int bus,int slot,int func)1071 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1072 {
1073 	struct vm_pptdev ppt;
1074 
1075 	bzero(&ppt, sizeof(ppt));
1076 	ppt.bus = bus;
1077 	ppt.slot = slot;
1078 	ppt.func = func;
1079 
1080 	return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1081 }
1082 
1083 uint64_t *
vm_get_stats(struct vcpu * vcpu,struct timeval * ret_tv,int * ret_entries)1084 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
1085 	     int *ret_entries)
1086 {
1087 	static _Thread_local uint64_t *stats_buf;
1088 	static _Thread_local u_int stats_count;
1089 	uint64_t *new_stats;
1090 	struct vm_stats vmstats;
1091 	u_int count, index;
1092 	bool have_stats;
1093 
1094 	have_stats = false;
1095 	count = 0;
1096 	for (index = 0;; index += nitems(vmstats.statbuf)) {
1097 		vmstats.index = index;
1098 		if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0)
1099 			break;
1100 		if (stats_count < index + vmstats.num_entries) {
1101 			new_stats = realloc(stats_buf,
1102 			    (index + vmstats.num_entries) * sizeof(uint64_t));
1103 			if (new_stats == NULL) {
1104 				errno = ENOMEM;
1105 				return (NULL);
1106 			}
1107 			stats_count = index + vmstats.num_entries;
1108 			stats_buf = new_stats;
1109 		}
1110 		memcpy(stats_buf + index, vmstats.statbuf,
1111 		    vmstats.num_entries * sizeof(uint64_t));
1112 		count += vmstats.num_entries;
1113 		have_stats = true;
1114 
1115 		if (vmstats.num_entries != nitems(vmstats.statbuf))
1116 			break;
1117 	}
1118 	if (have_stats) {
1119 		if (ret_entries)
1120 			*ret_entries = count;
1121 		if (ret_tv)
1122 			*ret_tv = vmstats.tv;
1123 		return (stats_buf);
1124 	} else
1125 		return (NULL);
1126 }
1127 
1128 const char *
vm_get_stat_desc(struct vmctx * ctx,int index)1129 vm_get_stat_desc(struct vmctx *ctx, int index)
1130 {
1131 	static struct vm_stat_desc statdesc;
1132 
1133 	statdesc.index = index;
1134 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1135 		return (statdesc.desc);
1136 	else
1137 		return (NULL);
1138 }
1139 
1140 int
vm_get_x2apic_state(struct vcpu * vcpu,enum x2apic_state * state)1141 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
1142 {
1143 	int error;
1144 	struct vm_x2apic x2apic;
1145 
1146 	bzero(&x2apic, sizeof(x2apic));
1147 
1148 	error = vcpu_ioctl(vcpu, VM_GET_X2APIC_STATE, &x2apic);
1149 	*state = x2apic.state;
1150 	return (error);
1151 }
1152 
1153 int
vm_set_x2apic_state(struct vcpu * vcpu,enum x2apic_state state)1154 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
1155 {
1156 	int error;
1157 	struct vm_x2apic x2apic;
1158 
1159 	bzero(&x2apic, sizeof(x2apic));
1160 	x2apic.state = state;
1161 
1162 	error = vcpu_ioctl(vcpu, VM_SET_X2APIC_STATE, &x2apic);
1163 
1164 	return (error);
1165 }
1166 
1167 /*
1168  * From Intel Vol 3a:
1169  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1170  */
1171 int
vcpu_reset(struct vcpu * vcpu)1172 vcpu_reset(struct vcpu *vcpu)
1173 {
1174 	int error;
1175 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1176 	uint32_t desc_access, desc_limit;
1177 	uint16_t sel;
1178 
1179 	zero = 0;
1180 
1181 	rflags = 0x2;
1182 	error = vm_set_register(vcpu, VM_REG_GUEST_RFLAGS, rflags);
1183 	if (error)
1184 		goto done;
1185 
1186 	rip = 0xfff0;
1187 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1188 		goto done;
1189 
1190 	/*
1191 	 * According to Intels Software Developer Manual CR0 should be
1192 	 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some
1193 	 * guests like Windows.
1194 	 */
1195 	cr0 = CR0_NE;
1196 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1197 		goto done;
1198 
1199 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR2, zero)) != 0)
1200 		goto done;
1201 
1202 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1203 		goto done;
1204 
1205 	cr4 = 0;
1206 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1207 		goto done;
1208 
1209 	/*
1210 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1211 	 */
1212 	desc_base = 0xffff0000;
1213 	desc_limit = 0xffff;
1214 	desc_access = 0x0093;
1215 	error = vm_set_desc(vcpu, VM_REG_GUEST_CS,
1216 			    desc_base, desc_limit, desc_access);
1217 	if (error)
1218 		goto done;
1219 
1220 	sel = 0xf000;
1221 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CS, sel)) != 0)
1222 		goto done;
1223 
1224 	/*
1225 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1226 	 */
1227 	desc_base = 0;
1228 	desc_limit = 0xffff;
1229 	desc_access = 0x0093;
1230 	error = vm_set_desc(vcpu, VM_REG_GUEST_SS,
1231 			    desc_base, desc_limit, desc_access);
1232 	if (error)
1233 		goto done;
1234 
1235 	error = vm_set_desc(vcpu, VM_REG_GUEST_DS,
1236 			    desc_base, desc_limit, desc_access);
1237 	if (error)
1238 		goto done;
1239 
1240 	error = vm_set_desc(vcpu, VM_REG_GUEST_ES,
1241 			    desc_base, desc_limit, desc_access);
1242 	if (error)
1243 		goto done;
1244 
1245 	error = vm_set_desc(vcpu, VM_REG_GUEST_FS,
1246 			    desc_base, desc_limit, desc_access);
1247 	if (error)
1248 		goto done;
1249 
1250 	error = vm_set_desc(vcpu, VM_REG_GUEST_GS,
1251 			    desc_base, desc_limit, desc_access);
1252 	if (error)
1253 		goto done;
1254 
1255 	sel = 0;
1256 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_SS, sel)) != 0)
1257 		goto done;
1258 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DS, sel)) != 0)
1259 		goto done;
1260 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_ES, sel)) != 0)
1261 		goto done;
1262 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_FS, sel)) != 0)
1263 		goto done;
1264 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_GS, sel)) != 0)
1265 		goto done;
1266 
1267 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_EFER, zero)) != 0)
1268 		goto done;
1269 
1270 	/* General purpose registers */
1271 	rdx = 0xf00;
1272 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1273 		goto done;
1274 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1275 		goto done;
1276 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1277 		goto done;
1278 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1279 		goto done;
1280 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1281 		goto done;
1282 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1283 		goto done;
1284 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1285 		goto done;
1286 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1287 		goto done;
1288 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R8, zero)) != 0)
1289 		goto done;
1290 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R9, zero)) != 0)
1291 		goto done;
1292 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R10, zero)) != 0)
1293 		goto done;
1294 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R11, zero)) != 0)
1295 		goto done;
1296 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R12, zero)) != 0)
1297 		goto done;
1298 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R13, zero)) != 0)
1299 		goto done;
1300 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R14, zero)) != 0)
1301 		goto done;
1302 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R15, zero)) != 0)
1303 		goto done;
1304 
1305 	/* GDTR, IDTR */
1306 	desc_base = 0;
1307 	desc_limit = 0xffff;
1308 	desc_access = 0;
1309 	error = vm_set_desc(vcpu, VM_REG_GUEST_GDTR,
1310 			    desc_base, desc_limit, desc_access);
1311 	if (error != 0)
1312 		goto done;
1313 
1314 	error = vm_set_desc(vcpu, VM_REG_GUEST_IDTR,
1315 			    desc_base, desc_limit, desc_access);
1316 	if (error != 0)
1317 		goto done;
1318 
1319 	/* TR */
1320 	desc_base = 0;
1321 	desc_limit = 0xffff;
1322 	desc_access = 0x0000008b;
1323 	error = vm_set_desc(vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1324 	if (error)
1325 		goto done;
1326 
1327 	sel = 0;
1328 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_TR, sel)) != 0)
1329 		goto done;
1330 
1331 	/* LDTR */
1332 	desc_base = 0;
1333 	desc_limit = 0xffff;
1334 	desc_access = 0x00000082;
1335 	error = vm_set_desc(vcpu, VM_REG_GUEST_LDTR, desc_base,
1336 			    desc_limit, desc_access);
1337 	if (error)
1338 		goto done;
1339 
1340 	sel = 0;
1341 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1342 		goto done;
1343 
1344 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR6,
1345 		 0xffff0ff0)) != 0)
1346 		goto done;
1347 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR7, 0x400)) !=
1348 	    0)
1349 		goto done;
1350 
1351 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW,
1352 		 zero)) != 0)
1353 		goto done;
1354 
1355 	error = 0;
1356 done:
1357 	return (error);
1358 }
1359 
1360 int
vm_get_gpa_pmap(struct vmctx * ctx,uint64_t gpa,uint64_t * pte,int * num)1361 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1362 {
1363 	int error, i;
1364 	struct vm_gpa_pte gpapte;
1365 
1366 	bzero(&gpapte, sizeof(gpapte));
1367 	gpapte.gpa = gpa;
1368 
1369 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1370 
1371 	if (error == 0) {
1372 		*num = gpapte.ptenum;
1373 		for (i = 0; i < gpapte.ptenum; i++)
1374 			pte[i] = gpapte.pte[i];
1375 	}
1376 
1377 	return (error);
1378 }
1379 
1380 int
vm_get_hpet_capabilities(struct vmctx * ctx,uint32_t * capabilities)1381 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1382 {
1383 	int error;
1384 	struct vm_hpet_cap cap;
1385 
1386 	bzero(&cap, sizeof(struct vm_hpet_cap));
1387 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1388 	if (capabilities != NULL)
1389 		*capabilities = cap.capabilities;
1390 	return (error);
1391 }
1392 
1393 int
vm_gla2gpa(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1394 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
1395     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1396 {
1397 	struct vm_gla2gpa gg;
1398 	int error;
1399 
1400 	bzero(&gg, sizeof(struct vm_gla2gpa));
1401 	gg.prot = prot;
1402 	gg.gla = gla;
1403 	gg.paging = *paging;
1404 
1405 	error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
1406 	if (error == 0) {
1407 		*fault = gg.fault;
1408 		*gpa = gg.gpa;
1409 	}
1410 	return (error);
1411 }
1412 
1413 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * fault)1414 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
1415     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1416 {
1417 	struct vm_gla2gpa gg;
1418 	int error;
1419 
1420 	bzero(&gg, sizeof(struct vm_gla2gpa));
1421 	gg.prot = prot;
1422 	gg.gla = gla;
1423 	gg.paging = *paging;
1424 
1425 	error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
1426 	if (error == 0) {
1427 		*fault = gg.fault;
1428 		*gpa = gg.gpa;
1429 	}
1430 	return (error);
1431 }
1432 
1433 #ifndef min
1434 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1435 #endif
1436 
1437 int
vm_copy_setup(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,size_t len,int prot,struct iovec * iov,int iovcnt,int * fault)1438 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
1439     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1440     int *fault)
1441 {
1442 	void *va;
1443 	uint64_t gpa, off;
1444 	int error, i, n;
1445 
1446 	for (i = 0; i < iovcnt; i++) {
1447 		iov[i].iov_base = 0;
1448 		iov[i].iov_len = 0;
1449 	}
1450 
1451 	while (len) {
1452 		assert(iovcnt > 0);
1453 		error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
1454 		if (error || *fault)
1455 			return (error);
1456 
1457 		off = gpa & PAGE_MASK;
1458 		n = MIN(len, PAGE_SIZE - off);
1459 
1460 		va = vm_map_gpa(vcpu->ctx, gpa, n);
1461 		if (va == NULL)
1462 			return (EFAULT);
1463 
1464 		iov->iov_base = va;
1465 		iov->iov_len = n;
1466 		iov++;
1467 		iovcnt--;
1468 
1469 		gla += n;
1470 		len -= n;
1471 	}
1472 	return (0);
1473 }
1474 
1475 void
vm_copy_teardown(struct iovec * iov __unused,int iovcnt __unused)1476 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
1477 {
1478 	/*
1479 	 * Intentionally empty.  This is used by the instruction
1480 	 * emulation code shared with the kernel.  The in-kernel
1481 	 * version of this is non-empty.
1482 	 */
1483 }
1484 
1485 void
vm_copyin(struct iovec * iov,void * vp,size_t len)1486 vm_copyin(struct iovec *iov, void *vp, size_t len)
1487 {
1488 	const char *src;
1489 	char *dst;
1490 	size_t n;
1491 
1492 	dst = vp;
1493 	while (len) {
1494 		assert(iov->iov_len);
1495 		n = min(len, iov->iov_len);
1496 		src = iov->iov_base;
1497 		bcopy(src, dst, n);
1498 
1499 		iov++;
1500 		dst += n;
1501 		len -= n;
1502 	}
1503 }
1504 
1505 void
vm_copyout(const void * vp,struct iovec * iov,size_t len)1506 vm_copyout(const void *vp, struct iovec *iov, size_t len)
1507 {
1508 	const char *src;
1509 	char *dst;
1510 	size_t n;
1511 
1512 	src = vp;
1513 	while (len) {
1514 		assert(iov->iov_len);
1515 		n = min(len, iov->iov_len);
1516 		dst = iov->iov_base;
1517 		bcopy(src, dst, n);
1518 
1519 		iov++;
1520 		src += n;
1521 		len -= n;
1522 	}
1523 }
1524 
1525 static int
vm_get_cpus(struct vmctx * ctx,int which,cpuset_t * cpus)1526 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1527 {
1528 	struct vm_cpuset vm_cpuset;
1529 	int error;
1530 
1531 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1532 	vm_cpuset.which = which;
1533 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1534 	vm_cpuset.cpus = cpus;
1535 
1536 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1537 	return (error);
1538 }
1539 
1540 int
vm_active_cpus(struct vmctx * ctx,cpuset_t * cpus)1541 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1542 {
1543 
1544 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1545 }
1546 
1547 int
vm_suspended_cpus(struct vmctx * ctx,cpuset_t * cpus)1548 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1549 {
1550 
1551 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1552 }
1553 
1554 int
vm_debug_cpus(struct vmctx * ctx,cpuset_t * cpus)1555 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1556 {
1557 
1558 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1559 }
1560 
1561 int
vm_activate_cpu(struct vcpu * vcpu)1562 vm_activate_cpu(struct vcpu *vcpu)
1563 {
1564 	struct vm_activate_cpu ac;
1565 	int error;
1566 
1567 	bzero(&ac, sizeof(struct vm_activate_cpu));
1568 	error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
1569 	return (error);
1570 }
1571 
1572 int
vm_suspend_all_cpus(struct vmctx * ctx)1573 vm_suspend_all_cpus(struct vmctx *ctx)
1574 {
1575 	struct vm_activate_cpu ac;
1576 	int error;
1577 
1578 	bzero(&ac, sizeof(struct vm_activate_cpu));
1579 	ac.vcpuid = -1;
1580 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1581 	return (error);
1582 }
1583 
1584 int
vm_suspend_cpu(struct vcpu * vcpu)1585 vm_suspend_cpu(struct vcpu *vcpu)
1586 {
1587 	struct vm_activate_cpu ac;
1588 	int error;
1589 
1590 	bzero(&ac, sizeof(struct vm_activate_cpu));
1591 	error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
1592 	return (error);
1593 }
1594 
1595 int
vm_resume_cpu(struct vcpu * vcpu)1596 vm_resume_cpu(struct vcpu *vcpu)
1597 {
1598 	struct vm_activate_cpu ac;
1599 	int error;
1600 
1601 	bzero(&ac, sizeof(struct vm_activate_cpu));
1602 	error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
1603 	return (error);
1604 }
1605 
1606 int
vm_resume_all_cpus(struct vmctx * ctx)1607 vm_resume_all_cpus(struct vmctx *ctx)
1608 {
1609 	struct vm_activate_cpu ac;
1610 	int error;
1611 
1612 	bzero(&ac, sizeof(struct vm_activate_cpu));
1613 	ac.vcpuid = -1;
1614 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1615 	return (error);
1616 }
1617 
1618 int
vm_get_intinfo(struct vcpu * vcpu,uint64_t * info1,uint64_t * info2)1619 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1620 {
1621 	struct vm_intinfo vmii;
1622 	int error;
1623 
1624 	bzero(&vmii, sizeof(struct vm_intinfo));
1625 	error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
1626 	if (error == 0) {
1627 		*info1 = vmii.info1;
1628 		*info2 = vmii.info2;
1629 	}
1630 	return (error);
1631 }
1632 
1633 int
vm_set_intinfo(struct vcpu * vcpu,uint64_t info1)1634 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
1635 {
1636 	struct vm_intinfo vmii;
1637 	int error;
1638 
1639 	bzero(&vmii, sizeof(struct vm_intinfo));
1640 	vmii.info1 = info1;
1641 	error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
1642 	return (error);
1643 }
1644 
1645 int
vm_rtc_write(struct vmctx * ctx,int offset,uint8_t value)1646 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1647 {
1648 	struct vm_rtc_data rtcdata;
1649 	int error;
1650 
1651 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1652 	rtcdata.offset = offset;
1653 	rtcdata.value = value;
1654 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1655 	return (error);
1656 }
1657 
1658 int
vm_rtc_read(struct vmctx * ctx,int offset,uint8_t * retval)1659 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1660 {
1661 	struct vm_rtc_data rtcdata;
1662 	int error;
1663 
1664 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1665 	rtcdata.offset = offset;
1666 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1667 	if (error == 0)
1668 		*retval = rtcdata.value;
1669 	return (error);
1670 }
1671 
1672 int
vm_rtc_settime(struct vmctx * ctx,time_t secs)1673 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1674 {
1675 	struct vm_rtc_time rtctime;
1676 	int error;
1677 
1678 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1679 	rtctime.secs = secs;
1680 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1681 	return (error);
1682 }
1683 
1684 int
vm_rtc_gettime(struct vmctx * ctx,time_t * secs)1685 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1686 {
1687 	struct vm_rtc_time rtctime;
1688 	int error;
1689 
1690 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1691 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1692 	if (error == 0)
1693 		*secs = rtctime.secs;
1694 	return (error);
1695 }
1696 
1697 int
vm_restart_instruction(struct vcpu * vcpu)1698 vm_restart_instruction(struct vcpu *vcpu)
1699 {
1700 	int arg;
1701 
1702 	return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg));
1703 }
1704 
1705 int
vm_snapshot_req(struct vmctx * ctx,struct vm_snapshot_meta * meta)1706 vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta)
1707 {
1708 
1709 	if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
1710 #ifdef SNAPSHOT_DEBUG
1711 		fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
1712 		    __func__, meta->dev_name, errno);
1713 #endif
1714 		return (-1);
1715 	}
1716 	return (0);
1717 }
1718 
1719 int
vm_restore_time(struct vmctx * ctx)1720 vm_restore_time(struct vmctx *ctx)
1721 {
1722 	int dummy;
1723 
1724 	dummy = 0;
1725 	return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
1726 }
1727 
1728 int
vm_set_topology(struct vmctx * ctx,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)1729 vm_set_topology(struct vmctx *ctx,
1730     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1731 {
1732 	struct vm_cpu_topology topology;
1733 
1734 	bzero(&topology, sizeof (struct vm_cpu_topology));
1735 	topology.sockets = sockets;
1736 	topology.cores = cores;
1737 	topology.threads = threads;
1738 	topology.maxcpus = maxcpus;
1739 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1740 }
1741 
1742 int
vm_get_topology(struct vmctx * ctx,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)1743 vm_get_topology(struct vmctx *ctx,
1744     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1745 {
1746 	struct vm_cpu_topology topology;
1747 	int error;
1748 
1749 	bzero(&topology, sizeof (struct vm_cpu_topology));
1750 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1751 	if (error == 0) {
1752 		*sockets = topology.sockets;
1753 		*cores = topology.cores;
1754 		*threads = topology.threads;
1755 		*maxcpus = topology.maxcpus;
1756 	}
1757 	return (error);
1758 }
1759 
1760 /* Keep in sync with machine/vmm_dev.h. */
1761 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1762     VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1763     VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
1764     VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1765     VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1766     VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1767     VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1768     VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1769     VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1770     VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1771     VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1772     VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1773     VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
1774     VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1775     VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1776     VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1777     VM_GLA2GPA_NOFAULT,
1778     VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1779     VM_SET_INTINFO, VM_GET_INTINFO,
1780     VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1781     VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY,
1782     VM_SNAPSHOT_REQ, VM_RESTORE_TIME
1783 };
1784 
1785 int
vm_limit_rights(struct vmctx * ctx)1786 vm_limit_rights(struct vmctx *ctx)
1787 {
1788 	cap_rights_t rights;
1789 	size_t ncmds;
1790 
1791 	cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
1792 	if (caph_rights_limit(ctx->fd, &rights) != 0)
1793 		return (-1);
1794 	ncmds = nitems(vm_ioctl_cmds);
1795 	if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, ncmds) != 0)
1796 		return (-1);
1797 	return (0);
1798 }
1799 
1800 /*
1801  * Avoid using in new code.  Operations on the fd should be wrapped here so that
1802  * capability rights can be kept in sync.
1803  */
1804 int
vm_get_device_fd(struct vmctx * ctx)1805 vm_get_device_fd(struct vmctx *ctx)
1806 {
1807 
1808 	return (ctx->fd);
1809 }
1810 
1811 /* Legacy interface, do not use. */
1812 const cap_ioctl_t *
vm_get_ioctls(size_t * len)1813 vm_get_ioctls(size_t *len)
1814 {
1815 	cap_ioctl_t *cmds;
1816 
1817 	if (len == NULL) {
1818 		cmds = malloc(sizeof(vm_ioctl_cmds));
1819 		if (cmds == NULL)
1820 			return (NULL);
1821 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1822 		return (cmds);
1823 	}
1824 
1825 	*len = nitems(vm_ioctl_cmds);
1826 	return (NULL);
1827 }
1828