xref: /freebsd-13.1/sys/net/iflib.c (revision bde1cafb)
1 /*-
2  * Copyright (c) 2014-2018, Matthew Macy <[email protected]>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Neither the name of Matthew Macy nor the names of its
12  *     contributors may be used to endorse or promote products derived from
13  *     this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_acpi.h"
34 #include "opt_sched.h"
35 
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/bus.h>
39 #include <sys/eventhandler.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/module.h>
44 #include <sys/kobj.h>
45 #include <sys/rman.h>
46 #include <sys/sbuf.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/taskqueue.h>
53 #include <sys/limits.h>
54 
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_types.h>
58 #include <net/if_media.h>
59 #include <net/bpf.h>
60 #include <net/ethernet.h>
61 #include <net/mp_ring.h>
62 #include <net/debugnet.h>
63 #include <net/pfil.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/tcp_lro.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 #include <netinet/ip6.h>
73 #include <netinet/tcp.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76 
77 #include <machine/bus.h>
78 #include <machine/in_cksum.h>
79 
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82 
83 #include <dev/led/led.h>
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/pci_private.h>
87 
88 #include <net/iflib.h>
89 #include <net/iflib_private.h>
90 
91 #include "ifdi_if.h"
92 
93 #ifdef PCI_IOV
94 #include <dev/pci/pci_iov.h>
95 #endif
96 
97 #include <sys/bitstring.h>
98 /*
99  * enable accounting of every mbuf as it comes in to and goes out of
100  * iflib's software descriptor references
101  */
102 #define MEMORY_LOGGING 0
103 /*
104  * Enable mbuf vectors for compressing long mbuf chains
105  */
106 
107 /*
108  * NB:
109  * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
110  *   we prefetch needs to be determined by the time spent in m_free vis a vis
111  *   the cost of a prefetch. This will of course vary based on the workload:
112  *      - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
113  *        is quite expensive, thus suggesting very little prefetch.
114  *      - small packet forwarding which is just returning a single mbuf to
115  *        UMA will typically be very fast vis a vis the cost of a memory
116  *        access.
117  */
118 
119 /*
120  * File organization:
121  *  - private structures
122  *  - iflib private utility functions
123  *  - ifnet functions
124  *  - vlan registry and other exported functions
125  *  - iflib public core functions
126  *
127  *
128  */
129 MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
130 
131 #define	IFLIB_RXEOF_MORE (1U << 0)
132 #define	IFLIB_RXEOF_EMPTY (2U << 0)
133 
134 struct iflib_txq;
135 typedef struct iflib_txq *iflib_txq_t;
136 struct iflib_rxq;
137 typedef struct iflib_rxq *iflib_rxq_t;
138 struct iflib_fl;
139 typedef struct iflib_fl *iflib_fl_t;
140 
141 struct iflib_ctx;
142 
143 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
144 static void iflib_timer(void *arg);
145 static void iflib_tqg_detach(if_ctx_t ctx);
146 
147 typedef struct iflib_filter_info {
148 	driver_filter_t *ifi_filter;
149 	void *ifi_filter_arg;
150 	struct grouptask *ifi_task;
151 	void *ifi_ctx;
152 } *iflib_filter_info_t;
153 
154 struct iflib_ctx {
155 	KOBJ_FIELDS;
156 	/*
157 	 * Pointer to hardware driver's softc
158 	 */
159 	void *ifc_softc;
160 	device_t ifc_dev;
161 	if_t ifc_ifp;
162 
163 	cpuset_t ifc_cpus;
164 	if_shared_ctx_t ifc_sctx;
165 	struct if_softc_ctx ifc_softc_ctx;
166 
167 	struct sx ifc_ctx_sx;
168 	struct mtx ifc_state_mtx;
169 
170 	iflib_txq_t ifc_txqs;
171 	iflib_rxq_t ifc_rxqs;
172 	uint32_t ifc_if_flags;
173 	uint32_t ifc_flags;
174 	uint32_t ifc_max_fl_buf_size;
175 	uint32_t ifc_rx_mbuf_sz;
176 
177 	int ifc_link_state;
178 	int ifc_watchdog_events;
179 	struct cdev *ifc_led_dev;
180 	struct resource *ifc_msix_mem;
181 
182 	struct if_irq ifc_legacy_irq;
183 	struct grouptask ifc_admin_task;
184 	struct grouptask ifc_vflr_task;
185 	struct iflib_filter_info ifc_filter_info;
186 	struct ifmedia	ifc_media;
187 	struct ifmedia	*ifc_mediap;
188 
189 	struct sysctl_oid *ifc_sysctl_node;
190 	uint16_t ifc_sysctl_ntxqs;
191 	uint16_t ifc_sysctl_nrxqs;
192 	uint16_t ifc_sysctl_qs_eq_override;
193 	uint16_t ifc_sysctl_rx_budget;
194 	uint16_t ifc_sysctl_tx_abdicate;
195 	uint16_t ifc_sysctl_core_offset;
196 #define	CORE_OFFSET_UNSPECIFIED	0xffff
197 	uint8_t  ifc_sysctl_separate_txrx;
198 	uint8_t  ifc_sysctl_use_logical_cores;
199 	bool	 ifc_cpus_are_physical_cores;
200 
201 	qidx_t ifc_sysctl_ntxds[8];
202 	qidx_t ifc_sysctl_nrxds[8];
203 	struct if_txrx ifc_txrx;
204 #define isc_txd_encap  ifc_txrx.ift_txd_encap
205 #define isc_txd_flush  ifc_txrx.ift_txd_flush
206 #define isc_txd_credits_update  ifc_txrx.ift_txd_credits_update
207 #define isc_rxd_available ifc_txrx.ift_rxd_available
208 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
209 #define isc_rxd_refill ifc_txrx.ift_rxd_refill
210 #define isc_rxd_flush ifc_txrx.ift_rxd_flush
211 #define isc_legacy_intr ifc_txrx.ift_legacy_intr
212 #define isc_txq_select ifc_txrx.ift_txq_select
213 	eventhandler_tag ifc_vlan_attach_event;
214 	eventhandler_tag ifc_vlan_detach_event;
215 	struct ether_addr ifc_mac;
216 };
217 
218 void *
iflib_get_softc(if_ctx_t ctx)219 iflib_get_softc(if_ctx_t ctx)
220 {
221 
222 	return (ctx->ifc_softc);
223 }
224 
225 device_t
iflib_get_dev(if_ctx_t ctx)226 iflib_get_dev(if_ctx_t ctx)
227 {
228 
229 	return (ctx->ifc_dev);
230 }
231 
232 if_t
iflib_get_ifp(if_ctx_t ctx)233 iflib_get_ifp(if_ctx_t ctx)
234 {
235 
236 	return (ctx->ifc_ifp);
237 }
238 
239 struct ifmedia *
iflib_get_media(if_ctx_t ctx)240 iflib_get_media(if_ctx_t ctx)
241 {
242 
243 	return (ctx->ifc_mediap);
244 }
245 
246 uint32_t
iflib_get_flags(if_ctx_t ctx)247 iflib_get_flags(if_ctx_t ctx)
248 {
249 	return (ctx->ifc_flags);
250 }
251 
252 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])253 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
254 {
255 
256 	bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
257 }
258 
259 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)260 iflib_get_softc_ctx(if_ctx_t ctx)
261 {
262 
263 	return (&ctx->ifc_softc_ctx);
264 }
265 
266 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)267 iflib_get_sctx(if_ctx_t ctx)
268 {
269 
270 	return (ctx->ifc_sctx);
271 }
272 
273 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
274 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*))
275 #define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr)+CACHE_LINE_SIZE-1) & (CACHE_LINE_SIZE-1)))
276 
277 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
278 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
279 
280 typedef struct iflib_sw_rx_desc_array {
281 	bus_dmamap_t	*ifsd_map;         /* bus_dma maps for packet */
282 	struct mbuf	**ifsd_m;           /* pkthdr mbufs */
283 	caddr_t		*ifsd_cl;          /* direct cluster pointer for rx */
284 	bus_addr_t	*ifsd_ba;          /* bus addr of cluster for rx */
285 } iflib_rxsd_array_t;
286 
287 typedef struct iflib_sw_tx_desc_array {
288 	bus_dmamap_t    *ifsd_map;         /* bus_dma maps for packet */
289 	bus_dmamap_t	*ifsd_tso_map;     /* bus_dma maps for TSO packet */
290 	struct mbuf    **ifsd_m;           /* pkthdr mbufs */
291 } if_txsd_vec_t;
292 
293 /* magic number that should be high enough for any hardware */
294 #define IFLIB_MAX_TX_SEGS		128
295 #define IFLIB_RX_COPY_THRESH		128
296 #define IFLIB_MAX_RX_REFRESH		32
297 /* The minimum descriptors per second before we start coalescing */
298 #define IFLIB_MIN_DESC_SEC		16384
299 #define IFLIB_DEFAULT_TX_UPDATE_FREQ	16
300 #define IFLIB_QUEUE_IDLE		0
301 #define IFLIB_QUEUE_HUNG		1
302 #define IFLIB_QUEUE_WORKING		2
303 /* maximum number of txqs that can share an rx interrupt */
304 #define IFLIB_MAX_TX_SHARED_INTR	4
305 
306 /* this should really scale with ring size - this is a fairly arbitrary value */
307 #define TX_BATCH_SIZE			32
308 
309 #define IFLIB_RESTART_BUDGET		8
310 
311 #define CSUM_OFFLOAD		(CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \
312 				 CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \
313 				 CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP)
314 
315 struct iflib_txq {
316 	qidx_t		ift_in_use;
317 	qidx_t		ift_cidx;
318 	qidx_t		ift_cidx_processed;
319 	qidx_t		ift_pidx;
320 	uint8_t		ift_gen;
321 	uint8_t		ift_br_offset;
322 	uint16_t	ift_npending;
323 	uint16_t	ift_db_pending;
324 	uint16_t	ift_rs_pending;
325 	/* implicit pad */
326 	uint8_t		ift_txd_size[8];
327 	uint64_t	ift_processed;
328 	uint64_t	ift_cleaned;
329 	uint64_t	ift_cleaned_prev;
330 #if MEMORY_LOGGING
331 	uint64_t	ift_enqueued;
332 	uint64_t	ift_dequeued;
333 #endif
334 	uint64_t	ift_no_tx_dma_setup;
335 	uint64_t	ift_no_desc_avail;
336 	uint64_t	ift_mbuf_defrag_failed;
337 	uint64_t	ift_mbuf_defrag;
338 	uint64_t	ift_map_failed;
339 	uint64_t	ift_txd_encap_efbig;
340 	uint64_t	ift_pullups;
341 	uint64_t	ift_last_timer_tick;
342 
343 	struct mtx	ift_mtx;
344 	struct mtx	ift_db_mtx;
345 
346 	/* constant values */
347 	if_ctx_t	ift_ctx;
348 	struct ifmp_ring        *ift_br;
349 	struct grouptask	ift_task;
350 	qidx_t		ift_size;
351 	uint16_t	ift_id;
352 	struct callout	ift_timer;
353 #ifdef DEV_NETMAP
354 	struct callout	ift_netmap_timer;
355 #endif /* DEV_NETMAP */
356 
357 	if_txsd_vec_t	ift_sds;
358 	uint8_t		ift_qstatus;
359 	uint8_t		ift_closed;
360 	uint8_t		ift_update_freq;
361 	struct iflib_filter_info ift_filter_info;
362 	bus_dma_tag_t	ift_buf_tag;
363 	bus_dma_tag_t	ift_tso_buf_tag;
364 	iflib_dma_info_t	ift_ifdi;
365 #define	MTX_NAME_LEN	32
366 	char                    ift_mtx_name[MTX_NAME_LEN];
367 	bus_dma_segment_t	ift_segs[IFLIB_MAX_TX_SEGS]  __aligned(CACHE_LINE_SIZE);
368 #ifdef IFLIB_DIAGNOSTICS
369 	uint64_t ift_cpu_exec_count[256];
370 #endif
371 } __aligned(CACHE_LINE_SIZE);
372 
373 struct iflib_fl {
374 	qidx_t		ifl_cidx;
375 	qidx_t		ifl_pidx;
376 	qidx_t		ifl_credits;
377 	uint8_t		ifl_gen;
378 	uint8_t		ifl_rxd_size;
379 #if MEMORY_LOGGING
380 	uint64_t	ifl_m_enqueued;
381 	uint64_t	ifl_m_dequeued;
382 	uint64_t	ifl_cl_enqueued;
383 	uint64_t	ifl_cl_dequeued;
384 #endif
385 	/* implicit pad */
386 	bitstr_t 	*ifl_rx_bitmap;
387 	qidx_t		ifl_fragidx;
388 	/* constant */
389 	qidx_t		ifl_size;
390 	uint16_t	ifl_buf_size;
391 	uint16_t	ifl_cltype;
392 	uma_zone_t	ifl_zone;
393 	iflib_rxsd_array_t	ifl_sds;
394 	iflib_rxq_t	ifl_rxq;
395 	uint8_t		ifl_id;
396 	bus_dma_tag_t	ifl_buf_tag;
397 	iflib_dma_info_t	ifl_ifdi;
398 	uint64_t	ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
399 	qidx_t		ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
400 }  __aligned(CACHE_LINE_SIZE);
401 
402 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)403 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
404 {
405 	qidx_t used;
406 
407 	if (pidx > cidx)
408 		used = pidx - cidx;
409 	else if (pidx < cidx)
410 		used = size - cidx + pidx;
411 	else if (gen == 0 && pidx == cidx)
412 		used = 0;
413 	else if (gen == 1 && pidx == cidx)
414 		used = size;
415 	else
416 		panic("bad state");
417 
418 	return (used);
419 }
420 
421 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
422 
423 #define IDXDIFF(head, tail, wrap) \
424 	((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
425 
426 struct iflib_rxq {
427 	if_ctx_t	ifr_ctx;
428 	iflib_fl_t	ifr_fl;
429 	uint64_t	ifr_rx_irq;
430 	struct pfil_head	*pfil;
431 	/*
432 	 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
433 	 * the completion queue consumer index.  Otherwise it's unused.
434 	 */
435 	qidx_t		ifr_cq_cidx;
436 	uint16_t	ifr_id;
437 	uint8_t		ifr_nfl;
438 	uint8_t		ifr_ntxqirq;
439 	uint8_t		ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
440 	uint8_t		ifr_fl_offset;
441 	struct lro_ctrl			ifr_lc;
442 	struct grouptask        ifr_task;
443 	struct callout		ifr_watchdog;
444 	struct iflib_filter_info ifr_filter_info;
445 	iflib_dma_info_t		ifr_ifdi;
446 
447 	/* dynamically allocate if any drivers need a value substantially larger than this */
448 	struct if_rxd_frag	ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
449 #ifdef IFLIB_DIAGNOSTICS
450 	uint64_t ifr_cpu_exec_count[256];
451 #endif
452 }  __aligned(CACHE_LINE_SIZE);
453 
454 typedef struct if_rxsd {
455 	caddr_t *ifsd_cl;
456 	iflib_fl_t ifsd_fl;
457 } *if_rxsd_t;
458 
459 /* multiple of word size */
460 #ifdef __LP64__
461 #define PKT_INFO_SIZE	6
462 #define RXD_INFO_SIZE	5
463 #define PKT_TYPE uint64_t
464 #else
465 #define PKT_INFO_SIZE	11
466 #define RXD_INFO_SIZE	8
467 #define PKT_TYPE uint32_t
468 #endif
469 #define PKT_LOOP_BOUND  ((PKT_INFO_SIZE/3)*3)
470 #define RXD_LOOP_BOUND  ((RXD_INFO_SIZE/4)*4)
471 
472 typedef struct if_pkt_info_pad {
473 	PKT_TYPE pkt_val[PKT_INFO_SIZE];
474 } *if_pkt_info_pad_t;
475 typedef struct if_rxd_info_pad {
476 	PKT_TYPE rxd_val[RXD_INFO_SIZE];
477 } *if_rxd_info_pad_t;
478 
479 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
480 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
481 
482 static inline void
pkt_info_zero(if_pkt_info_t pi)483 pkt_info_zero(if_pkt_info_t pi)
484 {
485 	if_pkt_info_pad_t pi_pad;
486 
487 	pi_pad = (if_pkt_info_pad_t)pi;
488 	pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
489 	pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
490 #ifndef __LP64__
491 	pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
492 	pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
493 #endif
494 }
495 
496 static device_method_t iflib_pseudo_methods[] = {
497 	DEVMETHOD(device_attach, noop_attach),
498 	DEVMETHOD(device_detach, iflib_pseudo_detach),
499 	DEVMETHOD_END
500 };
501 
502 driver_t iflib_pseudodriver = {
503 	"iflib_pseudo", iflib_pseudo_methods, sizeof(struct iflib_ctx),
504 };
505 
506 static inline void
rxd_info_zero(if_rxd_info_t ri)507 rxd_info_zero(if_rxd_info_t ri)
508 {
509 	if_rxd_info_pad_t ri_pad;
510 	int i;
511 
512 	ri_pad = (if_rxd_info_pad_t)ri;
513 	for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
514 		ri_pad->rxd_val[i] = 0;
515 		ri_pad->rxd_val[i+1] = 0;
516 		ri_pad->rxd_val[i+2] = 0;
517 		ri_pad->rxd_val[i+3] = 0;
518 	}
519 #ifdef __LP64__
520 	ri_pad->rxd_val[RXD_INFO_SIZE-1] = 0;
521 #endif
522 }
523 
524 /*
525  * Only allow a single packet to take up most 1/nth of the tx ring
526  */
527 #define MAX_SINGLE_PACKET_FRACTION 12
528 #define IF_BAD_DMA (bus_addr_t)-1
529 
530 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
531 
532 #define CTX_LOCK_INIT(_sc)  sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
533 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx)
534 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx)
535 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx)
536 
537 #define STATE_LOCK_INIT(_sc, _name)  mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
538 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx)
539 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx)
540 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx)
541 
542 #define CALLOUT_LOCK(txq)	mtx_lock(&txq->ift_mtx)
543 #define CALLOUT_UNLOCK(txq) 	mtx_unlock(&txq->ift_mtx)
544 
545 void
iflib_set_detach(if_ctx_t ctx)546 iflib_set_detach(if_ctx_t ctx)
547 {
548 	STATE_LOCK(ctx);
549 	ctx->ifc_flags |= IFC_IN_DETACH;
550 	STATE_UNLOCK(ctx);
551 }
552 
553 /* Our boot-time initialization hook */
554 static int	iflib_module_event_handler(module_t, int, void *);
555 
556 static moduledata_t iflib_moduledata = {
557 	"iflib",
558 	iflib_module_event_handler,
559 	NULL
560 };
561 
562 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
563 MODULE_VERSION(iflib, 1);
564 
565 MODULE_DEPEND(iflib, pci, 1, 1, 1);
566 MODULE_DEPEND(iflib, ether, 1, 1, 1);
567 
568 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
569 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
570 
571 #ifndef IFLIB_DEBUG_COUNTERS
572 #ifdef INVARIANTS
573 #define IFLIB_DEBUG_COUNTERS 1
574 #else
575 #define IFLIB_DEBUG_COUNTERS 0
576 #endif /* !INVARIANTS */
577 #endif
578 
579 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
580     "iflib driver parameters");
581 
582 /*
583  * XXX need to ensure that this can't accidentally cause the head to be moved backwards
584  */
585 static int iflib_min_tx_latency = 0;
586 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
587 		   &iflib_min_tx_latency, 0, "minimize transmit latency at the possible expense of throughput");
588 static int iflib_no_tx_batch = 0;
589 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
590 		   &iflib_no_tx_batch, 0, "minimize transmit latency at the possible expense of throughput");
591 static int iflib_timer_default = 1000;
592 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
593 		   &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
594 
595 
596 #if IFLIB_DEBUG_COUNTERS
597 
598 static int iflib_tx_seen;
599 static int iflib_tx_sent;
600 static int iflib_tx_encap;
601 static int iflib_rx_allocs;
602 static int iflib_fl_refills;
603 static int iflib_fl_refills_large;
604 static int iflib_tx_frees;
605 
606 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD,
607 		   &iflib_tx_seen, 0, "# TX mbufs seen");
608 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD,
609 		   &iflib_tx_sent, 0, "# TX mbufs sent");
610 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD,
611 		   &iflib_tx_encap, 0, "# TX mbufs encapped");
612 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD,
613 		   &iflib_tx_frees, 0, "# TX frees");
614 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD,
615 		   &iflib_rx_allocs, 0, "# RX allocations");
616 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD,
617 		   &iflib_fl_refills, 0, "# refills");
618 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
619 		   &iflib_fl_refills_large, 0, "# large refills");
620 
621 static int iflib_txq_drain_flushing;
622 static int iflib_txq_drain_oactive;
623 static int iflib_txq_drain_notready;
624 
625 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
626 		   &iflib_txq_drain_flushing, 0, "# drain flushes");
627 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
628 		   &iflib_txq_drain_oactive, 0, "# drain oactives");
629 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
630 		   &iflib_txq_drain_notready, 0, "# drain notready");
631 
632 static int iflib_encap_load_mbuf_fail;
633 static int iflib_encap_pad_mbuf_fail;
634 static int iflib_encap_txq_avail_fail;
635 static int iflib_encap_txd_encap_fail;
636 
637 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
638 		   &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
639 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
640 		   &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
641 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
642 		   &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
643 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
644 		   &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
645 
646 static int iflib_task_fn_rxs;
647 static int iflib_rx_intr_enables;
648 static int iflib_fast_intrs;
649 static int iflib_rx_unavail;
650 static int iflib_rx_ctx_inactive;
651 static int iflib_rx_if_input;
652 static int iflib_rxd_flush;
653 
654 static int iflib_verbose_debug;
655 
656 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD,
657 		   &iflib_task_fn_rxs, 0, "# task_fn_rx calls");
658 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
659 		   &iflib_rx_intr_enables, 0, "# RX intr enables");
660 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD,
661 		   &iflib_fast_intrs, 0, "# fast_intr calls");
662 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD,
663 		   &iflib_rx_unavail, 0, "# times rxeof called with no available data");
664 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
665 		   &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
666 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD,
667 		   &iflib_rx_if_input, 0, "# times rxeof called if_input");
668 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD,
669 	         &iflib_rxd_flush, 0, "# times rxd_flush called");
670 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
671 		   &iflib_verbose_debug, 0, "enable verbose debugging");
672 
673 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
674 static void
iflib_debug_reset(void)675 iflib_debug_reset(void)
676 {
677 	iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
678 		iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
679 		iflib_txq_drain_flushing = iflib_txq_drain_oactive =
680 		iflib_txq_drain_notready =
681 		iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
682 		iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
683 		iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
684 		iflib_rx_unavail =
685 		iflib_rx_ctx_inactive = iflib_rx_if_input =
686 		iflib_rxd_flush = 0;
687 }
688 
689 #else
690 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)691 static void iflib_debug_reset(void) {}
692 #endif
693 
694 #define IFLIB_DEBUG 0
695 
696 static void iflib_tx_structures_free(if_ctx_t ctx);
697 static void iflib_rx_structures_free(if_ctx_t ctx);
698 static int iflib_queues_alloc(if_ctx_t ctx);
699 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
700 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
701 static int iflib_qset_structures_setup(if_ctx_t ctx);
702 static int iflib_msix_init(if_ctx_t ctx);
703 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
704 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
705 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
706 #ifdef ALTQ
707 static void iflib_altq_if_start(if_t ifp);
708 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
709 #endif
710 static int iflib_register(if_ctx_t);
711 static void iflib_deregister(if_ctx_t);
712 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
713 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
714 static void iflib_init_locked(if_ctx_t ctx);
715 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
716 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
717 static void iflib_ifmp_purge(iflib_txq_t txq);
718 static void _iflib_pre_assert(if_softc_ctx_t scctx);
719 static void iflib_if_init_locked(if_ctx_t ctx);
720 static void iflib_free_intr_mem(if_ctx_t ctx);
721 #ifndef __NO_STRICT_ALIGNMENT
722 static struct mbuf * iflib_fixup_rx(struct mbuf *m);
723 #endif
724 
725 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
726     SLIST_HEAD_INITIALIZER(cpu_offsets);
727 struct cpu_offset {
728 	SLIST_ENTRY(cpu_offset) entries;
729 	cpuset_t	set;
730 	unsigned int	refcount;
731 	uint16_t	next_cpuid;
732 };
733 static struct mtx cpu_offset_mtx;
734 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
735     MTX_DEF);
736 
737 DEBUGNET_DEFINE(iflib);
738 
739 static int
iflib_num_rx_descs(if_ctx_t ctx)740 iflib_num_rx_descs(if_ctx_t ctx)
741 {
742 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
743 	if_shared_ctx_t sctx = ctx->ifc_sctx;
744 	uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
745 
746 	return scctx->isc_nrxd[first_rxq];
747 }
748 
749 static int
iflib_num_tx_descs(if_ctx_t ctx)750 iflib_num_tx_descs(if_ctx_t ctx)
751 {
752 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
753 	if_shared_ctx_t sctx = ctx->ifc_sctx;
754 	uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
755 
756 	return scctx->isc_ntxd[first_txq];
757 }
758 
759 #ifdef DEV_NETMAP
760 #include <sys/selinfo.h>
761 #include <net/netmap.h>
762 #include <dev/netmap/netmap_kern.h>
763 
764 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
765 
766 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
767 static void iflib_netmap_timer(void *arg);
768 
769 /*
770  * device-specific sysctl variables:
771  *
772  * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
773  *	During regular operations the CRC is stripped, but on some
774  *	hardware reception of frames not multiple of 64 is slower,
775  *	so using crcstrip=0 helps in benchmarks.
776  *
777  * iflib_rx_miss, iflib_rx_miss_bufs:
778  *	count packets that might be missed due to lost interrupts.
779  */
780 SYSCTL_DECL(_dev_netmap);
781 /*
782  * The xl driver by default strips CRCs and we do not override it.
783  */
784 
785 int iflib_crcstrip = 1;
786 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
787     CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
788 
789 int iflib_rx_miss, iflib_rx_miss_bufs;
790 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
791     CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
792 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
793     CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
794 
795 /*
796  * Register/unregister. We are already under netmap lock.
797  * Only called on the first register or the last unregister.
798  */
799 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)800 iflib_netmap_register(struct netmap_adapter *na, int onoff)
801 {
802 	if_t ifp = na->ifp;
803 	if_ctx_t ctx = ifp->if_softc;
804 	int status;
805 
806 	CTX_LOCK(ctx);
807 	if (!CTX_IS_VF(ctx))
808 		IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
809 
810 	iflib_stop(ctx);
811 
812 	/*
813 	 * Enable (or disable) netmap flags, and intercept (or restore)
814 	 * ifp->if_transmit. This is done once the device has been stopped
815 	 * to prevent race conditions. Also, this must be done after
816 	 * calling netmap_disable_all_rings() and before calling
817 	 * netmap_enable_all_rings(), so that these two functions see the
818 	 * updated state of the NAF_NETMAP_ON bit.
819 	 */
820 	if (onoff) {
821 		nm_set_native_flags(na);
822 	} else {
823 		nm_clear_native_flags(na);
824 	}
825 
826 	iflib_init_locked(ctx);
827 	IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
828 	status = ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1;
829 	if (status)
830 		nm_clear_native_flags(na);
831 	CTX_UNLOCK(ctx);
832 	return (status);
833 }
834 
835 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)836 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
837 {
838 	if_t ifp = na->ifp;
839 	if_ctx_t ctx = ifp->if_softc;
840 	iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
841 	iflib_fl_t fl = &rxq->ifr_fl[0];
842 
843 	info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
844 	info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
845 	info->num_tx_descs = iflib_num_tx_descs(ctx);
846 	info->num_rx_descs = iflib_num_rx_descs(ctx);
847 	info->rx_buf_maxsize = fl->ifl_buf_size;
848 	nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
849 		info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
850 		info->num_rx_descs, info->rx_buf_maxsize);
851 
852 	return 0;
853 }
854 
855 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)856 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
857 {
858 	struct netmap_adapter *na = kring->na;
859 	u_int const lim = kring->nkr_num_slots - 1;
860 	struct netmap_ring *ring = kring->ring;
861 	bus_dmamap_t *map;
862 	struct if_rxd_update iru;
863 	if_ctx_t ctx = rxq->ifr_ctx;
864 	iflib_fl_t fl = &rxq->ifr_fl[0];
865 	u_int nic_i_first, nic_i;
866 	u_int nm_i;
867 	int i, n;
868 #if IFLIB_DEBUG_COUNTERS
869 	int rf_count = 0;
870 #endif
871 
872 	/*
873 	 * This function is used both at initialization and in rxsync.
874 	 * At initialization we need to prepare (with isc_rxd_refill())
875 	 * all the netmap buffers currently owned by the kernel, in
876 	 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
877 	 * (except for kring->nkr_hwofs). These may be less than
878 	 * kring->nkr_num_slots if netmap_reset() was called while
879 	 * an application using the kring that still owned some
880 	 * buffers.
881 	 * At rxsync time, both indexes point to the next buffer to be
882 	 * refilled.
883 	 * In any case we publish (with isc_rxd_flush()) up to
884 	 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
885 	 * pointer to overrun the head/cons pointer, although this is
886 	 * not necessary for some NICs (e.g. vmx).
887 	 */
888 	if (__predict_false(init)) {
889 		n = kring->nkr_num_slots - nm_kr_rxspace(kring);
890 	} else {
891 		n = kring->rhead - kring->nr_hwcur;
892 		if (n == 0)
893 			return (0); /* Nothing to do. */
894 		if (n < 0)
895 			n += kring->nkr_num_slots;
896 	}
897 
898 	iru_init(&iru, rxq, 0 /* flid */);
899 	map = fl->ifl_sds.ifsd_map;
900 	nic_i = fl->ifl_pidx;
901 	nm_i = netmap_idx_n2k(kring, nic_i);
902 	if (__predict_false(init)) {
903 		/*
904 		 * On init/reset, nic_i must be 0, and we must
905 		 * start to refill from hwtail (see netmap_reset()).
906 		 */
907 		MPASS(nic_i == 0);
908 		MPASS(nm_i == kring->nr_hwtail);
909 	} else
910 		MPASS(nm_i == kring->nr_hwcur);
911 	DBG_COUNTER_INC(fl_refills);
912 	while (n > 0) {
913 #if IFLIB_DEBUG_COUNTERS
914 		if (++rf_count == 9)
915 			DBG_COUNTER_INC(fl_refills_large);
916 #endif
917 		nic_i_first = nic_i;
918 		for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
919 			struct netmap_slot *slot = &ring->slot[nm_i];
920 			void *addr = PNMB(na, slot, &fl->ifl_bus_addrs[i]);
921 
922 			MPASS(i < IFLIB_MAX_RX_REFRESH);
923 
924 			if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
925 			        return netmap_ring_reinit(kring);
926 
927 			fl->ifl_rxd_idxs[i] = nic_i;
928 
929 			if (__predict_false(init)) {
930 				netmap_load_map(na, fl->ifl_buf_tag,
931 				    map[nic_i], addr);
932 			} else if (slot->flags & NS_BUF_CHANGED) {
933 				/* buffer has changed, reload map */
934 				netmap_reload_map(na, fl->ifl_buf_tag,
935 				    map[nic_i], addr);
936 			}
937 			bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
938 			    BUS_DMASYNC_PREREAD);
939 			slot->flags &= ~NS_BUF_CHANGED;
940 
941 			nm_i = nm_next(nm_i, lim);
942 			nic_i = nm_next(nic_i, lim);
943 		}
944 
945 		iru.iru_pidx = nic_i_first;
946 		iru.iru_count = i;
947 		ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
948 	}
949 	fl->ifl_pidx = nic_i;
950 	/*
951 	 * At the end of the loop we must have refilled everything
952 	 * we could possibly refill.
953 	 */
954 	MPASS(nm_i == kring->rhead);
955 	kring->nr_hwcur = nm_i;
956 
957 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
958 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
959 	ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
960 	    nm_prev(nic_i, lim));
961 	DBG_COUNTER_INC(rxd_flush);
962 
963 	return (0);
964 }
965 
966 #define NETMAP_TX_TIMER_US	90
967 
968 /*
969  * Reconcile kernel and user view of the transmit ring.
970  *
971  * All information is in the kring.
972  * Userspace wants to send packets up to the one before kring->rhead,
973  * kernel knows kring->nr_hwcur is the first unsent packet.
974  *
975  * Here we push packets out (as many as possible), and possibly
976  * reclaim buffers from previously completed transmission.
977  *
978  * The caller (netmap) guarantees that there is only one instance
979  * running at any time. Any interference with other driver
980  * methods should be handled by the individual drivers.
981  */
982 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)983 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
984 {
985 	struct netmap_adapter *na = kring->na;
986 	if_t ifp = na->ifp;
987 	struct netmap_ring *ring = kring->ring;
988 	u_int nm_i;	/* index into the netmap kring */
989 	u_int nic_i;	/* index into the NIC ring */
990 	u_int n;
991 	u_int const lim = kring->nkr_num_slots - 1;
992 	u_int const head = kring->rhead;
993 	struct if_pkt_info pi;
994 	int tx_pkts = 0, tx_bytes = 0;
995 
996 	/*
997 	 * interrupts on every tx packet are expensive so request
998 	 * them every half ring, or where NS_REPORT is set
999 	 */
1000 	u_int report_frequency = kring->nkr_num_slots >> 1;
1001 	/* device-specific */
1002 	if_ctx_t ctx = ifp->if_softc;
1003 	iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1004 
1005 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1006 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1007 
1008 	/*
1009 	 * First part: process new packets to send.
1010 	 * nm_i is the current index in the netmap kring,
1011 	 * nic_i is the corresponding index in the NIC ring.
1012 	 *
1013 	 * If we have packets to send (nm_i != head)
1014 	 * iterate over the netmap ring, fetch length and update
1015 	 * the corresponding slot in the NIC ring. Some drivers also
1016 	 * need to update the buffer's physical address in the NIC slot
1017 	 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1018 	 *
1019 	 * The netmap_reload_map() calls is especially expensive,
1020 	 * even when (as in this case) the tag is 0, so do only
1021 	 * when the buffer has actually changed.
1022 	 *
1023 	 * If possible do not set the report/intr bit on all slots,
1024 	 * but only a few times per ring or when NS_REPORT is set.
1025 	 *
1026 	 * Finally, on 10G and faster drivers, it might be useful
1027 	 * to prefetch the next slot and txr entry.
1028 	 */
1029 
1030 	nm_i = kring->nr_hwcur;
1031 	if (nm_i != head) {	/* we have new packets to send */
1032 		uint32_t pkt_len = 0, seg_idx = 0;
1033 		int nic_i_start = -1, flags = 0;
1034 		pkt_info_zero(&pi);
1035 		pi.ipi_segs = txq->ift_segs;
1036 		pi.ipi_qsidx = kring->ring_id;
1037 		nic_i = netmap_idx_k2n(kring, nm_i);
1038 
1039 		__builtin_prefetch(&ring->slot[nm_i]);
1040 		__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1041 		__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1042 
1043 		for (n = 0; nm_i != head; n++) {
1044 			struct netmap_slot *slot = &ring->slot[nm_i];
1045 			u_int len = slot->len;
1046 			uint64_t paddr;
1047 			void *addr = PNMB(na, slot, &paddr);
1048 
1049 			flags |= (slot->flags & NS_REPORT ||
1050 				nic_i == 0 || nic_i == report_frequency) ?
1051 				IPI_TX_INTR : 0;
1052 
1053 			/*
1054 			 * If this is the first packet fragment, save the
1055 			 * index of the first NIC slot for later.
1056 			 */
1057 			if (nic_i_start < 0)
1058 				nic_i_start = nic_i;
1059 
1060 			pi.ipi_segs[seg_idx].ds_addr = paddr;
1061 			pi.ipi_segs[seg_idx].ds_len = len;
1062 			if (len) {
1063 				pkt_len += len;
1064 				seg_idx++;
1065 			}
1066 
1067 			if (!(slot->flags & NS_MOREFRAG)) {
1068 				pi.ipi_len = pkt_len;
1069 				pi.ipi_nsegs = seg_idx;
1070 				pi.ipi_pidx = nic_i_start;
1071 				pi.ipi_ndescs = 0;
1072 				pi.ipi_flags = flags;
1073 
1074 				/* Prepare the NIC TX ring. */
1075 				ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1076 				DBG_COUNTER_INC(tx_encap);
1077 
1078 				/* Update transmit counters */
1079 				tx_bytes += pi.ipi_len;
1080 				tx_pkts++;
1081 
1082 				/* Reinit per-packet info for the next one. */
1083 				flags = seg_idx = pkt_len = 0;
1084 				nic_i_start = -1;
1085 			}
1086 
1087 			/* prefetch for next round */
1088 			__builtin_prefetch(&ring->slot[nm_i + 1]);
1089 			__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1090 			__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1091 
1092 			NM_CHECK_ADDR_LEN(na, addr, len);
1093 
1094 			if (slot->flags & NS_BUF_CHANGED) {
1095 				/* buffer has changed, reload map */
1096 				netmap_reload_map(na, txq->ift_buf_tag,
1097 				    txq->ift_sds.ifsd_map[nic_i], addr);
1098 			}
1099 			/* make sure changes to the buffer are synced */
1100 			bus_dmamap_sync(txq->ift_buf_tag,
1101 			    txq->ift_sds.ifsd_map[nic_i],
1102 			    BUS_DMASYNC_PREWRITE);
1103 
1104 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1105 			nm_i = nm_next(nm_i, lim);
1106 			nic_i = nm_next(nic_i, lim);
1107 		}
1108 		kring->nr_hwcur = nm_i;
1109 
1110 		/* synchronize the NIC ring */
1111 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1112 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1113 
1114 		/* (re)start the tx unit up to slot nic_i (excluded) */
1115 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1116 	}
1117 
1118 	/*
1119 	 * Second part: reclaim buffers for completed transmissions.
1120 	 *
1121 	 * If there are unclaimed buffers, attempt to reclaim them.
1122 	 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1123 	 * trigger a per-tx-queue timer to try again later.
1124 	 */
1125 	if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1126 		if (iflib_tx_credits_update(ctx, txq)) {
1127 			/* some tx completed, increment avail */
1128 			nic_i = txq->ift_cidx_processed;
1129 			kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1130 		}
1131 	}
1132 
1133 	if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1134 		if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1135 			callout_reset_sbt_on(&txq->ift_netmap_timer,
1136 			    NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1137 			    iflib_netmap_timer, txq,
1138 			    txq->ift_netmap_timer.c_cpu, 0);
1139 		}
1140 
1141 	if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1142 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1143 
1144 	return (0);
1145 }
1146 
1147 /*
1148  * Reconcile kernel and user view of the receive ring.
1149  * Same as for the txsync, this routine must be efficient.
1150  * The caller guarantees a single invocations, but races against
1151  * the rest of the driver should be handled here.
1152  *
1153  * On call, kring->rhead is the first packet that userspace wants
1154  * to keep, and kring->rcur is the wakeup point.
1155  * The kernel has previously reported packets up to kring->rtail.
1156  *
1157  * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1158  * of whether or not we received an interrupt.
1159  */
1160 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1161 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1162 {
1163 	struct netmap_adapter *na = kring->na;
1164 	struct netmap_ring *ring = kring->ring;
1165 	if_t ifp = na->ifp;
1166 	uint32_t nm_i;	/* index into the netmap ring */
1167 	uint32_t nic_i;	/* index into the NIC ring */
1168 	u_int n;
1169 	u_int const lim = kring->nkr_num_slots - 1;
1170 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1171 	int i = 0, rx_bytes = 0, rx_pkts = 0;
1172 
1173 	if_ctx_t ctx = ifp->if_softc;
1174 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1175 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1176 	iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1177 	iflib_fl_t fl = &rxq->ifr_fl[0];
1178 	struct if_rxd_info ri;
1179 	qidx_t *cidxp;
1180 
1181 	/*
1182 	 * netmap only uses free list 0, to avoid out of order consumption
1183 	 * of receive buffers
1184 	 */
1185 
1186 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1187 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1188 
1189 	/*
1190 	 * First part: import newly received packets.
1191 	 *
1192 	 * nm_i is the index of the next free slot in the netmap ring,
1193 	 * nic_i is the index of the next received packet in the NIC ring
1194 	 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1195 	 * differ in case if_init() has been called while
1196 	 * in netmap mode. For the receive ring we have
1197 	 *
1198 	 *	nic_i = fl->ifl_cidx;
1199 	 *	nm_i = kring->nr_hwtail (previous)
1200 	 * and
1201 	 *	nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1202 	 *
1203 	 * fl->ifl_cidx is set to 0 on a ring reinit
1204 	 */
1205 	if (netmap_no_pendintr || force_update) {
1206 		uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1207 		bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1208 		int crclen = iflib_crcstrip ? 0 : 4;
1209 		int error, avail;
1210 
1211 		/*
1212 		 * For the free list consumer index, we use the same
1213 		 * logic as in iflib_rxeof().
1214 		 */
1215 		if (have_rxcq)
1216 			cidxp = &rxq->ifr_cq_cidx;
1217 		else
1218 			cidxp = &fl->ifl_cidx;
1219 		avail = ctx->isc_rxd_available(ctx->ifc_softc,
1220 		    rxq->ifr_id, *cidxp, USHRT_MAX);
1221 
1222 		nic_i = fl->ifl_cidx;
1223 		nm_i = netmap_idx_n2k(kring, nic_i);
1224 		MPASS(nm_i == kring->nr_hwtail);
1225 		for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1226 			rxd_info_zero(&ri);
1227 			ri.iri_frags = rxq->ifr_frags;
1228 			ri.iri_qsidx = kring->ring_id;
1229 			ri.iri_ifp = ctx->ifc_ifp;
1230 			ri.iri_cidx = *cidxp;
1231 
1232 			error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1233 			for (i = 0; i < ri.iri_nfrags; i++) {
1234 				if (error) {
1235 					ring->slot[nm_i].len = 0;
1236 					ring->slot[nm_i].flags = 0;
1237 				} else {
1238 					ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1239 					if (i == (ri.iri_nfrags - 1)) {
1240 						ring->slot[nm_i].len -= crclen;
1241 						ring->slot[nm_i].flags = 0;
1242 
1243 						/* Update receive counters */
1244 						rx_bytes += ri.iri_len;
1245 						rx_pkts++;
1246 					} else
1247 						ring->slot[nm_i].flags = NS_MOREFRAG;
1248 				}
1249 
1250 				bus_dmamap_sync(fl->ifl_buf_tag,
1251 				    fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1252 				nm_i = nm_next(nm_i, lim);
1253 				fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1254 			}
1255 
1256 			if (have_rxcq) {
1257 				*cidxp = ri.iri_cidx;
1258 				while (*cidxp >= scctx->isc_nrxd[0])
1259 					*cidxp -= scctx->isc_nrxd[0];
1260 			}
1261 
1262 		}
1263 		if (n) { /* update the state variables */
1264 			if (netmap_no_pendintr && !force_update) {
1265 				/* diagnostics */
1266 				iflib_rx_miss ++;
1267 				iflib_rx_miss_bufs += n;
1268 			}
1269 			kring->nr_hwtail = nm_i;
1270 		}
1271 		kring->nr_kflags &= ~NKR_PENDINTR;
1272 	}
1273 	/*
1274 	 * Second part: skip past packets that userspace has released.
1275 	 * (kring->nr_hwcur to head excluded),
1276 	 * and make the buffers available for reception.
1277 	 * As usual nm_i is the index in the netmap ring,
1278 	 * nic_i is the index in the NIC ring, and
1279 	 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1280 	 */
1281 	netmap_fl_refill(rxq, kring, false);
1282 
1283 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1284 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1285 
1286 	return (0);
1287 }
1288 
1289 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1290 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1291 {
1292 	if_ctx_t ctx = na->ifp->if_softc;
1293 
1294 	CTX_LOCK(ctx);
1295 	if (onoff) {
1296 		IFDI_INTR_ENABLE(ctx);
1297 	} else {
1298 		IFDI_INTR_DISABLE(ctx);
1299 	}
1300 	CTX_UNLOCK(ctx);
1301 }
1302 
1303 static int
iflib_netmap_attach(if_ctx_t ctx)1304 iflib_netmap_attach(if_ctx_t ctx)
1305 {
1306 	struct netmap_adapter na;
1307 
1308 	bzero(&na, sizeof(na));
1309 
1310 	na.ifp = ctx->ifc_ifp;
1311 	na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG;
1312 	MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1313 	MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1314 
1315 	na.num_tx_desc = iflib_num_tx_descs(ctx);
1316 	na.num_rx_desc = iflib_num_rx_descs(ctx);
1317 	na.nm_txsync = iflib_netmap_txsync;
1318 	na.nm_rxsync = iflib_netmap_rxsync;
1319 	na.nm_register = iflib_netmap_register;
1320 	na.nm_intr = iflib_netmap_intr;
1321 	na.nm_config = iflib_netmap_config;
1322 	na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1323 	na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1324 	return (netmap_attach(&na));
1325 }
1326 
1327 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1328 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1329 {
1330 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1331 	struct netmap_slot *slot;
1332 
1333 	slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1334 	if (slot == NULL)
1335 		return (0);
1336 	for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1337 		/*
1338 		 * In netmap mode, set the map for the packet buffer.
1339 		 * NOTE: Some drivers (not this one) also need to set
1340 		 * the physical buffer address in the NIC ring.
1341 		 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1342 		 * netmap slot index, si
1343 		 */
1344 		int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1345 		netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1346 		    NMB(na, slot + si));
1347 	}
1348 	return (1);
1349 }
1350 
1351 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1352 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1353 {
1354 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1355 	struct netmap_kring *kring;
1356 	struct netmap_slot *slot;
1357 
1358 	slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1359 	if (slot == NULL)
1360 		return (0);
1361 	kring = na->rx_rings[rxq->ifr_id];
1362 	netmap_fl_refill(rxq, kring, true);
1363 	return (1);
1364 }
1365 
1366 static void
iflib_netmap_timer(void * arg)1367 iflib_netmap_timer(void *arg)
1368 {
1369 	iflib_txq_t txq = arg;
1370 	if_ctx_t ctx = txq->ift_ctx;
1371 
1372 	/*
1373 	 * Wake up the netmap application, to give it a chance to
1374 	 * call txsync and reclaim more completed TX buffers.
1375 	 */
1376 	netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1377 }
1378 
1379 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1380 
1381 #else
1382 #define iflib_netmap_txq_init(ctx, txq) (0)
1383 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1384 #define iflib_netmap_detach(ifp)
1385 #define netmap_enable_all_rings(ifp)
1386 #define netmap_disable_all_rings(ifp)
1387 
1388 #define iflib_netmap_attach(ctx) (0)
1389 #define netmap_rx_irq(ifp, qid, budget) (0)
1390 #endif
1391 
1392 #if defined(__i386__) || defined(__amd64__)
1393 static __inline void
prefetch(void * x)1394 prefetch(void *x)
1395 {
1396 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1397 }
1398 static __inline void
prefetch2cachelines(void * x)1399 prefetch2cachelines(void *x)
1400 {
1401 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1402 #if (CACHE_LINE_SIZE < 128)
1403 	__asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x)+CACHE_LINE_SIZE/(sizeof(unsigned long)))));
1404 #endif
1405 }
1406 #else
1407 #define prefetch(x)
1408 #define prefetch2cachelines(x)
1409 #endif
1410 
1411 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1412 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1413 {
1414 	iflib_fl_t fl;
1415 
1416 	fl = &rxq->ifr_fl[flid];
1417 	iru->iru_paddrs = fl->ifl_bus_addrs;
1418 	iru->iru_idxs = fl->ifl_rxd_idxs;
1419 	iru->iru_qsidx = rxq->ifr_id;
1420 	iru->iru_buf_size = fl->ifl_buf_size;
1421 	iru->iru_flidx = fl->ifl_id;
1422 }
1423 
1424 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1425 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1426 {
1427 	if (err)
1428 		return;
1429 	*(bus_addr_t *) arg = segs[0].ds_addr;
1430 }
1431 
1432 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1433 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1434 {
1435 	int err;
1436 	device_t dev = ctx->ifc_dev;
1437 
1438 	err = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1439 				align, 0,		/* alignment, bounds */
1440 				BUS_SPACE_MAXADDR,	/* lowaddr */
1441 				BUS_SPACE_MAXADDR,	/* highaddr */
1442 				NULL, NULL,		/* filter, filterarg */
1443 				size,			/* maxsize */
1444 				1,			/* nsegments */
1445 				size,			/* maxsegsize */
1446 				BUS_DMA_ALLOCNOW,	/* flags */
1447 				NULL,			/* lockfunc */
1448 				NULL,			/* lockarg */
1449 				&dma->idi_tag);
1450 	if (err) {
1451 		device_printf(dev,
1452 		    "%s: bus_dma_tag_create failed: %d\n",
1453 		    __func__, err);
1454 		goto fail_0;
1455 	}
1456 
1457 	err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr,
1458 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1459 	if (err) {
1460 		device_printf(dev,
1461 		    "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1462 		    __func__, (uintmax_t)size, err);
1463 		goto fail_1;
1464 	}
1465 
1466 	dma->idi_paddr = IF_BAD_DMA;
1467 	err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1468 	    size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1469 	if (err || dma->idi_paddr == IF_BAD_DMA) {
1470 		device_printf(dev,
1471 		    "%s: bus_dmamap_load failed: %d\n",
1472 		    __func__, err);
1473 		goto fail_2;
1474 	}
1475 
1476 	dma->idi_size = size;
1477 	return (0);
1478 
1479 fail_2:
1480 	bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1481 fail_1:
1482 	bus_dma_tag_destroy(dma->idi_tag);
1483 fail_0:
1484 	dma->idi_tag = NULL;
1485 
1486 	return (err);
1487 }
1488 
1489 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1490 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1491 {
1492 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1493 
1494 	KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1495 
1496 	return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1497 }
1498 
1499 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1500 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1501 {
1502 	int i, err;
1503 	iflib_dma_info_t *dmaiter;
1504 
1505 	dmaiter = dmalist;
1506 	for (i = 0; i < count; i++, dmaiter++) {
1507 		if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1508 			break;
1509 	}
1510 	if (err)
1511 		iflib_dma_free_multi(dmalist, i);
1512 	return (err);
1513 }
1514 
1515 void
iflib_dma_free(iflib_dma_info_t dma)1516 iflib_dma_free(iflib_dma_info_t dma)
1517 {
1518 	if (dma->idi_tag == NULL)
1519 		return;
1520 	if (dma->idi_paddr != IF_BAD_DMA) {
1521 		bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1522 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1523 		bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1524 		dma->idi_paddr = IF_BAD_DMA;
1525 	}
1526 	if (dma->idi_vaddr != NULL) {
1527 		bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1528 		dma->idi_vaddr = NULL;
1529 	}
1530 	bus_dma_tag_destroy(dma->idi_tag);
1531 	dma->idi_tag = NULL;
1532 }
1533 
1534 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1535 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1536 {
1537 	int i;
1538 	iflib_dma_info_t *dmaiter = dmalist;
1539 
1540 	for (i = 0; i < count; i++, dmaiter++)
1541 		iflib_dma_free(*dmaiter);
1542 }
1543 
1544 static int
iflib_fast_intr(void * arg)1545 iflib_fast_intr(void *arg)
1546 {
1547 	iflib_filter_info_t info = arg;
1548 	struct grouptask *gtask = info->ifi_task;
1549 	int result;
1550 
1551 	DBG_COUNTER_INC(fast_intrs);
1552 	if (info->ifi_filter != NULL) {
1553 		result = info->ifi_filter(info->ifi_filter_arg);
1554 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1555 			return (result);
1556 	}
1557 
1558 	GROUPTASK_ENQUEUE(gtask);
1559 	return (FILTER_HANDLED);
1560 }
1561 
1562 static int
iflib_fast_intr_rxtx(void * arg)1563 iflib_fast_intr_rxtx(void *arg)
1564 {
1565 	iflib_filter_info_t info = arg;
1566 	struct grouptask *gtask = info->ifi_task;
1567 	if_ctx_t ctx;
1568 	iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1569 	iflib_txq_t txq;
1570 	void *sc;
1571 	int i, cidx, result;
1572 	qidx_t txqid;
1573 	bool intr_enable, intr_legacy;
1574 
1575 	DBG_COUNTER_INC(fast_intrs);
1576 	if (info->ifi_filter != NULL) {
1577 		result = info->ifi_filter(info->ifi_filter_arg);
1578 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1579 			return (result);
1580 	}
1581 
1582 	ctx = rxq->ifr_ctx;
1583 	sc = ctx->ifc_softc;
1584 	intr_enable = false;
1585 	intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1586 	MPASS(rxq->ifr_ntxqirq);
1587 	for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1588 		txqid = rxq->ifr_txqid[i];
1589 		txq = &ctx->ifc_txqs[txqid];
1590 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1591 		    BUS_DMASYNC_POSTREAD);
1592 		if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1593 			if (intr_legacy)
1594 				intr_enable = true;
1595 			else
1596 				IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1597 			continue;
1598 		}
1599 		GROUPTASK_ENQUEUE(&txq->ift_task);
1600 	}
1601 	if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1602 		cidx = rxq->ifr_cq_cidx;
1603 	else
1604 		cidx = rxq->ifr_fl[0].ifl_cidx;
1605 	if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1606 		GROUPTASK_ENQUEUE(gtask);
1607 	else {
1608 		if (intr_legacy)
1609 			intr_enable = true;
1610 		else
1611 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1612 		DBG_COUNTER_INC(rx_intr_enables);
1613 	}
1614 	if (intr_enable)
1615 		IFDI_INTR_ENABLE(ctx);
1616 	return (FILTER_HANDLED);
1617 }
1618 
1619 static int
iflib_fast_intr_ctx(void * arg)1620 iflib_fast_intr_ctx(void *arg)
1621 {
1622 	iflib_filter_info_t info = arg;
1623 	struct grouptask *gtask = info->ifi_task;
1624 	int result;
1625 
1626 	DBG_COUNTER_INC(fast_intrs);
1627 	if (info->ifi_filter != NULL) {
1628 		result = info->ifi_filter(info->ifi_filter_arg);
1629 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1630 			return (result);
1631 	}
1632 
1633 	GROUPTASK_ENQUEUE(gtask);
1634 	return (FILTER_HANDLED);
1635 }
1636 
1637 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1638 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1639 		 driver_filter_t filter, driver_intr_t handler, void *arg,
1640 		 const char *name)
1641 {
1642 	struct resource *res;
1643 	void *tag = NULL;
1644 	device_t dev = ctx->ifc_dev;
1645 	int flags, i, rc;
1646 
1647 	flags = RF_ACTIVE;
1648 	if (ctx->ifc_flags & IFC_LEGACY)
1649 		flags |= RF_SHAREABLE;
1650 	MPASS(rid < 512);
1651 	i = rid;
1652 	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1653 	if (res == NULL) {
1654 		device_printf(dev,
1655 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1656 		return (ENOMEM);
1657 	}
1658 	irq->ii_res = res;
1659 	KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1660 	rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1661 						filter, handler, arg, &tag);
1662 	if (rc != 0) {
1663 		device_printf(dev,
1664 		    "failed to setup interrupt for rid %d, name %s: %d\n",
1665 					  rid, name ? name : "unknown", rc);
1666 		return (rc);
1667 	} else if (name)
1668 		bus_describe_intr(dev, res, tag, "%s", name);
1669 
1670 	irq->ii_tag = tag;
1671 	return (0);
1672 }
1673 
1674 /*********************************************************************
1675  *
1676  *  Allocate DMA resources for TX buffers as well as memory for the TX
1677  *  mbuf map.  TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1678  *  iflib_sw_tx_desc_array structure, storing all the information that
1679  *  is needed to transmit a packet on the wire.  This is called only
1680  *  once at attach, setup is done every reset.
1681  *
1682  **********************************************************************/
1683 static int
iflib_txsd_alloc(iflib_txq_t txq)1684 iflib_txsd_alloc(iflib_txq_t txq)
1685 {
1686 	if_ctx_t ctx = txq->ift_ctx;
1687 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1688 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1689 	device_t dev = ctx->ifc_dev;
1690 	bus_size_t tsomaxsize;
1691 	int err, nsegments, ntsosegments;
1692 	bool tso;
1693 
1694 	nsegments = scctx->isc_tx_nsegments;
1695 	ntsosegments = scctx->isc_tx_tso_segments_max;
1696 	tsomaxsize = scctx->isc_tx_tso_size_max;
1697 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1698 		tsomaxsize += sizeof(struct ether_vlan_header);
1699 	MPASS(scctx->isc_ntxd[0] > 0);
1700 	MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1701 	MPASS(nsegments > 0);
1702 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1703 		MPASS(ntsosegments > 0);
1704 		MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1705 	}
1706 
1707 	/*
1708 	 * Set up DMA tags for TX buffers.
1709 	 */
1710 	if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1711 			       1, 0,			/* alignment, bounds */
1712 			       BUS_SPACE_MAXADDR,	/* lowaddr */
1713 			       BUS_SPACE_MAXADDR,	/* highaddr */
1714 			       NULL, NULL,		/* filter, filterarg */
1715 			       sctx->isc_tx_maxsize,		/* maxsize */
1716 			       nsegments,	/* nsegments */
1717 			       sctx->isc_tx_maxsegsize,	/* maxsegsize */
1718 			       0,			/* flags */
1719 			       NULL,			/* lockfunc */
1720 			       NULL,			/* lockfuncarg */
1721 			       &txq->ift_buf_tag))) {
1722 		device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err);
1723 		device_printf(dev,"maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1724 		    (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1725 		goto fail;
1726 	}
1727 	tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1728 	if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1729 			       1, 0,			/* alignment, bounds */
1730 			       BUS_SPACE_MAXADDR,	/* lowaddr */
1731 			       BUS_SPACE_MAXADDR,	/* highaddr */
1732 			       NULL, NULL,		/* filter, filterarg */
1733 			       tsomaxsize,		/* maxsize */
1734 			       ntsosegments,	/* nsegments */
1735 			       sctx->isc_tso_maxsegsize,/* maxsegsize */
1736 			       0,			/* flags */
1737 			       NULL,			/* lockfunc */
1738 			       NULL,			/* lockfuncarg */
1739 			       &txq->ift_tso_buf_tag))) {
1740 		device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1741 		    err);
1742 		goto fail;
1743 	}
1744 
1745 	/* Allocate memory for the TX mbuf map. */
1746 	if (!(txq->ift_sds.ifsd_m =
1747 	    (struct mbuf **) malloc(sizeof(struct mbuf *) *
1748 	    scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1749 		device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1750 		err = ENOMEM;
1751 		goto fail;
1752 	}
1753 
1754 	/*
1755 	 * Create the DMA maps for TX buffers.
1756 	 */
1757 	if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1758 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1759 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1760 		device_printf(dev,
1761 		    "Unable to allocate TX buffer DMA map memory\n");
1762 		err = ENOMEM;
1763 		goto fail;
1764 	}
1765 	if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1766 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1767 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1768 		device_printf(dev,
1769 		    "Unable to allocate TSO TX buffer map memory\n");
1770 		err = ENOMEM;
1771 		goto fail;
1772 	}
1773 	for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1774 		err = bus_dmamap_create(txq->ift_buf_tag, 0,
1775 		    &txq->ift_sds.ifsd_map[i]);
1776 		if (err != 0) {
1777 			device_printf(dev, "Unable to create TX DMA map\n");
1778 			goto fail;
1779 		}
1780 		if (!tso)
1781 			continue;
1782 		err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1783 		    &txq->ift_sds.ifsd_tso_map[i]);
1784 		if (err != 0) {
1785 			device_printf(dev, "Unable to create TSO TX DMA map\n");
1786 			goto fail;
1787 		}
1788 	}
1789 	return (0);
1790 fail:
1791 	/* We free all, it handles case where we are in the middle */
1792 	iflib_tx_structures_free(ctx);
1793 	return (err);
1794 }
1795 
1796 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1797 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1798 {
1799 	bus_dmamap_t map;
1800 
1801 	if (txq->ift_sds.ifsd_map != NULL) {
1802 		map = txq->ift_sds.ifsd_map[i];
1803 		bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1804 		bus_dmamap_unload(txq->ift_buf_tag, map);
1805 		bus_dmamap_destroy(txq->ift_buf_tag, map);
1806 		txq->ift_sds.ifsd_map[i] = NULL;
1807 	}
1808 
1809 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1810 		map = txq->ift_sds.ifsd_tso_map[i];
1811 		bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1812 		    BUS_DMASYNC_POSTWRITE);
1813 		bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1814 		bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1815 		txq->ift_sds.ifsd_tso_map[i] = NULL;
1816 	}
1817 }
1818 
1819 static void
iflib_txq_destroy(iflib_txq_t txq)1820 iflib_txq_destroy(iflib_txq_t txq)
1821 {
1822 	if_ctx_t ctx = txq->ift_ctx;
1823 
1824 	for (int i = 0; i < txq->ift_size; i++)
1825 		iflib_txsd_destroy(ctx, txq, i);
1826 
1827 	if (txq->ift_br != NULL) {
1828 		ifmp_ring_free(txq->ift_br);
1829 		txq->ift_br = NULL;
1830 	}
1831 
1832 	mtx_destroy(&txq->ift_mtx);
1833 
1834 	if (txq->ift_sds.ifsd_map != NULL) {
1835 		free(txq->ift_sds.ifsd_map, M_IFLIB);
1836 		txq->ift_sds.ifsd_map = NULL;
1837 	}
1838 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1839 		free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1840 		txq->ift_sds.ifsd_tso_map = NULL;
1841 	}
1842 	if (txq->ift_sds.ifsd_m != NULL) {
1843 		free(txq->ift_sds.ifsd_m, M_IFLIB);
1844 		txq->ift_sds.ifsd_m = NULL;
1845 	}
1846 	if (txq->ift_buf_tag != NULL) {
1847 		bus_dma_tag_destroy(txq->ift_buf_tag);
1848 		txq->ift_buf_tag = NULL;
1849 	}
1850 	if (txq->ift_tso_buf_tag != NULL) {
1851 		bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1852 		txq->ift_tso_buf_tag = NULL;
1853 	}
1854 	if (txq->ift_ifdi != NULL) {
1855 		free(txq->ift_ifdi, M_IFLIB);
1856 	}
1857 }
1858 
1859 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1860 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1861 {
1862 	struct mbuf **mp;
1863 
1864 	mp = &txq->ift_sds.ifsd_m[i];
1865 	if (*mp == NULL)
1866 		return;
1867 
1868 	if (txq->ift_sds.ifsd_map != NULL) {
1869 		bus_dmamap_sync(txq->ift_buf_tag,
1870 		    txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1871 		bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1872 	}
1873 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1874 		bus_dmamap_sync(txq->ift_tso_buf_tag,
1875 		    txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1876 		bus_dmamap_unload(txq->ift_tso_buf_tag,
1877 		    txq->ift_sds.ifsd_tso_map[i]);
1878 	}
1879 	m_freem(*mp);
1880 	DBG_COUNTER_INC(tx_frees);
1881 	*mp = NULL;
1882 }
1883 
1884 static int
iflib_txq_setup(iflib_txq_t txq)1885 iflib_txq_setup(iflib_txq_t txq)
1886 {
1887 	if_ctx_t ctx = txq->ift_ctx;
1888 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1889 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1890 	iflib_dma_info_t di;
1891 	int i;
1892 
1893 	/* Set number of descriptors available */
1894 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1895 	/* XXX make configurable */
1896 	txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1897 
1898 	/* Reset indices */
1899 	txq->ift_cidx_processed = 0;
1900 	txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1901 	txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1902 
1903 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1904 		bzero((void *)di->idi_vaddr, di->idi_size);
1905 
1906 	IFDI_TXQ_SETUP(ctx, txq->ift_id);
1907 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1908 		bus_dmamap_sync(di->idi_tag, di->idi_map,
1909 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1910 	return (0);
1911 }
1912 
1913 /*********************************************************************
1914  *
1915  *  Allocate DMA resources for RX buffers as well as memory for the RX
1916  *  mbuf map, direct RX cluster pointer map and RX cluster bus address
1917  *  map.  RX DMA map, RX mbuf map, direct RX cluster pointer map and
1918  *  RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1919  *  Since we use use one entry in iflib_sw_rx_desc_array per received
1920  *  packet, the maximum number of entries we'll need is equal to the
1921  *  number of hardware receive descriptors that we've allocated.
1922  *
1923  **********************************************************************/
1924 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1925 iflib_rxsd_alloc(iflib_rxq_t rxq)
1926 {
1927 	if_ctx_t ctx = rxq->ifr_ctx;
1928 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1929 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1930 	device_t dev = ctx->ifc_dev;
1931 	iflib_fl_t fl;
1932 	int			err;
1933 
1934 	MPASS(scctx->isc_nrxd[0] > 0);
1935 	MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1936 
1937 	fl = rxq->ifr_fl;
1938 	for (int i = 0; i <  rxq->ifr_nfl; i++, fl++) {
1939 		fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1940 		/* Set up DMA tag for RX buffers. */
1941 		err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1942 					 1, 0,			/* alignment, bounds */
1943 					 BUS_SPACE_MAXADDR,	/* lowaddr */
1944 					 BUS_SPACE_MAXADDR,	/* highaddr */
1945 					 NULL, NULL,		/* filter, filterarg */
1946 					 sctx->isc_rx_maxsize,	/* maxsize */
1947 					 sctx->isc_rx_nsegments,	/* nsegments */
1948 					 sctx->isc_rx_maxsegsize,	/* maxsegsize */
1949 					 0,			/* flags */
1950 					 NULL,			/* lockfunc */
1951 					 NULL,			/* lockarg */
1952 					 &fl->ifl_buf_tag);
1953 		if (err) {
1954 			device_printf(dev,
1955 			    "Unable to allocate RX DMA tag: %d\n", err);
1956 			goto fail;
1957 		}
1958 
1959 		/* Allocate memory for the RX mbuf map. */
1960 		if (!(fl->ifl_sds.ifsd_m =
1961 		      (struct mbuf **) malloc(sizeof(struct mbuf *) *
1962 					      scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1963 			device_printf(dev,
1964 			    "Unable to allocate RX mbuf map memory\n");
1965 			err = ENOMEM;
1966 			goto fail;
1967 		}
1968 
1969 		/* Allocate memory for the direct RX cluster pointer map. */
1970 		if (!(fl->ifl_sds.ifsd_cl =
1971 		      (caddr_t *) malloc(sizeof(caddr_t) *
1972 					      scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1973 			device_printf(dev,
1974 			    "Unable to allocate RX cluster map memory\n");
1975 			err = ENOMEM;
1976 			goto fail;
1977 		}
1978 
1979 		/* Allocate memory for the RX cluster bus address map. */
1980 		if (!(fl->ifl_sds.ifsd_ba =
1981 		      (bus_addr_t *) malloc(sizeof(bus_addr_t) *
1982 					      scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1983 			device_printf(dev,
1984 			    "Unable to allocate RX bus address map memory\n");
1985 			err = ENOMEM;
1986 			goto fail;
1987 		}
1988 
1989 		/*
1990 		 * Create the DMA maps for RX buffers.
1991 		 */
1992 		if (!(fl->ifl_sds.ifsd_map =
1993 		      (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1994 			device_printf(dev,
1995 			    "Unable to allocate RX buffer DMA map memory\n");
1996 			err = ENOMEM;
1997 			goto fail;
1998 		}
1999 		for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2000 			err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2001 			    &fl->ifl_sds.ifsd_map[i]);
2002 			if (err != 0) {
2003 				device_printf(dev, "Unable to create RX buffer DMA map\n");
2004 				goto fail;
2005 			}
2006 		}
2007 	}
2008 	return (0);
2009 
2010 fail:
2011 	iflib_rx_structures_free(ctx);
2012 	return (err);
2013 }
2014 
2015 /*
2016  * Internal service routines
2017  */
2018 
2019 struct rxq_refill_cb_arg {
2020 	int               error;
2021 	bus_dma_segment_t seg;
2022 	int               nseg;
2023 };
2024 
2025 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2026 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2027 {
2028 	struct rxq_refill_cb_arg *cb_arg = arg;
2029 
2030 	cb_arg->error = error;
2031 	cb_arg->seg = segs[0];
2032 	cb_arg->nseg = nseg;
2033 }
2034 
2035 /**
2036  * iflib_fl_refill - refill an rxq free-buffer list
2037  * @ctx: the iflib context
2038  * @fl: the free list to refill
2039  * @count: the number of new buffers to allocate
2040  *
2041  * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2042  * The caller must assure that @count does not exceed the queue's capacity
2043  * minus one (since we always leave a descriptor unavailable).
2044  */
2045 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2046 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2047 {
2048 	struct if_rxd_update iru;
2049 	struct rxq_refill_cb_arg cb_arg;
2050 	struct mbuf *m;
2051 	caddr_t cl, *sd_cl;
2052 	struct mbuf **sd_m;
2053 	bus_dmamap_t *sd_map;
2054 	bus_addr_t bus_addr, *sd_ba;
2055 	int err, frag_idx, i, idx, n, pidx;
2056 	qidx_t credits;
2057 
2058 	MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2059 
2060 	sd_m = fl->ifl_sds.ifsd_m;
2061 	sd_map = fl->ifl_sds.ifsd_map;
2062 	sd_cl = fl->ifl_sds.ifsd_cl;
2063 	sd_ba = fl->ifl_sds.ifsd_ba;
2064 	pidx = fl->ifl_pidx;
2065 	idx = pidx;
2066 	frag_idx = fl->ifl_fragidx;
2067 	credits = fl->ifl_credits;
2068 
2069 	i = 0;
2070 	n = count;
2071 	MPASS(n > 0);
2072 	MPASS(credits + n <= fl->ifl_size);
2073 
2074 	if (pidx < fl->ifl_cidx)
2075 		MPASS(pidx + n <= fl->ifl_cidx);
2076 	if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2077 		MPASS(fl->ifl_gen == 0);
2078 	if (pidx > fl->ifl_cidx)
2079 		MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2080 
2081 	DBG_COUNTER_INC(fl_refills);
2082 	if (n > 8)
2083 		DBG_COUNTER_INC(fl_refills_large);
2084 	iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2085 	while (n-- > 0) {
2086 		/*
2087 		 * We allocate an uninitialized mbuf + cluster, mbuf is
2088 		 * initialized after rx.
2089 		 *
2090 		 * If the cluster is still set then we know a minimum sized
2091 		 * packet was received
2092 		 */
2093 		bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2094 		    &frag_idx);
2095 		if (frag_idx < 0)
2096 			bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2097 		MPASS(frag_idx >= 0);
2098 		if ((cl = sd_cl[frag_idx]) == NULL) {
2099 			cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2100 			if (__predict_false(cl == NULL))
2101 				break;
2102 
2103 			cb_arg.error = 0;
2104 			MPASS(sd_map != NULL);
2105 			err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2106 			    cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2107 			    BUS_DMA_NOWAIT);
2108 			if (__predict_false(err != 0 || cb_arg.error)) {
2109 				uma_zfree(fl->ifl_zone, cl);
2110 				break;
2111 			}
2112 
2113 			sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2114 			sd_cl[frag_idx] = cl;
2115 #if MEMORY_LOGGING
2116 			fl->ifl_cl_enqueued++;
2117 #endif
2118 		} else {
2119 			bus_addr = sd_ba[frag_idx];
2120 		}
2121 		bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2122 		    BUS_DMASYNC_PREREAD);
2123 
2124 		if (sd_m[frag_idx] == NULL) {
2125 			m = m_gethdr(M_NOWAIT, MT_NOINIT);
2126 			if (__predict_false(m == NULL))
2127 				break;
2128 			sd_m[frag_idx] = m;
2129 		}
2130 		bit_set(fl->ifl_rx_bitmap, frag_idx);
2131 #if MEMORY_LOGGING
2132 		fl->ifl_m_enqueued++;
2133 #endif
2134 
2135 		DBG_COUNTER_INC(rx_allocs);
2136 		fl->ifl_rxd_idxs[i] = frag_idx;
2137 		fl->ifl_bus_addrs[i] = bus_addr;
2138 		credits++;
2139 		i++;
2140 		MPASS(credits <= fl->ifl_size);
2141 		if (++idx == fl->ifl_size) {
2142 #ifdef INVARIANTS
2143 			fl->ifl_gen = 1;
2144 #endif
2145 			idx = 0;
2146 		}
2147 		if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2148 			iru.iru_pidx = pidx;
2149 			iru.iru_count = i;
2150 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2151 			fl->ifl_pidx = idx;
2152 			fl->ifl_credits = credits;
2153 			pidx = idx;
2154 			i = 0;
2155 		}
2156 	}
2157 
2158 	if (n < count - 1) {
2159 		if (i != 0) {
2160 			iru.iru_pidx = pidx;
2161 			iru.iru_count = i;
2162 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2163 			fl->ifl_pidx = idx;
2164 			fl->ifl_credits = credits;
2165 		}
2166 		DBG_COUNTER_INC(rxd_flush);
2167 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2168 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2169 		ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2170 		    fl->ifl_id, fl->ifl_pidx);
2171 		if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2172 			fl->ifl_fragidx = frag_idx + 1;
2173 			if (fl->ifl_fragidx == fl->ifl_size)
2174 				fl->ifl_fragidx = 0;
2175 		} else {
2176 			fl->ifl_fragidx = frag_idx;
2177 		}
2178 	}
2179 
2180 	return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2181 }
2182 
2183 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2184 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2185 {
2186 	/*
2187 	 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2188 	 * This is important as it confuses most NICs. For instance,
2189 	 * Intel NICs have (per receive ring) RDH and RDT registers, where
2190 	 * RDH points to the next receive descriptor to be used by the NIC,
2191 	 * and RDT for the next receive descriptor to be published by the
2192 	 * driver to the NIC (RDT - 1 is thus the last valid one).
2193 	 * The condition RDH == RDT means no descriptors are available to
2194 	 * the NIC, and thus it would be ambiguous if it also meant that
2195 	 * all the descriptors are available to the NIC.
2196 	 */
2197 	int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2198 #ifdef INVARIANTS
2199 	int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2200 #endif
2201 
2202 	MPASS(fl->ifl_credits <= fl->ifl_size);
2203 	MPASS(reclaimable == delta);
2204 
2205 	if (reclaimable > 0)
2206 		return (iflib_fl_refill(ctx, fl, reclaimable));
2207 	return (0);
2208 }
2209 
2210 uint8_t
iflib_in_detach(if_ctx_t ctx)2211 iflib_in_detach(if_ctx_t ctx)
2212 {
2213 	bool in_detach;
2214 
2215 	STATE_LOCK(ctx);
2216 	in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2217 	STATE_UNLOCK(ctx);
2218 	return (in_detach);
2219 }
2220 
2221 static void
iflib_fl_bufs_free(iflib_fl_t fl)2222 iflib_fl_bufs_free(iflib_fl_t fl)
2223 {
2224 	iflib_dma_info_t idi = fl->ifl_ifdi;
2225 	bus_dmamap_t sd_map;
2226 	uint32_t i;
2227 
2228 	for (i = 0; i < fl->ifl_size; i++) {
2229 		struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2230 		caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2231 
2232 		if (*sd_cl != NULL) {
2233 			sd_map = fl->ifl_sds.ifsd_map[i];
2234 			bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2235 			    BUS_DMASYNC_POSTREAD);
2236 			bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2237 			uma_zfree(fl->ifl_zone, *sd_cl);
2238 			*sd_cl = NULL;
2239 			if (*sd_m != NULL) {
2240 				m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2241 				m_free_raw(*sd_m);
2242 				*sd_m = NULL;
2243 			}
2244 		} else {
2245 			MPASS(*sd_m == NULL);
2246 		}
2247 #if MEMORY_LOGGING
2248 		fl->ifl_m_dequeued++;
2249 		fl->ifl_cl_dequeued++;
2250 #endif
2251 	}
2252 #ifdef INVARIANTS
2253 	for (i = 0; i < fl->ifl_size; i++) {
2254 		MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2255 		MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2256 	}
2257 #endif
2258 	/*
2259 	 * Reset free list values
2260 	 */
2261 	fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2262 	bzero(idi->idi_vaddr, idi->idi_size);
2263 }
2264 
2265 /*********************************************************************
2266  *
2267  *  Initialize a free list and its buffers.
2268  *
2269  **********************************************************************/
2270 static int
iflib_fl_setup(iflib_fl_t fl)2271 iflib_fl_setup(iflib_fl_t fl)
2272 {
2273 	iflib_rxq_t rxq = fl->ifl_rxq;
2274 	if_ctx_t ctx = rxq->ifr_ctx;
2275 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2276 	int qidx;
2277 
2278 	bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2279 	/*
2280 	** Free current RX buffer structs and their mbufs
2281 	*/
2282 	iflib_fl_bufs_free(fl);
2283 	/* Now replenish the mbufs */
2284 	MPASS(fl->ifl_credits == 0);
2285 	qidx = rxq->ifr_fl_offset + fl->ifl_id;
2286 	if (scctx->isc_rxd_buf_size[qidx] != 0)
2287 		fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2288 	else
2289 		fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2290 	/*
2291 	 * ifl_buf_size may be a driver-supplied value, so pull it up
2292 	 * to the selected mbuf size.
2293 	 */
2294 	fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2295 	if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2296 		ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2297 	fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2298 	fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2299 
2300 	/*
2301 	 * Avoid pre-allocating zillions of clusters to an idle card
2302 	 * potentially speeding up attach. In any case make sure
2303 	 * to leave a descriptor unavailable. See the comment in
2304 	 * iflib_fl_refill_all().
2305 	 */
2306 	MPASS(fl->ifl_size > 0);
2307 	(void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2308 	if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2309 		return (ENOBUFS);
2310 	/*
2311 	 * handle failure
2312 	 */
2313 	MPASS(rxq != NULL);
2314 	MPASS(fl->ifl_ifdi != NULL);
2315 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2316 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2317 	return (0);
2318 }
2319 
2320 /*********************************************************************
2321  *
2322  *  Free receive ring data structures
2323  *
2324  **********************************************************************/
2325 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2326 iflib_rx_sds_free(iflib_rxq_t rxq)
2327 {
2328 	iflib_fl_t fl;
2329 	int i, j;
2330 
2331 	if (rxq->ifr_fl != NULL) {
2332 		for (i = 0; i < rxq->ifr_nfl; i++) {
2333 			fl = &rxq->ifr_fl[i];
2334 			if (fl->ifl_buf_tag != NULL) {
2335 				if (fl->ifl_sds.ifsd_map != NULL) {
2336 					for (j = 0; j < fl->ifl_size; j++) {
2337 						bus_dmamap_sync(
2338 						    fl->ifl_buf_tag,
2339 						    fl->ifl_sds.ifsd_map[j],
2340 						    BUS_DMASYNC_POSTREAD);
2341 						bus_dmamap_unload(
2342 						    fl->ifl_buf_tag,
2343 						    fl->ifl_sds.ifsd_map[j]);
2344 						bus_dmamap_destroy(
2345 						    fl->ifl_buf_tag,
2346 						    fl->ifl_sds.ifsd_map[j]);
2347 					}
2348 				}
2349 				bus_dma_tag_destroy(fl->ifl_buf_tag);
2350 				fl->ifl_buf_tag = NULL;
2351 			}
2352 			free(fl->ifl_sds.ifsd_m, M_IFLIB);
2353 			free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2354 			free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2355 			free(fl->ifl_sds.ifsd_map, M_IFLIB);
2356 			free(fl->ifl_rx_bitmap, M_IFLIB);
2357 			fl->ifl_sds.ifsd_m = NULL;
2358 			fl->ifl_sds.ifsd_cl = NULL;
2359 			fl->ifl_sds.ifsd_ba = NULL;
2360 			fl->ifl_sds.ifsd_map = NULL;
2361 			fl->ifl_rx_bitmap = NULL;
2362 		}
2363 		free(rxq->ifr_fl, M_IFLIB);
2364 		rxq->ifr_fl = NULL;
2365 		free(rxq->ifr_ifdi, M_IFLIB);
2366 		rxq->ifr_ifdi = NULL;
2367 		rxq->ifr_cq_cidx = 0;
2368 	}
2369 }
2370 
2371 /*
2372  * Timer routine
2373  */
2374 static void
iflib_timer(void * arg)2375 iflib_timer(void *arg)
2376 {
2377 	iflib_txq_t txq = arg;
2378 	if_ctx_t ctx = txq->ift_ctx;
2379 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2380 	uint64_t this_tick = ticks;
2381 
2382 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2383 		return;
2384 
2385 	/*
2386 	** Check on the state of the TX queue(s), this
2387 	** can be done without the lock because its RO
2388 	** and the HUNG state will be static if set.
2389 	*/
2390 	if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2391 		txq->ift_last_timer_tick = this_tick;
2392 		IFDI_TIMER(ctx, txq->ift_id);
2393 		if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2394 		    ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2395 		     (sctx->isc_pause_frames == 0)))
2396 			goto hung;
2397 
2398 		if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2399 		    ifmp_ring_is_stalled(txq->ift_br)) {
2400 			KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2401 			    ("queue can't be marked as hung if interface is down"));
2402 			txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2403 		}
2404 		txq->ift_cleaned_prev = txq->ift_cleaned;
2405 	}
2406 	/* handle any laggards */
2407 	if (txq->ift_db_pending)
2408 		GROUPTASK_ENQUEUE(&txq->ift_task);
2409 
2410 	sctx->isc_pause_frames = 0;
2411 	if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2412 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2413 		    txq, txq->ift_timer.c_cpu);
2414 	return;
2415 
2416  hung:
2417 	device_printf(ctx->ifc_dev,
2418 	    "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2419 	    txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2420 	STATE_LOCK(ctx);
2421 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2422 	ctx->ifc_flags |= (IFC_DO_WATCHDOG|IFC_DO_RESET);
2423 	iflib_admin_intr_deferred(ctx);
2424 	STATE_UNLOCK(ctx);
2425 }
2426 
2427 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2428 iflib_get_mbuf_size_for(unsigned int size)
2429 {
2430 
2431 	if (size <= MCLBYTES)
2432 		return (MCLBYTES);
2433 	else
2434 		return (MJUMPAGESIZE);
2435 }
2436 
2437 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2438 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2439 {
2440 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2441 
2442 	/*
2443 	 * XXX don't set the max_frame_size to larger
2444 	 * than the hardware can handle
2445 	 */
2446 	ctx->ifc_rx_mbuf_sz =
2447 	    iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2448 }
2449 
2450 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2451 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2452 {
2453 
2454 	return (ctx->ifc_rx_mbuf_sz);
2455 }
2456 
2457 static void
iflib_init_locked(if_ctx_t ctx)2458 iflib_init_locked(if_ctx_t ctx)
2459 {
2460 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2461 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2462 	if_t ifp = ctx->ifc_ifp;
2463 	iflib_fl_t fl;
2464 	iflib_txq_t txq;
2465 	iflib_rxq_t rxq;
2466 	int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2467 
2468 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2469 	IFDI_INTR_DISABLE(ctx);
2470 
2471 	/*
2472 	 * See iflib_stop(). Useful in case iflib_init_locked() is
2473 	 * called without first calling iflib_stop().
2474 	 */
2475 	netmap_disable_all_rings(ifp);
2476 
2477 	tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2478 	tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2479 	/* Set hardware offload abilities */
2480 	if_clearhwassist(ifp);
2481 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2482 		if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2483 	if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2484 		if_sethwassistbits(ifp,  tx_ip6_csum_flags, 0);
2485 	if (if_getcapenable(ifp) & IFCAP_TSO4)
2486 		if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2487 	if (if_getcapenable(ifp) & IFCAP_TSO6)
2488 		if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2489 
2490 	for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) {
2491 		CALLOUT_LOCK(txq);
2492 		callout_stop(&txq->ift_timer);
2493 #ifdef DEV_NETMAP
2494 		callout_stop(&txq->ift_netmap_timer);
2495 #endif /* DEV_NETMAP */
2496 		CALLOUT_UNLOCK(txq);
2497 		iflib_netmap_txq_init(ctx, txq);
2498 	}
2499 
2500 	/*
2501 	 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2502 	 * that drivers can use the value when setting up the hardware receive
2503 	 * buffers.
2504 	 */
2505 	iflib_calc_rx_mbuf_sz(ctx);
2506 
2507 #ifdef INVARIANTS
2508 	i = if_getdrvflags(ifp);
2509 #endif
2510 	IFDI_INIT(ctx);
2511 	MPASS(if_getdrvflags(ifp) == i);
2512 	for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) {
2513 		if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2514 			/* This rxq is in netmap mode. Skip normal init. */
2515 			continue;
2516 		}
2517 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2518 			if (iflib_fl_setup(fl)) {
2519 				device_printf(ctx->ifc_dev,
2520 				    "setting up free list %d failed - "
2521 				    "check cluster settings\n", j);
2522 				goto done;
2523 			}
2524 		}
2525 	}
2526 done:
2527 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2528 	IFDI_INTR_ENABLE(ctx);
2529 	txq = ctx->ifc_txqs;
2530 	for (i = 0; i < sctx->isc_ntxqsets; i++, txq++)
2531 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2532 			txq->ift_timer.c_cpu);
2533 
2534         /* Re-enable txsync/rxsync. */
2535 	netmap_enable_all_rings(ifp);
2536 }
2537 
2538 static int
iflib_media_change(if_t ifp)2539 iflib_media_change(if_t ifp)
2540 {
2541 	if_ctx_t ctx = if_getsoftc(ifp);
2542 	int err;
2543 
2544 	CTX_LOCK(ctx);
2545 	if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2546 		iflib_if_init_locked(ctx);
2547 	CTX_UNLOCK(ctx);
2548 	return (err);
2549 }
2550 
2551 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2552 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2553 {
2554 	if_ctx_t ctx = if_getsoftc(ifp);
2555 
2556 	CTX_LOCK(ctx);
2557 	IFDI_UPDATE_ADMIN_STATUS(ctx);
2558 	IFDI_MEDIA_STATUS(ctx, ifmr);
2559 	CTX_UNLOCK(ctx);
2560 }
2561 
2562 void
iflib_stop(if_ctx_t ctx)2563 iflib_stop(if_ctx_t ctx)
2564 {
2565 	iflib_txq_t txq = ctx->ifc_txqs;
2566 	iflib_rxq_t rxq = ctx->ifc_rxqs;
2567 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2568 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2569 	iflib_dma_info_t di;
2570 	iflib_fl_t fl;
2571 	int i, j;
2572 
2573 	/* Tell the stack that the interface is no longer active */
2574 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2575 
2576 	IFDI_INTR_DISABLE(ctx);
2577 	DELAY(1000);
2578 	IFDI_STOP(ctx);
2579 	DELAY(1000);
2580 
2581 	/*
2582 	 * Stop any pending txsync/rxsync and prevent new ones
2583 	 * form starting. Processes blocked in poll() will get
2584 	 * POLLERR.
2585 	 */
2586 	netmap_disable_all_rings(ctx->ifc_ifp);
2587 
2588 	iflib_debug_reset();
2589 	/* Wait for current tx queue users to exit to disarm watchdog timer. */
2590 	for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2591 		/* make sure all transmitters have completed before proceeding XXX */
2592 
2593 		CALLOUT_LOCK(txq);
2594 		callout_stop(&txq->ift_timer);
2595 #ifdef DEV_NETMAP
2596 		callout_stop(&txq->ift_netmap_timer);
2597 #endif /* DEV_NETMAP */
2598 		CALLOUT_UNLOCK(txq);
2599 
2600 		/* clean any enqueued buffers */
2601 		iflib_ifmp_purge(txq);
2602 		/* Free any existing tx buffers. */
2603 		for (j = 0; j < txq->ift_size; j++) {
2604 			iflib_txsd_free(ctx, txq, j);
2605 		}
2606 		txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2607 		txq->ift_in_use = txq->ift_gen = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0;
2608 		txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2609 		txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2610 		txq->ift_pullups = 0;
2611 		ifmp_ring_reset_stats(txq->ift_br);
2612 		for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2613 			bzero((void *)di->idi_vaddr, di->idi_size);
2614 	}
2615 	for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2616 		gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2617 		    &rxq->ifr_task.gt_task);
2618 
2619 		rxq->ifr_cq_cidx = 0;
2620 		for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2621 			bzero((void *)di->idi_vaddr, di->idi_size);
2622 		/* also resets the free lists pidx/cidx */
2623 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2624 			iflib_fl_bufs_free(fl);
2625 	}
2626 }
2627 
2628 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2629 calc_next_rxd(iflib_fl_t fl, int cidx)
2630 {
2631 	qidx_t size;
2632 	int nrxd;
2633 	caddr_t start, end, cur, next;
2634 
2635 	nrxd = fl->ifl_size;
2636 	size = fl->ifl_rxd_size;
2637 	start = fl->ifl_ifdi->idi_vaddr;
2638 
2639 	if (__predict_false(size == 0))
2640 		return (start);
2641 	cur = start + size*cidx;
2642 	end = start + size*nrxd;
2643 	next = CACHE_PTR_NEXT(cur);
2644 	return (next < end ? next : start);
2645 }
2646 
2647 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2648 prefetch_pkts(iflib_fl_t fl, int cidx)
2649 {
2650 	int nextptr;
2651 	int nrxd = fl->ifl_size;
2652 	caddr_t next_rxd;
2653 
2654 	nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd-1);
2655 	prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2656 	prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2657 	next_rxd = calc_next_rxd(fl, cidx);
2658 	prefetch(next_rxd);
2659 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd-1)]);
2660 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd-1)]);
2661 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd-1)]);
2662 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd-1)]);
2663 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd-1)]);
2664 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd-1)]);
2665 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd-1)]);
2666 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd-1)]);
2667 }
2668 
2669 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2670 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2671     int *pf_rv, if_rxd_info_t ri)
2672 {
2673 	bus_dmamap_t map;
2674 	iflib_fl_t fl;
2675 	caddr_t payload;
2676 	struct mbuf *m;
2677 	int flid, cidx, len, next;
2678 
2679 	map = NULL;
2680 	flid = irf->irf_flid;
2681 	cidx = irf->irf_idx;
2682 	fl = &rxq->ifr_fl[flid];
2683 	sd->ifsd_fl = fl;
2684 	m = fl->ifl_sds.ifsd_m[cidx];
2685 	sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2686 	fl->ifl_credits--;
2687 #if MEMORY_LOGGING
2688 	fl->ifl_m_dequeued++;
2689 #endif
2690 	if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2691 		prefetch_pkts(fl, cidx);
2692 	next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size-1);
2693 	prefetch(&fl->ifl_sds.ifsd_map[next]);
2694 	map = fl->ifl_sds.ifsd_map[cidx];
2695 
2696 	bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2697 
2698 	if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2699 	    irf->irf_len != 0) {
2700 		payload  = *sd->ifsd_cl;
2701 		payload +=  ri->iri_pad;
2702 		len = ri->iri_len - ri->iri_pad;
2703 		*pf_rv = pfil_run_hooks(rxq->pfil, payload, ri->iri_ifp,
2704 		    len | PFIL_MEMPTR | PFIL_IN, NULL);
2705 		switch (*pf_rv) {
2706 		case PFIL_DROPPED:
2707 		case PFIL_CONSUMED:
2708 			/*
2709 			 * The filter ate it.  Everything is recycled.
2710 			 */
2711 			m = NULL;
2712 			unload = 0;
2713 			break;
2714 		case PFIL_REALLOCED:
2715 			/*
2716 			 * The filter copied it.  Everything is recycled.
2717 			 */
2718 			m = pfil_mem2mbuf(payload);
2719 			unload = 0;
2720 			break;
2721 		case PFIL_PASS:
2722 			/*
2723 			 * Filter said it was OK, so receive like
2724 			 * normal
2725 			 */
2726 			fl->ifl_sds.ifsd_m[cidx] = NULL;
2727 			break;
2728 		default:
2729 			MPASS(0);
2730 		}
2731 	} else {
2732 		fl->ifl_sds.ifsd_m[cidx] = NULL;
2733 		if (pf_rv != NULL)
2734 			*pf_rv = PFIL_PASS;
2735 	}
2736 
2737 	if (unload && irf->irf_len != 0)
2738 		bus_dmamap_unload(fl->ifl_buf_tag, map);
2739 	fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size-1);
2740 	if (__predict_false(fl->ifl_cidx == 0))
2741 		fl->ifl_gen = 0;
2742 	bit_clear(fl->ifl_rx_bitmap, cidx);
2743 	return (m);
2744 }
2745 
2746 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2747 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2748 {
2749 	struct mbuf *m, *mh, *mt;
2750 	caddr_t cl;
2751 	int  *pf_rv_ptr, flags, i, padlen;
2752 	bool consumed;
2753 
2754 	i = 0;
2755 	mh = NULL;
2756 	consumed = false;
2757 	*pf_rv = PFIL_PASS;
2758 	pf_rv_ptr = pf_rv;
2759 	do {
2760 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2761 		    pf_rv_ptr, ri);
2762 
2763 		MPASS(*sd->ifsd_cl != NULL);
2764 
2765 		/*
2766 		 * Exclude zero-length frags & frags from
2767 		 * packets the filter has consumed or dropped
2768 		 */
2769 		if (ri->iri_frags[i].irf_len == 0 || consumed ||
2770 		    *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2771 			if (mh == NULL) {
2772 				/* everything saved here */
2773 				consumed = true;
2774 				pf_rv_ptr = NULL;
2775 				continue;
2776 			}
2777 			/* XXX we can save the cluster here, but not the mbuf */
2778 			m_init(m, M_NOWAIT, MT_DATA, 0);
2779 			m_free(m);
2780 			continue;
2781 		}
2782 		if (mh == NULL) {
2783 			flags = M_PKTHDR|M_EXT;
2784 			mh = mt = m;
2785 			padlen = ri->iri_pad;
2786 		} else {
2787 			flags = M_EXT;
2788 			mt->m_next = m;
2789 			mt = m;
2790 			/* assuming padding is only on the first fragment */
2791 			padlen = 0;
2792 		}
2793 		cl = *sd->ifsd_cl;
2794 		*sd->ifsd_cl = NULL;
2795 
2796 		/* Can these two be made one ? */
2797 		m_init(m, M_NOWAIT, MT_DATA, flags);
2798 		m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2799 		/*
2800 		 * These must follow m_init and m_cljset
2801 		 */
2802 		m->m_data += padlen;
2803 		ri->iri_len -= padlen;
2804 		m->m_len = ri->iri_frags[i].irf_len;
2805 	} while (++i < ri->iri_nfrags);
2806 
2807 	return (mh);
2808 }
2809 
2810 /*
2811  * Process one software descriptor
2812  */
2813 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2814 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2815 {
2816 	struct if_rxsd sd;
2817 	struct mbuf *m;
2818 	int pf_rv;
2819 
2820 	/* should I merge this back in now that the two paths are basically duplicated? */
2821 	if (ri->iri_nfrags == 1 &&
2822 	    ri->iri_frags[0].irf_len != 0 &&
2823 	    ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2824 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2825 		    &pf_rv, ri);
2826 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2827 			return (m);
2828 		if (pf_rv == PFIL_PASS) {
2829 			m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2830 #ifndef __NO_STRICT_ALIGNMENT
2831 			if (!IP_ALIGNED(m))
2832 				m->m_data += 2;
2833 #endif
2834 			memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2835 			m->m_len = ri->iri_frags[0].irf_len;
2836 		}
2837 	} else {
2838 		m = assemble_segments(rxq, ri, &sd, &pf_rv);
2839 		if (m == NULL)
2840 			return (NULL);
2841 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2842 			return (m);
2843 	}
2844 	m->m_pkthdr.len = ri->iri_len;
2845 	m->m_pkthdr.rcvif = ri->iri_ifp;
2846 	m->m_flags |= ri->iri_flags;
2847 	m->m_pkthdr.ether_vtag = ri->iri_vtag;
2848 	m->m_pkthdr.flowid = ri->iri_flowid;
2849 	M_HASHTYPE_SET(m, ri->iri_rsstype);
2850 	m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2851 	m->m_pkthdr.csum_data = ri->iri_csum_data;
2852 	return (m);
2853 }
2854 
2855 #if defined(INET6) || defined(INET)
2856 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc,bool * v4,bool * v6)2857 iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6)
2858 {
2859 	CURVNET_SET(lc->ifp->if_vnet);
2860 #if defined(INET6)
2861 	*v6 = V_ip6_forwarding;
2862 #endif
2863 #if defined(INET)
2864 	*v4 = V_ipforwarding;
2865 #endif
2866 	CURVNET_RESTORE();
2867 }
2868 
2869 /*
2870  * Returns true if it's possible this packet could be LROed.
2871  * if it returns false, it is guaranteed that tcp_lro_rx()
2872  * would not return zero.
2873  */
2874 static bool
iflib_check_lro_possible(struct mbuf * m,bool v4_forwarding,bool v6_forwarding)2875 iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding)
2876 {
2877 	struct ether_header *eh;
2878 
2879 	eh = mtod(m, struct ether_header *);
2880 	switch (eh->ether_type) {
2881 #if defined(INET6)
2882 		case htons(ETHERTYPE_IPV6):
2883 			return (!v6_forwarding);
2884 #endif
2885 #if defined (INET)
2886 		case htons(ETHERTYPE_IP):
2887 			return (!v4_forwarding);
2888 #endif
2889 	}
2890 
2891 	return false;
2892 }
2893 #else
2894 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc __unused,bool * v4 __unused,bool * v6 __unused)2895 iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused)
2896 {
2897 }
2898 #endif
2899 
2900 static void
_task_fn_rx_watchdog(void * context)2901 _task_fn_rx_watchdog(void *context)
2902 {
2903 	iflib_rxq_t rxq = context;
2904 
2905 	GROUPTASK_ENQUEUE(&rxq->ifr_task);
2906 }
2907 
2908 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2909 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2910 {
2911 	if_t ifp;
2912 	if_ctx_t ctx = rxq->ifr_ctx;
2913 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2914 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2915 	int avail, i;
2916 	qidx_t *cidxp;
2917 	struct if_rxd_info ri;
2918 	int err, budget_left, rx_bytes, rx_pkts;
2919 	iflib_fl_t fl;
2920 	int lro_enabled;
2921 	bool v4_forwarding, v6_forwarding, lro_possible;
2922 	uint8_t retval = 0;
2923 
2924 	/*
2925 	 * XXX early demux data packets so that if_input processing only handles
2926 	 * acks in interrupt context
2927 	 */
2928 	struct mbuf *m, *mh, *mt, *mf;
2929 
2930 	NET_EPOCH_ASSERT();
2931 
2932 	lro_possible = v4_forwarding = v6_forwarding = false;
2933 	ifp = ctx->ifc_ifp;
2934 	mh = mt = NULL;
2935 	MPASS(budget > 0);
2936 	rx_pkts	= rx_bytes = 0;
2937 	if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2938 		cidxp = &rxq->ifr_cq_cidx;
2939 	else
2940 		cidxp = &rxq->ifr_fl[0].ifl_cidx;
2941 	if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2942 		for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2943 			retval |= iflib_fl_refill_all(ctx, fl);
2944 		DBG_COUNTER_INC(rx_unavail);
2945 		return (retval);
2946 	}
2947 
2948 	/* pfil needs the vnet to be set */
2949 	CURVNET_SET_QUIET(ifp->if_vnet);
2950 	for (budget_left = budget; budget_left > 0 && avail > 0;) {
2951 		if (__predict_false(!CTX_ACTIVE(ctx))) {
2952 			DBG_COUNTER_INC(rx_ctx_inactive);
2953 			break;
2954 		}
2955 		/*
2956 		 * Reset client set fields to their default values
2957 		 */
2958 		rxd_info_zero(&ri);
2959 		ri.iri_qsidx = rxq->ifr_id;
2960 		ri.iri_cidx = *cidxp;
2961 		ri.iri_ifp = ifp;
2962 		ri.iri_frags = rxq->ifr_frags;
2963 		err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
2964 
2965 		if (err)
2966 			goto err;
2967 		rx_pkts += 1;
2968 		rx_bytes += ri.iri_len;
2969 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
2970 			*cidxp = ri.iri_cidx;
2971 			/* Update our consumer index */
2972 			/* XXX NB: shurd - check if this is still safe */
2973 			while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
2974 				rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
2975 			/* was this only a completion queue message? */
2976 			if (__predict_false(ri.iri_nfrags == 0))
2977 				continue;
2978 		}
2979 		MPASS(ri.iri_nfrags != 0);
2980 		MPASS(ri.iri_len != 0);
2981 
2982 		/* will advance the cidx on the corresponding free lists */
2983 		m = iflib_rxd_pkt_get(rxq, &ri);
2984 		avail--;
2985 		budget_left--;
2986 		if (avail == 0 && budget_left)
2987 			avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
2988 
2989 		if (__predict_false(m == NULL))
2990 			continue;
2991 
2992 		/* imm_pkt: -- cxgb */
2993 		if (mh == NULL)
2994 			mh = mt = m;
2995 		else {
2996 			mt->m_nextpkt = m;
2997 			mt = m;
2998 		}
2999 	}
3000 	CURVNET_RESTORE();
3001 	/* make sure that we can refill faster than drain */
3002 	for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3003 		retval |= iflib_fl_refill_all(ctx, fl);
3004 
3005 	lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
3006 	if (lro_enabled)
3007 		iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding);
3008 	mt = mf = NULL;
3009 	while (mh != NULL) {
3010 		m = mh;
3011 		mh = mh->m_nextpkt;
3012 		m->m_nextpkt = NULL;
3013 #ifndef __NO_STRICT_ALIGNMENT
3014 		if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
3015 			continue;
3016 #endif
3017 #if defined(INET6) || defined(INET)
3018 		if (lro_enabled) {
3019 			if (!lro_possible) {
3020 				lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding);
3021 				if (lro_possible && mf != NULL) {
3022 					ifp->if_input(ifp, mf);
3023 					DBG_COUNTER_INC(rx_if_input);
3024 					mt = mf = NULL;
3025 				}
3026 			}
3027 			if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC|CSUM_L4_VALID)) ==
3028 			    (CSUM_L4_CALC|CSUM_L4_VALID)) {
3029 				if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0)
3030 					continue;
3031 			}
3032 		}
3033 #endif
3034 		if (lro_possible) {
3035 			ifp->if_input(ifp, m);
3036 			DBG_COUNTER_INC(rx_if_input);
3037 			continue;
3038 		}
3039 
3040 		if (mf == NULL)
3041 			mf = m;
3042 		if (mt != NULL)
3043 			mt->m_nextpkt = m;
3044 		mt = m;
3045 	}
3046 	if (mf != NULL) {
3047 		ifp->if_input(ifp, mf);
3048 		DBG_COUNTER_INC(rx_if_input);
3049 	}
3050 
3051 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3052 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3053 
3054 	/*
3055 	 * Flush any outstanding LRO work
3056 	 */
3057 #if defined(INET6) || defined(INET)
3058 	tcp_lro_flush_all(&rxq->ifr_lc);
3059 #endif
3060 	if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3061 		retval |= IFLIB_RXEOF_MORE;
3062 	return (retval);
3063 err:
3064 	STATE_LOCK(ctx);
3065 	ctx->ifc_flags |= IFC_DO_RESET;
3066 	iflib_admin_intr_deferred(ctx);
3067 	STATE_UNLOCK(ctx);
3068 	return (0);
3069 }
3070 
3071 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq)-1)
3072 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3073 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3074 {
3075 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3076 	qidx_t minthresh = txq->ift_size / 8;
3077 	if (in_use > 4*minthresh)
3078 		return (notify_count);
3079 	if (in_use > 2*minthresh)
3080 		return (notify_count >> 1);
3081 	if (in_use > minthresh)
3082 		return (notify_count >> 3);
3083 	return (0);
3084 }
3085 
3086 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3087 txq_max_rs_deferred(iflib_txq_t txq)
3088 {
3089 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3090 	qidx_t minthresh = txq->ift_size / 8;
3091 	if (txq->ift_in_use > 4*minthresh)
3092 		return (notify_count);
3093 	if (txq->ift_in_use > 2*minthresh)
3094 		return (notify_count >> 1);
3095 	if (txq->ift_in_use > minthresh)
3096 		return (notify_count >> 2);
3097 	return (2);
3098 }
3099 
3100 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
3101 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
3102 
3103 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use))
3104 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq)
3105 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4)
3106 
3107 /* forward compatibility for cxgb */
3108 #define FIRST_QSET(ctx) 0
3109 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3110 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3111 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3112 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3113 
3114 /* XXX we should be setting this to something other than zero */
3115 #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
3116 #define	MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3117     (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3118 
3119 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3120 iflib_txd_db_check(iflib_txq_t txq, int ring)
3121 {
3122 	if_ctx_t ctx = txq->ift_ctx;
3123 	qidx_t dbval, max;
3124 
3125 	max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3126 
3127 	/* force || threshold exceeded || at the edge of the ring */
3128 	if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) {
3129 
3130 		/*
3131 		 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3132 		 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3133 		 * producer index explicitly (INTC).
3134 		 */
3135 		dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3136 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3137 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3138 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3139 
3140 		/*
3141 		 * Absent bugs there are zero packets pending so reset pending counts to zero.
3142 		 */
3143 		txq->ift_db_pending = txq->ift_npending = 0;
3144 		return (true);
3145 	}
3146 	return (false);
3147 }
3148 
3149 #ifdef PKT_DEBUG
3150 static void
print_pkt(if_pkt_info_t pi)3151 print_pkt(if_pkt_info_t pi)
3152 {
3153 	printf("pi len:  %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3154 	       pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3155 	printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3156 	       pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3157 	printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3158 	       pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3159 }
3160 #endif
3161 
3162 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3163 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3164 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3165 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3166 
3167 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3168 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3169 {
3170 	if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3171 	struct ether_vlan_header *eh;
3172 	struct mbuf *m;
3173 
3174 	m = *mp;
3175 	if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3176 	    M_WRITABLE(m) == 0) {
3177 		if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3178 			return (ENOMEM);
3179 		} else {
3180 			m_freem(*mp);
3181 			DBG_COUNTER_INC(tx_frees);
3182 			*mp = m;
3183 		}
3184 	}
3185 
3186 	/*
3187 	 * Determine where frame payload starts.
3188 	 * Jump over vlan headers if already present,
3189 	 * helpful for QinQ too.
3190 	 */
3191 	if (__predict_false(m->m_len < sizeof(*eh))) {
3192 		txq->ift_pullups++;
3193 		if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3194 			return (ENOMEM);
3195 	}
3196 	eh = mtod(m, struct ether_vlan_header *);
3197 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3198 		pi->ipi_etype = ntohs(eh->evl_proto);
3199 		pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3200 	} else {
3201 		pi->ipi_etype = ntohs(eh->evl_encap_proto);
3202 		pi->ipi_ehdrlen = ETHER_HDR_LEN;
3203 	}
3204 
3205 	switch (pi->ipi_etype) {
3206 #ifdef INET
3207 	case ETHERTYPE_IP:
3208 	{
3209 		struct mbuf *n;
3210 		struct ip *ip = NULL;
3211 		struct tcphdr *th = NULL;
3212 		int minthlen;
3213 
3214 		minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th));
3215 		if (__predict_false(m->m_len < minthlen)) {
3216 			/*
3217 			 * if this code bloat is causing too much of a hit
3218 			 * move it to a separate function and mark it noinline
3219 			 */
3220 			if (m->m_len == pi->ipi_ehdrlen) {
3221 				n = m->m_next;
3222 				MPASS(n);
3223 				if (n->m_len >= sizeof(*ip))  {
3224 					ip = (struct ip *)n->m_data;
3225 					if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3226 						th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3227 				} else {
3228 					txq->ift_pullups++;
3229 					if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3230 						return (ENOMEM);
3231 					ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3232 				}
3233 			} else {
3234 				txq->ift_pullups++;
3235 				if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3236 					return (ENOMEM);
3237 				ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3238 				if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3239 					th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3240 			}
3241 		} else {
3242 			ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3243 			if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3244 				th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3245 		}
3246 		pi->ipi_ip_hlen = ip->ip_hl << 2;
3247 		pi->ipi_ipproto = ip->ip_p;
3248 		pi->ipi_flags |= IPI_TX_IPV4;
3249 
3250 		/* TCP checksum offload may require TCP header length */
3251 		if (IS_TX_OFFLOAD4(pi)) {
3252 			if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3253 				if (__predict_false(th == NULL)) {
3254 					txq->ift_pullups++;
3255 					if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL))
3256 						return (ENOMEM);
3257 					th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen);
3258 				}
3259 				pi->ipi_tcp_hflags = th->th_flags;
3260 				pi->ipi_tcp_hlen = th->th_off << 2;
3261 				pi->ipi_tcp_seq = th->th_seq;
3262 			}
3263 			if (IS_TSO4(pi)) {
3264 				if (__predict_false(ip->ip_p != IPPROTO_TCP))
3265 					return (ENXIO);
3266 				/*
3267 				 * TSO always requires hardware checksum offload.
3268 				 */
3269 				pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3270 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
3271 						       ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3272 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3273 				if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3274 					ip->ip_sum = 0;
3275 					ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3276 				}
3277 			}
3278 		}
3279 		if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3280                        ip->ip_sum = 0;
3281 
3282 		break;
3283 	}
3284 #endif
3285 #ifdef INET6
3286 	case ETHERTYPE_IPV6:
3287 	{
3288 		struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3289 		struct tcphdr *th;
3290 		pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3291 
3292 		if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3293 			txq->ift_pullups++;
3294 			if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3295 				return (ENOMEM);
3296 		}
3297 		th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3298 
3299 		/* XXX-BZ this will go badly in case of ext hdrs. */
3300 		pi->ipi_ipproto = ip6->ip6_nxt;
3301 		pi->ipi_flags |= IPI_TX_IPV6;
3302 
3303 		/* TCP checksum offload may require TCP header length */
3304 		if (IS_TX_OFFLOAD6(pi)) {
3305 			if (pi->ipi_ipproto == IPPROTO_TCP) {
3306 				if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3307 					txq->ift_pullups++;
3308 					if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3309 						return (ENOMEM);
3310 				}
3311 				pi->ipi_tcp_hflags = th->th_flags;
3312 				pi->ipi_tcp_hlen = th->th_off << 2;
3313 				pi->ipi_tcp_seq = th->th_seq;
3314 			}
3315 			if (IS_TSO6(pi)) {
3316 				if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3317 					return (ENXIO);
3318 				/*
3319 				 * TSO always requires hardware checksum offload.
3320 				 */
3321 				pi->ipi_csum_flags |= CSUM_IP6_TCP;
3322 				th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3323 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3324 			}
3325 		}
3326 		break;
3327 	}
3328 #endif
3329 	default:
3330 		pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3331 		pi->ipi_ip_hlen = 0;
3332 		break;
3333 	}
3334 	*mp = m;
3335 
3336 	return (0);
3337 }
3338 
3339 /*
3340  * If dodgy hardware rejects the scatter gather chain we've handed it
3341  * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3342  * m_defrag'd mbufs
3343  */
3344 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3345 iflib_remove_mbuf(iflib_txq_t txq)
3346 {
3347 	int ntxd, pidx;
3348 	struct mbuf *m, **ifsd_m;
3349 
3350 	ifsd_m = txq->ift_sds.ifsd_m;
3351 	ntxd = txq->ift_size;
3352 	pidx = txq->ift_pidx & (ntxd - 1);
3353 	ifsd_m = txq->ift_sds.ifsd_m;
3354 	m = ifsd_m[pidx];
3355 	ifsd_m[pidx] = NULL;
3356 	bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3357 	if (txq->ift_sds.ifsd_tso_map != NULL)
3358 		bus_dmamap_unload(txq->ift_tso_buf_tag,
3359 		    txq->ift_sds.ifsd_tso_map[pidx]);
3360 #if MEMORY_LOGGING
3361 	txq->ift_dequeued++;
3362 #endif
3363 	return (m);
3364 }
3365 
3366 static inline caddr_t
calc_next_txd(iflib_txq_t txq,int cidx,uint8_t qid)3367 calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid)
3368 {
3369 	qidx_t size;
3370 	int ntxd;
3371 	caddr_t start, end, cur, next;
3372 
3373 	ntxd = txq->ift_size;
3374 	size = txq->ift_txd_size[qid];
3375 	start = txq->ift_ifdi[qid].idi_vaddr;
3376 
3377 	if (__predict_false(size == 0))
3378 		return (start);
3379 	cur = start + size*cidx;
3380 	end = start + size*ntxd;
3381 	next = CACHE_PTR_NEXT(cur);
3382 	return (next < end ? next : start);
3383 }
3384 
3385 /*
3386  * Pad an mbuf to ensure a minimum ethernet frame size.
3387  * min_frame_size is the frame size (less CRC) to pad the mbuf to
3388  */
3389 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3390 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3391 {
3392 	/*
3393 	 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3394 	 * and ARP message is the smallest common payload I can think of
3395 	 */
3396 	static char pad[18];	/* just zeros */
3397 	int n;
3398 	struct mbuf *new_head;
3399 
3400 	if (!M_WRITABLE(*m_head)) {
3401 		new_head = m_dup(*m_head, M_NOWAIT);
3402 		if (new_head == NULL) {
3403 			m_freem(*m_head);
3404 			device_printf(dev, "cannot pad short frame, m_dup() failed");
3405 			DBG_COUNTER_INC(encap_pad_mbuf_fail);
3406 			DBG_COUNTER_INC(tx_frees);
3407 			return ENOMEM;
3408 		}
3409 		m_freem(*m_head);
3410 		*m_head = new_head;
3411 	}
3412 
3413 	for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3414 	     n > 0; n -= sizeof(pad))
3415 		if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3416 			break;
3417 
3418 	if (n > 0) {
3419 		m_freem(*m_head);
3420 		device_printf(dev, "cannot pad short frame\n");
3421 		DBG_COUNTER_INC(encap_pad_mbuf_fail);
3422 		DBG_COUNTER_INC(tx_frees);
3423 		return (ENOBUFS);
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3430 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3431 {
3432 	if_ctx_t		ctx;
3433 	if_shared_ctx_t		sctx;
3434 	if_softc_ctx_t		scctx;
3435 	bus_dma_tag_t		buf_tag;
3436 	bus_dma_segment_t	*segs;
3437 	struct mbuf		*m_head, **ifsd_m;
3438 	void			*next_txd;
3439 	bus_dmamap_t		map;
3440 	struct if_pkt_info	pi;
3441 	int remap = 0;
3442 	int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
3443 
3444 	ctx = txq->ift_ctx;
3445 	sctx = ctx->ifc_sctx;
3446 	scctx = &ctx->ifc_softc_ctx;
3447 	segs = txq->ift_segs;
3448 	ntxd = txq->ift_size;
3449 	m_head = *m_headp;
3450 	map = NULL;
3451 
3452 	/*
3453 	 * If we're doing TSO the next descriptor to clean may be quite far ahead
3454 	 */
3455 	cidx = txq->ift_cidx;
3456 	pidx = txq->ift_pidx;
3457 	if (ctx->ifc_flags & IFC_PREFETCH) {
3458 		next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1);
3459 		if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) {
3460 			next_txd = calc_next_txd(txq, cidx, 0);
3461 			prefetch(next_txd);
3462 		}
3463 
3464 		/* prefetch the next cache line of mbuf pointers and flags */
3465 		prefetch(&txq->ift_sds.ifsd_m[next]);
3466 		prefetch(&txq->ift_sds.ifsd_map[next]);
3467 		next = (cidx + CACHE_LINE_SIZE) & (ntxd-1);
3468 	}
3469 	map = txq->ift_sds.ifsd_map[pidx];
3470 	ifsd_m = txq->ift_sds.ifsd_m;
3471 
3472 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3473 		buf_tag = txq->ift_tso_buf_tag;
3474 		max_segs = scctx->isc_tx_tso_segments_max;
3475 		map = txq->ift_sds.ifsd_tso_map[pidx];
3476 		MPASS(buf_tag != NULL);
3477 		MPASS(max_segs > 0);
3478 	} else {
3479 		buf_tag = txq->ift_buf_tag;
3480 		max_segs = scctx->isc_tx_nsegments;
3481 		map = txq->ift_sds.ifsd_map[pidx];
3482 	}
3483 	if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3484 	    __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3485 		err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3486 		if (err) {
3487 			DBG_COUNTER_INC(encap_txd_encap_fail);
3488 			return err;
3489 		}
3490 	}
3491 	m_head = *m_headp;
3492 
3493 	pkt_info_zero(&pi);
3494 	pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST));
3495 	pi.ipi_pidx = pidx;
3496 	pi.ipi_qsidx = txq->ift_id;
3497 	pi.ipi_len = m_head->m_pkthdr.len;
3498 	pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3499 	pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3500 
3501 	/* deliberate bitwise OR to make one condition */
3502 	if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3503 		if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3504 			DBG_COUNTER_INC(encap_txd_encap_fail);
3505 			return (err);
3506 		}
3507 		m_head = *m_headp;
3508 	}
3509 
3510 retry:
3511 	err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3512 	    BUS_DMA_NOWAIT);
3513 defrag:
3514 	if (__predict_false(err)) {
3515 		switch (err) {
3516 		case EFBIG:
3517 			/* try collapse once and defrag once */
3518 			if (remap == 0) {
3519 				m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3520 				/* try defrag if collapsing fails */
3521 				if (m_head == NULL)
3522 					remap++;
3523 			}
3524 			if (remap == 1) {
3525 				txq->ift_mbuf_defrag++;
3526 				m_head = m_defrag(*m_headp, M_NOWAIT);
3527 			}
3528 			/*
3529 			 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3530 			 * failed to map an mbuf that was run through m_defrag
3531 			 */
3532 			MPASS(remap <= 1);
3533 			if (__predict_false(m_head == NULL || remap > 1))
3534 				goto defrag_failed;
3535 			remap++;
3536 			*m_headp = m_head;
3537 			goto retry;
3538 			break;
3539 		case ENOMEM:
3540 			txq->ift_no_tx_dma_setup++;
3541 			break;
3542 		default:
3543 			txq->ift_no_tx_dma_setup++;
3544 			m_freem(*m_headp);
3545 			DBG_COUNTER_INC(tx_frees);
3546 			*m_headp = NULL;
3547 			break;
3548 		}
3549 		txq->ift_map_failed++;
3550 		DBG_COUNTER_INC(encap_load_mbuf_fail);
3551 		DBG_COUNTER_INC(encap_txd_encap_fail);
3552 		return (err);
3553 	}
3554 	ifsd_m[pidx] = m_head;
3555 	/*
3556 	 * XXX assumes a 1 to 1 relationship between segments and
3557 	 *        descriptors - this does not hold true on all drivers, e.g.
3558 	 *        cxgb
3559 	 */
3560 	if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3561 		txq->ift_no_desc_avail++;
3562 		bus_dmamap_unload(buf_tag, map);
3563 		DBG_COUNTER_INC(encap_txq_avail_fail);
3564 		DBG_COUNTER_INC(encap_txd_encap_fail);
3565 		if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3566 			GROUPTASK_ENQUEUE(&txq->ift_task);
3567 		return (ENOBUFS);
3568 	}
3569 	/*
3570 	 * On Intel cards we can greatly reduce the number of TX interrupts
3571 	 * we see by only setting report status on every Nth descriptor.
3572 	 * However, this also means that the driver will need to keep track
3573 	 * of the descriptors that RS was set on to check them for the DD bit.
3574 	 */
3575 	txq->ift_rs_pending += nsegs + 1;
3576 	if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3577 	     iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
3578 		pi.ipi_flags |= IPI_TX_INTR;
3579 		txq->ift_rs_pending = 0;
3580 	}
3581 
3582 	pi.ipi_segs = segs;
3583 	pi.ipi_nsegs = nsegs;
3584 
3585 	MPASS(pidx >= 0 && pidx < txq->ift_size);
3586 #ifdef PKT_DEBUG
3587 	print_pkt(&pi);
3588 #endif
3589 	if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3590 		bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3591 		DBG_COUNTER_INC(tx_encap);
3592 		MPASS(pi.ipi_new_pidx < txq->ift_size);
3593 
3594 		ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3595 		if (pi.ipi_new_pidx < pi.ipi_pidx) {
3596 			ndesc += txq->ift_size;
3597 			txq->ift_gen = 1;
3598 		}
3599 		/*
3600 		 * drivers can need as many as
3601 		 * two sentinels
3602 		 */
3603 		MPASS(ndesc <= pi.ipi_nsegs + 2);
3604 		MPASS(pi.ipi_new_pidx != pidx);
3605 		MPASS(ndesc > 0);
3606 		txq->ift_in_use += ndesc;
3607 		txq->ift_db_pending += ndesc;
3608 
3609 		/*
3610 		 * We update the last software descriptor again here because there may
3611 		 * be a sentinel and/or there may be more mbufs than segments
3612 		 */
3613 		txq->ift_pidx = pi.ipi_new_pidx;
3614 		txq->ift_npending += pi.ipi_ndescs;
3615 	} else {
3616 		*m_headp = m_head = iflib_remove_mbuf(txq);
3617 		if (err == EFBIG) {
3618 			txq->ift_txd_encap_efbig++;
3619 			if (remap < 2) {
3620 				remap = 1;
3621 				goto defrag;
3622 			}
3623 		}
3624 		goto defrag_failed;
3625 	}
3626 	/*
3627 	 * err can't possibly be non-zero here, so we don't neet to test it
3628 	 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3629 	 */
3630 	return (err);
3631 
3632 defrag_failed:
3633 	txq->ift_mbuf_defrag_failed++;
3634 	txq->ift_map_failed++;
3635 	m_freem(*m_headp);
3636 	DBG_COUNTER_INC(tx_frees);
3637 	*m_headp = NULL;
3638 	DBG_COUNTER_INC(encap_txd_encap_fail);
3639 	return (ENOMEM);
3640 }
3641 
3642 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3643 iflib_tx_desc_free(iflib_txq_t txq, int n)
3644 {
3645 	uint32_t qsize, cidx, mask, gen;
3646 	struct mbuf *m, **ifsd_m;
3647 	bool do_prefetch;
3648 
3649 	cidx = txq->ift_cidx;
3650 	gen = txq->ift_gen;
3651 	qsize = txq->ift_size;
3652 	mask = qsize-1;
3653 	ifsd_m = txq->ift_sds.ifsd_m;
3654 	do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH);
3655 
3656 	while (n-- > 0) {
3657 		if (do_prefetch) {
3658 			prefetch(ifsd_m[(cidx + 3) & mask]);
3659 			prefetch(ifsd_m[(cidx + 4) & mask]);
3660 		}
3661 		if ((m = ifsd_m[cidx]) != NULL) {
3662 			prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
3663 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3664 				bus_dmamap_sync(txq->ift_tso_buf_tag,
3665 				    txq->ift_sds.ifsd_tso_map[cidx],
3666 				    BUS_DMASYNC_POSTWRITE);
3667 				bus_dmamap_unload(txq->ift_tso_buf_tag,
3668 				    txq->ift_sds.ifsd_tso_map[cidx]);
3669 			} else {
3670 				bus_dmamap_sync(txq->ift_buf_tag,
3671 				    txq->ift_sds.ifsd_map[cidx],
3672 				    BUS_DMASYNC_POSTWRITE);
3673 				bus_dmamap_unload(txq->ift_buf_tag,
3674 				    txq->ift_sds.ifsd_map[cidx]);
3675 			}
3676 			/* XXX we don't support any drivers that batch packets yet */
3677 			MPASS(m->m_nextpkt == NULL);
3678 			m_freem(m);
3679 			ifsd_m[cidx] = NULL;
3680 #if MEMORY_LOGGING
3681 			txq->ift_dequeued++;
3682 #endif
3683 			DBG_COUNTER_INC(tx_frees);
3684 		}
3685 		if (__predict_false(++cidx == qsize)) {
3686 			cidx = 0;
3687 			gen = 0;
3688 		}
3689 	}
3690 	txq->ift_cidx = cidx;
3691 	txq->ift_gen = gen;
3692 }
3693 
3694 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq,int thresh)3695 iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
3696 {
3697 	int reclaim;
3698 	if_ctx_t ctx = txq->ift_ctx;
3699 
3700 	KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3701 	MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3702 
3703 	/*
3704 	 * Need a rate-limiting check so that this isn't called every time
3705 	 */
3706 	iflib_tx_credits_update(ctx, txq);
3707 	reclaim = DESC_RECLAIMABLE(txq);
3708 
3709 	if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3710 #ifdef INVARIANTS
3711 		if (iflib_verbose_debug) {
3712 			printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__,
3713 			       txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3714 			       reclaim, thresh);
3715 		}
3716 #endif
3717 		return (0);
3718 	}
3719 	iflib_tx_desc_free(txq, reclaim);
3720 	txq->ift_cleaned += reclaim;
3721 	txq->ift_in_use -= reclaim;
3722 
3723 	return (reclaim);
3724 }
3725 
3726 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3727 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3728 {
3729 	int next, size;
3730 	struct mbuf **items;
3731 
3732 	size = r->size;
3733 	next = (cidx + CACHE_PTR_INCREMENT) & (size-1);
3734 	items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3735 
3736 	prefetch(items[(cidx + offset) & (size-1)]);
3737 	if (remaining > 1) {
3738 		prefetch2cachelines(&items[next]);
3739 		prefetch2cachelines(items[(cidx + offset + 1) & (size-1)]);
3740 		prefetch2cachelines(items[(cidx + offset + 2) & (size-1)]);
3741 		prefetch2cachelines(items[(cidx + offset + 3) & (size-1)]);
3742 	}
3743 	return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size-1)]));
3744 }
3745 
3746 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3747 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3748 {
3749 
3750 	ifmp_ring_check_drainage(txq->ift_br, budget);
3751 }
3752 
3753 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3754 iflib_txq_can_drain(struct ifmp_ring *r)
3755 {
3756 	iflib_txq_t txq = r->cookie;
3757 	if_ctx_t ctx = txq->ift_ctx;
3758 
3759 	if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
3760 		return (1);
3761 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3762 	    BUS_DMASYNC_POSTREAD);
3763 	return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3764 	    false));
3765 }
3766 
3767 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3768 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3769 {
3770 	iflib_txq_t txq = r->cookie;
3771 	if_ctx_t ctx = txq->ift_ctx;
3772 	if_t ifp = ctx->ifc_ifp;
3773 	struct mbuf *m, **mp;
3774 	int avail, bytes_sent, skipped, count, err, i;
3775 	int mcast_sent, pkt_sent, reclaimed;
3776 	bool do_prefetch, rang, ring;
3777 
3778 	if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3779 			    !LINK_ACTIVE(ctx))) {
3780 		DBG_COUNTER_INC(txq_drain_notready);
3781 		return (0);
3782 	}
3783 	reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
3784 	rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3785 	avail = IDXDIFF(pidx, cidx, r->size);
3786 
3787 	if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3788 		/*
3789 		 * The driver is unloading so we need to free all pending packets.
3790 		 */
3791 		DBG_COUNTER_INC(txq_drain_flushing);
3792 		for (i = 0; i < avail; i++) {
3793 			if (__predict_true(r->items[(cidx + i) & (r->size-1)] != (void *)txq))
3794 				m_freem(r->items[(cidx + i) & (r->size-1)]);
3795 			r->items[(cidx + i) & (r->size-1)] = NULL;
3796 		}
3797 		return (avail);
3798 	}
3799 
3800 	if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3801 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3802 		CALLOUT_LOCK(txq);
3803 		callout_stop(&txq->ift_timer);
3804 		CALLOUT_UNLOCK(txq);
3805 		DBG_COUNTER_INC(txq_drain_oactive);
3806 		return (0);
3807 	}
3808 
3809 	/*
3810 	 * If we've reclaimed any packets this queue cannot be hung.
3811 	 */
3812 	if (reclaimed)
3813 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3814 	skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3815 	count = MIN(avail, TX_BATCH_SIZE);
3816 #ifdef INVARIANTS
3817 	if (iflib_verbose_debug)
3818 		printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __FUNCTION__,
3819 		       avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3820 #endif
3821 	do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3822 	err = 0;
3823 	for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) {
3824 		int rem = do_prefetch ? count - i : 0;
3825 
3826 		mp = _ring_peek_one(r, cidx, i, rem);
3827 		MPASS(mp != NULL && *mp != NULL);
3828 
3829 		/*
3830 		 * Completion interrupts will use the address of the txq
3831 		 * as a sentinel to enqueue _something_ in order to acquire
3832 		 * the lock on the mp_ring (there's no direct lock call).
3833 		 * We obviously whave to check for these sentinel cases
3834 		 * and skip them.
3835 		 */
3836 		if (__predict_false(*mp == (struct mbuf *)txq)) {
3837 			skipped++;
3838 			continue;
3839 		}
3840 		err = iflib_encap(txq, mp);
3841 		if (__predict_false(err)) {
3842 			/* no room - bail out */
3843 			if (err == ENOBUFS)
3844 				break;
3845 			skipped++;
3846 			/* we can't send this packet - skip it */
3847 			continue;
3848 		}
3849 		pkt_sent++;
3850 		m = *mp;
3851 		DBG_COUNTER_INC(tx_sent);
3852 		bytes_sent += m->m_pkthdr.len;
3853 		mcast_sent += !!(m->m_flags & M_MCAST);
3854 
3855 		if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
3856 			break;
3857 		ETHER_BPF_MTAP(ifp, m);
3858 		rang = iflib_txd_db_check(txq, false);
3859 	}
3860 
3861 	/* deliberate use of bitwise or to avoid gratuitous short-circuit */
3862 	ring = rang ? false  : (iflib_min_tx_latency | err);
3863 	iflib_txd_db_check(txq, ring);
3864 	if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
3865 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
3866 	if (mcast_sent)
3867 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
3868 #ifdef INVARIANTS
3869 	if (iflib_verbose_debug)
3870 		printf("consumed=%d\n", skipped + pkt_sent);
3871 #endif
3872 	return (skipped + pkt_sent);
3873 }
3874 
3875 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)3876 iflib_txq_drain_always(struct ifmp_ring *r)
3877 {
3878 	return (1);
3879 }
3880 
3881 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3882 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3883 {
3884 	int i, avail;
3885 	struct mbuf **mp;
3886 	iflib_txq_t txq;
3887 
3888 	txq = r->cookie;
3889 
3890 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3891 	CALLOUT_LOCK(txq);
3892 	callout_stop(&txq->ift_timer);
3893 	CALLOUT_UNLOCK(txq);
3894 
3895 	avail = IDXDIFF(pidx, cidx, r->size);
3896 	for (i = 0; i < avail; i++) {
3897 		mp = _ring_peek_one(r, cidx, i, avail - i);
3898 		if (__predict_false(*mp == (struct mbuf *)txq))
3899 			continue;
3900 		m_freem(*mp);
3901 		DBG_COUNTER_INC(tx_frees);
3902 	}
3903 	MPASS(ifmp_ring_is_stalled(r) == 0);
3904 	return (avail);
3905 }
3906 
3907 static void
iflib_ifmp_purge(iflib_txq_t txq)3908 iflib_ifmp_purge(iflib_txq_t txq)
3909 {
3910 	struct ifmp_ring *r;
3911 
3912 	r = txq->ift_br;
3913 	r->drain = iflib_txq_drain_free;
3914 	r->can_drain = iflib_txq_drain_always;
3915 
3916 	ifmp_ring_check_drainage(r, r->size);
3917 
3918 	r->drain = iflib_txq_drain;
3919 	r->can_drain = iflib_txq_can_drain;
3920 }
3921 
3922 static void
_task_fn_tx(void * context)3923 _task_fn_tx(void *context)
3924 {
3925 	iflib_txq_t txq = context;
3926 	if_ctx_t ctx = txq->ift_ctx;
3927 	if_t ifp = ctx->ifc_ifp;
3928 	int abdicate = ctx->ifc_sysctl_tx_abdicate;
3929 
3930 #ifdef IFLIB_DIAGNOSTICS
3931 	txq->ift_cpu_exec_count[curcpu]++;
3932 #endif
3933 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
3934 		return;
3935 #ifdef DEV_NETMAP
3936 	if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
3937 	    netmap_tx_irq(ifp, txq->ift_id))
3938 		goto skip_ifmp;
3939 #endif
3940 #ifdef ALTQ
3941 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
3942 		iflib_altq_if_start(ifp);
3943 #endif
3944 	if (txq->ift_db_pending)
3945 		ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
3946 	else if (!abdicate)
3947 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
3948 	/*
3949 	 * When abdicating, we always need to check drainage, not just when we don't enqueue
3950 	 */
3951 	if (abdicate)
3952 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
3953 #ifdef DEV_NETMAP
3954 skip_ifmp:
3955 #endif
3956 	if (ctx->ifc_flags & IFC_LEGACY)
3957 		IFDI_INTR_ENABLE(ctx);
3958 	else
3959 		IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
3960 }
3961 
3962 static void
_task_fn_rx(void * context)3963 _task_fn_rx(void *context)
3964 {
3965 	iflib_rxq_t rxq = context;
3966 	if_ctx_t ctx = rxq->ifr_ctx;
3967 	uint8_t more;
3968 	uint16_t budget;
3969 #ifdef DEV_NETMAP
3970 	u_int work = 0;
3971 	int nmirq;
3972 #endif
3973 
3974 #ifdef IFLIB_DIAGNOSTICS
3975 	rxq->ifr_cpu_exec_count[curcpu]++;
3976 #endif
3977 	DBG_COUNTER_INC(task_fn_rxs);
3978 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
3979 		return;
3980 #ifdef DEV_NETMAP
3981 	nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
3982 	if (nmirq != NM_IRQ_PASS) {
3983 		more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
3984 		goto skip_rxeof;
3985 	}
3986 #endif
3987 	budget = ctx->ifc_sysctl_rx_budget;
3988 	if (budget == 0)
3989 		budget = 16;	/* XXX */
3990 	more = iflib_rxeof(rxq, budget);
3991 #ifdef DEV_NETMAP
3992 skip_rxeof:
3993 #endif
3994 	if ((more & IFLIB_RXEOF_MORE) == 0) {
3995 		if (ctx->ifc_flags & IFC_LEGACY)
3996 			IFDI_INTR_ENABLE(ctx);
3997 		else
3998 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
3999 		DBG_COUNTER_INC(rx_intr_enables);
4000 	}
4001 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4002 		return;
4003 
4004 	if (more & IFLIB_RXEOF_MORE)
4005 		GROUPTASK_ENQUEUE(&rxq->ifr_task);
4006 	else if (more & IFLIB_RXEOF_EMPTY)
4007 		callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4008 }
4009 
4010 static void
_task_fn_admin(void * context)4011 _task_fn_admin(void *context)
4012 {
4013 	if_ctx_t ctx = context;
4014 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4015 	iflib_txq_t txq;
4016 	int i;
4017 	bool oactive, running, do_reset, do_watchdog, in_detach;
4018 
4019 	STATE_LOCK(ctx);
4020 	running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4021 	oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4022 	do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4023 	do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4024 	in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4025 	ctx->ifc_flags &= ~(IFC_DO_RESET|IFC_DO_WATCHDOG);
4026 	STATE_UNLOCK(ctx);
4027 
4028 	if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4029 		return;
4030 	if (in_detach)
4031 		return;
4032 
4033 	CTX_LOCK(ctx);
4034 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4035 		CALLOUT_LOCK(txq);
4036 		callout_stop(&txq->ift_timer);
4037 		CALLOUT_UNLOCK(txq);
4038 	}
4039 	if (do_watchdog) {
4040 		ctx->ifc_watchdog_events++;
4041 		IFDI_WATCHDOG_RESET(ctx);
4042 	}
4043 	IFDI_UPDATE_ADMIN_STATUS(ctx);
4044 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4045 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4046 		    txq->ift_timer.c_cpu);
4047 	}
4048 	IFDI_LINK_INTR_ENABLE(ctx);
4049 	if (do_reset)
4050 		iflib_if_init_locked(ctx);
4051 	CTX_UNLOCK(ctx);
4052 
4053 	if (LINK_ACTIVE(ctx) == 0)
4054 		return;
4055 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4056 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4057 }
4058 
4059 static void
_task_fn_iov(void * context)4060 _task_fn_iov(void *context)
4061 {
4062 	if_ctx_t ctx = context;
4063 
4064 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4065 	    !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4066 		return;
4067 
4068 	CTX_LOCK(ctx);
4069 	IFDI_VFLR_HANDLE(ctx);
4070 	CTX_UNLOCK(ctx);
4071 }
4072 
4073 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4074 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4075 {
4076 	int err;
4077 	if_int_delay_info_t info;
4078 	if_ctx_t ctx;
4079 
4080 	info = (if_int_delay_info_t)arg1;
4081 	ctx = info->iidi_ctx;
4082 	info->iidi_req = req;
4083 	info->iidi_oidp = oidp;
4084 	CTX_LOCK(ctx);
4085 	err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4086 	CTX_UNLOCK(ctx);
4087 	return (err);
4088 }
4089 
4090 /*********************************************************************
4091  *
4092  *  IFNET FUNCTIONS
4093  *
4094  **********************************************************************/
4095 
4096 static void
iflib_if_init_locked(if_ctx_t ctx)4097 iflib_if_init_locked(if_ctx_t ctx)
4098 {
4099 	iflib_stop(ctx);
4100 	iflib_init_locked(ctx);
4101 }
4102 
4103 static void
iflib_if_init(void * arg)4104 iflib_if_init(void *arg)
4105 {
4106 	if_ctx_t ctx = arg;
4107 
4108 	CTX_LOCK(ctx);
4109 	iflib_if_init_locked(ctx);
4110 	CTX_UNLOCK(ctx);
4111 }
4112 
4113 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4114 iflib_if_transmit(if_t ifp, struct mbuf *m)
4115 {
4116 	if_ctx_t	ctx = if_getsoftc(ifp);
4117 
4118 	iflib_txq_t txq;
4119 	int err, qidx;
4120 	int abdicate = ctx->ifc_sysctl_tx_abdicate;
4121 
4122 	if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4123 		DBG_COUNTER_INC(tx_frees);
4124 		m_freem(m);
4125 		return (ENETDOWN);
4126 	}
4127 
4128 	MPASS(m->m_nextpkt == NULL);
4129 	/* ALTQ-enabled interfaces always use queue 0. */
4130 	qidx = 0;
4131 	/* Use driver-supplied queue selection method if it exists */
4132 	if (ctx->isc_txq_select)
4133 		qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4134 	/* If not, use iflib's standard method */
4135 	else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !ALTQ_IS_ENABLED(&ifp->if_snd))
4136 		qidx = QIDX(ctx, m);
4137 
4138 	/* Set TX queue */
4139 	txq = &ctx->ifc_txqs[qidx];
4140 
4141 #ifdef DRIVER_BACKPRESSURE
4142 	if (txq->ift_closed) {
4143 		while (m != NULL) {
4144 			next = m->m_nextpkt;
4145 			m->m_nextpkt = NULL;
4146 			m_freem(m);
4147 			DBG_COUNTER_INC(tx_frees);
4148 			m = next;
4149 		}
4150 		return (ENOBUFS);
4151 	}
4152 #endif
4153 #ifdef notyet
4154 	qidx = count = 0;
4155 	mp = marr;
4156 	next = m;
4157 	do {
4158 		count++;
4159 		next = next->m_nextpkt;
4160 	} while (next != NULL);
4161 
4162 	if (count > nitems(marr))
4163 		if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4164 			/* XXX check nextpkt */
4165 			m_freem(m);
4166 			/* XXX simplify for now */
4167 			DBG_COUNTER_INC(tx_frees);
4168 			return (ENOBUFS);
4169 		}
4170 	for (next = m, i = 0; next != NULL; i++) {
4171 		mp[i] = next;
4172 		next = next->m_nextpkt;
4173 		mp[i]->m_nextpkt = NULL;
4174 	}
4175 #endif
4176 	DBG_COUNTER_INC(tx_seen);
4177 	err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4178 
4179 	if (abdicate)
4180 		GROUPTASK_ENQUEUE(&txq->ift_task);
4181  	if (err) {
4182 		if (!abdicate)
4183 			GROUPTASK_ENQUEUE(&txq->ift_task);
4184 		/* support forthcoming later */
4185 #ifdef DRIVER_BACKPRESSURE
4186 		txq->ift_closed = TRUE;
4187 #endif
4188 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4189 		m_freem(m);
4190 		DBG_COUNTER_INC(tx_frees);
4191 	}
4192 
4193 	return (err);
4194 }
4195 
4196 #ifdef ALTQ
4197 /*
4198  * The overall approach to integrating iflib with ALTQ is to continue to use
4199  * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4200  * ring.  Technically, when using ALTQ, queueing to an intermediate mp_ring
4201  * is redundant/unnecessary, but doing so minimizes the amount of
4202  * ALTQ-specific code required in iflib.  It is assumed that the overhead of
4203  * redundantly queueing to an intermediate mp_ring is swamped by the
4204  * performance limitations inherent in using ALTQ.
4205  *
4206  * When ALTQ support is compiled in, all iflib drivers will use a transmit
4207  * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4208  * given interface.  If ALTQ is enabled for an interface, then all
4209  * transmitted packets for that interface will be submitted to the ALTQ
4210  * subsystem via IFQ_ENQUEUE().  We don't use the legacy if_transmit()
4211  * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4212  * update stats that the iflib machinery handles, and which is sensitve to
4213  * the disused IFF_DRV_OACTIVE flag.  Additionally, iflib_altq_if_start()
4214  * will be installed as the start routine for use by ALTQ facilities that
4215  * need to trigger queue drains on a scheduled basis.
4216  *
4217  */
4218 static void
iflib_altq_if_start(if_t ifp)4219 iflib_altq_if_start(if_t ifp)
4220 {
4221 	struct ifaltq *ifq = &ifp->if_snd;
4222 	struct mbuf *m;
4223 
4224 	IFQ_LOCK(ifq);
4225 	IFQ_DEQUEUE_NOLOCK(ifq, m);
4226 	while (m != NULL) {
4227 		iflib_if_transmit(ifp, m);
4228 		IFQ_DEQUEUE_NOLOCK(ifq, m);
4229 	}
4230 	IFQ_UNLOCK(ifq);
4231 }
4232 
4233 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4234 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4235 {
4236 	int err;
4237 
4238 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4239 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
4240 		if (err == 0)
4241 			iflib_altq_if_start(ifp);
4242 	} else
4243 		err = iflib_if_transmit(ifp, m);
4244 
4245 	return (err);
4246 }
4247 #endif /* ALTQ */
4248 
4249 static void
iflib_if_qflush(if_t ifp)4250 iflib_if_qflush(if_t ifp)
4251 {
4252 	if_ctx_t ctx = if_getsoftc(ifp);
4253 	iflib_txq_t txq = ctx->ifc_txqs;
4254 	int i;
4255 
4256 	STATE_LOCK(ctx);
4257 	ctx->ifc_flags |= IFC_QFLUSH;
4258 	STATE_UNLOCK(ctx);
4259 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4260 		while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4261 			iflib_txq_check_drain(txq, 0);
4262 	STATE_LOCK(ctx);
4263 	ctx->ifc_flags &= ~IFC_QFLUSH;
4264 	STATE_UNLOCK(ctx);
4265 
4266 	/*
4267 	 * When ALTQ is enabled, this will also take care of purging the
4268 	 * ALTQ queue(s).
4269 	 */
4270 	if_qflush(ifp);
4271 }
4272 
4273 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4274 		     IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4275 		     IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4276 		     IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4277 
4278 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4279 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4280 {
4281 	if_ctx_t ctx = if_getsoftc(ifp);
4282 	struct ifreq	*ifr = (struct ifreq *)data;
4283 #if defined(INET) || defined(INET6)
4284 	struct ifaddr	*ifa = (struct ifaddr *)data;
4285 #endif
4286 	bool		avoid_reset = false;
4287 	int		err = 0, reinit = 0, bits;
4288 
4289 	switch (command) {
4290 	case SIOCSIFADDR:
4291 #ifdef INET
4292 		if (ifa->ifa_addr->sa_family == AF_INET)
4293 			avoid_reset = true;
4294 #endif
4295 #ifdef INET6
4296 		if (ifa->ifa_addr->sa_family == AF_INET6)
4297 			avoid_reset = true;
4298 #endif
4299 		/*
4300 		** Calling init results in link renegotiation,
4301 		** so we avoid doing it when possible.
4302 		*/
4303 		if (avoid_reset) {
4304 			if_setflagbits(ifp, IFF_UP,0);
4305 			if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4306 				reinit = 1;
4307 #ifdef INET
4308 			if (!(if_getflags(ifp) & IFF_NOARP))
4309 				arp_ifinit(ifp, ifa);
4310 #endif
4311 		} else
4312 			err = ether_ioctl(ifp, command, data);
4313 		break;
4314 	case SIOCSIFMTU:
4315 		CTX_LOCK(ctx);
4316 		if (ifr->ifr_mtu == if_getmtu(ifp)) {
4317 			CTX_UNLOCK(ctx);
4318 			break;
4319 		}
4320 		bits = if_getdrvflags(ifp);
4321 		/* stop the driver and free any clusters before proceeding */
4322 		iflib_stop(ctx);
4323 
4324 		if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4325 			STATE_LOCK(ctx);
4326 			if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4327 				ctx->ifc_flags |= IFC_MULTISEG;
4328 			else
4329 				ctx->ifc_flags &= ~IFC_MULTISEG;
4330 			STATE_UNLOCK(ctx);
4331 			err = if_setmtu(ifp, ifr->ifr_mtu);
4332 		}
4333 		iflib_init_locked(ctx);
4334 		STATE_LOCK(ctx);
4335 		if_setdrvflags(ifp, bits);
4336 		STATE_UNLOCK(ctx);
4337 		CTX_UNLOCK(ctx);
4338 		break;
4339 	case SIOCSIFFLAGS:
4340 		CTX_LOCK(ctx);
4341 		if (if_getflags(ifp) & IFF_UP) {
4342 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4343 				if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4344 				    (IFF_PROMISC | IFF_ALLMULTI)) {
4345 					CTX_UNLOCK(ctx);
4346 					err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4347 					CTX_LOCK(ctx);
4348 				}
4349 			} else
4350 				reinit = 1;
4351 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4352 			iflib_stop(ctx);
4353 		}
4354 		ctx->ifc_if_flags = if_getflags(ifp);
4355 		CTX_UNLOCK(ctx);
4356 		break;
4357 	case SIOCADDMULTI:
4358 	case SIOCDELMULTI:
4359 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4360 			CTX_LOCK(ctx);
4361 			IFDI_INTR_DISABLE(ctx);
4362 			IFDI_MULTI_SET(ctx);
4363 			IFDI_INTR_ENABLE(ctx);
4364 			CTX_UNLOCK(ctx);
4365 		}
4366 		break;
4367 	case SIOCSIFMEDIA:
4368 		CTX_LOCK(ctx);
4369 		IFDI_MEDIA_SET(ctx);
4370 		CTX_UNLOCK(ctx);
4371 		/* FALLTHROUGH */
4372 	case SIOCGIFMEDIA:
4373 	case SIOCGIFXMEDIA:
4374 		err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4375 		break;
4376 	case SIOCGI2C:
4377 	{
4378 		struct ifi2creq i2c;
4379 
4380 		err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4381 		if (err != 0)
4382 			break;
4383 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4384 			err = EINVAL;
4385 			break;
4386 		}
4387 		if (i2c.len > sizeof(i2c.data)) {
4388 			err = EINVAL;
4389 			break;
4390 		}
4391 
4392 		if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4393 			err = copyout(&i2c, ifr_data_get_ptr(ifr),
4394 			    sizeof(i2c));
4395 		break;
4396 	}
4397 	case SIOCSIFCAP:
4398 	{
4399 		int mask, setmask, oldmask;
4400 
4401 		oldmask = if_getcapenable(ifp);
4402 		mask = ifr->ifr_reqcap ^ oldmask;
4403 		mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4404 		setmask = 0;
4405 #ifdef TCP_OFFLOAD
4406 		setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6);
4407 #endif
4408 		setmask |= (mask & IFCAP_FLAGS);
4409 		setmask |= (mask & IFCAP_WOL);
4410 
4411 		/*
4412 		 * If any RX csum has changed, change all the ones that
4413 		 * are supported by the driver.
4414 		 */
4415 		if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4416 			setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4417 			    (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4418 		}
4419 
4420 		/*
4421 		 * want to ensure that traffic has stopped before we change any of the flags
4422 		 */
4423 		if (setmask) {
4424 			CTX_LOCK(ctx);
4425 			bits = if_getdrvflags(ifp);
4426 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4427 				iflib_stop(ctx);
4428 			STATE_LOCK(ctx);
4429 			if_togglecapenable(ifp, setmask);
4430 			ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4431 			STATE_UNLOCK(ctx);
4432 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4433 				iflib_init_locked(ctx);
4434 			STATE_LOCK(ctx);
4435 			if_setdrvflags(ifp, bits);
4436 			STATE_UNLOCK(ctx);
4437 			CTX_UNLOCK(ctx);
4438 		}
4439 		if_vlancap(ifp);
4440 		break;
4441 	}
4442 	case SIOCGPRIVATE_0:
4443 	case SIOCSDRVSPEC:
4444 	case SIOCGDRVSPEC:
4445 		CTX_LOCK(ctx);
4446 		err = IFDI_PRIV_IOCTL(ctx, command, data);
4447 		CTX_UNLOCK(ctx);
4448 		break;
4449 	default:
4450 		err = ether_ioctl(ifp, command, data);
4451 		break;
4452 	}
4453 	if (reinit)
4454 		iflib_if_init(ctx);
4455 	return (err);
4456 }
4457 
4458 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4459 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4460 {
4461 	if_ctx_t ctx = if_getsoftc(ifp);
4462 
4463 	return (IFDI_GET_COUNTER(ctx, cnt));
4464 }
4465 
4466 /*********************************************************************
4467  *
4468  *  OTHER FUNCTIONS EXPORTED TO THE STACK
4469  *
4470  **********************************************************************/
4471 
4472 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4473 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4474 {
4475 	if_ctx_t ctx = if_getsoftc(ifp);
4476 
4477 	if ((void *)ctx != arg)
4478 		return;
4479 
4480 	if ((vtag == 0) || (vtag > 4095))
4481 		return;
4482 
4483 	if (iflib_in_detach(ctx))
4484 		return;
4485 
4486 	CTX_LOCK(ctx);
4487 	/* Driver may need all untagged packets to be flushed */
4488 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4489 		iflib_stop(ctx);
4490 	IFDI_VLAN_REGISTER(ctx, vtag);
4491 	/* Re-init to load the changes, if required */
4492 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4493 		iflib_init_locked(ctx);
4494 	CTX_UNLOCK(ctx);
4495 }
4496 
4497 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4498 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4499 {
4500 	if_ctx_t ctx = if_getsoftc(ifp);
4501 
4502 	if ((void *)ctx != arg)
4503 		return;
4504 
4505 	if ((vtag == 0) || (vtag > 4095))
4506 		return;
4507 
4508 	CTX_LOCK(ctx);
4509 	/* Driver may need all tagged packets to be flushed */
4510 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4511 		iflib_stop(ctx);
4512 	IFDI_VLAN_UNREGISTER(ctx, vtag);
4513 	/* Re-init to load the changes, if required */
4514 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4515 		iflib_init_locked(ctx);
4516 	CTX_UNLOCK(ctx);
4517 }
4518 
4519 static void
iflib_led_func(void * arg,int onoff)4520 iflib_led_func(void *arg, int onoff)
4521 {
4522 	if_ctx_t ctx = arg;
4523 
4524 	CTX_LOCK(ctx);
4525 	IFDI_LED_FUNC(ctx, onoff);
4526 	CTX_UNLOCK(ctx);
4527 }
4528 
4529 /*********************************************************************
4530  *
4531  *  BUS FUNCTION DEFINITIONS
4532  *
4533  **********************************************************************/
4534 
4535 int
iflib_device_probe(device_t dev)4536 iflib_device_probe(device_t dev)
4537 {
4538 	const pci_vendor_info_t *ent;
4539 	if_shared_ctx_t sctx;
4540 	uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4541 	uint16_t pci_vendor_id;
4542 
4543 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4544 		return (ENOTSUP);
4545 
4546 	pci_vendor_id = pci_get_vendor(dev);
4547 	pci_device_id = pci_get_device(dev);
4548 	pci_subvendor_id = pci_get_subvendor(dev);
4549 	pci_subdevice_id = pci_get_subdevice(dev);
4550 	pci_rev_id = pci_get_revid(dev);
4551 	if (sctx->isc_parse_devinfo != NULL)
4552 		sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4553 
4554 	ent = sctx->isc_vendor_info;
4555 	while (ent->pvi_vendor_id != 0) {
4556 		if (pci_vendor_id != ent->pvi_vendor_id) {
4557 			ent++;
4558 			continue;
4559 		}
4560 		if ((pci_device_id == ent->pvi_device_id) &&
4561 		    ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4562 		     (ent->pvi_subvendor_id == 0)) &&
4563 		    ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4564 		     (ent->pvi_subdevice_id == 0)) &&
4565 		    ((pci_rev_id == ent->pvi_rev_id) ||
4566 		     (ent->pvi_rev_id == 0))) {
4567 			device_set_desc_copy(dev, ent->pvi_name);
4568 			/* this needs to be changed to zero if the bus probing code
4569 			 * ever stops re-probing on best match because the sctx
4570 			 * may have its values over written by register calls
4571 			 * in subsequent probes
4572 			 */
4573 			return (BUS_PROBE_DEFAULT);
4574 		}
4575 		ent++;
4576 	}
4577 	return (ENXIO);
4578 }
4579 
4580 int
iflib_device_probe_vendor(device_t dev)4581 iflib_device_probe_vendor(device_t dev)
4582 {
4583 	int probe;
4584 
4585 	probe = iflib_device_probe(dev);
4586 	if (probe == BUS_PROBE_DEFAULT)
4587 		return (BUS_PROBE_VENDOR);
4588 	else
4589 		return (probe);
4590 }
4591 
4592 static void
iflib_reset_qvalues(if_ctx_t ctx)4593 iflib_reset_qvalues(if_ctx_t ctx)
4594 {
4595 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4596 	if_shared_ctx_t sctx = ctx->ifc_sctx;
4597 	device_t dev = ctx->ifc_dev;
4598 	int i;
4599 
4600 	if (ctx->ifc_sysctl_ntxqs != 0)
4601 		scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4602 	if (ctx->ifc_sysctl_nrxqs != 0)
4603 		scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4604 
4605 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4606 		if (ctx->ifc_sysctl_ntxds[i] != 0)
4607 			scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4608 		else
4609 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4610 	}
4611 
4612 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4613 		if (ctx->ifc_sysctl_nrxds[i] != 0)
4614 			scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4615 		else
4616 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4617 	}
4618 
4619 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4620 		if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4621 			device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4622 				      i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4623 			scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4624 		}
4625 		if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4626 			device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4627 				      i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4628 			scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4629 		}
4630 		if (!powerof2(scctx->isc_nrxd[i])) {
4631 			device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4632 				      i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4633 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4634 		}
4635 	}
4636 
4637 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4638 		if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4639 			device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4640 				      i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4641 			scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4642 		}
4643 		if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4644 			device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4645 				      i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4646 			scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4647 		}
4648 		if (!powerof2(scctx->isc_ntxd[i])) {
4649 			device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4650 				      i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4651 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4652 		}
4653 	}
4654 }
4655 
4656 static void
iflib_add_pfil(if_ctx_t ctx)4657 iflib_add_pfil(if_ctx_t ctx)
4658 {
4659 	struct pfil_head *pfil;
4660 	struct pfil_head_args pa;
4661 	iflib_rxq_t rxq;
4662 	int i;
4663 
4664 	pa.pa_version = PFIL_VERSION;
4665 	pa.pa_flags = PFIL_IN;
4666 	pa.pa_type = PFIL_TYPE_ETHERNET;
4667 	pa.pa_headname = ctx->ifc_ifp->if_xname;
4668 	pfil = pfil_head_register(&pa);
4669 
4670 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4671 		rxq->pfil = pfil;
4672 	}
4673 }
4674 
4675 static void
iflib_rem_pfil(if_ctx_t ctx)4676 iflib_rem_pfil(if_ctx_t ctx)
4677 {
4678 	struct pfil_head *pfil;
4679 	iflib_rxq_t rxq;
4680 	int i;
4681 
4682 	rxq = ctx->ifc_rxqs;
4683 	pfil = rxq->pfil;
4684 	for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4685 		rxq->pfil = NULL;
4686 	}
4687 	pfil_head_unregister(pfil);
4688 }
4689 
4690 
4691 /*
4692  * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4693  * cpuid and wrapping as necessary.
4694  */
4695 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4696 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4697 {
4698 	unsigned int first_valid;
4699 	unsigned int last_valid;
4700 
4701 	/* cpuid should always be in the valid set */
4702 	MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4703 
4704 	/* valid set should never be empty */
4705 	MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4706 
4707 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4708 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4709 	n = n % CPU_COUNT(&ctx->ifc_cpus);
4710 	while (n > 0) {
4711 		do {
4712 			cpuid++;
4713 			if (cpuid > last_valid)
4714 				cpuid = first_valid;
4715 		} while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4716 		n--;
4717 	}
4718 
4719 	return (cpuid);
4720 }
4721 
4722 #if defined(SMP) && defined(SCHED_ULE)
4723 extern struct cpu_group *cpu_top;              /* CPU topology */
4724 
4725 static int
find_child_with_core(int cpu,struct cpu_group * grp)4726 find_child_with_core(int cpu, struct cpu_group *grp)
4727 {
4728 	int i;
4729 
4730 	if (grp->cg_children == 0)
4731 		return -1;
4732 
4733 	MPASS(grp->cg_child);
4734 	for (i = 0; i < grp->cg_children; i++) {
4735 		if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4736 			return i;
4737 	}
4738 
4739 	return -1;
4740 }
4741 
4742 
4743 /*
4744  * Find an L2 neighbor of the given CPU or return -1 if none found.  This
4745  * does not distinguish among multiple L2 neighbors if the given CPU has
4746  * more than one (it will always return the same result in that case).
4747  */
4748 static int
find_l2_neighbor(int cpu)4749 find_l2_neighbor(int cpu)
4750 {
4751 	struct cpu_group *grp;
4752 	int i;
4753 
4754 	grp = cpu_top;
4755 	if (grp == NULL)
4756 		return -1;
4757 
4758 	/*
4759 	 * Find the smallest CPU group that contains the given core.
4760 	 */
4761 	i = 0;
4762 	while ((i = find_child_with_core(cpu, grp)) != -1) {
4763 		/*
4764 		 * If the smallest group containing the given CPU has less
4765 		 * than two members, we conclude the given CPU has no
4766 		 * L2 neighbor.
4767 		 */
4768 		if (grp->cg_child[i].cg_count <= 1)
4769 			return (-1);
4770 		grp = &grp->cg_child[i];
4771 	}
4772 
4773 	/* Must share L2. */
4774 	if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4775 		return -1;
4776 
4777 	/*
4778 	 * Select the first member of the set that isn't the reference
4779 	 * CPU, which at this point is guaranteed to exist.
4780 	 */
4781 	for (i = 0; i < CPU_SETSIZE; i++) {
4782 		if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4783 			return (i);
4784 	}
4785 
4786 	/* Should never be reached */
4787 	return (-1);
4788 }
4789 
4790 #else
4791 static int
find_l2_neighbor(int cpu)4792 find_l2_neighbor(int cpu)
4793 {
4794 
4795 	return (-1);
4796 }
4797 #endif
4798 
4799 /*
4800  * CPU mapping behaviors
4801  * ---------------------
4802  * 'separate txrx' refers to the separate_txrx sysctl
4803  * 'use logical' refers to the use_logical_cores sysctl
4804  * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4805  *
4806  *  separate     use     INTR
4807  *    txrx     logical   CPUS   result
4808  * ---------- --------- ------ ------------------------------------------------
4809  *     -          -       X     RX and TX queues mapped to consecutive physical
4810  *                              cores with RX/TX pairs on same core and excess
4811  *                              of either following
4812  *     -          X       X     RX and TX queues mapped to consecutive cores
4813  *                              of any type with RX/TX pairs on same core and
4814  *                              excess of either following
4815  *     X          -       X     RX and TX queues mapped to consecutive physical
4816  *                              cores; all RX then all TX
4817  *     X          X       X     RX queues mapped to consecutive physical cores
4818  *                              first, then TX queues mapped to L2 neighbor of
4819  *                              the corresponding RX queue if one exists,
4820  *                              otherwise to consecutive physical cores
4821  *     -         n/a      -     RX and TX queues mapped to consecutive cores of
4822  *                              any type with RX/TX pairs on same core and excess
4823  *                              of either following
4824  *     X         n/a      -     RX and TX queues mapped to consecutive cores of
4825  *                              any type; all RX then all TX
4826  */
4827 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)4828 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
4829     bool is_tx)
4830 {
4831 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4832 	unsigned int core_index;
4833 
4834 	if (ctx->ifc_sysctl_separate_txrx) {
4835 		/*
4836 		 * When using separate CPUs for TX and RX, the assignment
4837 		 * will always be of a consecutive CPU out of the set of
4838 		 * context CPUs, except for the specific case where the
4839 		 * context CPUs are phsyical cores, the use of logical cores
4840 		 * has been enabled, the assignment is for TX, the TX qid
4841 		 * corresponds to an RX qid, and the CPU assigned to the
4842 		 * corresponding RX queue has an L2 neighbor.
4843 		 */
4844 		if (ctx->ifc_sysctl_use_logical_cores &&
4845 		    ctx->ifc_cpus_are_physical_cores &&
4846 		    is_tx && qid < scctx->isc_nrxqsets) {
4847 			int l2_neighbor;
4848 			unsigned int rx_cpuid;
4849 
4850 			rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
4851 			l2_neighbor = find_l2_neighbor(rx_cpuid);
4852 			if (l2_neighbor != -1) {
4853 				return (l2_neighbor);
4854 			}
4855 			/*
4856 			 * ... else fall through to the normal
4857 			 * consecutive-after-RX assignment scheme.
4858 			 *
4859 			 * Note that we are assuming that all RX queue CPUs
4860 			 * have an L2 neighbor, or all do not.  If a mixed
4861 			 * scenario is possible, we will have to keep track
4862 			 * separately of how many queues prior to this one
4863 			 * were not able to be assigned to an L2 neighbor.
4864 			 */
4865 		}
4866 		if (is_tx)
4867 			core_index = scctx->isc_nrxqsets + qid;
4868 		else
4869 			core_index = qid;
4870 	} else {
4871 		core_index = qid;
4872 	}
4873 
4874 	return (cpuid_advance(ctx, base_cpuid, core_index));
4875 }
4876 
4877 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)4878 get_ctx_core_offset(if_ctx_t ctx)
4879 {
4880 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4881 	struct cpu_offset *op;
4882 	cpuset_t assigned_cpus;
4883 	unsigned int cores_consumed;
4884 	unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
4885 	unsigned int first_valid;
4886 	unsigned int last_valid;
4887 	unsigned int i;
4888 
4889 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4890 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4891 
4892 	if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
4893 		/*
4894 		 * Align the user-chosen base CPU ID to the next valid CPU
4895 		 * for this device.  If the chosen base CPU ID is smaller
4896 		 * than the first valid CPU or larger than the last valid
4897 		 * CPU, we assume the user does not know what the valid
4898 		 * range is for this device and is thinking in terms of a
4899 		 * zero-based reference frame, and so we shift the given
4900 		 * value into the valid range (and wrap accordingly) so the
4901 		 * intent is translated to the proper frame of reference.
4902 		 * If the base CPU ID is within the valid first/last, but
4903 		 * does not correspond to a valid CPU, it is advanced to the
4904 		 * next valid CPU (wrapping if necessary).
4905 		 */
4906 		if (base_cpuid < first_valid || base_cpuid > last_valid) {
4907 			/* shift from zero-based to first_valid-based */
4908 			base_cpuid += first_valid;
4909 			/* wrap to range [first_valid, last_valid] */
4910 			base_cpuid = (base_cpuid - first_valid) %
4911 			    (last_valid - first_valid + 1);
4912 		}
4913 		if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
4914 			/*
4915 			 * base_cpuid is in [first_valid, last_valid], but
4916 			 * not a member of the valid set.  In this case,
4917 			 * there will always be a member of the valid set
4918 			 * with a CPU ID that is greater than base_cpuid,
4919 			 * and we simply advance to it.
4920 			 */
4921 			while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
4922 				base_cpuid++;
4923 		}
4924 		return (base_cpuid);
4925 	}
4926 
4927 	/*
4928 	 * Determine how many cores will be consumed by performing the CPU
4929 	 * assignments and counting how many of the assigned CPUs correspond
4930 	 * to CPUs in the set of context CPUs.  This is done using the CPU
4931 	 * ID first_valid as the base CPU ID, as the base CPU must be within
4932 	 * the set of context CPUs.
4933 	 *
4934 	 * Note not all assigned CPUs will be in the set of context CPUs
4935 	 * when separate CPUs are being allocated to TX and RX queues,
4936 	 * assignment to logical cores has been enabled, the set of context
4937 	 * CPUs contains only physical CPUs, and TX queues are mapped to L2
4938 	 * neighbors of CPUs that RX queues have been mapped to - in this
4939 	 * case we do only want to count how many CPUs in the set of context
4940 	 * CPUs have been consumed, as that determines the next CPU in that
4941 	 * set to start allocating at for the next device for which
4942 	 * core_offset is not set.
4943 	 */
4944 	CPU_ZERO(&assigned_cpus);
4945 	for (i = 0; i < scctx->isc_ntxqsets; i++)
4946 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
4947 		    &assigned_cpus);
4948 	for (i = 0; i < scctx->isc_nrxqsets; i++)
4949 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
4950 		    &assigned_cpus);
4951 	CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
4952 	cores_consumed = CPU_COUNT(&assigned_cpus);
4953 
4954 	mtx_lock(&cpu_offset_mtx);
4955 	SLIST_FOREACH(op, &cpu_offsets, entries) {
4956 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
4957 			base_cpuid = op->next_cpuid;
4958 			op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
4959 			    cores_consumed);
4960 			MPASS(op->refcount < UINT_MAX);
4961 			op->refcount++;
4962 			break;
4963 		}
4964 	}
4965 	if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
4966 		base_cpuid = first_valid;
4967 		op = malloc(sizeof(struct cpu_offset), M_IFLIB,
4968 		    M_NOWAIT | M_ZERO);
4969 		if (op == NULL) {
4970 			device_printf(ctx->ifc_dev,
4971 			    "allocation for cpu offset failed.\n");
4972 		} else {
4973 			op->next_cpuid = cpuid_advance(ctx, base_cpuid,
4974 			    cores_consumed);
4975 			op->refcount = 1;
4976 			CPU_COPY(&ctx->ifc_cpus, &op->set);
4977 			SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
4978 		}
4979 	}
4980 	mtx_unlock(&cpu_offset_mtx);
4981 
4982 	return (base_cpuid);
4983 }
4984 
4985 static void
unref_ctx_core_offset(if_ctx_t ctx)4986 unref_ctx_core_offset(if_ctx_t ctx)
4987 {
4988 	struct cpu_offset *op, *top;
4989 
4990 	mtx_lock(&cpu_offset_mtx);
4991 	SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
4992 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
4993 			MPASS(op->refcount > 0);
4994 			op->refcount--;
4995 			if (op->refcount == 0) {
4996 				SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
4997 				free(op, M_IFLIB);
4998 			}
4999 			break;
5000 		}
5001 	}
5002 	mtx_unlock(&cpu_offset_mtx);
5003 }
5004 
5005 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5006 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5007 {
5008 	if_ctx_t ctx;
5009 	if_t ifp;
5010 	if_softc_ctx_t scctx;
5011 	kobjop_desc_t kobj_desc;
5012 	kobj_method_t *kobj_method;
5013 	int err, msix, rid;
5014 	int num_txd, num_rxd;
5015 
5016 	ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO);
5017 
5018 	if (sc == NULL) {
5019 		sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
5020 		device_set_softc(dev, ctx);
5021 		ctx->ifc_flags |= IFC_SC_ALLOCATED;
5022 	}
5023 
5024 	ctx->ifc_sctx = sctx;
5025 	ctx->ifc_dev = dev;
5026 	ctx->ifc_softc = sc;
5027 
5028 	if ((err = iflib_register(ctx)) != 0) {
5029 		device_printf(dev, "iflib_register failed %d\n", err);
5030 		goto fail_ctx_free;
5031 	}
5032 	iflib_add_device_sysctl_pre(ctx);
5033 
5034 	scctx = &ctx->ifc_softc_ctx;
5035 	ifp = ctx->ifc_ifp;
5036 
5037 	iflib_reset_qvalues(ctx);
5038 	IFNET_WLOCK();
5039 	CTX_LOCK(ctx);
5040 	if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5041 		device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5042 		goto fail_unlock;
5043 	}
5044 	_iflib_pre_assert(scctx);
5045 	ctx->ifc_txrx = *scctx->isc_txrx;
5046 
5047 	if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5048 		ctx->ifc_mediap = scctx->isc_media;
5049 
5050 #ifdef INVARIANTS
5051 	if (scctx->isc_capabilities & IFCAP_TXCSUM)
5052 		MPASS(scctx->isc_tx_csum_flags);
5053 #endif
5054 
5055 	if_setcapabilities(ifp,
5056 	    scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5057 	if_setcapenable(ifp,
5058 	    scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5059 
5060 	if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5061 		scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5062 	if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5063 		scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5064 
5065 	num_txd = iflib_num_tx_descs(ctx);
5066 	num_rxd = iflib_num_rx_descs(ctx);
5067 
5068 	/* XXX change for per-queue sizes */
5069 	device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5070 	    num_txd, num_rxd);
5071 
5072 	if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5073 		scctx->isc_tx_nsegments = max(1, num_txd /
5074 		    MAX_SINGLE_PACKET_FRACTION);
5075 	if (scctx->isc_tx_tso_segments_max > num_txd /
5076 	    MAX_SINGLE_PACKET_FRACTION)
5077 		scctx->isc_tx_tso_segments_max = max(1,
5078 		    num_txd / MAX_SINGLE_PACKET_FRACTION);
5079 
5080 	/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5081 	if (if_getcapabilities(ifp) & IFCAP_TSO) {
5082 		/*
5083 		 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5084 		 * but some MACs do.
5085 		 */
5086 		if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5087 		    IP_MAXPACKET));
5088 		/*
5089 		 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5090 		 * into account.  In the worst case, each of these calls will
5091 		 * add another mbuf and, thus, the requirement for another DMA
5092 		 * segment.  So for best performance, it doesn't make sense to
5093 		 * advertize a maximum of TSO segments that typically will
5094 		 * require defragmentation in iflib_encap().
5095 		 */
5096 		if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5097 		if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5098 	}
5099 	if (scctx->isc_rss_table_size == 0)
5100 		scctx->isc_rss_table_size = 64;
5101 	scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
5102 
5103 	GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5104 	/* XXX format name */
5105 	taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
5106 	    NULL, NULL, "admin");
5107 
5108 	/* Set up cpu set.  If it fails, use the set of all CPUs. */
5109 	if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5110 		device_printf(dev, "Unable to fetch CPU list\n");
5111 		CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5112 		ctx->ifc_cpus_are_physical_cores = false;
5113 	} else
5114 		ctx->ifc_cpus_are_physical_cores = true;
5115 	MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5116 
5117 	/*
5118 	** Now set up MSI or MSI-X, should return us the number of supported
5119 	** vectors (will be 1 for a legacy interrupt and MSI).
5120 	*/
5121 	if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5122 		msix = scctx->isc_vectors;
5123 	} else if (scctx->isc_msix_bar != 0)
5124 	       /*
5125 		* The simple fact that isc_msix_bar is not 0 does not mean we
5126 		* we have a good value there that is known to work.
5127 		*/
5128 		msix = iflib_msix_init(ctx);
5129 	else {
5130 		scctx->isc_vectors = 1;
5131 		scctx->isc_ntxqsets = 1;
5132 		scctx->isc_nrxqsets = 1;
5133 		scctx->isc_intr = IFLIB_INTR_LEGACY;
5134 		msix = 0;
5135 	}
5136 	/* Get memory for the station queues */
5137 	if ((err = iflib_queues_alloc(ctx))) {
5138 		device_printf(dev, "Unable to allocate queue memory\n");
5139 		goto fail_intr_free;
5140 	}
5141 
5142 	if ((err = iflib_qset_structures_setup(ctx)))
5143 		goto fail_queues;
5144 
5145 	/*
5146 	 * Now that we know how many queues there are, get the core offset.
5147 	 */
5148 	ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5149 
5150 	if (msix > 1) {
5151 		/*
5152 		 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5153 		 * aren't the default NULL implementation.
5154 		 */
5155 		kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5156 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5157 		    kobj_desc);
5158 		if (kobj_method == &kobj_desc->deflt) {
5159 			device_printf(dev,
5160 			    "MSI-X requires ifdi_rx_queue_intr_enable method");
5161 			err = EOPNOTSUPP;
5162 			goto fail_queues;
5163 		}
5164 		kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5165 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5166 		    kobj_desc);
5167 		if (kobj_method == &kobj_desc->deflt) {
5168 			device_printf(dev,
5169 			    "MSI-X requires ifdi_tx_queue_intr_enable method");
5170 			err = EOPNOTSUPP;
5171 			goto fail_queues;
5172 		}
5173 
5174 		/*
5175 		 * Assign the MSI-X vectors.
5176 		 * Note that the default NULL ifdi_msix_intr_assign method will
5177 		 * fail here, too.
5178 		 */
5179 		err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5180 		if (err != 0) {
5181 			device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5182 			    err);
5183 			goto fail_queues;
5184 		}
5185 	} else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5186 		rid = 0;
5187 		if (scctx->isc_intr == IFLIB_INTR_MSI) {
5188 			MPASS(msix == 1);
5189 			rid = 1;
5190 		}
5191 		if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5192 			device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5193 			goto fail_queues;
5194 		}
5195 	} else {
5196 		device_printf(dev,
5197 		    "Cannot use iflib with only 1 MSI-X interrupt!\n");
5198 		err = ENODEV;
5199 		goto fail_queues;
5200 	}
5201 
5202 	ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5203 
5204 	if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5205 		device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5206 		goto fail_detach;
5207 	}
5208 
5209 	/*
5210 	 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5211 	 * This must appear after the call to ether_ifattach() because
5212 	 * ether_ifattach() sets if_hdrlen to the default value.
5213 	 */
5214 	if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5215 		if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5216 
5217 	if ((err = iflib_netmap_attach(ctx))) {
5218 		device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5219 		goto fail_detach;
5220 	}
5221 	*ctxp = ctx;
5222 
5223 	DEBUGNET_SET(ctx->ifc_ifp, iflib);
5224 
5225 	if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5226 	iflib_add_device_sysctl_post(ctx);
5227 	iflib_add_pfil(ctx);
5228 	ctx->ifc_flags |= IFC_INIT_DONE;
5229 	CTX_UNLOCK(ctx);
5230 	IFNET_WUNLOCK();
5231 
5232 	return (0);
5233 
5234 fail_detach:
5235 	ether_ifdetach(ctx->ifc_ifp);
5236 fail_queues:
5237 	iflib_tqg_detach(ctx);
5238 	iflib_tx_structures_free(ctx);
5239 	iflib_rx_structures_free(ctx);
5240 	IFDI_DETACH(ctx);
5241 	IFDI_QUEUES_FREE(ctx);
5242 fail_intr_free:
5243 	iflib_free_intr_mem(ctx);
5244 fail_unlock:
5245 	CTX_UNLOCK(ctx);
5246 	IFNET_WUNLOCK();
5247 	iflib_deregister(ctx);
5248 fail_ctx_free:
5249 	device_set_softc(ctx->ifc_dev, NULL);
5250         if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5251                 free(ctx->ifc_softc, M_IFLIB);
5252         free(ctx, M_IFLIB);
5253 	return (err);
5254 }
5255 
5256 int
iflib_pseudo_register(device_t dev,if_shared_ctx_t sctx,if_ctx_t * ctxp,struct iflib_cloneattach_ctx * clctx)5257 iflib_pseudo_register(device_t dev, if_shared_ctx_t sctx, if_ctx_t *ctxp,
5258 					  struct iflib_cloneattach_ctx *clctx)
5259 {
5260 	int num_txd, num_rxd;
5261 	int err;
5262 	if_ctx_t ctx;
5263 	if_t ifp;
5264 	if_softc_ctx_t scctx;
5265 	int i;
5266 	void *sc;
5267 
5268 	ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK|M_ZERO);
5269 	sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
5270 	ctx->ifc_flags |= IFC_SC_ALLOCATED;
5271 	if (sctx->isc_flags & (IFLIB_PSEUDO|IFLIB_VIRTUAL))
5272 		ctx->ifc_flags |= IFC_PSEUDO;
5273 
5274 	ctx->ifc_sctx = sctx;
5275 	ctx->ifc_softc = sc;
5276 	ctx->ifc_dev = dev;
5277 
5278 	if ((err = iflib_register(ctx)) != 0) {
5279 		device_printf(dev, "%s: iflib_register failed %d\n", __func__, err);
5280 		goto fail_ctx_free;
5281 	}
5282 	iflib_add_device_sysctl_pre(ctx);
5283 
5284 	scctx = &ctx->ifc_softc_ctx;
5285 	ifp = ctx->ifc_ifp;
5286 
5287 	iflib_reset_qvalues(ctx);
5288 	CTX_LOCK(ctx);
5289 	if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5290 		device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5291 		goto fail_unlock;
5292 	}
5293 	if (sctx->isc_flags & IFLIB_GEN_MAC)
5294 		ether_gen_addr(ifp, &ctx->ifc_mac);
5295 	if ((err = IFDI_CLONEATTACH(ctx, clctx->cc_ifc, clctx->cc_name,
5296 								clctx->cc_params)) != 0) {
5297 		device_printf(dev, "IFDI_CLONEATTACH failed %d\n", err);
5298 		goto fail_unlock;
5299 	}
5300 #ifdef INVARIANTS
5301 	if (scctx->isc_capabilities & IFCAP_TXCSUM)
5302 		MPASS(scctx->isc_tx_csum_flags);
5303 #endif
5304 
5305 	if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_LINKSTATE);
5306 	if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_LINKSTATE);
5307 
5308 	ifp->if_flags |= IFF_NOGROUP;
5309 	if (sctx->isc_flags & IFLIB_PSEUDO) {
5310 		ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO, 0, NULL);
5311 		ifmedia_set(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO);
5312 		if (sctx->isc_flags & IFLIB_PSEUDO_ETHER) {
5313 			ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5314 		} else {
5315 			if_attach(ctx->ifc_ifp);
5316 			bpfattach(ctx->ifc_ifp, DLT_NULL, sizeof(u_int32_t));
5317 		}
5318 
5319 		if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5320 			device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5321 			goto fail_detach;
5322 		}
5323 		*ctxp = ctx;
5324 
5325 		/*
5326 		 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5327 		 * This must appear after the call to ether_ifattach() because
5328 		 * ether_ifattach() sets if_hdrlen to the default value.
5329 		 */
5330 		if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5331 			if_setifheaderlen(ifp,
5332 			    sizeof(struct ether_vlan_header));
5333 
5334 		if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5335 		iflib_add_device_sysctl_post(ctx);
5336 		ctx->ifc_flags |= IFC_INIT_DONE;
5337 		CTX_UNLOCK(ctx);
5338 		return (0);
5339 	}
5340 	ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
5341 	ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO, 0, NULL);
5342 	ifmedia_set(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO);
5343 
5344 	_iflib_pre_assert(scctx);
5345 	ctx->ifc_txrx = *scctx->isc_txrx;
5346 
5347 	if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5348 		scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5349 	if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5350 		scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5351 
5352 	num_txd = iflib_num_tx_descs(ctx);
5353 	num_rxd = iflib_num_rx_descs(ctx);
5354 
5355 	/* XXX change for per-queue sizes */
5356 	device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5357 	    num_txd, num_rxd);
5358 
5359 	if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5360 		scctx->isc_tx_nsegments = max(1, num_txd /
5361 		    MAX_SINGLE_PACKET_FRACTION);
5362 	if (scctx->isc_tx_tso_segments_max > num_txd /
5363 	    MAX_SINGLE_PACKET_FRACTION)
5364 		scctx->isc_tx_tso_segments_max = max(1,
5365 		    num_txd / MAX_SINGLE_PACKET_FRACTION);
5366 
5367 	/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5368 	if (if_getcapabilities(ifp) & IFCAP_TSO) {
5369 		/*
5370 		 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5371 		 * but some MACs do.
5372 		 */
5373 		if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5374 		    IP_MAXPACKET));
5375 		/*
5376 		 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5377 		 * into account.  In the worst case, each of these calls will
5378 		 * add another mbuf and, thus, the requirement for another DMA
5379 		 * segment.  So for best performance, it doesn't make sense to
5380 		 * advertize a maximum of TSO segments that typically will
5381 		 * require defragmentation in iflib_encap().
5382 		 */
5383 		if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5384 		if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5385 	}
5386 	if (scctx->isc_rss_table_size == 0)
5387 		scctx->isc_rss_table_size = 64;
5388 	scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
5389 
5390 	GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5391 	/* XXX format name */
5392 	taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
5393 	    NULL, NULL, "admin");
5394 
5395 	/* XXX --- can support > 1 -- but keep it simple for now */
5396 	scctx->isc_intr = IFLIB_INTR_LEGACY;
5397 
5398 	/* Get memory for the station queues */
5399 	if ((err = iflib_queues_alloc(ctx))) {
5400 		device_printf(dev, "Unable to allocate queue memory\n");
5401 		goto fail_iflib_detach;
5402 	}
5403 
5404 	if ((err = iflib_qset_structures_setup(ctx))) {
5405 		device_printf(dev, "qset structure setup failed %d\n", err);
5406 		goto fail_queues;
5407 	}
5408 
5409 	/*
5410 	 * XXX What if anything do we want to do about interrupts?
5411 	 */
5412 	ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5413 	if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5414 		device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5415 		goto fail_detach;
5416 	}
5417 
5418 	/*
5419 	 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5420 	 * This must appear after the call to ether_ifattach() because
5421 	 * ether_ifattach() sets if_hdrlen to the default value.
5422 	 */
5423 	if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5424 		if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5425 
5426 	/* XXX handle more than one queue */
5427 	for (i = 0; i < scctx->isc_nrxqsets; i++)
5428 		IFDI_RX_CLSET(ctx, 0, i, ctx->ifc_rxqs[i].ifr_fl[0].ifl_sds.ifsd_cl);
5429 
5430 	*ctxp = ctx;
5431 
5432 	if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5433 	iflib_add_device_sysctl_post(ctx);
5434 	ctx->ifc_flags |= IFC_INIT_DONE;
5435 	CTX_UNLOCK(ctx);
5436 
5437 	return (0);
5438 fail_detach:
5439 	ether_ifdetach(ctx->ifc_ifp);
5440 fail_queues:
5441 	iflib_tqg_detach(ctx);
5442 	iflib_tx_structures_free(ctx);
5443 	iflib_rx_structures_free(ctx);
5444 fail_iflib_detach:
5445 	IFDI_DETACH(ctx);
5446 	IFDI_QUEUES_FREE(ctx);
5447 fail_unlock:
5448 	CTX_UNLOCK(ctx);
5449 	iflib_deregister(ctx);
5450 fail_ctx_free:
5451 	free(ctx->ifc_softc, M_IFLIB);
5452 	free(ctx, M_IFLIB);
5453 	return (err);
5454 }
5455 
5456 int
iflib_pseudo_deregister(if_ctx_t ctx)5457 iflib_pseudo_deregister(if_ctx_t ctx)
5458 {
5459 	if_t ifp = ctx->ifc_ifp;
5460 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5461 
5462 	/* Unregister VLAN event handlers early */
5463 	iflib_unregister_vlan_handlers(ctx);
5464 
5465 	if ((sctx->isc_flags & IFLIB_PSEUDO)  &&
5466 		(sctx->isc_flags & IFLIB_PSEUDO_ETHER) == 0) {
5467 		bpfdetach(ifp);
5468 		if_detach(ifp);
5469 	} else {
5470 		ether_ifdetach(ifp);
5471 	}
5472 
5473 	iflib_tqg_detach(ctx);
5474 	iflib_tx_structures_free(ctx);
5475 	iflib_rx_structures_free(ctx);
5476 	IFDI_DETACH(ctx);
5477 	IFDI_QUEUES_FREE(ctx);
5478 
5479 	iflib_deregister(ctx);
5480 
5481 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5482 		free(ctx->ifc_softc, M_IFLIB);
5483 	free(ctx, M_IFLIB);
5484 	return (0);
5485 }
5486 
5487 int
iflib_device_attach(device_t dev)5488 iflib_device_attach(device_t dev)
5489 {
5490 	if_ctx_t ctx;
5491 	if_shared_ctx_t sctx;
5492 
5493 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5494 		return (ENOTSUP);
5495 
5496 	pci_enable_busmaster(dev);
5497 
5498 	return (iflib_device_register(dev, NULL, sctx, &ctx));
5499 }
5500 
5501 int
iflib_device_deregister(if_ctx_t ctx)5502 iflib_device_deregister(if_ctx_t ctx)
5503 {
5504 	if_t ifp = ctx->ifc_ifp;
5505 	device_t dev = ctx->ifc_dev;
5506 
5507 	/* Make sure VLANS are not using driver */
5508 	if (if_vlantrunkinuse(ifp)) {
5509 		device_printf(dev, "Vlan in use, detach first\n");
5510 		return (EBUSY);
5511 	}
5512 #ifdef PCI_IOV
5513 	if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5514 		device_printf(dev, "SR-IOV in use; detach first.\n");
5515 		return (EBUSY);
5516 	}
5517 #endif
5518 
5519 	STATE_LOCK(ctx);
5520 	ctx->ifc_flags |= IFC_IN_DETACH;
5521 	STATE_UNLOCK(ctx);
5522 
5523 	/* Unregister VLAN handlers before calling iflib_stop() */
5524 	iflib_unregister_vlan_handlers(ctx);
5525 
5526 	iflib_netmap_detach(ifp);
5527 	ether_ifdetach(ifp);
5528 
5529 	CTX_LOCK(ctx);
5530 	iflib_stop(ctx);
5531 	CTX_UNLOCK(ctx);
5532 
5533 	iflib_rem_pfil(ctx);
5534 	if (ctx->ifc_led_dev != NULL)
5535 		led_destroy(ctx->ifc_led_dev);
5536 
5537 	iflib_tqg_detach(ctx);
5538 	iflib_tx_structures_free(ctx);
5539 	iflib_rx_structures_free(ctx);
5540 
5541 	CTX_LOCK(ctx);
5542 	IFDI_DETACH(ctx);
5543 	IFDI_QUEUES_FREE(ctx);
5544 	CTX_UNLOCK(ctx);
5545 
5546 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5547 	iflib_free_intr_mem(ctx);
5548 
5549 	bus_generic_detach(dev);
5550 
5551 	iflib_deregister(ctx);
5552 
5553 	device_set_softc(ctx->ifc_dev, NULL);
5554 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5555 		free(ctx->ifc_softc, M_IFLIB);
5556 	unref_ctx_core_offset(ctx);
5557 	free(ctx, M_IFLIB);
5558 	return (0);
5559 }
5560 
5561 static void
iflib_tqg_detach(if_ctx_t ctx)5562 iflib_tqg_detach(if_ctx_t ctx)
5563 {
5564 	iflib_txq_t txq;
5565 	iflib_rxq_t rxq;
5566 	int i;
5567 	struct taskqgroup *tqg;
5568 
5569 	/* XXX drain any dependent tasks */
5570 	tqg = qgroup_if_io_tqg;
5571 	for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5572 		callout_drain(&txq->ift_timer);
5573 #ifdef DEV_NETMAP
5574 		callout_drain(&txq->ift_netmap_timer);
5575 #endif /* DEV_NETMAP */
5576 		if (txq->ift_task.gt_uniq != NULL)
5577 			taskqgroup_detach(tqg, &txq->ift_task);
5578 	}
5579 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5580 		if (rxq->ifr_task.gt_uniq != NULL)
5581 			taskqgroup_detach(tqg, &rxq->ifr_task);
5582 	}
5583 	tqg = qgroup_if_config_tqg;
5584 	if (ctx->ifc_admin_task.gt_uniq != NULL)
5585 		taskqgroup_detach(tqg, &ctx->ifc_admin_task);
5586 	if (ctx->ifc_vflr_task.gt_uniq != NULL)
5587 		taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
5588 }
5589 
5590 static void
iflib_free_intr_mem(if_ctx_t ctx)5591 iflib_free_intr_mem(if_ctx_t ctx)
5592 {
5593 
5594 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5595 		iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5596 	}
5597 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5598 		pci_release_msi(ctx->ifc_dev);
5599 	}
5600 	if (ctx->ifc_msix_mem != NULL) {
5601 		bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5602 		    rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5603 		ctx->ifc_msix_mem = NULL;
5604 	}
5605 }
5606 
5607 int
iflib_device_detach(device_t dev)5608 iflib_device_detach(device_t dev)
5609 {
5610 	if_ctx_t ctx = device_get_softc(dev);
5611 
5612 	return (iflib_device_deregister(ctx));
5613 }
5614 
5615 int
iflib_device_suspend(device_t dev)5616 iflib_device_suspend(device_t dev)
5617 {
5618 	if_ctx_t ctx = device_get_softc(dev);
5619 
5620 	CTX_LOCK(ctx);
5621 	IFDI_SUSPEND(ctx);
5622 	CTX_UNLOCK(ctx);
5623 
5624 	return bus_generic_suspend(dev);
5625 }
5626 int
iflib_device_shutdown(device_t dev)5627 iflib_device_shutdown(device_t dev)
5628 {
5629 	if_ctx_t ctx = device_get_softc(dev);
5630 
5631 	CTX_LOCK(ctx);
5632 	IFDI_SHUTDOWN(ctx);
5633 	CTX_UNLOCK(ctx);
5634 
5635 	return bus_generic_suspend(dev);
5636 }
5637 
5638 int
iflib_device_resume(device_t dev)5639 iflib_device_resume(device_t dev)
5640 {
5641 	if_ctx_t ctx = device_get_softc(dev);
5642 	iflib_txq_t txq = ctx->ifc_txqs;
5643 
5644 	CTX_LOCK(ctx);
5645 	IFDI_RESUME(ctx);
5646 	iflib_if_init_locked(ctx);
5647 	CTX_UNLOCK(ctx);
5648 	for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5649 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5650 
5651 	return (bus_generic_resume(dev));
5652 }
5653 
5654 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5655 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5656 {
5657 	int error;
5658 	if_ctx_t ctx = device_get_softc(dev);
5659 
5660 	CTX_LOCK(ctx);
5661 	error = IFDI_IOV_INIT(ctx, num_vfs, params);
5662 	CTX_UNLOCK(ctx);
5663 
5664 	return (error);
5665 }
5666 
5667 void
iflib_device_iov_uninit(device_t dev)5668 iflib_device_iov_uninit(device_t dev)
5669 {
5670 	if_ctx_t ctx = device_get_softc(dev);
5671 
5672 	CTX_LOCK(ctx);
5673 	IFDI_IOV_UNINIT(ctx);
5674 	CTX_UNLOCK(ctx);
5675 }
5676 
5677 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5678 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5679 {
5680 	int error;
5681 	if_ctx_t ctx = device_get_softc(dev);
5682 
5683 	CTX_LOCK(ctx);
5684 	error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5685 	CTX_UNLOCK(ctx);
5686 
5687 	return (error);
5688 }
5689 
5690 /*********************************************************************
5691  *
5692  *  MODULE FUNCTION DEFINITIONS
5693  *
5694  **********************************************************************/
5695 
5696 /*
5697  * - Start a fast taskqueue thread for each core
5698  * - Start a taskqueue for control operations
5699  */
5700 static int
iflib_module_init(void)5701 iflib_module_init(void)
5702 {
5703 	iflib_timer_default = hz / 2;
5704 	return (0);
5705 }
5706 
5707 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5708 iflib_module_event_handler(module_t mod, int what, void *arg)
5709 {
5710 	int err;
5711 
5712 	switch (what) {
5713 	case MOD_LOAD:
5714 		if ((err = iflib_module_init()) != 0)
5715 			return (err);
5716 		break;
5717 	case MOD_UNLOAD:
5718 		return (EBUSY);
5719 	default:
5720 		return (EOPNOTSUPP);
5721 	}
5722 
5723 	return (0);
5724 }
5725 
5726 /*********************************************************************
5727  *
5728  *  PUBLIC FUNCTION DEFINITIONS
5729  *     ordered as in iflib.h
5730  *
5731  **********************************************************************/
5732 
5733 static void
_iflib_assert(if_shared_ctx_t sctx)5734 _iflib_assert(if_shared_ctx_t sctx)
5735 {
5736 	int i;
5737 
5738 	MPASS(sctx->isc_tx_maxsize);
5739 	MPASS(sctx->isc_tx_maxsegsize);
5740 
5741 	MPASS(sctx->isc_rx_maxsize);
5742 	MPASS(sctx->isc_rx_nsegments);
5743 	MPASS(sctx->isc_rx_maxsegsize);
5744 
5745 	MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5746 	for (i = 0; i < sctx->isc_nrxqs; i++) {
5747 		MPASS(sctx->isc_nrxd_min[i]);
5748 		MPASS(powerof2(sctx->isc_nrxd_min[i]));
5749 		MPASS(sctx->isc_nrxd_max[i]);
5750 		MPASS(powerof2(sctx->isc_nrxd_max[i]));
5751 		MPASS(sctx->isc_nrxd_default[i]);
5752 		MPASS(powerof2(sctx->isc_nrxd_default[i]));
5753 	}
5754 
5755 	MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5756 	for (i = 0; i < sctx->isc_ntxqs; i++) {
5757 		MPASS(sctx->isc_ntxd_min[i]);
5758 		MPASS(powerof2(sctx->isc_ntxd_min[i]));
5759 		MPASS(sctx->isc_ntxd_max[i]);
5760 		MPASS(powerof2(sctx->isc_ntxd_max[i]));
5761 		MPASS(sctx->isc_ntxd_default[i]);
5762 		MPASS(powerof2(sctx->isc_ntxd_default[i]));
5763 	}
5764 }
5765 
5766 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5767 _iflib_pre_assert(if_softc_ctx_t scctx)
5768 {
5769 
5770 	MPASS(scctx->isc_txrx->ift_txd_encap);
5771 	MPASS(scctx->isc_txrx->ift_txd_flush);
5772 	MPASS(scctx->isc_txrx->ift_txd_credits_update);
5773 	MPASS(scctx->isc_txrx->ift_rxd_available);
5774 	MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5775 	MPASS(scctx->isc_txrx->ift_rxd_refill);
5776 	MPASS(scctx->isc_txrx->ift_rxd_flush);
5777 }
5778 
5779 static int
iflib_register(if_ctx_t ctx)5780 iflib_register(if_ctx_t ctx)
5781 {
5782 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5783 	driver_t *driver = sctx->isc_driver;
5784 	device_t dev = ctx->ifc_dev;
5785 	if_t ifp;
5786 	u_char type;
5787 	int iflags;
5788 
5789 	if ((sctx->isc_flags & IFLIB_PSEUDO) == 0)
5790 		_iflib_assert(sctx);
5791 
5792 	CTX_LOCK_INIT(ctx);
5793 	STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5794 	if (sctx->isc_flags & IFLIB_PSEUDO) {
5795 		if (sctx->isc_flags & IFLIB_PSEUDO_ETHER)
5796 			type = IFT_ETHER;
5797 		else
5798 			type = IFT_PPP;
5799 	} else
5800 		type = IFT_ETHER;
5801 	ifp = ctx->ifc_ifp = if_alloc(type);
5802 	if (ifp == NULL) {
5803 		device_printf(dev, "can not allocate ifnet structure\n");
5804 		return (ENOMEM);
5805 	}
5806 
5807 	/*
5808 	 * Initialize our context's device specific methods
5809 	 */
5810 	kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5811 	kobj_class_compile((kobj_class_t) driver);
5812 
5813 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5814 	if_setsoftc(ifp, ctx);
5815 	if_setdev(ifp, dev);
5816 	if_setinitfn(ifp, iflib_if_init);
5817 	if_setioctlfn(ifp, iflib_if_ioctl);
5818 #ifdef ALTQ
5819 	if_setstartfn(ifp, iflib_altq_if_start);
5820 	if_settransmitfn(ifp, iflib_altq_if_transmit);
5821 	if_setsendqready(ifp);
5822 #else
5823 	if_settransmitfn(ifp, iflib_if_transmit);
5824 #endif
5825 	if_setqflushfn(ifp, iflib_if_qflush);
5826 	iflags = IFF_MULTICAST | IFF_KNOWSEPOCH;
5827 
5828 	if ((sctx->isc_flags & IFLIB_PSEUDO) &&
5829 		(sctx->isc_flags & IFLIB_PSEUDO_ETHER) == 0)
5830 		iflags |= IFF_POINTOPOINT;
5831 	else
5832 		iflags |= IFF_BROADCAST | IFF_SIMPLEX;
5833 	if_setflags(ifp, iflags);
5834 	ctx->ifc_vlan_attach_event =
5835 		EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5836 							  EVENTHANDLER_PRI_FIRST);
5837 	ctx->ifc_vlan_detach_event =
5838 		EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5839 							  EVENTHANDLER_PRI_FIRST);
5840 
5841 	if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5842 		ctx->ifc_mediap = &ctx->ifc_media;
5843 		ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5844 		    iflib_media_change, iflib_media_status);
5845 	}
5846 	return (0);
5847 }
5848 
5849 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5850 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5851 {
5852 	/* Unregister VLAN events */
5853 	if (ctx->ifc_vlan_attach_event != NULL) {
5854 		EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5855 		ctx->ifc_vlan_attach_event = NULL;
5856 	}
5857 	if (ctx->ifc_vlan_detach_event != NULL) {
5858 		EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5859 		ctx->ifc_vlan_detach_event = NULL;
5860 	}
5861 
5862 }
5863 
5864 static void
iflib_deregister(if_ctx_t ctx)5865 iflib_deregister(if_ctx_t ctx)
5866 {
5867 	if_t ifp = ctx->ifc_ifp;
5868 
5869 	/* Remove all media */
5870 	ifmedia_removeall(&ctx->ifc_media);
5871 
5872 	/* Ensure that VLAN event handlers are unregistered */
5873 	iflib_unregister_vlan_handlers(ctx);
5874 
5875 	/* Release kobject reference */
5876 	kobj_delete((kobj_t) ctx, NULL);
5877 
5878 	/* Free the ifnet structure */
5879 	if_free(ifp);
5880 
5881 	STATE_LOCK_DESTROY(ctx);
5882 
5883 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5884 	CTX_LOCK_DESTROY(ctx);
5885 }
5886 
5887 static int
iflib_queues_alloc(if_ctx_t ctx)5888 iflib_queues_alloc(if_ctx_t ctx)
5889 {
5890 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5891 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5892 	device_t dev = ctx->ifc_dev;
5893 	int nrxqsets = scctx->isc_nrxqsets;
5894 	int ntxqsets = scctx->isc_ntxqsets;
5895 	iflib_txq_t txq;
5896 	iflib_rxq_t rxq;
5897 	iflib_fl_t fl = NULL;
5898 	int i, j, cpu, err, txconf, rxconf;
5899 	iflib_dma_info_t ifdip;
5900 	uint32_t *rxqsizes = scctx->isc_rxqsizes;
5901 	uint32_t *txqsizes = scctx->isc_txqsizes;
5902 	uint8_t nrxqs = sctx->isc_nrxqs;
5903 	uint8_t ntxqs = sctx->isc_ntxqs;
5904 	int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5905 	int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5906 	caddr_t *vaddrs;
5907 	uint64_t *paddrs;
5908 
5909 	KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5910 	KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5911 	KASSERT(nrxqs >= fl_offset + nfree_lists,
5912            ("there must be at least a rxq for each free list"));
5913 
5914 	/* Allocate the TX ring struct memory */
5915 	if (!(ctx->ifc_txqs =
5916 	    (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5917 	    ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5918 		device_printf(dev, "Unable to allocate TX ring memory\n");
5919 		err = ENOMEM;
5920 		goto fail;
5921 	}
5922 
5923 	/* Now allocate the RX */
5924 	if (!(ctx->ifc_rxqs =
5925 	    (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5926 	    nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5927 		device_printf(dev, "Unable to allocate RX ring memory\n");
5928 		err = ENOMEM;
5929 		goto rx_fail;
5930 	}
5931 
5932 	txq = ctx->ifc_txqs;
5933 	rxq = ctx->ifc_rxqs;
5934 
5935 	/*
5936 	 * XXX handle allocation failure
5937 	 */
5938 	for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5939 		/* Set up some basics */
5940 
5941 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5942 		    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5943 			device_printf(dev,
5944 			    "Unable to allocate TX DMA info memory\n");
5945 			err = ENOMEM;
5946 			goto err_tx_desc;
5947 		}
5948 		txq->ift_ifdi = ifdip;
5949 		for (j = 0; j < ntxqs; j++, ifdip++) {
5950 			if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5951 				device_printf(dev,
5952 				    "Unable to allocate TX descriptors\n");
5953 				err = ENOMEM;
5954 				goto err_tx_desc;
5955 			}
5956 			txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5957 			bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5958 		}
5959 		txq->ift_ctx = ctx;
5960 		txq->ift_id = i;
5961 		if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5962 			txq->ift_br_offset = 1;
5963 		} else {
5964 			txq->ift_br_offset = 0;
5965 		}
5966 
5967 		if (iflib_txsd_alloc(txq)) {
5968 			device_printf(dev, "Critical Failure setting up TX buffers\n");
5969 			err = ENOMEM;
5970 			goto err_tx_desc;
5971 		}
5972 
5973 		/* Initialize the TX lock */
5974 		snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5975 		    device_get_nameunit(dev), txq->ift_id);
5976 		mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5977 		callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5978 		txq->ift_timer.c_cpu = cpu;
5979 #ifdef DEV_NETMAP
5980 		callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5981 		txq->ift_netmap_timer.c_cpu = cpu;
5982 #endif /* DEV_NETMAP */
5983 
5984 		err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5985 				      iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5986 		if (err) {
5987 			/* XXX free any allocated rings */
5988 			device_printf(dev, "Unable to allocate buf_ring\n");
5989 			goto err_tx_desc;
5990 		}
5991 	}
5992 
5993 	for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5994 		/* Set up some basics */
5995 		callout_init(&rxq->ifr_watchdog, 1);
5996 
5997 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5998 		   M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5999 			device_printf(dev,
6000 			    "Unable to allocate RX DMA info memory\n");
6001 			err = ENOMEM;
6002 			goto err_tx_desc;
6003 		}
6004 
6005 		rxq->ifr_ifdi = ifdip;
6006 		/* XXX this needs to be changed if #rx queues != #tx queues */
6007 		rxq->ifr_ntxqirq = 1;
6008 		rxq->ifr_txqid[0] = i;
6009 		for (j = 0; j < nrxqs; j++, ifdip++) {
6010 			if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
6011 				device_printf(dev,
6012 				    "Unable to allocate RX descriptors\n");
6013 				err = ENOMEM;
6014 				goto err_tx_desc;
6015 			}
6016 			bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
6017 		}
6018 		rxq->ifr_ctx = ctx;
6019 		rxq->ifr_id = i;
6020 		rxq->ifr_fl_offset = fl_offset;
6021 		rxq->ifr_nfl = nfree_lists;
6022 		if (!(fl =
6023 			  (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
6024 			device_printf(dev, "Unable to allocate free list memory\n");
6025 			err = ENOMEM;
6026 			goto err_tx_desc;
6027 		}
6028 		rxq->ifr_fl = fl;
6029 		for (j = 0; j < nfree_lists; j++) {
6030 			fl[j].ifl_rxq = rxq;
6031 			fl[j].ifl_id = j;
6032 			fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
6033 			fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
6034 		}
6035 		/* Allocate receive buffers for the ring */
6036 		if (iflib_rxsd_alloc(rxq)) {
6037 			device_printf(dev,
6038 			    "Critical Failure setting up receive buffers\n");
6039 			err = ENOMEM;
6040 			goto err_rx_desc;
6041 		}
6042 
6043 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
6044 			fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
6045 			    M_WAITOK);
6046 	}
6047 
6048 	/* TXQs */
6049 	vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
6050 	paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
6051 	for (i = 0; i < ntxqsets; i++) {
6052 		iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
6053 
6054 		for (j = 0; j < ntxqs; j++, di++) {
6055 			vaddrs[i*ntxqs + j] = di->idi_vaddr;
6056 			paddrs[i*ntxqs + j] = di->idi_paddr;
6057 		}
6058 	}
6059 	if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
6060 		device_printf(ctx->ifc_dev,
6061 		    "Unable to allocate device TX queue\n");
6062 		iflib_tx_structures_free(ctx);
6063 		free(vaddrs, M_IFLIB);
6064 		free(paddrs, M_IFLIB);
6065 		goto err_rx_desc;
6066 	}
6067 	free(vaddrs, M_IFLIB);
6068 	free(paddrs, M_IFLIB);
6069 
6070 	/* RXQs */
6071 	vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
6072 	paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
6073 	for (i = 0; i < nrxqsets; i++) {
6074 		iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
6075 
6076 		for (j = 0; j < nrxqs; j++, di++) {
6077 			vaddrs[i*nrxqs + j] = di->idi_vaddr;
6078 			paddrs[i*nrxqs + j] = di->idi_paddr;
6079 		}
6080 	}
6081 	if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
6082 		device_printf(ctx->ifc_dev,
6083 		    "Unable to allocate device RX queue\n");
6084 		iflib_tx_structures_free(ctx);
6085 		free(vaddrs, M_IFLIB);
6086 		free(paddrs, M_IFLIB);
6087 		goto err_rx_desc;
6088 	}
6089 	free(vaddrs, M_IFLIB);
6090 	free(paddrs, M_IFLIB);
6091 
6092 	return (0);
6093 
6094 /* XXX handle allocation failure changes */
6095 err_rx_desc:
6096 err_tx_desc:
6097 rx_fail:
6098 	if (ctx->ifc_rxqs != NULL)
6099 		free(ctx->ifc_rxqs, M_IFLIB);
6100 	ctx->ifc_rxqs = NULL;
6101 	if (ctx->ifc_txqs != NULL)
6102 		free(ctx->ifc_txqs, M_IFLIB);
6103 	ctx->ifc_txqs = NULL;
6104 fail:
6105 	return (err);
6106 }
6107 
6108 static int
iflib_tx_structures_setup(if_ctx_t ctx)6109 iflib_tx_structures_setup(if_ctx_t ctx)
6110 {
6111 	iflib_txq_t txq = ctx->ifc_txqs;
6112 	int i;
6113 
6114 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
6115 		iflib_txq_setup(txq);
6116 
6117 	return (0);
6118 }
6119 
6120 static void
iflib_tx_structures_free(if_ctx_t ctx)6121 iflib_tx_structures_free(if_ctx_t ctx)
6122 {
6123 	iflib_txq_t txq = ctx->ifc_txqs;
6124 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6125 	int i, j;
6126 
6127 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6128 		for (j = 0; j < sctx->isc_ntxqs; j++)
6129 			iflib_dma_free(&txq->ift_ifdi[j]);
6130 		iflib_txq_destroy(txq);
6131 	}
6132 	free(ctx->ifc_txqs, M_IFLIB);
6133 	ctx->ifc_txqs = NULL;
6134 }
6135 
6136 /*********************************************************************
6137  *
6138  *  Initialize all receive rings.
6139  *
6140  **********************************************************************/
6141 static int
iflib_rx_structures_setup(if_ctx_t ctx)6142 iflib_rx_structures_setup(if_ctx_t ctx)
6143 {
6144 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6145 	int q;
6146 #if defined(INET6) || defined(INET)
6147 	int err, i;
6148 #endif
6149 
6150 	for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6151 #if defined(INET6) || defined(INET)
6152 		if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO) {
6153 			err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6154 			    TCP_LRO_ENTRIES, min(1024,
6155 			    ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6156 			if (err != 0) {
6157 				device_printf(ctx->ifc_dev,
6158 				    "LRO Initialization failed!\n");
6159 				goto fail;
6160 			}
6161 		}
6162 #endif
6163 		IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6164 	}
6165 	return (0);
6166 #if defined(INET6) || defined(INET)
6167 fail:
6168 	/*
6169 	 * Free LRO resources allocated so far, we will only handle
6170 	 * the rings that completed, the failing case will have
6171 	 * cleaned up for itself.  'q' failed, so its the terminus.
6172 	 */
6173 	rxq = ctx->ifc_rxqs;
6174 	for (i = 0; i < q; ++i, rxq++) {
6175 		if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
6176 			tcp_lro_free(&rxq->ifr_lc);
6177 	}
6178 	return (err);
6179 #endif
6180 }
6181 
6182 /*********************************************************************
6183  *
6184  *  Free all receive rings.
6185  *
6186  **********************************************************************/
6187 static void
iflib_rx_structures_free(if_ctx_t ctx)6188 iflib_rx_structures_free(if_ctx_t ctx)
6189 {
6190 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6191 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6192 	int i, j;
6193 
6194 	for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6195 		for (j = 0; j < sctx->isc_nrxqs; j++)
6196 			iflib_dma_free(&rxq->ifr_ifdi[j]);
6197 		iflib_rx_sds_free(rxq);
6198 #if defined(INET6) || defined(INET)
6199 		if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
6200 			tcp_lro_free(&rxq->ifr_lc);
6201 #endif
6202 	}
6203 	free(ctx->ifc_rxqs, M_IFLIB);
6204 	ctx->ifc_rxqs = NULL;
6205 }
6206 
6207 static int
iflib_qset_structures_setup(if_ctx_t ctx)6208 iflib_qset_structures_setup(if_ctx_t ctx)
6209 {
6210 	int err;
6211 
6212 	/*
6213 	 * It is expected that the caller takes care of freeing queues if this
6214 	 * fails.
6215 	 */
6216 	if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6217 		device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6218 		return (err);
6219 	}
6220 
6221 	if ((err = iflib_rx_structures_setup(ctx)) != 0)
6222 		device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6223 
6224 	return (err);
6225 }
6226 
6227 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6228 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6229 		driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6230 {
6231 
6232 	return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6233 }
6234 
6235 /* Just to avoid copy/paste */
6236 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6237 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6238     int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6239     const char *name)
6240 {
6241 	device_t dev;
6242 	unsigned int base_cpuid, cpuid;
6243 	int err;
6244 
6245 	dev = ctx->ifc_dev;
6246 	base_cpuid = ctx->ifc_sysctl_core_offset;
6247 	cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6248 	err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6249 	    irq ? irq->ii_res : NULL, name);
6250 	if (err) {
6251 		device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6252 		return (err);
6253 	}
6254 #ifdef notyet
6255 	if (cpuid > ctx->ifc_cpuid_highest)
6256 		ctx->ifc_cpuid_highest = cpuid;
6257 #endif
6258 	return (0);
6259 }
6260 
6261 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6262 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6263 			iflib_intr_type_t type, driver_filter_t *filter,
6264 			void *filter_arg, int qid, const char *name)
6265 {
6266 	device_t dev;
6267 	struct grouptask *gtask;
6268 	struct taskqgroup *tqg;
6269 	iflib_filter_info_t info;
6270 	gtask_fn_t *fn;
6271 	int tqrid, err;
6272 	driver_filter_t *intr_fast;
6273 	void *q;
6274 
6275 	info = &ctx->ifc_filter_info;
6276 	tqrid = rid;
6277 
6278 	switch (type) {
6279 	/* XXX merge tx/rx for netmap? */
6280 	case IFLIB_INTR_TX:
6281 		q = &ctx->ifc_txqs[qid];
6282 		info = &ctx->ifc_txqs[qid].ift_filter_info;
6283 		gtask = &ctx->ifc_txqs[qid].ift_task;
6284 		tqg = qgroup_if_io_tqg;
6285 		fn = _task_fn_tx;
6286 		intr_fast = iflib_fast_intr;
6287 		GROUPTASK_INIT(gtask, 0, fn, q);
6288 		ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6289 		break;
6290 	case IFLIB_INTR_RX:
6291 		q = &ctx->ifc_rxqs[qid];
6292 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6293 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6294 		tqg = qgroup_if_io_tqg;
6295 		fn = _task_fn_rx;
6296 		intr_fast = iflib_fast_intr;
6297 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6298 		break;
6299 	case IFLIB_INTR_RXTX:
6300 		q = &ctx->ifc_rxqs[qid];
6301 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6302 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6303 		tqg = qgroup_if_io_tqg;
6304 		fn = _task_fn_rx;
6305 		intr_fast = iflib_fast_intr_rxtx;
6306 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6307 		break;
6308 	case IFLIB_INTR_ADMIN:
6309 		q = ctx;
6310 		tqrid = -1;
6311 		info = &ctx->ifc_filter_info;
6312 		gtask = &ctx->ifc_admin_task;
6313 		tqg = qgroup_if_config_tqg;
6314 		fn = _task_fn_admin;
6315 		intr_fast = iflib_fast_intr_ctx;
6316 		break;
6317 	default:
6318 		device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6319 		    __func__);
6320 		return (EINVAL);
6321 	}
6322 
6323 	info->ifi_filter = filter;
6324 	info->ifi_filter_arg = filter_arg;
6325 	info->ifi_task = gtask;
6326 	info->ifi_ctx = q;
6327 
6328 	dev = ctx->ifc_dev;
6329 	err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info,  name);
6330 	if (err != 0) {
6331 		device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6332 		return (err);
6333 	}
6334 	if (type == IFLIB_INTR_ADMIN)
6335 		return (0);
6336 
6337 	if (tqrid != -1) {
6338 		err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6339 		    name);
6340 		if (err)
6341 			return (err);
6342 	} else {
6343 		taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6344 	}
6345 
6346 	return (0);
6347 }
6348 
6349 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6350 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, void *arg, int qid, const char *name)
6351 {
6352 	device_t dev;
6353 	struct grouptask *gtask;
6354 	struct taskqgroup *tqg;
6355 	gtask_fn_t *fn;
6356 	void *q;
6357 	int err;
6358 
6359 	switch (type) {
6360 	case IFLIB_INTR_TX:
6361 		q = &ctx->ifc_txqs[qid];
6362 		gtask = &ctx->ifc_txqs[qid].ift_task;
6363 		tqg = qgroup_if_io_tqg;
6364 		fn = _task_fn_tx;
6365 		GROUPTASK_INIT(gtask, 0, fn, q);
6366 		break;
6367 	case IFLIB_INTR_RX:
6368 		q = &ctx->ifc_rxqs[qid];
6369 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6370 		tqg = qgroup_if_io_tqg;
6371 		fn = _task_fn_rx;
6372 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6373 		break;
6374 	case IFLIB_INTR_IOV:
6375 		q = ctx;
6376 		gtask = &ctx->ifc_vflr_task;
6377 		tqg = qgroup_if_config_tqg;
6378 		fn = _task_fn_iov;
6379 		GROUPTASK_INIT(gtask, 0, fn, q);
6380 		break;
6381 	default:
6382 		panic("unknown net intr type");
6383 	}
6384 	err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6385 	if (err) {
6386 		dev = ctx->ifc_dev;
6387 		taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6388 		    name);
6389 	}
6390 }
6391 
6392 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6393 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6394 {
6395 
6396 	if (irq->ii_tag)
6397 		bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6398 
6399 	if (irq->ii_res)
6400 		bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6401 		    rman_get_rid(irq->ii_res), irq->ii_res);
6402 }
6403 
6404 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6405 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6406 {
6407 	iflib_txq_t txq = ctx->ifc_txqs;
6408 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6409 	if_irq_t irq = &ctx->ifc_legacy_irq;
6410 	iflib_filter_info_t info;
6411 	device_t dev;
6412 	struct grouptask *gtask;
6413 	struct resource *res;
6414 	struct taskqgroup *tqg;
6415 	void *q;
6416 	int err, tqrid;
6417 	bool rx_only;
6418 
6419 	q = &ctx->ifc_rxqs[0];
6420 	info = &rxq[0].ifr_filter_info;
6421 	gtask = &rxq[0].ifr_task;
6422 	tqg = qgroup_if_io_tqg;
6423 	tqrid = *rid;
6424 	rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6425 
6426 	ctx->ifc_flags |= IFC_LEGACY;
6427 	info->ifi_filter = filter;
6428 	info->ifi_filter_arg = filter_arg;
6429 	info->ifi_task = gtask;
6430 	info->ifi_ctx = rx_only ? ctx : q;
6431 
6432 	dev = ctx->ifc_dev;
6433 	/* We allocate a single interrupt resource */
6434 	err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr_ctx :
6435 	    iflib_fast_intr_rxtx, NULL, info, name);
6436 	if (err != 0)
6437 		return (err);
6438 	NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, q);
6439 	res = irq->ii_res;
6440 	taskqgroup_attach(tqg, gtask, q, dev, res, name);
6441 
6442 	GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6443 	taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6444 	    "tx");
6445 	return (0);
6446 }
6447 
6448 void
iflib_led_create(if_ctx_t ctx)6449 iflib_led_create(if_ctx_t ctx)
6450 {
6451 
6452 	ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6453 	    device_get_nameunit(ctx->ifc_dev));
6454 }
6455 
6456 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6457 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6458 {
6459 
6460 	GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6461 }
6462 
6463 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6464 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6465 {
6466 
6467 	GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6468 }
6469 
6470 void
iflib_admin_intr_deferred(if_ctx_t ctx)6471 iflib_admin_intr_deferred(if_ctx_t ctx)
6472 {
6473 
6474 	MPASS(ctx->ifc_admin_task.gt_taskqueue != NULL);
6475 	GROUPTASK_ENQUEUE(&ctx->ifc_admin_task);
6476 }
6477 
6478 void
iflib_iov_intr_deferred(if_ctx_t ctx)6479 iflib_iov_intr_deferred(if_ctx_t ctx)
6480 {
6481 
6482 	GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task);
6483 }
6484 
6485 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6486 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6487 {
6488 
6489 	taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6490 	    name);
6491 }
6492 
6493 void
iflib_config_gtask_init(void * ctx,struct grouptask * gtask,gtask_fn_t * fn,const char * name)6494 iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
6495 	const char *name)
6496 {
6497 
6498 	GROUPTASK_INIT(gtask, 0, fn, ctx);
6499 	taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, NULL, NULL,
6500 	    name);
6501 }
6502 
6503 void
iflib_config_gtask_deinit(struct grouptask * gtask)6504 iflib_config_gtask_deinit(struct grouptask *gtask)
6505 {
6506 
6507 	taskqgroup_detach(qgroup_if_config_tqg, gtask);
6508 }
6509 
6510 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6511 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6512 {
6513 	if_t ifp = ctx->ifc_ifp;
6514 	iflib_txq_t txq = ctx->ifc_txqs;
6515 
6516 	if_setbaudrate(ifp, baudrate);
6517 	if (baudrate >= IF_Gbps(10)) {
6518 		STATE_LOCK(ctx);
6519 		ctx->ifc_flags |= IFC_PREFETCH;
6520 		STATE_UNLOCK(ctx);
6521 	}
6522 	/* If link down, disable watchdog */
6523 	if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6524 		for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6525 			txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6526 	}
6527 	ctx->ifc_link_state = link_state;
6528 	if_link_state_change(ifp, link_state);
6529 }
6530 
6531 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6532 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6533 {
6534 	int credits;
6535 #ifdef INVARIANTS
6536 	int credits_pre = txq->ift_cidx_processed;
6537 #endif
6538 
6539 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6540 	    BUS_DMASYNC_POSTREAD);
6541 	if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6542 		return (0);
6543 
6544 	txq->ift_processed += credits;
6545 	txq->ift_cidx_processed += credits;
6546 
6547 	MPASS(credits_pre + credits == txq->ift_cidx_processed);
6548 	if (txq->ift_cidx_processed >= txq->ift_size)
6549 		txq->ift_cidx_processed -= txq->ift_size;
6550 	return (credits);
6551 }
6552 
6553 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6554 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6555 {
6556 	iflib_fl_t fl;
6557 	u_int i;
6558 
6559 	for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6560 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6561 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6562 	return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6563 	    budget));
6564 }
6565 
6566 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6567 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6568 	const char *description, if_int_delay_info_t info,
6569 	int offset, int value)
6570 {
6571 	info->iidi_ctx = ctx;
6572 	info->iidi_offset = offset;
6573 	info->iidi_value = value;
6574 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6575 	    SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6576 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6577 	    info, 0, iflib_sysctl_int_delay, "I", description);
6578 }
6579 
6580 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6581 iflib_ctx_lock_get(if_ctx_t ctx)
6582 {
6583 
6584 	return (&ctx->ifc_ctx_sx);
6585 }
6586 
6587 static int
iflib_msix_init(if_ctx_t ctx)6588 iflib_msix_init(if_ctx_t ctx)
6589 {
6590 	device_t dev = ctx->ifc_dev;
6591 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6592 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6593 	int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6594 	int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6595 
6596 	iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6597 	iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6598 
6599 	if (bootverbose)
6600 		device_printf(dev, "msix_init qsets capped at %d\n",
6601 		    imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6602 
6603 	/* Override by tuneable */
6604 	if (scctx->isc_disable_msix)
6605 		goto msi;
6606 
6607 	/* First try MSI-X */
6608 	if ((msgs = pci_msix_count(dev)) == 0) {
6609 		if (bootverbose)
6610 			device_printf(dev, "MSI-X not supported or disabled\n");
6611 		goto msi;
6612 	}
6613 
6614 	bar = ctx->ifc_softc_ctx.isc_msix_bar;
6615 	/*
6616 	 * bar == -1 => "trust me I know what I'm doing"
6617 	 * Some drivers are for hardware that is so shoddily
6618 	 * documented that no one knows which bars are which
6619 	 * so the developer has to map all bars. This hack
6620 	 * allows shoddy garbage to use MSI-X in this framework.
6621 	 */
6622 	if (bar != -1) {
6623 		ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6624 	            SYS_RES_MEMORY, &bar, RF_ACTIVE);
6625 		if (ctx->ifc_msix_mem == NULL) {
6626 			device_printf(dev, "Unable to map MSI-X table\n");
6627 			goto msi;
6628 		}
6629 	}
6630 
6631 	admincnt = sctx->isc_admin_intrcnt;
6632 #if IFLIB_DEBUG
6633 	/* use only 1 qset in debug mode */
6634 	queuemsgs = min(msgs - admincnt, 1);
6635 #else
6636 	queuemsgs = msgs - admincnt;
6637 #endif
6638 #ifdef RSS
6639 	queues = imin(queuemsgs, rss_getnumbuckets());
6640 #else
6641 	queues = queuemsgs;
6642 #endif
6643 	queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6644 	if (bootverbose)
6645 		device_printf(dev,
6646 		    "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6647 		    CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6648 #ifdef  RSS
6649 	/* If we're doing RSS, clamp at the number of RSS buckets */
6650 	if (queues > rss_getnumbuckets())
6651 		queues = rss_getnumbuckets();
6652 #endif
6653 	if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6654 		rx_queues = iflib_num_rx_queues;
6655 	else
6656 		rx_queues = queues;
6657 
6658 	if (rx_queues > scctx->isc_nrxqsets)
6659 		rx_queues = scctx->isc_nrxqsets;
6660 
6661 	/*
6662 	 * We want this to be all logical CPUs by default
6663 	 */
6664 	if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6665 		tx_queues = iflib_num_tx_queues;
6666 	else
6667 		tx_queues = mp_ncpus;
6668 
6669 	if (tx_queues > scctx->isc_ntxqsets)
6670 		tx_queues = scctx->isc_ntxqsets;
6671 
6672 	if (ctx->ifc_sysctl_qs_eq_override == 0) {
6673 #ifdef INVARIANTS
6674 		if (tx_queues != rx_queues)
6675 			device_printf(dev,
6676 			    "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6677 			    min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6678 #endif
6679 		tx_queues = min(rx_queues, tx_queues);
6680 		rx_queues = min(rx_queues, tx_queues);
6681 	}
6682 
6683 	vectors = rx_queues + admincnt;
6684 	if (msgs < vectors) {
6685 		device_printf(dev,
6686 		    "insufficient number of MSI-X vectors "
6687 		    "(supported %d, need %d)\n", msgs, vectors);
6688 		goto msi;
6689 	}
6690 
6691 	device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6692 	    tx_queues);
6693 	msgs = vectors;
6694 	if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6695 		if (vectors != msgs) {
6696 			device_printf(dev,
6697 			    "Unable to allocate sufficient MSI-X vectors "
6698 			    "(got %d, need %d)\n", vectors, msgs);
6699 			pci_release_msi(dev);
6700 			if (bar != -1) {
6701 				bus_release_resource(dev, SYS_RES_MEMORY, bar,
6702 				    ctx->ifc_msix_mem);
6703 				ctx->ifc_msix_mem = NULL;
6704 			}
6705 			goto msi;
6706 		}
6707 		device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6708 		    vectors);
6709 		scctx->isc_vectors = vectors;
6710 		scctx->isc_nrxqsets = rx_queues;
6711 		scctx->isc_ntxqsets = tx_queues;
6712 		scctx->isc_intr = IFLIB_INTR_MSIX;
6713 
6714 		return (vectors);
6715 	} else {
6716 		device_printf(dev,
6717 		    "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6718 		    err);
6719 		if (bar != -1) {
6720 			bus_release_resource(dev, SYS_RES_MEMORY, bar,
6721 			    ctx->ifc_msix_mem);
6722 			ctx->ifc_msix_mem = NULL;
6723 		}
6724 	}
6725 
6726 msi:
6727 	vectors = pci_msi_count(dev);
6728 	scctx->isc_nrxqsets = 1;
6729 	scctx->isc_ntxqsets = 1;
6730 	scctx->isc_vectors = vectors;
6731 	if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6732 		device_printf(dev,"Using an MSI interrupt\n");
6733 		scctx->isc_intr = IFLIB_INTR_MSI;
6734 	} else {
6735 		scctx->isc_vectors = 1;
6736 		device_printf(dev,"Using a Legacy interrupt\n");
6737 		scctx->isc_intr = IFLIB_INTR_LEGACY;
6738 	}
6739 
6740 	return (vectors);
6741 }
6742 
6743 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6744 
6745 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6746 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6747 {
6748 	int rc;
6749 	uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6750 	struct sbuf *sb;
6751 	const char *ring_state = "UNKNOWN";
6752 
6753 	/* XXX needed ? */
6754 	rc = sysctl_wire_old_buffer(req, 0);
6755 	MPASS(rc == 0);
6756 	if (rc != 0)
6757 		return (rc);
6758 	sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6759 	MPASS(sb != NULL);
6760 	if (sb == NULL)
6761 		return (ENOMEM);
6762 	if (state[3] <= 3)
6763 		ring_state = ring_states[state[3]];
6764 
6765 	sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6766 		    state[0], state[1], state[2], ring_state);
6767 	rc = sbuf_finish(sb);
6768 	sbuf_delete(sb);
6769         return(rc);
6770 }
6771 
6772 enum iflib_ndesc_handler {
6773 	IFLIB_NTXD_HANDLER,
6774 	IFLIB_NRXD_HANDLER,
6775 };
6776 
6777 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6778 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6779 {
6780 	if_ctx_t ctx = (void *)arg1;
6781 	enum iflib_ndesc_handler type = arg2;
6782 	char buf[256] = {0};
6783 	qidx_t *ndesc;
6784 	char *p, *next;
6785 	int nqs, rc, i;
6786 
6787 	nqs = 8;
6788 	switch(type) {
6789 	case IFLIB_NTXD_HANDLER:
6790 		ndesc = ctx->ifc_sysctl_ntxds;
6791 		if (ctx->ifc_sctx)
6792 			nqs = ctx->ifc_sctx->isc_ntxqs;
6793 		break;
6794 	case IFLIB_NRXD_HANDLER:
6795 		ndesc = ctx->ifc_sysctl_nrxds;
6796 		if (ctx->ifc_sctx)
6797 			nqs = ctx->ifc_sctx->isc_nrxqs;
6798 		break;
6799 	default:
6800 		printf("%s: unhandled type\n", __func__);
6801 		return (EINVAL);
6802 	}
6803 	if (nqs == 0)
6804 		nqs = 8;
6805 
6806 	for (i=0; i<8; i++) {
6807 		if (i >= nqs)
6808 			break;
6809 		if (i)
6810 			strcat(buf, ",");
6811 		sprintf(strchr(buf, 0), "%d", ndesc[i]);
6812 	}
6813 
6814 	rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6815 	if (rc || req->newptr == NULL)
6816 		return rc;
6817 
6818 	for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6819 	    i++, p = strsep(&next, " ,")) {
6820 		ndesc[i] = strtoul(p, NULL, 10);
6821 	}
6822 
6823 	return(rc);
6824 }
6825 
6826 #define NAME_BUFLEN 32
6827 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6828 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6829 {
6830         device_t dev = iflib_get_dev(ctx);
6831 	struct sysctl_oid_list *child, *oid_list;
6832 	struct sysctl_ctx_list *ctx_list;
6833 	struct sysctl_oid *node;
6834 
6835 	ctx_list = device_get_sysctl_ctx(dev);
6836 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6837 	ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib",
6838 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "IFLIB fields");
6839 	oid_list = SYSCTL_CHILDREN(node);
6840 
6841 	SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6842 		       CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version,
6843 		       "driver version");
6844 
6845 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6846 		       CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6847 			"# of txqs to use, 0 => use default #");
6848 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6849 		       CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6850 			"# of rxqs to use, 0 => use default #");
6851 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6852 		       CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6853                        "permit #txq != #rxq");
6854 	SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6855                       CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6856                       "disable MSI-X (default 0)");
6857 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6858 		       CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0,
6859 		       "set the RX budget");
6860 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6861 		       CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6862 		       "cause TX to abdicate instead of running to completion");
6863 	ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6864 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6865 		       CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6866 		       "offset to start using cores at");
6867 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6868 		       CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6869 		       "use separate cores for TX and RX");
6870 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6871 		      CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6872 		      "try to make use of logical cores for TX and RX");
6873 
6874 	/* XXX change for per-queue sizes */
6875 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6876 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6877 	    IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6878 	    "list of # of TX descriptors to use, 0 = use default #");
6879 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6880 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6881 	    IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6882 	    "list of # of RX descriptors to use, 0 = use default #");
6883 }
6884 
6885 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6886 iflib_add_device_sysctl_post(if_ctx_t ctx)
6887 {
6888 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6889 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6890         device_t dev = iflib_get_dev(ctx);
6891 	struct sysctl_oid_list *child;
6892 	struct sysctl_ctx_list *ctx_list;
6893 	iflib_fl_t fl;
6894 	iflib_txq_t txq;
6895 	iflib_rxq_t rxq;
6896 	int i, j;
6897 	char namebuf[NAME_BUFLEN];
6898 	char *qfmt;
6899 	struct sysctl_oid *queue_node, *fl_node, *node;
6900 	struct sysctl_oid_list *queue_list, *fl_list;
6901 	ctx_list = device_get_sysctl_ctx(dev);
6902 
6903 	node = ctx->ifc_sysctl_node;
6904 	child = SYSCTL_CHILDREN(node);
6905 
6906 	if (scctx->isc_ntxqsets > 100)
6907 		qfmt = "txq%03d";
6908 	else if (scctx->isc_ntxqsets > 10)
6909 		qfmt = "txq%02d";
6910 	else
6911 		qfmt = "txq%d";
6912 	for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6913 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6914 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6915 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6916 		queue_list = SYSCTL_CHILDREN(queue_node);
6917 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6918 			       CTLFLAG_RD,
6919 			       &txq->ift_task.gt_cpu, 0, "cpu this queue is bound to");
6920 #if MEMORY_LOGGING
6921 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6922 				CTLFLAG_RD,
6923 				&txq->ift_dequeued, "total mbufs freed");
6924 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6925 				CTLFLAG_RD,
6926 				&txq->ift_enqueued, "total mbufs enqueued");
6927 #endif
6928 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6929 				   CTLFLAG_RD,
6930 				   &txq->ift_mbuf_defrag, "# of times m_defrag was called");
6931 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6932 				   CTLFLAG_RD,
6933 				   &txq->ift_pullups, "# of times m_pullup was called");
6934 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed",
6935 				   CTLFLAG_RD,
6936 				   &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6937 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail",
6938 				   CTLFLAG_RD,
6939 				   &txq->ift_no_desc_avail, "# of times no descriptors were available");
6940 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed",
6941 				   CTLFLAG_RD,
6942 				   &txq->ift_map_failed, "# of times DMA map failed");
6943 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig",
6944 				   CTLFLAG_RD,
6945 				   &txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG");
6946 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup",
6947 				   CTLFLAG_RD,
6948 				   &txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG");
6949 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6950 				   CTLFLAG_RD,
6951 				   &txq->ift_pidx, 1, "Producer Index");
6952 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6953 				   CTLFLAG_RD,
6954 				   &txq->ift_cidx, 1, "Consumer Index");
6955 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed",
6956 				   CTLFLAG_RD,
6957 				   &txq->ift_cidx_processed, 1, "Consumer Index seen by credit update");
6958 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6959 				   CTLFLAG_RD,
6960 				   &txq->ift_in_use, 1, "descriptors in use");
6961 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed",
6962 				   CTLFLAG_RD,
6963 				   &txq->ift_processed, "descriptors procesed for clean");
6964 		SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6965 				   CTLFLAG_RD,
6966 				   &txq->ift_cleaned, "total cleaned");
6967 		SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6968 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6969 		    __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6970 		    mp_ring_state_handler, "A", "soft ring state");
6971 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues",
6972 				       CTLFLAG_RD, &txq->ift_br->enqueues,
6973 				       "# of enqueues to the mp_ring for this queue");
6974 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops",
6975 				       CTLFLAG_RD, &txq->ift_br->drops,
6976 				       "# of drops in the mp_ring for this queue");
6977 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts",
6978 				       CTLFLAG_RD, &txq->ift_br->starts,
6979 				       "# of normal consumer starts in the mp_ring for this queue");
6980 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls",
6981 				       CTLFLAG_RD, &txq->ift_br->stalls,
6982 					       "# of consumer stalls in the mp_ring for this queue");
6983 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts",
6984 			       CTLFLAG_RD, &txq->ift_br->restarts,
6985 				       "# of consumer restarts in the mp_ring for this queue");
6986 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications",
6987 				       CTLFLAG_RD, &txq->ift_br->abdications,
6988 				       "# of consumer abdications in the mp_ring for this queue");
6989 	}
6990 
6991 	if (scctx->isc_nrxqsets > 100)
6992 		qfmt = "rxq%03d";
6993 	else if (scctx->isc_nrxqsets > 10)
6994 		qfmt = "rxq%02d";
6995 	else
6996 		qfmt = "rxq%d";
6997 	for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
6998 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6999 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
7000 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
7001 		queue_list = SYSCTL_CHILDREN(queue_node);
7002 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
7003 			       CTLFLAG_RD,
7004 			       &rxq->ifr_task.gt_cpu, 0, "cpu this queue is bound to");
7005 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
7006 			SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx",
7007 				       CTLFLAG_RD,
7008 				       &rxq->ifr_cq_cidx, 1, "Consumer Index");
7009 		}
7010 
7011 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
7012 			snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
7013 			fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf,
7014 			    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist Name");
7015 			fl_list = SYSCTL_CHILDREN(fl_node);
7016 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
7017 				       CTLFLAG_RD,
7018 				       &fl->ifl_pidx, 1, "Producer Index");
7019 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
7020 				       CTLFLAG_RD,
7021 				       &fl->ifl_cidx, 1, "Consumer Index");
7022 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
7023 				       CTLFLAG_RD,
7024 				       &fl->ifl_credits, 1, "credits available");
7025 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
7026 				       CTLFLAG_RD,
7027 				       &fl->ifl_buf_size, 1, "buffer size");
7028 #if MEMORY_LOGGING
7029 			SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued",
7030 					CTLFLAG_RD,
7031 					&fl->ifl_m_enqueued, "mbufs allocated");
7032 			SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued",
7033 					CTLFLAG_RD,
7034 					&fl->ifl_m_dequeued, "mbufs freed");
7035 			SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued",
7036 					CTLFLAG_RD,
7037 					&fl->ifl_cl_enqueued, "clusters allocated");
7038 			SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued",
7039 					CTLFLAG_RD,
7040 					&fl->ifl_cl_dequeued, "clusters freed");
7041 #endif
7042 		}
7043 	}
7044 
7045 }
7046 
7047 void
iflib_request_reset(if_ctx_t ctx)7048 iflib_request_reset(if_ctx_t ctx)
7049 {
7050 
7051 	STATE_LOCK(ctx);
7052 	ctx->ifc_flags |= IFC_DO_RESET;
7053 	STATE_UNLOCK(ctx);
7054 }
7055 
7056 #ifndef __NO_STRICT_ALIGNMENT
7057 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7058 iflib_fixup_rx(struct mbuf *m)
7059 {
7060 	struct mbuf *n;
7061 
7062 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7063 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7064 		m->m_data += ETHER_HDR_LEN;
7065 		n = m;
7066 	} else {
7067 		MGETHDR(n, M_NOWAIT, MT_DATA);
7068 		if (n == NULL) {
7069 			m_freem(m);
7070 			return (NULL);
7071 		}
7072 		bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7073 		m->m_data += ETHER_HDR_LEN;
7074 		m->m_len -= ETHER_HDR_LEN;
7075 		n->m_len = ETHER_HDR_LEN;
7076 		M_MOVE_PKTHDR(n, m);
7077 		n->m_next = m;
7078 	}
7079 	return (n);
7080 }
7081 #endif
7082 
7083 #ifdef DEBUGNET
7084 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7085 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7086 {
7087 	if_ctx_t ctx;
7088 
7089 	ctx = if_getsoftc(ifp);
7090 	CTX_LOCK(ctx);
7091 	*nrxr = NRXQSETS(ctx);
7092 	*ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7093 	*clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7094 	CTX_UNLOCK(ctx);
7095 }
7096 
7097 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7098 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7099 {
7100 	if_ctx_t ctx;
7101 	if_softc_ctx_t scctx;
7102 	iflib_fl_t fl;
7103 	iflib_rxq_t rxq;
7104 	int i, j;
7105 
7106 	ctx = if_getsoftc(ifp);
7107 	scctx = &ctx->ifc_softc_ctx;
7108 
7109 	switch (event) {
7110 	case DEBUGNET_START:
7111 		for (i = 0; i < scctx->isc_nrxqsets; i++) {
7112 			rxq = &ctx->ifc_rxqs[i];
7113 			for (j = 0; j < rxq->ifr_nfl; j++) {
7114 				fl = rxq->ifr_fl;
7115 				fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7116 			}
7117 		}
7118 		iflib_no_tx_batch = 1;
7119 		break;
7120 	default:
7121 		break;
7122 	}
7123 }
7124 
7125 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7126 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7127 {
7128 	if_ctx_t ctx;
7129 	iflib_txq_t txq;
7130 	int error;
7131 
7132 	ctx = if_getsoftc(ifp);
7133 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7134 	    IFF_DRV_RUNNING)
7135 		return (EBUSY);
7136 
7137 	txq = &ctx->ifc_txqs[0];
7138 	error = iflib_encap(txq, &m);
7139 	if (error == 0)
7140 		(void)iflib_txd_db_check(txq, true);
7141 	return (error);
7142 }
7143 
7144 static int
iflib_debugnet_poll(if_t ifp,int count)7145 iflib_debugnet_poll(if_t ifp, int count)
7146 {
7147 	struct epoch_tracker et;
7148 	if_ctx_t ctx;
7149 	if_softc_ctx_t scctx;
7150 	iflib_txq_t txq;
7151 	int i;
7152 
7153 	ctx = if_getsoftc(ifp);
7154 	scctx = &ctx->ifc_softc_ctx;
7155 
7156 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7157 	    IFF_DRV_RUNNING)
7158 		return (EBUSY);
7159 
7160 	txq = &ctx->ifc_txqs[0];
7161 	(void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
7162 
7163 	NET_EPOCH_ENTER(et);
7164 	for (i = 0; i < scctx->isc_nrxqsets; i++)
7165 		(void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7166 	NET_EPOCH_EXIT(et);
7167 	return (0);
7168 }
7169 #endif /* DEBUGNET */
7170