xref: /freebsd-14.2/lib/libc/regex/regcomp.c (revision 4f4860c9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  *
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/types.h>
47 #include <stdio.h>
48 #include <string.h>
49 #include <ctype.h>
50 #include <limits.h>
51 #include <stdlib.h>
52 #include <regex.h>
53 #include <stdbool.h>
54 #include <wchar.h>
55 #include <wctype.h>
56 
57 #ifndef LIBREGEX
58 #include "collate.h"
59 #endif
60 
61 #include "utils.h"
62 #include "regex2.h"
63 
64 #include "cname.h"
65 
66 /*
67  * Branching context, used to keep track of branch state for all of the branch-
68  * aware functions. In addition to keeping track of branch positions for the
69  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
70  * detection of whether ^ is acting as an anchor or being used erroneously and
71  * also for whether we're in a sub-expression or not.
72  */
73 struct branchc {
74 	sopno start;
75 	sopno back;
76 	sopno fwd;
77 
78 	int nbranch;
79 	int nchain;
80 	bool outer;
81 	bool terminate;
82 };
83 
84 /*
85  * parse structure, passed up and down to avoid global variables and
86  * other clumsinesses
87  */
88 struct parse {
89 	const char *next;	/* next character in RE */
90 	const char *end;	/* end of string (-> NUL normally) */
91 	int error;		/* has an error been seen? */
92 	int gnuext;
93 	sop *strip;		/* malloced strip */
94 	sopno ssize;		/* malloced strip size (allocated) */
95 	sopno slen;		/* malloced strip length (used) */
96 	int ncsalloc;		/* number of csets allocated */
97 	struct re_guts *g;
98 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
99 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
100 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
101 	bool allowbranch;	/* can this expression branch? */
102 	bool bre;		/* convenience; is this a BRE? */
103 	int pflags;		/* other parsing flags -- legacy escapes? */
104 	bool (*parse_expr)(struct parse *, struct branchc *);
105 	void (*pre_parse)(struct parse *, struct branchc *);
106 	void (*post_parse)(struct parse *, struct branchc *);
107 };
108 
109 #define PFLAG_LEGACY_ESC	0x00000001
110 
111 /* ========= begin header generated by ./mkh ========= */
112 #ifdef __cplusplus
113 extern "C" {
114 #endif
115 
116 /* === regcomp.c === */
117 static bool p_ere_exp(struct parse *p, struct branchc *bc);
118 static void p_str(struct parse *p);
119 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
120 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
121 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
122 static bool p_branch_empty(struct parse *p, struct branchc *bc);
123 static bool p_branch_do(struct parse *p, struct branchc *bc);
124 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
125 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
126 static void p_re(struct parse *p, int end1, int end2);
127 static bool p_simp_re(struct parse *p, struct branchc *bc);
128 static int p_count(struct parse *p);
129 static void p_bracket(struct parse *p);
130 static int p_range_cmp(wchar_t c1, wchar_t c2);
131 static void p_b_term(struct parse *p, cset *cs);
132 static int p_b_pseudoclass(struct parse *p, char c);
133 static void p_b_cclass(struct parse *p, cset *cs);
134 static void p_b_cclass_named(struct parse *p, cset *cs, const char[]);
135 static void p_b_eclass(struct parse *p, cset *cs);
136 static wint_t p_b_symbol(struct parse *p);
137 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
138 static bool may_escape(struct parse *p, const wint_t ch);
139 static wint_t othercase(wint_t ch);
140 static void bothcases(struct parse *p, wint_t ch);
141 static void ordinary(struct parse *p, wint_t ch);
142 static void nonnewline(struct parse *p);
143 static void repeat(struct parse *p, sopno start, int from, int to);
144 static int seterr(struct parse *p, int e);
145 static cset *allocset(struct parse *p);
146 static void freeset(struct parse *p, cset *cs);
147 static void CHadd(struct parse *p, cset *cs, wint_t ch);
148 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
149 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
150 static wint_t singleton(cset *cs);
151 static sopno dupl(struct parse *p, sopno start, sopno finish);
152 static void doemit(struct parse *p, sop op, size_t opnd);
153 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
154 static void dofwd(struct parse *p, sopno pos, sop value);
155 static int enlarge(struct parse *p, sopno size);
156 static void stripsnug(struct parse *p, struct re_guts *g);
157 static void findmust(struct parse *p, struct re_guts *g);
158 static int altoffset(sop *scan, int offset);
159 static void computejumps(struct parse *p, struct re_guts *g);
160 static void computematchjumps(struct parse *p, struct re_guts *g);
161 static sopno pluscount(struct parse *p, struct re_guts *g);
162 static wint_t wgetnext(struct parse *p);
163 
164 #ifdef __cplusplus
165 }
166 #endif
167 /* ========= end header generated by ./mkh ========= */
168 
169 static char nuls[10];		/* place to point scanner in event of error */
170 
171 /*
172  * macros for use with parse structure
173  * BEWARE:  these know that the parse structure is named `p' !!!
174  */
175 #define	PEEK()	(*p->next)
176 #define	PEEK2()	(*(p->next+1))
177 #define	MORE()	(p->end - p->next > 0)
178 #define	MORE2()	(p->end - p->next > 1)
179 #define	SEE(c)	(MORE() && PEEK() == (c))
180 #define	SEETWO(a, b)	(MORE2() && PEEK() == (a) && PEEK2() == (b))
181 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
182 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
183 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
184 #define	EATSPEC(a)	(p->bre ? EATTWO('\\', a) : EAT(a))
185 #define	NEXT()	(p->next++)
186 #define	NEXT2()	(p->next += 2)
187 #define	NEXTn(n)	(p->next += (n))
188 #define	GETNEXT()	(*p->next++)
189 #define	WGETNEXT()	wgetnext(p)
190 #define	SETERROR(e)	seterr(p, (e))
191 #define	REQUIRE(co, e)	((co) || SETERROR(e))
192 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
193 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
194 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
195 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
196 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
197 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
198 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
199 #define	HERE()		(p->slen)
200 #define	THERE()		(p->slen - 1)
201 #define	THERETHERE()	(p->slen - 2)
202 #define	DROP(n)	(p->slen -= (n))
203 
204 /* Macro used by computejump()/computematchjump() */
205 #define MIN(a,b)	((a)<(b)?(a):(b))
206 
207 static int				/* 0 success, otherwise REG_something */
regcomp_internal(regex_t * __restrict preg,const char * __restrict pattern,int cflags,int pflags)208 regcomp_internal(regex_t * __restrict preg,
209 	const char * __restrict pattern,
210 	int cflags, int pflags)
211 {
212 	struct parse pa;
213 	struct re_guts *g;
214 	struct parse *p = &pa;
215 	int i;
216 	size_t len;
217 	size_t maxlen;
218 #ifdef REDEBUG
219 #	define	GOODFLAGS(f)	(f)
220 #else
221 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
222 #endif
223 
224 	cflags = GOODFLAGS(cflags);
225 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
226 		return(REG_INVARG);
227 
228 	if (cflags&REG_PEND) {
229 		if (preg->re_endp < pattern)
230 			return(REG_INVARG);
231 		len = preg->re_endp - pattern;
232 	} else
233 		len = strlen(pattern);
234 
235 	/* do the mallocs early so failure handling is easy */
236 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
237 	if (g == NULL)
238 		return(REG_ESPACE);
239 	/*
240 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
241 	 * extension.  Also avoid any signed overflow in case of conversion
242 	 * so make the real limit based on a 31-bit overflow.
243 	 *
244 	 * Likely not applicable on 64-bit systems but handle the case
245 	 * generically (who are we to stop people from using ~715MB+
246 	 * patterns?).
247 	 */
248 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
249 	if (len >= maxlen) {
250 		free((char *)g);
251 		return(REG_ESPACE);
252 	}
253 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
254 	assert(p->ssize >= len);
255 
256 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
257 	p->slen = 0;
258 	if (p->strip == NULL) {
259 		free((char *)g);
260 		return(REG_ESPACE);
261 	}
262 
263 	/* set things up */
264 	p->g = g;
265 	p->next = pattern;	/* convenience; we do not modify it */
266 	p->end = p->next + len;
267 	p->error = 0;
268 	p->ncsalloc = 0;
269 	p->pflags = pflags;
270 	for (i = 0; i < NPAREN; i++) {
271 		p->pbegin[i] = 0;
272 		p->pend[i] = 0;
273 	}
274 #ifdef LIBREGEX
275 	if (cflags&REG_POSIX) {
276 		p->gnuext = false;
277 		p->allowbranch = (cflags & REG_EXTENDED) != 0;
278 	} else
279 		p->gnuext = p->allowbranch = true;
280 #else
281 	p->gnuext = false;
282 	p->allowbranch = (cflags & REG_EXTENDED) != 0;
283 #endif
284 	if (cflags & REG_EXTENDED) {
285 		p->bre = false;
286 		p->parse_expr = p_ere_exp;
287 		p->pre_parse = NULL;
288 		p->post_parse = NULL;
289 	} else {
290 		p->bre = true;
291 		p->parse_expr = p_simp_re;
292 		p->pre_parse = p_bre_pre_parse;
293 		p->post_parse = p_bre_post_parse;
294 	}
295 	g->sets = NULL;
296 	g->ncsets = 0;
297 	g->cflags = cflags;
298 	g->iflags = 0;
299 	g->nbol = 0;
300 	g->neol = 0;
301 	g->must = NULL;
302 	g->moffset = -1;
303 	g->charjump = NULL;
304 	g->matchjump = NULL;
305 	g->mlen = 0;
306 	g->nsub = 0;
307 	g->backrefs = 0;
308 
309 	/* do it */
310 	EMIT(OEND, 0);
311 	g->firststate = THERE();
312 	if (cflags & REG_NOSPEC)
313 		p_str(p);
314 	else
315 		p_re(p, OUT, OUT);
316 	EMIT(OEND, 0);
317 	g->laststate = THERE();
318 
319 	/* tidy up loose ends and fill things in */
320 	stripsnug(p, g);
321 	findmust(p, g);
322 	/* only use Boyer-Moore algorithm if the pattern is bigger
323 	 * than three characters
324 	 */
325 	if(g->mlen > 3) {
326 		computejumps(p, g);
327 		computematchjumps(p, g);
328 		if(g->matchjump == NULL && g->charjump != NULL) {
329 			free(g->charjump);
330 			g->charjump = NULL;
331 		}
332 	}
333 	g->nplus = pluscount(p, g);
334 	g->magic = MAGIC2;
335 	preg->re_nsub = g->nsub;
336 	preg->re_g = g;
337 	preg->re_magic = MAGIC1;
338 #ifndef REDEBUG
339 	/* not debugging, so can't rely on the assert() in regexec() */
340 	if (g->iflags&BAD)
341 		SETERROR(REG_ASSERT);
342 #endif
343 
344 	/* win or lose, we're done */
345 	if (p->error != 0)	/* lose */
346 		regfree(preg);
347 	return(p->error);
348 }
349 
350 /*
351  - regcomp - interface for parser and compilation
352  = extern int regcomp(regex_t *, const char *, int);
353  = #define	REG_BASIC	0000
354  = #define	REG_EXTENDED	0001
355  = #define	REG_ICASE	0002
356  = #define	REG_NOSUB	0004
357  = #define	REG_NEWLINE	0010
358  = #define	REG_NOSPEC	0020
359  = #define	REG_PEND	0040
360  = #define	REG_DUMP	0200
361  */
362 int				/* 0 success, otherwise REG_something */
regcomp(regex_t * __restrict preg,const char * __restrict pattern,int cflags)363 regcomp(regex_t * __restrict preg,
364 	const char * __restrict pattern,
365 	int cflags)
366 {
367 
368 	return (regcomp_internal(preg, pattern, cflags, 0));
369 }
370 
371 #ifndef LIBREGEX
372 /*
373  * Legacy interface that requires more lax escaping behavior.
374  */
375 int
freebsd12_regcomp(regex_t * __restrict preg,const char * __restrict pattern,int cflags,int pflags)376 freebsd12_regcomp(regex_t * __restrict preg,
377 	const char * __restrict pattern,
378 	int cflags, int pflags)
379 {
380 
381 	return (regcomp_internal(preg, pattern, cflags, PFLAG_LEGACY_ESC));
382 }
383 
384 __sym_compat(regcomp, freebsd12_regcomp, FBSD_1.0);
385 #endif	/* !LIBREGEX */
386 
387 /*
388  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
389  - return whether we should terminate or not
390  == static bool p_ere_exp(struct parse *p);
391  */
392 static bool
p_ere_exp(struct parse * p,struct branchc * bc)393 p_ere_exp(struct parse *p, struct branchc *bc)
394 {
395 	char c;
396 	wint_t wc;
397 	sopno pos;
398 	int count;
399 	int count2;
400 #ifdef LIBREGEX
401 	int i;
402 	int handled;
403 #endif
404 	sopno subno;
405 	int wascaret = 0;
406 
407 	(void)bc;
408 	assert(MORE());		/* caller should have ensured this */
409 	c = GETNEXT();
410 
411 #ifdef LIBREGEX
412 	handled = 0;
413 #endif
414 	pos = HERE();
415 	switch (c) {
416 	case '(':
417 		(void)REQUIRE(MORE(), REG_EPAREN);
418 		p->g->nsub++;
419 		subno = p->g->nsub;
420 		if (subno < NPAREN)
421 			p->pbegin[subno] = HERE();
422 		EMIT(OLPAREN, subno);
423 		if (!SEE(')'))
424 			p_re(p, ')', IGN);
425 		if (subno < NPAREN) {
426 			p->pend[subno] = HERE();
427 			assert(p->pend[subno] != 0);
428 		}
429 		EMIT(ORPAREN, subno);
430 		(void)MUSTEAT(')', REG_EPAREN);
431 		break;
432 #ifndef POSIX_MISTAKE
433 	case ')':		/* happens only if no current unmatched ( */
434 		/*
435 		 * You may ask, why the ifndef?  Because I didn't notice
436 		 * this until slightly too late for 1003.2, and none of the
437 		 * other 1003.2 regular-expression reviewers noticed it at
438 		 * all.  So an unmatched ) is legal POSIX, at least until
439 		 * we can get it fixed.
440 		 */
441 		SETERROR(REG_EPAREN);
442 		break;
443 #endif
444 	case '^':
445 		EMIT(OBOL, 0);
446 		p->g->iflags |= USEBOL;
447 		p->g->nbol++;
448 		wascaret = 1;
449 		break;
450 	case '$':
451 		EMIT(OEOL, 0);
452 		p->g->iflags |= USEEOL;
453 		p->g->neol++;
454 		break;
455 	case '|':
456 		SETERROR(REG_EMPTY);
457 		break;
458 	case '*':
459 	case '+':
460 	case '?':
461 	case '{':
462 		SETERROR(REG_BADRPT);
463 		break;
464 	case '.':
465 		if (p->g->cflags&REG_NEWLINE)
466 			nonnewline(p);
467 		else
468 			EMIT(OANY, 0);
469 		break;
470 	case '[':
471 		p_bracket(p);
472 		break;
473 	case '\\':
474 		(void)REQUIRE(MORE(), REG_EESCAPE);
475 		wc = WGETNEXT();
476 #ifdef LIBREGEX
477 		if (p->gnuext) {
478 			handled = 1;
479 			switch (wc) {
480 			case '`':
481 				EMIT(OBOS, 0);
482 				break;
483 			case '\'':
484 				EMIT(OEOS, 0);
485 				break;
486 			case 'B':
487 				EMIT(ONWBND, 0);
488 				break;
489 			case 'b':
490 				EMIT(OWBND, 0);
491 				break;
492 			case 'W':
493 			case 'w':
494 			case 'S':
495 			case 's':
496 				p_b_pseudoclass(p, wc);
497 				break;
498 			case '1':
499 			case '2':
500 			case '3':
501 			case '4':
502 			case '5':
503 			case '6':
504 			case '7':
505 			case '8':
506 			case '9':
507 				i = wc - '0';
508 				assert(i < NPAREN);
509 				if (p->pend[i] != 0) {
510 					assert(i <= p->g->nsub);
511 					EMIT(OBACK_, i);
512 					assert(p->pbegin[i] != 0);
513 					assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
514 					assert(OP(p->strip[p->pend[i]]) == ORPAREN);
515 					(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
516 					EMIT(O_BACK, i);
517 				} else
518 					SETERROR(REG_ESUBREG);
519 				p->g->backrefs = 1;
520 				break;
521 			default:
522 				handled = 0;
523 			}
524 			/* Don't proceed to the POSIX bits if we've already handled it */
525 			if (handled)
526 				break;
527 		}
528 #endif
529 		switch (wc) {
530 		case '<':
531 			EMIT(OBOW, 0);
532 			break;
533 		case '>':
534 			EMIT(OEOW, 0);
535 			break;
536 		default:
537 			if (may_escape(p, wc))
538 				ordinary(p, wc);
539 			else
540 				SETERROR(REG_EESCAPE);
541 			break;
542 		}
543 		break;
544 	default:
545 		if (p->error != 0)
546 			return (false);
547 		p->next--;
548 		wc = WGETNEXT();
549 		ordinary(p, wc);
550 		break;
551 	}
552 
553 	if (!MORE())
554 		return (false);
555 	c = PEEK();
556 	/* we call { a repetition if followed by a digit */
557 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
558 		return (false);		/* no repetition, we're done */
559 	else if (c == '{')
560 		(void)REQUIRE(MORE2() && \
561 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
562 	NEXT();
563 
564 	(void)REQUIRE(!wascaret, REG_BADRPT);
565 	switch (c) {
566 	case '*':	/* implemented as +? */
567 		/* this case does not require the (y|) trick, noKLUDGE */
568 		INSERT(OPLUS_, pos);
569 		ASTERN(O_PLUS, pos);
570 		INSERT(OQUEST_, pos);
571 		ASTERN(O_QUEST, pos);
572 		break;
573 	case '+':
574 		INSERT(OPLUS_, pos);
575 		ASTERN(O_PLUS, pos);
576 		break;
577 	case '?':
578 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
579 		INSERT(OCH_, pos);		/* offset slightly wrong */
580 		ASTERN(OOR1, pos);		/* this one's right */
581 		AHEAD(pos);			/* fix the OCH_ */
582 		EMIT(OOR2, 0);			/* offset very wrong... */
583 		AHEAD(THERE());			/* ...so fix it */
584 		ASTERN(O_CH, THERETHERE());
585 		break;
586 	case '{':
587 		count = p_count(p);
588 		if (EAT(',')) {
589 			if (isdigit((uch)PEEK())) {
590 				count2 = p_count(p);
591 				(void)REQUIRE(count <= count2, REG_BADBR);
592 			} else		/* single number with comma */
593 				count2 = INFINITY;
594 		} else		/* just a single number */
595 			count2 = count;
596 		repeat(p, pos, count, count2);
597 		if (!EAT('}')) {	/* error heuristics */
598 			while (MORE() && PEEK() != '}')
599 				NEXT();
600 			(void)REQUIRE(MORE(), REG_EBRACE);
601 			SETERROR(REG_BADBR);
602 		}
603 		break;
604 	}
605 
606 	if (!MORE())
607 		return (false);
608 	c = PEEK();
609 	if (!( c == '*' || c == '+' || c == '?' ||
610 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
611 		return (false);
612 	SETERROR(REG_BADRPT);
613 	return (false);
614 }
615 
616 /*
617  - p_str - string (no metacharacters) "parser"
618  == static void p_str(struct parse *p);
619  */
620 static void
p_str(struct parse * p)621 p_str(struct parse *p)
622 {
623 	(void)REQUIRE(MORE(), REG_EMPTY);
624 	while (MORE())
625 		ordinary(p, WGETNEXT());
626 }
627 
628 /*
629  * Eat consecutive branch delimiters for the kind of expression that we are
630  * parsing, return the number of delimiters that we ate.
631  */
632 static int
p_branch_eat_delim(struct parse * p,struct branchc * bc)633 p_branch_eat_delim(struct parse *p, struct branchc *bc)
634 {
635 	int nskip;
636 
637 	(void)bc;
638 	nskip = 0;
639 	while (EATSPEC('|'))
640 		++nskip;
641 	return (nskip);
642 }
643 
644 /*
645  * Insert necessary branch book-keeping operations. This emits a
646  * bogus 'next' offset, since we still have more to parse
647  */
648 static void
p_branch_ins_offset(struct parse * p,struct branchc * bc)649 p_branch_ins_offset(struct parse *p, struct branchc *bc)
650 {
651 
652 	if (bc->nbranch == 0) {
653 		INSERT(OCH_, bc->start);	/* offset is wrong */
654 		bc->fwd = bc->start;
655 		bc->back = bc->start;
656 	}
657 
658 	ASTERN(OOR1, bc->back);
659 	bc->back = THERE();
660 	AHEAD(bc->fwd);			/* fix previous offset */
661 	bc->fwd = HERE();
662 	EMIT(OOR2, 0);			/* offset is very wrong */
663 	++bc->nbranch;
664 }
665 
666 /*
667  * Fix the offset of the tail branch, if we actually had any branches.
668  * This is to correct the bogus placeholder offset that we use.
669  */
670 static void
p_branch_fix_tail(struct parse * p,struct branchc * bc)671 p_branch_fix_tail(struct parse *p, struct branchc *bc)
672 {
673 
674 	/* Fix bogus offset at the tail if we actually have branches */
675 	if (bc->nbranch > 0) {
676 		AHEAD(bc->fwd);
677 		ASTERN(O_CH, bc->back);
678 	}
679 }
680 
681 /*
682  * Signal to the parser that an empty branch has been encountered; this will,
683  * in the future, be used to allow for more permissive behavior with empty
684  * branches. The return value should indicate whether parsing may continue
685  * or not.
686  */
687 static bool
p_branch_empty(struct parse * p,struct branchc * bc)688 p_branch_empty(struct parse *p, struct branchc *bc)
689 {
690 
691 	(void)bc;
692 	SETERROR(REG_EMPTY);
693 	return (false);
694 }
695 
696 /*
697  * Take care of any branching requirements. This includes inserting the
698  * appropriate branching instructions as well as eating all of the branch
699  * delimiters until we either run out of pattern or need to parse more pattern.
700  */
701 static bool
p_branch_do(struct parse * p,struct branchc * bc)702 p_branch_do(struct parse *p, struct branchc *bc)
703 {
704 	int ate = 0;
705 
706 	ate = p_branch_eat_delim(p, bc);
707 	if (ate == 0)
708 		return (false);
709 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
710 		/*
711 		 * Halt parsing only if we have an empty branch and p_branch_empty
712 		 * indicates that we must not continue. In the future, this will not
713 		 * necessarily be an error.
714 		 */
715 		return (false);
716 	p_branch_ins_offset(p, bc);
717 
718 	return (true);
719 }
720 
721 static void
p_bre_pre_parse(struct parse * p,struct branchc * bc)722 p_bre_pre_parse(struct parse *p, struct branchc *bc)
723 {
724 
725 	(void) bc;
726 	/*
727 	 * Does not move cleanly into expression parser because of
728 	 * ordinary interpration of * at the beginning position of
729 	 * an expression.
730 	 */
731 	if (EAT('^')) {
732 		EMIT(OBOL, 0);
733 		p->g->iflags |= USEBOL;
734 		p->g->nbol++;
735 	}
736 }
737 
738 static void
p_bre_post_parse(struct parse * p,struct branchc * bc)739 p_bre_post_parse(struct parse *p, struct branchc *bc)
740 {
741 
742 	/* Expression is terminating due to EOL token */
743 	if (bc->terminate) {
744 		DROP(1);
745 		EMIT(OEOL, 0);
746 		p->g->iflags |= USEEOL;
747 		p->g->neol++;
748 	}
749 }
750 
751 /*
752  - p_re - Top level parser, concatenation and BRE anchoring
753  == static void p_re(struct parse *p, int end1, int end2);
754  * Giving end1 as OUT essentially eliminates the end1/end2 check.
755  *
756  * This implementation is a bit of a kludge, in that a trailing $ is first
757  * taken as an ordinary character and then revised to be an anchor.
758  * The amount of lookahead needed to avoid this kludge is excessive.
759  */
760 static void
p_re(struct parse * p,int end1,int end2)761 p_re(struct parse *p,
762 	int end1,	/* first terminating character */
763 	int end2)	/* second terminating character; ignored for EREs */
764 {
765 	struct branchc bc;
766 
767 	bc.nbranch = 0;
768 	if (end1 == OUT && end2 == OUT)
769 		bc.outer = true;
770 	else
771 		bc.outer = false;
772 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
773 	for (;;) {
774 		bc.start = HERE();
775 		bc.nchain = 0;
776 		bc.terminate = false;
777 		if (p->pre_parse != NULL)
778 			p->pre_parse(p, &bc);
779 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
780 			bc.terminate = p->parse_expr(p, &bc);
781 			++bc.nchain;
782 		}
783 		if (p->post_parse != NULL)
784 			p->post_parse(p, &bc);
785 		(void) REQUIRE(p->gnuext || HERE() != bc.start, REG_EMPTY);
786 #ifdef LIBREGEX
787 		if (HERE() == bc.start && !p_branch_empty(p, &bc))
788 			break;
789 #endif
790 		if (!p->allowbranch)
791 			break;
792 		/*
793 		 * p_branch_do's return value indicates whether we should
794 		 * continue parsing or not. This is both for correctness and
795 		 * a slight optimization, because it will check if we've
796 		 * encountered an empty branch or the end of the string
797 		 * immediately following a branch delimiter.
798 		 */
799 		if (!p_branch_do(p, &bc))
800 			break;
801 	}
802 #undef SEE_END
803 	if (p->allowbranch)
804 		p_branch_fix_tail(p, &bc);
805 	assert(!MORE() || SEE(end1));
806 }
807 
808 /*
809  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
810  == static bool p_simp_re(struct parse *p, struct branchc *bc);
811  */
812 static bool			/* was the simple RE an unbackslashed $? */
p_simp_re(struct parse * p,struct branchc * bc)813 p_simp_re(struct parse *p, struct branchc *bc)
814 {
815 	int c;
816 	int cc;			/* convenient/control character */
817 	int count;
818 	int count2;
819 	sopno pos;
820 	bool handled;
821 	int i;
822 	wint_t wc;
823 	sopno subno;
824 #	define	BACKSL	(1<<CHAR_BIT)
825 
826 	pos = HERE();		/* repetition op, if any, covers from here */
827 	handled = false;
828 
829 	assert(MORE());		/* caller should have ensured this */
830 	c = (uch)GETNEXT();
831 	if (c == '\\') {
832 		(void)REQUIRE(MORE(), REG_EESCAPE);
833 		cc = (uch)GETNEXT();
834 		c = BACKSL | cc;
835 #ifdef LIBREGEX
836 		if (p->gnuext) {
837 			handled = true;
838 			switch (c) {
839 			case BACKSL|'`':
840 				EMIT(OBOS, 0);
841 				break;
842 			case BACKSL|'\'':
843 				EMIT(OEOS, 0);
844 				break;
845 			case BACKSL|'B':
846 				EMIT(ONWBND, 0);
847 				break;
848 			case BACKSL|'b':
849 				EMIT(OWBND, 0);
850 				break;
851 			case BACKSL|'W':
852 			case BACKSL|'w':
853 			case BACKSL|'S':
854 			case BACKSL|'s':
855 				p_b_pseudoclass(p, cc);
856 				break;
857 			default:
858 				handled = false;
859 			}
860 		}
861 #endif
862 	}
863 	if (!handled) {
864 		switch (c) {
865 		case '.':
866 			if (p->g->cflags&REG_NEWLINE)
867 				nonnewline(p);
868 			else
869 				EMIT(OANY, 0);
870 			break;
871 		case '[':
872 			p_bracket(p);
873 			break;
874 		case BACKSL|'<':
875 			EMIT(OBOW, 0);
876 			break;
877 		case BACKSL|'>':
878 			EMIT(OEOW, 0);
879 			break;
880 		case BACKSL|'{':
881 			SETERROR(REG_BADRPT);
882 			break;
883 		case BACKSL|'(':
884 			p->g->nsub++;
885 			subno = p->g->nsub;
886 			if (subno < NPAREN)
887 				p->pbegin[subno] = HERE();
888 			EMIT(OLPAREN, subno);
889 			/* the MORE here is an error heuristic */
890 			if (MORE() && !SEETWO('\\', ')'))
891 				p_re(p, '\\', ')');
892 			if (subno < NPAREN) {
893 				p->pend[subno] = HERE();
894 				assert(p->pend[subno] != 0);
895 			}
896 			EMIT(ORPAREN, subno);
897 			(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
898 			break;
899 		case BACKSL|')':	/* should not get here -- must be user */
900 			SETERROR(REG_EPAREN);
901 			break;
902 		case BACKSL|'1':
903 		case BACKSL|'2':
904 		case BACKSL|'3':
905 		case BACKSL|'4':
906 		case BACKSL|'5':
907 		case BACKSL|'6':
908 		case BACKSL|'7':
909 		case BACKSL|'8':
910 		case BACKSL|'9':
911 			i = (c&~BACKSL) - '0';
912 			assert(i < NPAREN);
913 			if (p->pend[i] != 0) {
914 				assert(i <= p->g->nsub);
915 				EMIT(OBACK_, i);
916 				assert(p->pbegin[i] != 0);
917 				assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
918 				assert(OP(p->strip[p->pend[i]]) == ORPAREN);
919 				(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
920 				EMIT(O_BACK, i);
921 			} else
922 				SETERROR(REG_ESUBREG);
923 			p->g->backrefs = 1;
924 			break;
925 		case '*':
926 			/*
927 			 * Ordinary if used as the first character beyond BOL anchor of
928 			 * a (sub-)expression, counts as a bad repetition operator if it
929 			 * appears otherwise.
930 			 */
931 			(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
932 			/* FALLTHROUGH */
933 		default:
934 			if (p->error != 0)
935 				return (false);	/* Definitely not $... */
936 			p->next--;
937 			wc = WGETNEXT();
938 			if ((c & BACKSL) == 0 || may_escape(p, wc))
939 				ordinary(p, wc);
940 			else
941 				SETERROR(REG_EESCAPE);
942 			break;
943 		}
944 	}
945 
946 	if (EAT('*')) {		/* implemented as +? */
947 		/* this case does not require the (y|) trick, noKLUDGE */
948 		INSERT(OPLUS_, pos);
949 		ASTERN(O_PLUS, pos);
950 		INSERT(OQUEST_, pos);
951 		ASTERN(O_QUEST, pos);
952 #ifdef LIBREGEX
953 	} else if (p->gnuext && EATTWO('\\', '?')) {
954 		INSERT(OQUEST_, pos);
955 		ASTERN(O_QUEST, pos);
956 	} else if (p->gnuext && EATTWO('\\', '+')) {
957 		INSERT(OPLUS_, pos);
958 		ASTERN(O_PLUS, pos);
959 #endif
960 	} else if (EATTWO('\\', '{')) {
961 		count = p_count(p);
962 		if (EAT(',')) {
963 			if (MORE() && isdigit((uch)PEEK())) {
964 				count2 = p_count(p);
965 				(void)REQUIRE(count <= count2, REG_BADBR);
966 			} else		/* single number with comma */
967 				count2 = INFINITY;
968 		} else		/* just a single number */
969 			count2 = count;
970 		repeat(p, pos, count, count2);
971 		if (!EATTWO('\\', '}')) {	/* error heuristics */
972 			while (MORE() && !SEETWO('\\', '}'))
973 				NEXT();
974 			(void)REQUIRE(MORE(), REG_EBRACE);
975 			SETERROR(REG_BADBR);
976 		}
977 	} else if (c == '$')     /* $ (but not \$) ends it */
978 		return (true);
979 
980 	return (false);
981 }
982 
983 /*
984  - p_count - parse a repetition count
985  == static int p_count(struct parse *p);
986  */
987 static int			/* the value */
p_count(struct parse * p)988 p_count(struct parse *p)
989 {
990 	int count = 0;
991 	int ndigits = 0;
992 
993 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
994 		count = count*10 + ((uch)GETNEXT() - '0');
995 		ndigits++;
996 	}
997 
998 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
999 	return(count);
1000 }
1001 
1002 /*
1003  - p_bracket - parse a bracketed character list
1004  == static void p_bracket(struct parse *p);
1005  */
1006 static void
p_bracket(struct parse * p)1007 p_bracket(struct parse *p)
1008 {
1009 	cset *cs;
1010 	wint_t ch;
1011 
1012 	/* Dept of Truly Sickening Special-Case Kludges */
1013 	if (p->end - p->next > 5) {
1014 		if (strncmp(p->next, "[:<:]]", 6) == 0) {
1015 			EMIT(OBOW, 0);
1016 			NEXTn(6);
1017 			return;
1018 		}
1019 		if (strncmp(p->next, "[:>:]]", 6) == 0) {
1020 			EMIT(OEOW, 0);
1021 			NEXTn(6);
1022 			return;
1023 		}
1024 	}
1025 
1026 	if ((cs = allocset(p)) == NULL)
1027 		return;
1028 
1029 	if (p->g->cflags&REG_ICASE)
1030 		cs->icase = 1;
1031 	if (EAT('^'))
1032 		cs->invert = 1;
1033 	if (EAT(']'))
1034 		CHadd(p, cs, ']');
1035 	else if (EAT('-'))
1036 		CHadd(p, cs, '-');
1037 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
1038 		p_b_term(p, cs);
1039 	if (EAT('-'))
1040 		CHadd(p, cs, '-');
1041 	(void)MUSTEAT(']', REG_EBRACK);
1042 
1043 	if (p->error != 0)	/* don't mess things up further */
1044 		return;
1045 
1046 	if (cs->invert && p->g->cflags&REG_NEWLINE)
1047 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
1048 
1049 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
1050 		ordinary(p, ch);
1051 		freeset(p, cs);
1052 	} else
1053 		EMIT(OANYOF, (int)(cs - p->g->sets));
1054 }
1055 
1056 static int
p_range_cmp(wchar_t c1,wchar_t c2)1057 p_range_cmp(wchar_t c1, wchar_t c2)
1058 {
1059 #ifndef LIBREGEX
1060 	return __wcollate_range_cmp(c1, c2);
1061 #else
1062 	/* Copied from libc/collate __wcollate_range_cmp */
1063 	wchar_t s1[2], s2[2];
1064 
1065 	s1[0] = c1;
1066 	s1[1] = L'\0';
1067 	s2[0] = c2;
1068 	s2[1] = L'\0';
1069 	return (wcscoll(s1, s2));
1070 #endif
1071 }
1072 
1073 /*
1074  - p_b_term - parse one term of a bracketed character list
1075  == static void p_b_term(struct parse *p, cset *cs);
1076  */
1077 static void
p_b_term(struct parse * p,cset * cs)1078 p_b_term(struct parse *p, cset *cs)
1079 {
1080 	char c;
1081 	wint_t start, finish;
1082 	wint_t i;
1083 #ifndef LIBREGEX
1084 	struct xlocale_collate *table =
1085 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
1086 #endif
1087 	/* classify what we've got */
1088 	switch ((MORE()) ? PEEK() : '\0') {
1089 	case '[':
1090 		c = (MORE2()) ? PEEK2() : '\0';
1091 		break;
1092 	case '-':
1093 		SETERROR(REG_ERANGE);
1094 		return;			/* NOTE RETURN */
1095 	default:
1096 		c = '\0';
1097 		break;
1098 	}
1099 
1100 	switch (c) {
1101 	case ':':		/* character class */
1102 		NEXT2();
1103 		(void)REQUIRE(MORE(), REG_EBRACK);
1104 		c = PEEK();
1105 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
1106 		p_b_cclass(p, cs);
1107 		(void)REQUIRE(MORE(), REG_EBRACK);
1108 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
1109 		break;
1110 	case '=':		/* equivalence class */
1111 		NEXT2();
1112 		(void)REQUIRE(MORE(), REG_EBRACK);
1113 		c = PEEK();
1114 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
1115 		p_b_eclass(p, cs);
1116 		(void)REQUIRE(MORE(), REG_EBRACK);
1117 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
1118 		break;
1119 	default:		/* symbol, ordinary character, or range */
1120 		start = p_b_symbol(p);
1121 		if (SEE('-') && MORE2() && PEEK2() != ']') {
1122 			/* range */
1123 			NEXT();
1124 			if (EAT('-'))
1125 				finish = '-';
1126 			else
1127 				finish = p_b_symbol(p);
1128 		} else
1129 			finish = start;
1130 		if (start == finish)
1131 			CHadd(p, cs, start);
1132 		else {
1133 #ifndef LIBREGEX
1134 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
1135 #else
1136 			if (MB_CUR_MAX > 1) {
1137 #endif
1138 				(void)REQUIRE(start <= finish, REG_ERANGE);
1139 				CHaddrange(p, cs, start, finish);
1140 			} else {
1141 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
1142 				for (i = 0; i <= UCHAR_MAX; i++) {
1143 					if (p_range_cmp(start, i) <= 0 &&
1144 					    p_range_cmp(i, finish) <= 0 )
1145 						CHadd(p, cs, i);
1146 				}
1147 			}
1148 		}
1149 		break;
1150 	}
1151 }
1152 
1153 /*
1154  - p_b_pseudoclass - parse a pseudo-class (\w, \W, \s, \S)
1155  == static int p_b_pseudoclass(struct parse *p, char c)
1156  */
1157 static int
1158 p_b_pseudoclass(struct parse *p, char c) {
1159 	cset *cs;
1160 
1161 	if ((cs = allocset(p)) == NULL)
1162 		return(0);
1163 
1164 	if (p->g->cflags&REG_ICASE)
1165 		cs->icase = 1;
1166 
1167 	switch (c) {
1168 	case 'W':
1169 		cs->invert = 1;
1170 		/* PASSTHROUGH */
1171 	case 'w':
1172 		p_b_cclass_named(p, cs, "alnum");
1173 		break;
1174 	case 'S':
1175 		cs->invert = 1;
1176 		/* PASSTHROUGH */
1177 	case 's':
1178 		p_b_cclass_named(p, cs, "space");
1179 		break;
1180 	default:
1181 		return(0);
1182 	}
1183 
1184 	EMIT(OANYOF, (int)(cs - p->g->sets));
1185 	return(1);
1186 }
1187 
1188 /*
1189  - p_b_cclass - parse a character-class name and deal with it
1190  == static void p_b_cclass(struct parse *p, cset *cs);
1191  */
1192 static void
1193 p_b_cclass(struct parse *p, cset *cs)
1194 {
1195 	const char *sp = p->next;
1196 	size_t len;
1197 	char clname[16];
1198 
1199 	while (MORE() && isalpha((uch)PEEK()))
1200 		NEXT();
1201 	len = p->next - sp;
1202 	if (len >= sizeof(clname) - 1) {
1203 		SETERROR(REG_ECTYPE);
1204 		return;
1205 	}
1206 	memcpy(clname, sp, len);
1207 	clname[len] = '\0';
1208 
1209 	p_b_cclass_named(p, cs, clname);
1210 }
1211 /*
1212  - p_b_cclass_named - deal with a named character class
1213  == static void p_b_cclass_named(struct parse *p, cset *cs, const char []);
1214  */
1215 static void
1216 p_b_cclass_named(struct parse *p, cset *cs, const char clname[]) {
1217 	wctype_t wct;
1218 
1219 	if ((wct = wctype(clname)) == 0) {
1220 		SETERROR(REG_ECTYPE);
1221 		return;
1222 	}
1223 	CHaddtype(p, cs, wct);
1224 }
1225 
1226 /*
1227  - p_b_eclass - parse an equivalence-class name and deal with it
1228  == static void p_b_eclass(struct parse *p, cset *cs);
1229  *
1230  * This implementation is incomplete. xxx
1231  */
1232 static void
1233 p_b_eclass(struct parse *p, cset *cs)
1234 {
1235 	wint_t c;
1236 
1237 	c = p_b_coll_elem(p, '=');
1238 	CHadd(p, cs, c);
1239 }
1240 
1241 /*
1242  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1243  == static wint_t p_b_symbol(struct parse *p);
1244  */
1245 static wint_t			/* value of symbol */
1246 p_b_symbol(struct parse *p)
1247 {
1248 	wint_t value;
1249 
1250 	(void)REQUIRE(MORE(), REG_EBRACK);
1251 	if (!EATTWO('[', '.'))
1252 		return(WGETNEXT());
1253 
1254 	/* collating symbol */
1255 	value = p_b_coll_elem(p, '.');
1256 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1257 	return(value);
1258 }
1259 
1260 /*
1261  - p_b_coll_elem - parse a collating-element name and look it up
1262  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1263  */
1264 static wint_t			/* value of collating element */
1265 p_b_coll_elem(struct parse *p,
1266 	wint_t endc)		/* name ended by endc,']' */
1267 {
1268 	const char *sp = p->next;
1269 	struct cname *cp;
1270 	mbstate_t mbs;
1271 	wchar_t wc;
1272 	size_t clen, len;
1273 
1274 	while (MORE() && !SEETWO(endc, ']'))
1275 		NEXT();
1276 	if (!MORE()) {
1277 		SETERROR(REG_EBRACK);
1278 		return(0);
1279 	}
1280 	len = p->next - sp;
1281 	for (cp = cnames; cp->name != NULL; cp++)
1282 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1283 			return(cp->code);	/* known name */
1284 	memset(&mbs, 0, sizeof(mbs));
1285 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1286 		return (wc);			/* single character */
1287 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1288 		SETERROR(REG_ILLSEQ);
1289 	else
1290 		SETERROR(REG_ECOLLATE);		/* neither */
1291 	return(0);
1292 }
1293 
1294 /*
1295  - may_escape - determine whether 'ch' is escape-able in the current context
1296  == static int may_escape(struct parse *p, const wint_t ch)
1297  */
1298 static bool
1299 may_escape(struct parse *p, const wint_t ch)
1300 {
1301 
1302 	if ((p->pflags & PFLAG_LEGACY_ESC) != 0)
1303 		return (true);
1304 	if (iswalpha(ch) || ch == '\'' || ch == '`')
1305 		return (false);
1306 	return (true);
1307 #ifdef NOTYET
1308 	/*
1309 	 * Build a whitelist of characters that may be escaped to produce an
1310 	 * ordinary in the current context. This assumes that these have not
1311 	 * been otherwise interpreted as a special character. Escaping an
1312 	 * ordinary character yields undefined results according to
1313 	 * IEEE 1003.1-2008. Some extensions (notably, some GNU extensions) take
1314 	 * advantage of this and use escaped ordinary characters to provide
1315 	 * special meaning, e.g. \b, \B, \w, \W, \s, \S.
1316 	 */
1317 	switch(ch) {
1318 	case '|':
1319 	case '+':
1320 	case '?':
1321 		/* The above characters may not be escaped in BREs */
1322 		if (!(p->g->cflags&REG_EXTENDED))
1323 			return (false);
1324 		/* Fallthrough */
1325 	case '(':
1326 	case ')':
1327 	case '{':
1328 	case '}':
1329 	case '.':
1330 	case '[':
1331 	case ']':
1332 	case '\\':
1333 	case '*':
1334 	case '^':
1335 	case '$':
1336 		return (true);
1337 	default:
1338 		return (false);
1339 	}
1340 #endif
1341 }
1342 
1343 /*
1344  - othercase - return the case counterpart of an alphabetic
1345  == static wint_t othercase(wint_t ch);
1346  */
1347 static wint_t			/* if no counterpart, return ch */
1348 othercase(wint_t ch)
1349 {
1350 	assert(iswalpha(ch));
1351 	if (iswupper(ch))
1352 		return(towlower(ch));
1353 	else if (iswlower(ch))
1354 		return(towupper(ch));
1355 	else			/* peculiar, but could happen */
1356 		return(ch);
1357 }
1358 
1359 /*
1360  - bothcases - emit a dualcase version of a two-case character
1361  == static void bothcases(struct parse *p, wint_t ch);
1362  *
1363  * Boy, is this implementation ever a kludge...
1364  */
1365 static void
1366 bothcases(struct parse *p, wint_t ch)
1367 {
1368 	const char *oldnext = p->next;
1369 	const char *oldend = p->end;
1370 	char bracket[3 + MB_LEN_MAX];
1371 	size_t n;
1372 	mbstate_t mbs;
1373 
1374 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1375 	p->next = bracket;
1376 	memset(&mbs, 0, sizeof(mbs));
1377 	n = wcrtomb(bracket, ch, &mbs);
1378 	assert(n != (size_t)-1);
1379 	bracket[n] = ']';
1380 	bracket[n + 1] = '\0';
1381 	p->end = bracket+n+1;
1382 	p_bracket(p);
1383 	assert(p->next == p->end);
1384 	p->next = oldnext;
1385 	p->end = oldend;
1386 }
1387 
1388 /*
1389  - ordinary - emit an ordinary character
1390  == static void ordinary(struct parse *p, wint_t ch);
1391  */
1392 static void
1393 ordinary(struct parse *p, wint_t ch)
1394 {
1395 	cset *cs;
1396 
1397 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1398 		bothcases(p, ch);
1399 	else if ((ch & OPDMASK) == ch)
1400 		EMIT(OCHAR, ch);
1401 	else {
1402 		/*
1403 		 * Kludge: character is too big to fit into an OCHAR operand.
1404 		 * Emit a singleton set.
1405 		 */
1406 		if ((cs = allocset(p)) == NULL)
1407 			return;
1408 		CHadd(p, cs, ch);
1409 		EMIT(OANYOF, (int)(cs - p->g->sets));
1410 	}
1411 }
1412 
1413 /*
1414  - nonnewline - emit REG_NEWLINE version of OANY
1415  == static void nonnewline(struct parse *p);
1416  *
1417  * Boy, is this implementation ever a kludge...
1418  */
1419 static void
1420 nonnewline(struct parse *p)
1421 {
1422 	const char *oldnext = p->next;
1423 	const char *oldend = p->end;
1424 	char bracket[4];
1425 
1426 	p->next = bracket;
1427 	p->end = bracket+3;
1428 	bracket[0] = '^';
1429 	bracket[1] = '\n';
1430 	bracket[2] = ']';
1431 	bracket[3] = '\0';
1432 	p_bracket(p);
1433 	assert(p->next == bracket+3);
1434 	p->next = oldnext;
1435 	p->end = oldend;
1436 }
1437 
1438 /*
1439  - repeat - generate code for a bounded repetition, recursively if needed
1440  == static void repeat(struct parse *p, sopno start, int from, int to);
1441  */
1442 static void
1443 repeat(struct parse *p,
1444 	sopno start,		/* operand from here to end of strip */
1445 	int from,		/* repeated from this number */
1446 	int to)			/* to this number of times (maybe INFINITY) */
1447 {
1448 	sopno finish = HERE();
1449 #	define	N	2
1450 #	define	INF	3
1451 #	define	REP(f, t)	((f)*8 + (t))
1452 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1453 	sopno copy;
1454 
1455 	if (p->error != 0)	/* head off possible runaway recursion */
1456 		return;
1457 
1458 	assert(from <= to);
1459 
1460 	switch (REP(MAP(from), MAP(to))) {
1461 	case REP(0, 0):			/* must be user doing this */
1462 		DROP(finish-start);	/* drop the operand */
1463 		break;
1464 	case REP(0, 1):			/* as x{1,1}? */
1465 	case REP(0, N):			/* as x{1,n}? */
1466 	case REP(0, INF):		/* as x{1,}? */
1467 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1468 		INSERT(OCH_, start);		/* offset is wrong... */
1469 		repeat(p, start+1, 1, to);
1470 		ASTERN(OOR1, start);
1471 		AHEAD(start);			/* ... fix it */
1472 		EMIT(OOR2, 0);
1473 		AHEAD(THERE());
1474 		ASTERN(O_CH, THERETHERE());
1475 		break;
1476 	case REP(1, 1):			/* trivial case */
1477 		/* done */
1478 		break;
1479 	case REP(1, N):			/* as x?x{1,n-1} */
1480 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1481 		INSERT(OCH_, start);
1482 		ASTERN(OOR1, start);
1483 		AHEAD(start);
1484 		EMIT(OOR2, 0);			/* offset very wrong... */
1485 		AHEAD(THERE());			/* ...so fix it */
1486 		ASTERN(O_CH, THERETHERE());
1487 		copy = dupl(p, start+1, finish+1);
1488 		assert(copy == finish+4);
1489 		repeat(p, copy, 1, to-1);
1490 		break;
1491 	case REP(1, INF):		/* as x+ */
1492 		INSERT(OPLUS_, start);
1493 		ASTERN(O_PLUS, start);
1494 		break;
1495 	case REP(N, N):			/* as xx{m-1,n-1} */
1496 		copy = dupl(p, start, finish);
1497 		repeat(p, copy, from-1, to-1);
1498 		break;
1499 	case REP(N, INF):		/* as xx{n-1,INF} */
1500 		copy = dupl(p, start, finish);
1501 		repeat(p, copy, from-1, to);
1502 		break;
1503 	default:			/* "can't happen" */
1504 		SETERROR(REG_ASSERT);	/* just in case */
1505 		break;
1506 	}
1507 }
1508 
1509 /*
1510  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1511  - character from the parse struct, signals a REG_ILLSEQ error if the
1512  - character can't be converted. Returns the number of bytes consumed.
1513  */
1514 static wint_t
1515 wgetnext(struct parse *p)
1516 {
1517 	mbstate_t mbs;
1518 	wchar_t wc;
1519 	size_t n;
1520 
1521 	memset(&mbs, 0, sizeof(mbs));
1522 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1523 	if (n == (size_t)-1 || n == (size_t)-2) {
1524 		SETERROR(REG_ILLSEQ);
1525 		return (0);
1526 	}
1527 	if (n == 0)
1528 		n = 1;
1529 	p->next += n;
1530 	return (wc);
1531 }
1532 
1533 /*
1534  - seterr - set an error condition
1535  == static int seterr(struct parse *p, int e);
1536  */
1537 static int			/* useless but makes type checking happy */
1538 seterr(struct parse *p, int e)
1539 {
1540 	if (p->error == 0)	/* keep earliest error condition */
1541 		p->error = e;
1542 	p->next = nuls;		/* try to bring things to a halt */
1543 	p->end = nuls;
1544 	return(0);		/* make the return value well-defined */
1545 }
1546 
1547 /*
1548  - allocset - allocate a set of characters for []
1549  == static cset *allocset(struct parse *p);
1550  */
1551 static cset *
1552 allocset(struct parse *p)
1553 {
1554 	cset *cs, *ncs;
1555 
1556 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1557 	if (ncs == NULL) {
1558 		SETERROR(REG_ESPACE);
1559 		return (NULL);
1560 	}
1561 	p->g->sets = ncs;
1562 	cs = &p->g->sets[p->g->ncsets++];
1563 	memset(cs, 0, sizeof(*cs));
1564 
1565 	return(cs);
1566 }
1567 
1568 /*
1569  - freeset - free a now-unused set
1570  == static void freeset(struct parse *p, cset *cs);
1571  */
1572 static void
1573 freeset(struct parse *p, cset *cs)
1574 {
1575 	cset *top = &p->g->sets[p->g->ncsets];
1576 
1577 	free(cs->wides);
1578 	free(cs->ranges);
1579 	free(cs->types);
1580 	memset(cs, 0, sizeof(*cs));
1581 	if (cs == top-1)	/* recover only the easy case */
1582 		p->g->ncsets--;
1583 }
1584 
1585 /*
1586  - singleton - Determine whether a set contains only one character,
1587  - returning it if so, otherwise returning OUT.
1588  */
1589 static wint_t
1590 singleton(cset *cs)
1591 {
1592 	wint_t i, s, n;
1593 
1594 	/* Exclude the complicated cases we don't want to deal with */
1595 	if (cs->nranges != 0 || cs->ntypes != 0 || cs->icase != 0)
1596 		return (OUT);
1597 
1598 	if (cs->nwides > 1)
1599 		return (OUT);
1600 
1601 	/* Count the number of characters present in the bitmap */
1602 	for (i = n = 0; i < NC; i++)
1603 		if (CHIN(cs, i)) {
1604 			n++;
1605 			s = i;
1606 		}
1607 
1608 	if (n > 1)
1609 		return (OUT);
1610 
1611 	if (n == 1) {
1612 		if (cs->nwides == 0)
1613 			return (s);
1614 		else
1615 			return (OUT);
1616 	}
1617 	if (cs->nwides == 1)
1618 		return (cs->wides[0]);
1619 
1620 	return (OUT);
1621 }
1622 
1623 /*
1624  - CHadd - add character to character set.
1625  */
1626 static void
1627 CHadd(struct parse *p, cset *cs, wint_t ch)
1628 {
1629 	wint_t nch, *newwides;
1630 	assert(ch >= 0);
1631 	if (ch < NC)
1632 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1633 	else {
1634 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1635 		    sizeof(*cs->wides));
1636 		if (newwides == NULL) {
1637 			SETERROR(REG_ESPACE);
1638 			return;
1639 		}
1640 		cs->wides = newwides;
1641 		cs->wides[cs->nwides++] = ch;
1642 	}
1643 	if (cs->icase) {
1644 		if ((nch = towlower(ch)) < NC)
1645 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1646 		if ((nch = towupper(ch)) < NC)
1647 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1648 	}
1649 }
1650 
1651 /*
1652  - CHaddrange - add all characters in the range [min,max] to a character set.
1653  */
1654 static void
1655 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1656 {
1657 	crange *newranges;
1658 
1659 	for (; min < NC && min <= max; min++)
1660 		CHadd(p, cs, min);
1661 	if (min >= max)
1662 		return;
1663 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1664 	    sizeof(*cs->ranges));
1665 	if (newranges == NULL) {
1666 		SETERROR(REG_ESPACE);
1667 		return;
1668 	}
1669 	cs->ranges = newranges;
1670 	cs->ranges[cs->nranges].min = min;
1671 	cs->ranges[cs->nranges].max = max;
1672 	cs->nranges++;
1673 }
1674 
1675 /*
1676  - CHaddtype - add all characters of a certain type to a character set.
1677  */
1678 static void
1679 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1680 {
1681 	wint_t i;
1682 	wctype_t *newtypes;
1683 
1684 	for (i = 0; i < NC; i++)
1685 		if (iswctype(i, wct))
1686 			CHadd(p, cs, i);
1687 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1688 	    sizeof(*cs->types));
1689 	if (newtypes == NULL) {
1690 		SETERROR(REG_ESPACE);
1691 		return;
1692 	}
1693 	cs->types = newtypes;
1694 	cs->types[cs->ntypes++] = wct;
1695 }
1696 
1697 /*
1698  - dupl - emit a duplicate of a bunch of sops
1699  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1700  */
1701 static sopno			/* start of duplicate */
1702 dupl(struct parse *p,
1703 	sopno start,		/* from here */
1704 	sopno finish)		/* to this less one */
1705 {
1706 	sopno ret = HERE();
1707 	sopno len = finish - start;
1708 
1709 	assert(finish >= start);
1710 	if (len == 0)
1711 		return(ret);
1712 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1713 		return(ret);
1714 	(void) memcpy((char *)(p->strip + p->slen),
1715 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1716 	p->slen += len;
1717 	return(ret);
1718 }
1719 
1720 /*
1721  - doemit - emit a strip operator
1722  == static void doemit(struct parse *p, sop op, size_t opnd);
1723  *
1724  * It might seem better to implement this as a macro with a function as
1725  * hard-case backup, but it's just too big and messy unless there are
1726  * some changes to the data structures.  Maybe later.
1727  */
1728 static void
1729 doemit(struct parse *p, sop op, size_t opnd)
1730 {
1731 	/* avoid making error situations worse */
1732 	if (p->error != 0)
1733 		return;
1734 
1735 	/* deal with oversize operands ("can't happen", more or less) */
1736 	assert(opnd < 1<<OPSHIFT);
1737 
1738 	/* deal with undersized strip */
1739 	if (p->slen >= p->ssize)
1740 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1741 			return;
1742 
1743 	/* finally, it's all reduced to the easy case */
1744 	p->strip[p->slen++] = SOP(op, opnd);
1745 }
1746 
1747 /*
1748  - doinsert - insert a sop into the strip
1749  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1750  */
1751 static void
1752 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1753 {
1754 	sopno sn;
1755 	sop s;
1756 	int i;
1757 
1758 	/* avoid making error situations worse */
1759 	if (p->error != 0)
1760 		return;
1761 
1762 	sn = HERE();
1763 	EMIT(op, opnd);		/* do checks, ensure space */
1764 	assert(HERE() == sn+1);
1765 	s = p->strip[sn];
1766 
1767 	/* adjust paren pointers */
1768 	assert(pos > 0);
1769 	for (i = 1; i < NPAREN; i++) {
1770 		if (p->pbegin[i] >= pos) {
1771 			p->pbegin[i]++;
1772 		}
1773 		if (p->pend[i] >= pos) {
1774 			p->pend[i]++;
1775 		}
1776 	}
1777 
1778 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1779 						(HERE()-pos-1)*sizeof(sop));
1780 	p->strip[pos] = s;
1781 }
1782 
1783 /*
1784  - dofwd - complete a forward reference
1785  == static void dofwd(struct parse *p, sopno pos, sop value);
1786  */
1787 static void
1788 dofwd(struct parse *p, sopno pos, sop value)
1789 {
1790 	/* avoid making error situations worse */
1791 	if (p->error != 0)
1792 		return;
1793 
1794 	assert(value < 1<<OPSHIFT);
1795 	p->strip[pos] = OP(p->strip[pos]) | value;
1796 }
1797 
1798 /*
1799  - enlarge - enlarge the strip
1800  == static int enlarge(struct parse *p, sopno size);
1801  */
1802 static int
1803 enlarge(struct parse *p, sopno size)
1804 {
1805 	sop *sp;
1806 
1807 	if (p->ssize >= size)
1808 		return 1;
1809 
1810 	sp = reallocarray(p->strip, size, sizeof(sop));
1811 	if (sp == NULL) {
1812 		SETERROR(REG_ESPACE);
1813 		return 0;
1814 	}
1815 	p->strip = sp;
1816 	p->ssize = size;
1817 	return 1;
1818 }
1819 
1820 /*
1821  - stripsnug - compact the strip
1822  == static void stripsnug(struct parse *p, struct re_guts *g);
1823  */
1824 static void
1825 stripsnug(struct parse *p, struct re_guts *g)
1826 {
1827 	g->nstates = p->slen;
1828 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1829 	if (g->strip == NULL) {
1830 		SETERROR(REG_ESPACE);
1831 		g->strip = p->strip;
1832 	}
1833 }
1834 
1835 /*
1836  - findmust - fill in must and mlen with longest mandatory literal string
1837  == static void findmust(struct parse *p, struct re_guts *g);
1838  *
1839  * This algorithm could do fancy things like analyzing the operands of |
1840  * for common subsequences.  Someday.  This code is simple and finds most
1841  * of the interesting cases.
1842  *
1843  * Note that must and mlen got initialized during setup.
1844  */
1845 static void
1846 findmust(struct parse *p, struct re_guts *g)
1847 {
1848 	sop *scan;
1849 	sop *start = NULL;
1850 	sop *newstart = NULL;
1851 	sopno newlen;
1852 	sop s;
1853 	char *cp;
1854 	int offset;
1855 	char buf[MB_LEN_MAX];
1856 	size_t clen;
1857 	mbstate_t mbs;
1858 
1859 	/* avoid making error situations worse */
1860 	if (p->error != 0)
1861 		return;
1862 
1863 	/*
1864 	 * It's not generally safe to do a ``char'' substring search on
1865 	 * multibyte character strings, but it's safe for at least
1866 	 * UTF-8 (see RFC 3629).
1867 	 */
1868 	if (MB_CUR_MAX > 1 &&
1869 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1870 		return;
1871 
1872 	/* find the longest OCHAR sequence in strip */
1873 	newlen = 0;
1874 	offset = 0;
1875 	g->moffset = 0;
1876 	scan = g->strip + 1;
1877 	do {
1878 		s = *scan++;
1879 		switch (OP(s)) {
1880 		case OCHAR:		/* sequence member */
1881 			if (newlen == 0) {		/* new sequence */
1882 				memset(&mbs, 0, sizeof(mbs));
1883 				newstart = scan - 1;
1884 			}
1885 			clen = wcrtomb(buf, OPND(s), &mbs);
1886 			if (clen == (size_t)-1)
1887 				goto toohard;
1888 			newlen += clen;
1889 			break;
1890 		case OPLUS_:		/* things that don't break one */
1891 		case OLPAREN:
1892 		case ORPAREN:
1893 			break;
1894 		case OQUEST_:		/* things that must be skipped */
1895 		case OCH_:
1896 			offset = altoffset(scan, offset);
1897 			scan--;
1898 			do {
1899 				scan += OPND(s);
1900 				s = *scan;
1901 				/* assert() interferes w debug printouts */
1902 				if (OP(s) != (sop)O_QUEST &&
1903 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1904 					g->iflags |= BAD;
1905 					return;
1906 				}
1907 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1908 			/* FALLTHROUGH */
1909 		case OBOW:		/* things that break a sequence */
1910 		case OEOW:
1911 		case OBOL:
1912 		case OEOL:
1913 		case OBOS:
1914 		case OEOS:
1915 		case OWBND:
1916 		case ONWBND:
1917 		case O_QUEST:
1918 		case O_CH:
1919 		case OEND:
1920 			if (newlen > (sopno)g->mlen) {		/* ends one */
1921 				start = newstart;
1922 				g->mlen = newlen;
1923 				if (offset > -1) {
1924 					g->moffset += offset;
1925 					offset = newlen;
1926 				} else
1927 					g->moffset = offset;
1928 			} else {
1929 				if (offset > -1)
1930 					offset += newlen;
1931 			}
1932 			newlen = 0;
1933 			break;
1934 		case OANY:
1935 			if (newlen > (sopno)g->mlen) {		/* ends one */
1936 				start = newstart;
1937 				g->mlen = newlen;
1938 				if (offset > -1) {
1939 					g->moffset += offset;
1940 					offset = newlen;
1941 				} else
1942 					g->moffset = offset;
1943 			} else {
1944 				if (offset > -1)
1945 					offset += newlen;
1946 			}
1947 			if (offset > -1)
1948 				offset++;
1949 			newlen = 0;
1950 			break;
1951 		case OANYOF:		/* may or may not invalidate offset */
1952 			/* First, everything as OANY */
1953 			if (newlen > (sopno)g->mlen) {		/* ends one */
1954 				start = newstart;
1955 				g->mlen = newlen;
1956 				if (offset > -1) {
1957 					g->moffset += offset;
1958 					offset = newlen;
1959 				} else
1960 					g->moffset = offset;
1961 			} else {
1962 				if (offset > -1)
1963 					offset += newlen;
1964 			}
1965 			if (offset > -1)
1966 				offset++;
1967 			newlen = 0;
1968 			break;
1969 		toohard:
1970 		default:
1971 			/* Anything here makes it impossible or too hard
1972 			 * to calculate the offset -- so we give up;
1973 			 * save the last known good offset, in case the
1974 			 * must sequence doesn't occur later.
1975 			 */
1976 			if (newlen > (sopno)g->mlen) {		/* ends one */
1977 				start = newstart;
1978 				g->mlen = newlen;
1979 				if (offset > -1)
1980 					g->moffset += offset;
1981 				else
1982 					g->moffset = offset;
1983 			}
1984 			offset = -1;
1985 			newlen = 0;
1986 			break;
1987 		}
1988 	} while (OP(s) != OEND);
1989 
1990 	if (g->mlen == 0) {		/* there isn't one */
1991 		g->moffset = -1;
1992 		return;
1993 	}
1994 
1995 	/* turn it into a character string */
1996 	g->must = malloc((size_t)g->mlen + 1);
1997 	if (g->must == NULL) {		/* argh; just forget it */
1998 		g->mlen = 0;
1999 		g->moffset = -1;
2000 		return;
2001 	}
2002 	cp = g->must;
2003 	scan = start;
2004 	memset(&mbs, 0, sizeof(mbs));
2005 	while (cp < g->must + g->mlen) {
2006 		while (OP(s = *scan++) != OCHAR)
2007 			continue;
2008 		clen = wcrtomb(cp, OPND(s), &mbs);
2009 		assert(clen != (size_t)-1);
2010 		cp += clen;
2011 	}
2012 	assert(cp == g->must + g->mlen);
2013 	*cp++ = '\0';		/* just on general principles */
2014 }
2015 
2016 /*
2017  - altoffset - choose biggest offset among multiple choices
2018  == static int altoffset(sop *scan, int offset);
2019  *
2020  * Compute, recursively if necessary, the largest offset among multiple
2021  * re paths.
2022  */
2023 static int
2024 altoffset(sop *scan, int offset)
2025 {
2026 	int largest;
2027 	int try;
2028 	sop s;
2029 
2030 	/* If we gave up already on offsets, return */
2031 	if (offset == -1)
2032 		return -1;
2033 
2034 	largest = 0;
2035 	try = 0;
2036 	s = *scan++;
2037 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
2038 		switch (OP(s)) {
2039 		case OOR1:
2040 			if (try > largest)
2041 				largest = try;
2042 			try = 0;
2043 			break;
2044 		case OQUEST_:
2045 		case OCH_:
2046 			try = altoffset(scan, try);
2047 			if (try == -1)
2048 				return -1;
2049 			scan--;
2050 			do {
2051 				scan += OPND(s);
2052 				s = *scan;
2053 				if (OP(s) != (sop)O_QUEST &&
2054 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
2055 					return -1;
2056 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
2057 			/* We must skip to the next position, or we'll
2058 			 * leave altoffset() too early.
2059 			 */
2060 			scan++;
2061 			break;
2062 		case OANYOF:
2063 		case OCHAR:
2064 		case OANY:
2065 			try++;
2066 		case OBOW:
2067 		case OEOW:
2068 		case OWBND:
2069 		case ONWBND:
2070 		case OLPAREN:
2071 		case ORPAREN:
2072 		case OOR2:
2073 			break;
2074 		default:
2075 			try = -1;
2076 			break;
2077 		}
2078 		if (try == -1)
2079 			return -1;
2080 		s = *scan++;
2081 	}
2082 
2083 	if (try > largest)
2084 		largest = try;
2085 
2086 	return largest+offset;
2087 }
2088 
2089 /*
2090  - computejumps - compute char jumps for BM scan
2091  == static void computejumps(struct parse *p, struct re_guts *g);
2092  *
2093  * This algorithm assumes g->must exists and is has size greater than
2094  * zero. It's based on the algorithm found on Computer Algorithms by
2095  * Sara Baase.
2096  *
2097  * A char jump is the number of characters one needs to jump based on
2098  * the value of the character from the text that was mismatched.
2099  */
2100 static void
2101 computejumps(struct parse *p, struct re_guts *g)
2102 {
2103 	int ch;
2104 	int mindex;
2105 
2106 	/* Avoid making errors worse */
2107 	if (p->error != 0)
2108 		return;
2109 
2110 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
2111 	if (g->charjump == NULL)	/* Not a fatal error */
2112 		return;
2113 	/* Adjust for signed chars, if necessary */
2114 	g->charjump = &g->charjump[-(CHAR_MIN)];
2115 
2116 	/* If the character does not exist in the pattern, the jump
2117 	 * is equal to the number of characters in the pattern.
2118 	 */
2119 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
2120 		g->charjump[ch] = g->mlen;
2121 
2122 	/* If the character does exist, compute the jump that would
2123 	 * take us to the last character in the pattern equal to it
2124 	 * (notice that we match right to left, so that last character
2125 	 * is the first one that would be matched).
2126 	 */
2127 	for (mindex = 0; mindex < g->mlen; mindex++)
2128 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
2129 }
2130 
2131 /*
2132  - computematchjumps - compute match jumps for BM scan
2133  == static void computematchjumps(struct parse *p, struct re_guts *g);
2134  *
2135  * This algorithm assumes g->must exists and is has size greater than
2136  * zero. It's based on the algorithm found on Computer Algorithms by
2137  * Sara Baase.
2138  *
2139  * A match jump is the number of characters one needs to advance based
2140  * on the already-matched suffix.
2141  * Notice that all values here are minus (g->mlen-1), because of the way
2142  * the search algorithm works.
2143  */
2144 static void
2145 computematchjumps(struct parse *p, struct re_guts *g)
2146 {
2147 	int mindex;		/* General "must" iterator */
2148 	int suffix;		/* Keeps track of matching suffix */
2149 	int ssuffix;		/* Keeps track of suffixes' suffix */
2150 	int* pmatches;		/* pmatches[k] points to the next i
2151 				 * such that i+1...mlen is a substring
2152 				 * of k+1...k+mlen-i-1
2153 				 */
2154 
2155 	/* Avoid making errors worse */
2156 	if (p->error != 0)
2157 		return;
2158 
2159 	pmatches = (int*) malloc(g->mlen * sizeof(int));
2160 	if (pmatches == NULL) {
2161 		g->matchjump = NULL;
2162 		return;
2163 	}
2164 
2165 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
2166 	if (g->matchjump == NULL) {	/* Not a fatal error */
2167 		free(pmatches);
2168 		return;
2169 	}
2170 
2171 	/* Set maximum possible jump for each character in the pattern */
2172 	for (mindex = 0; mindex < g->mlen; mindex++)
2173 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
2174 
2175 	/* Compute pmatches[] */
2176 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
2177 	    mindex--, suffix--) {
2178 		pmatches[mindex] = suffix;
2179 
2180 		/* If a mismatch is found, interrupting the substring,
2181 		 * compute the matchjump for that position. If no
2182 		 * mismatch is found, then a text substring mismatched
2183 		 * against the suffix will also mismatch against the
2184 		 * substring.
2185 		 */
2186 		while (suffix < g->mlen
2187 		    && g->must[mindex] != g->must[suffix]) {
2188 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
2189 			    g->mlen - mindex - 1);
2190 			suffix = pmatches[suffix];
2191 		}
2192 	}
2193 
2194 	/* Compute the matchjump up to the last substring found to jump
2195 	 * to the beginning of the largest must pattern prefix matching
2196 	 * it's own suffix.
2197 	 */
2198 	for (mindex = 0; mindex <= suffix; mindex++)
2199 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
2200 		    g->mlen + suffix - mindex);
2201 
2202         ssuffix = pmatches[suffix];
2203         while (suffix < g->mlen) {
2204                 while (suffix <= ssuffix && suffix < g->mlen) {
2205                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
2206 			    g->mlen + ssuffix - suffix);
2207                         suffix++;
2208                 }
2209 		if (suffix < g->mlen)
2210                 	ssuffix = pmatches[ssuffix];
2211         }
2212 
2213 	free(pmatches);
2214 }
2215 
2216 /*
2217  - pluscount - count + nesting
2218  == static sopno pluscount(struct parse *p, struct re_guts *g);
2219  */
2220 static sopno			/* nesting depth */
2221 pluscount(struct parse *p, struct re_guts *g)
2222 {
2223 	sop *scan;
2224 	sop s;
2225 	sopno plusnest = 0;
2226 	sopno maxnest = 0;
2227 
2228 	if (p->error != 0)
2229 		return(0);	/* there may not be an OEND */
2230 
2231 	scan = g->strip + 1;
2232 	do {
2233 		s = *scan++;
2234 		switch (OP(s)) {
2235 		case OPLUS_:
2236 			plusnest++;
2237 			break;
2238 		case O_PLUS:
2239 			if (plusnest > maxnest)
2240 				maxnest = plusnest;
2241 			plusnest--;
2242 			break;
2243 		}
2244 	} while (OP(s) != OEND);
2245 	if (plusnest != 0)
2246 		g->iflags |= BAD;
2247 	return(maxnest);
2248 }
2249