1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Demangle/Demangle.h"
58 #include "llvm/Support/Endian.h"
59 #include <algorithm>
60
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67
getLinkerScriptLocation(const Symbol & sym)68 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69 for (SectionCommand *cmd : script->sectionCommands)
70 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
71 if (assign->sym == &sym)
72 return assign->location;
73 return std::nullopt;
74 }
75
getDefinedLocation(const Symbol & sym)76 static std::string getDefinedLocation(const Symbol &sym) {
77 const char msg[] = "\n>>> defined in ";
78 if (sym.file)
79 return msg + toString(sym.file);
80 if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
81 return msg + *loc;
82 return "";
83 }
84
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>> /home/alice/src/bar.o:(.text+0x1)
getLocation(InputSectionBase & s,const Symbol & sym,uint64_t off)90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91 uint64_t off) {
92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93 std::string src = s.getSrcMsg(sym, off);
94 if (!src.empty())
95 msg += src + "\n>>> ";
96 return msg + s.getObjMsg(off);
97 }
98
reportRangeError(uint8_t * loc,const Relocation & rel,const Twine & v,int64_t min,uint64_t max)99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100 int64_t min, uint64_t max) {
101 ErrorPlace errPlace = getErrorPlace(loc);
102 std::string hint;
103 if (rel.sym) {
104 if (!rel.sym->isSection())
105 hint = "; references '" + lld::toString(*rel.sym) + '\'';
106 else if (auto *d = dyn_cast<Defined>(rel.sym))
107 hint = ("; references section '" + d->section->name + "'").str();
108
109 if (config->emachine == EM_X86_64 && rel.type == R_X86_64_PC32 &&
110 rel.sym->getOutputSection() &&
111 (rel.sym->getOutputSection()->flags & SHF_X86_64_LARGE)) {
112 hint += "; R_X86_64_PC32 should not reference a section marked "
113 "SHF_X86_64_LARGE";
114 }
115 }
116 if (!errPlace.srcLoc.empty())
117 hint += "\n>>> referenced by " + errPlace.srcLoc;
118 if (rel.sym && !rel.sym->isSection())
119 hint += getDefinedLocation(*rel.sym);
120
121 if (errPlace.isec && errPlace.isec->name.starts_with(".debug"))
122 hint += "; consider recompiling with -fdebug-types-section to reduce size "
123 "of debug sections";
124
125 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
126 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
127 ", " + Twine(max).str() + "]" + hint);
128 }
129
reportRangeError(uint8_t * loc,int64_t v,int n,const Symbol & sym,const Twine & msg)130 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
131 const Twine &msg) {
132 ErrorPlace errPlace = getErrorPlace(loc);
133 std::string hint;
134 if (!sym.getName().empty())
135 hint =
136 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym);
137 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
138 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
139 Twine(llvm::maxIntN(n)) + "]" + hint);
140 }
141
142 // Build a bitmask with one bit set for each 64 subset of RelExpr.
buildMask()143 static constexpr uint64_t buildMask() { return 0; }
144
145 template <typename... Tails>
buildMask(int head,Tails...tails)146 static constexpr uint64_t buildMask(int head, Tails... tails) {
147 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
148 buildMask(tails...);
149 }
150
151 // Return true if `Expr` is one of `Exprs`.
152 // There are more than 64 but less than 128 RelExprs, so we divide the set of
153 // exprs into [0, 64) and [64, 128) and represent each range as a constant
154 // 64-bit mask. Then we decide which mask to test depending on the value of
155 // expr and use a simple shift and bitwise-and to test for membership.
oneof(RelExpr expr)156 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
157 assert(0 <= expr && (int)expr < 128 &&
158 "RelExpr is too large for 128-bit mask!");
159
160 if (expr >= 64)
161 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
162 return (uint64_t(1) << expr) & buildMask(Exprs...);
163 }
164
getMipsPairType(RelType type,bool isLocal)165 static RelType getMipsPairType(RelType type, bool isLocal) {
166 switch (type) {
167 case R_MIPS_HI16:
168 return R_MIPS_LO16;
169 case R_MIPS_GOT16:
170 // In case of global symbol, the R_MIPS_GOT16 relocation does not
171 // have a pair. Each global symbol has a unique entry in the GOT
172 // and a corresponding instruction with help of the R_MIPS_GOT16
173 // relocation loads an address of the symbol. In case of local
174 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
175 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
176 // relocations handle low 16 bits of the address. That allows
177 // to allocate only one GOT entry for every 64 KBytes of local data.
178 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
179 case R_MICROMIPS_GOT16:
180 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
181 case R_MIPS_PCHI16:
182 return R_MIPS_PCLO16;
183 case R_MICROMIPS_HI16:
184 return R_MICROMIPS_LO16;
185 default:
186 return R_MIPS_NONE;
187 }
188 }
189
190 // True if non-preemptable symbol always has the same value regardless of where
191 // the DSO is loaded.
isAbsolute(const Symbol & sym)192 static bool isAbsolute(const Symbol &sym) {
193 if (sym.isUndefWeak())
194 return true;
195 if (const auto *dr = dyn_cast<Defined>(&sym))
196 return dr->section == nullptr; // Absolute symbol.
197 return false;
198 }
199
isAbsoluteValue(const Symbol & sym)200 static bool isAbsoluteValue(const Symbol &sym) {
201 return isAbsolute(sym) || sym.isTls();
202 }
203
204 // Returns true if Expr refers a PLT entry.
needsPlt(RelExpr expr)205 static bool needsPlt(RelExpr expr) {
206 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL,
207 R_GOTPLT_PC, R_LOONGARCH_PLT_PAGE_PC, R_PPC32_PLTREL,
208 R_PPC64_CALL_PLT>(expr);
209 }
210
needsGot(RelExpr expr)211 bool lld::elf::needsGot(RelExpr expr) {
212 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
213 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
214 R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>(
215 expr);
216 }
217
218 // True if this expression is of the form Sym - X, where X is a position in the
219 // file (PC, or GOT for example).
isRelExpr(RelExpr expr)220 static bool isRelExpr(RelExpr expr) {
221 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_ARM_PCA, R_MIPS_GOTREL,
222 R_PPC64_CALL, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC,
223 R_RELAX_GOT_PC, R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC,
224 R_LOONGARCH_PAGE_PC>(expr);
225 }
226
toPlt(RelExpr expr)227 static RelExpr toPlt(RelExpr expr) {
228 switch (expr) {
229 case R_LOONGARCH_PAGE_PC:
230 return R_LOONGARCH_PLT_PAGE_PC;
231 case R_PPC64_CALL:
232 return R_PPC64_CALL_PLT;
233 case R_PC:
234 return R_PLT_PC;
235 case R_ABS:
236 return R_PLT;
237 case R_GOTREL:
238 return R_PLT_GOTREL;
239 default:
240 return expr;
241 }
242 }
243
fromPlt(RelExpr expr)244 static RelExpr fromPlt(RelExpr expr) {
245 // We decided not to use a plt. Optimize a reference to the plt to a
246 // reference to the symbol itself.
247 switch (expr) {
248 case R_PLT_PC:
249 case R_PPC32_PLTREL:
250 return R_PC;
251 case R_LOONGARCH_PLT_PAGE_PC:
252 return R_LOONGARCH_PAGE_PC;
253 case R_PPC64_CALL_PLT:
254 return R_PPC64_CALL;
255 case R_PLT:
256 return R_ABS;
257 case R_PLT_GOTPLT:
258 return R_GOTPLTREL;
259 case R_PLT_GOTREL:
260 return R_GOTREL;
261 default:
262 return expr;
263 }
264 }
265
266 // Returns true if a given shared symbol is in a read-only segment in a DSO.
isReadOnly(SharedSymbol & ss)267 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
268 using Elf_Phdr = typename ELFT::Phdr;
269
270 // Determine if the symbol is read-only by scanning the DSO's program headers.
271 const auto &file = cast<SharedFile>(*ss.file);
272 for (const Elf_Phdr &phdr :
273 check(file.template getObj<ELFT>().program_headers()))
274 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
275 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
276 ss.value < phdr.p_vaddr + phdr.p_memsz)
277 return true;
278 return false;
279 }
280
281 // Returns symbols at the same offset as a given symbol, including SS itself.
282 //
283 // If two or more symbols are at the same offset, and at least one of
284 // them are copied by a copy relocation, all of them need to be copied.
285 // Otherwise, they would refer to different places at runtime.
286 template <class ELFT>
getSymbolsAt(SharedSymbol & ss)287 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
288 using Elf_Sym = typename ELFT::Sym;
289
290 const auto &file = cast<SharedFile>(*ss.file);
291
292 SmallSet<SharedSymbol *, 4> ret;
293 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
294 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
295 s.getType() == STT_TLS || s.st_value != ss.value)
296 continue;
297 StringRef name = check(s.getName(file.getStringTable()));
298 Symbol *sym = symtab.find(name);
299 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
300 ret.insert(alias);
301 }
302
303 // The loop does not check SHT_GNU_verneed, so ret does not contain
304 // non-default version symbols. If ss has a non-default version, ret won't
305 // contain ss. Just add ss unconditionally. If a non-default version alias is
306 // separately copy relocated, it and ss will have different addresses.
307 // Fortunately this case is impractical and fails with GNU ld as well.
308 ret.insert(&ss);
309 return ret;
310 }
311
312 // When a symbol is copy relocated or we create a canonical plt entry, it is
313 // effectively a defined symbol. In the case of copy relocation the symbol is
314 // in .bss and in the case of a canonical plt entry it is in .plt. This function
315 // replaces the existing symbol with a Defined pointing to the appropriate
316 // location.
replaceWithDefined(Symbol & sym,SectionBase & sec,uint64_t value,uint64_t size)317 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
318 uint64_t size) {
319 Symbol old = sym;
320 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
321 size, &sec)
322 .overwrite(sym);
323
324 sym.versionId = old.versionId;
325 sym.exportDynamic = true;
326 sym.isUsedInRegularObj = true;
327 // A copy relocated alias may need a GOT entry.
328 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
329 std::memory_order_relaxed);
330 }
331
332 // Reserve space in .bss or .bss.rel.ro for copy relocation.
333 //
334 // The copy relocation is pretty much a hack. If you use a copy relocation
335 // in your program, not only the symbol name but the symbol's size, RW/RO
336 // bit and alignment become part of the ABI. In addition to that, if the
337 // symbol has aliases, the aliases become part of the ABI. That's subtle,
338 // but if you violate that implicit ABI, that can cause very counter-
339 // intuitive consequences.
340 //
341 // So, what is the copy relocation? It's for linking non-position
342 // independent code to DSOs. In an ideal world, all references to data
343 // exported by DSOs should go indirectly through GOT. But if object files
344 // are compiled as non-PIC, all data references are direct. There is no
345 // way for the linker to transform the code to use GOT, as machine
346 // instructions are already set in stone in object files. This is where
347 // the copy relocation takes a role.
348 //
349 // A copy relocation instructs the dynamic linker to copy data from a DSO
350 // to a specified address (which is usually in .bss) at load-time. If the
351 // static linker (that's us) finds a direct data reference to a DSO
352 // symbol, it creates a copy relocation, so that the symbol can be
353 // resolved as if it were in .bss rather than in a DSO.
354 //
355 // As you can see in this function, we create a copy relocation for the
356 // dynamic linker, and the relocation contains not only symbol name but
357 // various other information about the symbol. So, such attributes become a
358 // part of the ABI.
359 //
360 // Note for application developers: I can give you a piece of advice if
361 // you are writing a shared library. You probably should export only
362 // functions from your library. You shouldn't export variables.
363 //
364 // As an example what can happen when you export variables without knowing
365 // the semantics of copy relocations, assume that you have an exported
366 // variable of type T. It is an ABI-breaking change to add new members at
367 // end of T even though doing that doesn't change the layout of the
368 // existing members. That's because the space for the new members are not
369 // reserved in .bss unless you recompile the main program. That means they
370 // are likely to overlap with other data that happens to be laid out next
371 // to the variable in .bss. This kind of issue is sometimes very hard to
372 // debug. What's a solution? Instead of exporting a variable V from a DSO,
373 // define an accessor getV().
addCopyRelSymbol(SharedSymbol & ss)374 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
375 // Copy relocation against zero-sized symbol doesn't make sense.
376 uint64_t symSize = ss.getSize();
377 if (symSize == 0 || ss.alignment == 0)
378 fatal("cannot create a copy relocation for symbol " + toString(ss));
379
380 // See if this symbol is in a read-only segment. If so, preserve the symbol's
381 // memory protection by reserving space in the .bss.rel.ro section.
382 bool isRO = isReadOnly<ELFT>(ss);
383 BssSection *sec =
384 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
385 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
386
387 // At this point, sectionBases has been migrated to sections. Append sec to
388 // sections.
389 if (osec->commands.empty() ||
390 !isa<InputSectionDescription>(osec->commands.back()))
391 osec->commands.push_back(make<InputSectionDescription>(""));
392 auto *isd = cast<InputSectionDescription>(osec->commands.back());
393 isd->sections.push_back(sec);
394 osec->commitSection(sec);
395
396 // Look through the DSO's dynamic symbol table for aliases and create a
397 // dynamic symbol for each one. This causes the copy relocation to correctly
398 // interpose any aliases.
399 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
400 replaceWithDefined(*sym, *sec, 0, sym->size);
401
402 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
403 }
404
405 // .eh_frame sections are mergeable input sections, so their input
406 // offsets are not linearly mapped to output section. For each input
407 // offset, we need to find a section piece containing the offset and
408 // add the piece's base address to the input offset to compute the
409 // output offset. That isn't cheap.
410 //
411 // This class is to speed up the offset computation. When we process
412 // relocations, we access offsets in the monotonically increasing
413 // order. So we can optimize for that access pattern.
414 //
415 // For sections other than .eh_frame, this class doesn't do anything.
416 namespace {
417 class OffsetGetter {
418 public:
419 OffsetGetter() = default;
OffsetGetter(InputSectionBase & sec)420 explicit OffsetGetter(InputSectionBase &sec) {
421 if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
422 cies = eh->cies;
423 fdes = eh->fdes;
424 i = cies.begin();
425 j = fdes.begin();
426 }
427 }
428
429 // Translates offsets in input sections to offsets in output sections.
430 // Given offset must increase monotonically. We assume that Piece is
431 // sorted by inputOff.
get(uint64_t off)432 uint64_t get(uint64_t off) {
433 if (cies.empty())
434 return off;
435
436 while (j != fdes.end() && j->inputOff <= off)
437 ++j;
438 auto it = j;
439 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
440 while (i != cies.end() && i->inputOff <= off)
441 ++i;
442 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
443 fatal(".eh_frame: relocation is not in any piece");
444 it = i;
445 }
446
447 // Offset -1 means that the piece is dead (i.e. garbage collected).
448 if (it[-1].outputOff == -1)
449 return -1;
450 return it[-1].outputOff + (off - it[-1].inputOff);
451 }
452
453 private:
454 ArrayRef<EhSectionPiece> cies, fdes;
455 ArrayRef<EhSectionPiece>::iterator i, j;
456 };
457
458 // This class encapsulates states needed to scan relocations for one
459 // InputSectionBase.
460 class RelocationScanner {
461 public:
462 template <class ELFT> void scanSection(InputSectionBase &s);
463
464 private:
465 InputSectionBase *sec;
466 OffsetGetter getter;
467
468 // End of relocations, used by Mips/PPC64.
469 const void *end = nullptr;
470
471 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
472 template <class ELFT, class RelTy>
473 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
474 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
475 uint64_t relOff) const;
476 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
477 int64_t addend) const;
478 template <class ELFT, class RelTy> void scanOne(RelTy *&i);
479 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
480 };
481 } // namespace
482
483 // MIPS has an odd notion of "paired" relocations to calculate addends.
484 // For example, if a relocation is of R_MIPS_HI16, there must be a
485 // R_MIPS_LO16 relocation after that, and an addend is calculated using
486 // the two relocations.
487 template <class ELFT, class RelTy>
computeMipsAddend(const RelTy & rel,RelExpr expr,bool isLocal) const488 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
489 bool isLocal) const {
490 if (expr == R_MIPS_GOTREL && isLocal)
491 return sec->getFile<ELFT>()->mipsGp0;
492
493 // The ABI says that the paired relocation is used only for REL.
494 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
495 if (RelTy::IsRela)
496 return 0;
497
498 RelType type = rel.getType(config->isMips64EL);
499 uint32_t pairTy = getMipsPairType(type, isLocal);
500 if (pairTy == R_MIPS_NONE)
501 return 0;
502
503 const uint8_t *buf = sec->content().data();
504 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
505
506 // To make things worse, paired relocations might not be contiguous in
507 // the relocation table, so we need to do linear search. *sigh*
508 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
509 if (ri->getType(config->isMips64EL) == pairTy &&
510 ri->getSymbol(config->isMips64EL) == symIndex)
511 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
512
513 warn("can't find matching " + toString(pairTy) + " relocation for " +
514 toString(type));
515 return 0;
516 }
517
518 // Custom error message if Sym is defined in a discarded section.
519 template <class ELFT>
maybeReportDiscarded(Undefined & sym)520 static std::string maybeReportDiscarded(Undefined &sym) {
521 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
522 if (!file || !sym.discardedSecIdx)
523 return "";
524 ArrayRef<typename ELFT::Shdr> objSections =
525 file->template getELFShdrs<ELFT>();
526
527 std::string msg;
528 if (sym.type == ELF::STT_SECTION) {
529 msg = "relocation refers to a discarded section: ";
530 msg += CHECK(
531 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
532 } else {
533 msg = "relocation refers to a symbol in a discarded section: " +
534 toString(sym);
535 }
536 msg += "\n>>> defined in " + toString(file);
537
538 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
539 if (elfSec.sh_type != SHT_GROUP)
540 return msg;
541
542 // If the discarded section is a COMDAT.
543 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
544 if (const InputFile *prevailing =
545 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
546 msg += "\n>>> section group signature: " + signature.str() +
547 "\n>>> prevailing definition is in " + toString(prevailing);
548 if (sym.nonPrevailing) {
549 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
550 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
551 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
552 "signature is not supported";
553 }
554 }
555 return msg;
556 }
557
558 namespace {
559 // Undefined diagnostics are collected in a vector and emitted once all of
560 // them are known, so that some postprocessing on the list of undefined symbols
561 // can happen before lld emits diagnostics.
562 struct UndefinedDiag {
563 Undefined *sym;
564 struct Loc {
565 InputSectionBase *sec;
566 uint64_t offset;
567 };
568 std::vector<Loc> locs;
569 bool isWarning;
570 };
571
572 std::vector<UndefinedDiag> undefs;
573 std::mutex relocMutex;
574 }
575
576 // Check whether the definition name def is a mangled function name that matches
577 // the reference name ref.
canSuggestExternCForCXX(StringRef ref,StringRef def)578 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
579 llvm::ItaniumPartialDemangler d;
580 std::string name = def.str();
581 if (d.partialDemangle(name.c_str()))
582 return false;
583 char *buf = d.getFunctionName(nullptr, nullptr);
584 if (!buf)
585 return false;
586 bool ret = ref == buf;
587 free(buf);
588 return ret;
589 }
590
591 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
592 // the suggested symbol, which is either in the symbol table, or in the same
593 // file of sym.
getAlternativeSpelling(const Undefined & sym,std::string & pre_hint,std::string & post_hint)594 static const Symbol *getAlternativeSpelling(const Undefined &sym,
595 std::string &pre_hint,
596 std::string &post_hint) {
597 DenseMap<StringRef, const Symbol *> map;
598 if (sym.file && sym.file->kind() == InputFile::ObjKind) {
599 auto *file = cast<ELFFileBase>(sym.file);
600 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
601 // will give an error. Don't suggest an alternative spelling.
602 if (file && sym.discardedSecIdx != 0 &&
603 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
604 return nullptr;
605
606 // Build a map of local defined symbols.
607 for (const Symbol *s : sym.file->getSymbols())
608 if (s->isLocal() && s->isDefined() && !s->getName().empty())
609 map.try_emplace(s->getName(), s);
610 }
611
612 auto suggest = [&](StringRef newName) -> const Symbol * {
613 // If defined locally.
614 if (const Symbol *s = map.lookup(newName))
615 return s;
616
617 // If in the symbol table and not undefined.
618 if (const Symbol *s = symtab.find(newName))
619 if (!s->isUndefined())
620 return s;
621
622 return nullptr;
623 };
624
625 // This loop enumerates all strings of Levenshtein distance 1 as typo
626 // correction candidates and suggests the one that exists as a non-undefined
627 // symbol.
628 StringRef name = sym.getName();
629 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
630 // Insert a character before name[i].
631 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
632 for (char c = '0'; c <= 'z'; ++c) {
633 newName[i] = c;
634 if (const Symbol *s = suggest(newName))
635 return s;
636 }
637 if (i == e)
638 break;
639
640 // Substitute name[i].
641 newName = std::string(name);
642 for (char c = '0'; c <= 'z'; ++c) {
643 newName[i] = c;
644 if (const Symbol *s = suggest(newName))
645 return s;
646 }
647
648 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
649 // common.
650 if (i + 1 < e) {
651 newName[i] = name[i + 1];
652 newName[i + 1] = name[i];
653 if (const Symbol *s = suggest(newName))
654 return s;
655 }
656
657 // Delete name[i].
658 newName = (name.substr(0, i) + name.substr(i + 1)).str();
659 if (const Symbol *s = suggest(newName))
660 return s;
661 }
662
663 // Case mismatch, e.g. Foo vs FOO.
664 for (auto &it : map)
665 if (name.equals_insensitive(it.first))
666 return it.second;
667 for (Symbol *sym : symtab.getSymbols())
668 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
669 return sym;
670
671 // The reference may be a mangled name while the definition is not. Suggest a
672 // missing extern "C".
673 if (name.starts_with("_Z")) {
674 std::string buf = name.str();
675 llvm::ItaniumPartialDemangler d;
676 if (!d.partialDemangle(buf.c_str()))
677 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
678 const Symbol *s = suggest(buf);
679 free(buf);
680 if (s) {
681 pre_hint = ": extern \"C\" ";
682 return s;
683 }
684 }
685 } else {
686 const Symbol *s = nullptr;
687 for (auto &it : map)
688 if (canSuggestExternCForCXX(name, it.first)) {
689 s = it.second;
690 break;
691 }
692 if (!s)
693 for (Symbol *sym : symtab.getSymbols())
694 if (canSuggestExternCForCXX(name, sym->getName())) {
695 s = sym;
696 break;
697 }
698 if (s) {
699 pre_hint = " to declare ";
700 post_hint = " as extern \"C\"?";
701 return s;
702 }
703 }
704
705 return nullptr;
706 }
707
reportUndefinedSymbol(const UndefinedDiag & undef,bool correctSpelling)708 static void reportUndefinedSymbol(const UndefinedDiag &undef,
709 bool correctSpelling) {
710 Undefined &sym = *undef.sym;
711
712 auto visibility = [&]() -> std::string {
713 switch (sym.visibility()) {
714 case STV_INTERNAL:
715 return "internal ";
716 case STV_HIDDEN:
717 return "hidden ";
718 case STV_PROTECTED:
719 return "protected ";
720 default:
721 return "";
722 }
723 };
724
725 std::string msg;
726 switch (config->ekind) {
727 case ELF32LEKind:
728 msg = maybeReportDiscarded<ELF32LE>(sym);
729 break;
730 case ELF32BEKind:
731 msg = maybeReportDiscarded<ELF32BE>(sym);
732 break;
733 case ELF64LEKind:
734 msg = maybeReportDiscarded<ELF64LE>(sym);
735 break;
736 case ELF64BEKind:
737 msg = maybeReportDiscarded<ELF64BE>(sym);
738 break;
739 default:
740 llvm_unreachable("");
741 }
742 if (msg.empty())
743 msg = "undefined " + visibility() + "symbol: " + toString(sym);
744
745 const size_t maxUndefReferences = 3;
746 size_t i = 0;
747 for (UndefinedDiag::Loc l : undef.locs) {
748 if (i >= maxUndefReferences)
749 break;
750 InputSectionBase &sec = *l.sec;
751 uint64_t offset = l.offset;
752
753 msg += "\n>>> referenced by ";
754 // In the absence of line number information, utilize DW_TAG_variable (if
755 // present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`).
756 Symbol *enclosing = sec.getEnclosingSymbol(offset);
757 std::string src = sec.getSrcMsg(enclosing ? *enclosing : sym, offset);
758 if (!src.empty())
759 msg += src + "\n>>> ";
760 msg += sec.getObjMsg(offset);
761 i++;
762 }
763
764 if (i < undef.locs.size())
765 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
766 .str();
767
768 if (correctSpelling) {
769 std::string pre_hint = ": ", post_hint;
770 if (const Symbol *corrected =
771 getAlternativeSpelling(sym, pre_hint, post_hint)) {
772 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
773 if (corrected->file)
774 msg += "\n>>> defined in: " + toString(corrected->file);
775 }
776 }
777
778 if (sym.getName().starts_with("_ZTV"))
779 msg +=
780 "\n>>> the vtable symbol may be undefined because the class is missing "
781 "its key function (see https://lld.llvm.org/missingkeyfunction)";
782 if (config->gcSections && config->zStartStopGC &&
783 sym.getName().starts_with("__start_")) {
784 msg += "\n>>> the encapsulation symbol needs to be retained under "
785 "--gc-sections properly; consider -z nostart-stop-gc "
786 "(see https://lld.llvm.org/ELF/start-stop-gc)";
787 }
788
789 if (undef.isWarning)
790 warn(msg);
791 else
792 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
793 }
794
reportUndefinedSymbols()795 void elf::reportUndefinedSymbols() {
796 // Find the first "undefined symbol" diagnostic for each diagnostic, and
797 // collect all "referenced from" lines at the first diagnostic.
798 DenseMap<Symbol *, UndefinedDiag *> firstRef;
799 for (UndefinedDiag &undef : undefs) {
800 assert(undef.locs.size() == 1);
801 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
802 canon->locs.push_back(undef.locs[0]);
803 undef.locs.clear();
804 } else
805 firstRef[undef.sym] = &undef;
806 }
807
808 // Enable spell corrector for the first 2 diagnostics.
809 for (const auto &[i, undef] : llvm::enumerate(undefs))
810 if (!undef.locs.empty())
811 reportUndefinedSymbol(undef, i < 2);
812 undefs.clear();
813 }
814
815 // Report an undefined symbol if necessary.
816 // Returns true if the undefined symbol will produce an error message.
maybeReportUndefined(Undefined & sym,InputSectionBase & sec,uint64_t offset)817 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
818 uint64_t offset) {
819 std::lock_guard<std::mutex> lock(relocMutex);
820 // If versioned, issue an error (even if the symbol is weak) because we don't
821 // know the defining filename which is required to construct a Verneed entry.
822 if (sym.hasVersionSuffix) {
823 undefs.push_back({&sym, {{&sec, offset}}, false});
824 return true;
825 }
826 if (sym.isWeak())
827 return false;
828
829 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
830 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
831 return false;
832
833 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
834 // which references a switch table in a discarded .rodata/.text section. The
835 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
836 // spec says references from outside the group to a STB_LOCAL symbol are not
837 // allowed. Work around the bug.
838 //
839 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
840 // because .LC0-.LTOC is not representable if the two labels are in different
841 // .got2
842 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
843 return false;
844
845 bool isWarning =
846 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
847 config->noinhibitExec;
848 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
849 return !isWarning;
850 }
851
852 // MIPS N32 ABI treats series of successive relocations with the same offset
853 // as a single relocation. The similar approach used by N64 ABI, but this ABI
854 // packs all relocations into the single relocation record. Here we emulate
855 // this for the N32 ABI. Iterate over relocation with the same offset and put
856 // theirs types into the single bit-set.
857 template <class RelTy>
getMipsN32RelType(RelTy * & rel) const858 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
859 RelType type = 0;
860 uint64_t offset = rel->r_offset;
861
862 int n = 0;
863 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
864 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
865 return type;
866 }
867
868 template <bool shard = false>
addRelativeReloc(InputSectionBase & isec,uint64_t offsetInSec,Symbol & sym,int64_t addend,RelExpr expr,RelType type)869 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
870 Symbol &sym, int64_t addend, RelExpr expr,
871 RelType type) {
872 Partition &part = isec.getPartition();
873
874 if (sym.isTagged()) {
875 std::lock_guard<std::mutex> lock(relocMutex);
876 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
877 addend, type, expr);
878 // With MTE globals, we always want to derive the address tag by `ldg`-ing
879 // the symbol. When we have a RELATIVE relocation though, we no longer have
880 // a reference to the symbol. Because of this, when we have an addend that
881 // puts the result of the RELATIVE relocation out-of-bounds of the symbol
882 // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI
883 // says we should store the offset to the start of the symbol in the target
884 // field. This is described in further detail in:
885 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative
886 if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize())
887 isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
888 return;
889 }
890
891 // Add a relative relocation. If relrDyn section is enabled, and the
892 // relocation offset is guaranteed to be even, add the relocation to
893 // the relrDyn section, otherwise add it to the relaDyn section.
894 // relrDyn sections don't support odd offsets. Also, relrDyn sections
895 // don't store the addend values, so we must write it to the relocated
896 // address.
897 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
898 isec.addReloc({expr, type, offsetInSec, addend, &sym});
899 if (shard)
900 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
901 {&isec, offsetInSec});
902 else
903 part.relrDyn->relocs.push_back({&isec, offsetInSec});
904 return;
905 }
906 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
907 sym, addend, type, expr);
908 }
909
910 template <class PltSection, class GotPltSection>
addPltEntry(PltSection & plt,GotPltSection & gotPlt,RelocationBaseSection & rel,RelType type,Symbol & sym)911 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
912 RelocationBaseSection &rel, RelType type, Symbol &sym) {
913 plt.addEntry(sym);
914 gotPlt.addEntry(sym);
915 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
916 sym.isPreemptible ? DynamicReloc::AgainstSymbol
917 : DynamicReloc::AddendOnlyWithTargetVA,
918 sym, 0, R_ABS});
919 }
920
addGotEntry(Symbol & sym)921 void elf::addGotEntry(Symbol &sym) {
922 in.got->addEntry(sym);
923 uint64_t off = sym.getGotOffset();
924
925 // If preemptible, emit a GLOB_DAT relocation.
926 if (sym.isPreemptible) {
927 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
928 DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
929 return;
930 }
931
932 // Otherwise, the value is either a link-time constant or the load base
933 // plus a constant.
934 if (!config->isPic || isAbsolute(sym))
935 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
936 else
937 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
938 }
939
addTpOffsetGotEntry(Symbol & sym)940 static void addTpOffsetGotEntry(Symbol &sym) {
941 in.got->addEntry(sym);
942 uint64_t off = sym.getGotOffset();
943 if (!sym.isPreemptible && !config->shared) {
944 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
945 return;
946 }
947 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
948 target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
949 }
950
951 // Return true if we can define a symbol in the executable that
952 // contains the value/function of a symbol defined in a shared
953 // library.
canDefineSymbolInExecutable(Symbol & sym)954 static bool canDefineSymbolInExecutable(Symbol &sym) {
955 // If the symbol has default visibility the symbol defined in the
956 // executable will preempt it.
957 // Note that we want the visibility of the shared symbol itself, not
958 // the visibility of the symbol in the output file we are producing.
959 if (!sym.dsoProtected)
960 return true;
961
962 // If we are allowed to break address equality of functions, defining
963 // a plt entry will allow the program to call the function in the
964 // .so, but the .so and the executable will no agree on the address
965 // of the function. Similar logic for objects.
966 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
967 (sym.isObject() && config->ignoreDataAddressEquality));
968 }
969
970 // Returns true if a given relocation can be computed at link-time.
971 // This only handles relocation types expected in processAux.
972 //
973 // For instance, we know the offset from a relocation to its target at
974 // link-time if the relocation is PC-relative and refers a
975 // non-interposable function in the same executable. This function
976 // will return true for such relocation.
977 //
978 // If this function returns false, that means we need to emit a
979 // dynamic relocation so that the relocation will be fixed at load-time.
isStaticLinkTimeConstant(RelExpr e,RelType type,const Symbol & sym,uint64_t relOff) const980 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
981 const Symbol &sym,
982 uint64_t relOff) const {
983 // These expressions always compute a constant
984 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
985 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
986 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
987 R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, R_GOTPLT_PC,
988 R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD,
989 R_AARCH64_GOT_PAGE, R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT,
990 R_LOONGARCH_GOT_PAGE_PC>(e))
991 return true;
992
993 // These never do, except if the entire file is position dependent or if
994 // only the low bits are used.
995 if (e == R_GOT || e == R_PLT)
996 return target->usesOnlyLowPageBits(type) || !config->isPic;
997
998 if (sym.isPreemptible)
999 return false;
1000 if (!config->isPic)
1001 return true;
1002
1003 // Constant when referencing a non-preemptible symbol.
1004 if (e == R_SIZE || e == R_RISCV_LEB128)
1005 return true;
1006
1007 // For the target and the relocation, we want to know if they are
1008 // absolute or relative.
1009 bool absVal = isAbsoluteValue(sym);
1010 bool relE = isRelExpr(e);
1011 if (absVal && !relE)
1012 return true;
1013 if (!absVal && relE)
1014 return true;
1015 if (!absVal && !relE)
1016 return target->usesOnlyLowPageBits(type);
1017
1018 assert(absVal && relE);
1019
1020 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1021 // in PIC mode. This is a little strange, but it allows us to link function
1022 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1023 // Normally such a call will be guarded with a comparison, which will load a
1024 // zero from the GOT.
1025 if (sym.isUndefWeak())
1026 return true;
1027
1028 // We set the final symbols values for linker script defined symbols later.
1029 // They always can be computed as a link time constant.
1030 if (sym.scriptDefined)
1031 return true;
1032
1033 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1034 toString(sym) + getLocation(*sec, sym, relOff));
1035 return true;
1036 }
1037
1038 // The reason we have to do this early scan is as follows
1039 // * To mmap the output file, we need to know the size
1040 // * For that, we need to know how many dynamic relocs we will have.
1041 // It might be possible to avoid this by outputting the file with write:
1042 // * Write the allocated output sections, computing addresses.
1043 // * Apply relocations, recording which ones require a dynamic reloc.
1044 // * Write the dynamic relocations.
1045 // * Write the rest of the file.
1046 // This would have some drawbacks. For example, we would only know if .rela.dyn
1047 // is needed after applying relocations. If it is, it will go after rw and rx
1048 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1049 // complicates things for the dynamic linker and means we would have to reserve
1050 // space for the extra PT_LOAD even if we end up not using it.
processAux(RelExpr expr,RelType type,uint64_t offset,Symbol & sym,int64_t addend) const1051 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1052 Symbol &sym, int64_t addend) const {
1053 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1054 // indirection.
1055 const bool isIfunc = sym.isGnuIFunc();
1056 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1057 if (expr != R_GOT_PC) {
1058 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1059 // stub type. It should be ignored if optimized to R_PC.
1060 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1061 addend &= ~0x8000;
1062 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1063 // call __tls_get_addr even if the symbol is non-preemptible.
1064 if (!(config->emachine == EM_HEXAGON &&
1065 (type == R_HEX_GD_PLT_B22_PCREL ||
1066 type == R_HEX_GD_PLT_B22_PCREL_X ||
1067 type == R_HEX_GD_PLT_B32_PCREL_X)))
1068 expr = fromPlt(expr);
1069 } else if (!isAbsoluteValue(sym)) {
1070 expr =
1071 target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1072 // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up
1073 // needing the GOT if we can't relax everything.
1074 if (expr == R_RELAX_GOT_PC)
1075 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1076 }
1077 }
1078
1079 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1080 // direct relocation on through.
1081 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1082 std::lock_guard<std::mutex> lock(relocMutex);
1083 sym.exportDynamic = true;
1084 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1085 return;
1086 }
1087
1088 if (needsGot(expr)) {
1089 if (config->emachine == EM_MIPS) {
1090 // MIPS ABI has special rules to process GOT entries and doesn't
1091 // require relocation entries for them. A special case is TLS
1092 // relocations. In that case dynamic loader applies dynamic
1093 // relocations to initialize TLS GOT entries.
1094 // See "Global Offset Table" in Chapter 5 in the following document
1095 // for detailed description:
1096 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1097 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1098 } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) {
1099 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which
1100 // case the NEEDS_GOT flag shouldn't get set.
1101 sym.setFlags(NEEDS_GOT);
1102 }
1103 } else if (needsPlt(expr)) {
1104 sym.setFlags(NEEDS_PLT);
1105 } else if (LLVM_UNLIKELY(isIfunc)) {
1106 sym.setFlags(HAS_DIRECT_RELOC);
1107 }
1108
1109 // If the relocation is known to be a link-time constant, we know no dynamic
1110 // relocation will be created, pass the control to relocateAlloc() or
1111 // relocateNonAlloc() to resolve it.
1112 //
1113 // The behavior of an undefined weak reference is implementation defined. For
1114 // non-link-time constants, we resolve relocations statically (let
1115 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1116 // relocations for -pie and -shared.
1117 //
1118 // The general expectation of -no-pie static linking is that there is no
1119 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1120 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1121 // choices, and we choose dynamic relocations to be consistent with the
1122 // handling of GOT-generating relocations.
1123 if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1124 (!config->isPic && sym.isUndefWeak())) {
1125 sec->addReloc({expr, type, offset, addend, &sym});
1126 return;
1127 }
1128
1129 // Use a simple -z notext rule that treats all sections except .eh_frame as
1130 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1131 // SectionBase::getOffset would incorrectly adjust the offset).
1132 //
1133 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1134 // conversion. We still emit a dynamic relocation.
1135 bool canWrite = (sec->flags & SHF_WRITE) ||
1136 !(config->zText ||
1137 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1138 if (canWrite) {
1139 RelType rel = target->getDynRel(type);
1140 if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) ||
1141 (rel == target->symbolicRel && !sym.isPreemptible)) {
1142 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1143 return;
1144 } else if (rel != 0) {
1145 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1146 rel = target->relativeRel;
1147 std::lock_guard<std::mutex> lock(relocMutex);
1148 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym,
1149 addend, type);
1150
1151 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1152 // While regular ABI uses dynamic relocations to fill up GOT entries
1153 // MIPS ABI requires dynamic linker to fills up GOT entries using
1154 // specially sorted dynamic symbol table. This affects even dynamic
1155 // relocations against symbols which do not require GOT entries
1156 // creation explicitly, i.e. do not have any GOT-relocations. So if
1157 // a preemptible symbol has a dynamic relocation we anyway have
1158 // to create a GOT entry for it.
1159 // If a non-preemptible symbol has a dynamic relocation against it,
1160 // dynamic linker takes it st_value, adds offset and writes down
1161 // result of the dynamic relocation. In case of preemptible symbol
1162 // dynamic linker performs symbol resolution, writes the symbol value
1163 // to the GOT entry and reads the GOT entry when it needs to perform
1164 // a dynamic relocation.
1165 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1166 if (config->emachine == EM_MIPS)
1167 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1168 return;
1169 }
1170 }
1171
1172 // When producing an executable, we can perform copy relocations (for
1173 // STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO.
1174 if (!config->shared && sym.isShared()) {
1175 if (!canDefineSymbolInExecutable(sym)) {
1176 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1177 getLocation(*sec, sym, offset));
1178 return;
1179 }
1180
1181 if (sym.isObject()) {
1182 // Produce a copy relocation.
1183 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1184 if (!config->zCopyreloc)
1185 error("unresolvable relocation " + toString(type) +
1186 " against symbol '" + toString(*ss) +
1187 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1188 getLocation(*sec, sym, offset));
1189 sym.setFlags(NEEDS_COPY);
1190 }
1191 sec->addReloc({expr, type, offset, addend, &sym});
1192 return;
1193 }
1194
1195 // This handles a non PIC program call to function in a shared library. In
1196 // an ideal world, we could just report an error saying the relocation can
1197 // overflow at runtime. In the real world with glibc, crt1.o has a
1198 // R_X86_64_PC32 pointing to libc.so.
1199 //
1200 // The general idea on how to handle such cases is to create a PLT entry and
1201 // use that as the function value.
1202 //
1203 // For the static linking part, we just return a plt expr and everything
1204 // else will use the PLT entry as the address.
1205 //
1206 // The remaining problem is making sure pointer equality still works. We
1207 // need the help of the dynamic linker for that. We let it know that we have
1208 // a direct reference to a so symbol by creating an undefined symbol with a
1209 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1210 // the value of the symbol we created. This is true even for got entries, so
1211 // pointer equality is maintained. To avoid an infinite loop, the only entry
1212 // that points to the real function is a dedicated got entry used by the
1213 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1214 // R_386_JMP_SLOT, etc).
1215
1216 // For position independent executable on i386, the plt entry requires ebx
1217 // to be set. This causes two problems:
1218 // * If some code has a direct reference to a function, it was probably
1219 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1220 // * If a library definition gets preempted to the executable, it will have
1221 // the wrong ebx value.
1222 if (sym.isFunc()) {
1223 if (config->pie && config->emachine == EM_386)
1224 errorOrWarn("symbol '" + toString(sym) +
1225 "' cannot be preempted; recompile with -fPIE" +
1226 getLocation(*sec, sym, offset));
1227 sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1228 sec->addReloc({expr, type, offset, addend, &sym});
1229 return;
1230 }
1231 }
1232
1233 errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1234 (sym.getName().empty() ? "local symbol"
1235 : "symbol '" + toString(sym) + "'") +
1236 "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1237 }
1238
1239 // This function is similar to the `handleTlsRelocation`. MIPS does not
1240 // support any relaxations for TLS relocations so by factoring out MIPS
1241 // handling in to the separate function we can simplify the code and do not
1242 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1243 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1244 // without dynamic relocations.
handleMipsTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)1245 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1246 InputSectionBase &c, uint64_t offset,
1247 int64_t addend, RelExpr expr) {
1248 if (expr == R_MIPS_TLSLD) {
1249 in.mipsGot->addTlsIndex(*c.file);
1250 c.addReloc({expr, type, offset, addend, &sym});
1251 return 1;
1252 }
1253 if (expr == R_MIPS_TLSGD) {
1254 in.mipsGot->addDynTlsEntry(*c.file, sym);
1255 c.addReloc({expr, type, offset, addend, &sym});
1256 return 1;
1257 }
1258 return 0;
1259 }
1260
1261 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1262 // require the generation of a pair of GOT entries that have associated dynamic
1263 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1264 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1265 // symbol in TLS block.
1266 //
1267 // Returns the number of relocations processed.
handleTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)1268 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1269 InputSectionBase &c, uint64_t offset,
1270 int64_t addend, RelExpr expr) {
1271 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1272 if (config->shared) {
1273 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1274 " cannot be used with -shared" + getLocation(c, sym, offset));
1275 return 1;
1276 }
1277 return 0;
1278 }
1279
1280 if (config->emachine == EM_MIPS)
1281 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1282 bool isRISCV = config->emachine == EM_RISCV;
1283
1284 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1285 R_TLSDESC_GOTPLT>(expr) &&
1286 config->shared) {
1287 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a label. Do not
1288 // set NEEDS_TLSDESC on the label.
1289 if (expr != R_TLSDESC_CALL) {
1290 if (!isRISCV || type == R_RISCV_TLSDESC_HI20)
1291 sym.setFlags(NEEDS_TLSDESC);
1292 c.addReloc({expr, type, offset, addend, &sym});
1293 }
1294 return 1;
1295 }
1296
1297 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE
1298 // optimizations.
1299 // RISC-V supports TLSDESC to IE/LE optimizations.
1300 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1301 // optimization as well.
1302 bool execOptimize =
1303 !config->shared && config->emachine != EM_ARM &&
1304 config->emachine != EM_HEXAGON && config->emachine != EM_LOONGARCH &&
1305 !(isRISCV && expr != R_TLSDESC_PC && expr != R_TLSDESC_CALL) &&
1306 !c.file->ppc64DisableTLSRelax;
1307
1308 // If we are producing an executable and the symbol is non-preemptable, it
1309 // must be defined and the code sequence can be optimized to use Local-Exec.
1310 //
1311 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1312 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1313 // because them are always 1. This may be necessary for static linking as
1314 // DTPMOD may not be expected at load time.
1315 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1316
1317 // Local Dynamic is for access to module local TLS variables, while still
1318 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1319 // module index, with a special value of 0 for the current module. GOT[e1] is
1320 // unused. There only needs to be one module index entry.
1321 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) {
1322 // Local-Dynamic relocs can be optimized to Local-Exec.
1323 if (execOptimize) {
1324 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1325 offset, addend, &sym});
1326 return target->getTlsGdRelaxSkip(type);
1327 }
1328 if (expr == R_TLSLD_HINT)
1329 return 1;
1330 ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1331 c.addReloc({expr, type, offset, addend, &sym});
1332 return 1;
1333 }
1334
1335 // Local-Dynamic relocs can be optimized to Local-Exec.
1336 if (expr == R_DTPREL) {
1337 if (execOptimize)
1338 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1339 c.addReloc({expr, type, offset, addend, &sym});
1340 return 1;
1341 }
1342
1343 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1344 // thread pointer is stored in the got. This cannot be optimized to
1345 // Local-Exec.
1346 if (expr == R_TLSLD_GOT_OFF) {
1347 sym.setFlags(NEEDS_GOT_DTPREL);
1348 c.addReloc({expr, type, offset, addend, &sym});
1349 return 1;
1350 }
1351
1352 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1353 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC,
1354 R_LOONGARCH_TLSGD_PAGE_PC>(expr)) {
1355 if (!execOptimize) {
1356 sym.setFlags(NEEDS_TLSGD);
1357 c.addReloc({expr, type, offset, addend, &sym});
1358 return 1;
1359 }
1360
1361 // Global-Dynamic/TLSDESC can be optimized to Initial-Exec or Local-Exec
1362 // depending on the symbol being locally defined or not.
1363 //
1364 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a non-preemptible
1365 // label, so the LE optimization will be categorized as
1366 // R_RELAX_TLS_GD_TO_LE. We fix the categorization in RISCV::relocateAlloc.
1367 if (sym.isPreemptible) {
1368 sym.setFlags(NEEDS_TLSGD_TO_IE);
1369 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1370 offset, addend, &sym});
1371 } else {
1372 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1373 offset, addend, &sym});
1374 }
1375 return target->getTlsGdRelaxSkip(type);
1376 }
1377
1378 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC,
1379 R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) {
1380 ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1381 // Initial-Exec relocs can be optimized to Local-Exec if the symbol is
1382 // locally defined. This is not supported on SystemZ.
1383 if (execOptimize && isLocalInExecutable && config->emachine != EM_S390) {
1384 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1385 } else if (expr != R_TLSIE_HINT) {
1386 sym.setFlags(NEEDS_TLSIE);
1387 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1388 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1389 addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1390 else
1391 c.addReloc({expr, type, offset, addend, &sym});
1392 }
1393 return 1;
1394 }
1395
1396 return 0;
1397 }
1398
scanOne(RelTy * & i)1399 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1400 const RelTy &rel = *i;
1401 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1402 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1403 RelType type;
1404 if (config->mipsN32Abi) {
1405 type = getMipsN32RelType(i);
1406 } else {
1407 type = rel.getType(config->isMips64EL);
1408 ++i;
1409 }
1410 // Get an offset in an output section this relocation is applied to.
1411 uint64_t offset = getter.get(rel.r_offset);
1412 if (offset == uint64_t(-1))
1413 return;
1414
1415 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1416 int64_t addend = RelTy::IsRela
1417 ? getAddend<ELFT>(rel)
1418 : target->getImplicitAddend(
1419 sec->content().data() + rel.r_offset, type);
1420 if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1421 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1422 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1423 addend += getPPC64TocBase();
1424
1425 // Ignore R_*_NONE and other marker relocations.
1426 if (expr == R_NONE)
1427 return;
1428
1429 // Error if the target symbol is undefined. Symbol index 0 may be used by
1430 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1431 if (sym.isUndefined() && symIndex != 0 &&
1432 maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1433 return;
1434
1435 if (config->emachine == EM_PPC64) {
1436 // We can separate the small code model relocations into 2 categories:
1437 // 1) Those that access the compiler generated .toc sections.
1438 // 2) Those that access the linker allocated got entries.
1439 // lld allocates got entries to symbols on demand. Since we don't try to
1440 // sort the got entries in any way, we don't have to track which objects
1441 // have got-based small code model relocs. The .toc sections get placed
1442 // after the end of the linker allocated .got section and we do sort those
1443 // so sections addressed with small code model relocations come first.
1444 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1445 sec->file->ppc64SmallCodeModelTocRelocs = true;
1446
1447 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1448 // InputSectionBase::relocateAlloc().
1449 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1450 cast<Defined>(sym).section->name == ".toc")
1451 ppc64noTocRelax.insert({&sym, addend});
1452
1453 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1454 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1455 if (i == end) {
1456 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1457 "relocation" +
1458 getLocation(*sec, sym, offset));
1459 return;
1460 }
1461
1462 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1463 // so we can discern it later from the toc-case.
1464 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1465 ++offset;
1466 }
1467 }
1468
1469 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1470 // uses their addresses, we need GOT or GOTPLT to be created.
1471 //
1472 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1473 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1474 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1475 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1476 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1477 R_PPC64_RELAX_TOC>(expr)) {
1478 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1479 }
1480
1481 // Process TLS relocations, including TLS optimizations. Note that
1482 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1483 //
1484 // Some RISCV TLSDESC relocations reference a local NOTYPE symbol,
1485 // but we need to process them in handleTlsRelocation.
1486 if (sym.isTls() || oneof<R_TLSDESC_PC, R_TLSDESC_CALL>(expr)) {
1487 if (unsigned processed =
1488 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1489 i += processed - 1;
1490 return;
1491 }
1492 }
1493
1494 processAux(expr, type, offset, sym, addend);
1495 }
1496
1497 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1498 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1499 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1500 // instructions are generated by very old IBM XL compilers. Work around the
1501 // issue by disabling GD/LD to IE/LE relaxation.
1502 template <class RelTy>
checkPPC64TLSRelax(InputSectionBase & sec,ArrayRef<RelTy> rels)1503 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1504 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1505 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1506 return;
1507 bool hasGDLD = false;
1508 for (const RelTy &rel : rels) {
1509 RelType type = rel.getType(false);
1510 switch (type) {
1511 case R_PPC64_TLSGD:
1512 case R_PPC64_TLSLD:
1513 return; // Found a marker
1514 case R_PPC64_GOT_TLSGD16:
1515 case R_PPC64_GOT_TLSGD16_HA:
1516 case R_PPC64_GOT_TLSGD16_HI:
1517 case R_PPC64_GOT_TLSGD16_LO:
1518 case R_PPC64_GOT_TLSLD16:
1519 case R_PPC64_GOT_TLSLD16_HA:
1520 case R_PPC64_GOT_TLSLD16_HI:
1521 case R_PPC64_GOT_TLSLD16_LO:
1522 hasGDLD = true;
1523 break;
1524 }
1525 }
1526 if (hasGDLD) {
1527 sec.file->ppc64DisableTLSRelax = true;
1528 warn(toString(sec.file) +
1529 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1530 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1531 }
1532 }
1533
1534 template <class ELFT, class RelTy>
scan(ArrayRef<RelTy> rels)1535 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1536 // Not all relocations end up in Sec->Relocations, but a lot do.
1537 sec->relocations.reserve(rels.size());
1538
1539 if (config->emachine == EM_PPC64)
1540 checkPPC64TLSRelax<RelTy>(*sec, rels);
1541
1542 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1543 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1544 // script), the relocations may be unordered.
1545 // On SystemZ, all sections need to be sorted by r_offset, to allow TLS
1546 // relaxation to be handled correctly - see SystemZ::getTlsGdRelaxSkip.
1547 SmallVector<RelTy, 0> storage;
1548 if (isa<EhInputSection>(sec) || config->emachine == EM_S390)
1549 rels = sortRels(rels, storage);
1550
1551 end = static_cast<const void *>(rels.end());
1552 for (auto i = rels.begin(); i != end;)
1553 scanOne<ELFT>(i);
1554
1555 // Sort relocations by offset for more efficient searching for
1556 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1557 if (config->emachine == EM_RISCV ||
1558 (config->emachine == EM_PPC64 && sec->name == ".toc"))
1559 llvm::stable_sort(sec->relocs(),
1560 [](const Relocation &lhs, const Relocation &rhs) {
1561 return lhs.offset < rhs.offset;
1562 });
1563 }
1564
scanSection(InputSectionBase & s)1565 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) {
1566 sec = &s;
1567 getter = OffsetGetter(s);
1568 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1569 if (rels.areRelocsRel())
1570 scan<ELFT>(rels.rels);
1571 else
1572 scan<ELFT>(rels.relas);
1573 }
1574
scanRelocations()1575 template <class ELFT> void elf::scanRelocations() {
1576 // Scan all relocations. Each relocation goes through a series of tests to
1577 // determine if it needs special treatment, such as creating GOT, PLT,
1578 // copy relocations, etc. Note that relocations for non-alloc sections are
1579 // directly processed by InputSection::relocateNonAlloc.
1580
1581 // Deterministic parallellism needs sorting relocations which is unsuitable
1582 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1583 // for parallelism.
1584 bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1585 config->emachine == EM_PPC64;
1586 parallel::TaskGroup tg;
1587 auto outerFn = [&]() {
1588 for (ELFFileBase *f : ctx.objectFiles) {
1589 auto fn = [f]() {
1590 RelocationScanner scanner;
1591 for (InputSectionBase *s : f->getSections()) {
1592 if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1593 (s->flags & SHF_ALLOC) &&
1594 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1595 scanner.template scanSection<ELFT>(*s);
1596 }
1597 };
1598 if (serial)
1599 fn();
1600 else
1601 tg.spawn(fn);
1602 }
1603 auto scanEH = [] {
1604 RelocationScanner scanner;
1605 for (Partition &part : partitions) {
1606 for (EhInputSection *sec : part.ehFrame->sections)
1607 scanner.template scanSection<ELFT>(*sec);
1608 if (part.armExidx && part.armExidx->isLive())
1609 for (InputSection *sec : part.armExidx->exidxSections)
1610 if (sec->isLive())
1611 scanner.template scanSection<ELFT>(*sec);
1612 }
1613 };
1614 if (serial)
1615 scanEH();
1616 else
1617 tg.spawn(scanEH);
1618 };
1619 // If `serial` is true, call `spawn` to ensure that `scanner` runs in a thread
1620 // with valid getThreadIndex().
1621 if (serial)
1622 tg.spawn(outerFn);
1623 else
1624 outerFn();
1625 }
1626
handleNonPreemptibleIfunc(Symbol & sym,uint16_t flags)1627 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1628 // Handle a reference to a non-preemptible ifunc. These are special in a
1629 // few ways:
1630 //
1631 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1632 // a fixed value. But assuming that all references to the ifunc are
1633 // GOT-generating or PLT-generating, the handling of an ifunc is
1634 // relatively straightforward. We create a PLT entry in Iplt, which is
1635 // usually at the end of .plt, which makes an indirect call using a
1636 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1637 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1638 // which is usually at the end of .rela.plt. Unlike most relocations in
1639 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1640 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1641 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1642 // .got.plt without requiring a separate GOT entry.
1643 //
1644 // - Despite the fact that an ifunc does not have a fixed value, compilers
1645 // that are not passed -fPIC will assume that they do, and will emit
1646 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1647 // symbol. This means that if a direct relocation to the symbol is
1648 // seen, the linker must set a value for the symbol, and this value must
1649 // be consistent no matter what type of reference is made to the symbol.
1650 // This can be done by creating a PLT entry for the symbol in the way
1651 // described above and making it canonical, that is, making all references
1652 // point to the PLT entry instead of the resolver. In lld we also store
1653 // the address of the PLT entry in the dynamic symbol table, which means
1654 // that the symbol will also have the same value in other modules.
1655 // Because the value loaded from the GOT needs to be consistent with
1656 // the value computed using a direct relocation, a non-preemptible ifunc
1657 // may end up with two GOT entries, one in .got.plt that points to the
1658 // address returned by the resolver and is used only by the PLT entry,
1659 // and another in .got that points to the PLT entry and is used by
1660 // GOT-generating relocations.
1661 //
1662 // - The fact that these symbols do not have a fixed value makes them an
1663 // exception to the general rule that a statically linked executable does
1664 // not require any form of dynamic relocation. To handle these relocations
1665 // correctly, the IRELATIVE relocations are stored in an array which a
1666 // statically linked executable's startup code must enumerate using the
1667 // linker-defined symbols __rela?_iplt_{start,end}.
1668 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1669 return false;
1670 // Skip unreferenced non-preemptible ifunc.
1671 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1672 return true;
1673
1674 sym.isInIplt = true;
1675
1676 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1677 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1678 // may alter section/value, so create a copy of the symbol to make
1679 // section/value fixed.
1680 auto *directSym = makeDefined(cast<Defined>(sym));
1681 directSym->allocateAux();
1682 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1683 *directSym);
1684 sym.allocateAux();
1685 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1686
1687 if (flags & HAS_DIRECT_RELOC) {
1688 // Change the value to the IPLT and redirect all references to it.
1689 auto &d = cast<Defined>(sym);
1690 d.section = in.iplt.get();
1691 d.value = d.getPltIdx() * target->ipltEntrySize;
1692 d.size = 0;
1693 // It's important to set the symbol type here so that dynamic loaders
1694 // don't try to call the PLT as if it were an ifunc resolver.
1695 d.type = STT_FUNC;
1696
1697 if (flags & NEEDS_GOT)
1698 addGotEntry(sym);
1699 } else if (flags & NEEDS_GOT) {
1700 // Redirect GOT accesses to point to the Igot.
1701 sym.gotInIgot = true;
1702 }
1703 return true;
1704 }
1705
postScanRelocations()1706 void elf::postScanRelocations() {
1707 auto fn = [](Symbol &sym) {
1708 auto flags = sym.flags.load(std::memory_order_relaxed);
1709 if (handleNonPreemptibleIfunc(sym, flags))
1710 return;
1711
1712 if (sym.isTagged() && sym.isDefined())
1713 mainPart->memtagGlobalDescriptors->addSymbol(sym);
1714
1715 if (!sym.needsDynReloc())
1716 return;
1717 sym.allocateAux();
1718
1719 if (flags & NEEDS_GOT)
1720 addGotEntry(sym);
1721 if (flags & NEEDS_PLT)
1722 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1723 if (flags & NEEDS_COPY) {
1724 if (sym.isObject()) {
1725 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1726 // NEEDS_COPY is cleared for sym and its aliases so that in
1727 // later iterations aliases won't cause redundant copies.
1728 assert(!sym.hasFlag(NEEDS_COPY));
1729 } else {
1730 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1731 if (!sym.isDefined()) {
1732 replaceWithDefined(sym, *in.plt,
1733 target->pltHeaderSize +
1734 target->pltEntrySize * sym.getPltIdx(),
1735 0);
1736 sym.setFlags(NEEDS_COPY);
1737 if (config->emachine == EM_PPC) {
1738 // PPC32 canonical PLT entries are at the beginning of .glink
1739 cast<Defined>(sym).value = in.plt->headerSize;
1740 in.plt->headerSize += 16;
1741 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1742 }
1743 }
1744 }
1745 }
1746
1747 if (!sym.isTls())
1748 return;
1749 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1750 GotSection *got = in.got.get();
1751
1752 if (flags & NEEDS_TLSDESC) {
1753 got->addTlsDescEntry(sym);
1754 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1755 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1756 target->tlsDescRel);
1757 }
1758 if (flags & NEEDS_TLSGD) {
1759 got->addDynTlsEntry(sym);
1760 uint64_t off = got->getGlobalDynOffset(sym);
1761 if (isLocalInExecutable)
1762 // Write one to the GOT slot.
1763 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1764 else
1765 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1766 sym);
1767
1768 // If the symbol is preemptible we need the dynamic linker to write
1769 // the offset too.
1770 uint64_t offsetOff = off + config->wordsize;
1771 if (sym.isPreemptible)
1772 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1773 sym);
1774 else
1775 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1776 }
1777 if (flags & NEEDS_TLSGD_TO_IE) {
1778 got->addEntry(sym);
1779 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1780 sym.getGotOffset(), sym);
1781 }
1782 if (flags & NEEDS_GOT_DTPREL) {
1783 got->addEntry(sym);
1784 got->addConstant(
1785 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1786 }
1787
1788 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1789 addTpOffsetGotEntry(sym);
1790 };
1791
1792 GotSection *got = in.got.get();
1793 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1794 static Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0);
1795 if (config->shared)
1796 mainPart->relaDyn->addReloc(
1797 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1798 else
1799 got->addConstant(
1800 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1801 }
1802
1803 assert(symAux.size() == 1);
1804 for (Symbol *sym : symtab.getSymbols())
1805 fn(*sym);
1806
1807 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1808 // handling. They don't need regular PLT.
1809 for (ELFFileBase *file : ctx.objectFiles)
1810 for (Symbol *sym : file->getLocalSymbols())
1811 fn(*sym);
1812 }
1813
mergeCmp(const InputSection * a,const InputSection * b)1814 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1815 // std::merge requires a strict weak ordering.
1816 if (a->outSecOff < b->outSecOff)
1817 return true;
1818
1819 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1820 if (a->outSecOff == b->outSecOff && a != b) {
1821 auto *ta = dyn_cast<ThunkSection>(a);
1822 auto *tb = dyn_cast<ThunkSection>(b);
1823
1824 // Check if Thunk is immediately before any specific Target
1825 // InputSection for example Mips LA25 Thunks.
1826 if (ta && ta->getTargetInputSection() == b)
1827 return true;
1828
1829 // Place Thunk Sections without specific targets before
1830 // non-Thunk Sections.
1831 if (ta && !tb && !ta->getTargetInputSection())
1832 return true;
1833 }
1834
1835 return false;
1836 }
1837
1838 // Call Fn on every executable InputSection accessed via the linker script
1839 // InputSectionDescription::Sections.
forEachInputSectionDescription(ArrayRef<OutputSection * > outputSections,llvm::function_ref<void (OutputSection *,InputSectionDescription *)> fn)1840 static void forEachInputSectionDescription(
1841 ArrayRef<OutputSection *> outputSections,
1842 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1843 for (OutputSection *os : outputSections) {
1844 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1845 continue;
1846 for (SectionCommand *bc : os->commands)
1847 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1848 fn(os, isd);
1849 }
1850 }
1851
1852 // Thunk Implementation
1853 //
1854 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1855 // of code that the linker inserts inbetween a caller and a callee. The thunks
1856 // are added at link time rather than compile time as the decision on whether
1857 // a thunk is needed, such as the caller and callee being out of range, can only
1858 // be made at link time.
1859 //
1860 // It is straightforward to tell given the current state of the program when a
1861 // thunk is needed for a particular call. The more difficult part is that
1862 // the thunk needs to be placed in the program such that the caller can reach
1863 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1864 // the program alters addresses, which can mean more thunks etc.
1865 //
1866 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1867 // The decision to have a ThunkSection act as a container means that we can
1868 // more easily handle the most common case of a single block of contiguous
1869 // Thunks by inserting just a single ThunkSection.
1870 //
1871 // The implementation of Thunks in lld is split across these areas
1872 // Relocations.cpp : Framework for creating and placing thunks
1873 // Thunks.cpp : The code generated for each supported thunk
1874 // Target.cpp : Target specific hooks that the framework uses to decide when
1875 // a thunk is used
1876 // Synthetic.cpp : Implementation of ThunkSection
1877 // Writer.cpp : Iteratively call framework until no more Thunks added
1878 //
1879 // Thunk placement requirements:
1880 // Mips LA25 thunks. These must be placed immediately before the callee section
1881 // We can assume that the caller is in range of the Thunk. These are modelled
1882 // by Thunks that return the section they must precede with
1883 // getTargetInputSection().
1884 //
1885 // ARM interworking and range extension thunks. These thunks must be placed
1886 // within range of the caller. All implemented ARM thunks can always reach the
1887 // callee as they use an indirect jump via a register that has no range
1888 // restrictions.
1889 //
1890 // Thunk placement algorithm:
1891 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1892 // getTargetInputSection().
1893 //
1894 // For thunks that must be placed within range of the caller there are many
1895 // possible choices given that the maximum range from the caller is usually
1896 // much larger than the average InputSection size. Desirable properties include:
1897 // - Maximize reuse of thunks by multiple callers
1898 // - Minimize number of ThunkSections to simplify insertion
1899 // - Handle impact of already added Thunks on addresses
1900 // - Simple to understand and implement
1901 //
1902 // In lld for the first pass, we pre-create one or more ThunkSections per
1903 // InputSectionDescription at Target specific intervals. A ThunkSection is
1904 // placed so that the estimated end of the ThunkSection is within range of the
1905 // start of the InputSectionDescription or the previous ThunkSection. For
1906 // example:
1907 // InputSectionDescription
1908 // Section 0
1909 // ...
1910 // Section N
1911 // ThunkSection 0
1912 // Section N + 1
1913 // ...
1914 // Section N + K
1915 // Thunk Section 1
1916 //
1917 // The intention is that we can add a Thunk to a ThunkSection that is well
1918 // spaced enough to service a number of callers without having to do a lot
1919 // of work. An important principle is that it is not an error if a Thunk cannot
1920 // be placed in a pre-created ThunkSection; when this happens we create a new
1921 // ThunkSection placed next to the caller. This allows us to handle the vast
1922 // majority of thunks simply, but also handle rare cases where the branch range
1923 // is smaller than the target specific spacing.
1924 //
1925 // The algorithm is expected to create all the thunks that are needed in a
1926 // single pass, with a small number of programs needing a second pass due to
1927 // the insertion of thunks in the first pass increasing the offset between
1928 // callers and callees that were only just in range.
1929 //
1930 // A consequence of allowing new ThunkSections to be created outside of the
1931 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1932 // range in pass K, are out of range in some pass > K due to the insertion of
1933 // more Thunks in between the caller and callee. When this happens we retarget
1934 // the relocation back to the original target and create another Thunk.
1935
1936 // Remove ThunkSections that are empty, this should only be the initial set
1937 // precreated on pass 0.
1938
1939 // Insert the Thunks for OutputSection OS into their designated place
1940 // in the Sections vector, and recalculate the InputSection output section
1941 // offsets.
1942 // This may invalidate any output section offsets stored outside of InputSection
mergeThunks(ArrayRef<OutputSection * > outputSections)1943 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1944 forEachInputSectionDescription(
1945 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1946 if (isd->thunkSections.empty())
1947 return;
1948
1949 // Remove any zero sized precreated Thunks.
1950 llvm::erase_if(isd->thunkSections,
1951 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1952 return ts.first->getSize() == 0;
1953 });
1954
1955 // ISD->ThunkSections contains all created ThunkSections, including
1956 // those inserted in previous passes. Extract the Thunks created this
1957 // pass and order them in ascending outSecOff.
1958 std::vector<ThunkSection *> newThunks;
1959 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1960 if (ts.second == pass)
1961 newThunks.push_back(ts.first);
1962 llvm::stable_sort(newThunks,
1963 [](const ThunkSection *a, const ThunkSection *b) {
1964 return a->outSecOff < b->outSecOff;
1965 });
1966
1967 // Merge sorted vectors of Thunks and InputSections by outSecOff
1968 SmallVector<InputSection *, 0> tmp;
1969 tmp.reserve(isd->sections.size() + newThunks.size());
1970
1971 std::merge(isd->sections.begin(), isd->sections.end(),
1972 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1973 mergeCmp);
1974
1975 isd->sections = std::move(tmp);
1976 });
1977 }
1978
getPCBias(RelType type)1979 static int64_t getPCBias(RelType type) {
1980 if (config->emachine != EM_ARM)
1981 return 0;
1982 switch (type) {
1983 case R_ARM_THM_JUMP19:
1984 case R_ARM_THM_JUMP24:
1985 case R_ARM_THM_CALL:
1986 return 4;
1987 default:
1988 return 8;
1989 }
1990 }
1991
1992 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1993 // is in range of Src. An ISD maps to a range of InputSections described by a
1994 // linker script section pattern such as { .text .text.* }.
getISDThunkSec(OutputSection * os,InputSection * isec,InputSectionDescription * isd,const Relocation & rel,uint64_t src)1995 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1996 InputSection *isec,
1997 InputSectionDescription *isd,
1998 const Relocation &rel,
1999 uint64_t src) {
2000 // See the comment in getThunk for -pcBias below.
2001 const int64_t pcBias = getPCBias(rel.type);
2002 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
2003 ThunkSection *ts = tp.first;
2004 uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
2005 uint64_t tsLimit = tsBase + ts->getSize();
2006 if (target->inBranchRange(rel.type, src,
2007 (src > tsLimit) ? tsBase : tsLimit))
2008 return ts;
2009 }
2010
2011 // No suitable ThunkSection exists. This can happen when there is a branch
2012 // with lower range than the ThunkSection spacing or when there are too
2013 // many Thunks. Create a new ThunkSection as close to the InputSection as
2014 // possible. Error if InputSection is so large we cannot place ThunkSection
2015 // anywhere in Range.
2016 uint64_t thunkSecOff = isec->outSecOff;
2017 if (!target->inBranchRange(rel.type, src,
2018 os->addr + thunkSecOff + rel.addend)) {
2019 thunkSecOff = isec->outSecOff + isec->getSize();
2020 if (!target->inBranchRange(rel.type, src,
2021 os->addr + thunkSecOff + rel.addend))
2022 fatal("InputSection too large for range extension thunk " +
2023 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
2024 }
2025 return addThunkSection(os, isd, thunkSecOff);
2026 }
2027
2028 // Add a Thunk that needs to be placed in a ThunkSection that immediately
2029 // precedes its Target.
getISThunkSec(InputSection * isec)2030 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
2031 ThunkSection *ts = thunkedSections.lookup(isec);
2032 if (ts)
2033 return ts;
2034
2035 // Find InputSectionRange within Target Output Section (TOS) that the
2036 // InputSection (IS) that we need to precede is in.
2037 OutputSection *tos = isec->getParent();
2038 for (SectionCommand *bc : tos->commands) {
2039 auto *isd = dyn_cast<InputSectionDescription>(bc);
2040 if (!isd || isd->sections.empty())
2041 continue;
2042
2043 InputSection *first = isd->sections.front();
2044 InputSection *last = isd->sections.back();
2045
2046 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
2047 continue;
2048
2049 ts = addThunkSection(tos, isd, isec->outSecOff);
2050 thunkedSections[isec] = ts;
2051 return ts;
2052 }
2053
2054 return nullptr;
2055 }
2056
2057 // Create one or more ThunkSections per OS that can be used to place Thunks.
2058 // We attempt to place the ThunkSections using the following desirable
2059 // properties:
2060 // - Within range of the maximum number of callers
2061 // - Minimise the number of ThunkSections
2062 //
2063 // We follow a simple but conservative heuristic to place ThunkSections at
2064 // offsets that are multiples of a Target specific branch range.
2065 // For an InputSectionDescription that is smaller than the range, a single
2066 // ThunkSection at the end of the range will do.
2067 //
2068 // For an InputSectionDescription that is more than twice the size of the range,
2069 // we place the last ThunkSection at range bytes from the end of the
2070 // InputSectionDescription in order to increase the likelihood that the
2071 // distance from a thunk to its target will be sufficiently small to
2072 // allow for the creation of a short thunk.
createInitialThunkSections(ArrayRef<OutputSection * > outputSections)2073 void ThunkCreator::createInitialThunkSections(
2074 ArrayRef<OutputSection *> outputSections) {
2075 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
2076
2077 forEachInputSectionDescription(
2078 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2079 if (isd->sections.empty())
2080 return;
2081
2082 uint32_t isdBegin = isd->sections.front()->outSecOff;
2083 uint32_t isdEnd =
2084 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2085 uint32_t lastThunkLowerBound = -1;
2086 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2087 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2088
2089 uint32_t isecLimit;
2090 uint32_t prevIsecLimit = isdBegin;
2091 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2092
2093 for (const InputSection *isec : isd->sections) {
2094 isecLimit = isec->outSecOff + isec->getSize();
2095 if (isecLimit > thunkUpperBound) {
2096 addThunkSection(os, isd, prevIsecLimit);
2097 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2098 }
2099 if (isecLimit > lastThunkLowerBound)
2100 break;
2101 prevIsecLimit = isecLimit;
2102 }
2103 addThunkSection(os, isd, isecLimit);
2104 });
2105 }
2106
addThunkSection(OutputSection * os,InputSectionDescription * isd,uint64_t off)2107 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2108 InputSectionDescription *isd,
2109 uint64_t off) {
2110 auto *ts = make<ThunkSection>(os, off);
2111 ts->partition = os->partition;
2112 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2113 !isd->sections.empty()) {
2114 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2115 // thunks we disturb the base addresses of sections placed after the thunks
2116 // this makes patches we have generated redundant, and may cause us to
2117 // generate more patches as different instructions are now in sensitive
2118 // locations. When we generate more patches we may force more branches to
2119 // go out of range, causing more thunks to be generated. In pathological
2120 // cases this can cause the address dependent content pass not to converge.
2121 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2122 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2123 // which means that adding Thunks to the section does not invalidate
2124 // errata patches for following code.
2125 // Rounding up the size to 4KiB has consequences for code-size and can
2126 // trip up linker script defined assertions. For example the linux kernel
2127 // has an assertion that what LLD represents as an InputSectionDescription
2128 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2129 // We use the heuristic of rounding up the size when both of the following
2130 // conditions are true:
2131 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2132 // accounts for the case where no single InputSectionDescription is
2133 // larger than the OutputSection size. This is conservative but simple.
2134 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2135 // any assertion failures that an InputSectionDescription is < 4 KiB
2136 // in size.
2137 uint64_t isdSize = isd->sections.back()->outSecOff +
2138 isd->sections.back()->getSize() -
2139 isd->sections.front()->outSecOff;
2140 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2141 ts->roundUpSizeForErrata = true;
2142 }
2143 isd->thunkSections.push_back({ts, pass});
2144 return ts;
2145 }
2146
isThunkSectionCompatible(InputSection * source,SectionBase * target)2147 static bool isThunkSectionCompatible(InputSection *source,
2148 SectionBase *target) {
2149 // We can't reuse thunks in different loadable partitions because they might
2150 // not be loaded. But partition 1 (the main partition) will always be loaded.
2151 if (source->partition != target->partition)
2152 return target->partition == 1;
2153 return true;
2154 }
2155
getThunk(InputSection * isec,Relocation & rel,uint64_t src)2156 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2157 Relocation &rel, uint64_t src) {
2158 std::vector<Thunk *> *thunkVec = nullptr;
2159 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2160 // out in the relocation addend. We compensate for the PC bias so that
2161 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2162 // which is usually 0.
2163 const int64_t pcBias = getPCBias(rel.type);
2164 const int64_t keyAddend = rel.addend + pcBias;
2165
2166 // We use a ((section, offset), addend) pair to find the thunk position if
2167 // possible so that we create only one thunk for aliased symbols or ICFed
2168 // sections. There may be multiple relocations sharing the same (section,
2169 // offset + addend) pair. We may revert the relocation back to its original
2170 // non-Thunk target, so we cannot fold offset + addend.
2171 if (auto *d = dyn_cast<Defined>(rel.sym))
2172 if (!d->isInPlt() && d->section)
2173 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2174 keyAddend}];
2175 if (!thunkVec)
2176 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2177
2178 // Check existing Thunks for Sym to see if they can be reused
2179 for (Thunk *t : *thunkVec)
2180 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2181 t->isCompatibleWith(*isec, rel) &&
2182 target->inBranchRange(rel.type, src,
2183 t->getThunkTargetSym()->getVA(-pcBias)))
2184 return std::make_pair(t, false);
2185
2186 // No existing compatible Thunk in range, create a new one
2187 Thunk *t = addThunk(*isec, rel);
2188 thunkVec->push_back(t);
2189 return std::make_pair(t, true);
2190 }
2191
2192 // Return true if the relocation target is an in range Thunk.
2193 // Return false if the relocation is not to a Thunk. If the relocation target
2194 // was originally to a Thunk, but is no longer in range we revert the
2195 // relocation back to its original non-Thunk target.
normalizeExistingThunk(Relocation & rel,uint64_t src)2196 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2197 if (Thunk *t = thunks.lookup(rel.sym)) {
2198 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2199 return true;
2200 rel.sym = &t->destination;
2201 rel.addend = t->addend;
2202 if (rel.sym->isInPlt())
2203 rel.expr = toPlt(rel.expr);
2204 }
2205 return false;
2206 }
2207
2208 // Process all relocations from the InputSections that have been assigned
2209 // to InputSectionDescriptions and redirect through Thunks if needed. The
2210 // function should be called iteratively until it returns false.
2211 //
2212 // PreConditions:
2213 // All InputSections that may need a Thunk are reachable from
2214 // OutputSectionCommands.
2215 //
2216 // All OutputSections have an address and all InputSections have an offset
2217 // within the OutputSection.
2218 //
2219 // The offsets between caller (relocation place) and callee
2220 // (relocation target) will not be modified outside of createThunks().
2221 //
2222 // PostConditions:
2223 // If return value is true then ThunkSections have been inserted into
2224 // OutputSections. All relocations that needed a Thunk based on the information
2225 // available to createThunks() on entry have been redirected to a Thunk. Note
2226 // that adding Thunks changes offsets between caller and callee so more Thunks
2227 // may be required.
2228 //
2229 // If return value is false then no more Thunks are needed, and createThunks has
2230 // made no changes. If the target requires range extension thunks, currently
2231 // ARM, then any future change in offset between caller and callee risks a
2232 // relocation out of range error.
createThunks(uint32_t pass,ArrayRef<OutputSection * > outputSections)2233 bool ThunkCreator::createThunks(uint32_t pass,
2234 ArrayRef<OutputSection *> outputSections) {
2235 this->pass = pass;
2236 bool addressesChanged = false;
2237
2238 if (pass == 0 && target->getThunkSectionSpacing())
2239 createInitialThunkSections(outputSections);
2240
2241 // Create all the Thunks and insert them into synthetic ThunkSections. The
2242 // ThunkSections are later inserted back into InputSectionDescriptions.
2243 // We separate the creation of ThunkSections from the insertion of the
2244 // ThunkSections as ThunkSections are not always inserted into the same
2245 // InputSectionDescription as the caller.
2246 forEachInputSectionDescription(
2247 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2248 for (InputSection *isec : isd->sections)
2249 for (Relocation &rel : isec->relocs()) {
2250 uint64_t src = isec->getVA(rel.offset);
2251
2252 // If we are a relocation to an existing Thunk, check if it is
2253 // still in range. If not then Rel will be altered to point to its
2254 // original target so another Thunk can be generated.
2255 if (pass > 0 && normalizeExistingThunk(rel, src))
2256 continue;
2257
2258 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2259 *rel.sym, rel.addend))
2260 continue;
2261
2262 Thunk *t;
2263 bool isNew;
2264 std::tie(t, isNew) = getThunk(isec, rel, src);
2265
2266 if (isNew) {
2267 // Find or create a ThunkSection for the new Thunk
2268 ThunkSection *ts;
2269 if (auto *tis = t->getTargetInputSection())
2270 ts = getISThunkSec(tis);
2271 else
2272 ts = getISDThunkSec(os, isec, isd, rel, src);
2273 ts->addThunk(t);
2274 thunks[t->getThunkTargetSym()] = t;
2275 }
2276
2277 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2278 rel.sym = t->getThunkTargetSym();
2279 rel.expr = fromPlt(rel.expr);
2280
2281 // On AArch64 and PPC, a jump/call relocation may be encoded as
2282 // STT_SECTION + non-zero addend, clear the addend after
2283 // redirection.
2284 if (config->emachine != EM_MIPS)
2285 rel.addend = -getPCBias(rel.type);
2286 }
2287
2288 for (auto &p : isd->thunkSections)
2289 addressesChanged |= p.first->assignOffsets();
2290 });
2291
2292 for (auto &p : thunkedSections)
2293 addressesChanged |= p.second->assignOffsets();
2294
2295 // Merge all created synthetic ThunkSections back into OutputSection
2296 mergeThunks(outputSections);
2297 return addressesChanged;
2298 }
2299
2300 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2301 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2302 // __tls_get_addr.
2303 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
hexagonNeedsTLSSymbol(ArrayRef<OutputSection * > outputSections)2304 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2305 bool needTlsSymbol = false;
2306 forEachInputSectionDescription(
2307 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2308 for (InputSection *isec : isd->sections)
2309 for (Relocation &rel : isec->relocs())
2310 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2311 needTlsSymbol = true;
2312 return;
2313 }
2314 });
2315 return needTlsSymbol;
2316 }
2317
hexagonTLSSymbolUpdate(ArrayRef<OutputSection * > outputSections)2318 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2319 Symbol *sym = symtab.find("__tls_get_addr");
2320 if (!sym)
2321 return;
2322 bool needEntry = true;
2323 forEachInputSectionDescription(
2324 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2325 for (InputSection *isec : isd->sections)
2326 for (Relocation &rel : isec->relocs())
2327 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2328 if (needEntry) {
2329 sym->allocateAux();
2330 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2331 *sym);
2332 needEntry = false;
2333 }
2334 rel.sym = sym;
2335 }
2336 });
2337 }
2338
2339 template void elf::scanRelocations<ELF32LE>();
2340 template void elf::scanRelocations<ELF32BE>();
2341 template void elf::scanRelocations<ELF64LE>();
2342 template void elf::scanRelocations<ELF64BE>();
2343