1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Mike Olson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)bt_split.c 8.10 (Berkeley) 1/9/95";
37 #endif /* LIBC_SCCS and not lint */
38 #include <sys/param.h>
39
40 #include <limits.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44
45 #include <db.h>
46 #include "btree.h"
47
48 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
49 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
50 static int bt_preserve(BTREE *, pgno_t);
51 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
52 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
53 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
54 static recno_t rec_total(PAGE *);
55
56 #ifdef STATISTICS
57 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
58 #endif
59
60 /*
61 * __BT_SPLIT -- Split the tree.
62 *
63 * Parameters:
64 * t: tree
65 * sp: page to split
66 * key: key to insert
67 * data: data to insert
68 * flags: BIGKEY/BIGDATA flags
69 * ilen: insert length
70 * skip: index to leave open
71 *
72 * Returns:
73 * RET_ERROR, RET_SUCCESS
74 */
75 int
__bt_split(BTREE * t,PAGE * sp,const DBT * key,const DBT * data,int flags,size_t ilen,u_int32_t argskip)76 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
77 size_t ilen, u_int32_t argskip)
78 {
79 BINTERNAL *bi;
80 BLEAF *bl, *tbl;
81 DBT a, b;
82 EPGNO *parent;
83 PAGE *h, *l, *r, *lchild, *rchild;
84 indx_t nxtindex;
85 u_int16_t skip;
86 u_int32_t n, nbytes, nksize;
87 int parentsplit;
88 char *dest;
89
90 /*
91 * Split the page into two pages, l and r. The split routines return
92 * a pointer to the page into which the key should be inserted and with
93 * skip set to the offset which should be used. Additionally, l and r
94 * are pinned.
95 */
96 skip = argskip;
97 h = sp->pgno == P_ROOT ?
98 bt_root(t, sp, &l, &r, &skip, ilen) :
99 bt_page(t, sp, &l, &r, &skip, ilen);
100 if (h == NULL)
101 return (RET_ERROR);
102
103 /*
104 * Insert the new key/data pair into the leaf page. (Key inserts
105 * always cause a leaf page to split first.)
106 */
107 h->linp[skip] = h->upper -= ilen;
108 dest = (char *)h + h->upper;
109 if (F_ISSET(t, R_RECNO))
110 WR_RLEAF(dest, data, flags)
111 else
112 WR_BLEAF(dest, key, data, flags)
113
114 /* If the root page was split, make it look right. */
115 if (sp->pgno == P_ROOT &&
116 (F_ISSET(t, R_RECNO) ?
117 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
118 goto err2;
119
120 /*
121 * Now we walk the parent page stack -- a LIFO stack of the pages that
122 * were traversed when we searched for the page that split. Each stack
123 * entry is a page number and a page index offset. The offset is for
124 * the page traversed on the search. We've just split a page, so we
125 * have to insert a new key into the parent page.
126 *
127 * If the insert into the parent page causes it to split, may have to
128 * continue splitting all the way up the tree. We stop if the root
129 * splits or the page inserted into didn't have to split to hold the
130 * new key. Some algorithms replace the key for the old page as well
131 * as the new page. We don't, as there's no reason to believe that the
132 * first key on the old page is any better than the key we have, and,
133 * in the case of a key being placed at index 0 causing the split, the
134 * key is unavailable.
135 *
136 * There are a maximum of 5 pages pinned at any time. We keep the left
137 * and right pages pinned while working on the parent. The 5 are the
138 * two children, left parent and right parent (when the parent splits)
139 * and the root page or the overflow key page when calling bt_preserve.
140 * This code must make sure that all pins are released other than the
141 * root page or overflow page which is unlocked elsewhere.
142 */
143 while ((parent = BT_POP(t)) != NULL) {
144 lchild = l;
145 rchild = r;
146
147 /* Get the parent page. */
148 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
149 goto err2;
150
151 /*
152 * The new key goes ONE AFTER the index, because the split
153 * was to the right.
154 */
155 skip = parent->index + 1;
156
157 /*
158 * Calculate the space needed on the parent page.
159 *
160 * Prefix trees: space hack when inserting into BINTERNAL
161 * pages. Retain only what's needed to distinguish between
162 * the new entry and the LAST entry on the page to its left.
163 * If the keys compare equal, retain the entire key. Note,
164 * we don't touch overflow keys, and the entire key must be
165 * retained for the next-to-left most key on the leftmost
166 * page of each level, or the search will fail. Applicable
167 * ONLY to internal pages that have leaf pages as children.
168 * Further reduction of the key between pairs of internal
169 * pages loses too much information.
170 */
171 switch (rchild->flags & P_TYPE) {
172 case P_BINTERNAL:
173 bi = GETBINTERNAL(rchild, 0);
174 nbytes = NBINTERNAL(bi->ksize);
175 break;
176 case P_BLEAF:
177 bl = GETBLEAF(rchild, 0);
178 nbytes = NBINTERNAL(bl->ksize);
179 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
180 (h->prevpg != P_INVALID || skip > 1)) {
181 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
182 a.size = tbl->ksize;
183 a.data = tbl->bytes;
184 b.size = bl->ksize;
185 b.data = bl->bytes;
186 nksize = t->bt_pfx(&a, &b);
187 n = NBINTERNAL(nksize);
188 if (n < nbytes) {
189 #ifdef STATISTICS
190 bt_pfxsaved += nbytes - n;
191 #endif
192 nbytes = n;
193 } else
194 nksize = 0;
195 } else
196 nksize = 0;
197 break;
198 case P_RINTERNAL:
199 case P_RLEAF:
200 nbytes = NRINTERNAL;
201 break;
202 default:
203 abort();
204 }
205
206 /* Split the parent page if necessary or shift the indices. */
207 if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) {
208 sp = h;
209 h = h->pgno == P_ROOT ?
210 bt_root(t, h, &l, &r, &skip, nbytes) :
211 bt_page(t, h, &l, &r, &skip, nbytes);
212 if (h == NULL)
213 goto err1;
214 parentsplit = 1;
215 } else {
216 if (skip < (nxtindex = NEXTINDEX(h)))
217 memmove(h->linp + skip + 1, h->linp + skip,
218 (nxtindex - skip) * sizeof(indx_t));
219 h->lower += sizeof(indx_t);
220 parentsplit = 0;
221 }
222
223 /* Insert the key into the parent page. */
224 switch (rchild->flags & P_TYPE) {
225 case P_BINTERNAL:
226 h->linp[skip] = h->upper -= nbytes;
227 dest = (char *)h + h->linp[skip];
228 memmove(dest, bi, nbytes);
229 ((BINTERNAL *)dest)->pgno = rchild->pgno;
230 break;
231 case P_BLEAF:
232 h->linp[skip] = h->upper -= nbytes;
233 dest = (char *)h + h->linp[skip];
234 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
235 rchild->pgno, bl->flags & P_BIGKEY);
236 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
237 if (bl->flags & P_BIGKEY) {
238 pgno_t pgno;
239 memcpy(&pgno, bl->bytes, sizeof(pgno));
240 if (bt_preserve(t, pgno) == RET_ERROR)
241 goto err1;
242 }
243 break;
244 case P_RINTERNAL:
245 /*
246 * Update the left page count. If split
247 * added at index 0, fix the correct page.
248 */
249 if (skip > 0)
250 dest = (char *)h + h->linp[skip - 1];
251 else
252 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
253 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
254 ((RINTERNAL *)dest)->pgno = lchild->pgno;
255
256 /* Update the right page count. */
257 h->linp[skip] = h->upper -= nbytes;
258 dest = (char *)h + h->linp[skip];
259 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
260 ((RINTERNAL *)dest)->pgno = rchild->pgno;
261 break;
262 case P_RLEAF:
263 /*
264 * Update the left page count. If split
265 * added at index 0, fix the correct page.
266 */
267 if (skip > 0)
268 dest = (char *)h + h->linp[skip - 1];
269 else
270 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
271 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
272 ((RINTERNAL *)dest)->pgno = lchild->pgno;
273
274 /* Update the right page count. */
275 h->linp[skip] = h->upper -= nbytes;
276 dest = (char *)h + h->linp[skip];
277 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
278 ((RINTERNAL *)dest)->pgno = rchild->pgno;
279 break;
280 default:
281 abort();
282 }
283
284 /* Unpin the held pages. */
285 if (!parentsplit) {
286 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
287 break;
288 }
289
290 /* If the root page was split, make it look right. */
291 if (sp->pgno == P_ROOT &&
292 (F_ISSET(t, R_RECNO) ?
293 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
294 goto err1;
295
296 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
297 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
298 }
299
300 /* Unpin the held pages. */
301 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
302 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
303
304 /* Clear any pages left on the stack. */
305 return (RET_SUCCESS);
306
307 /*
308 * If something fails in the above loop we were already walking back
309 * up the tree and the tree is now inconsistent. Nothing much we can
310 * do about it but release any memory we're holding.
311 */
312 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
313 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
314
315 err2: mpool_put(t->bt_mp, l, 0);
316 mpool_put(t->bt_mp, r, 0);
317 __dbpanic(t->bt_dbp);
318 return (RET_ERROR);
319 }
320
321 /*
322 * BT_PAGE -- Split a non-root page of a btree.
323 *
324 * Parameters:
325 * t: tree
326 * h: root page
327 * lp: pointer to left page pointer
328 * rp: pointer to right page pointer
329 * skip: pointer to index to leave open
330 * ilen: insert length
331 *
332 * Returns:
333 * Pointer to page in which to insert or NULL on error.
334 */
335 static PAGE *
bt_page(BTREE * t,PAGE * h,PAGE ** lp,PAGE ** rp,indx_t * skip,size_t ilen)336 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
337 {
338 PAGE *l, *r, *tp;
339 pgno_t npg;
340
341 #ifdef STATISTICS
342 ++bt_split;
343 #endif
344 /* Put the new right page for the split into place. */
345 if ((r = __bt_new(t, &npg)) == NULL)
346 return (NULL);
347 r->pgno = npg;
348 r->lower = BTDATAOFF;
349 r->upper = t->bt_psize;
350 r->nextpg = h->nextpg;
351 r->prevpg = h->pgno;
352 r->flags = h->flags & P_TYPE;
353
354 /*
355 * If we're splitting the last page on a level because we're appending
356 * a key to it (skip is NEXTINDEX()), it's likely that the data is
357 * sorted. Adding an empty page on the side of the level is less work
358 * and can push the fill factor much higher than normal. If we're
359 * wrong it's no big deal, we'll just do the split the right way next
360 * time. It may look like it's equally easy to do a similar hack for
361 * reverse sorted data, that is, split the tree left, but it's not.
362 * Don't even try.
363 */
364 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
365 #ifdef STATISTICS
366 ++bt_sortsplit;
367 #endif
368 h->nextpg = r->pgno;
369 r->lower = BTDATAOFF + sizeof(indx_t);
370 *skip = 0;
371 *lp = h;
372 *rp = r;
373 return (r);
374 }
375
376 /* Put the new left page for the split into place. */
377 if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) {
378 mpool_put(t->bt_mp, r, 0);
379 return (NULL);
380 }
381 l->pgno = h->pgno;
382 l->nextpg = r->pgno;
383 l->prevpg = h->prevpg;
384 l->lower = BTDATAOFF;
385 l->upper = t->bt_psize;
386 l->flags = h->flags & P_TYPE;
387
388 /* Fix up the previous pointer of the page after the split page. */
389 if (h->nextpg != P_INVALID) {
390 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
391 free(l);
392 /* XXX mpool_free(t->bt_mp, r->pgno); */
393 return (NULL);
394 }
395 tp->prevpg = r->pgno;
396 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
397 }
398
399 /*
400 * Split right. The key/data pairs aren't sorted in the btree page so
401 * it's simpler to copy the data from the split page onto two new pages
402 * instead of copying half the data to the right page and compacting
403 * the left page in place. Since the left page can't change, we have
404 * to swap the original and the allocated left page after the split.
405 */
406 tp = bt_psplit(t, h, l, r, skip, ilen);
407
408 /* Move the new left page onto the old left page. */
409 memmove(h, l, t->bt_psize);
410 if (tp == l)
411 tp = h;
412 free(l);
413
414 *lp = h;
415 *rp = r;
416 return (tp);
417 }
418
419 /*
420 * BT_ROOT -- Split the root page of a btree.
421 *
422 * Parameters:
423 * t: tree
424 * h: root page
425 * lp: pointer to left page pointer
426 * rp: pointer to right page pointer
427 * skip: pointer to index to leave open
428 * ilen: insert length
429 *
430 * Returns:
431 * Pointer to page in which to insert or NULL on error.
432 */
433 static PAGE *
bt_root(BTREE * t,PAGE * h,PAGE ** lp,PAGE ** rp,indx_t * skip,size_t ilen)434 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
435 {
436 PAGE *l, *r, *tp;
437 pgno_t lnpg, rnpg;
438
439 #ifdef STATISTICS
440 ++bt_split;
441 ++bt_rootsplit;
442 #endif
443 /* Put the new left and right pages for the split into place. */
444 if ((l = __bt_new(t, &lnpg)) == NULL ||
445 (r = __bt_new(t, &rnpg)) == NULL)
446 return (NULL);
447 l->pgno = lnpg;
448 r->pgno = rnpg;
449 l->nextpg = r->pgno;
450 r->prevpg = l->pgno;
451 l->prevpg = r->nextpg = P_INVALID;
452 l->lower = r->lower = BTDATAOFF;
453 l->upper = r->upper = t->bt_psize;
454 l->flags = r->flags = h->flags & P_TYPE;
455
456 /* Split the root page. */
457 tp = bt_psplit(t, h, l, r, skip, ilen);
458
459 *lp = l;
460 *rp = r;
461 return (tp);
462 }
463
464 /*
465 * BT_RROOT -- Fix up the recno root page after it has been split.
466 *
467 * Parameters:
468 * t: tree
469 * h: root page
470 * l: left page
471 * r: right page
472 *
473 * Returns:
474 * RET_ERROR, RET_SUCCESS
475 */
476 static int
bt_rroot(BTREE * t,PAGE * h,PAGE * l,PAGE * r)477 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
478 {
479 char *dest;
480
481 /* Insert the left and right keys, set the header information. */
482 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
483 dest = (char *)h + h->upper;
484 WR_RINTERNAL(dest,
485 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
486
487 __PAST_END(h->linp, 1) = h->upper -= NRINTERNAL;
488 dest = (char *)h + h->upper;
489 WR_RINTERNAL(dest,
490 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
491
492 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
493
494 /* Unpin the root page, set to recno internal page. */
495 h->flags &= ~P_TYPE;
496 h->flags |= P_RINTERNAL;
497 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
498
499 return (RET_SUCCESS);
500 }
501
502 /*
503 * BT_BROOT -- Fix up the btree root page after it has been split.
504 *
505 * Parameters:
506 * t: tree
507 * h: root page
508 * l: left page
509 * r: right page
510 *
511 * Returns:
512 * RET_ERROR, RET_SUCCESS
513 */
514 static int
bt_broot(BTREE * t,PAGE * h,PAGE * l,PAGE * r)515 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
516 {
517 BINTERNAL *bi;
518 BLEAF *bl;
519 u_int32_t nbytes;
520 char *dest;
521
522 /*
523 * If the root page was a leaf page, change it into an internal page.
524 * We copy the key we split on (but not the key's data, in the case of
525 * a leaf page) to the new root page.
526 *
527 * The btree comparison code guarantees that the left-most key on any
528 * level of the tree is never used, so it doesn't need to be filled in.
529 */
530 nbytes = NBINTERNAL(0);
531 h->linp[0] = h->upper = t->bt_psize - nbytes;
532 dest = (char *)h + h->upper;
533 WR_BINTERNAL(dest, 0, l->pgno, 0);
534
535 switch (h->flags & P_TYPE) {
536 case P_BLEAF:
537 bl = GETBLEAF(r, 0);
538 nbytes = NBINTERNAL(bl->ksize);
539 __PAST_END(h->linp, 1) = h->upper -= nbytes;
540 dest = (char *)h + h->upper;
541 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
542 memmove(dest, bl->bytes, bl->ksize);
543
544 /*
545 * If the key is on an overflow page, mark the overflow chain
546 * so it isn't deleted when the leaf copy of the key is deleted.
547 */
548 if (bl->flags & P_BIGKEY) {
549 pgno_t pgno;
550 memcpy(&pgno, bl->bytes, sizeof(pgno));
551 if (bt_preserve(t, pgno) == RET_ERROR)
552 return (RET_ERROR);
553 }
554 break;
555 case P_BINTERNAL:
556 bi = GETBINTERNAL(r, 0);
557 nbytes = NBINTERNAL(bi->ksize);
558 __PAST_END(h->linp, 1) = h->upper -= nbytes;
559 dest = (char *)h + h->upper;
560 memmove(dest, bi, nbytes);
561 ((BINTERNAL *)dest)->pgno = r->pgno;
562 break;
563 default:
564 abort();
565 }
566
567 /* There are two keys on the page. */
568 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
569
570 /* Unpin the root page, set to btree internal page. */
571 h->flags &= ~P_TYPE;
572 h->flags |= P_BINTERNAL;
573 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
574
575 return (RET_SUCCESS);
576 }
577
578 /*
579 * BT_PSPLIT -- Do the real work of splitting the page.
580 *
581 * Parameters:
582 * t: tree
583 * h: page to be split
584 * l: page to put lower half of data
585 * r: page to put upper half of data
586 * pskip: pointer to index to leave open
587 * ilen: insert length
588 *
589 * Returns:
590 * Pointer to page in which to insert.
591 */
592 static PAGE *
bt_psplit(BTREE * t,PAGE * h,PAGE * l,PAGE * r,indx_t * pskip,size_t ilen)593 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
594 {
595 BINTERNAL *bi;
596 BLEAF *bl;
597 CURSOR *c;
598 RLEAF *rl;
599 PAGE *rval;
600 void *src;
601 indx_t full, half, nxt, off, skip, top, used;
602 u_int32_t nbytes;
603 int bigkeycnt, isbigkey;
604
605 /*
606 * Split the data to the left and right pages. Leave the skip index
607 * open. Additionally, make some effort not to split on an overflow
608 * key. This makes internal page processing faster and can save
609 * space as overflow keys used by internal pages are never deleted.
610 */
611 bigkeycnt = 0;
612 skip = *pskip;
613 full = t->bt_psize - BTDATAOFF;
614 half = full / 2;
615 used = 0;
616 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
617 if (skip == off) {
618 nbytes = ilen;
619 isbigkey = 0; /* XXX: not really known. */
620 } else
621 switch (h->flags & P_TYPE) {
622 case P_BINTERNAL:
623 src = bi = GETBINTERNAL(h, nxt);
624 nbytes = NBINTERNAL(bi->ksize);
625 isbigkey = bi->flags & P_BIGKEY;
626 break;
627 case P_BLEAF:
628 src = bl = GETBLEAF(h, nxt);
629 nbytes = NBLEAF(bl);
630 isbigkey = bl->flags & P_BIGKEY;
631 break;
632 case P_RINTERNAL:
633 src = GETRINTERNAL(h, nxt);
634 nbytes = NRINTERNAL;
635 isbigkey = 0;
636 break;
637 case P_RLEAF:
638 src = rl = GETRLEAF(h, nxt);
639 nbytes = NRLEAF(rl);
640 isbigkey = 0;
641 break;
642 default:
643 abort();
644 }
645
646 /*
647 * If the key/data pairs are substantial fractions of the max
648 * possible size for the page, it's possible to get situations
649 * where we decide to try and copy too much onto the left page.
650 * Make sure that doesn't happen.
651 */
652 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
653 nxt == top - 1) {
654 --off;
655 break;
656 }
657
658 /* Copy the key/data pair, if not the skipped index. */
659 if (skip != off) {
660 ++nxt;
661
662 l->linp[off] = l->upper -= nbytes;
663 memmove((char *)l + l->upper, src, nbytes);
664 }
665
666 used += nbytes + sizeof(indx_t);
667 if (used >= half) {
668 if (!isbigkey || bigkeycnt == 3)
669 break;
670 else
671 ++bigkeycnt;
672 }
673 }
674
675 /*
676 * Off is the last offset that's valid for the left page.
677 * Nxt is the first offset to be placed on the right page.
678 */
679 l->lower += (off + 1) * sizeof(indx_t);
680
681 /*
682 * If splitting the page that the cursor was on, the cursor has to be
683 * adjusted to point to the same record as before the split. If the
684 * cursor is at or past the skipped slot, the cursor is incremented by
685 * one. If the cursor is on the right page, it is decremented by the
686 * number of records split to the left page.
687 */
688 c = &t->bt_cursor;
689 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
690 if (c->pg.index >= skip)
691 ++c->pg.index;
692 if (c->pg.index < nxt) /* Left page. */
693 c->pg.pgno = l->pgno;
694 else { /* Right page. */
695 c->pg.pgno = r->pgno;
696 c->pg.index -= nxt;
697 }
698 }
699
700 /*
701 * If the skipped index was on the left page, just return that page.
702 * Otherwise, adjust the skip index to reflect the new position on
703 * the right page.
704 */
705 if (skip <= off) {
706 skip = MAX_PAGE_OFFSET;
707 rval = l;
708 } else {
709 rval = r;
710 *pskip -= nxt;
711 }
712
713 for (off = 0; nxt < top; ++off) {
714 if (skip == nxt) {
715 ++off;
716 skip = MAX_PAGE_OFFSET;
717 }
718 switch (h->flags & P_TYPE) {
719 case P_BINTERNAL:
720 src = bi = GETBINTERNAL(h, nxt);
721 nbytes = NBINTERNAL(bi->ksize);
722 break;
723 case P_BLEAF:
724 src = bl = GETBLEAF(h, nxt);
725 nbytes = NBLEAF(bl);
726 break;
727 case P_RINTERNAL:
728 src = GETRINTERNAL(h, nxt);
729 nbytes = NRINTERNAL;
730 break;
731 case P_RLEAF:
732 src = rl = GETRLEAF(h, nxt);
733 nbytes = NRLEAF(rl);
734 break;
735 default:
736 abort();
737 }
738 ++nxt;
739 r->linp[off] = r->upper -= nbytes;
740 memmove((char *)r + r->upper, src, nbytes);
741 }
742 r->lower += off * sizeof(indx_t);
743
744 /* If the key is being appended to the page, adjust the index. */
745 if (skip == top)
746 r->lower += sizeof(indx_t);
747
748 return (rval);
749 }
750
751 /*
752 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
753 *
754 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
755 * record that references them gets deleted. Chains pointed to by internal
756 * pages never get deleted. This routine marks a chain as pointed to by an
757 * internal page.
758 *
759 * Parameters:
760 * t: tree
761 * pg: page number of first page in the chain.
762 *
763 * Returns:
764 * RET_SUCCESS, RET_ERROR.
765 */
766 static int
bt_preserve(BTREE * t,pgno_t pg)767 bt_preserve(BTREE *t, pgno_t pg)
768 {
769 PAGE *h;
770
771 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
772 return (RET_ERROR);
773 h->flags |= P_PRESERVE;
774 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
775 return (RET_SUCCESS);
776 }
777
778 /*
779 * REC_TOTAL -- Return the number of recno entries below a page.
780 *
781 * Parameters:
782 * h: page
783 *
784 * Returns:
785 * The number of recno entries below a page.
786 *
787 * XXX
788 * These values could be set by the bt_psplit routine. The problem is that the
789 * entry has to be popped off of the stack etc. or the values have to be passed
790 * all the way back to bt_split/bt_rroot and it's not very clean.
791 */
792 static recno_t
rec_total(PAGE * h)793 rec_total(PAGE *h)
794 {
795 recno_t recs;
796 indx_t nxt, top;
797
798 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
799 recs += GETRINTERNAL(h, nxt)->nrecs;
800 return (recs);
801 }
802