1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_inet.h"
38 #include "opt_ipsec.h"
39 #include "opt_kern_tls.h"
40 #include "opt_mbuf_stress_test.h"
41 #include "opt_ratelimit.h"
42 #include "opt_route.h"
43 #include "opt_rss.h"
44 #include "opt_sctp.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/ktls.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/protosw.h>
56 #include <sys/rmlock.h>
57 #include <sys/sdt.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/sysctl.h>
61 #include <sys/ucred.h>
62
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_vlan_var.h>
66 #include <net/if_llatbl.h>
67 #include <net/ethernet.h>
68 #include <net/netisr.h>
69 #include <net/pfil.h>
70 #include <net/route.h>
71 #include <net/route/nhop.h>
72 #include <net/rss_config.h>
73 #include <net/vnet.h>
74
75 #include <netinet/in.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/ip.h>
80 #include <netinet/in_fib.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/in_rss.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip_var.h>
85 #include <netinet/ip_options.h>
86
87 #include <netinet/udp.h>
88 #include <netinet/udp_var.h>
89
90 #if defined(SCTP) || defined(SCTP_SUPPORT)
91 #include <netinet/sctp.h>
92 #include <netinet/sctp_crc32.h>
93 #endif
94
95 #include <netipsec/ipsec_support.h>
96
97 #include <machine/in_cksum.h>
98
99 #include <security/mac/mac_framework.h>
100
101 #ifdef MBUF_STRESS_TEST
102 static int mbuf_frag_size = 0;
103 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
104 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
105 #endif
106
107 static void ip_mloopback(struct ifnet *, const struct mbuf *, int);
108
109 extern int in_mcast_loop;
110 extern struct protosw inetsw[];
111
112 static inline int
ip_output_pfil(struct mbuf ** mp,struct ifnet * ifp,int flags,struct inpcb * inp,struct sockaddr_in * dst,int * fibnum,int * error)113 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
114 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
115 {
116 struct m_tag *fwd_tag = NULL;
117 struct mbuf *m;
118 struct in_addr odst;
119 struct ip *ip;
120 int pflags = PFIL_OUT;
121
122 if (flags & IP_FORWARDING)
123 pflags |= PFIL_FWD;
124
125 m = *mp;
126 ip = mtod(m, struct ip *);
127
128 /* Run through list of hooks for output packets. */
129 odst.s_addr = ip->ip_dst.s_addr;
130 switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) {
131 case PFIL_DROPPED:
132 *error = EACCES;
133 /* FALLTHROUGH */
134 case PFIL_CONSUMED:
135 return 1; /* Finished */
136 case PFIL_PASS:
137 *error = 0;
138 }
139 m = *mp;
140 ip = mtod(m, struct ip *);
141
142 /* See if destination IP address was changed by packet filter. */
143 if (odst.s_addr != ip->ip_dst.s_addr) {
144 m->m_flags |= M_SKIP_FIREWALL;
145 /* If destination is now ourself drop to ip_input(). */
146 if (in_localip(ip->ip_dst)) {
147 m->m_flags |= M_FASTFWD_OURS;
148 if (m->m_pkthdr.rcvif == NULL)
149 m->m_pkthdr.rcvif = V_loif;
150 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
151 m->m_pkthdr.csum_flags |=
152 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
153 m->m_pkthdr.csum_data = 0xffff;
154 }
155 m->m_pkthdr.csum_flags |=
156 CSUM_IP_CHECKED | CSUM_IP_VALID;
157 #if defined(SCTP) || defined(SCTP_SUPPORT)
158 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
159 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
160 #endif
161 *error = netisr_queue(NETISR_IP, m);
162 return 1; /* Finished */
163 }
164
165 bzero(dst, sizeof(*dst));
166 dst->sin_family = AF_INET;
167 dst->sin_len = sizeof(*dst);
168 dst->sin_addr = ip->ip_dst;
169
170 return -1; /* Reloop */
171 }
172 /* See if fib was changed by packet filter. */
173 if ((*fibnum) != M_GETFIB(m)) {
174 m->m_flags |= M_SKIP_FIREWALL;
175 *fibnum = M_GETFIB(m);
176 return -1; /* Reloop for FIB change */
177 }
178
179 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
180 if (m->m_flags & M_FASTFWD_OURS) {
181 if (m->m_pkthdr.rcvif == NULL)
182 m->m_pkthdr.rcvif = V_loif;
183 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
184 m->m_pkthdr.csum_flags |=
185 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
186 m->m_pkthdr.csum_data = 0xffff;
187 }
188 #if defined(SCTP) || defined(SCTP_SUPPORT)
189 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
190 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
191 #endif
192 m->m_pkthdr.csum_flags |=
193 CSUM_IP_CHECKED | CSUM_IP_VALID;
194
195 *error = netisr_queue(NETISR_IP, m);
196 return 1; /* Finished */
197 }
198 /* Or forward to some other address? */
199 if ((m->m_flags & M_IP_NEXTHOP) &&
200 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
201 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
202 m->m_flags |= M_SKIP_FIREWALL;
203 m->m_flags &= ~M_IP_NEXTHOP;
204 m_tag_delete(m, fwd_tag);
205
206 return -1; /* Reloop for CHANGE of dst */
207 }
208
209 return 0;
210 }
211
212 static int
ip_output_send(struct inpcb * inp,struct ifnet * ifp,struct mbuf * m,const struct sockaddr * gw,struct route * ro,bool stamp_tag)213 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
214 const struct sockaddr *gw, struct route *ro, bool stamp_tag)
215 {
216 #ifdef KERN_TLS
217 struct ktls_session *tls = NULL;
218 #endif
219 struct m_snd_tag *mst;
220 int error;
221
222 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
223 mst = NULL;
224
225 #ifdef KERN_TLS
226 /*
227 * If this is an unencrypted TLS record, save a reference to
228 * the record. This local reference is used to call
229 * ktls_output_eagain after the mbuf has been freed (thus
230 * dropping the mbuf's reference) in if_output.
231 */
232 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
233 tls = ktls_hold(m->m_next->m_epg_tls);
234 mst = tls->snd_tag;
235
236 /*
237 * If a TLS session doesn't have a valid tag, it must
238 * have had an earlier ifp mismatch, so drop this
239 * packet.
240 */
241 if (mst == NULL) {
242 m_freem(m);
243 error = EAGAIN;
244 goto done;
245 }
246 /*
247 * Always stamp tags that include NIC ktls.
248 */
249 stamp_tag = true;
250 }
251 #endif
252 #ifdef RATELIMIT
253 if (inp != NULL && mst == NULL) {
254 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
255 (inp->inp_snd_tag != NULL &&
256 inp->inp_snd_tag->ifp != ifp))
257 in_pcboutput_txrtlmt(inp, ifp, m);
258
259 if (inp->inp_snd_tag != NULL)
260 mst = inp->inp_snd_tag;
261 }
262 #endif
263 if (stamp_tag && mst != NULL) {
264 KASSERT(m->m_pkthdr.rcvif == NULL,
265 ("trying to add a send tag to a forwarded packet"));
266 if (mst->ifp != ifp) {
267 m_freem(m);
268 error = EAGAIN;
269 goto done;
270 }
271
272 /* stamp send tag on mbuf */
273 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
274 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
275 }
276
277 error = (*ifp->if_output)(ifp, m, gw, ro);
278
279 done:
280 /* Check for route change invalidating send tags. */
281 #ifdef KERN_TLS
282 if (tls != NULL) {
283 if (error == EAGAIN)
284 error = ktls_output_eagain(inp, tls);
285 ktls_free(tls);
286 }
287 #endif
288 #ifdef RATELIMIT
289 if (error == EAGAIN)
290 in_pcboutput_eagain(inp);
291 #endif
292 return (error);
293 }
294
295 /* rte<>ro_flags translation */
296 static inline void
rt_update_ro_flags(struct route * ro,const struct nhop_object * nh)297 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh)
298 {
299 int nh_flags = nh->nh_flags;
300
301 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
302
303 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
304 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
305 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
306 }
307
308 /*
309 * IP output. The packet in mbuf chain m contains a skeletal IP
310 * header (with len, off, ttl, proto, tos, src, dst).
311 * The mbuf chain containing the packet will be freed.
312 * The mbuf opt, if present, will not be freed.
313 * If route ro is present and has ro_rt initialized, route lookup would be
314 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
315 * then result of route lookup is stored in ro->ro_rt.
316 *
317 * In the IP forwarding case, the packet will arrive with options already
318 * inserted, so must have a NULL opt pointer.
319 */
320 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,struct inpcb * inp)321 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
322 struct ip_moptions *imo, struct inpcb *inp)
323 {
324 struct rm_priotracker in_ifa_tracker;
325 struct ip *ip;
326 struct ifnet *ifp = NULL; /* keep compiler happy */
327 struct mbuf *m0;
328 int hlen = sizeof (struct ip);
329 int mtu = 0;
330 int error = 0;
331 int vlan_pcp = -1;
332 struct sockaddr_in *dst;
333 const struct sockaddr *gw;
334 struct in_ifaddr *ia = NULL;
335 struct in_addr src;
336 int isbroadcast;
337 uint16_t ip_len, ip_off;
338 struct route iproute;
339 uint32_t fibnum;
340 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
341 int no_route_but_check_spd = 0;
342 #endif
343
344 M_ASSERTPKTHDR(m);
345 NET_EPOCH_ASSERT();
346
347 if (inp != NULL) {
348 INP_LOCK_ASSERT(inp);
349 M_SETFIB(m, inp->inp_inc.inc_fibnum);
350 if ((flags & IP_NODEFAULTFLOWID) == 0) {
351 m->m_pkthdr.flowid = inp->inp_flowid;
352 M_HASHTYPE_SET(m, inp->inp_flowtype);
353 }
354 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
355 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
356 INP_2PCP_SHIFT;
357 #ifdef NUMA
358 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
359 #endif
360 }
361
362 if (opt) {
363 int len = 0;
364 m = ip_insertoptions(m, opt, &len);
365 if (len != 0)
366 hlen = len; /* ip->ip_hl is updated above */
367 }
368 ip = mtod(m, struct ip *);
369 ip_len = ntohs(ip->ip_len);
370 ip_off = ntohs(ip->ip_off);
371
372 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
373 ip->ip_v = IPVERSION;
374 ip->ip_hl = hlen >> 2;
375 ip_fillid(ip);
376 } else {
377 /* Header already set, fetch hlen from there */
378 hlen = ip->ip_hl << 2;
379 }
380 if ((flags & IP_FORWARDING) == 0)
381 IPSTAT_INC(ips_localout);
382
383 /*
384 * dst/gw handling:
385 *
386 * gw is readonly but can point either to dst OR rt_gateway,
387 * therefore we need restore gw if we're redoing lookup.
388 */
389 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
390 if (ro == NULL) {
391 ro = &iproute;
392 bzero(ro, sizeof (*ro));
393 }
394 dst = (struct sockaddr_in *)&ro->ro_dst;
395 if (ro->ro_nh == NULL) {
396 dst->sin_family = AF_INET;
397 dst->sin_len = sizeof(*dst);
398 dst->sin_addr = ip->ip_dst;
399 }
400 gw = (const struct sockaddr *)dst;
401 again:
402 /*
403 * Validate route against routing table additions;
404 * a better/more specific route might have been added.
405 */
406 if (inp != NULL && ro->ro_nh != NULL)
407 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
408 /*
409 * If there is a cached route,
410 * check that it is to the same destination
411 * and is still up. If not, free it and try again.
412 * The address family should also be checked in case of sharing the
413 * cache with IPv6.
414 * Also check whether routing cache needs invalidation.
415 */
416 if (ro->ro_nh != NULL &&
417 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
418 dst->sin_addr.s_addr != ip->ip_dst.s_addr))
419 RO_INVALIDATE_CACHE(ro);
420 ia = NULL;
421 /*
422 * If routing to interface only, short circuit routing lookup.
423 * The use of an all-ones broadcast address implies this; an
424 * interface is specified by the broadcast address of an interface,
425 * or the destination address of a ptp interface.
426 */
427 if (flags & IP_SENDONES) {
428 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
429 M_GETFIB(m)))) == NULL &&
430 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
431 M_GETFIB(m)))) == NULL) {
432 IPSTAT_INC(ips_noroute);
433 error = ENETUNREACH;
434 goto bad;
435 }
436 ip->ip_dst.s_addr = INADDR_BROADCAST;
437 dst->sin_addr = ip->ip_dst;
438 ifp = ia->ia_ifp;
439 mtu = ifp->if_mtu;
440 ip->ip_ttl = 1;
441 isbroadcast = 1;
442 src = IA_SIN(ia)->sin_addr;
443 } else if (flags & IP_ROUTETOIF) {
444 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
445 M_GETFIB(m)))) == NULL &&
446 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
447 M_GETFIB(m)))) == NULL) {
448 IPSTAT_INC(ips_noroute);
449 error = ENETUNREACH;
450 goto bad;
451 }
452 ifp = ia->ia_ifp;
453 mtu = ifp->if_mtu;
454 ip->ip_ttl = 1;
455 isbroadcast = ifp->if_flags & IFF_BROADCAST ?
456 in_ifaddr_broadcast(dst->sin_addr, ia) : 0;
457 src = IA_SIN(ia)->sin_addr;
458 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
459 imo != NULL && imo->imo_multicast_ifp != NULL) {
460 /*
461 * Bypass the normal routing lookup for multicast
462 * packets if the interface is specified.
463 */
464 ifp = imo->imo_multicast_ifp;
465 mtu = ifp->if_mtu;
466 IFP_TO_IA(ifp, ia, &in_ifa_tracker);
467 isbroadcast = 0; /* fool gcc */
468 /* Interface may have no addresses. */
469 if (ia != NULL)
470 src = IA_SIN(ia)->sin_addr;
471 else
472 src.s_addr = INADDR_ANY;
473 } else if (ro != &iproute) {
474 if (ro->ro_nh == NULL) {
475 /*
476 * We want to do any cloning requested by the link
477 * layer, as this is probably required in all cases
478 * for correct operation (as it is for ARP).
479 */
480 uint32_t flowid;
481 flowid = m->m_pkthdr.flowid;
482 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
483 NHR_REF, flowid);
484
485 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
486 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
487 /*
488 * There is no route for this packet, but it is
489 * possible that a matching SPD entry exists.
490 */
491 no_route_but_check_spd = 1;
492 goto sendit;
493 #endif
494 IPSTAT_INC(ips_noroute);
495 error = EHOSTUNREACH;
496 goto bad;
497 }
498 }
499 struct nhop_object *nh = ro->ro_nh;
500
501 ia = ifatoia(nh->nh_ifa);
502 ifp = nh->nh_ifp;
503 counter_u64_add(nh->nh_pksent, 1);
504 rt_update_ro_flags(ro, nh);
505 if (nh->nh_flags & NHF_GATEWAY)
506 gw = &nh->gw_sa;
507 if (nh->nh_flags & NHF_HOST)
508 isbroadcast = (nh->nh_flags & NHF_BROADCAST);
509 else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET))
510 isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia);
511 else
512 isbroadcast = 0;
513 mtu = nh->nh_mtu;
514 src = IA_SIN(ia)->sin_addr;
515 } else {
516 struct nhop_object *nh;
517
518 nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE,
519 m->m_pkthdr.flowid);
520 if (nh == NULL) {
521 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
522 /*
523 * There is no route for this packet, but it is
524 * possible that a matching SPD entry exists.
525 */
526 no_route_but_check_spd = 1;
527 goto sendit;
528 #endif
529 IPSTAT_INC(ips_noroute);
530 error = EHOSTUNREACH;
531 goto bad;
532 }
533 ifp = nh->nh_ifp;
534 mtu = nh->nh_mtu;
535 rt_update_ro_flags(ro, nh);
536 if (nh->nh_flags & NHF_GATEWAY)
537 gw = &nh->gw_sa;
538 ia = ifatoia(nh->nh_ifa);
539 src = IA_SIN(ia)->sin_addr;
540 isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
541 (NHF_HOST | NHF_BROADCAST)) ||
542 ((ifp->if_flags & IFF_BROADCAST) &&
543 (gw->sa_family == AF_INET) &&
544 in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia)));
545 }
546
547 /* Catch a possible divide by zero later. */
548 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
549 __func__, mtu, ro,
550 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
551
552 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
553 m->m_flags |= M_MCAST;
554 /*
555 * IP destination address is multicast. Make sure "gw"
556 * still points to the address in "ro". (It may have been
557 * changed to point to a gateway address, above.)
558 */
559 gw = (const struct sockaddr *)dst;
560 /*
561 * See if the caller provided any multicast options
562 */
563 if (imo != NULL) {
564 ip->ip_ttl = imo->imo_multicast_ttl;
565 if (imo->imo_multicast_vif != -1)
566 ip->ip_src.s_addr =
567 ip_mcast_src ?
568 ip_mcast_src(imo->imo_multicast_vif) :
569 INADDR_ANY;
570 } else
571 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
572 /*
573 * Confirm that the outgoing interface supports multicast.
574 */
575 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
576 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
577 IPSTAT_INC(ips_noroute);
578 error = ENETUNREACH;
579 goto bad;
580 }
581 }
582 /*
583 * If source address not specified yet, use address
584 * of outgoing interface.
585 */
586 if (ip->ip_src.s_addr == INADDR_ANY)
587 ip->ip_src = src;
588
589 if ((imo == NULL && in_mcast_loop) ||
590 (imo && imo->imo_multicast_loop)) {
591 /*
592 * Loop back multicast datagram if not expressly
593 * forbidden to do so, even if we are not a member
594 * of the group; ip_input() will filter it later,
595 * thus deferring a hash lookup and mutex acquisition
596 * at the expense of a cheap copy using m_copym().
597 */
598 ip_mloopback(ifp, m, hlen);
599 } else {
600 /*
601 * If we are acting as a multicast router, perform
602 * multicast forwarding as if the packet had just
603 * arrived on the interface to which we are about
604 * to send. The multicast forwarding function
605 * recursively calls this function, using the
606 * IP_FORWARDING flag to prevent infinite recursion.
607 *
608 * Multicasts that are looped back by ip_mloopback(),
609 * above, will be forwarded by the ip_input() routine,
610 * if necessary.
611 */
612 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
613 /*
614 * If rsvp daemon is not running, do not
615 * set ip_moptions. This ensures that the packet
616 * is multicast and not just sent down one link
617 * as prescribed by rsvpd.
618 */
619 if (!V_rsvp_on)
620 imo = NULL;
621 if (ip_mforward &&
622 ip_mforward(ip, ifp, m, imo) != 0) {
623 m_freem(m);
624 goto done;
625 }
626 }
627 }
628
629 /*
630 * Multicasts with a time-to-live of zero may be looped-
631 * back, above, but must not be transmitted on a network.
632 * Also, multicasts addressed to the loopback interface
633 * are not sent -- the above call to ip_mloopback() will
634 * loop back a copy. ip_input() will drop the copy if
635 * this host does not belong to the destination group on
636 * the loopback interface.
637 */
638 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
639 m_freem(m);
640 goto done;
641 }
642
643 goto sendit;
644 }
645
646 /*
647 * If the source address is not specified yet, use the address
648 * of the outoing interface.
649 */
650 if (ip->ip_src.s_addr == INADDR_ANY)
651 ip->ip_src = src;
652
653 /*
654 * Look for broadcast address and
655 * verify user is allowed to send
656 * such a packet.
657 */
658 if (isbroadcast) {
659 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
660 error = EADDRNOTAVAIL;
661 goto bad;
662 }
663 if ((flags & IP_ALLOWBROADCAST) == 0) {
664 error = EACCES;
665 goto bad;
666 }
667 /* don't allow broadcast messages to be fragmented */
668 if (ip_len > mtu) {
669 error = EMSGSIZE;
670 goto bad;
671 }
672 m->m_flags |= M_BCAST;
673 } else {
674 m->m_flags &= ~M_BCAST;
675 }
676
677 sendit:
678 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
679 if (IPSEC_ENABLED(ipv4)) {
680 if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) {
681 if (error == EINPROGRESS)
682 error = 0;
683 goto done;
684 }
685 }
686 /*
687 * Check if there was a route for this packet; return error if not.
688 */
689 if (no_route_but_check_spd) {
690 IPSTAT_INC(ips_noroute);
691 error = EHOSTUNREACH;
692 goto bad;
693 }
694 /* Update variables that are affected by ipsec4_output(). */
695 ip = mtod(m, struct ip *);
696 hlen = ip->ip_hl << 2;
697 #endif /* IPSEC */
698
699 /* Jump over all PFIL processing if hooks are not active. */
700 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
701 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
702 &error)) {
703 case 1: /* Finished */
704 goto done;
705
706 case 0: /* Continue normally */
707 ip = mtod(m, struct ip *);
708 break;
709
710 case -1: /* Need to try again */
711 /* Reset everything for a new round */
712 if (ro != NULL) {
713 RO_NHFREE(ro);
714 ro->ro_prepend = NULL;
715 }
716 gw = (const struct sockaddr *)dst;
717 ip = mtod(m, struct ip *);
718 goto again;
719 }
720 }
721
722 if (vlan_pcp > -1)
723 EVL_APPLY_PRI(m, vlan_pcp);
724
725 /* IN_LOOPBACK must not appear on the wire - RFC1122. */
726 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
727 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
728 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
729 IPSTAT_INC(ips_badaddr);
730 error = EADDRNOTAVAIL;
731 goto bad;
732 }
733 }
734
735 /* Ensure the packet data is mapped if the interface requires it. */
736 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
737 m = mb_unmapped_to_ext(m);
738 if (m == NULL) {
739 IPSTAT_INC(ips_odropped);
740 error = ENOBUFS;
741 goto bad;
742 }
743 }
744
745 m->m_pkthdr.csum_flags |= CSUM_IP;
746 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
747 in_delayed_cksum(m);
748 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
749 }
750 #if defined(SCTP) || defined(SCTP_SUPPORT)
751 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
752 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
753 m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
754 }
755 #endif
756
757 /*
758 * If small enough for interface, or the interface will take
759 * care of the fragmentation for us, we can just send directly.
760 * Note that if_vxlan could have requested TSO even though the outer
761 * frame is UDP. It is correct to not fragment such datagrams and
762 * instead just pass them on to the driver.
763 */
764 if (ip_len <= mtu ||
765 (m->m_pkthdr.csum_flags & ifp->if_hwassist &
766 (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
767 ip->ip_sum = 0;
768 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
769 ip->ip_sum = in_cksum(m, hlen);
770 m->m_pkthdr.csum_flags &= ~CSUM_IP;
771 }
772
773 /*
774 * Record statistics for this interface address.
775 * With CSUM_TSO the byte/packet count will be slightly
776 * incorrect because we count the IP+TCP headers only
777 * once instead of for every generated packet.
778 */
779 if (!(flags & IP_FORWARDING) && ia) {
780 if (m->m_pkthdr.csum_flags &
781 (CSUM_TSO | CSUM_INNER_TSO))
782 counter_u64_add(ia->ia_ifa.ifa_opackets,
783 m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
784 else
785 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
786
787 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
788 }
789 #ifdef MBUF_STRESS_TEST
790 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
791 m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
792 #endif
793 /*
794 * Reset layer specific mbuf flags
795 * to avoid confusing lower layers.
796 */
797 m_clrprotoflags(m);
798 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
799 error = ip_output_send(inp, ifp, m, gw, ro,
800 (flags & IP_NO_SND_TAG_RL) ? false : true);
801 goto done;
802 }
803
804 /* Balk when DF bit is set or the interface didn't support TSO. */
805 if ((ip_off & IP_DF) ||
806 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
807 error = EMSGSIZE;
808 IPSTAT_INC(ips_cantfrag);
809 goto bad;
810 }
811
812 /*
813 * Too large for interface; fragment if possible. If successful,
814 * on return, m will point to a list of packets to be sent.
815 */
816 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
817 if (error)
818 goto bad;
819 for (; m; m = m0) {
820 m0 = m->m_nextpkt;
821 m->m_nextpkt = 0;
822 if (error == 0) {
823 /* Record statistics for this interface address. */
824 if (ia != NULL) {
825 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
826 counter_u64_add(ia->ia_ifa.ifa_obytes,
827 m->m_pkthdr.len);
828 }
829 /*
830 * Reset layer specific mbuf flags
831 * to avoid confusing upper layers.
832 */
833 m_clrprotoflags(m);
834
835 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
836 mtod(m, struct ip *), NULL);
837 error = ip_output_send(inp, ifp, m, gw, ro, true);
838 } else
839 m_freem(m);
840 }
841
842 if (error == 0)
843 IPSTAT_INC(ips_fragmented);
844
845 done:
846 return (error);
847 bad:
848 m_freem(m);
849 goto done;
850 }
851
852 /*
853 * Create a chain of fragments which fit the given mtu. m_frag points to the
854 * mbuf to be fragmented; on return it points to the chain with the fragments.
855 * Return 0 if no error. If error, m_frag may contain a partially built
856 * chain of fragments that should be freed by the caller.
857 *
858 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
859 */
860 int
ip_fragment(struct ip * ip,struct mbuf ** m_frag,int mtu,u_long if_hwassist_flags)861 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
862 u_long if_hwassist_flags)
863 {
864 int error = 0;
865 int hlen = ip->ip_hl << 2;
866 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
867 int off;
868 struct mbuf *m0 = *m_frag; /* the original packet */
869 int firstlen;
870 struct mbuf **mnext;
871 int nfrags;
872 uint16_t ip_len, ip_off;
873
874 ip_len = ntohs(ip->ip_len);
875 ip_off = ntohs(ip->ip_off);
876
877 if (ip_off & IP_DF) { /* Fragmentation not allowed */
878 IPSTAT_INC(ips_cantfrag);
879 return EMSGSIZE;
880 }
881
882 /*
883 * Must be able to put at least 8 bytes per fragment.
884 */
885 if (len < 8)
886 return EMSGSIZE;
887
888 /*
889 * If the interface will not calculate checksums on
890 * fragmented packets, then do it here.
891 */
892 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
893 in_delayed_cksum(m0);
894 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
895 }
896 #if defined(SCTP) || defined(SCTP_SUPPORT)
897 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
898 sctp_delayed_cksum(m0, hlen);
899 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
900 }
901 #endif
902 if (len > PAGE_SIZE) {
903 /*
904 * Fragment large datagrams such that each segment
905 * contains a multiple of PAGE_SIZE amount of data,
906 * plus headers. This enables a receiver to perform
907 * page-flipping zero-copy optimizations.
908 *
909 * XXX When does this help given that sender and receiver
910 * could have different page sizes, and also mtu could
911 * be less than the receiver's page size ?
912 */
913 int newlen;
914
915 off = MIN(mtu, m0->m_pkthdr.len);
916
917 /*
918 * firstlen (off - hlen) must be aligned on an
919 * 8-byte boundary
920 */
921 if (off < hlen)
922 goto smart_frag_failure;
923 off = ((off - hlen) & ~7) + hlen;
924 newlen = (~PAGE_MASK) & mtu;
925 if ((newlen + sizeof (struct ip)) > mtu) {
926 /* we failed, go back the default */
927 smart_frag_failure:
928 newlen = len;
929 off = hlen + len;
930 }
931 len = newlen;
932
933 } else {
934 off = hlen + len;
935 }
936
937 firstlen = off - hlen;
938 mnext = &m0->m_nextpkt; /* pointer to next packet */
939
940 /*
941 * Loop through length of segment after first fragment,
942 * make new header and copy data of each part and link onto chain.
943 * Here, m0 is the original packet, m is the fragment being created.
944 * The fragments are linked off the m_nextpkt of the original
945 * packet, which after processing serves as the first fragment.
946 */
947 for (nfrags = 1; off < ip_len; off += len, nfrags++) {
948 struct ip *mhip; /* ip header on the fragment */
949 struct mbuf *m;
950 int mhlen = sizeof (struct ip);
951
952 m = m_gethdr(M_NOWAIT, MT_DATA);
953 if (m == NULL) {
954 error = ENOBUFS;
955 IPSTAT_INC(ips_odropped);
956 goto done;
957 }
958 /*
959 * Make sure the complete packet header gets copied
960 * from the originating mbuf to the newly created
961 * mbuf. This also ensures that existing firewall
962 * classification(s), VLAN tags and so on get copied
963 * to the resulting fragmented packet(s):
964 */
965 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
966 m_free(m);
967 error = ENOBUFS;
968 IPSTAT_INC(ips_odropped);
969 goto done;
970 }
971 /*
972 * In the first mbuf, leave room for the link header, then
973 * copy the original IP header including options. The payload
974 * goes into an additional mbuf chain returned by m_copym().
975 */
976 m->m_data += max_linkhdr;
977 mhip = mtod(m, struct ip *);
978 *mhip = *ip;
979 if (hlen > sizeof (struct ip)) {
980 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
981 mhip->ip_v = IPVERSION;
982 mhip->ip_hl = mhlen >> 2;
983 }
984 m->m_len = mhlen;
985 /* XXX do we need to add ip_off below ? */
986 mhip->ip_off = ((off - hlen) >> 3) + ip_off;
987 if (off + len >= ip_len)
988 len = ip_len - off;
989 else
990 mhip->ip_off |= IP_MF;
991 mhip->ip_len = htons((u_short)(len + mhlen));
992 m->m_next = m_copym(m0, off, len, M_NOWAIT);
993 if (m->m_next == NULL) { /* copy failed */
994 m_free(m);
995 error = ENOBUFS; /* ??? */
996 IPSTAT_INC(ips_odropped);
997 goto done;
998 }
999 m->m_pkthdr.len = mhlen + len;
1000 #ifdef MAC
1001 mac_netinet_fragment(m0, m);
1002 #endif
1003 mhip->ip_off = htons(mhip->ip_off);
1004 mhip->ip_sum = 0;
1005 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1006 mhip->ip_sum = in_cksum(m, mhlen);
1007 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1008 }
1009 *mnext = m;
1010 mnext = &m->m_nextpkt;
1011 }
1012 IPSTAT_ADD(ips_ofragments, nfrags);
1013
1014 /*
1015 * Update first fragment by trimming what's been copied out
1016 * and updating header.
1017 */
1018 m_adj(m0, hlen + firstlen - ip_len);
1019 m0->m_pkthdr.len = hlen + firstlen;
1020 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1021 ip->ip_off = htons(ip_off | IP_MF);
1022 ip->ip_sum = 0;
1023 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1024 ip->ip_sum = in_cksum(m0, hlen);
1025 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1026 }
1027
1028 done:
1029 *m_frag = m0;
1030 return error;
1031 }
1032
1033 void
in_delayed_cksum(struct mbuf * m)1034 in_delayed_cksum(struct mbuf *m)
1035 {
1036 struct ip *ip;
1037 struct udphdr *uh;
1038 uint16_t cklen, csum, offset;
1039
1040 ip = mtod(m, struct ip *);
1041 offset = ip->ip_hl << 2 ;
1042
1043 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1044 /* if udp header is not in the first mbuf copy udplen */
1045 if (offset + sizeof(struct udphdr) > m->m_len) {
1046 m_copydata(m, offset + offsetof(struct udphdr,
1047 uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1048 cklen = ntohs(cklen);
1049 } else {
1050 uh = (struct udphdr *)mtodo(m, offset);
1051 cklen = ntohs(uh->uh_ulen);
1052 }
1053 csum = in_cksum_skip(m, cklen + offset, offset);
1054 if (csum == 0)
1055 csum = 0xffff;
1056 } else {
1057 cklen = ntohs(ip->ip_len);
1058 csum = in_cksum_skip(m, cklen, offset);
1059 }
1060 offset += m->m_pkthdr.csum_data; /* checksum offset */
1061
1062 if (offset + sizeof(csum) > m->m_len)
1063 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1064 else
1065 *(u_short *)mtodo(m, offset) = csum;
1066 }
1067
1068 /*
1069 * IP socket option processing.
1070 */
1071 int
ip_ctloutput(struct socket * so,struct sockopt * sopt)1072 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1073 {
1074 struct inpcb *inp = sotoinpcb(so);
1075 int error, optval;
1076 #ifdef RSS
1077 uint32_t rss_bucket;
1078 int retval;
1079 #endif
1080
1081 error = optval = 0;
1082 if (sopt->sopt_level != IPPROTO_IP) {
1083 error = EINVAL;
1084
1085 if (sopt->sopt_level == SOL_SOCKET &&
1086 sopt->sopt_dir == SOPT_SET) {
1087 switch (sopt->sopt_name) {
1088 case SO_REUSEADDR:
1089 INP_WLOCK(inp);
1090 if ((so->so_options & SO_REUSEADDR) != 0)
1091 inp->inp_flags2 |= INP_REUSEADDR;
1092 else
1093 inp->inp_flags2 &= ~INP_REUSEADDR;
1094 INP_WUNLOCK(inp);
1095 error = 0;
1096 break;
1097 case SO_REUSEPORT:
1098 INP_WLOCK(inp);
1099 if ((so->so_options & SO_REUSEPORT) != 0)
1100 inp->inp_flags2 |= INP_REUSEPORT;
1101 else
1102 inp->inp_flags2 &= ~INP_REUSEPORT;
1103 INP_WUNLOCK(inp);
1104 error = 0;
1105 break;
1106 case SO_REUSEPORT_LB:
1107 INP_WLOCK(inp);
1108 if ((so->so_options & SO_REUSEPORT_LB) != 0)
1109 inp->inp_flags2 |= INP_REUSEPORT_LB;
1110 else
1111 inp->inp_flags2 &= ~INP_REUSEPORT_LB;
1112 INP_WUNLOCK(inp);
1113 error = 0;
1114 break;
1115 case SO_SETFIB:
1116 INP_WLOCK(inp);
1117 inp->inp_inc.inc_fibnum = so->so_fibnum;
1118 INP_WUNLOCK(inp);
1119 error = 0;
1120 break;
1121 case SO_MAX_PACING_RATE:
1122 #ifdef RATELIMIT
1123 INP_WLOCK(inp);
1124 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1125 INP_WUNLOCK(inp);
1126 error = 0;
1127 #else
1128 error = EOPNOTSUPP;
1129 #endif
1130 break;
1131 default:
1132 break;
1133 }
1134 }
1135 return (error);
1136 }
1137
1138 switch (sopt->sopt_dir) {
1139 case SOPT_SET:
1140 switch (sopt->sopt_name) {
1141 case IP_OPTIONS:
1142 #ifdef notyet
1143 case IP_RETOPTS:
1144 #endif
1145 {
1146 struct mbuf *m;
1147 if (sopt->sopt_valsize > MLEN) {
1148 error = EMSGSIZE;
1149 break;
1150 }
1151 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1152 if (m == NULL) {
1153 error = ENOBUFS;
1154 break;
1155 }
1156 m->m_len = sopt->sopt_valsize;
1157 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1158 m->m_len);
1159 if (error) {
1160 m_free(m);
1161 break;
1162 }
1163 INP_WLOCK(inp);
1164 error = ip_pcbopts(inp, sopt->sopt_name, m);
1165 INP_WUNLOCK(inp);
1166 return (error);
1167 }
1168
1169 case IP_BINDANY:
1170 if (sopt->sopt_td != NULL) {
1171 error = priv_check(sopt->sopt_td,
1172 PRIV_NETINET_BINDANY);
1173 if (error)
1174 break;
1175 }
1176 /* FALLTHROUGH */
1177 case IP_BINDMULTI:
1178 #ifdef RSS
1179 case IP_RSS_LISTEN_BUCKET:
1180 #endif
1181 case IP_TOS:
1182 case IP_TTL:
1183 case IP_MINTTL:
1184 case IP_RECVOPTS:
1185 case IP_RECVRETOPTS:
1186 case IP_ORIGDSTADDR:
1187 case IP_RECVDSTADDR:
1188 case IP_RECVTTL:
1189 case IP_RECVIF:
1190 case IP_ONESBCAST:
1191 case IP_DONTFRAG:
1192 case IP_RECVTOS:
1193 case IP_RECVFLOWID:
1194 #ifdef RSS
1195 case IP_RECVRSSBUCKETID:
1196 #endif
1197 case IP_VLAN_PCP:
1198 error = sooptcopyin(sopt, &optval, sizeof optval,
1199 sizeof optval);
1200 if (error)
1201 break;
1202
1203 switch (sopt->sopt_name) {
1204 case IP_TOS:
1205 inp->inp_ip_tos = optval;
1206 break;
1207
1208 case IP_TTL:
1209 inp->inp_ip_ttl = optval;
1210 break;
1211
1212 case IP_MINTTL:
1213 if (optval >= 0 && optval <= MAXTTL)
1214 inp->inp_ip_minttl = optval;
1215 else
1216 error = EINVAL;
1217 break;
1218
1219 #define OPTSET(bit) do { \
1220 INP_WLOCK(inp); \
1221 if (optval) \
1222 inp->inp_flags |= bit; \
1223 else \
1224 inp->inp_flags &= ~bit; \
1225 INP_WUNLOCK(inp); \
1226 } while (0)
1227
1228 #define OPTSET2(bit, val) do { \
1229 INP_WLOCK(inp); \
1230 if (val) \
1231 inp->inp_flags2 |= bit; \
1232 else \
1233 inp->inp_flags2 &= ~bit; \
1234 INP_WUNLOCK(inp); \
1235 } while (0)
1236
1237 case IP_RECVOPTS:
1238 OPTSET(INP_RECVOPTS);
1239 break;
1240
1241 case IP_RECVRETOPTS:
1242 OPTSET(INP_RECVRETOPTS);
1243 break;
1244
1245 case IP_RECVDSTADDR:
1246 OPTSET(INP_RECVDSTADDR);
1247 break;
1248
1249 case IP_ORIGDSTADDR:
1250 OPTSET2(INP_ORIGDSTADDR, optval);
1251 break;
1252
1253 case IP_RECVTTL:
1254 OPTSET(INP_RECVTTL);
1255 break;
1256
1257 case IP_RECVIF:
1258 OPTSET(INP_RECVIF);
1259 break;
1260
1261 case IP_ONESBCAST:
1262 OPTSET(INP_ONESBCAST);
1263 break;
1264 case IP_DONTFRAG:
1265 OPTSET(INP_DONTFRAG);
1266 break;
1267 case IP_BINDANY:
1268 OPTSET(INP_BINDANY);
1269 break;
1270 case IP_RECVTOS:
1271 OPTSET(INP_RECVTOS);
1272 break;
1273 case IP_BINDMULTI:
1274 OPTSET2(INP_BINDMULTI, optval);
1275 break;
1276 case IP_RECVFLOWID:
1277 OPTSET2(INP_RECVFLOWID, optval);
1278 break;
1279 #ifdef RSS
1280 case IP_RSS_LISTEN_BUCKET:
1281 if ((optval >= 0) &&
1282 (optval < rss_getnumbuckets())) {
1283 inp->inp_rss_listen_bucket = optval;
1284 OPTSET2(INP_RSS_BUCKET_SET, 1);
1285 } else {
1286 error = EINVAL;
1287 }
1288 break;
1289 case IP_RECVRSSBUCKETID:
1290 OPTSET2(INP_RECVRSSBUCKETID, optval);
1291 break;
1292 #endif
1293 case IP_VLAN_PCP:
1294 if ((optval >= -1) && (optval <=
1295 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1296 if (optval == -1) {
1297 INP_WLOCK(inp);
1298 inp->inp_flags2 &=
1299 ~(INP_2PCP_SET |
1300 INP_2PCP_MASK);
1301 INP_WUNLOCK(inp);
1302 } else {
1303 INP_WLOCK(inp);
1304 inp->inp_flags2 |=
1305 INP_2PCP_SET;
1306 inp->inp_flags2 &=
1307 ~INP_2PCP_MASK;
1308 inp->inp_flags2 |=
1309 optval << INP_2PCP_SHIFT;
1310 INP_WUNLOCK(inp);
1311 }
1312 } else
1313 error = EINVAL;
1314 break;
1315 }
1316 break;
1317 #undef OPTSET
1318 #undef OPTSET2
1319
1320 /*
1321 * Multicast socket options are processed by the in_mcast
1322 * module.
1323 */
1324 case IP_MULTICAST_IF:
1325 case IP_MULTICAST_VIF:
1326 case IP_MULTICAST_TTL:
1327 case IP_MULTICAST_LOOP:
1328 case IP_ADD_MEMBERSHIP:
1329 case IP_DROP_MEMBERSHIP:
1330 case IP_ADD_SOURCE_MEMBERSHIP:
1331 case IP_DROP_SOURCE_MEMBERSHIP:
1332 case IP_BLOCK_SOURCE:
1333 case IP_UNBLOCK_SOURCE:
1334 case IP_MSFILTER:
1335 case MCAST_JOIN_GROUP:
1336 case MCAST_LEAVE_GROUP:
1337 case MCAST_JOIN_SOURCE_GROUP:
1338 case MCAST_LEAVE_SOURCE_GROUP:
1339 case MCAST_BLOCK_SOURCE:
1340 case MCAST_UNBLOCK_SOURCE:
1341 error = inp_setmoptions(inp, sopt);
1342 break;
1343
1344 case IP_PORTRANGE:
1345 error = sooptcopyin(sopt, &optval, sizeof optval,
1346 sizeof optval);
1347 if (error)
1348 break;
1349
1350 INP_WLOCK(inp);
1351 switch (optval) {
1352 case IP_PORTRANGE_DEFAULT:
1353 inp->inp_flags &= ~(INP_LOWPORT);
1354 inp->inp_flags &= ~(INP_HIGHPORT);
1355 break;
1356
1357 case IP_PORTRANGE_HIGH:
1358 inp->inp_flags &= ~(INP_LOWPORT);
1359 inp->inp_flags |= INP_HIGHPORT;
1360 break;
1361
1362 case IP_PORTRANGE_LOW:
1363 inp->inp_flags &= ~(INP_HIGHPORT);
1364 inp->inp_flags |= INP_LOWPORT;
1365 break;
1366
1367 default:
1368 error = EINVAL;
1369 break;
1370 }
1371 INP_WUNLOCK(inp);
1372 break;
1373
1374 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1375 case IP_IPSEC_POLICY:
1376 if (IPSEC_ENABLED(ipv4)) {
1377 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1378 break;
1379 }
1380 /* FALLTHROUGH */
1381 #endif /* IPSEC */
1382
1383 default:
1384 error = ENOPROTOOPT;
1385 break;
1386 }
1387 break;
1388
1389 case SOPT_GET:
1390 switch (sopt->sopt_name) {
1391 case IP_OPTIONS:
1392 case IP_RETOPTS:
1393 INP_RLOCK(inp);
1394 if (inp->inp_options) {
1395 struct mbuf *options;
1396
1397 options = m_copym(inp->inp_options, 0,
1398 M_COPYALL, M_NOWAIT);
1399 INP_RUNLOCK(inp);
1400 if (options != NULL) {
1401 error = sooptcopyout(sopt,
1402 mtod(options, char *),
1403 options->m_len);
1404 m_freem(options);
1405 } else
1406 error = ENOMEM;
1407 } else {
1408 INP_RUNLOCK(inp);
1409 sopt->sopt_valsize = 0;
1410 }
1411 break;
1412
1413 case IP_TOS:
1414 case IP_TTL:
1415 case IP_MINTTL:
1416 case IP_RECVOPTS:
1417 case IP_RECVRETOPTS:
1418 case IP_ORIGDSTADDR:
1419 case IP_RECVDSTADDR:
1420 case IP_RECVTTL:
1421 case IP_RECVIF:
1422 case IP_PORTRANGE:
1423 case IP_ONESBCAST:
1424 case IP_DONTFRAG:
1425 case IP_BINDANY:
1426 case IP_RECVTOS:
1427 case IP_BINDMULTI:
1428 case IP_FLOWID:
1429 case IP_FLOWTYPE:
1430 case IP_RECVFLOWID:
1431 #ifdef RSS
1432 case IP_RSSBUCKETID:
1433 case IP_RECVRSSBUCKETID:
1434 #endif
1435 case IP_VLAN_PCP:
1436 switch (sopt->sopt_name) {
1437 case IP_TOS:
1438 optval = inp->inp_ip_tos;
1439 break;
1440
1441 case IP_TTL:
1442 optval = inp->inp_ip_ttl;
1443 break;
1444
1445 case IP_MINTTL:
1446 optval = inp->inp_ip_minttl;
1447 break;
1448
1449 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1450 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
1451
1452 case IP_RECVOPTS:
1453 optval = OPTBIT(INP_RECVOPTS);
1454 break;
1455
1456 case IP_RECVRETOPTS:
1457 optval = OPTBIT(INP_RECVRETOPTS);
1458 break;
1459
1460 case IP_RECVDSTADDR:
1461 optval = OPTBIT(INP_RECVDSTADDR);
1462 break;
1463
1464 case IP_ORIGDSTADDR:
1465 optval = OPTBIT2(INP_ORIGDSTADDR);
1466 break;
1467
1468 case IP_RECVTTL:
1469 optval = OPTBIT(INP_RECVTTL);
1470 break;
1471
1472 case IP_RECVIF:
1473 optval = OPTBIT(INP_RECVIF);
1474 break;
1475
1476 case IP_PORTRANGE:
1477 if (inp->inp_flags & INP_HIGHPORT)
1478 optval = IP_PORTRANGE_HIGH;
1479 else if (inp->inp_flags & INP_LOWPORT)
1480 optval = IP_PORTRANGE_LOW;
1481 else
1482 optval = 0;
1483 break;
1484
1485 case IP_ONESBCAST:
1486 optval = OPTBIT(INP_ONESBCAST);
1487 break;
1488 case IP_DONTFRAG:
1489 optval = OPTBIT(INP_DONTFRAG);
1490 break;
1491 case IP_BINDANY:
1492 optval = OPTBIT(INP_BINDANY);
1493 break;
1494 case IP_RECVTOS:
1495 optval = OPTBIT(INP_RECVTOS);
1496 break;
1497 case IP_FLOWID:
1498 optval = inp->inp_flowid;
1499 break;
1500 case IP_FLOWTYPE:
1501 optval = inp->inp_flowtype;
1502 break;
1503 case IP_RECVFLOWID:
1504 optval = OPTBIT2(INP_RECVFLOWID);
1505 break;
1506 #ifdef RSS
1507 case IP_RSSBUCKETID:
1508 retval = rss_hash2bucket(inp->inp_flowid,
1509 inp->inp_flowtype,
1510 &rss_bucket);
1511 if (retval == 0)
1512 optval = rss_bucket;
1513 else
1514 error = EINVAL;
1515 break;
1516 case IP_RECVRSSBUCKETID:
1517 optval = OPTBIT2(INP_RECVRSSBUCKETID);
1518 break;
1519 #endif
1520 case IP_BINDMULTI:
1521 optval = OPTBIT2(INP_BINDMULTI);
1522 break;
1523 case IP_VLAN_PCP:
1524 if (OPTBIT2(INP_2PCP_SET)) {
1525 optval = (inp->inp_flags2 &
1526 INP_2PCP_MASK) >> INP_2PCP_SHIFT;
1527 } else {
1528 optval = -1;
1529 }
1530 break;
1531 }
1532 error = sooptcopyout(sopt, &optval, sizeof optval);
1533 break;
1534
1535 /*
1536 * Multicast socket options are processed by the in_mcast
1537 * module.
1538 */
1539 case IP_MULTICAST_IF:
1540 case IP_MULTICAST_VIF:
1541 case IP_MULTICAST_TTL:
1542 case IP_MULTICAST_LOOP:
1543 case IP_MSFILTER:
1544 error = inp_getmoptions(inp, sopt);
1545 break;
1546
1547 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1548 case IP_IPSEC_POLICY:
1549 if (IPSEC_ENABLED(ipv4)) {
1550 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1551 break;
1552 }
1553 /* FALLTHROUGH */
1554 #endif /* IPSEC */
1555
1556 default:
1557 error = ENOPROTOOPT;
1558 break;
1559 }
1560 break;
1561 }
1562 return (error);
1563 }
1564
1565 /*
1566 * Routine called from ip_output() to loop back a copy of an IP multicast
1567 * packet to the input queue of a specified interface. Note that this
1568 * calls the output routine of the loopback "driver", but with an interface
1569 * pointer that might NOT be a loopback interface -- evil, but easier than
1570 * replicating that code here.
1571 */
1572 static void
ip_mloopback(struct ifnet * ifp,const struct mbuf * m,int hlen)1573 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1574 {
1575 struct ip *ip;
1576 struct mbuf *copym;
1577
1578 /*
1579 * Make a deep copy of the packet because we're going to
1580 * modify the pack in order to generate checksums.
1581 */
1582 copym = m_dup(m, M_NOWAIT);
1583 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1584 copym = m_pullup(copym, hlen);
1585 if (copym != NULL) {
1586 /* If needed, compute the checksum and mark it as valid. */
1587 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1588 in_delayed_cksum(copym);
1589 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1590 copym->m_pkthdr.csum_flags |=
1591 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1592 copym->m_pkthdr.csum_data = 0xffff;
1593 }
1594 /*
1595 * We don't bother to fragment if the IP length is greater
1596 * than the interface's MTU. Can this possibly matter?
1597 */
1598 ip = mtod(copym, struct ip *);
1599 ip->ip_sum = 0;
1600 ip->ip_sum = in_cksum(copym, hlen);
1601 if_simloop(ifp, copym, AF_INET, 0);
1602 }
1603 }
1604