1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_bootp.h"
38 #include "opt_ipstealth.h"
39 #include "opt_ipsec.h"
40 #include "opt_route.h"
41 #include "opt_rss.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hhook.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/rmlock.h>
55 #include <sys/rwlock.h>
56 #include <sys/sdt.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59
60 #include <net/if.h>
61 #include <net/if_types.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 #include <net/route/nhop.h>
67 #include <net/netisr.h>
68 #include <net/rss_config.h>
69 #include <net/vnet.h>
70
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/in_fib.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_fw.h>
80 #include <netinet/ip_icmp.h>
81 #include <netinet/ip_options.h>
82 #include <machine/in_cksum.h>
83 #include <netinet/ip_carp.h>
84 #include <netinet/in_rss.h>
85
86 #include <netipsec/ipsec_support.h>
87
88 #include <sys/socketvar.h>
89
90 #include <security/mac/mac_framework.h>
91
92 #ifdef CTASSERT
93 CTASSERT(sizeof(struct ip) == 20);
94 #endif
95
96 /* IP reassembly functions are defined in ip_reass.c. */
97 extern void ipreass_init(void);
98 extern void ipreass_drain(void);
99 extern void ipreass_slowtimo(void);
100 #ifdef VIMAGE
101 extern void ipreass_destroy(void);
102 #endif
103
104 struct rmlock in_ifaddr_lock;
105 RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
106
107 VNET_DEFINE(int, rsvp_on);
108
109 VNET_DEFINE(int, ipforwarding);
110 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW,
111 &VNET_NAME(ipforwarding), 0,
112 "Enable IP forwarding between interfaces");
113
114 /*
115 * Respond with an ICMP host redirect when we forward a packet out of
116 * the same interface on which it was received. See RFC 792.
117 */
118 VNET_DEFINE(int, ipsendredirects) = 1;
119 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW,
120 &VNET_NAME(ipsendredirects), 0,
121 "Enable sending IP redirects");
122
123 /*
124 * XXX - Setting ip_checkinterface mostly implements the receive side of
125 * the Strong ES model described in RFC 1122, but since the routing table
126 * and transmit implementation do not implement the Strong ES model,
127 * setting this to 1 results in an odd hybrid.
128 *
129 * XXX - ip_checkinterface currently must be disabled if you use ipnat
130 * to translate the destination address to another local interface.
131 *
132 * XXX - ip_checkinterface must be disabled if you add IP aliases
133 * to the loopback interface instead of the interface where the
134 * packets for those addresses are received.
135 */
136 VNET_DEFINE_STATIC(int, ip_checkinterface);
137 #define V_ip_checkinterface VNET(ip_checkinterface)
138 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW,
139 &VNET_NAME(ip_checkinterface), 0,
140 "Verify packet arrives on correct interface");
141
142 VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */
143
144 static struct netisr_handler ip_nh = {
145 .nh_name = "ip",
146 .nh_handler = ip_input,
147 .nh_proto = NETISR_IP,
148 #ifdef RSS
149 .nh_m2cpuid = rss_soft_m2cpuid_v4,
150 .nh_policy = NETISR_POLICY_CPU,
151 .nh_dispatch = NETISR_DISPATCH_HYBRID,
152 #else
153 .nh_policy = NETISR_POLICY_FLOW,
154 #endif
155 };
156
157 #ifdef RSS
158 /*
159 * Directly dispatched frames are currently assumed
160 * to have a flowid already calculated.
161 *
162 * It should likely have something that assert it
163 * actually has valid flow details.
164 */
165 static struct netisr_handler ip_direct_nh = {
166 .nh_name = "ip_direct",
167 .nh_handler = ip_direct_input,
168 .nh_proto = NETISR_IP_DIRECT,
169 .nh_m2cpuid = rss_soft_m2cpuid_v4,
170 .nh_policy = NETISR_POLICY_CPU,
171 .nh_dispatch = NETISR_DISPATCH_HYBRID,
172 };
173 #endif
174
175 extern struct domain inetdomain;
176 extern struct protosw inetsw[];
177 u_char ip_protox[IPPROTO_MAX];
178 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */
179 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */
180 VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */
181
182 #ifdef IPCTL_DEFMTU
183 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
184 &ip_mtu, 0, "Default MTU");
185 #endif
186
187 #ifdef IPSTEALTH
188 VNET_DEFINE(int, ipstealth);
189 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW,
190 &VNET_NAME(ipstealth), 0,
191 "IP stealth mode, no TTL decrementation on forwarding");
192 #endif
193
194 /*
195 * IP statistics are stored in the "array" of counter(9)s.
196 */
197 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
198 VNET_PCPUSTAT_SYSINIT(ipstat);
199 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
200 "IP statistics (struct ipstat, netinet/ip_var.h)");
201
202 #ifdef VIMAGE
203 VNET_PCPUSTAT_SYSUNINIT(ipstat);
204 #endif /* VIMAGE */
205
206 /*
207 * Kernel module interface for updating ipstat. The argument is an index
208 * into ipstat treated as an array.
209 */
210 void
kmod_ipstat_inc(int statnum)211 kmod_ipstat_inc(int statnum)
212 {
213
214 counter_u64_add(VNET(ipstat)[statnum], 1);
215 }
216
217 void
kmod_ipstat_dec(int statnum)218 kmod_ipstat_dec(int statnum)
219 {
220
221 counter_u64_add(VNET(ipstat)[statnum], -1);
222 }
223
224 static int
sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)225 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
226 {
227 int error, qlimit;
228
229 netisr_getqlimit(&ip_nh, &qlimit);
230 error = sysctl_handle_int(oidp, &qlimit, 0, req);
231 if (error || !req->newptr)
232 return (error);
233 if (qlimit < 1)
234 return (EINVAL);
235 return (netisr_setqlimit(&ip_nh, qlimit));
236 }
237 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
238 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
239 sysctl_netinet_intr_queue_maxlen, "I",
240 "Maximum size of the IP input queue");
241
242 static int
sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)243 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
244 {
245 u_int64_t qdrops_long;
246 int error, qdrops;
247
248 netisr_getqdrops(&ip_nh, &qdrops_long);
249 qdrops = qdrops_long;
250 error = sysctl_handle_int(oidp, &qdrops, 0, req);
251 if (error || !req->newptr)
252 return (error);
253 if (qdrops != 0)
254 return (EINVAL);
255 netisr_clearqdrops(&ip_nh);
256 return (0);
257 }
258
259 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
260 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
261 0, 0, sysctl_netinet_intr_queue_drops, "I",
262 "Number of packets dropped from the IP input queue");
263
264 #ifdef RSS
265 static int
sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)266 sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS)
267 {
268 int error, qlimit;
269
270 netisr_getqlimit(&ip_direct_nh, &qlimit);
271 error = sysctl_handle_int(oidp, &qlimit, 0, req);
272 if (error || !req->newptr)
273 return (error);
274 if (qlimit < 1)
275 return (EINVAL);
276 return (netisr_setqlimit(&ip_direct_nh, qlimit));
277 }
278 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen,
279 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
280 0, 0, sysctl_netinet_intr_direct_queue_maxlen,
281 "I", "Maximum size of the IP direct input queue");
282
283 static int
sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)284 sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS)
285 {
286 u_int64_t qdrops_long;
287 int error, qdrops;
288
289 netisr_getqdrops(&ip_direct_nh, &qdrops_long);
290 qdrops = qdrops_long;
291 error = sysctl_handle_int(oidp, &qdrops, 0, req);
292 if (error || !req->newptr)
293 return (error);
294 if (qdrops != 0)
295 return (EINVAL);
296 netisr_clearqdrops(&ip_direct_nh);
297 return (0);
298 }
299
300 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops,
301 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
302 sysctl_netinet_intr_direct_queue_drops, "I",
303 "Number of packets dropped from the IP direct input queue");
304 #endif /* RSS */
305
306 /*
307 * IP initialization: fill in IP protocol switch table.
308 * All protocols not implemented in kernel go to raw IP protocol handler.
309 */
310 void
ip_init(void)311 ip_init(void)
312 {
313 struct pfil_head_args args;
314 struct protosw *pr;
315 int i;
316
317 CK_STAILQ_INIT(&V_in_ifaddrhead);
318 V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
319
320 /* Initialize IP reassembly queue. */
321 ipreass_init();
322
323 /* Initialize packet filter hooks. */
324 args.pa_version = PFIL_VERSION;
325 args.pa_flags = PFIL_IN | PFIL_OUT;
326 args.pa_type = PFIL_TYPE_IP4;
327 args.pa_headname = PFIL_INET_NAME;
328 V_inet_pfil_head = pfil_head_register(&args);
329
330 if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET,
331 &V_ipsec_hhh_in[HHOOK_IPSEC_INET],
332 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0)
333 printf("%s: WARNING: unable to register input helper hook\n",
334 __func__);
335 if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET,
336 &V_ipsec_hhh_out[HHOOK_IPSEC_INET],
337 HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0)
338 printf("%s: WARNING: unable to register output helper hook\n",
339 __func__);
340
341 /* Skip initialization of globals for non-default instances. */
342 #ifdef VIMAGE
343 if (!IS_DEFAULT_VNET(curvnet)) {
344 netisr_register_vnet(&ip_nh);
345 #ifdef RSS
346 netisr_register_vnet(&ip_direct_nh);
347 #endif
348 return;
349 }
350 #endif
351
352 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
353 if (pr == NULL)
354 panic("ip_init: PF_INET not found");
355
356 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
357 for (i = 0; i < IPPROTO_MAX; i++)
358 ip_protox[i] = pr - inetsw;
359 /*
360 * Cycle through IP protocols and put them into the appropriate place
361 * in ip_protox[].
362 */
363 for (pr = inetdomain.dom_protosw;
364 pr < inetdomain.dom_protoswNPROTOSW; pr++)
365 if (pr->pr_domain->dom_family == PF_INET &&
366 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
367 /* Be careful to only index valid IP protocols. */
368 if (pr->pr_protocol < IPPROTO_MAX)
369 ip_protox[pr->pr_protocol] = pr - inetsw;
370 }
371
372 netisr_register(&ip_nh);
373 #ifdef RSS
374 netisr_register(&ip_direct_nh);
375 #endif
376 }
377
378 #ifdef VIMAGE
379 static void
ip_destroy(void * unused __unused)380 ip_destroy(void *unused __unused)
381 {
382 int error;
383
384 #ifdef RSS
385 netisr_unregister_vnet(&ip_direct_nh);
386 #endif
387 netisr_unregister_vnet(&ip_nh);
388
389 pfil_head_unregister(V_inet_pfil_head);
390 error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]);
391 if (error != 0) {
392 printf("%s: WARNING: unable to deregister input helper hook "
393 "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: "
394 "error %d returned\n", __func__, error);
395 }
396 error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]);
397 if (error != 0) {
398 printf("%s: WARNING: unable to deregister output helper hook "
399 "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: "
400 "error %d returned\n", __func__, error);
401 }
402
403 /* Remove the IPv4 addresses from all interfaces. */
404 in_ifscrub_all();
405
406 /* Make sure the IPv4 routes are gone as well. */
407 rib_flush_routes_family(AF_INET);
408
409 /* Destroy IP reassembly queue. */
410 ipreass_destroy();
411
412 /* Cleanup in_ifaddr hash table; should be empty. */
413 hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
414 }
415
416 VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL);
417 #endif
418
419 #ifdef RSS
420 /*
421 * IP direct input routine.
422 *
423 * This is called when reinjecting completed fragments where
424 * all of the previous checking and book-keeping has been done.
425 */
426 void
ip_direct_input(struct mbuf * m)427 ip_direct_input(struct mbuf *m)
428 {
429 struct ip *ip;
430 int hlen;
431
432 ip = mtod(m, struct ip *);
433 hlen = ip->ip_hl << 2;
434
435 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
436 if (IPSEC_ENABLED(ipv4)) {
437 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0)
438 return;
439 }
440 #endif /* IPSEC */
441 IPSTAT_INC(ips_delivered);
442 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
443 return;
444 }
445 #endif
446
447 /*
448 * Ip input routine. Checksum and byte swap header. If fragmented
449 * try to reassemble. Process options. Pass to next level.
450 */
451 void
ip_input(struct mbuf * m)452 ip_input(struct mbuf *m)
453 {
454 struct rm_priotracker in_ifa_tracker;
455 struct ip *ip = NULL;
456 struct in_ifaddr *ia = NULL;
457 struct ifaddr *ifa;
458 struct ifnet *ifp;
459 int checkif, hlen = 0;
460 uint16_t sum, ip_len;
461 int dchg = 0; /* dest changed after fw */
462 struct in_addr odst; /* original dst address */
463
464 M_ASSERTPKTHDR(m);
465 NET_EPOCH_ASSERT();
466
467 if (m->m_flags & M_FASTFWD_OURS) {
468 m->m_flags &= ~M_FASTFWD_OURS;
469 /* Set up some basics that will be used later. */
470 ip = mtod(m, struct ip *);
471 hlen = ip->ip_hl << 2;
472 ip_len = ntohs(ip->ip_len);
473 goto ours;
474 }
475
476 IPSTAT_INC(ips_total);
477
478 if (m->m_pkthdr.len < sizeof(struct ip))
479 goto tooshort;
480
481 if (m->m_len < sizeof (struct ip) &&
482 (m = m_pullup(m, sizeof (struct ip))) == NULL) {
483 IPSTAT_INC(ips_toosmall);
484 return;
485 }
486 ip = mtod(m, struct ip *);
487
488 if (ip->ip_v != IPVERSION) {
489 IPSTAT_INC(ips_badvers);
490 goto bad;
491 }
492
493 hlen = ip->ip_hl << 2;
494 if (hlen < sizeof(struct ip)) { /* minimum header length */
495 IPSTAT_INC(ips_badhlen);
496 goto bad;
497 }
498 if (hlen > m->m_len) {
499 if ((m = m_pullup(m, hlen)) == NULL) {
500 IPSTAT_INC(ips_badhlen);
501 return;
502 }
503 ip = mtod(m, struct ip *);
504 }
505
506 IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
507
508 /* IN_LOOPBACK must not appear on the wire - RFC1122 */
509 ifp = m->m_pkthdr.rcvif;
510 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
511 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
512 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
513 IPSTAT_INC(ips_badaddr);
514 goto bad;
515 }
516 }
517
518 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
519 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
520 } else {
521 if (hlen == sizeof(struct ip)) {
522 sum = in_cksum_hdr(ip);
523 } else {
524 sum = in_cksum(m, hlen);
525 }
526 }
527 if (sum) {
528 IPSTAT_INC(ips_badsum);
529 goto bad;
530 }
531
532 #ifdef ALTQ
533 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
534 /* packet is dropped by traffic conditioner */
535 return;
536 #endif
537
538 ip_len = ntohs(ip->ip_len);
539 if (ip_len < hlen) {
540 IPSTAT_INC(ips_badlen);
541 goto bad;
542 }
543
544 /*
545 * Check that the amount of data in the buffers
546 * is as at least much as the IP header would have us expect.
547 * Trim mbufs if longer than we expect.
548 * Drop packet if shorter than we expect.
549 */
550 if (m->m_pkthdr.len < ip_len) {
551 tooshort:
552 IPSTAT_INC(ips_tooshort);
553 goto bad;
554 }
555 if (m->m_pkthdr.len > ip_len) {
556 if (m->m_len == m->m_pkthdr.len) {
557 m->m_len = ip_len;
558 m->m_pkthdr.len = ip_len;
559 } else
560 m_adj(m, ip_len - m->m_pkthdr.len);
561 }
562
563 /*
564 * Try to forward the packet, but if we fail continue.
565 * ip_tryforward() may generate redirects these days.
566 * XXX the logic below falling through to normal processing
567 * if redirects are required should be revisited as well.
568 * ip_tryforward() does inbound and outbound packet firewall
569 * processing. If firewall has decided that destination becomes
570 * our local address, it sets M_FASTFWD_OURS flag. In this
571 * case skip another inbound firewall processing and update
572 * ip pointer.
573 */
574 if (V_ipforwarding != 0
575 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
576 && (!IPSEC_ENABLED(ipv4) ||
577 IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0)
578 #endif
579 ) {
580 /*
581 * ip_dooptions() was run so we can ignore the source route (or
582 * any IP options case) case for redirects in ip_tryforward().
583 */
584 if ((m = ip_tryforward(m)) == NULL)
585 return;
586 if (m->m_flags & M_FASTFWD_OURS) {
587 m->m_flags &= ~M_FASTFWD_OURS;
588 ip = mtod(m, struct ip *);
589 goto ours;
590 }
591 }
592
593 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
594 /*
595 * Bypass packet filtering for packets previously handled by IPsec.
596 */
597 if (IPSEC_ENABLED(ipv4) &&
598 IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0)
599 goto passin;
600 #endif
601
602 /*
603 * Run through list of hooks for input packets.
604 *
605 * NB: Beware of the destination address changing (e.g.
606 * by NAT rewriting). When this happens, tell
607 * ip_forward to do the right thing.
608 */
609
610 /* Jump over all PFIL processing if hooks are not active. */
611 if (!PFIL_HOOKED_IN(V_inet_pfil_head))
612 goto passin;
613
614 odst = ip->ip_dst;
615 if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) !=
616 PFIL_PASS)
617 return;
618 if (m == NULL) /* consumed by filter */
619 return;
620
621 ip = mtod(m, struct ip *);
622 dchg = (odst.s_addr != ip->ip_dst.s_addr);
623 ifp = m->m_pkthdr.rcvif;
624
625 if (m->m_flags & M_FASTFWD_OURS) {
626 m->m_flags &= ~M_FASTFWD_OURS;
627 goto ours;
628 }
629 if (m->m_flags & M_IP_NEXTHOP) {
630 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) {
631 /*
632 * Directly ship the packet on. This allows
633 * forwarding packets originally destined to us
634 * to some other directly connected host.
635 */
636 ip_forward(m, 1);
637 return;
638 }
639 }
640 passin:
641
642 /*
643 * Process options and, if not destined for us,
644 * ship it on. ip_dooptions returns 1 when an
645 * error was detected (causing an icmp message
646 * to be sent and the original packet to be freed).
647 */
648 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
649 return;
650
651 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
652 * matter if it is destined to another node, or whether it is
653 * a multicast one, RSVP wants it! and prevents it from being forwarded
654 * anywhere else. Also checks if the rsvp daemon is running before
655 * grabbing the packet.
656 */
657 if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
658 goto ours;
659
660 /*
661 * Check our list of addresses, to see if the packet is for us.
662 * If we don't have any addresses, assume any unicast packet
663 * we receive might be for us (and let the upper layers deal
664 * with it).
665 */
666 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) &&
667 (m->m_flags & (M_MCAST|M_BCAST)) == 0)
668 goto ours;
669
670 /*
671 * Enable a consistency check between the destination address
672 * and the arrival interface for a unicast packet (the RFC 1122
673 * strong ES model) if IP forwarding is disabled and the packet
674 * is not locally generated and the packet is not subject to
675 * 'ipfw fwd'.
676 *
677 * XXX - Checking also should be disabled if the destination
678 * address is ipnat'ed to a different interface.
679 *
680 * XXX - Checking is incompatible with IP aliases added
681 * to the loopback interface instead of the interface where
682 * the packets are received.
683 *
684 * XXX - This is the case for carp vhost IPs as well so we
685 * insert a workaround. If the packet got here, we already
686 * checked with carp_iamatch() and carp_forus().
687 */
688 checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
689 ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
690 ifp->if_carp == NULL && (dchg == 0);
691
692 /*
693 * Check for exact addresses in the hash bucket.
694 */
695 IN_IFADDR_RLOCK(&in_ifa_tracker);
696 LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
697 /*
698 * If the address matches, verify that the packet
699 * arrived via the correct interface if checking is
700 * enabled.
701 */
702 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
703 (!checkif || ia->ia_ifp == ifp)) {
704 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
705 counter_u64_add(ia->ia_ifa.ifa_ibytes,
706 m->m_pkthdr.len);
707 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
708 goto ours;
709 }
710 }
711 IN_IFADDR_RUNLOCK(&in_ifa_tracker);
712
713 /*
714 * Check for broadcast addresses.
715 *
716 * Only accept broadcast packets that arrive via the matching
717 * interface. Reception of forwarded directed broadcasts would
718 * be handled via ip_forward() and ether_output() with the loopback
719 * into the stack for SIMPLEX interfaces handled by ether_output().
720 */
721 if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
722 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
723 if (ifa->ifa_addr->sa_family != AF_INET)
724 continue;
725 ia = ifatoia(ifa);
726 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
727 ip->ip_dst.s_addr) {
728 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
729 counter_u64_add(ia->ia_ifa.ifa_ibytes,
730 m->m_pkthdr.len);
731 goto ours;
732 }
733 #ifdef BOOTP_COMPAT
734 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
735 counter_u64_add(ia->ia_ifa.ifa_ipackets, 1);
736 counter_u64_add(ia->ia_ifa.ifa_ibytes,
737 m->m_pkthdr.len);
738 goto ours;
739 }
740 #endif
741 }
742 ia = NULL;
743 }
744 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
745 /*
746 * RFC 3927 2.7: Do not forward multicast packets from
747 * IN_LINKLOCAL.
748 */
749 if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) {
750 /*
751 * If we are acting as a multicast router, all
752 * incoming multicast packets are passed to the
753 * kernel-level multicast forwarding function.
754 * The packet is returned (relatively) intact; if
755 * ip_mforward() returns a non-zero value, the packet
756 * must be discarded, else it may be accepted below.
757 */
758 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
759 IPSTAT_INC(ips_cantforward);
760 m_freem(m);
761 return;
762 }
763
764 /*
765 * The process-level routing daemon needs to receive
766 * all multicast IGMP packets, whether or not this
767 * host belongs to their destination groups.
768 */
769 if (ip->ip_p == IPPROTO_IGMP)
770 goto ours;
771 IPSTAT_INC(ips_forward);
772 }
773 /*
774 * Assume the packet is for us, to avoid prematurely taking
775 * a lock on the in_multi hash. Protocols must perform
776 * their own filtering and update statistics accordingly.
777 */
778 goto ours;
779 }
780 if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
781 goto ours;
782 if (ip->ip_dst.s_addr == INADDR_ANY)
783 goto ours;
784 /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */
785 if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
786 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) {
787 IPSTAT_INC(ips_cantforward);
788 m_freem(m);
789 return;
790 }
791
792 /*
793 * Not for us; forward if possible and desirable.
794 */
795 if (V_ipforwarding == 0) {
796 IPSTAT_INC(ips_cantforward);
797 m_freem(m);
798 } else {
799 ip_forward(m, dchg);
800 }
801 return;
802
803 ours:
804 #ifdef IPSTEALTH
805 /*
806 * IPSTEALTH: Process non-routing options only
807 * if the packet is destined for us.
808 */
809 if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1))
810 return;
811 #endif /* IPSTEALTH */
812
813 /*
814 * Attempt reassembly; if it succeeds, proceed.
815 * ip_reass() will return a different mbuf.
816 */
817 if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
818 /* XXXGL: shouldn't we save & set m_flags? */
819 m = ip_reass(m);
820 if (m == NULL)
821 return;
822 ip = mtod(m, struct ip *);
823 /* Get the header length of the reassembled packet */
824 hlen = ip->ip_hl << 2;
825 }
826
827 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
828 if (IPSEC_ENABLED(ipv4)) {
829 if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0)
830 return;
831 }
832 #endif /* IPSEC */
833
834 /*
835 * Switch out to protocol's input routine.
836 */
837 IPSTAT_INC(ips_delivered);
838
839 (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p);
840 return;
841 bad:
842 m_freem(m);
843 }
844
845 /*
846 * IP timer processing;
847 * if a timer expires on a reassembly
848 * queue, discard it.
849 */
850 void
ip_slowtimo(void)851 ip_slowtimo(void)
852 {
853 VNET_ITERATOR_DECL(vnet_iter);
854
855 VNET_LIST_RLOCK_NOSLEEP();
856 VNET_FOREACH(vnet_iter) {
857 CURVNET_SET(vnet_iter);
858 ipreass_slowtimo();
859 CURVNET_RESTORE();
860 }
861 VNET_LIST_RUNLOCK_NOSLEEP();
862 }
863
864 void
ip_drain(void)865 ip_drain(void)
866 {
867 VNET_ITERATOR_DECL(vnet_iter);
868
869 VNET_LIST_RLOCK_NOSLEEP();
870 VNET_FOREACH(vnet_iter) {
871 CURVNET_SET(vnet_iter);
872 ipreass_drain();
873 CURVNET_RESTORE();
874 }
875 VNET_LIST_RUNLOCK_NOSLEEP();
876 }
877
878 /*
879 * The protocol to be inserted into ip_protox[] must be already registered
880 * in inetsw[], either statically or through pf_proto_register().
881 */
882 int
ipproto_register(short ipproto)883 ipproto_register(short ipproto)
884 {
885 struct protosw *pr;
886
887 /* Sanity checks. */
888 if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
889 return (EPROTONOSUPPORT);
890
891 /*
892 * The protocol slot must not be occupied by another protocol
893 * already. An index pointing to IPPROTO_RAW is unused.
894 */
895 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
896 if (pr == NULL)
897 return (EPFNOSUPPORT);
898 if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */
899 return (EEXIST);
900
901 /* Find the protocol position in inetsw[] and set the index. */
902 for (pr = inetdomain.dom_protosw;
903 pr < inetdomain.dom_protoswNPROTOSW; pr++) {
904 if (pr->pr_domain->dom_family == PF_INET &&
905 pr->pr_protocol && pr->pr_protocol == ipproto) {
906 ip_protox[pr->pr_protocol] = pr - inetsw;
907 return (0);
908 }
909 }
910 return (EPROTONOSUPPORT);
911 }
912
913 int
ipproto_unregister(short ipproto)914 ipproto_unregister(short ipproto)
915 {
916 struct protosw *pr;
917
918 /* Sanity checks. */
919 if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
920 return (EPROTONOSUPPORT);
921
922 /* Check if the protocol was indeed registered. */
923 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
924 if (pr == NULL)
925 return (EPFNOSUPPORT);
926 if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */
927 return (ENOENT);
928
929 /* Reset the protocol slot to IPPROTO_RAW. */
930 ip_protox[ipproto] = pr - inetsw;
931 return (0);
932 }
933
934 u_char inetctlerrmap[PRC_NCMDS] = {
935 0, 0, 0, 0,
936 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
937 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
938 EMSGSIZE, EHOSTUNREACH, 0, 0,
939 0, 0, EHOSTUNREACH, 0,
940 ENOPROTOOPT, ECONNREFUSED
941 };
942
943 /*
944 * Forward a packet. If some error occurs return the sender
945 * an icmp packet. Note we can't always generate a meaningful
946 * icmp message because icmp doesn't have a large enough repertoire
947 * of codes and types.
948 *
949 * If not forwarding, just drop the packet. This could be confusing
950 * if ipforwarding was zero but some routing protocol was advancing
951 * us as a gateway to somewhere. However, we must let the routing
952 * protocol deal with that.
953 *
954 * The srcrt parameter indicates whether the packet is being forwarded
955 * via a source route.
956 */
957 void
ip_forward(struct mbuf * m,int srcrt)958 ip_forward(struct mbuf *m, int srcrt)
959 {
960 struct ip *ip = mtod(m, struct ip *);
961 struct in_ifaddr *ia;
962 struct mbuf *mcopy;
963 struct sockaddr_in *sin;
964 struct in_addr dest;
965 struct route ro;
966 uint32_t flowid;
967 int error, type = 0, code = 0, mtu = 0;
968
969 NET_EPOCH_ASSERT();
970
971 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
972 IPSTAT_INC(ips_cantforward);
973 m_freem(m);
974 return;
975 }
976 if (
977 #ifdef IPSTEALTH
978 V_ipstealth == 0 &&
979 #endif
980 ip->ip_ttl <= IPTTLDEC) {
981 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0);
982 return;
983 }
984
985 bzero(&ro, sizeof(ro));
986 sin = (struct sockaddr_in *)&ro.ro_dst;
987 sin->sin_family = AF_INET;
988 sin->sin_len = sizeof(*sin);
989 sin->sin_addr = ip->ip_dst;
990 flowid = m->m_pkthdr.flowid;
991 ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid);
992 if (ro.ro_nh != NULL) {
993 ia = ifatoia(ro.ro_nh->nh_ifa);
994 } else
995 ia = NULL;
996 /*
997 * Save the IP header and at most 8 bytes of the payload,
998 * in case we need to generate an ICMP message to the src.
999 *
1000 * XXX this can be optimized a lot by saving the data in a local
1001 * buffer on the stack (72 bytes at most), and only allocating the
1002 * mbuf if really necessary. The vast majority of the packets
1003 * are forwarded without having to send an ICMP back (either
1004 * because unnecessary, or because rate limited), so we are
1005 * really we are wasting a lot of work here.
1006 *
1007 * We don't use m_copym() because it might return a reference
1008 * to a shared cluster. Both this function and ip_output()
1009 * assume exclusive access to the IP header in `m', so any
1010 * data in a cluster may change before we reach icmp_error().
1011 */
1012 mcopy = m_gethdr(M_NOWAIT, m->m_type);
1013 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1014 /*
1015 * It's probably ok if the pkthdr dup fails (because
1016 * the deep copy of the tag chain failed), but for now
1017 * be conservative and just discard the copy since
1018 * code below may some day want the tags.
1019 */
1020 m_free(mcopy);
1021 mcopy = NULL;
1022 }
1023 if (mcopy != NULL) {
1024 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1025 mcopy->m_pkthdr.len = mcopy->m_len;
1026 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1027 }
1028 #ifdef IPSTEALTH
1029 if (V_ipstealth == 0)
1030 #endif
1031 ip->ip_ttl -= IPTTLDEC;
1032 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1033 if (IPSEC_ENABLED(ipv4)) {
1034 if ((error = IPSEC_FORWARD(ipv4, m)) != 0) {
1035 /* mbuf consumed by IPsec */
1036 RO_NHFREE(&ro);
1037 m_freem(mcopy);
1038 if (error != EINPROGRESS)
1039 IPSTAT_INC(ips_cantforward);
1040 return;
1041 }
1042 /* No IPsec processing required */
1043 }
1044 #endif /* IPSEC */
1045 /*
1046 * If forwarding packet using same interface that it came in on,
1047 * perhaps should send a redirect to sender to shortcut a hop.
1048 * Only send redirect if source is sending directly to us,
1049 * and if packet was not source routed (or has any options).
1050 * Also, don't send redirect if forwarding using a default route
1051 * or a route modified by a redirect.
1052 */
1053 dest.s_addr = 0;
1054 if (!srcrt && V_ipsendredirects &&
1055 ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1056 struct nhop_object *nh;
1057
1058 nh = ro.ro_nh;
1059
1060 if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) {
1061 struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa);
1062 u_long src = ntohl(ip->ip_src.s_addr);
1063
1064 if (nh_ia != NULL &&
1065 (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) {
1066 /* Router requirements says to only send host redirects */
1067 type = ICMP_REDIRECT;
1068 code = ICMP_REDIRECT_HOST;
1069 if (nh->nh_flags & NHF_GATEWAY) {
1070 if (nh->gw_sa.sa_family == AF_INET)
1071 dest.s_addr = nh->gw4_sa.sin_addr.s_addr;
1072 else /* Do not redirect in case gw is AF_INET6 */
1073 type = 0;
1074 } else
1075 dest.s_addr = ip->ip_dst.s_addr;
1076 }
1077 }
1078 }
1079
1080 error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1081
1082 if (error == EMSGSIZE && ro.ro_nh)
1083 mtu = ro.ro_nh->nh_mtu;
1084 RO_NHFREE(&ro);
1085
1086 if (error)
1087 IPSTAT_INC(ips_cantforward);
1088 else {
1089 IPSTAT_INC(ips_forward);
1090 if (type)
1091 IPSTAT_INC(ips_redirectsent);
1092 else {
1093 if (mcopy)
1094 m_freem(mcopy);
1095 return;
1096 }
1097 }
1098 if (mcopy == NULL)
1099 return;
1100
1101 switch (error) {
1102 case 0: /* forwarded, but need redirect */
1103 /* type, code set above */
1104 break;
1105
1106 case ENETUNREACH:
1107 case EHOSTUNREACH:
1108 case ENETDOWN:
1109 case EHOSTDOWN:
1110 default:
1111 type = ICMP_UNREACH;
1112 code = ICMP_UNREACH_HOST;
1113 break;
1114
1115 case EMSGSIZE:
1116 type = ICMP_UNREACH;
1117 code = ICMP_UNREACH_NEEDFRAG;
1118 /*
1119 * If the MTU was set before make sure we are below the
1120 * interface MTU.
1121 * If the MTU wasn't set before use the interface mtu or
1122 * fall back to the next smaller mtu step compared to the
1123 * current packet size.
1124 */
1125 if (mtu != 0) {
1126 if (ia != NULL)
1127 mtu = min(mtu, ia->ia_ifp->if_mtu);
1128 } else {
1129 if (ia != NULL)
1130 mtu = ia->ia_ifp->if_mtu;
1131 else
1132 mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1133 }
1134 IPSTAT_INC(ips_cantfrag);
1135 break;
1136
1137 case ENOBUFS:
1138 case EACCES: /* ipfw denied packet */
1139 m_freem(mcopy);
1140 return;
1141 }
1142 icmp_error(mcopy, type, code, dest.s_addr, mtu);
1143 }
1144
1145 #define CHECK_SO_CT(sp, ct) \
1146 (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0)
1147
1148 void
ip_savecontrol(struct inpcb * inp,struct mbuf ** mp,struct ip * ip,struct mbuf * m)1149 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1150 struct mbuf *m)
1151 {
1152 bool stamped;
1153
1154 stamped = false;
1155 if ((inp->inp_socket->so_options & SO_BINTIME) ||
1156 CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) {
1157 struct bintime boottimebin, bt;
1158 struct timespec ts1;
1159
1160 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR |
1161 M_TSTMP)) {
1162 mbuf_tstmp2timespec(m, &ts1);
1163 timespec2bintime(&ts1, &bt);
1164 getboottimebin(&boottimebin);
1165 bintime_add(&bt, &boottimebin);
1166 } else {
1167 bintime(&bt);
1168 }
1169 *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1170 SCM_BINTIME, SOL_SOCKET);
1171 if (*mp != NULL) {
1172 mp = &(*mp)->m_next;
1173 stamped = true;
1174 }
1175 }
1176 if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) {
1177 struct bintime boottimebin, bt1;
1178 struct timespec ts1;
1179 struct timeval tv;
1180
1181 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR |
1182 M_TSTMP)) {
1183 mbuf_tstmp2timespec(m, &ts1);
1184 timespec2bintime(&ts1, &bt1);
1185 getboottimebin(&boottimebin);
1186 bintime_add(&bt1, &boottimebin);
1187 bintime2timeval(&bt1, &tv);
1188 } else {
1189 microtime(&tv);
1190 }
1191 *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1192 SCM_TIMESTAMP, SOL_SOCKET);
1193 if (*mp != NULL) {
1194 mp = &(*mp)->m_next;
1195 stamped = true;
1196 }
1197 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) {
1198 struct bintime boottimebin;
1199 struct timespec ts, ts1;
1200
1201 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR |
1202 M_TSTMP)) {
1203 mbuf_tstmp2timespec(m, &ts);
1204 getboottimebin(&boottimebin);
1205 bintime2timespec(&boottimebin, &ts1);
1206 timespecadd(&ts, &ts1, &ts);
1207 } else {
1208 nanotime(&ts);
1209 }
1210 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts),
1211 SCM_REALTIME, SOL_SOCKET);
1212 if (*mp != NULL) {
1213 mp = &(*mp)->m_next;
1214 stamped = true;
1215 }
1216 } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) {
1217 struct timespec ts;
1218
1219 if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR |
1220 M_TSTMP))
1221 mbuf_tstmp2timespec(m, &ts);
1222 else
1223 nanouptime(&ts);
1224 *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts),
1225 SCM_MONOTONIC, SOL_SOCKET);
1226 if (*mp != NULL) {
1227 mp = &(*mp)->m_next;
1228 stamped = true;
1229 }
1230 }
1231 if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR |
1232 M_TSTMP)) {
1233 struct sock_timestamp_info sti;
1234
1235 bzero(&sti, sizeof(sti));
1236 sti.st_info_flags = ST_INFO_HW;
1237 if ((m->m_flags & M_TSTMP_HPREC) != 0)
1238 sti.st_info_flags |= ST_INFO_HW_HPREC;
1239 *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO,
1240 SOL_SOCKET);
1241 if (*mp != NULL)
1242 mp = &(*mp)->m_next;
1243 }
1244 if (inp->inp_flags & INP_RECVDSTADDR) {
1245 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1246 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1247 if (*mp)
1248 mp = &(*mp)->m_next;
1249 }
1250 if (inp->inp_flags & INP_RECVTTL) {
1251 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1252 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1253 if (*mp)
1254 mp = &(*mp)->m_next;
1255 }
1256 #ifdef notyet
1257 /* XXX
1258 * Moving these out of udp_input() made them even more broken
1259 * than they already were.
1260 */
1261 /* options were tossed already */
1262 if (inp->inp_flags & INP_RECVOPTS) {
1263 *mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1264 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1265 if (*mp)
1266 mp = &(*mp)->m_next;
1267 }
1268 /* ip_srcroute doesn't do what we want here, need to fix */
1269 if (inp->inp_flags & INP_RECVRETOPTS) {
1270 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1271 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1272 if (*mp)
1273 mp = &(*mp)->m_next;
1274 }
1275 #endif
1276 if (inp->inp_flags & INP_RECVIF) {
1277 struct ifnet *ifp;
1278 struct sdlbuf {
1279 struct sockaddr_dl sdl;
1280 u_char pad[32];
1281 } sdlbuf;
1282 struct sockaddr_dl *sdp;
1283 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1284
1285 if ((ifp = m->m_pkthdr.rcvif) &&
1286 ifp->if_index && ifp->if_index <= V_if_index) {
1287 sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1288 /*
1289 * Change our mind and don't try copy.
1290 */
1291 if (sdp->sdl_family != AF_LINK ||
1292 sdp->sdl_len > sizeof(sdlbuf)) {
1293 goto makedummy;
1294 }
1295 bcopy(sdp, sdl2, sdp->sdl_len);
1296 } else {
1297 makedummy:
1298 sdl2->sdl_len =
1299 offsetof(struct sockaddr_dl, sdl_data[0]);
1300 sdl2->sdl_family = AF_LINK;
1301 sdl2->sdl_index = 0;
1302 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1303 }
1304 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1305 IP_RECVIF, IPPROTO_IP);
1306 if (*mp)
1307 mp = &(*mp)->m_next;
1308 }
1309 if (inp->inp_flags & INP_RECVTOS) {
1310 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1311 sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1312 if (*mp)
1313 mp = &(*mp)->m_next;
1314 }
1315
1316 if (inp->inp_flags2 & INP_RECVFLOWID) {
1317 uint32_t flowid, flow_type;
1318
1319 flowid = m->m_pkthdr.flowid;
1320 flow_type = M_HASHTYPE_GET(m);
1321
1322 /*
1323 * XXX should handle the failure of one or the
1324 * other - don't populate both?
1325 */
1326 *mp = sbcreatecontrol((caddr_t) &flowid,
1327 sizeof(uint32_t), IP_FLOWID, IPPROTO_IP);
1328 if (*mp)
1329 mp = &(*mp)->m_next;
1330 *mp = sbcreatecontrol((caddr_t) &flow_type,
1331 sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP);
1332 if (*mp)
1333 mp = &(*mp)->m_next;
1334 }
1335
1336 #ifdef RSS
1337 if (inp->inp_flags2 & INP_RECVRSSBUCKETID) {
1338 uint32_t flowid, flow_type;
1339 uint32_t rss_bucketid;
1340
1341 flowid = m->m_pkthdr.flowid;
1342 flow_type = M_HASHTYPE_GET(m);
1343
1344 if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) {
1345 *mp = sbcreatecontrol((caddr_t) &rss_bucketid,
1346 sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP);
1347 if (*mp)
1348 mp = &(*mp)->m_next;
1349 }
1350 }
1351 #endif
1352 }
1353
1354 /*
1355 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1356 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1357 * locking. This code remains in ip_input.c as ip_mroute.c is optionally
1358 * compiled.
1359 */
1360 VNET_DEFINE_STATIC(int, ip_rsvp_on);
1361 VNET_DEFINE(struct socket *, ip_rsvpd);
1362
1363 #define V_ip_rsvp_on VNET(ip_rsvp_on)
1364
1365 int
ip_rsvp_init(struct socket * so)1366 ip_rsvp_init(struct socket *so)
1367 {
1368
1369 if (so->so_type != SOCK_RAW ||
1370 so->so_proto->pr_protocol != IPPROTO_RSVP)
1371 return EOPNOTSUPP;
1372
1373 if (V_ip_rsvpd != NULL)
1374 return EADDRINUSE;
1375
1376 V_ip_rsvpd = so;
1377 /*
1378 * This may seem silly, but we need to be sure we don't over-increment
1379 * the RSVP counter, in case something slips up.
1380 */
1381 if (!V_ip_rsvp_on) {
1382 V_ip_rsvp_on = 1;
1383 V_rsvp_on++;
1384 }
1385
1386 return 0;
1387 }
1388
1389 int
ip_rsvp_done(void)1390 ip_rsvp_done(void)
1391 {
1392
1393 V_ip_rsvpd = NULL;
1394 /*
1395 * This may seem silly, but we need to be sure we don't over-decrement
1396 * the RSVP counter, in case something slips up.
1397 */
1398 if (V_ip_rsvp_on) {
1399 V_ip_rsvp_on = 0;
1400 V_rsvp_on--;
1401 }
1402 return 0;
1403 }
1404
1405 int
rsvp_input(struct mbuf ** mp,int * offp,int proto)1406 rsvp_input(struct mbuf **mp, int *offp, int proto)
1407 {
1408 struct mbuf *m;
1409
1410 m = *mp;
1411 *mp = NULL;
1412
1413 if (rsvp_input_p) { /* call the real one if loaded */
1414 *mp = m;
1415 rsvp_input_p(mp, offp, proto);
1416 return (IPPROTO_DONE);
1417 }
1418
1419 /* Can still get packets with rsvp_on = 0 if there is a local member
1420 * of the group to which the RSVP packet is addressed. But in this
1421 * case we want to throw the packet away.
1422 */
1423
1424 if (!V_rsvp_on) {
1425 m_freem(m);
1426 return (IPPROTO_DONE);
1427 }
1428
1429 if (V_ip_rsvpd != NULL) {
1430 *mp = m;
1431 rip_input(mp, offp, proto);
1432 return (IPPROTO_DONE);
1433 }
1434 /* Drop the packet */
1435 m_freem(m);
1436 return (IPPROTO_DONE);
1437 }
1438