1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/UniformityAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "function-lowering-info"
42
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47 if (I->use_empty()) return false;
48 if (isa<PHINode>(I)) return true;
49 const BasicBlock *BB = I->getParent();
50 for (const User *U : I->users())
51 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52 return true;
53
54 return false;
55 }
56
getPreferredExtendForValue(const Instruction * I)57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58 // For the users of the source value being used for compare instruction, if
59 // the number of signed predicate is greater than unsigned predicate, we
60 // prefer to use SIGN_EXTEND.
61 //
62 // With this optimization, we would be able to reduce some redundant sign or
63 // zero extension instruction, and eventually more machine CSE opportunities
64 // can be exposed.
65 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67 for (const Use &U : I->uses()) {
68 if (const auto *CI = dyn_cast<CmpInst>(U.getUser())) {
69 NumOfSigned += CI->isSigned();
70 NumOfUnsigned += CI->isUnsigned();
71 }
72 if (const auto *CallI = dyn_cast<CallBase>(U.getUser())) {
73 if (!CallI->isArgOperand(&U))
74 continue;
75 unsigned ArgNo = CallI->getArgOperandNo(&U);
76 NumOfUnsigned += CallI->paramHasAttr(ArgNo, Attribute::ZExt);
77 NumOfSigned += CallI->paramHasAttr(ArgNo, Attribute::SExt);
78 }
79 }
80 if (NumOfSigned > NumOfUnsigned)
81 ExtendKind = ISD::SIGN_EXTEND;
82
83 return ExtendKind;
84 }
85
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)86 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
87 SelectionDAG *DAG) {
88 Fn = &fn;
89 MF = &mf;
90 TLI = MF->getSubtarget().getTargetLowering();
91 RegInfo = &MF->getRegInfo();
92 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
93 UA = DAG->getUniformityInfo();
94
95 // Check whether the function can return without sret-demotion.
96 SmallVector<ISD::OutputArg, 4> Outs;
97 CallingConv::ID CC = Fn->getCallingConv();
98
99 GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
100 mf.getDataLayout());
101 CanLowerReturn =
102 TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
103
104 // If this personality uses funclets, we need to do a bit more work.
105 DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
106 EHPersonality Personality = classifyEHPersonality(
107 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
108 if (isFuncletEHPersonality(Personality)) {
109 // Calculate state numbers if we haven't already.
110 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
111 if (Personality == EHPersonality::MSVC_CXX)
112 calculateWinCXXEHStateNumbers(&fn, EHInfo);
113 else if (isAsynchronousEHPersonality(Personality))
114 calculateSEHStateNumbers(&fn, EHInfo);
115 else if (Personality == EHPersonality::CoreCLR)
116 calculateClrEHStateNumbers(&fn, EHInfo);
117
118 // Map all BB references in the WinEH data to MBBs.
119 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
120 for (WinEHHandlerType &H : TBME.HandlerArray) {
121 if (const AllocaInst *AI = H.CatchObj.Alloca)
122 CatchObjects.insert({AI, {}}).first->second.push_back(
123 &H.CatchObj.FrameIndex);
124 else
125 H.CatchObj.FrameIndex = INT_MAX;
126 }
127 }
128 }
129
130 // Initialize the mapping of values to registers. This is only set up for
131 // instruction values that are used outside of the block that defines
132 // them.
133 const Align StackAlign = TFI->getStackAlign();
134 for (const BasicBlock &BB : *Fn) {
135 for (const Instruction &I : BB) {
136 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
137 Type *Ty = AI->getAllocatedType();
138 Align Alignment = AI->getAlign();
139
140 // Static allocas can be folded into the initial stack frame
141 // adjustment. For targets that don't realign the stack, don't
142 // do this if there is an extra alignment requirement.
143 if (AI->isStaticAlloca() &&
144 (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
145 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
146 uint64_t TySize =
147 MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue();
148
149 TySize *= CUI->getZExtValue(); // Get total allocated size.
150 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151 int FrameIndex = INT_MAX;
152 auto Iter = CatchObjects.find(AI);
153 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154 FrameIndex = MF->getFrameInfo().CreateFixedObject(
155 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156 MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
157 } else {
158 FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
159 false, AI);
160 }
161
162 // Scalable vectors and structures that contain scalable vectors may
163 // need a special StackID to distinguish them from other (fixed size)
164 // stack objects.
165 if (Ty->isScalableTy())
166 MF->getFrameInfo().setStackID(FrameIndex,
167 TFI->getStackIDForScalableVectors());
168
169 StaticAllocaMap[AI] = FrameIndex;
170 // Update the catch handler information.
171 if (Iter != CatchObjects.end()) {
172 for (int *CatchObjPtr : Iter->second)
173 *CatchObjPtr = FrameIndex;
174 }
175 } else {
176 // FIXME: Overaligned static allocas should be grouped into
177 // a single dynamic allocation instead of using a separate
178 // stack allocation for each one.
179 // Inform the Frame Information that we have variable-sized objects.
180 MF->getFrameInfo().CreateVariableSizedObject(
181 Alignment <= StackAlign ? Align(1) : Alignment, AI);
182 }
183 } else if (auto *Call = dyn_cast<CallBase>(&I)) {
184 // Look for inline asm that clobbers the SP register.
185 if (Call->isInlineAsm()) {
186 Register SP = TLI->getStackPointerRegisterToSaveRestore();
187 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
188 std::vector<TargetLowering::AsmOperandInfo> Ops =
189 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
190 *Call);
191 for (TargetLowering::AsmOperandInfo &Op : Ops) {
192 if (Op.Type == InlineAsm::isClobber) {
193 // Clobbers don't have SDValue operands, hence SDValue().
194 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
195 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
196 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
197 Op.ConstraintVT);
198 if (PhysReg.first == SP)
199 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
200 }
201 }
202 }
203 // Look for calls to the @llvm.va_start intrinsic. We can omit some
204 // prologue boilerplate for variadic functions that don't examine their
205 // arguments.
206 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
207 if (II->getIntrinsicID() == Intrinsic::vastart)
208 MF->getFrameInfo().setHasVAStart(true);
209 }
210
211 // If we have a musttail call in a variadic function, we need to ensure
212 // we forward implicit register parameters.
213 if (const auto *CI = dyn_cast<CallInst>(&I)) {
214 if (CI->isMustTailCall() && Fn->isVarArg())
215 MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
216 }
217 }
218
219 // Mark values used outside their block as exported, by allocating
220 // a virtual register for them.
221 if (isUsedOutsideOfDefiningBlock(&I))
222 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
223 InitializeRegForValue(&I);
224
225 // Decide the preferred extend type for a value.
226 PreferredExtendType[&I] = getPreferredExtendForValue(&I);
227 }
228 }
229
230 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
231 // also creates the initial PHI MachineInstrs, though none of the input
232 // operands are populated.
233 for (const BasicBlock &BB : *Fn) {
234 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
235 // are really data, and no instructions can live here.
236 if (BB.isEHPad()) {
237 const Instruction *PadInst = BB.getFirstNonPHI();
238 // If this is a non-landingpad EH pad, mark this function as using
239 // funclets.
240 // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
241 // setting this in such cases in order to improve frame layout.
242 if (!isa<LandingPadInst>(PadInst)) {
243 MF->setHasEHScopes(true);
244 MF->setHasEHFunclets(true);
245 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
246 }
247 if (isa<CatchSwitchInst>(PadInst)) {
248 assert(&*BB.begin() == PadInst &&
249 "WinEHPrepare failed to remove PHIs from imaginary BBs");
250 continue;
251 }
252 if (isa<FuncletPadInst>(PadInst))
253 assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
254 }
255
256 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
257 MBBMap[&BB] = MBB;
258 MF->push_back(MBB);
259
260 // Transfer the address-taken flag. This is necessary because there could
261 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
262 // the first one should be marked.
263 if (BB.hasAddressTaken())
264 MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
265
266 // Mark landing pad blocks.
267 if (BB.isEHPad())
268 MBB->setIsEHPad();
269
270 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
271 // appropriate.
272 for (const PHINode &PN : BB.phis()) {
273 if (PN.use_empty())
274 continue;
275
276 // Skip empty types
277 if (PN.getType()->isEmptyTy())
278 continue;
279
280 DebugLoc DL = PN.getDebugLoc();
281 unsigned PHIReg = ValueMap[&PN];
282 assert(PHIReg && "PHI node does not have an assigned virtual register!");
283
284 SmallVector<EVT, 4> ValueVTs;
285 ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
286 for (EVT VT : ValueVTs) {
287 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
288 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
289 for (unsigned i = 0; i != NumRegisters; ++i)
290 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
291 PHIReg += NumRegisters;
292 }
293 }
294 }
295
296 if (isFuncletEHPersonality(Personality)) {
297 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
298
299 // Map all BB references in the WinEH data to MBBs.
300 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
301 for (WinEHHandlerType &H : TBME.HandlerArray) {
302 if (H.Handler)
303 H.Handler = MBBMap[cast<const BasicBlock *>(H.Handler)];
304 }
305 }
306 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
307 if (UME.Cleanup)
308 UME.Cleanup = MBBMap[cast<const BasicBlock *>(UME.Cleanup)];
309 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
310 const auto *BB = cast<const BasicBlock *>(UME.Handler);
311 UME.Handler = MBBMap[BB];
312 }
313 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
314 const auto *BB = cast<const BasicBlock *>(CME.Handler);
315 CME.Handler = MBBMap[BB];
316 }
317 } else if (Personality == EHPersonality::Wasm_CXX) {
318 WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
319 calculateWasmEHInfo(&fn, EHInfo);
320
321 // Map all BB references in the Wasm EH data to MBBs.
322 DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
323 for (auto &KV : EHInfo.SrcToUnwindDest) {
324 const auto *Src = cast<const BasicBlock *>(KV.first);
325 const auto *Dest = cast<const BasicBlock *>(KV.second);
326 SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
327 }
328 EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
329 DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
330 for (auto &KV : EHInfo.UnwindDestToSrcs) {
331 const auto *Dest = cast<const BasicBlock *>(KV.first);
332 UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
333 for (const auto P : KV.second)
334 UnwindDestToSrcs[MBBMap[Dest]].insert(
335 MBBMap[cast<const BasicBlock *>(P)]);
336 }
337 EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
338 }
339 }
340
341 /// clear - Clear out all the function-specific state. This returns this
342 /// FunctionLoweringInfo to an empty state, ready to be used for a
343 /// different function.
clear()344 void FunctionLoweringInfo::clear() {
345 MBBMap.clear();
346 ValueMap.clear();
347 VirtReg2Value.clear();
348 StaticAllocaMap.clear();
349 LiveOutRegInfo.clear();
350 VisitedBBs.clear();
351 ArgDbgValues.clear();
352 DescribedArgs.clear();
353 ByValArgFrameIndexMap.clear();
354 RegFixups.clear();
355 RegsWithFixups.clear();
356 StatepointStackSlots.clear();
357 StatepointRelocationMaps.clear();
358 PreferredExtendType.clear();
359 PreprocessedDbgDeclares.clear();
360 PreprocessedDPVDeclares.clear();
361 }
362
363 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT,bool isDivergent)364 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
365 return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent));
366 }
367
368 /// CreateRegs - Allocate the appropriate number of virtual registers of
369 /// the correctly promoted or expanded types. Assign these registers
370 /// consecutive vreg numbers and return the first assigned number.
371 ///
372 /// In the case that the given value has struct or array type, this function
373 /// will assign registers for each member or element.
374 ///
CreateRegs(Type * Ty,bool isDivergent)375 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
376 SmallVector<EVT, 4> ValueVTs;
377 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
378
379 Register FirstReg;
380 for (EVT ValueVT : ValueVTs) {
381 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
382
383 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
384 for (unsigned i = 0; i != NumRegs; ++i) {
385 Register R = CreateReg(RegisterVT, isDivergent);
386 if (!FirstReg) FirstReg = R;
387 }
388 }
389 return FirstReg;
390 }
391
CreateRegs(const Value * V)392 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
393 return CreateRegs(V->getType(), UA && UA->isDivergent(V) &&
394 !TLI->requiresUniformRegister(*MF, V));
395 }
396
397 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
398 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
399 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
400 /// the larger bit width by zero extension. The bit width must be no smaller
401 /// than the LiveOutInfo's existing bit width.
402 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(Register Reg,unsigned BitWidth)403 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
404 if (!LiveOutRegInfo.inBounds(Reg))
405 return nullptr;
406
407 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
408 if (!LOI->IsValid)
409 return nullptr;
410
411 if (BitWidth > LOI->Known.getBitWidth()) {
412 LOI->NumSignBits = 1;
413 LOI->Known = LOI->Known.anyext(BitWidth);
414 }
415
416 return LOI;
417 }
418
419 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
420 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)421 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
422 Type *Ty = PN->getType();
423 if (!Ty->isIntegerTy() || Ty->isVectorTy())
424 return;
425
426 SmallVector<EVT, 1> ValueVTs;
427 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
428 assert(ValueVTs.size() == 1 &&
429 "PHIs with non-vector integer types should have a single VT.");
430 EVT IntVT = ValueVTs[0];
431
432 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
433 return;
434 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
435 unsigned BitWidth = IntVT.getSizeInBits();
436
437 auto It = ValueMap.find(PN);
438 if (It == ValueMap.end())
439 return;
440
441 Register DestReg = It->second;
442 if (DestReg == 0)
443 return;
444 assert(DestReg.isVirtual() && "Expected a virtual reg");
445 LiveOutRegInfo.grow(DestReg);
446 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
447
448 Value *V = PN->getIncomingValue(0);
449 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
450 DestLOI.NumSignBits = 1;
451 DestLOI.Known = KnownBits(BitWidth);
452 return;
453 }
454
455 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
456 APInt Val;
457 if (TLI->signExtendConstant(CI))
458 Val = CI->getValue().sext(BitWidth);
459 else
460 Val = CI->getValue().zext(BitWidth);
461 DestLOI.NumSignBits = Val.getNumSignBits();
462 DestLOI.Known = KnownBits::makeConstant(Val);
463 } else {
464 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
465 "CopyToReg node was created.");
466 Register SrcReg = ValueMap[V];
467 if (!SrcReg.isVirtual()) {
468 DestLOI.IsValid = false;
469 return;
470 }
471 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
472 if (!SrcLOI) {
473 DestLOI.IsValid = false;
474 return;
475 }
476 DestLOI = *SrcLOI;
477 }
478
479 assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
480 DestLOI.Known.One.getBitWidth() == BitWidth &&
481 "Masks should have the same bit width as the type.");
482
483 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
484 Value *V = PN->getIncomingValue(i);
485 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
486 DestLOI.NumSignBits = 1;
487 DestLOI.Known = KnownBits(BitWidth);
488 return;
489 }
490
491 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
492 APInt Val;
493 if (TLI->signExtendConstant(CI))
494 Val = CI->getValue().sext(BitWidth);
495 else
496 Val = CI->getValue().zext(BitWidth);
497 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
498 DestLOI.Known.Zero &= ~Val;
499 DestLOI.Known.One &= Val;
500 continue;
501 }
502
503 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
504 "its CopyToReg node was created.");
505 Register SrcReg = ValueMap[V];
506 if (!SrcReg.isVirtual()) {
507 DestLOI.IsValid = false;
508 return;
509 }
510 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
511 if (!SrcLOI) {
512 DestLOI.IsValid = false;
513 return;
514 }
515 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
516 DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known);
517 }
518 }
519
520 /// setArgumentFrameIndex - Record frame index for the byval
521 /// argument. This overrides previous frame index entry for this argument,
522 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)523 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
524 int FI) {
525 ByValArgFrameIndexMap[A] = FI;
526 }
527
528 /// getArgumentFrameIndex - Get frame index for the byval argument.
529 /// If the argument does not have any assigned frame index then 0 is
530 /// returned.
getArgumentFrameIndex(const Argument * A)531 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
532 auto I = ByValArgFrameIndexMap.find(A);
533 if (I != ByValArgFrameIndexMap.end())
534 return I->second;
535 LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
536 return INT_MAX;
537 }
538
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)539 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
540 const Value *CPI, const TargetRegisterClass *RC) {
541 MachineRegisterInfo &MRI = MF->getRegInfo();
542 auto I = CatchPadExceptionPointers.insert({CPI, 0});
543 Register &VReg = I.first->second;
544 if (I.second)
545 VReg = MRI.createVirtualRegister(RC);
546 assert(VReg && "null vreg in exception pointer table!");
547 return VReg;
548 }
549
550 const Value *
getValueFromVirtualReg(Register Vreg)551 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
552 if (VirtReg2Value.empty()) {
553 SmallVector<EVT, 4> ValueVTs;
554 for (auto &P : ValueMap) {
555 ValueVTs.clear();
556 ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
557 P.first->getType(), ValueVTs);
558 unsigned Reg = P.second;
559 for (EVT VT : ValueVTs) {
560 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
561 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
562 VirtReg2Value[Reg++] = P.first;
563 }
564 }
565 }
566 return VirtReg2Value.lookup(Vreg);
567 }
568