1 /*-
2 * Copyright (c) 2014-2018, Matthew Macy <[email protected]>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Neither the name of Matthew Macy nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_acpi.h"
34 #include "opt_sched.h"
35
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/bus.h>
39 #include <sys/eventhandler.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/module.h>
44 #include <sys/kobj.h>
45 #include <sys/rman.h>
46 #include <sys/sbuf.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/taskqueue.h>
53 #include <sys/limits.h>
54
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_types.h>
58 #include <net/if_media.h>
59 #include <net/bpf.h>
60 #include <net/ethernet.h>
61 #include <net/mp_ring.h>
62 #include <net/debugnet.h>
63 #include <net/pfil.h>
64 #include <net/vnet.h>
65
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/tcp_lro.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 #include <netinet/ip6.h>
73 #include <netinet/tcp.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76
77 #include <machine/bus.h>
78 #include <machine/in_cksum.h>
79
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82
83 #include <dev/led/led.h>
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/pci_private.h>
87
88 #include <net/iflib.h>
89 #include <net/iflib_private.h>
90
91 #include "ifdi_if.h"
92
93 #ifdef PCI_IOV
94 #include <dev/pci/pci_iov.h>
95 #endif
96
97 #include <sys/bitstring.h>
98 /*
99 * enable accounting of every mbuf as it comes in to and goes out of
100 * iflib's software descriptor references
101 */
102 #define MEMORY_LOGGING 0
103 /*
104 * Enable mbuf vectors for compressing long mbuf chains
105 */
106
107 /*
108 * NB:
109 * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
110 * we prefetch needs to be determined by the time spent in m_free vis a vis
111 * the cost of a prefetch. This will of course vary based on the workload:
112 * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
113 * is quite expensive, thus suggesting very little prefetch.
114 * - small packet forwarding which is just returning a single mbuf to
115 * UMA will typically be very fast vis a vis the cost of a memory
116 * access.
117 */
118
119 /*
120 * File organization:
121 * - private structures
122 * - iflib private utility functions
123 * - ifnet functions
124 * - vlan registry and other exported functions
125 * - iflib public core functions
126 *
127 *
128 */
129 MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
130
131 #define IFLIB_RXEOF_MORE (1U << 0)
132 #define IFLIB_RXEOF_EMPTY (2U << 0)
133
134 struct iflib_txq;
135 typedef struct iflib_txq *iflib_txq_t;
136 struct iflib_rxq;
137 typedef struct iflib_rxq *iflib_rxq_t;
138 struct iflib_fl;
139 typedef struct iflib_fl *iflib_fl_t;
140
141 struct iflib_ctx;
142
143 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
144 static void iflib_timer(void *arg);
145 static void iflib_tqg_detach(if_ctx_t ctx);
146
147 typedef struct iflib_filter_info {
148 driver_filter_t *ifi_filter;
149 void *ifi_filter_arg;
150 struct grouptask *ifi_task;
151 void *ifi_ctx;
152 } *iflib_filter_info_t;
153
154 struct iflib_ctx {
155 KOBJ_FIELDS;
156 /*
157 * Pointer to hardware driver's softc
158 */
159 void *ifc_softc;
160 device_t ifc_dev;
161 if_t ifc_ifp;
162
163 cpuset_t ifc_cpus;
164 if_shared_ctx_t ifc_sctx;
165 struct if_softc_ctx ifc_softc_ctx;
166
167 struct sx ifc_ctx_sx;
168 struct mtx ifc_state_mtx;
169
170 iflib_txq_t ifc_txqs;
171 iflib_rxq_t ifc_rxqs;
172 uint32_t ifc_if_flags;
173 uint32_t ifc_flags;
174 uint32_t ifc_max_fl_buf_size;
175 uint32_t ifc_rx_mbuf_sz;
176
177 int ifc_link_state;
178 int ifc_watchdog_events;
179 struct cdev *ifc_led_dev;
180 struct resource *ifc_msix_mem;
181
182 struct if_irq ifc_legacy_irq;
183 struct grouptask ifc_admin_task;
184 struct grouptask ifc_vflr_task;
185 struct iflib_filter_info ifc_filter_info;
186 struct ifmedia ifc_media;
187 struct ifmedia *ifc_mediap;
188
189 struct sysctl_oid *ifc_sysctl_node;
190 uint16_t ifc_sysctl_ntxqs;
191 uint16_t ifc_sysctl_nrxqs;
192 uint16_t ifc_sysctl_qs_eq_override;
193 uint16_t ifc_sysctl_rx_budget;
194 uint16_t ifc_sysctl_tx_abdicate;
195 uint16_t ifc_sysctl_core_offset;
196 #define CORE_OFFSET_UNSPECIFIED 0xffff
197 uint8_t ifc_sysctl_separate_txrx;
198 uint8_t ifc_sysctl_use_logical_cores;
199 bool ifc_cpus_are_physical_cores;
200
201 qidx_t ifc_sysctl_ntxds[8];
202 qidx_t ifc_sysctl_nrxds[8];
203 struct if_txrx ifc_txrx;
204 #define isc_txd_encap ifc_txrx.ift_txd_encap
205 #define isc_txd_flush ifc_txrx.ift_txd_flush
206 #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update
207 #define isc_rxd_available ifc_txrx.ift_rxd_available
208 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get
209 #define isc_rxd_refill ifc_txrx.ift_rxd_refill
210 #define isc_rxd_flush ifc_txrx.ift_rxd_flush
211 #define isc_legacy_intr ifc_txrx.ift_legacy_intr
212 #define isc_txq_select ifc_txrx.ift_txq_select
213 eventhandler_tag ifc_vlan_attach_event;
214 eventhandler_tag ifc_vlan_detach_event;
215 struct ether_addr ifc_mac;
216 };
217
218 void *
iflib_get_softc(if_ctx_t ctx)219 iflib_get_softc(if_ctx_t ctx)
220 {
221
222 return (ctx->ifc_softc);
223 }
224
225 device_t
iflib_get_dev(if_ctx_t ctx)226 iflib_get_dev(if_ctx_t ctx)
227 {
228
229 return (ctx->ifc_dev);
230 }
231
232 if_t
iflib_get_ifp(if_ctx_t ctx)233 iflib_get_ifp(if_ctx_t ctx)
234 {
235
236 return (ctx->ifc_ifp);
237 }
238
239 struct ifmedia *
iflib_get_media(if_ctx_t ctx)240 iflib_get_media(if_ctx_t ctx)
241 {
242
243 return (ctx->ifc_mediap);
244 }
245
246 uint32_t
iflib_get_flags(if_ctx_t ctx)247 iflib_get_flags(if_ctx_t ctx)
248 {
249 return (ctx->ifc_flags);
250 }
251
252 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])253 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
254 {
255
256 bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
257 }
258
259 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)260 iflib_get_softc_ctx(if_ctx_t ctx)
261 {
262
263 return (&ctx->ifc_softc_ctx);
264 }
265
266 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)267 iflib_get_sctx(if_ctx_t ctx)
268 {
269
270 return (ctx->ifc_sctx);
271 }
272
273 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
274 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*))
275 #define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr)+CACHE_LINE_SIZE-1) & (CACHE_LINE_SIZE-1)))
276
277 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP)
278 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
279
280 typedef struct iflib_sw_rx_desc_array {
281 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
282 struct mbuf **ifsd_m; /* pkthdr mbufs */
283 caddr_t *ifsd_cl; /* direct cluster pointer for rx */
284 bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */
285 } iflib_rxsd_array_t;
286
287 typedef struct iflib_sw_tx_desc_array {
288 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */
289 bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */
290 struct mbuf **ifsd_m; /* pkthdr mbufs */
291 } if_txsd_vec_t;
292
293 /* magic number that should be high enough for any hardware */
294 #define IFLIB_MAX_TX_SEGS 128
295 #define IFLIB_RX_COPY_THRESH 128
296 #define IFLIB_MAX_RX_REFRESH 32
297 /* The minimum descriptors per second before we start coalescing */
298 #define IFLIB_MIN_DESC_SEC 16384
299 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16
300 #define IFLIB_QUEUE_IDLE 0
301 #define IFLIB_QUEUE_HUNG 1
302 #define IFLIB_QUEUE_WORKING 2
303 /* maximum number of txqs that can share an rx interrupt */
304 #define IFLIB_MAX_TX_SHARED_INTR 4
305
306 /* this should really scale with ring size - this is a fairly arbitrary value */
307 #define TX_BATCH_SIZE 32
308
309 #define IFLIB_RESTART_BUDGET 8
310
311 #define CSUM_OFFLOAD (CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \
312 CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \
313 CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP)
314
315 struct iflib_txq {
316 qidx_t ift_in_use;
317 qidx_t ift_cidx;
318 qidx_t ift_cidx_processed;
319 qidx_t ift_pidx;
320 uint8_t ift_gen;
321 uint8_t ift_br_offset;
322 uint16_t ift_npending;
323 uint16_t ift_db_pending;
324 uint16_t ift_rs_pending;
325 /* implicit pad */
326 uint8_t ift_txd_size[8];
327 uint64_t ift_processed;
328 uint64_t ift_cleaned;
329 uint64_t ift_cleaned_prev;
330 #if MEMORY_LOGGING
331 uint64_t ift_enqueued;
332 uint64_t ift_dequeued;
333 #endif
334 uint64_t ift_no_tx_dma_setup;
335 uint64_t ift_no_desc_avail;
336 uint64_t ift_mbuf_defrag_failed;
337 uint64_t ift_mbuf_defrag;
338 uint64_t ift_map_failed;
339 uint64_t ift_txd_encap_efbig;
340 uint64_t ift_pullups;
341 uint64_t ift_last_timer_tick;
342
343 struct mtx ift_mtx;
344 struct mtx ift_db_mtx;
345
346 /* constant values */
347 if_ctx_t ift_ctx;
348 struct ifmp_ring *ift_br;
349 struct grouptask ift_task;
350 qidx_t ift_size;
351 uint16_t ift_id;
352 struct callout ift_timer;
353 #ifdef DEV_NETMAP
354 struct callout ift_netmap_timer;
355 #endif /* DEV_NETMAP */
356
357 if_txsd_vec_t ift_sds;
358 uint8_t ift_qstatus;
359 uint8_t ift_closed;
360 uint8_t ift_update_freq;
361 struct iflib_filter_info ift_filter_info;
362 bus_dma_tag_t ift_buf_tag;
363 bus_dma_tag_t ift_tso_buf_tag;
364 iflib_dma_info_t ift_ifdi;
365 #define MTX_NAME_LEN 32
366 char ift_mtx_name[MTX_NAME_LEN];
367 bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE);
368 #ifdef IFLIB_DIAGNOSTICS
369 uint64_t ift_cpu_exec_count[256];
370 #endif
371 } __aligned(CACHE_LINE_SIZE);
372
373 struct iflib_fl {
374 qidx_t ifl_cidx;
375 qidx_t ifl_pidx;
376 qidx_t ifl_credits;
377 uint8_t ifl_gen;
378 uint8_t ifl_rxd_size;
379 #if MEMORY_LOGGING
380 uint64_t ifl_m_enqueued;
381 uint64_t ifl_m_dequeued;
382 uint64_t ifl_cl_enqueued;
383 uint64_t ifl_cl_dequeued;
384 #endif
385 /* implicit pad */
386 bitstr_t *ifl_rx_bitmap;
387 qidx_t ifl_fragidx;
388 /* constant */
389 qidx_t ifl_size;
390 uint16_t ifl_buf_size;
391 uint16_t ifl_cltype;
392 uma_zone_t ifl_zone;
393 iflib_rxsd_array_t ifl_sds;
394 iflib_rxq_t ifl_rxq;
395 uint8_t ifl_id;
396 bus_dma_tag_t ifl_buf_tag;
397 iflib_dma_info_t ifl_ifdi;
398 uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
399 qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
400 } __aligned(CACHE_LINE_SIZE);
401
402 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)403 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
404 {
405 qidx_t used;
406
407 if (pidx > cidx)
408 used = pidx - cidx;
409 else if (pidx < cidx)
410 used = size - cidx + pidx;
411 else if (gen == 0 && pidx == cidx)
412 used = 0;
413 else if (gen == 1 && pidx == cidx)
414 used = size;
415 else
416 panic("bad state");
417
418 return (used);
419 }
420
421 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
422
423 #define IDXDIFF(head, tail, wrap) \
424 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
425
426 struct iflib_rxq {
427 if_ctx_t ifr_ctx;
428 iflib_fl_t ifr_fl;
429 uint64_t ifr_rx_irq;
430 struct pfil_head *pfil;
431 /*
432 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
433 * the completion queue consumer index. Otherwise it's unused.
434 */
435 qidx_t ifr_cq_cidx;
436 uint16_t ifr_id;
437 uint8_t ifr_nfl;
438 uint8_t ifr_ntxqirq;
439 uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
440 uint8_t ifr_fl_offset;
441 struct lro_ctrl ifr_lc;
442 struct grouptask ifr_task;
443 struct callout ifr_watchdog;
444 struct iflib_filter_info ifr_filter_info;
445 iflib_dma_info_t ifr_ifdi;
446
447 /* dynamically allocate if any drivers need a value substantially larger than this */
448 struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
449 #ifdef IFLIB_DIAGNOSTICS
450 uint64_t ifr_cpu_exec_count[256];
451 #endif
452 } __aligned(CACHE_LINE_SIZE);
453
454 typedef struct if_rxsd {
455 caddr_t *ifsd_cl;
456 iflib_fl_t ifsd_fl;
457 } *if_rxsd_t;
458
459 /* multiple of word size */
460 #ifdef __LP64__
461 #define PKT_INFO_SIZE 6
462 #define RXD_INFO_SIZE 5
463 #define PKT_TYPE uint64_t
464 #else
465 #define PKT_INFO_SIZE 11
466 #define RXD_INFO_SIZE 8
467 #define PKT_TYPE uint32_t
468 #endif
469 #define PKT_LOOP_BOUND ((PKT_INFO_SIZE/3)*3)
470 #define RXD_LOOP_BOUND ((RXD_INFO_SIZE/4)*4)
471
472 typedef struct if_pkt_info_pad {
473 PKT_TYPE pkt_val[PKT_INFO_SIZE];
474 } *if_pkt_info_pad_t;
475 typedef struct if_rxd_info_pad {
476 PKT_TYPE rxd_val[RXD_INFO_SIZE];
477 } *if_rxd_info_pad_t;
478
479 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
480 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
481
482 static inline void
pkt_info_zero(if_pkt_info_t pi)483 pkt_info_zero(if_pkt_info_t pi)
484 {
485 if_pkt_info_pad_t pi_pad;
486
487 pi_pad = (if_pkt_info_pad_t)pi;
488 pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
489 pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
490 #ifndef __LP64__
491 pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
492 pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
493 #endif
494 }
495
496 static device_method_t iflib_pseudo_methods[] = {
497 DEVMETHOD(device_attach, noop_attach),
498 DEVMETHOD(device_detach, iflib_pseudo_detach),
499 DEVMETHOD_END
500 };
501
502 driver_t iflib_pseudodriver = {
503 "iflib_pseudo", iflib_pseudo_methods, sizeof(struct iflib_ctx),
504 };
505
506 static inline void
rxd_info_zero(if_rxd_info_t ri)507 rxd_info_zero(if_rxd_info_t ri)
508 {
509 if_rxd_info_pad_t ri_pad;
510 int i;
511
512 ri_pad = (if_rxd_info_pad_t)ri;
513 for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
514 ri_pad->rxd_val[i] = 0;
515 ri_pad->rxd_val[i+1] = 0;
516 ri_pad->rxd_val[i+2] = 0;
517 ri_pad->rxd_val[i+3] = 0;
518 }
519 #ifdef __LP64__
520 ri_pad->rxd_val[RXD_INFO_SIZE-1] = 0;
521 #endif
522 }
523
524 /*
525 * Only allow a single packet to take up most 1/nth of the tx ring
526 */
527 #define MAX_SINGLE_PACKET_FRACTION 12
528 #define IF_BAD_DMA (bus_addr_t)-1
529
530 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
531
532 #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
533 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx)
534 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx)
535 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx)
536
537 #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
538 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx)
539 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx)
540 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx)
541
542 #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx)
543 #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx)
544
545 void
iflib_set_detach(if_ctx_t ctx)546 iflib_set_detach(if_ctx_t ctx)
547 {
548 STATE_LOCK(ctx);
549 ctx->ifc_flags |= IFC_IN_DETACH;
550 STATE_UNLOCK(ctx);
551 }
552
553 /* Our boot-time initialization hook */
554 static int iflib_module_event_handler(module_t, int, void *);
555
556 static moduledata_t iflib_moduledata = {
557 "iflib",
558 iflib_module_event_handler,
559 NULL
560 };
561
562 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
563 MODULE_VERSION(iflib, 1);
564
565 MODULE_DEPEND(iflib, pci, 1, 1, 1);
566 MODULE_DEPEND(iflib, ether, 1, 1, 1);
567
568 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
569 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
570
571 #ifndef IFLIB_DEBUG_COUNTERS
572 #ifdef INVARIANTS
573 #define IFLIB_DEBUG_COUNTERS 1
574 #else
575 #define IFLIB_DEBUG_COUNTERS 0
576 #endif /* !INVARIANTS */
577 #endif
578
579 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
580 "iflib driver parameters");
581
582 /*
583 * XXX need to ensure that this can't accidentally cause the head to be moved backwards
584 */
585 static int iflib_min_tx_latency = 0;
586 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
587 &iflib_min_tx_latency, 0, "minimize transmit latency at the possible expense of throughput");
588 static int iflib_no_tx_batch = 0;
589 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
590 &iflib_no_tx_batch, 0, "minimize transmit latency at the possible expense of throughput");
591 static int iflib_timer_default = 1000;
592 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
593 &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
594
595
596 #if IFLIB_DEBUG_COUNTERS
597
598 static int iflib_tx_seen;
599 static int iflib_tx_sent;
600 static int iflib_tx_encap;
601 static int iflib_rx_allocs;
602 static int iflib_fl_refills;
603 static int iflib_fl_refills_large;
604 static int iflib_tx_frees;
605
606 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD,
607 &iflib_tx_seen, 0, "# TX mbufs seen");
608 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD,
609 &iflib_tx_sent, 0, "# TX mbufs sent");
610 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD,
611 &iflib_tx_encap, 0, "# TX mbufs encapped");
612 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD,
613 &iflib_tx_frees, 0, "# TX frees");
614 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD,
615 &iflib_rx_allocs, 0, "# RX allocations");
616 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD,
617 &iflib_fl_refills, 0, "# refills");
618 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
619 &iflib_fl_refills_large, 0, "# large refills");
620
621 static int iflib_txq_drain_flushing;
622 static int iflib_txq_drain_oactive;
623 static int iflib_txq_drain_notready;
624
625 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
626 &iflib_txq_drain_flushing, 0, "# drain flushes");
627 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
628 &iflib_txq_drain_oactive, 0, "# drain oactives");
629 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
630 &iflib_txq_drain_notready, 0, "# drain notready");
631
632 static int iflib_encap_load_mbuf_fail;
633 static int iflib_encap_pad_mbuf_fail;
634 static int iflib_encap_txq_avail_fail;
635 static int iflib_encap_txd_encap_fail;
636
637 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
638 &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
639 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
640 &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
641 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
642 &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
643 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
644 &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
645
646 static int iflib_task_fn_rxs;
647 static int iflib_rx_intr_enables;
648 static int iflib_fast_intrs;
649 static int iflib_rx_unavail;
650 static int iflib_rx_ctx_inactive;
651 static int iflib_rx_if_input;
652 static int iflib_rxd_flush;
653
654 static int iflib_verbose_debug;
655
656 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD,
657 &iflib_task_fn_rxs, 0, "# task_fn_rx calls");
658 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
659 &iflib_rx_intr_enables, 0, "# RX intr enables");
660 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD,
661 &iflib_fast_intrs, 0, "# fast_intr calls");
662 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD,
663 &iflib_rx_unavail, 0, "# times rxeof called with no available data");
664 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
665 &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
666 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD,
667 &iflib_rx_if_input, 0, "# times rxeof called if_input");
668 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD,
669 &iflib_rxd_flush, 0, "# times rxd_flush called");
670 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
671 &iflib_verbose_debug, 0, "enable verbose debugging");
672
673 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
674 static void
iflib_debug_reset(void)675 iflib_debug_reset(void)
676 {
677 iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
678 iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
679 iflib_txq_drain_flushing = iflib_txq_drain_oactive =
680 iflib_txq_drain_notready =
681 iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
682 iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
683 iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
684 iflib_rx_unavail =
685 iflib_rx_ctx_inactive = iflib_rx_if_input =
686 iflib_rxd_flush = 0;
687 }
688
689 #else
690 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)691 static void iflib_debug_reset(void) {}
692 #endif
693
694 #define IFLIB_DEBUG 0
695
696 static void iflib_tx_structures_free(if_ctx_t ctx);
697 static void iflib_rx_structures_free(if_ctx_t ctx);
698 static int iflib_queues_alloc(if_ctx_t ctx);
699 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
700 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
701 static int iflib_qset_structures_setup(if_ctx_t ctx);
702 static int iflib_msix_init(if_ctx_t ctx);
703 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
704 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
705 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
706 #ifdef ALTQ
707 static void iflib_altq_if_start(if_t ifp);
708 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
709 #endif
710 static int iflib_register(if_ctx_t);
711 static void iflib_deregister(if_ctx_t);
712 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
713 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
714 static void iflib_init_locked(if_ctx_t ctx);
715 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
716 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
717 static void iflib_ifmp_purge(iflib_txq_t txq);
718 static void _iflib_pre_assert(if_softc_ctx_t scctx);
719 static void iflib_if_init_locked(if_ctx_t ctx);
720 static void iflib_free_intr_mem(if_ctx_t ctx);
721 #ifndef __NO_STRICT_ALIGNMENT
722 static struct mbuf * iflib_fixup_rx(struct mbuf *m);
723 #endif
724
725 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
726 SLIST_HEAD_INITIALIZER(cpu_offsets);
727 struct cpu_offset {
728 SLIST_ENTRY(cpu_offset) entries;
729 cpuset_t set;
730 unsigned int refcount;
731 uint16_t next_cpuid;
732 };
733 static struct mtx cpu_offset_mtx;
734 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
735 MTX_DEF);
736
737 DEBUGNET_DEFINE(iflib);
738
739 static int
iflib_num_rx_descs(if_ctx_t ctx)740 iflib_num_rx_descs(if_ctx_t ctx)
741 {
742 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
743 if_shared_ctx_t sctx = ctx->ifc_sctx;
744 uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
745
746 return scctx->isc_nrxd[first_rxq];
747 }
748
749 static int
iflib_num_tx_descs(if_ctx_t ctx)750 iflib_num_tx_descs(if_ctx_t ctx)
751 {
752 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
753 if_shared_ctx_t sctx = ctx->ifc_sctx;
754 uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
755
756 return scctx->isc_ntxd[first_txq];
757 }
758
759 #ifdef DEV_NETMAP
760 #include <sys/selinfo.h>
761 #include <net/netmap.h>
762 #include <dev/netmap/netmap_kern.h>
763
764 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
765
766 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
767 static void iflib_netmap_timer(void *arg);
768
769 /*
770 * device-specific sysctl variables:
771 *
772 * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
773 * During regular operations the CRC is stripped, but on some
774 * hardware reception of frames not multiple of 64 is slower,
775 * so using crcstrip=0 helps in benchmarks.
776 *
777 * iflib_rx_miss, iflib_rx_miss_bufs:
778 * count packets that might be missed due to lost interrupts.
779 */
780 SYSCTL_DECL(_dev_netmap);
781 /*
782 * The xl driver by default strips CRCs and we do not override it.
783 */
784
785 int iflib_crcstrip = 1;
786 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
787 CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
788
789 int iflib_rx_miss, iflib_rx_miss_bufs;
790 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
791 CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
792 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
793 CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
794
795 /*
796 * Register/unregister. We are already under netmap lock.
797 * Only called on the first register or the last unregister.
798 */
799 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)800 iflib_netmap_register(struct netmap_adapter *na, int onoff)
801 {
802 if_t ifp = na->ifp;
803 if_ctx_t ctx = ifp->if_softc;
804 int status;
805
806 CTX_LOCK(ctx);
807 if (!CTX_IS_VF(ctx))
808 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
809
810 iflib_stop(ctx);
811
812 /*
813 * Enable (or disable) netmap flags, and intercept (or restore)
814 * ifp->if_transmit. This is done once the device has been stopped
815 * to prevent race conditions. Also, this must be done after
816 * calling netmap_disable_all_rings() and before calling
817 * netmap_enable_all_rings(), so that these two functions see the
818 * updated state of the NAF_NETMAP_ON bit.
819 */
820 if (onoff) {
821 nm_set_native_flags(na);
822 } else {
823 nm_clear_native_flags(na);
824 }
825
826 iflib_init_locked(ctx);
827 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
828 status = ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1;
829 if (status)
830 nm_clear_native_flags(na);
831 CTX_UNLOCK(ctx);
832 return (status);
833 }
834
835 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)836 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
837 {
838 if_t ifp = na->ifp;
839 if_ctx_t ctx = ifp->if_softc;
840 iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
841 iflib_fl_t fl = &rxq->ifr_fl[0];
842
843 info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
844 info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
845 info->num_tx_descs = iflib_num_tx_descs(ctx);
846 info->num_rx_descs = iflib_num_rx_descs(ctx);
847 info->rx_buf_maxsize = fl->ifl_buf_size;
848 nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
849 info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
850 info->num_rx_descs, info->rx_buf_maxsize);
851
852 return 0;
853 }
854
855 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)856 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
857 {
858 struct netmap_adapter *na = kring->na;
859 u_int const lim = kring->nkr_num_slots - 1;
860 struct netmap_ring *ring = kring->ring;
861 bus_dmamap_t *map;
862 struct if_rxd_update iru;
863 if_ctx_t ctx = rxq->ifr_ctx;
864 iflib_fl_t fl = &rxq->ifr_fl[0];
865 u_int nic_i_first, nic_i;
866 u_int nm_i;
867 int i, n;
868 #if IFLIB_DEBUG_COUNTERS
869 int rf_count = 0;
870 #endif
871
872 /*
873 * This function is used both at initialization and in rxsync.
874 * At initialization we need to prepare (with isc_rxd_refill())
875 * all the netmap buffers currently owned by the kernel, in
876 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
877 * (except for kring->nkr_hwofs). These may be less than
878 * kring->nkr_num_slots if netmap_reset() was called while
879 * an application using the kring that still owned some
880 * buffers.
881 * At rxsync time, both indexes point to the next buffer to be
882 * refilled.
883 * In any case we publish (with isc_rxd_flush()) up to
884 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
885 * pointer to overrun the head/cons pointer, although this is
886 * not necessary for some NICs (e.g. vmx).
887 */
888 if (__predict_false(init)) {
889 n = kring->nkr_num_slots - nm_kr_rxspace(kring);
890 } else {
891 n = kring->rhead - kring->nr_hwcur;
892 if (n == 0)
893 return (0); /* Nothing to do. */
894 if (n < 0)
895 n += kring->nkr_num_slots;
896 }
897
898 iru_init(&iru, rxq, 0 /* flid */);
899 map = fl->ifl_sds.ifsd_map;
900 nic_i = fl->ifl_pidx;
901 nm_i = netmap_idx_n2k(kring, nic_i);
902 if (__predict_false(init)) {
903 /*
904 * On init/reset, nic_i must be 0, and we must
905 * start to refill from hwtail (see netmap_reset()).
906 */
907 MPASS(nic_i == 0);
908 MPASS(nm_i == kring->nr_hwtail);
909 } else
910 MPASS(nm_i == kring->nr_hwcur);
911 DBG_COUNTER_INC(fl_refills);
912 while (n > 0) {
913 #if IFLIB_DEBUG_COUNTERS
914 if (++rf_count == 9)
915 DBG_COUNTER_INC(fl_refills_large);
916 #endif
917 nic_i_first = nic_i;
918 for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
919 struct netmap_slot *slot = &ring->slot[nm_i];
920 void *addr = PNMB(na, slot, &fl->ifl_bus_addrs[i]);
921
922 MPASS(i < IFLIB_MAX_RX_REFRESH);
923
924 if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
925 return netmap_ring_reinit(kring);
926
927 fl->ifl_rxd_idxs[i] = nic_i;
928
929 if (__predict_false(init)) {
930 netmap_load_map(na, fl->ifl_buf_tag,
931 map[nic_i], addr);
932 } else if (slot->flags & NS_BUF_CHANGED) {
933 /* buffer has changed, reload map */
934 netmap_reload_map(na, fl->ifl_buf_tag,
935 map[nic_i], addr);
936 }
937 bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
938 BUS_DMASYNC_PREREAD);
939 slot->flags &= ~NS_BUF_CHANGED;
940
941 nm_i = nm_next(nm_i, lim);
942 nic_i = nm_next(nic_i, lim);
943 }
944
945 iru.iru_pidx = nic_i_first;
946 iru.iru_count = i;
947 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
948 }
949 fl->ifl_pidx = nic_i;
950 /*
951 * At the end of the loop we must have refilled everything
952 * we could possibly refill.
953 */
954 MPASS(nm_i == kring->rhead);
955 kring->nr_hwcur = nm_i;
956
957 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
958 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
959 ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
960 nm_prev(nic_i, lim));
961 DBG_COUNTER_INC(rxd_flush);
962
963 return (0);
964 }
965
966 #define NETMAP_TX_TIMER_US 90
967
968 /*
969 * Reconcile kernel and user view of the transmit ring.
970 *
971 * All information is in the kring.
972 * Userspace wants to send packets up to the one before kring->rhead,
973 * kernel knows kring->nr_hwcur is the first unsent packet.
974 *
975 * Here we push packets out (as many as possible), and possibly
976 * reclaim buffers from previously completed transmission.
977 *
978 * The caller (netmap) guarantees that there is only one instance
979 * running at any time. Any interference with other driver
980 * methods should be handled by the individual drivers.
981 */
982 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)983 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
984 {
985 struct netmap_adapter *na = kring->na;
986 if_t ifp = na->ifp;
987 struct netmap_ring *ring = kring->ring;
988 u_int nm_i; /* index into the netmap kring */
989 u_int nic_i; /* index into the NIC ring */
990 u_int n;
991 u_int const lim = kring->nkr_num_slots - 1;
992 u_int const head = kring->rhead;
993 struct if_pkt_info pi;
994 int tx_pkts = 0, tx_bytes = 0;
995
996 /*
997 * interrupts on every tx packet are expensive so request
998 * them every half ring, or where NS_REPORT is set
999 */
1000 u_int report_frequency = kring->nkr_num_slots >> 1;
1001 /* device-specific */
1002 if_ctx_t ctx = ifp->if_softc;
1003 iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1004
1005 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1006 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1007
1008 /*
1009 * First part: process new packets to send.
1010 * nm_i is the current index in the netmap kring,
1011 * nic_i is the corresponding index in the NIC ring.
1012 *
1013 * If we have packets to send (nm_i != head)
1014 * iterate over the netmap ring, fetch length and update
1015 * the corresponding slot in the NIC ring. Some drivers also
1016 * need to update the buffer's physical address in the NIC slot
1017 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1018 *
1019 * The netmap_reload_map() calls is especially expensive,
1020 * even when (as in this case) the tag is 0, so do only
1021 * when the buffer has actually changed.
1022 *
1023 * If possible do not set the report/intr bit on all slots,
1024 * but only a few times per ring or when NS_REPORT is set.
1025 *
1026 * Finally, on 10G and faster drivers, it might be useful
1027 * to prefetch the next slot and txr entry.
1028 */
1029
1030 nm_i = kring->nr_hwcur;
1031 if (nm_i != head) { /* we have new packets to send */
1032 uint32_t pkt_len = 0, seg_idx = 0;
1033 int nic_i_start = -1, flags = 0;
1034 pkt_info_zero(&pi);
1035 pi.ipi_segs = txq->ift_segs;
1036 pi.ipi_qsidx = kring->ring_id;
1037 nic_i = netmap_idx_k2n(kring, nm_i);
1038
1039 __builtin_prefetch(&ring->slot[nm_i]);
1040 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1041 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1042
1043 for (n = 0; nm_i != head; n++) {
1044 struct netmap_slot *slot = &ring->slot[nm_i];
1045 u_int len = slot->len;
1046 uint64_t paddr;
1047 void *addr = PNMB(na, slot, &paddr);
1048
1049 flags |= (slot->flags & NS_REPORT ||
1050 nic_i == 0 || nic_i == report_frequency) ?
1051 IPI_TX_INTR : 0;
1052
1053 /*
1054 * If this is the first packet fragment, save the
1055 * index of the first NIC slot for later.
1056 */
1057 if (nic_i_start < 0)
1058 nic_i_start = nic_i;
1059
1060 pi.ipi_segs[seg_idx].ds_addr = paddr;
1061 pi.ipi_segs[seg_idx].ds_len = len;
1062 if (len) {
1063 pkt_len += len;
1064 seg_idx++;
1065 }
1066
1067 if (!(slot->flags & NS_MOREFRAG)) {
1068 pi.ipi_len = pkt_len;
1069 pi.ipi_nsegs = seg_idx;
1070 pi.ipi_pidx = nic_i_start;
1071 pi.ipi_ndescs = 0;
1072 pi.ipi_flags = flags;
1073
1074 /* Prepare the NIC TX ring. */
1075 ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1076 DBG_COUNTER_INC(tx_encap);
1077
1078 /* Update transmit counters */
1079 tx_bytes += pi.ipi_len;
1080 tx_pkts++;
1081
1082 /* Reinit per-packet info for the next one. */
1083 flags = seg_idx = pkt_len = 0;
1084 nic_i_start = -1;
1085 }
1086
1087 /* prefetch for next round */
1088 __builtin_prefetch(&ring->slot[nm_i + 1]);
1089 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1090 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1091
1092 NM_CHECK_ADDR_LEN(na, addr, len);
1093
1094 if (slot->flags & NS_BUF_CHANGED) {
1095 /* buffer has changed, reload map */
1096 netmap_reload_map(na, txq->ift_buf_tag,
1097 txq->ift_sds.ifsd_map[nic_i], addr);
1098 }
1099 /* make sure changes to the buffer are synced */
1100 bus_dmamap_sync(txq->ift_buf_tag,
1101 txq->ift_sds.ifsd_map[nic_i],
1102 BUS_DMASYNC_PREWRITE);
1103
1104 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1105 nm_i = nm_next(nm_i, lim);
1106 nic_i = nm_next(nic_i, lim);
1107 }
1108 kring->nr_hwcur = nm_i;
1109
1110 /* synchronize the NIC ring */
1111 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1112 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1113
1114 /* (re)start the tx unit up to slot nic_i (excluded) */
1115 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1116 }
1117
1118 /*
1119 * Second part: reclaim buffers for completed transmissions.
1120 *
1121 * If there are unclaimed buffers, attempt to reclaim them.
1122 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1123 * trigger a per-tx-queue timer to try again later.
1124 */
1125 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1126 if (iflib_tx_credits_update(ctx, txq)) {
1127 /* some tx completed, increment avail */
1128 nic_i = txq->ift_cidx_processed;
1129 kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1130 }
1131 }
1132
1133 if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1134 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1135 callout_reset_sbt_on(&txq->ift_netmap_timer,
1136 NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1137 iflib_netmap_timer, txq,
1138 txq->ift_netmap_timer.c_cpu, 0);
1139 }
1140
1141 if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1142 if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1143
1144 return (0);
1145 }
1146
1147 /*
1148 * Reconcile kernel and user view of the receive ring.
1149 * Same as for the txsync, this routine must be efficient.
1150 * The caller guarantees a single invocations, but races against
1151 * the rest of the driver should be handled here.
1152 *
1153 * On call, kring->rhead is the first packet that userspace wants
1154 * to keep, and kring->rcur is the wakeup point.
1155 * The kernel has previously reported packets up to kring->rtail.
1156 *
1157 * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1158 * of whether or not we received an interrupt.
1159 */
1160 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1161 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1162 {
1163 struct netmap_adapter *na = kring->na;
1164 struct netmap_ring *ring = kring->ring;
1165 if_t ifp = na->ifp;
1166 uint32_t nm_i; /* index into the netmap ring */
1167 uint32_t nic_i; /* index into the NIC ring */
1168 u_int n;
1169 u_int const lim = kring->nkr_num_slots - 1;
1170 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1171 int i = 0, rx_bytes = 0, rx_pkts = 0;
1172
1173 if_ctx_t ctx = ifp->if_softc;
1174 if_shared_ctx_t sctx = ctx->ifc_sctx;
1175 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1176 iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1177 iflib_fl_t fl = &rxq->ifr_fl[0];
1178 struct if_rxd_info ri;
1179 qidx_t *cidxp;
1180
1181 /*
1182 * netmap only uses free list 0, to avoid out of order consumption
1183 * of receive buffers
1184 */
1185
1186 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1187 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1188
1189 /*
1190 * First part: import newly received packets.
1191 *
1192 * nm_i is the index of the next free slot in the netmap ring,
1193 * nic_i is the index of the next received packet in the NIC ring
1194 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1195 * differ in case if_init() has been called while
1196 * in netmap mode. For the receive ring we have
1197 *
1198 * nic_i = fl->ifl_cidx;
1199 * nm_i = kring->nr_hwtail (previous)
1200 * and
1201 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1202 *
1203 * fl->ifl_cidx is set to 0 on a ring reinit
1204 */
1205 if (netmap_no_pendintr || force_update) {
1206 uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1207 bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1208 int crclen = iflib_crcstrip ? 0 : 4;
1209 int error, avail;
1210
1211 /*
1212 * For the free list consumer index, we use the same
1213 * logic as in iflib_rxeof().
1214 */
1215 if (have_rxcq)
1216 cidxp = &rxq->ifr_cq_cidx;
1217 else
1218 cidxp = &fl->ifl_cidx;
1219 avail = ctx->isc_rxd_available(ctx->ifc_softc,
1220 rxq->ifr_id, *cidxp, USHRT_MAX);
1221
1222 nic_i = fl->ifl_cidx;
1223 nm_i = netmap_idx_n2k(kring, nic_i);
1224 MPASS(nm_i == kring->nr_hwtail);
1225 for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1226 rxd_info_zero(&ri);
1227 ri.iri_frags = rxq->ifr_frags;
1228 ri.iri_qsidx = kring->ring_id;
1229 ri.iri_ifp = ctx->ifc_ifp;
1230 ri.iri_cidx = *cidxp;
1231
1232 error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1233 for (i = 0; i < ri.iri_nfrags; i++) {
1234 if (error) {
1235 ring->slot[nm_i].len = 0;
1236 ring->slot[nm_i].flags = 0;
1237 } else {
1238 ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1239 if (i == (ri.iri_nfrags - 1)) {
1240 ring->slot[nm_i].len -= crclen;
1241 ring->slot[nm_i].flags = 0;
1242
1243 /* Update receive counters */
1244 rx_bytes += ri.iri_len;
1245 rx_pkts++;
1246 } else
1247 ring->slot[nm_i].flags = NS_MOREFRAG;
1248 }
1249
1250 bus_dmamap_sync(fl->ifl_buf_tag,
1251 fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1252 nm_i = nm_next(nm_i, lim);
1253 fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1254 }
1255
1256 if (have_rxcq) {
1257 *cidxp = ri.iri_cidx;
1258 while (*cidxp >= scctx->isc_nrxd[0])
1259 *cidxp -= scctx->isc_nrxd[0];
1260 }
1261
1262 }
1263 if (n) { /* update the state variables */
1264 if (netmap_no_pendintr && !force_update) {
1265 /* diagnostics */
1266 iflib_rx_miss ++;
1267 iflib_rx_miss_bufs += n;
1268 }
1269 kring->nr_hwtail = nm_i;
1270 }
1271 kring->nr_kflags &= ~NKR_PENDINTR;
1272 }
1273 /*
1274 * Second part: skip past packets that userspace has released.
1275 * (kring->nr_hwcur to head excluded),
1276 * and make the buffers available for reception.
1277 * As usual nm_i is the index in the netmap ring,
1278 * nic_i is the index in the NIC ring, and
1279 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1280 */
1281 netmap_fl_refill(rxq, kring, false);
1282
1283 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1284 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1285
1286 return (0);
1287 }
1288
1289 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1290 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1291 {
1292 if_ctx_t ctx = na->ifp->if_softc;
1293
1294 CTX_LOCK(ctx);
1295 if (onoff) {
1296 IFDI_INTR_ENABLE(ctx);
1297 } else {
1298 IFDI_INTR_DISABLE(ctx);
1299 }
1300 CTX_UNLOCK(ctx);
1301 }
1302
1303 static int
iflib_netmap_attach(if_ctx_t ctx)1304 iflib_netmap_attach(if_ctx_t ctx)
1305 {
1306 struct netmap_adapter na;
1307
1308 bzero(&na, sizeof(na));
1309
1310 na.ifp = ctx->ifc_ifp;
1311 na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG;
1312 MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1313 MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1314
1315 na.num_tx_desc = iflib_num_tx_descs(ctx);
1316 na.num_rx_desc = iflib_num_rx_descs(ctx);
1317 na.nm_txsync = iflib_netmap_txsync;
1318 na.nm_rxsync = iflib_netmap_rxsync;
1319 na.nm_register = iflib_netmap_register;
1320 na.nm_intr = iflib_netmap_intr;
1321 na.nm_config = iflib_netmap_config;
1322 na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1323 na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1324 return (netmap_attach(&na));
1325 }
1326
1327 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1328 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1329 {
1330 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1331 struct netmap_slot *slot;
1332
1333 slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1334 if (slot == NULL)
1335 return (0);
1336 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1337 /*
1338 * In netmap mode, set the map for the packet buffer.
1339 * NOTE: Some drivers (not this one) also need to set
1340 * the physical buffer address in the NIC ring.
1341 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1342 * netmap slot index, si
1343 */
1344 int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1345 netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1346 NMB(na, slot + si));
1347 }
1348 return (1);
1349 }
1350
1351 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1352 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1353 {
1354 struct netmap_adapter *na = NA(ctx->ifc_ifp);
1355 struct netmap_kring *kring;
1356 struct netmap_slot *slot;
1357
1358 slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1359 if (slot == NULL)
1360 return (0);
1361 kring = na->rx_rings[rxq->ifr_id];
1362 netmap_fl_refill(rxq, kring, true);
1363 return (1);
1364 }
1365
1366 static void
iflib_netmap_timer(void * arg)1367 iflib_netmap_timer(void *arg)
1368 {
1369 iflib_txq_t txq = arg;
1370 if_ctx_t ctx = txq->ift_ctx;
1371
1372 /*
1373 * Wake up the netmap application, to give it a chance to
1374 * call txsync and reclaim more completed TX buffers.
1375 */
1376 netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1377 }
1378
1379 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1380
1381 #else
1382 #define iflib_netmap_txq_init(ctx, txq) (0)
1383 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1384 #define iflib_netmap_detach(ifp)
1385 #define netmap_enable_all_rings(ifp)
1386 #define netmap_disable_all_rings(ifp)
1387
1388 #define iflib_netmap_attach(ctx) (0)
1389 #define netmap_rx_irq(ifp, qid, budget) (0)
1390 #endif
1391
1392 #if defined(__i386__) || defined(__amd64__)
1393 static __inline void
prefetch(void * x)1394 prefetch(void *x)
1395 {
1396 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1397 }
1398 static __inline void
prefetch2cachelines(void * x)1399 prefetch2cachelines(void *x)
1400 {
1401 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1402 #if (CACHE_LINE_SIZE < 128)
1403 __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x)+CACHE_LINE_SIZE/(sizeof(unsigned long)))));
1404 #endif
1405 }
1406 #else
1407 #define prefetch(x)
1408 #define prefetch2cachelines(x)
1409 #endif
1410
1411 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1412 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1413 {
1414 iflib_fl_t fl;
1415
1416 fl = &rxq->ifr_fl[flid];
1417 iru->iru_paddrs = fl->ifl_bus_addrs;
1418 iru->iru_idxs = fl->ifl_rxd_idxs;
1419 iru->iru_qsidx = rxq->ifr_id;
1420 iru->iru_buf_size = fl->ifl_buf_size;
1421 iru->iru_flidx = fl->ifl_id;
1422 }
1423
1424 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1425 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1426 {
1427 if (err)
1428 return;
1429 *(bus_addr_t *) arg = segs[0].ds_addr;
1430 }
1431
1432 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1433 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1434 {
1435 int err;
1436 device_t dev = ctx->ifc_dev;
1437
1438 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1439 align, 0, /* alignment, bounds */
1440 BUS_SPACE_MAXADDR, /* lowaddr */
1441 BUS_SPACE_MAXADDR, /* highaddr */
1442 NULL, NULL, /* filter, filterarg */
1443 size, /* maxsize */
1444 1, /* nsegments */
1445 size, /* maxsegsize */
1446 BUS_DMA_ALLOCNOW, /* flags */
1447 NULL, /* lockfunc */
1448 NULL, /* lockarg */
1449 &dma->idi_tag);
1450 if (err) {
1451 device_printf(dev,
1452 "%s: bus_dma_tag_create failed: %d\n",
1453 __func__, err);
1454 goto fail_0;
1455 }
1456
1457 err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr,
1458 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1459 if (err) {
1460 device_printf(dev,
1461 "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1462 __func__, (uintmax_t)size, err);
1463 goto fail_1;
1464 }
1465
1466 dma->idi_paddr = IF_BAD_DMA;
1467 err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1468 size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1469 if (err || dma->idi_paddr == IF_BAD_DMA) {
1470 device_printf(dev,
1471 "%s: bus_dmamap_load failed: %d\n",
1472 __func__, err);
1473 goto fail_2;
1474 }
1475
1476 dma->idi_size = size;
1477 return (0);
1478
1479 fail_2:
1480 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1481 fail_1:
1482 bus_dma_tag_destroy(dma->idi_tag);
1483 fail_0:
1484 dma->idi_tag = NULL;
1485
1486 return (err);
1487 }
1488
1489 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1490 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1491 {
1492 if_shared_ctx_t sctx = ctx->ifc_sctx;
1493
1494 KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1495
1496 return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1497 }
1498
1499 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1500 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1501 {
1502 int i, err;
1503 iflib_dma_info_t *dmaiter;
1504
1505 dmaiter = dmalist;
1506 for (i = 0; i < count; i++, dmaiter++) {
1507 if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1508 break;
1509 }
1510 if (err)
1511 iflib_dma_free_multi(dmalist, i);
1512 return (err);
1513 }
1514
1515 void
iflib_dma_free(iflib_dma_info_t dma)1516 iflib_dma_free(iflib_dma_info_t dma)
1517 {
1518 if (dma->idi_tag == NULL)
1519 return;
1520 if (dma->idi_paddr != IF_BAD_DMA) {
1521 bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1522 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1523 bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1524 dma->idi_paddr = IF_BAD_DMA;
1525 }
1526 if (dma->idi_vaddr != NULL) {
1527 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1528 dma->idi_vaddr = NULL;
1529 }
1530 bus_dma_tag_destroy(dma->idi_tag);
1531 dma->idi_tag = NULL;
1532 }
1533
1534 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1535 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1536 {
1537 int i;
1538 iflib_dma_info_t *dmaiter = dmalist;
1539
1540 for (i = 0; i < count; i++, dmaiter++)
1541 iflib_dma_free(*dmaiter);
1542 }
1543
1544 static int
iflib_fast_intr(void * arg)1545 iflib_fast_intr(void *arg)
1546 {
1547 iflib_filter_info_t info = arg;
1548 struct grouptask *gtask = info->ifi_task;
1549 int result;
1550
1551 DBG_COUNTER_INC(fast_intrs);
1552 if (info->ifi_filter != NULL) {
1553 result = info->ifi_filter(info->ifi_filter_arg);
1554 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1555 return (result);
1556 }
1557
1558 GROUPTASK_ENQUEUE(gtask);
1559 return (FILTER_HANDLED);
1560 }
1561
1562 static int
iflib_fast_intr_rxtx(void * arg)1563 iflib_fast_intr_rxtx(void *arg)
1564 {
1565 iflib_filter_info_t info = arg;
1566 struct grouptask *gtask = info->ifi_task;
1567 if_ctx_t ctx;
1568 iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1569 iflib_txq_t txq;
1570 void *sc;
1571 int i, cidx, result;
1572 qidx_t txqid;
1573 bool intr_enable, intr_legacy;
1574
1575 DBG_COUNTER_INC(fast_intrs);
1576 if (info->ifi_filter != NULL) {
1577 result = info->ifi_filter(info->ifi_filter_arg);
1578 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1579 return (result);
1580 }
1581
1582 ctx = rxq->ifr_ctx;
1583 sc = ctx->ifc_softc;
1584 intr_enable = false;
1585 intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1586 MPASS(rxq->ifr_ntxqirq);
1587 for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1588 txqid = rxq->ifr_txqid[i];
1589 txq = &ctx->ifc_txqs[txqid];
1590 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1591 BUS_DMASYNC_POSTREAD);
1592 if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1593 if (intr_legacy)
1594 intr_enable = true;
1595 else
1596 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1597 continue;
1598 }
1599 GROUPTASK_ENQUEUE(&txq->ift_task);
1600 }
1601 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1602 cidx = rxq->ifr_cq_cidx;
1603 else
1604 cidx = rxq->ifr_fl[0].ifl_cidx;
1605 if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1606 GROUPTASK_ENQUEUE(gtask);
1607 else {
1608 if (intr_legacy)
1609 intr_enable = true;
1610 else
1611 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1612 DBG_COUNTER_INC(rx_intr_enables);
1613 }
1614 if (intr_enable)
1615 IFDI_INTR_ENABLE(ctx);
1616 return (FILTER_HANDLED);
1617 }
1618
1619 static int
iflib_fast_intr_ctx(void * arg)1620 iflib_fast_intr_ctx(void *arg)
1621 {
1622 iflib_filter_info_t info = arg;
1623 struct grouptask *gtask = info->ifi_task;
1624 int result;
1625
1626 DBG_COUNTER_INC(fast_intrs);
1627 if (info->ifi_filter != NULL) {
1628 result = info->ifi_filter(info->ifi_filter_arg);
1629 if ((result & FILTER_SCHEDULE_THREAD) == 0)
1630 return (result);
1631 }
1632
1633 GROUPTASK_ENQUEUE(gtask);
1634 return (FILTER_HANDLED);
1635 }
1636
1637 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1638 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1639 driver_filter_t filter, driver_intr_t handler, void *arg,
1640 const char *name)
1641 {
1642 struct resource *res;
1643 void *tag = NULL;
1644 device_t dev = ctx->ifc_dev;
1645 int flags, i, rc;
1646
1647 flags = RF_ACTIVE;
1648 if (ctx->ifc_flags & IFC_LEGACY)
1649 flags |= RF_SHAREABLE;
1650 MPASS(rid < 512);
1651 i = rid;
1652 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1653 if (res == NULL) {
1654 device_printf(dev,
1655 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1656 return (ENOMEM);
1657 }
1658 irq->ii_res = res;
1659 KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1660 rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1661 filter, handler, arg, &tag);
1662 if (rc != 0) {
1663 device_printf(dev,
1664 "failed to setup interrupt for rid %d, name %s: %d\n",
1665 rid, name ? name : "unknown", rc);
1666 return (rc);
1667 } else if (name)
1668 bus_describe_intr(dev, res, tag, "%s", name);
1669
1670 irq->ii_tag = tag;
1671 return (0);
1672 }
1673
1674 /*********************************************************************
1675 *
1676 * Allocate DMA resources for TX buffers as well as memory for the TX
1677 * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1678 * iflib_sw_tx_desc_array structure, storing all the information that
1679 * is needed to transmit a packet on the wire. This is called only
1680 * once at attach, setup is done every reset.
1681 *
1682 **********************************************************************/
1683 static int
iflib_txsd_alloc(iflib_txq_t txq)1684 iflib_txsd_alloc(iflib_txq_t txq)
1685 {
1686 if_ctx_t ctx = txq->ift_ctx;
1687 if_shared_ctx_t sctx = ctx->ifc_sctx;
1688 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1689 device_t dev = ctx->ifc_dev;
1690 bus_size_t tsomaxsize;
1691 int err, nsegments, ntsosegments;
1692 bool tso;
1693
1694 nsegments = scctx->isc_tx_nsegments;
1695 ntsosegments = scctx->isc_tx_tso_segments_max;
1696 tsomaxsize = scctx->isc_tx_tso_size_max;
1697 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1698 tsomaxsize += sizeof(struct ether_vlan_header);
1699 MPASS(scctx->isc_ntxd[0] > 0);
1700 MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1701 MPASS(nsegments > 0);
1702 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1703 MPASS(ntsosegments > 0);
1704 MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1705 }
1706
1707 /*
1708 * Set up DMA tags for TX buffers.
1709 */
1710 if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1711 1, 0, /* alignment, bounds */
1712 BUS_SPACE_MAXADDR, /* lowaddr */
1713 BUS_SPACE_MAXADDR, /* highaddr */
1714 NULL, NULL, /* filter, filterarg */
1715 sctx->isc_tx_maxsize, /* maxsize */
1716 nsegments, /* nsegments */
1717 sctx->isc_tx_maxsegsize, /* maxsegsize */
1718 0, /* flags */
1719 NULL, /* lockfunc */
1720 NULL, /* lockfuncarg */
1721 &txq->ift_buf_tag))) {
1722 device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err);
1723 device_printf(dev,"maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1724 (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1725 goto fail;
1726 }
1727 tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1728 if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1729 1, 0, /* alignment, bounds */
1730 BUS_SPACE_MAXADDR, /* lowaddr */
1731 BUS_SPACE_MAXADDR, /* highaddr */
1732 NULL, NULL, /* filter, filterarg */
1733 tsomaxsize, /* maxsize */
1734 ntsosegments, /* nsegments */
1735 sctx->isc_tso_maxsegsize,/* maxsegsize */
1736 0, /* flags */
1737 NULL, /* lockfunc */
1738 NULL, /* lockfuncarg */
1739 &txq->ift_tso_buf_tag))) {
1740 device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1741 err);
1742 goto fail;
1743 }
1744
1745 /* Allocate memory for the TX mbuf map. */
1746 if (!(txq->ift_sds.ifsd_m =
1747 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1748 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1749 device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1750 err = ENOMEM;
1751 goto fail;
1752 }
1753
1754 /*
1755 * Create the DMA maps for TX buffers.
1756 */
1757 if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1758 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1759 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1760 device_printf(dev,
1761 "Unable to allocate TX buffer DMA map memory\n");
1762 err = ENOMEM;
1763 goto fail;
1764 }
1765 if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1766 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1767 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1768 device_printf(dev,
1769 "Unable to allocate TSO TX buffer map memory\n");
1770 err = ENOMEM;
1771 goto fail;
1772 }
1773 for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1774 err = bus_dmamap_create(txq->ift_buf_tag, 0,
1775 &txq->ift_sds.ifsd_map[i]);
1776 if (err != 0) {
1777 device_printf(dev, "Unable to create TX DMA map\n");
1778 goto fail;
1779 }
1780 if (!tso)
1781 continue;
1782 err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1783 &txq->ift_sds.ifsd_tso_map[i]);
1784 if (err != 0) {
1785 device_printf(dev, "Unable to create TSO TX DMA map\n");
1786 goto fail;
1787 }
1788 }
1789 return (0);
1790 fail:
1791 /* We free all, it handles case where we are in the middle */
1792 iflib_tx_structures_free(ctx);
1793 return (err);
1794 }
1795
1796 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1797 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1798 {
1799 bus_dmamap_t map;
1800
1801 if (txq->ift_sds.ifsd_map != NULL) {
1802 map = txq->ift_sds.ifsd_map[i];
1803 bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1804 bus_dmamap_unload(txq->ift_buf_tag, map);
1805 bus_dmamap_destroy(txq->ift_buf_tag, map);
1806 txq->ift_sds.ifsd_map[i] = NULL;
1807 }
1808
1809 if (txq->ift_sds.ifsd_tso_map != NULL) {
1810 map = txq->ift_sds.ifsd_tso_map[i];
1811 bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1812 BUS_DMASYNC_POSTWRITE);
1813 bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1814 bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1815 txq->ift_sds.ifsd_tso_map[i] = NULL;
1816 }
1817 }
1818
1819 static void
iflib_txq_destroy(iflib_txq_t txq)1820 iflib_txq_destroy(iflib_txq_t txq)
1821 {
1822 if_ctx_t ctx = txq->ift_ctx;
1823
1824 for (int i = 0; i < txq->ift_size; i++)
1825 iflib_txsd_destroy(ctx, txq, i);
1826
1827 if (txq->ift_br != NULL) {
1828 ifmp_ring_free(txq->ift_br);
1829 txq->ift_br = NULL;
1830 }
1831
1832 mtx_destroy(&txq->ift_mtx);
1833
1834 if (txq->ift_sds.ifsd_map != NULL) {
1835 free(txq->ift_sds.ifsd_map, M_IFLIB);
1836 txq->ift_sds.ifsd_map = NULL;
1837 }
1838 if (txq->ift_sds.ifsd_tso_map != NULL) {
1839 free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1840 txq->ift_sds.ifsd_tso_map = NULL;
1841 }
1842 if (txq->ift_sds.ifsd_m != NULL) {
1843 free(txq->ift_sds.ifsd_m, M_IFLIB);
1844 txq->ift_sds.ifsd_m = NULL;
1845 }
1846 if (txq->ift_buf_tag != NULL) {
1847 bus_dma_tag_destroy(txq->ift_buf_tag);
1848 txq->ift_buf_tag = NULL;
1849 }
1850 if (txq->ift_tso_buf_tag != NULL) {
1851 bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1852 txq->ift_tso_buf_tag = NULL;
1853 }
1854 if (txq->ift_ifdi != NULL) {
1855 free(txq->ift_ifdi, M_IFLIB);
1856 }
1857 }
1858
1859 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1860 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1861 {
1862 struct mbuf **mp;
1863
1864 mp = &txq->ift_sds.ifsd_m[i];
1865 if (*mp == NULL)
1866 return;
1867
1868 if (txq->ift_sds.ifsd_map != NULL) {
1869 bus_dmamap_sync(txq->ift_buf_tag,
1870 txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1871 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1872 }
1873 if (txq->ift_sds.ifsd_tso_map != NULL) {
1874 bus_dmamap_sync(txq->ift_tso_buf_tag,
1875 txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1876 bus_dmamap_unload(txq->ift_tso_buf_tag,
1877 txq->ift_sds.ifsd_tso_map[i]);
1878 }
1879 m_freem(*mp);
1880 DBG_COUNTER_INC(tx_frees);
1881 *mp = NULL;
1882 }
1883
1884 static int
iflib_txq_setup(iflib_txq_t txq)1885 iflib_txq_setup(iflib_txq_t txq)
1886 {
1887 if_ctx_t ctx = txq->ift_ctx;
1888 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1889 if_shared_ctx_t sctx = ctx->ifc_sctx;
1890 iflib_dma_info_t di;
1891 int i;
1892
1893 /* Set number of descriptors available */
1894 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1895 /* XXX make configurable */
1896 txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1897
1898 /* Reset indices */
1899 txq->ift_cidx_processed = 0;
1900 txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1901 txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1902
1903 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1904 bzero((void *)di->idi_vaddr, di->idi_size);
1905
1906 IFDI_TXQ_SETUP(ctx, txq->ift_id);
1907 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1908 bus_dmamap_sync(di->idi_tag, di->idi_map,
1909 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1910 return (0);
1911 }
1912
1913 /*********************************************************************
1914 *
1915 * Allocate DMA resources for RX buffers as well as memory for the RX
1916 * mbuf map, direct RX cluster pointer map and RX cluster bus address
1917 * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and
1918 * RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1919 * Since we use use one entry in iflib_sw_rx_desc_array per received
1920 * packet, the maximum number of entries we'll need is equal to the
1921 * number of hardware receive descriptors that we've allocated.
1922 *
1923 **********************************************************************/
1924 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1925 iflib_rxsd_alloc(iflib_rxq_t rxq)
1926 {
1927 if_ctx_t ctx = rxq->ifr_ctx;
1928 if_shared_ctx_t sctx = ctx->ifc_sctx;
1929 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1930 device_t dev = ctx->ifc_dev;
1931 iflib_fl_t fl;
1932 int err;
1933
1934 MPASS(scctx->isc_nrxd[0] > 0);
1935 MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1936
1937 fl = rxq->ifr_fl;
1938 for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
1939 fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1940 /* Set up DMA tag for RX buffers. */
1941 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1942 1, 0, /* alignment, bounds */
1943 BUS_SPACE_MAXADDR, /* lowaddr */
1944 BUS_SPACE_MAXADDR, /* highaddr */
1945 NULL, NULL, /* filter, filterarg */
1946 sctx->isc_rx_maxsize, /* maxsize */
1947 sctx->isc_rx_nsegments, /* nsegments */
1948 sctx->isc_rx_maxsegsize, /* maxsegsize */
1949 0, /* flags */
1950 NULL, /* lockfunc */
1951 NULL, /* lockarg */
1952 &fl->ifl_buf_tag);
1953 if (err) {
1954 device_printf(dev,
1955 "Unable to allocate RX DMA tag: %d\n", err);
1956 goto fail;
1957 }
1958
1959 /* Allocate memory for the RX mbuf map. */
1960 if (!(fl->ifl_sds.ifsd_m =
1961 (struct mbuf **) malloc(sizeof(struct mbuf *) *
1962 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1963 device_printf(dev,
1964 "Unable to allocate RX mbuf map memory\n");
1965 err = ENOMEM;
1966 goto fail;
1967 }
1968
1969 /* Allocate memory for the direct RX cluster pointer map. */
1970 if (!(fl->ifl_sds.ifsd_cl =
1971 (caddr_t *) malloc(sizeof(caddr_t) *
1972 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1973 device_printf(dev,
1974 "Unable to allocate RX cluster map memory\n");
1975 err = ENOMEM;
1976 goto fail;
1977 }
1978
1979 /* Allocate memory for the RX cluster bus address map. */
1980 if (!(fl->ifl_sds.ifsd_ba =
1981 (bus_addr_t *) malloc(sizeof(bus_addr_t) *
1982 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1983 device_printf(dev,
1984 "Unable to allocate RX bus address map memory\n");
1985 err = ENOMEM;
1986 goto fail;
1987 }
1988
1989 /*
1990 * Create the DMA maps for RX buffers.
1991 */
1992 if (!(fl->ifl_sds.ifsd_map =
1993 (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1994 device_printf(dev,
1995 "Unable to allocate RX buffer DMA map memory\n");
1996 err = ENOMEM;
1997 goto fail;
1998 }
1999 for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2000 err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2001 &fl->ifl_sds.ifsd_map[i]);
2002 if (err != 0) {
2003 device_printf(dev, "Unable to create RX buffer DMA map\n");
2004 goto fail;
2005 }
2006 }
2007 }
2008 return (0);
2009
2010 fail:
2011 iflib_rx_structures_free(ctx);
2012 return (err);
2013 }
2014
2015 /*
2016 * Internal service routines
2017 */
2018
2019 struct rxq_refill_cb_arg {
2020 int error;
2021 bus_dma_segment_t seg;
2022 int nseg;
2023 };
2024
2025 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2026 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2027 {
2028 struct rxq_refill_cb_arg *cb_arg = arg;
2029
2030 cb_arg->error = error;
2031 cb_arg->seg = segs[0];
2032 cb_arg->nseg = nseg;
2033 }
2034
2035 /**
2036 * iflib_fl_refill - refill an rxq free-buffer list
2037 * @ctx: the iflib context
2038 * @fl: the free list to refill
2039 * @count: the number of new buffers to allocate
2040 *
2041 * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2042 * The caller must assure that @count does not exceed the queue's capacity
2043 * minus one (since we always leave a descriptor unavailable).
2044 */
2045 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2046 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2047 {
2048 struct if_rxd_update iru;
2049 struct rxq_refill_cb_arg cb_arg;
2050 struct mbuf *m;
2051 caddr_t cl, *sd_cl;
2052 struct mbuf **sd_m;
2053 bus_dmamap_t *sd_map;
2054 bus_addr_t bus_addr, *sd_ba;
2055 int err, frag_idx, i, idx, n, pidx;
2056 qidx_t credits;
2057
2058 MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2059
2060 sd_m = fl->ifl_sds.ifsd_m;
2061 sd_map = fl->ifl_sds.ifsd_map;
2062 sd_cl = fl->ifl_sds.ifsd_cl;
2063 sd_ba = fl->ifl_sds.ifsd_ba;
2064 pidx = fl->ifl_pidx;
2065 idx = pidx;
2066 frag_idx = fl->ifl_fragidx;
2067 credits = fl->ifl_credits;
2068
2069 i = 0;
2070 n = count;
2071 MPASS(n > 0);
2072 MPASS(credits + n <= fl->ifl_size);
2073
2074 if (pidx < fl->ifl_cidx)
2075 MPASS(pidx + n <= fl->ifl_cidx);
2076 if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2077 MPASS(fl->ifl_gen == 0);
2078 if (pidx > fl->ifl_cidx)
2079 MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2080
2081 DBG_COUNTER_INC(fl_refills);
2082 if (n > 8)
2083 DBG_COUNTER_INC(fl_refills_large);
2084 iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2085 while (n-- > 0) {
2086 /*
2087 * We allocate an uninitialized mbuf + cluster, mbuf is
2088 * initialized after rx.
2089 *
2090 * If the cluster is still set then we know a minimum sized
2091 * packet was received
2092 */
2093 bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2094 &frag_idx);
2095 if (frag_idx < 0)
2096 bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2097 MPASS(frag_idx >= 0);
2098 if ((cl = sd_cl[frag_idx]) == NULL) {
2099 cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2100 if (__predict_false(cl == NULL))
2101 break;
2102
2103 cb_arg.error = 0;
2104 MPASS(sd_map != NULL);
2105 err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2106 cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2107 BUS_DMA_NOWAIT);
2108 if (__predict_false(err != 0 || cb_arg.error)) {
2109 uma_zfree(fl->ifl_zone, cl);
2110 break;
2111 }
2112
2113 sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2114 sd_cl[frag_idx] = cl;
2115 #if MEMORY_LOGGING
2116 fl->ifl_cl_enqueued++;
2117 #endif
2118 } else {
2119 bus_addr = sd_ba[frag_idx];
2120 }
2121 bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2122 BUS_DMASYNC_PREREAD);
2123
2124 if (sd_m[frag_idx] == NULL) {
2125 m = m_gethdr(M_NOWAIT, MT_NOINIT);
2126 if (__predict_false(m == NULL))
2127 break;
2128 sd_m[frag_idx] = m;
2129 }
2130 bit_set(fl->ifl_rx_bitmap, frag_idx);
2131 #if MEMORY_LOGGING
2132 fl->ifl_m_enqueued++;
2133 #endif
2134
2135 DBG_COUNTER_INC(rx_allocs);
2136 fl->ifl_rxd_idxs[i] = frag_idx;
2137 fl->ifl_bus_addrs[i] = bus_addr;
2138 credits++;
2139 i++;
2140 MPASS(credits <= fl->ifl_size);
2141 if (++idx == fl->ifl_size) {
2142 #ifdef INVARIANTS
2143 fl->ifl_gen = 1;
2144 #endif
2145 idx = 0;
2146 }
2147 if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2148 iru.iru_pidx = pidx;
2149 iru.iru_count = i;
2150 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2151 fl->ifl_pidx = idx;
2152 fl->ifl_credits = credits;
2153 pidx = idx;
2154 i = 0;
2155 }
2156 }
2157
2158 if (n < count - 1) {
2159 if (i != 0) {
2160 iru.iru_pidx = pidx;
2161 iru.iru_count = i;
2162 ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2163 fl->ifl_pidx = idx;
2164 fl->ifl_credits = credits;
2165 }
2166 DBG_COUNTER_INC(rxd_flush);
2167 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2168 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2169 ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2170 fl->ifl_id, fl->ifl_pidx);
2171 if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2172 fl->ifl_fragidx = frag_idx + 1;
2173 if (fl->ifl_fragidx == fl->ifl_size)
2174 fl->ifl_fragidx = 0;
2175 } else {
2176 fl->ifl_fragidx = frag_idx;
2177 }
2178 }
2179
2180 return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2181 }
2182
2183 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2184 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2185 {
2186 /*
2187 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2188 * This is important as it confuses most NICs. For instance,
2189 * Intel NICs have (per receive ring) RDH and RDT registers, where
2190 * RDH points to the next receive descriptor to be used by the NIC,
2191 * and RDT for the next receive descriptor to be published by the
2192 * driver to the NIC (RDT - 1 is thus the last valid one).
2193 * The condition RDH == RDT means no descriptors are available to
2194 * the NIC, and thus it would be ambiguous if it also meant that
2195 * all the descriptors are available to the NIC.
2196 */
2197 int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2198 #ifdef INVARIANTS
2199 int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2200 #endif
2201
2202 MPASS(fl->ifl_credits <= fl->ifl_size);
2203 MPASS(reclaimable == delta);
2204
2205 if (reclaimable > 0)
2206 return (iflib_fl_refill(ctx, fl, reclaimable));
2207 return (0);
2208 }
2209
2210 uint8_t
iflib_in_detach(if_ctx_t ctx)2211 iflib_in_detach(if_ctx_t ctx)
2212 {
2213 bool in_detach;
2214
2215 STATE_LOCK(ctx);
2216 in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2217 STATE_UNLOCK(ctx);
2218 return (in_detach);
2219 }
2220
2221 static void
iflib_fl_bufs_free(iflib_fl_t fl)2222 iflib_fl_bufs_free(iflib_fl_t fl)
2223 {
2224 iflib_dma_info_t idi = fl->ifl_ifdi;
2225 bus_dmamap_t sd_map;
2226 uint32_t i;
2227
2228 for (i = 0; i < fl->ifl_size; i++) {
2229 struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2230 caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2231
2232 if (*sd_cl != NULL) {
2233 sd_map = fl->ifl_sds.ifsd_map[i];
2234 bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2235 BUS_DMASYNC_POSTREAD);
2236 bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2237 uma_zfree(fl->ifl_zone, *sd_cl);
2238 *sd_cl = NULL;
2239 if (*sd_m != NULL) {
2240 m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2241 m_free_raw(*sd_m);
2242 *sd_m = NULL;
2243 }
2244 } else {
2245 MPASS(*sd_m == NULL);
2246 }
2247 #if MEMORY_LOGGING
2248 fl->ifl_m_dequeued++;
2249 fl->ifl_cl_dequeued++;
2250 #endif
2251 }
2252 #ifdef INVARIANTS
2253 for (i = 0; i < fl->ifl_size; i++) {
2254 MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2255 MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2256 }
2257 #endif
2258 /*
2259 * Reset free list values
2260 */
2261 fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2262 bzero(idi->idi_vaddr, idi->idi_size);
2263 }
2264
2265 /*********************************************************************
2266 *
2267 * Initialize a free list and its buffers.
2268 *
2269 **********************************************************************/
2270 static int
iflib_fl_setup(iflib_fl_t fl)2271 iflib_fl_setup(iflib_fl_t fl)
2272 {
2273 iflib_rxq_t rxq = fl->ifl_rxq;
2274 if_ctx_t ctx = rxq->ifr_ctx;
2275 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2276 int qidx;
2277
2278 bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2279 /*
2280 ** Free current RX buffer structs and their mbufs
2281 */
2282 iflib_fl_bufs_free(fl);
2283 /* Now replenish the mbufs */
2284 MPASS(fl->ifl_credits == 0);
2285 qidx = rxq->ifr_fl_offset + fl->ifl_id;
2286 if (scctx->isc_rxd_buf_size[qidx] != 0)
2287 fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2288 else
2289 fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2290 /*
2291 * ifl_buf_size may be a driver-supplied value, so pull it up
2292 * to the selected mbuf size.
2293 */
2294 fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2295 if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2296 ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2297 fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2298 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2299
2300 /*
2301 * Avoid pre-allocating zillions of clusters to an idle card
2302 * potentially speeding up attach. In any case make sure
2303 * to leave a descriptor unavailable. See the comment in
2304 * iflib_fl_refill_all().
2305 */
2306 MPASS(fl->ifl_size > 0);
2307 (void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2308 if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2309 return (ENOBUFS);
2310 /*
2311 * handle failure
2312 */
2313 MPASS(rxq != NULL);
2314 MPASS(fl->ifl_ifdi != NULL);
2315 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2316 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2317 return (0);
2318 }
2319
2320 /*********************************************************************
2321 *
2322 * Free receive ring data structures
2323 *
2324 **********************************************************************/
2325 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2326 iflib_rx_sds_free(iflib_rxq_t rxq)
2327 {
2328 iflib_fl_t fl;
2329 int i, j;
2330
2331 if (rxq->ifr_fl != NULL) {
2332 for (i = 0; i < rxq->ifr_nfl; i++) {
2333 fl = &rxq->ifr_fl[i];
2334 if (fl->ifl_buf_tag != NULL) {
2335 if (fl->ifl_sds.ifsd_map != NULL) {
2336 for (j = 0; j < fl->ifl_size; j++) {
2337 bus_dmamap_sync(
2338 fl->ifl_buf_tag,
2339 fl->ifl_sds.ifsd_map[j],
2340 BUS_DMASYNC_POSTREAD);
2341 bus_dmamap_unload(
2342 fl->ifl_buf_tag,
2343 fl->ifl_sds.ifsd_map[j]);
2344 bus_dmamap_destroy(
2345 fl->ifl_buf_tag,
2346 fl->ifl_sds.ifsd_map[j]);
2347 }
2348 }
2349 bus_dma_tag_destroy(fl->ifl_buf_tag);
2350 fl->ifl_buf_tag = NULL;
2351 }
2352 free(fl->ifl_sds.ifsd_m, M_IFLIB);
2353 free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2354 free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2355 free(fl->ifl_sds.ifsd_map, M_IFLIB);
2356 free(fl->ifl_rx_bitmap, M_IFLIB);
2357 fl->ifl_sds.ifsd_m = NULL;
2358 fl->ifl_sds.ifsd_cl = NULL;
2359 fl->ifl_sds.ifsd_ba = NULL;
2360 fl->ifl_sds.ifsd_map = NULL;
2361 fl->ifl_rx_bitmap = NULL;
2362 }
2363 free(rxq->ifr_fl, M_IFLIB);
2364 rxq->ifr_fl = NULL;
2365 free(rxq->ifr_ifdi, M_IFLIB);
2366 rxq->ifr_ifdi = NULL;
2367 rxq->ifr_cq_cidx = 0;
2368 }
2369 }
2370
2371 /*
2372 * Timer routine
2373 */
2374 static void
iflib_timer(void * arg)2375 iflib_timer(void *arg)
2376 {
2377 iflib_txq_t txq = arg;
2378 if_ctx_t ctx = txq->ift_ctx;
2379 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2380 uint64_t this_tick = ticks;
2381
2382 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2383 return;
2384
2385 /*
2386 ** Check on the state of the TX queue(s), this
2387 ** can be done without the lock because its RO
2388 ** and the HUNG state will be static if set.
2389 */
2390 if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2391 txq->ift_last_timer_tick = this_tick;
2392 IFDI_TIMER(ctx, txq->ift_id);
2393 if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2394 ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2395 (sctx->isc_pause_frames == 0)))
2396 goto hung;
2397
2398 if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2399 ifmp_ring_is_stalled(txq->ift_br)) {
2400 KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2401 ("queue can't be marked as hung if interface is down"));
2402 txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2403 }
2404 txq->ift_cleaned_prev = txq->ift_cleaned;
2405 }
2406 /* handle any laggards */
2407 if (txq->ift_db_pending)
2408 GROUPTASK_ENQUEUE(&txq->ift_task);
2409
2410 sctx->isc_pause_frames = 0;
2411 if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2412 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2413 txq, txq->ift_timer.c_cpu);
2414 return;
2415
2416 hung:
2417 device_printf(ctx->ifc_dev,
2418 "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2419 txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2420 STATE_LOCK(ctx);
2421 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2422 ctx->ifc_flags |= (IFC_DO_WATCHDOG|IFC_DO_RESET);
2423 iflib_admin_intr_deferred(ctx);
2424 STATE_UNLOCK(ctx);
2425 }
2426
2427 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2428 iflib_get_mbuf_size_for(unsigned int size)
2429 {
2430
2431 if (size <= MCLBYTES)
2432 return (MCLBYTES);
2433 else
2434 return (MJUMPAGESIZE);
2435 }
2436
2437 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2438 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2439 {
2440 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2441
2442 /*
2443 * XXX don't set the max_frame_size to larger
2444 * than the hardware can handle
2445 */
2446 ctx->ifc_rx_mbuf_sz =
2447 iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2448 }
2449
2450 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2451 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2452 {
2453
2454 return (ctx->ifc_rx_mbuf_sz);
2455 }
2456
2457 static void
iflib_init_locked(if_ctx_t ctx)2458 iflib_init_locked(if_ctx_t ctx)
2459 {
2460 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2461 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2462 if_t ifp = ctx->ifc_ifp;
2463 iflib_fl_t fl;
2464 iflib_txq_t txq;
2465 iflib_rxq_t rxq;
2466 int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2467
2468 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2469 IFDI_INTR_DISABLE(ctx);
2470
2471 /*
2472 * See iflib_stop(). Useful in case iflib_init_locked() is
2473 * called without first calling iflib_stop().
2474 */
2475 netmap_disable_all_rings(ifp);
2476
2477 tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2478 tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2479 /* Set hardware offload abilities */
2480 if_clearhwassist(ifp);
2481 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2482 if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2483 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2484 if_sethwassistbits(ifp, tx_ip6_csum_flags, 0);
2485 if (if_getcapenable(ifp) & IFCAP_TSO4)
2486 if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2487 if (if_getcapenable(ifp) & IFCAP_TSO6)
2488 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2489
2490 for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) {
2491 CALLOUT_LOCK(txq);
2492 callout_stop(&txq->ift_timer);
2493 #ifdef DEV_NETMAP
2494 callout_stop(&txq->ift_netmap_timer);
2495 #endif /* DEV_NETMAP */
2496 CALLOUT_UNLOCK(txq);
2497 iflib_netmap_txq_init(ctx, txq);
2498 }
2499
2500 /*
2501 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2502 * that drivers can use the value when setting up the hardware receive
2503 * buffers.
2504 */
2505 iflib_calc_rx_mbuf_sz(ctx);
2506
2507 #ifdef INVARIANTS
2508 i = if_getdrvflags(ifp);
2509 #endif
2510 IFDI_INIT(ctx);
2511 MPASS(if_getdrvflags(ifp) == i);
2512 for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) {
2513 if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2514 /* This rxq is in netmap mode. Skip normal init. */
2515 continue;
2516 }
2517 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2518 if (iflib_fl_setup(fl)) {
2519 device_printf(ctx->ifc_dev,
2520 "setting up free list %d failed - "
2521 "check cluster settings\n", j);
2522 goto done;
2523 }
2524 }
2525 }
2526 done:
2527 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2528 IFDI_INTR_ENABLE(ctx);
2529 txq = ctx->ifc_txqs;
2530 for (i = 0; i < sctx->isc_ntxqsets; i++, txq++)
2531 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2532 txq->ift_timer.c_cpu);
2533
2534 /* Re-enable txsync/rxsync. */
2535 netmap_enable_all_rings(ifp);
2536 }
2537
2538 static int
iflib_media_change(if_t ifp)2539 iflib_media_change(if_t ifp)
2540 {
2541 if_ctx_t ctx = if_getsoftc(ifp);
2542 int err;
2543
2544 CTX_LOCK(ctx);
2545 if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2546 iflib_if_init_locked(ctx);
2547 CTX_UNLOCK(ctx);
2548 return (err);
2549 }
2550
2551 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2552 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2553 {
2554 if_ctx_t ctx = if_getsoftc(ifp);
2555
2556 CTX_LOCK(ctx);
2557 IFDI_UPDATE_ADMIN_STATUS(ctx);
2558 IFDI_MEDIA_STATUS(ctx, ifmr);
2559 CTX_UNLOCK(ctx);
2560 }
2561
2562 void
iflib_stop(if_ctx_t ctx)2563 iflib_stop(if_ctx_t ctx)
2564 {
2565 iflib_txq_t txq = ctx->ifc_txqs;
2566 iflib_rxq_t rxq = ctx->ifc_rxqs;
2567 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2568 if_shared_ctx_t sctx = ctx->ifc_sctx;
2569 iflib_dma_info_t di;
2570 iflib_fl_t fl;
2571 int i, j;
2572
2573 /* Tell the stack that the interface is no longer active */
2574 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2575
2576 IFDI_INTR_DISABLE(ctx);
2577 DELAY(1000);
2578 IFDI_STOP(ctx);
2579 DELAY(1000);
2580
2581 /*
2582 * Stop any pending txsync/rxsync and prevent new ones
2583 * form starting. Processes blocked in poll() will get
2584 * POLLERR.
2585 */
2586 netmap_disable_all_rings(ctx->ifc_ifp);
2587
2588 iflib_debug_reset();
2589 /* Wait for current tx queue users to exit to disarm watchdog timer. */
2590 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2591 /* make sure all transmitters have completed before proceeding XXX */
2592
2593 CALLOUT_LOCK(txq);
2594 callout_stop(&txq->ift_timer);
2595 #ifdef DEV_NETMAP
2596 callout_stop(&txq->ift_netmap_timer);
2597 #endif /* DEV_NETMAP */
2598 CALLOUT_UNLOCK(txq);
2599
2600 /* clean any enqueued buffers */
2601 iflib_ifmp_purge(txq);
2602 /* Free any existing tx buffers. */
2603 for (j = 0; j < txq->ift_size; j++) {
2604 iflib_txsd_free(ctx, txq, j);
2605 }
2606 txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2607 txq->ift_in_use = txq->ift_gen = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0;
2608 txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2609 txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2610 txq->ift_pullups = 0;
2611 ifmp_ring_reset_stats(txq->ift_br);
2612 for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2613 bzero((void *)di->idi_vaddr, di->idi_size);
2614 }
2615 for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2616 gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2617 &rxq->ifr_task.gt_task);
2618
2619 rxq->ifr_cq_cidx = 0;
2620 for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2621 bzero((void *)di->idi_vaddr, di->idi_size);
2622 /* also resets the free lists pidx/cidx */
2623 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2624 iflib_fl_bufs_free(fl);
2625 }
2626 }
2627
2628 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2629 calc_next_rxd(iflib_fl_t fl, int cidx)
2630 {
2631 qidx_t size;
2632 int nrxd;
2633 caddr_t start, end, cur, next;
2634
2635 nrxd = fl->ifl_size;
2636 size = fl->ifl_rxd_size;
2637 start = fl->ifl_ifdi->idi_vaddr;
2638
2639 if (__predict_false(size == 0))
2640 return (start);
2641 cur = start + size*cidx;
2642 end = start + size*nrxd;
2643 next = CACHE_PTR_NEXT(cur);
2644 return (next < end ? next : start);
2645 }
2646
2647 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2648 prefetch_pkts(iflib_fl_t fl, int cidx)
2649 {
2650 int nextptr;
2651 int nrxd = fl->ifl_size;
2652 caddr_t next_rxd;
2653
2654 nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd-1);
2655 prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2656 prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2657 next_rxd = calc_next_rxd(fl, cidx);
2658 prefetch(next_rxd);
2659 prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd-1)]);
2660 prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd-1)]);
2661 prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd-1)]);
2662 prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd-1)]);
2663 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd-1)]);
2664 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd-1)]);
2665 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd-1)]);
2666 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd-1)]);
2667 }
2668
2669 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2670 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2671 int *pf_rv, if_rxd_info_t ri)
2672 {
2673 bus_dmamap_t map;
2674 iflib_fl_t fl;
2675 caddr_t payload;
2676 struct mbuf *m;
2677 int flid, cidx, len, next;
2678
2679 map = NULL;
2680 flid = irf->irf_flid;
2681 cidx = irf->irf_idx;
2682 fl = &rxq->ifr_fl[flid];
2683 sd->ifsd_fl = fl;
2684 m = fl->ifl_sds.ifsd_m[cidx];
2685 sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2686 fl->ifl_credits--;
2687 #if MEMORY_LOGGING
2688 fl->ifl_m_dequeued++;
2689 #endif
2690 if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2691 prefetch_pkts(fl, cidx);
2692 next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size-1);
2693 prefetch(&fl->ifl_sds.ifsd_map[next]);
2694 map = fl->ifl_sds.ifsd_map[cidx];
2695
2696 bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2697
2698 if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2699 irf->irf_len != 0) {
2700 payload = *sd->ifsd_cl;
2701 payload += ri->iri_pad;
2702 len = ri->iri_len - ri->iri_pad;
2703 *pf_rv = pfil_run_hooks(rxq->pfil, payload, ri->iri_ifp,
2704 len | PFIL_MEMPTR | PFIL_IN, NULL);
2705 switch (*pf_rv) {
2706 case PFIL_DROPPED:
2707 case PFIL_CONSUMED:
2708 /*
2709 * The filter ate it. Everything is recycled.
2710 */
2711 m = NULL;
2712 unload = 0;
2713 break;
2714 case PFIL_REALLOCED:
2715 /*
2716 * The filter copied it. Everything is recycled.
2717 */
2718 m = pfil_mem2mbuf(payload);
2719 unload = 0;
2720 break;
2721 case PFIL_PASS:
2722 /*
2723 * Filter said it was OK, so receive like
2724 * normal
2725 */
2726 fl->ifl_sds.ifsd_m[cidx] = NULL;
2727 break;
2728 default:
2729 MPASS(0);
2730 }
2731 } else {
2732 fl->ifl_sds.ifsd_m[cidx] = NULL;
2733 if (pf_rv != NULL)
2734 *pf_rv = PFIL_PASS;
2735 }
2736
2737 if (unload && irf->irf_len != 0)
2738 bus_dmamap_unload(fl->ifl_buf_tag, map);
2739 fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size-1);
2740 if (__predict_false(fl->ifl_cidx == 0))
2741 fl->ifl_gen = 0;
2742 bit_clear(fl->ifl_rx_bitmap, cidx);
2743 return (m);
2744 }
2745
2746 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2747 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2748 {
2749 struct mbuf *m, *mh, *mt;
2750 caddr_t cl;
2751 int *pf_rv_ptr, flags, i, padlen;
2752 bool consumed;
2753
2754 i = 0;
2755 mh = NULL;
2756 consumed = false;
2757 *pf_rv = PFIL_PASS;
2758 pf_rv_ptr = pf_rv;
2759 do {
2760 m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2761 pf_rv_ptr, ri);
2762
2763 MPASS(*sd->ifsd_cl != NULL);
2764
2765 /*
2766 * Exclude zero-length frags & frags from
2767 * packets the filter has consumed or dropped
2768 */
2769 if (ri->iri_frags[i].irf_len == 0 || consumed ||
2770 *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2771 if (mh == NULL) {
2772 /* everything saved here */
2773 consumed = true;
2774 pf_rv_ptr = NULL;
2775 continue;
2776 }
2777 /* XXX we can save the cluster here, but not the mbuf */
2778 m_init(m, M_NOWAIT, MT_DATA, 0);
2779 m_free(m);
2780 continue;
2781 }
2782 if (mh == NULL) {
2783 flags = M_PKTHDR|M_EXT;
2784 mh = mt = m;
2785 padlen = ri->iri_pad;
2786 } else {
2787 flags = M_EXT;
2788 mt->m_next = m;
2789 mt = m;
2790 /* assuming padding is only on the first fragment */
2791 padlen = 0;
2792 }
2793 cl = *sd->ifsd_cl;
2794 *sd->ifsd_cl = NULL;
2795
2796 /* Can these two be made one ? */
2797 m_init(m, M_NOWAIT, MT_DATA, flags);
2798 m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2799 /*
2800 * These must follow m_init and m_cljset
2801 */
2802 m->m_data += padlen;
2803 ri->iri_len -= padlen;
2804 m->m_len = ri->iri_frags[i].irf_len;
2805 } while (++i < ri->iri_nfrags);
2806
2807 return (mh);
2808 }
2809
2810 /*
2811 * Process one software descriptor
2812 */
2813 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2814 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2815 {
2816 struct if_rxsd sd;
2817 struct mbuf *m;
2818 int pf_rv;
2819
2820 /* should I merge this back in now that the two paths are basically duplicated? */
2821 if (ri->iri_nfrags == 1 &&
2822 ri->iri_frags[0].irf_len != 0 &&
2823 ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2824 m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2825 &pf_rv, ri);
2826 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2827 return (m);
2828 if (pf_rv == PFIL_PASS) {
2829 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2830 #ifndef __NO_STRICT_ALIGNMENT
2831 if (!IP_ALIGNED(m))
2832 m->m_data += 2;
2833 #endif
2834 memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2835 m->m_len = ri->iri_frags[0].irf_len;
2836 }
2837 } else {
2838 m = assemble_segments(rxq, ri, &sd, &pf_rv);
2839 if (m == NULL)
2840 return (NULL);
2841 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2842 return (m);
2843 }
2844 m->m_pkthdr.len = ri->iri_len;
2845 m->m_pkthdr.rcvif = ri->iri_ifp;
2846 m->m_flags |= ri->iri_flags;
2847 m->m_pkthdr.ether_vtag = ri->iri_vtag;
2848 m->m_pkthdr.flowid = ri->iri_flowid;
2849 M_HASHTYPE_SET(m, ri->iri_rsstype);
2850 m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2851 m->m_pkthdr.csum_data = ri->iri_csum_data;
2852 return (m);
2853 }
2854
2855 #if defined(INET6) || defined(INET)
2856 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc,bool * v4,bool * v6)2857 iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6)
2858 {
2859 CURVNET_SET(lc->ifp->if_vnet);
2860 #if defined(INET6)
2861 *v6 = V_ip6_forwarding;
2862 #endif
2863 #if defined(INET)
2864 *v4 = V_ipforwarding;
2865 #endif
2866 CURVNET_RESTORE();
2867 }
2868
2869 /*
2870 * Returns true if it's possible this packet could be LROed.
2871 * if it returns false, it is guaranteed that tcp_lro_rx()
2872 * would not return zero.
2873 */
2874 static bool
iflib_check_lro_possible(struct mbuf * m,bool v4_forwarding,bool v6_forwarding)2875 iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding)
2876 {
2877 struct ether_header *eh;
2878
2879 eh = mtod(m, struct ether_header *);
2880 switch (eh->ether_type) {
2881 #if defined(INET6)
2882 case htons(ETHERTYPE_IPV6):
2883 return (!v6_forwarding);
2884 #endif
2885 #if defined (INET)
2886 case htons(ETHERTYPE_IP):
2887 return (!v4_forwarding);
2888 #endif
2889 }
2890
2891 return false;
2892 }
2893 #else
2894 static void
iflib_get_ip_forwarding(struct lro_ctrl * lc __unused,bool * v4 __unused,bool * v6 __unused)2895 iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused)
2896 {
2897 }
2898 #endif
2899
2900 static void
_task_fn_rx_watchdog(void * context)2901 _task_fn_rx_watchdog(void *context)
2902 {
2903 iflib_rxq_t rxq = context;
2904
2905 GROUPTASK_ENQUEUE(&rxq->ifr_task);
2906 }
2907
2908 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2909 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2910 {
2911 if_t ifp;
2912 if_ctx_t ctx = rxq->ifr_ctx;
2913 if_shared_ctx_t sctx = ctx->ifc_sctx;
2914 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2915 int avail, i;
2916 qidx_t *cidxp;
2917 struct if_rxd_info ri;
2918 int err, budget_left, rx_bytes, rx_pkts;
2919 iflib_fl_t fl;
2920 int lro_enabled;
2921 bool v4_forwarding, v6_forwarding, lro_possible;
2922 uint8_t retval = 0;
2923
2924 /*
2925 * XXX early demux data packets so that if_input processing only handles
2926 * acks in interrupt context
2927 */
2928 struct mbuf *m, *mh, *mt, *mf;
2929
2930 NET_EPOCH_ASSERT();
2931
2932 lro_possible = v4_forwarding = v6_forwarding = false;
2933 ifp = ctx->ifc_ifp;
2934 mh = mt = NULL;
2935 MPASS(budget > 0);
2936 rx_pkts = rx_bytes = 0;
2937 if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2938 cidxp = &rxq->ifr_cq_cidx;
2939 else
2940 cidxp = &rxq->ifr_fl[0].ifl_cidx;
2941 if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2942 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2943 retval |= iflib_fl_refill_all(ctx, fl);
2944 DBG_COUNTER_INC(rx_unavail);
2945 return (retval);
2946 }
2947
2948 /* pfil needs the vnet to be set */
2949 CURVNET_SET_QUIET(ifp->if_vnet);
2950 for (budget_left = budget; budget_left > 0 && avail > 0;) {
2951 if (__predict_false(!CTX_ACTIVE(ctx))) {
2952 DBG_COUNTER_INC(rx_ctx_inactive);
2953 break;
2954 }
2955 /*
2956 * Reset client set fields to their default values
2957 */
2958 rxd_info_zero(&ri);
2959 ri.iri_qsidx = rxq->ifr_id;
2960 ri.iri_cidx = *cidxp;
2961 ri.iri_ifp = ifp;
2962 ri.iri_frags = rxq->ifr_frags;
2963 err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
2964
2965 if (err)
2966 goto err;
2967 rx_pkts += 1;
2968 rx_bytes += ri.iri_len;
2969 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
2970 *cidxp = ri.iri_cidx;
2971 /* Update our consumer index */
2972 /* XXX NB: shurd - check if this is still safe */
2973 while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
2974 rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
2975 /* was this only a completion queue message? */
2976 if (__predict_false(ri.iri_nfrags == 0))
2977 continue;
2978 }
2979 MPASS(ri.iri_nfrags != 0);
2980 MPASS(ri.iri_len != 0);
2981
2982 /* will advance the cidx on the corresponding free lists */
2983 m = iflib_rxd_pkt_get(rxq, &ri);
2984 avail--;
2985 budget_left--;
2986 if (avail == 0 && budget_left)
2987 avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
2988
2989 if (__predict_false(m == NULL))
2990 continue;
2991
2992 /* imm_pkt: -- cxgb */
2993 if (mh == NULL)
2994 mh = mt = m;
2995 else {
2996 mt->m_nextpkt = m;
2997 mt = m;
2998 }
2999 }
3000 CURVNET_RESTORE();
3001 /* make sure that we can refill faster than drain */
3002 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3003 retval |= iflib_fl_refill_all(ctx, fl);
3004
3005 lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
3006 if (lro_enabled)
3007 iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding);
3008 mt = mf = NULL;
3009 while (mh != NULL) {
3010 m = mh;
3011 mh = mh->m_nextpkt;
3012 m->m_nextpkt = NULL;
3013 #ifndef __NO_STRICT_ALIGNMENT
3014 if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
3015 continue;
3016 #endif
3017 #if defined(INET6) || defined(INET)
3018 if (lro_enabled) {
3019 if (!lro_possible) {
3020 lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding);
3021 if (lro_possible && mf != NULL) {
3022 ifp->if_input(ifp, mf);
3023 DBG_COUNTER_INC(rx_if_input);
3024 mt = mf = NULL;
3025 }
3026 }
3027 if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC|CSUM_L4_VALID)) ==
3028 (CSUM_L4_CALC|CSUM_L4_VALID)) {
3029 if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0)
3030 continue;
3031 }
3032 }
3033 #endif
3034 if (lro_possible) {
3035 ifp->if_input(ifp, m);
3036 DBG_COUNTER_INC(rx_if_input);
3037 continue;
3038 }
3039
3040 if (mf == NULL)
3041 mf = m;
3042 if (mt != NULL)
3043 mt->m_nextpkt = m;
3044 mt = m;
3045 }
3046 if (mf != NULL) {
3047 ifp->if_input(ifp, mf);
3048 DBG_COUNTER_INC(rx_if_input);
3049 }
3050
3051 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3052 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3053
3054 /*
3055 * Flush any outstanding LRO work
3056 */
3057 #if defined(INET6) || defined(INET)
3058 tcp_lro_flush_all(&rxq->ifr_lc);
3059 #endif
3060 if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3061 retval |= IFLIB_RXEOF_MORE;
3062 return (retval);
3063 err:
3064 STATE_LOCK(ctx);
3065 ctx->ifc_flags |= IFC_DO_RESET;
3066 iflib_admin_intr_deferred(ctx);
3067 STATE_UNLOCK(ctx);
3068 return (0);
3069 }
3070
3071 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq)-1)
3072 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3073 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3074 {
3075 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3076 qidx_t minthresh = txq->ift_size / 8;
3077 if (in_use > 4*minthresh)
3078 return (notify_count);
3079 if (in_use > 2*minthresh)
3080 return (notify_count >> 1);
3081 if (in_use > minthresh)
3082 return (notify_count >> 3);
3083 return (0);
3084 }
3085
3086 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3087 txq_max_rs_deferred(iflib_txq_t txq)
3088 {
3089 qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3090 qidx_t minthresh = txq->ift_size / 8;
3091 if (txq->ift_in_use > 4*minthresh)
3092 return (notify_count);
3093 if (txq->ift_in_use > 2*minthresh)
3094 return (notify_count >> 1);
3095 if (txq->ift_in_use > minthresh)
3096 return (notify_count >> 2);
3097 return (2);
3098 }
3099
3100 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags)
3101 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG)
3102
3103 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use))
3104 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq)
3105 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4)
3106
3107 /* forward compatibility for cxgb */
3108 #define FIRST_QSET(ctx) 0
3109 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3110 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3111 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3112 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3113
3114 /* XXX we should be setting this to something other than zero */
3115 #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh)
3116 #define MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3117 (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3118
3119 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3120 iflib_txd_db_check(iflib_txq_t txq, int ring)
3121 {
3122 if_ctx_t ctx = txq->ift_ctx;
3123 qidx_t dbval, max;
3124
3125 max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3126
3127 /* force || threshold exceeded || at the edge of the ring */
3128 if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) {
3129
3130 /*
3131 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3132 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3133 * producer index explicitly (INTC).
3134 */
3135 dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3136 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3137 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3138 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3139
3140 /*
3141 * Absent bugs there are zero packets pending so reset pending counts to zero.
3142 */
3143 txq->ift_db_pending = txq->ift_npending = 0;
3144 return (true);
3145 }
3146 return (false);
3147 }
3148
3149 #ifdef PKT_DEBUG
3150 static void
print_pkt(if_pkt_info_t pi)3151 print_pkt(if_pkt_info_t pi)
3152 {
3153 printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3154 pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3155 printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3156 pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3157 printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3158 pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3159 }
3160 #endif
3161
3162 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3163 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3164 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3165 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3166
3167 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3168 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3169 {
3170 if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3171 struct ether_vlan_header *eh;
3172 struct mbuf *m;
3173
3174 m = *mp;
3175 if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3176 M_WRITABLE(m) == 0) {
3177 if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3178 return (ENOMEM);
3179 } else {
3180 m_freem(*mp);
3181 DBG_COUNTER_INC(tx_frees);
3182 *mp = m;
3183 }
3184 }
3185
3186 /*
3187 * Determine where frame payload starts.
3188 * Jump over vlan headers if already present,
3189 * helpful for QinQ too.
3190 */
3191 if (__predict_false(m->m_len < sizeof(*eh))) {
3192 txq->ift_pullups++;
3193 if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3194 return (ENOMEM);
3195 }
3196 eh = mtod(m, struct ether_vlan_header *);
3197 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3198 pi->ipi_etype = ntohs(eh->evl_proto);
3199 pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3200 } else {
3201 pi->ipi_etype = ntohs(eh->evl_encap_proto);
3202 pi->ipi_ehdrlen = ETHER_HDR_LEN;
3203 }
3204
3205 switch (pi->ipi_etype) {
3206 #ifdef INET
3207 case ETHERTYPE_IP:
3208 {
3209 struct mbuf *n;
3210 struct ip *ip = NULL;
3211 struct tcphdr *th = NULL;
3212 int minthlen;
3213
3214 minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th));
3215 if (__predict_false(m->m_len < minthlen)) {
3216 /*
3217 * if this code bloat is causing too much of a hit
3218 * move it to a separate function and mark it noinline
3219 */
3220 if (m->m_len == pi->ipi_ehdrlen) {
3221 n = m->m_next;
3222 MPASS(n);
3223 if (n->m_len >= sizeof(*ip)) {
3224 ip = (struct ip *)n->m_data;
3225 if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3226 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3227 } else {
3228 txq->ift_pullups++;
3229 if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3230 return (ENOMEM);
3231 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3232 }
3233 } else {
3234 txq->ift_pullups++;
3235 if (__predict_false((m = m_pullup(m, minthlen)) == NULL))
3236 return (ENOMEM);
3237 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3238 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3239 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3240 }
3241 } else {
3242 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3243 if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th))
3244 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
3245 }
3246 pi->ipi_ip_hlen = ip->ip_hl << 2;
3247 pi->ipi_ipproto = ip->ip_p;
3248 pi->ipi_flags |= IPI_TX_IPV4;
3249
3250 /* TCP checksum offload may require TCP header length */
3251 if (IS_TX_OFFLOAD4(pi)) {
3252 if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3253 if (__predict_false(th == NULL)) {
3254 txq->ift_pullups++;
3255 if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL))
3256 return (ENOMEM);
3257 th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen);
3258 }
3259 pi->ipi_tcp_hflags = th->th_flags;
3260 pi->ipi_tcp_hlen = th->th_off << 2;
3261 pi->ipi_tcp_seq = th->th_seq;
3262 }
3263 if (IS_TSO4(pi)) {
3264 if (__predict_false(ip->ip_p != IPPROTO_TCP))
3265 return (ENXIO);
3266 /*
3267 * TSO always requires hardware checksum offload.
3268 */
3269 pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3270 th->th_sum = in_pseudo(ip->ip_src.s_addr,
3271 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3272 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3273 if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3274 ip->ip_sum = 0;
3275 ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3276 }
3277 }
3278 }
3279 if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3280 ip->ip_sum = 0;
3281
3282 break;
3283 }
3284 #endif
3285 #ifdef INET6
3286 case ETHERTYPE_IPV6:
3287 {
3288 struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3289 struct tcphdr *th;
3290 pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3291
3292 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3293 txq->ift_pullups++;
3294 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3295 return (ENOMEM);
3296 }
3297 th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3298
3299 /* XXX-BZ this will go badly in case of ext hdrs. */
3300 pi->ipi_ipproto = ip6->ip6_nxt;
3301 pi->ipi_flags |= IPI_TX_IPV6;
3302
3303 /* TCP checksum offload may require TCP header length */
3304 if (IS_TX_OFFLOAD6(pi)) {
3305 if (pi->ipi_ipproto == IPPROTO_TCP) {
3306 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3307 txq->ift_pullups++;
3308 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3309 return (ENOMEM);
3310 }
3311 pi->ipi_tcp_hflags = th->th_flags;
3312 pi->ipi_tcp_hlen = th->th_off << 2;
3313 pi->ipi_tcp_seq = th->th_seq;
3314 }
3315 if (IS_TSO6(pi)) {
3316 if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3317 return (ENXIO);
3318 /*
3319 * TSO always requires hardware checksum offload.
3320 */
3321 pi->ipi_csum_flags |= CSUM_IP6_TCP;
3322 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3323 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3324 }
3325 }
3326 break;
3327 }
3328 #endif
3329 default:
3330 pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3331 pi->ipi_ip_hlen = 0;
3332 break;
3333 }
3334 *mp = m;
3335
3336 return (0);
3337 }
3338
3339 /*
3340 * If dodgy hardware rejects the scatter gather chain we've handed it
3341 * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3342 * m_defrag'd mbufs
3343 */
3344 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3345 iflib_remove_mbuf(iflib_txq_t txq)
3346 {
3347 int ntxd, pidx;
3348 struct mbuf *m, **ifsd_m;
3349
3350 ifsd_m = txq->ift_sds.ifsd_m;
3351 ntxd = txq->ift_size;
3352 pidx = txq->ift_pidx & (ntxd - 1);
3353 ifsd_m = txq->ift_sds.ifsd_m;
3354 m = ifsd_m[pidx];
3355 ifsd_m[pidx] = NULL;
3356 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3357 if (txq->ift_sds.ifsd_tso_map != NULL)
3358 bus_dmamap_unload(txq->ift_tso_buf_tag,
3359 txq->ift_sds.ifsd_tso_map[pidx]);
3360 #if MEMORY_LOGGING
3361 txq->ift_dequeued++;
3362 #endif
3363 return (m);
3364 }
3365
3366 static inline caddr_t
calc_next_txd(iflib_txq_t txq,int cidx,uint8_t qid)3367 calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid)
3368 {
3369 qidx_t size;
3370 int ntxd;
3371 caddr_t start, end, cur, next;
3372
3373 ntxd = txq->ift_size;
3374 size = txq->ift_txd_size[qid];
3375 start = txq->ift_ifdi[qid].idi_vaddr;
3376
3377 if (__predict_false(size == 0))
3378 return (start);
3379 cur = start + size*cidx;
3380 end = start + size*ntxd;
3381 next = CACHE_PTR_NEXT(cur);
3382 return (next < end ? next : start);
3383 }
3384
3385 /*
3386 * Pad an mbuf to ensure a minimum ethernet frame size.
3387 * min_frame_size is the frame size (less CRC) to pad the mbuf to
3388 */
3389 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3390 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3391 {
3392 /*
3393 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3394 * and ARP message is the smallest common payload I can think of
3395 */
3396 static char pad[18]; /* just zeros */
3397 int n;
3398 struct mbuf *new_head;
3399
3400 if (!M_WRITABLE(*m_head)) {
3401 new_head = m_dup(*m_head, M_NOWAIT);
3402 if (new_head == NULL) {
3403 m_freem(*m_head);
3404 device_printf(dev, "cannot pad short frame, m_dup() failed");
3405 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3406 DBG_COUNTER_INC(tx_frees);
3407 return ENOMEM;
3408 }
3409 m_freem(*m_head);
3410 *m_head = new_head;
3411 }
3412
3413 for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3414 n > 0; n -= sizeof(pad))
3415 if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3416 break;
3417
3418 if (n > 0) {
3419 m_freem(*m_head);
3420 device_printf(dev, "cannot pad short frame\n");
3421 DBG_COUNTER_INC(encap_pad_mbuf_fail);
3422 DBG_COUNTER_INC(tx_frees);
3423 return (ENOBUFS);
3424 }
3425
3426 return 0;
3427 }
3428
3429 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3430 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3431 {
3432 if_ctx_t ctx;
3433 if_shared_ctx_t sctx;
3434 if_softc_ctx_t scctx;
3435 bus_dma_tag_t buf_tag;
3436 bus_dma_segment_t *segs;
3437 struct mbuf *m_head, **ifsd_m;
3438 void *next_txd;
3439 bus_dmamap_t map;
3440 struct if_pkt_info pi;
3441 int remap = 0;
3442 int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd;
3443
3444 ctx = txq->ift_ctx;
3445 sctx = ctx->ifc_sctx;
3446 scctx = &ctx->ifc_softc_ctx;
3447 segs = txq->ift_segs;
3448 ntxd = txq->ift_size;
3449 m_head = *m_headp;
3450 map = NULL;
3451
3452 /*
3453 * If we're doing TSO the next descriptor to clean may be quite far ahead
3454 */
3455 cidx = txq->ift_cidx;
3456 pidx = txq->ift_pidx;
3457 if (ctx->ifc_flags & IFC_PREFETCH) {
3458 next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1);
3459 if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) {
3460 next_txd = calc_next_txd(txq, cidx, 0);
3461 prefetch(next_txd);
3462 }
3463
3464 /* prefetch the next cache line of mbuf pointers and flags */
3465 prefetch(&txq->ift_sds.ifsd_m[next]);
3466 prefetch(&txq->ift_sds.ifsd_map[next]);
3467 next = (cidx + CACHE_LINE_SIZE) & (ntxd-1);
3468 }
3469 map = txq->ift_sds.ifsd_map[pidx];
3470 ifsd_m = txq->ift_sds.ifsd_m;
3471
3472 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3473 buf_tag = txq->ift_tso_buf_tag;
3474 max_segs = scctx->isc_tx_tso_segments_max;
3475 map = txq->ift_sds.ifsd_tso_map[pidx];
3476 MPASS(buf_tag != NULL);
3477 MPASS(max_segs > 0);
3478 } else {
3479 buf_tag = txq->ift_buf_tag;
3480 max_segs = scctx->isc_tx_nsegments;
3481 map = txq->ift_sds.ifsd_map[pidx];
3482 }
3483 if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3484 __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3485 err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3486 if (err) {
3487 DBG_COUNTER_INC(encap_txd_encap_fail);
3488 return err;
3489 }
3490 }
3491 m_head = *m_headp;
3492
3493 pkt_info_zero(&pi);
3494 pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST));
3495 pi.ipi_pidx = pidx;
3496 pi.ipi_qsidx = txq->ift_id;
3497 pi.ipi_len = m_head->m_pkthdr.len;
3498 pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3499 pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3500
3501 /* deliberate bitwise OR to make one condition */
3502 if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3503 if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3504 DBG_COUNTER_INC(encap_txd_encap_fail);
3505 return (err);
3506 }
3507 m_head = *m_headp;
3508 }
3509
3510 retry:
3511 err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3512 BUS_DMA_NOWAIT);
3513 defrag:
3514 if (__predict_false(err)) {
3515 switch (err) {
3516 case EFBIG:
3517 /* try collapse once and defrag once */
3518 if (remap == 0) {
3519 m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3520 /* try defrag if collapsing fails */
3521 if (m_head == NULL)
3522 remap++;
3523 }
3524 if (remap == 1) {
3525 txq->ift_mbuf_defrag++;
3526 m_head = m_defrag(*m_headp, M_NOWAIT);
3527 }
3528 /*
3529 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3530 * failed to map an mbuf that was run through m_defrag
3531 */
3532 MPASS(remap <= 1);
3533 if (__predict_false(m_head == NULL || remap > 1))
3534 goto defrag_failed;
3535 remap++;
3536 *m_headp = m_head;
3537 goto retry;
3538 break;
3539 case ENOMEM:
3540 txq->ift_no_tx_dma_setup++;
3541 break;
3542 default:
3543 txq->ift_no_tx_dma_setup++;
3544 m_freem(*m_headp);
3545 DBG_COUNTER_INC(tx_frees);
3546 *m_headp = NULL;
3547 break;
3548 }
3549 txq->ift_map_failed++;
3550 DBG_COUNTER_INC(encap_load_mbuf_fail);
3551 DBG_COUNTER_INC(encap_txd_encap_fail);
3552 return (err);
3553 }
3554 ifsd_m[pidx] = m_head;
3555 /*
3556 * XXX assumes a 1 to 1 relationship between segments and
3557 * descriptors - this does not hold true on all drivers, e.g.
3558 * cxgb
3559 */
3560 if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3561 txq->ift_no_desc_avail++;
3562 bus_dmamap_unload(buf_tag, map);
3563 DBG_COUNTER_INC(encap_txq_avail_fail);
3564 DBG_COUNTER_INC(encap_txd_encap_fail);
3565 if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3566 GROUPTASK_ENQUEUE(&txq->ift_task);
3567 return (ENOBUFS);
3568 }
3569 /*
3570 * On Intel cards we can greatly reduce the number of TX interrupts
3571 * we see by only setting report status on every Nth descriptor.
3572 * However, this also means that the driver will need to keep track
3573 * of the descriptors that RS was set on to check them for the DD bit.
3574 */
3575 txq->ift_rs_pending += nsegs + 1;
3576 if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3577 iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
3578 pi.ipi_flags |= IPI_TX_INTR;
3579 txq->ift_rs_pending = 0;
3580 }
3581
3582 pi.ipi_segs = segs;
3583 pi.ipi_nsegs = nsegs;
3584
3585 MPASS(pidx >= 0 && pidx < txq->ift_size);
3586 #ifdef PKT_DEBUG
3587 print_pkt(&pi);
3588 #endif
3589 if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3590 bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3591 DBG_COUNTER_INC(tx_encap);
3592 MPASS(pi.ipi_new_pidx < txq->ift_size);
3593
3594 ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3595 if (pi.ipi_new_pidx < pi.ipi_pidx) {
3596 ndesc += txq->ift_size;
3597 txq->ift_gen = 1;
3598 }
3599 /*
3600 * drivers can need as many as
3601 * two sentinels
3602 */
3603 MPASS(ndesc <= pi.ipi_nsegs + 2);
3604 MPASS(pi.ipi_new_pidx != pidx);
3605 MPASS(ndesc > 0);
3606 txq->ift_in_use += ndesc;
3607 txq->ift_db_pending += ndesc;
3608
3609 /*
3610 * We update the last software descriptor again here because there may
3611 * be a sentinel and/or there may be more mbufs than segments
3612 */
3613 txq->ift_pidx = pi.ipi_new_pidx;
3614 txq->ift_npending += pi.ipi_ndescs;
3615 } else {
3616 *m_headp = m_head = iflib_remove_mbuf(txq);
3617 if (err == EFBIG) {
3618 txq->ift_txd_encap_efbig++;
3619 if (remap < 2) {
3620 remap = 1;
3621 goto defrag;
3622 }
3623 }
3624 goto defrag_failed;
3625 }
3626 /*
3627 * err can't possibly be non-zero here, so we don't neet to test it
3628 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3629 */
3630 return (err);
3631
3632 defrag_failed:
3633 txq->ift_mbuf_defrag_failed++;
3634 txq->ift_map_failed++;
3635 m_freem(*m_headp);
3636 DBG_COUNTER_INC(tx_frees);
3637 *m_headp = NULL;
3638 DBG_COUNTER_INC(encap_txd_encap_fail);
3639 return (ENOMEM);
3640 }
3641
3642 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3643 iflib_tx_desc_free(iflib_txq_t txq, int n)
3644 {
3645 uint32_t qsize, cidx, mask, gen;
3646 struct mbuf *m, **ifsd_m;
3647 bool do_prefetch;
3648
3649 cidx = txq->ift_cidx;
3650 gen = txq->ift_gen;
3651 qsize = txq->ift_size;
3652 mask = qsize-1;
3653 ifsd_m = txq->ift_sds.ifsd_m;
3654 do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH);
3655
3656 while (n-- > 0) {
3657 if (do_prefetch) {
3658 prefetch(ifsd_m[(cidx + 3) & mask]);
3659 prefetch(ifsd_m[(cidx + 4) & mask]);
3660 }
3661 if ((m = ifsd_m[cidx]) != NULL) {
3662 prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]);
3663 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3664 bus_dmamap_sync(txq->ift_tso_buf_tag,
3665 txq->ift_sds.ifsd_tso_map[cidx],
3666 BUS_DMASYNC_POSTWRITE);
3667 bus_dmamap_unload(txq->ift_tso_buf_tag,
3668 txq->ift_sds.ifsd_tso_map[cidx]);
3669 } else {
3670 bus_dmamap_sync(txq->ift_buf_tag,
3671 txq->ift_sds.ifsd_map[cidx],
3672 BUS_DMASYNC_POSTWRITE);
3673 bus_dmamap_unload(txq->ift_buf_tag,
3674 txq->ift_sds.ifsd_map[cidx]);
3675 }
3676 /* XXX we don't support any drivers that batch packets yet */
3677 MPASS(m->m_nextpkt == NULL);
3678 m_freem(m);
3679 ifsd_m[cidx] = NULL;
3680 #if MEMORY_LOGGING
3681 txq->ift_dequeued++;
3682 #endif
3683 DBG_COUNTER_INC(tx_frees);
3684 }
3685 if (__predict_false(++cidx == qsize)) {
3686 cidx = 0;
3687 gen = 0;
3688 }
3689 }
3690 txq->ift_cidx = cidx;
3691 txq->ift_gen = gen;
3692 }
3693
3694 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq,int thresh)3695 iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh)
3696 {
3697 int reclaim;
3698 if_ctx_t ctx = txq->ift_ctx;
3699
3700 KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3701 MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3702
3703 /*
3704 * Need a rate-limiting check so that this isn't called every time
3705 */
3706 iflib_tx_credits_update(ctx, txq);
3707 reclaim = DESC_RECLAIMABLE(txq);
3708
3709 if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3710 #ifdef INVARIANTS
3711 if (iflib_verbose_debug) {
3712 printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__,
3713 txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3714 reclaim, thresh);
3715 }
3716 #endif
3717 return (0);
3718 }
3719 iflib_tx_desc_free(txq, reclaim);
3720 txq->ift_cleaned += reclaim;
3721 txq->ift_in_use -= reclaim;
3722
3723 return (reclaim);
3724 }
3725
3726 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3727 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3728 {
3729 int next, size;
3730 struct mbuf **items;
3731
3732 size = r->size;
3733 next = (cidx + CACHE_PTR_INCREMENT) & (size-1);
3734 items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3735
3736 prefetch(items[(cidx + offset) & (size-1)]);
3737 if (remaining > 1) {
3738 prefetch2cachelines(&items[next]);
3739 prefetch2cachelines(items[(cidx + offset + 1) & (size-1)]);
3740 prefetch2cachelines(items[(cidx + offset + 2) & (size-1)]);
3741 prefetch2cachelines(items[(cidx + offset + 3) & (size-1)]);
3742 }
3743 return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size-1)]));
3744 }
3745
3746 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3747 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3748 {
3749
3750 ifmp_ring_check_drainage(txq->ift_br, budget);
3751 }
3752
3753 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3754 iflib_txq_can_drain(struct ifmp_ring *r)
3755 {
3756 iflib_txq_t txq = r->cookie;
3757 if_ctx_t ctx = txq->ift_ctx;
3758
3759 if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
3760 return (1);
3761 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3762 BUS_DMASYNC_POSTREAD);
3763 return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3764 false));
3765 }
3766
3767 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3768 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3769 {
3770 iflib_txq_t txq = r->cookie;
3771 if_ctx_t ctx = txq->ift_ctx;
3772 if_t ifp = ctx->ifc_ifp;
3773 struct mbuf *m, **mp;
3774 int avail, bytes_sent, skipped, count, err, i;
3775 int mcast_sent, pkt_sent, reclaimed;
3776 bool do_prefetch, rang, ring;
3777
3778 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3779 !LINK_ACTIVE(ctx))) {
3780 DBG_COUNTER_INC(txq_drain_notready);
3781 return (0);
3782 }
3783 reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
3784 rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3785 avail = IDXDIFF(pidx, cidx, r->size);
3786
3787 if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3788 /*
3789 * The driver is unloading so we need to free all pending packets.
3790 */
3791 DBG_COUNTER_INC(txq_drain_flushing);
3792 for (i = 0; i < avail; i++) {
3793 if (__predict_true(r->items[(cidx + i) & (r->size-1)] != (void *)txq))
3794 m_freem(r->items[(cidx + i) & (r->size-1)]);
3795 r->items[(cidx + i) & (r->size-1)] = NULL;
3796 }
3797 return (avail);
3798 }
3799
3800 if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3801 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3802 CALLOUT_LOCK(txq);
3803 callout_stop(&txq->ift_timer);
3804 CALLOUT_UNLOCK(txq);
3805 DBG_COUNTER_INC(txq_drain_oactive);
3806 return (0);
3807 }
3808
3809 /*
3810 * If we've reclaimed any packets this queue cannot be hung.
3811 */
3812 if (reclaimed)
3813 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3814 skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3815 count = MIN(avail, TX_BATCH_SIZE);
3816 #ifdef INVARIANTS
3817 if (iflib_verbose_debug)
3818 printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __FUNCTION__,
3819 avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3820 #endif
3821 do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3822 err = 0;
3823 for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) {
3824 int rem = do_prefetch ? count - i : 0;
3825
3826 mp = _ring_peek_one(r, cidx, i, rem);
3827 MPASS(mp != NULL && *mp != NULL);
3828
3829 /*
3830 * Completion interrupts will use the address of the txq
3831 * as a sentinel to enqueue _something_ in order to acquire
3832 * the lock on the mp_ring (there's no direct lock call).
3833 * We obviously whave to check for these sentinel cases
3834 * and skip them.
3835 */
3836 if (__predict_false(*mp == (struct mbuf *)txq)) {
3837 skipped++;
3838 continue;
3839 }
3840 err = iflib_encap(txq, mp);
3841 if (__predict_false(err)) {
3842 /* no room - bail out */
3843 if (err == ENOBUFS)
3844 break;
3845 skipped++;
3846 /* we can't send this packet - skip it */
3847 continue;
3848 }
3849 pkt_sent++;
3850 m = *mp;
3851 DBG_COUNTER_INC(tx_sent);
3852 bytes_sent += m->m_pkthdr.len;
3853 mcast_sent += !!(m->m_flags & M_MCAST);
3854
3855 if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING)))
3856 break;
3857 ETHER_BPF_MTAP(ifp, m);
3858 rang = iflib_txd_db_check(txq, false);
3859 }
3860
3861 /* deliberate use of bitwise or to avoid gratuitous short-circuit */
3862 ring = rang ? false : (iflib_min_tx_latency | err);
3863 iflib_txd_db_check(txq, ring);
3864 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
3865 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
3866 if (mcast_sent)
3867 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
3868 #ifdef INVARIANTS
3869 if (iflib_verbose_debug)
3870 printf("consumed=%d\n", skipped + pkt_sent);
3871 #endif
3872 return (skipped + pkt_sent);
3873 }
3874
3875 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)3876 iflib_txq_drain_always(struct ifmp_ring *r)
3877 {
3878 return (1);
3879 }
3880
3881 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3882 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3883 {
3884 int i, avail;
3885 struct mbuf **mp;
3886 iflib_txq_t txq;
3887
3888 txq = r->cookie;
3889
3890 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3891 CALLOUT_LOCK(txq);
3892 callout_stop(&txq->ift_timer);
3893 CALLOUT_UNLOCK(txq);
3894
3895 avail = IDXDIFF(pidx, cidx, r->size);
3896 for (i = 0; i < avail; i++) {
3897 mp = _ring_peek_one(r, cidx, i, avail - i);
3898 if (__predict_false(*mp == (struct mbuf *)txq))
3899 continue;
3900 m_freem(*mp);
3901 DBG_COUNTER_INC(tx_frees);
3902 }
3903 MPASS(ifmp_ring_is_stalled(r) == 0);
3904 return (avail);
3905 }
3906
3907 static void
iflib_ifmp_purge(iflib_txq_t txq)3908 iflib_ifmp_purge(iflib_txq_t txq)
3909 {
3910 struct ifmp_ring *r;
3911
3912 r = txq->ift_br;
3913 r->drain = iflib_txq_drain_free;
3914 r->can_drain = iflib_txq_drain_always;
3915
3916 ifmp_ring_check_drainage(r, r->size);
3917
3918 r->drain = iflib_txq_drain;
3919 r->can_drain = iflib_txq_can_drain;
3920 }
3921
3922 static void
_task_fn_tx(void * context)3923 _task_fn_tx(void *context)
3924 {
3925 iflib_txq_t txq = context;
3926 if_ctx_t ctx = txq->ift_ctx;
3927 if_t ifp = ctx->ifc_ifp;
3928 int abdicate = ctx->ifc_sysctl_tx_abdicate;
3929
3930 #ifdef IFLIB_DIAGNOSTICS
3931 txq->ift_cpu_exec_count[curcpu]++;
3932 #endif
3933 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
3934 return;
3935 #ifdef DEV_NETMAP
3936 if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
3937 netmap_tx_irq(ifp, txq->ift_id))
3938 goto skip_ifmp;
3939 #endif
3940 #ifdef ALTQ
3941 if (ALTQ_IS_ENABLED(&ifp->if_snd))
3942 iflib_altq_if_start(ifp);
3943 #endif
3944 if (txq->ift_db_pending)
3945 ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
3946 else if (!abdicate)
3947 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
3948 /*
3949 * When abdicating, we always need to check drainage, not just when we don't enqueue
3950 */
3951 if (abdicate)
3952 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
3953 #ifdef DEV_NETMAP
3954 skip_ifmp:
3955 #endif
3956 if (ctx->ifc_flags & IFC_LEGACY)
3957 IFDI_INTR_ENABLE(ctx);
3958 else
3959 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
3960 }
3961
3962 static void
_task_fn_rx(void * context)3963 _task_fn_rx(void *context)
3964 {
3965 iflib_rxq_t rxq = context;
3966 if_ctx_t ctx = rxq->ifr_ctx;
3967 uint8_t more;
3968 uint16_t budget;
3969 #ifdef DEV_NETMAP
3970 u_int work = 0;
3971 int nmirq;
3972 #endif
3973
3974 #ifdef IFLIB_DIAGNOSTICS
3975 rxq->ifr_cpu_exec_count[curcpu]++;
3976 #endif
3977 DBG_COUNTER_INC(task_fn_rxs);
3978 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
3979 return;
3980 #ifdef DEV_NETMAP
3981 nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
3982 if (nmirq != NM_IRQ_PASS) {
3983 more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
3984 goto skip_rxeof;
3985 }
3986 #endif
3987 budget = ctx->ifc_sysctl_rx_budget;
3988 if (budget == 0)
3989 budget = 16; /* XXX */
3990 more = iflib_rxeof(rxq, budget);
3991 #ifdef DEV_NETMAP
3992 skip_rxeof:
3993 #endif
3994 if ((more & IFLIB_RXEOF_MORE) == 0) {
3995 if (ctx->ifc_flags & IFC_LEGACY)
3996 IFDI_INTR_ENABLE(ctx);
3997 else
3998 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
3999 DBG_COUNTER_INC(rx_intr_enables);
4000 }
4001 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4002 return;
4003
4004 if (more & IFLIB_RXEOF_MORE)
4005 GROUPTASK_ENQUEUE(&rxq->ifr_task);
4006 else if (more & IFLIB_RXEOF_EMPTY)
4007 callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4008 }
4009
4010 static void
_task_fn_admin(void * context)4011 _task_fn_admin(void *context)
4012 {
4013 if_ctx_t ctx = context;
4014 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4015 iflib_txq_t txq;
4016 int i;
4017 bool oactive, running, do_reset, do_watchdog, in_detach;
4018
4019 STATE_LOCK(ctx);
4020 running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4021 oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4022 do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4023 do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4024 in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4025 ctx->ifc_flags &= ~(IFC_DO_RESET|IFC_DO_WATCHDOG);
4026 STATE_UNLOCK(ctx);
4027
4028 if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4029 return;
4030 if (in_detach)
4031 return;
4032
4033 CTX_LOCK(ctx);
4034 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4035 CALLOUT_LOCK(txq);
4036 callout_stop(&txq->ift_timer);
4037 CALLOUT_UNLOCK(txq);
4038 }
4039 if (do_watchdog) {
4040 ctx->ifc_watchdog_events++;
4041 IFDI_WATCHDOG_RESET(ctx);
4042 }
4043 IFDI_UPDATE_ADMIN_STATUS(ctx);
4044 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4045 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4046 txq->ift_timer.c_cpu);
4047 }
4048 IFDI_LINK_INTR_ENABLE(ctx);
4049 if (do_reset)
4050 iflib_if_init_locked(ctx);
4051 CTX_UNLOCK(ctx);
4052
4053 if (LINK_ACTIVE(ctx) == 0)
4054 return;
4055 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4056 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4057 }
4058
4059 static void
_task_fn_iov(void * context)4060 _task_fn_iov(void *context)
4061 {
4062 if_ctx_t ctx = context;
4063
4064 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4065 !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4066 return;
4067
4068 CTX_LOCK(ctx);
4069 IFDI_VFLR_HANDLE(ctx);
4070 CTX_UNLOCK(ctx);
4071 }
4072
4073 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4074 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4075 {
4076 int err;
4077 if_int_delay_info_t info;
4078 if_ctx_t ctx;
4079
4080 info = (if_int_delay_info_t)arg1;
4081 ctx = info->iidi_ctx;
4082 info->iidi_req = req;
4083 info->iidi_oidp = oidp;
4084 CTX_LOCK(ctx);
4085 err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4086 CTX_UNLOCK(ctx);
4087 return (err);
4088 }
4089
4090 /*********************************************************************
4091 *
4092 * IFNET FUNCTIONS
4093 *
4094 **********************************************************************/
4095
4096 static void
iflib_if_init_locked(if_ctx_t ctx)4097 iflib_if_init_locked(if_ctx_t ctx)
4098 {
4099 iflib_stop(ctx);
4100 iflib_init_locked(ctx);
4101 }
4102
4103 static void
iflib_if_init(void * arg)4104 iflib_if_init(void *arg)
4105 {
4106 if_ctx_t ctx = arg;
4107
4108 CTX_LOCK(ctx);
4109 iflib_if_init_locked(ctx);
4110 CTX_UNLOCK(ctx);
4111 }
4112
4113 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4114 iflib_if_transmit(if_t ifp, struct mbuf *m)
4115 {
4116 if_ctx_t ctx = if_getsoftc(ifp);
4117
4118 iflib_txq_t txq;
4119 int err, qidx;
4120 int abdicate = ctx->ifc_sysctl_tx_abdicate;
4121
4122 if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4123 DBG_COUNTER_INC(tx_frees);
4124 m_freem(m);
4125 return (ENETDOWN);
4126 }
4127
4128 MPASS(m->m_nextpkt == NULL);
4129 /* ALTQ-enabled interfaces always use queue 0. */
4130 qidx = 0;
4131 /* Use driver-supplied queue selection method if it exists */
4132 if (ctx->isc_txq_select)
4133 qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4134 /* If not, use iflib's standard method */
4135 else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !ALTQ_IS_ENABLED(&ifp->if_snd))
4136 qidx = QIDX(ctx, m);
4137
4138 /* Set TX queue */
4139 txq = &ctx->ifc_txqs[qidx];
4140
4141 #ifdef DRIVER_BACKPRESSURE
4142 if (txq->ift_closed) {
4143 while (m != NULL) {
4144 next = m->m_nextpkt;
4145 m->m_nextpkt = NULL;
4146 m_freem(m);
4147 DBG_COUNTER_INC(tx_frees);
4148 m = next;
4149 }
4150 return (ENOBUFS);
4151 }
4152 #endif
4153 #ifdef notyet
4154 qidx = count = 0;
4155 mp = marr;
4156 next = m;
4157 do {
4158 count++;
4159 next = next->m_nextpkt;
4160 } while (next != NULL);
4161
4162 if (count > nitems(marr))
4163 if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4164 /* XXX check nextpkt */
4165 m_freem(m);
4166 /* XXX simplify for now */
4167 DBG_COUNTER_INC(tx_frees);
4168 return (ENOBUFS);
4169 }
4170 for (next = m, i = 0; next != NULL; i++) {
4171 mp[i] = next;
4172 next = next->m_nextpkt;
4173 mp[i]->m_nextpkt = NULL;
4174 }
4175 #endif
4176 DBG_COUNTER_INC(tx_seen);
4177 err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4178
4179 if (abdicate)
4180 GROUPTASK_ENQUEUE(&txq->ift_task);
4181 if (err) {
4182 if (!abdicate)
4183 GROUPTASK_ENQUEUE(&txq->ift_task);
4184 /* support forthcoming later */
4185 #ifdef DRIVER_BACKPRESSURE
4186 txq->ift_closed = TRUE;
4187 #endif
4188 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4189 m_freem(m);
4190 DBG_COUNTER_INC(tx_frees);
4191 }
4192
4193 return (err);
4194 }
4195
4196 #ifdef ALTQ
4197 /*
4198 * The overall approach to integrating iflib with ALTQ is to continue to use
4199 * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4200 * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring
4201 * is redundant/unnecessary, but doing so minimizes the amount of
4202 * ALTQ-specific code required in iflib. It is assumed that the overhead of
4203 * redundantly queueing to an intermediate mp_ring is swamped by the
4204 * performance limitations inherent in using ALTQ.
4205 *
4206 * When ALTQ support is compiled in, all iflib drivers will use a transmit
4207 * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4208 * given interface. If ALTQ is enabled for an interface, then all
4209 * transmitted packets for that interface will be submitted to the ALTQ
4210 * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit()
4211 * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4212 * update stats that the iflib machinery handles, and which is sensitve to
4213 * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start()
4214 * will be installed as the start routine for use by ALTQ facilities that
4215 * need to trigger queue drains on a scheduled basis.
4216 *
4217 */
4218 static void
iflib_altq_if_start(if_t ifp)4219 iflib_altq_if_start(if_t ifp)
4220 {
4221 struct ifaltq *ifq = &ifp->if_snd;
4222 struct mbuf *m;
4223
4224 IFQ_LOCK(ifq);
4225 IFQ_DEQUEUE_NOLOCK(ifq, m);
4226 while (m != NULL) {
4227 iflib_if_transmit(ifp, m);
4228 IFQ_DEQUEUE_NOLOCK(ifq, m);
4229 }
4230 IFQ_UNLOCK(ifq);
4231 }
4232
4233 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4234 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4235 {
4236 int err;
4237
4238 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
4239 IFQ_ENQUEUE(&ifp->if_snd, m, err);
4240 if (err == 0)
4241 iflib_altq_if_start(ifp);
4242 } else
4243 err = iflib_if_transmit(ifp, m);
4244
4245 return (err);
4246 }
4247 #endif /* ALTQ */
4248
4249 static void
iflib_if_qflush(if_t ifp)4250 iflib_if_qflush(if_t ifp)
4251 {
4252 if_ctx_t ctx = if_getsoftc(ifp);
4253 iflib_txq_t txq = ctx->ifc_txqs;
4254 int i;
4255
4256 STATE_LOCK(ctx);
4257 ctx->ifc_flags |= IFC_QFLUSH;
4258 STATE_UNLOCK(ctx);
4259 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4260 while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4261 iflib_txq_check_drain(txq, 0);
4262 STATE_LOCK(ctx);
4263 ctx->ifc_flags &= ~IFC_QFLUSH;
4264 STATE_UNLOCK(ctx);
4265
4266 /*
4267 * When ALTQ is enabled, this will also take care of purging the
4268 * ALTQ queue(s).
4269 */
4270 if_qflush(ifp);
4271 }
4272
4273 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4274 IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4275 IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4276 IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4277
4278 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4279 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4280 {
4281 if_ctx_t ctx = if_getsoftc(ifp);
4282 struct ifreq *ifr = (struct ifreq *)data;
4283 #if defined(INET) || defined(INET6)
4284 struct ifaddr *ifa = (struct ifaddr *)data;
4285 #endif
4286 bool avoid_reset = false;
4287 int err = 0, reinit = 0, bits;
4288
4289 switch (command) {
4290 case SIOCSIFADDR:
4291 #ifdef INET
4292 if (ifa->ifa_addr->sa_family == AF_INET)
4293 avoid_reset = true;
4294 #endif
4295 #ifdef INET6
4296 if (ifa->ifa_addr->sa_family == AF_INET6)
4297 avoid_reset = true;
4298 #endif
4299 /*
4300 ** Calling init results in link renegotiation,
4301 ** so we avoid doing it when possible.
4302 */
4303 if (avoid_reset) {
4304 if_setflagbits(ifp, IFF_UP,0);
4305 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4306 reinit = 1;
4307 #ifdef INET
4308 if (!(if_getflags(ifp) & IFF_NOARP))
4309 arp_ifinit(ifp, ifa);
4310 #endif
4311 } else
4312 err = ether_ioctl(ifp, command, data);
4313 break;
4314 case SIOCSIFMTU:
4315 CTX_LOCK(ctx);
4316 if (ifr->ifr_mtu == if_getmtu(ifp)) {
4317 CTX_UNLOCK(ctx);
4318 break;
4319 }
4320 bits = if_getdrvflags(ifp);
4321 /* stop the driver and free any clusters before proceeding */
4322 iflib_stop(ctx);
4323
4324 if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4325 STATE_LOCK(ctx);
4326 if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4327 ctx->ifc_flags |= IFC_MULTISEG;
4328 else
4329 ctx->ifc_flags &= ~IFC_MULTISEG;
4330 STATE_UNLOCK(ctx);
4331 err = if_setmtu(ifp, ifr->ifr_mtu);
4332 }
4333 iflib_init_locked(ctx);
4334 STATE_LOCK(ctx);
4335 if_setdrvflags(ifp, bits);
4336 STATE_UNLOCK(ctx);
4337 CTX_UNLOCK(ctx);
4338 break;
4339 case SIOCSIFFLAGS:
4340 CTX_LOCK(ctx);
4341 if (if_getflags(ifp) & IFF_UP) {
4342 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4343 if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4344 (IFF_PROMISC | IFF_ALLMULTI)) {
4345 CTX_UNLOCK(ctx);
4346 err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4347 CTX_LOCK(ctx);
4348 }
4349 } else
4350 reinit = 1;
4351 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4352 iflib_stop(ctx);
4353 }
4354 ctx->ifc_if_flags = if_getflags(ifp);
4355 CTX_UNLOCK(ctx);
4356 break;
4357 case SIOCADDMULTI:
4358 case SIOCDELMULTI:
4359 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4360 CTX_LOCK(ctx);
4361 IFDI_INTR_DISABLE(ctx);
4362 IFDI_MULTI_SET(ctx);
4363 IFDI_INTR_ENABLE(ctx);
4364 CTX_UNLOCK(ctx);
4365 }
4366 break;
4367 case SIOCSIFMEDIA:
4368 CTX_LOCK(ctx);
4369 IFDI_MEDIA_SET(ctx);
4370 CTX_UNLOCK(ctx);
4371 /* FALLTHROUGH */
4372 case SIOCGIFMEDIA:
4373 case SIOCGIFXMEDIA:
4374 err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4375 break;
4376 case SIOCGI2C:
4377 {
4378 struct ifi2creq i2c;
4379
4380 err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4381 if (err != 0)
4382 break;
4383 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4384 err = EINVAL;
4385 break;
4386 }
4387 if (i2c.len > sizeof(i2c.data)) {
4388 err = EINVAL;
4389 break;
4390 }
4391
4392 if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4393 err = copyout(&i2c, ifr_data_get_ptr(ifr),
4394 sizeof(i2c));
4395 break;
4396 }
4397 case SIOCSIFCAP:
4398 {
4399 int mask, setmask, oldmask;
4400
4401 oldmask = if_getcapenable(ifp);
4402 mask = ifr->ifr_reqcap ^ oldmask;
4403 mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4404 setmask = 0;
4405 #ifdef TCP_OFFLOAD
4406 setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6);
4407 #endif
4408 setmask |= (mask & IFCAP_FLAGS);
4409 setmask |= (mask & IFCAP_WOL);
4410
4411 /*
4412 * If any RX csum has changed, change all the ones that
4413 * are supported by the driver.
4414 */
4415 if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4416 setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4417 (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4418 }
4419
4420 /*
4421 * want to ensure that traffic has stopped before we change any of the flags
4422 */
4423 if (setmask) {
4424 CTX_LOCK(ctx);
4425 bits = if_getdrvflags(ifp);
4426 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4427 iflib_stop(ctx);
4428 STATE_LOCK(ctx);
4429 if_togglecapenable(ifp, setmask);
4430 ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4431 STATE_UNLOCK(ctx);
4432 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4433 iflib_init_locked(ctx);
4434 STATE_LOCK(ctx);
4435 if_setdrvflags(ifp, bits);
4436 STATE_UNLOCK(ctx);
4437 CTX_UNLOCK(ctx);
4438 }
4439 if_vlancap(ifp);
4440 break;
4441 }
4442 case SIOCGPRIVATE_0:
4443 case SIOCSDRVSPEC:
4444 case SIOCGDRVSPEC:
4445 CTX_LOCK(ctx);
4446 err = IFDI_PRIV_IOCTL(ctx, command, data);
4447 CTX_UNLOCK(ctx);
4448 break;
4449 default:
4450 err = ether_ioctl(ifp, command, data);
4451 break;
4452 }
4453 if (reinit)
4454 iflib_if_init(ctx);
4455 return (err);
4456 }
4457
4458 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4459 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4460 {
4461 if_ctx_t ctx = if_getsoftc(ifp);
4462
4463 return (IFDI_GET_COUNTER(ctx, cnt));
4464 }
4465
4466 /*********************************************************************
4467 *
4468 * OTHER FUNCTIONS EXPORTED TO THE STACK
4469 *
4470 **********************************************************************/
4471
4472 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4473 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4474 {
4475 if_ctx_t ctx = if_getsoftc(ifp);
4476
4477 if ((void *)ctx != arg)
4478 return;
4479
4480 if ((vtag == 0) || (vtag > 4095))
4481 return;
4482
4483 if (iflib_in_detach(ctx))
4484 return;
4485
4486 CTX_LOCK(ctx);
4487 /* Driver may need all untagged packets to be flushed */
4488 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4489 iflib_stop(ctx);
4490 IFDI_VLAN_REGISTER(ctx, vtag);
4491 /* Re-init to load the changes, if required */
4492 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4493 iflib_init_locked(ctx);
4494 CTX_UNLOCK(ctx);
4495 }
4496
4497 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4498 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4499 {
4500 if_ctx_t ctx = if_getsoftc(ifp);
4501
4502 if ((void *)ctx != arg)
4503 return;
4504
4505 if ((vtag == 0) || (vtag > 4095))
4506 return;
4507
4508 CTX_LOCK(ctx);
4509 /* Driver may need all tagged packets to be flushed */
4510 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4511 iflib_stop(ctx);
4512 IFDI_VLAN_UNREGISTER(ctx, vtag);
4513 /* Re-init to load the changes, if required */
4514 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4515 iflib_init_locked(ctx);
4516 CTX_UNLOCK(ctx);
4517 }
4518
4519 static void
iflib_led_func(void * arg,int onoff)4520 iflib_led_func(void *arg, int onoff)
4521 {
4522 if_ctx_t ctx = arg;
4523
4524 CTX_LOCK(ctx);
4525 IFDI_LED_FUNC(ctx, onoff);
4526 CTX_UNLOCK(ctx);
4527 }
4528
4529 /*********************************************************************
4530 *
4531 * BUS FUNCTION DEFINITIONS
4532 *
4533 **********************************************************************/
4534
4535 int
iflib_device_probe(device_t dev)4536 iflib_device_probe(device_t dev)
4537 {
4538 const pci_vendor_info_t *ent;
4539 if_shared_ctx_t sctx;
4540 uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4541 uint16_t pci_vendor_id;
4542
4543 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4544 return (ENOTSUP);
4545
4546 pci_vendor_id = pci_get_vendor(dev);
4547 pci_device_id = pci_get_device(dev);
4548 pci_subvendor_id = pci_get_subvendor(dev);
4549 pci_subdevice_id = pci_get_subdevice(dev);
4550 pci_rev_id = pci_get_revid(dev);
4551 if (sctx->isc_parse_devinfo != NULL)
4552 sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4553
4554 ent = sctx->isc_vendor_info;
4555 while (ent->pvi_vendor_id != 0) {
4556 if (pci_vendor_id != ent->pvi_vendor_id) {
4557 ent++;
4558 continue;
4559 }
4560 if ((pci_device_id == ent->pvi_device_id) &&
4561 ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4562 (ent->pvi_subvendor_id == 0)) &&
4563 ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4564 (ent->pvi_subdevice_id == 0)) &&
4565 ((pci_rev_id == ent->pvi_rev_id) ||
4566 (ent->pvi_rev_id == 0))) {
4567 device_set_desc_copy(dev, ent->pvi_name);
4568 /* this needs to be changed to zero if the bus probing code
4569 * ever stops re-probing on best match because the sctx
4570 * may have its values over written by register calls
4571 * in subsequent probes
4572 */
4573 return (BUS_PROBE_DEFAULT);
4574 }
4575 ent++;
4576 }
4577 return (ENXIO);
4578 }
4579
4580 int
iflib_device_probe_vendor(device_t dev)4581 iflib_device_probe_vendor(device_t dev)
4582 {
4583 int probe;
4584
4585 probe = iflib_device_probe(dev);
4586 if (probe == BUS_PROBE_DEFAULT)
4587 return (BUS_PROBE_VENDOR);
4588 else
4589 return (probe);
4590 }
4591
4592 static void
iflib_reset_qvalues(if_ctx_t ctx)4593 iflib_reset_qvalues(if_ctx_t ctx)
4594 {
4595 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4596 if_shared_ctx_t sctx = ctx->ifc_sctx;
4597 device_t dev = ctx->ifc_dev;
4598 int i;
4599
4600 if (ctx->ifc_sysctl_ntxqs != 0)
4601 scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4602 if (ctx->ifc_sysctl_nrxqs != 0)
4603 scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4604
4605 for (i = 0; i < sctx->isc_ntxqs; i++) {
4606 if (ctx->ifc_sysctl_ntxds[i] != 0)
4607 scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4608 else
4609 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4610 }
4611
4612 for (i = 0; i < sctx->isc_nrxqs; i++) {
4613 if (ctx->ifc_sysctl_nrxds[i] != 0)
4614 scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4615 else
4616 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4617 }
4618
4619 for (i = 0; i < sctx->isc_nrxqs; i++) {
4620 if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4621 device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4622 i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4623 scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4624 }
4625 if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4626 device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4627 i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4628 scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4629 }
4630 if (!powerof2(scctx->isc_nrxd[i])) {
4631 device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4632 i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4633 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4634 }
4635 }
4636
4637 for (i = 0; i < sctx->isc_ntxqs; i++) {
4638 if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4639 device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4640 i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4641 scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4642 }
4643 if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4644 device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4645 i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4646 scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4647 }
4648 if (!powerof2(scctx->isc_ntxd[i])) {
4649 device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4650 i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4651 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4652 }
4653 }
4654 }
4655
4656 static void
iflib_add_pfil(if_ctx_t ctx)4657 iflib_add_pfil(if_ctx_t ctx)
4658 {
4659 struct pfil_head *pfil;
4660 struct pfil_head_args pa;
4661 iflib_rxq_t rxq;
4662 int i;
4663
4664 pa.pa_version = PFIL_VERSION;
4665 pa.pa_flags = PFIL_IN;
4666 pa.pa_type = PFIL_TYPE_ETHERNET;
4667 pa.pa_headname = ctx->ifc_ifp->if_xname;
4668 pfil = pfil_head_register(&pa);
4669
4670 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4671 rxq->pfil = pfil;
4672 }
4673 }
4674
4675 static void
iflib_rem_pfil(if_ctx_t ctx)4676 iflib_rem_pfil(if_ctx_t ctx)
4677 {
4678 struct pfil_head *pfil;
4679 iflib_rxq_t rxq;
4680 int i;
4681
4682 rxq = ctx->ifc_rxqs;
4683 pfil = rxq->pfil;
4684 for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4685 rxq->pfil = NULL;
4686 }
4687 pfil_head_unregister(pfil);
4688 }
4689
4690
4691 /*
4692 * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4693 * cpuid and wrapping as necessary.
4694 */
4695 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4696 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4697 {
4698 unsigned int first_valid;
4699 unsigned int last_valid;
4700
4701 /* cpuid should always be in the valid set */
4702 MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4703
4704 /* valid set should never be empty */
4705 MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4706
4707 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4708 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4709 n = n % CPU_COUNT(&ctx->ifc_cpus);
4710 while (n > 0) {
4711 do {
4712 cpuid++;
4713 if (cpuid > last_valid)
4714 cpuid = first_valid;
4715 } while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4716 n--;
4717 }
4718
4719 return (cpuid);
4720 }
4721
4722 #if defined(SMP) && defined(SCHED_ULE)
4723 extern struct cpu_group *cpu_top; /* CPU topology */
4724
4725 static int
find_child_with_core(int cpu,struct cpu_group * grp)4726 find_child_with_core(int cpu, struct cpu_group *grp)
4727 {
4728 int i;
4729
4730 if (grp->cg_children == 0)
4731 return -1;
4732
4733 MPASS(grp->cg_child);
4734 for (i = 0; i < grp->cg_children; i++) {
4735 if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4736 return i;
4737 }
4738
4739 return -1;
4740 }
4741
4742
4743 /*
4744 * Find an L2 neighbor of the given CPU or return -1 if none found. This
4745 * does not distinguish among multiple L2 neighbors if the given CPU has
4746 * more than one (it will always return the same result in that case).
4747 */
4748 static int
find_l2_neighbor(int cpu)4749 find_l2_neighbor(int cpu)
4750 {
4751 struct cpu_group *grp;
4752 int i;
4753
4754 grp = cpu_top;
4755 if (grp == NULL)
4756 return -1;
4757
4758 /*
4759 * Find the smallest CPU group that contains the given core.
4760 */
4761 i = 0;
4762 while ((i = find_child_with_core(cpu, grp)) != -1) {
4763 /*
4764 * If the smallest group containing the given CPU has less
4765 * than two members, we conclude the given CPU has no
4766 * L2 neighbor.
4767 */
4768 if (grp->cg_child[i].cg_count <= 1)
4769 return (-1);
4770 grp = &grp->cg_child[i];
4771 }
4772
4773 /* Must share L2. */
4774 if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4775 return -1;
4776
4777 /*
4778 * Select the first member of the set that isn't the reference
4779 * CPU, which at this point is guaranteed to exist.
4780 */
4781 for (i = 0; i < CPU_SETSIZE; i++) {
4782 if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4783 return (i);
4784 }
4785
4786 /* Should never be reached */
4787 return (-1);
4788 }
4789
4790 #else
4791 static int
find_l2_neighbor(int cpu)4792 find_l2_neighbor(int cpu)
4793 {
4794
4795 return (-1);
4796 }
4797 #endif
4798
4799 /*
4800 * CPU mapping behaviors
4801 * ---------------------
4802 * 'separate txrx' refers to the separate_txrx sysctl
4803 * 'use logical' refers to the use_logical_cores sysctl
4804 * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4805 *
4806 * separate use INTR
4807 * txrx logical CPUS result
4808 * ---------- --------- ------ ------------------------------------------------
4809 * - - X RX and TX queues mapped to consecutive physical
4810 * cores with RX/TX pairs on same core and excess
4811 * of either following
4812 * - X X RX and TX queues mapped to consecutive cores
4813 * of any type with RX/TX pairs on same core and
4814 * excess of either following
4815 * X - X RX and TX queues mapped to consecutive physical
4816 * cores; all RX then all TX
4817 * X X X RX queues mapped to consecutive physical cores
4818 * first, then TX queues mapped to L2 neighbor of
4819 * the corresponding RX queue if one exists,
4820 * otherwise to consecutive physical cores
4821 * - n/a - RX and TX queues mapped to consecutive cores of
4822 * any type with RX/TX pairs on same core and excess
4823 * of either following
4824 * X n/a - RX and TX queues mapped to consecutive cores of
4825 * any type; all RX then all TX
4826 */
4827 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)4828 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
4829 bool is_tx)
4830 {
4831 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4832 unsigned int core_index;
4833
4834 if (ctx->ifc_sysctl_separate_txrx) {
4835 /*
4836 * When using separate CPUs for TX and RX, the assignment
4837 * will always be of a consecutive CPU out of the set of
4838 * context CPUs, except for the specific case where the
4839 * context CPUs are phsyical cores, the use of logical cores
4840 * has been enabled, the assignment is for TX, the TX qid
4841 * corresponds to an RX qid, and the CPU assigned to the
4842 * corresponding RX queue has an L2 neighbor.
4843 */
4844 if (ctx->ifc_sysctl_use_logical_cores &&
4845 ctx->ifc_cpus_are_physical_cores &&
4846 is_tx && qid < scctx->isc_nrxqsets) {
4847 int l2_neighbor;
4848 unsigned int rx_cpuid;
4849
4850 rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
4851 l2_neighbor = find_l2_neighbor(rx_cpuid);
4852 if (l2_neighbor != -1) {
4853 return (l2_neighbor);
4854 }
4855 /*
4856 * ... else fall through to the normal
4857 * consecutive-after-RX assignment scheme.
4858 *
4859 * Note that we are assuming that all RX queue CPUs
4860 * have an L2 neighbor, or all do not. If a mixed
4861 * scenario is possible, we will have to keep track
4862 * separately of how many queues prior to this one
4863 * were not able to be assigned to an L2 neighbor.
4864 */
4865 }
4866 if (is_tx)
4867 core_index = scctx->isc_nrxqsets + qid;
4868 else
4869 core_index = qid;
4870 } else {
4871 core_index = qid;
4872 }
4873
4874 return (cpuid_advance(ctx, base_cpuid, core_index));
4875 }
4876
4877 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)4878 get_ctx_core_offset(if_ctx_t ctx)
4879 {
4880 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4881 struct cpu_offset *op;
4882 cpuset_t assigned_cpus;
4883 unsigned int cores_consumed;
4884 unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
4885 unsigned int first_valid;
4886 unsigned int last_valid;
4887 unsigned int i;
4888
4889 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4890 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4891
4892 if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
4893 /*
4894 * Align the user-chosen base CPU ID to the next valid CPU
4895 * for this device. If the chosen base CPU ID is smaller
4896 * than the first valid CPU or larger than the last valid
4897 * CPU, we assume the user does not know what the valid
4898 * range is for this device and is thinking in terms of a
4899 * zero-based reference frame, and so we shift the given
4900 * value into the valid range (and wrap accordingly) so the
4901 * intent is translated to the proper frame of reference.
4902 * If the base CPU ID is within the valid first/last, but
4903 * does not correspond to a valid CPU, it is advanced to the
4904 * next valid CPU (wrapping if necessary).
4905 */
4906 if (base_cpuid < first_valid || base_cpuid > last_valid) {
4907 /* shift from zero-based to first_valid-based */
4908 base_cpuid += first_valid;
4909 /* wrap to range [first_valid, last_valid] */
4910 base_cpuid = (base_cpuid - first_valid) %
4911 (last_valid - first_valid + 1);
4912 }
4913 if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
4914 /*
4915 * base_cpuid is in [first_valid, last_valid], but
4916 * not a member of the valid set. In this case,
4917 * there will always be a member of the valid set
4918 * with a CPU ID that is greater than base_cpuid,
4919 * and we simply advance to it.
4920 */
4921 while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
4922 base_cpuid++;
4923 }
4924 return (base_cpuid);
4925 }
4926
4927 /*
4928 * Determine how many cores will be consumed by performing the CPU
4929 * assignments and counting how many of the assigned CPUs correspond
4930 * to CPUs in the set of context CPUs. This is done using the CPU
4931 * ID first_valid as the base CPU ID, as the base CPU must be within
4932 * the set of context CPUs.
4933 *
4934 * Note not all assigned CPUs will be in the set of context CPUs
4935 * when separate CPUs are being allocated to TX and RX queues,
4936 * assignment to logical cores has been enabled, the set of context
4937 * CPUs contains only physical CPUs, and TX queues are mapped to L2
4938 * neighbors of CPUs that RX queues have been mapped to - in this
4939 * case we do only want to count how many CPUs in the set of context
4940 * CPUs have been consumed, as that determines the next CPU in that
4941 * set to start allocating at for the next device for which
4942 * core_offset is not set.
4943 */
4944 CPU_ZERO(&assigned_cpus);
4945 for (i = 0; i < scctx->isc_ntxqsets; i++)
4946 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
4947 &assigned_cpus);
4948 for (i = 0; i < scctx->isc_nrxqsets; i++)
4949 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
4950 &assigned_cpus);
4951 CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
4952 cores_consumed = CPU_COUNT(&assigned_cpus);
4953
4954 mtx_lock(&cpu_offset_mtx);
4955 SLIST_FOREACH(op, &cpu_offsets, entries) {
4956 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
4957 base_cpuid = op->next_cpuid;
4958 op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
4959 cores_consumed);
4960 MPASS(op->refcount < UINT_MAX);
4961 op->refcount++;
4962 break;
4963 }
4964 }
4965 if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
4966 base_cpuid = first_valid;
4967 op = malloc(sizeof(struct cpu_offset), M_IFLIB,
4968 M_NOWAIT | M_ZERO);
4969 if (op == NULL) {
4970 device_printf(ctx->ifc_dev,
4971 "allocation for cpu offset failed.\n");
4972 } else {
4973 op->next_cpuid = cpuid_advance(ctx, base_cpuid,
4974 cores_consumed);
4975 op->refcount = 1;
4976 CPU_COPY(&ctx->ifc_cpus, &op->set);
4977 SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
4978 }
4979 }
4980 mtx_unlock(&cpu_offset_mtx);
4981
4982 return (base_cpuid);
4983 }
4984
4985 static void
unref_ctx_core_offset(if_ctx_t ctx)4986 unref_ctx_core_offset(if_ctx_t ctx)
4987 {
4988 struct cpu_offset *op, *top;
4989
4990 mtx_lock(&cpu_offset_mtx);
4991 SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
4992 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
4993 MPASS(op->refcount > 0);
4994 op->refcount--;
4995 if (op->refcount == 0) {
4996 SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
4997 free(op, M_IFLIB);
4998 }
4999 break;
5000 }
5001 }
5002 mtx_unlock(&cpu_offset_mtx);
5003 }
5004
5005 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5006 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5007 {
5008 if_ctx_t ctx;
5009 if_t ifp;
5010 if_softc_ctx_t scctx;
5011 kobjop_desc_t kobj_desc;
5012 kobj_method_t *kobj_method;
5013 int err, msix, rid;
5014 int num_txd, num_rxd;
5015
5016 ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO);
5017
5018 if (sc == NULL) {
5019 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
5020 device_set_softc(dev, ctx);
5021 ctx->ifc_flags |= IFC_SC_ALLOCATED;
5022 }
5023
5024 ctx->ifc_sctx = sctx;
5025 ctx->ifc_dev = dev;
5026 ctx->ifc_softc = sc;
5027
5028 if ((err = iflib_register(ctx)) != 0) {
5029 device_printf(dev, "iflib_register failed %d\n", err);
5030 goto fail_ctx_free;
5031 }
5032 iflib_add_device_sysctl_pre(ctx);
5033
5034 scctx = &ctx->ifc_softc_ctx;
5035 ifp = ctx->ifc_ifp;
5036
5037 iflib_reset_qvalues(ctx);
5038 IFNET_WLOCK();
5039 CTX_LOCK(ctx);
5040 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5041 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5042 goto fail_unlock;
5043 }
5044 _iflib_pre_assert(scctx);
5045 ctx->ifc_txrx = *scctx->isc_txrx;
5046
5047 if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5048 ctx->ifc_mediap = scctx->isc_media;
5049
5050 #ifdef INVARIANTS
5051 if (scctx->isc_capabilities & IFCAP_TXCSUM)
5052 MPASS(scctx->isc_tx_csum_flags);
5053 #endif
5054
5055 if_setcapabilities(ifp,
5056 scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5057 if_setcapenable(ifp,
5058 scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5059
5060 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5061 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5062 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5063 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5064
5065 num_txd = iflib_num_tx_descs(ctx);
5066 num_rxd = iflib_num_rx_descs(ctx);
5067
5068 /* XXX change for per-queue sizes */
5069 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5070 num_txd, num_rxd);
5071
5072 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5073 scctx->isc_tx_nsegments = max(1, num_txd /
5074 MAX_SINGLE_PACKET_FRACTION);
5075 if (scctx->isc_tx_tso_segments_max > num_txd /
5076 MAX_SINGLE_PACKET_FRACTION)
5077 scctx->isc_tx_tso_segments_max = max(1,
5078 num_txd / MAX_SINGLE_PACKET_FRACTION);
5079
5080 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5081 if (if_getcapabilities(ifp) & IFCAP_TSO) {
5082 /*
5083 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5084 * but some MACs do.
5085 */
5086 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5087 IP_MAXPACKET));
5088 /*
5089 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5090 * into account. In the worst case, each of these calls will
5091 * add another mbuf and, thus, the requirement for another DMA
5092 * segment. So for best performance, it doesn't make sense to
5093 * advertize a maximum of TSO segments that typically will
5094 * require defragmentation in iflib_encap().
5095 */
5096 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5097 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5098 }
5099 if (scctx->isc_rss_table_size == 0)
5100 scctx->isc_rss_table_size = 64;
5101 scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
5102
5103 GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5104 /* XXX format name */
5105 taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
5106 NULL, NULL, "admin");
5107
5108 /* Set up cpu set. If it fails, use the set of all CPUs. */
5109 if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5110 device_printf(dev, "Unable to fetch CPU list\n");
5111 CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5112 ctx->ifc_cpus_are_physical_cores = false;
5113 } else
5114 ctx->ifc_cpus_are_physical_cores = true;
5115 MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5116
5117 /*
5118 ** Now set up MSI or MSI-X, should return us the number of supported
5119 ** vectors (will be 1 for a legacy interrupt and MSI).
5120 */
5121 if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5122 msix = scctx->isc_vectors;
5123 } else if (scctx->isc_msix_bar != 0)
5124 /*
5125 * The simple fact that isc_msix_bar is not 0 does not mean we
5126 * we have a good value there that is known to work.
5127 */
5128 msix = iflib_msix_init(ctx);
5129 else {
5130 scctx->isc_vectors = 1;
5131 scctx->isc_ntxqsets = 1;
5132 scctx->isc_nrxqsets = 1;
5133 scctx->isc_intr = IFLIB_INTR_LEGACY;
5134 msix = 0;
5135 }
5136 /* Get memory for the station queues */
5137 if ((err = iflib_queues_alloc(ctx))) {
5138 device_printf(dev, "Unable to allocate queue memory\n");
5139 goto fail_intr_free;
5140 }
5141
5142 if ((err = iflib_qset_structures_setup(ctx)))
5143 goto fail_queues;
5144
5145 /*
5146 * Now that we know how many queues there are, get the core offset.
5147 */
5148 ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5149
5150 if (msix > 1) {
5151 /*
5152 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5153 * aren't the default NULL implementation.
5154 */
5155 kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5156 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5157 kobj_desc);
5158 if (kobj_method == &kobj_desc->deflt) {
5159 device_printf(dev,
5160 "MSI-X requires ifdi_rx_queue_intr_enable method");
5161 err = EOPNOTSUPP;
5162 goto fail_queues;
5163 }
5164 kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5165 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5166 kobj_desc);
5167 if (kobj_method == &kobj_desc->deflt) {
5168 device_printf(dev,
5169 "MSI-X requires ifdi_tx_queue_intr_enable method");
5170 err = EOPNOTSUPP;
5171 goto fail_queues;
5172 }
5173
5174 /*
5175 * Assign the MSI-X vectors.
5176 * Note that the default NULL ifdi_msix_intr_assign method will
5177 * fail here, too.
5178 */
5179 err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5180 if (err != 0) {
5181 device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5182 err);
5183 goto fail_queues;
5184 }
5185 } else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5186 rid = 0;
5187 if (scctx->isc_intr == IFLIB_INTR_MSI) {
5188 MPASS(msix == 1);
5189 rid = 1;
5190 }
5191 if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5192 device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5193 goto fail_queues;
5194 }
5195 } else {
5196 device_printf(dev,
5197 "Cannot use iflib with only 1 MSI-X interrupt!\n");
5198 err = ENODEV;
5199 goto fail_queues;
5200 }
5201
5202 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5203
5204 if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5205 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5206 goto fail_detach;
5207 }
5208
5209 /*
5210 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5211 * This must appear after the call to ether_ifattach() because
5212 * ether_ifattach() sets if_hdrlen to the default value.
5213 */
5214 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5215 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5216
5217 if ((err = iflib_netmap_attach(ctx))) {
5218 device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5219 goto fail_detach;
5220 }
5221 *ctxp = ctx;
5222
5223 DEBUGNET_SET(ctx->ifc_ifp, iflib);
5224
5225 if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5226 iflib_add_device_sysctl_post(ctx);
5227 iflib_add_pfil(ctx);
5228 ctx->ifc_flags |= IFC_INIT_DONE;
5229 CTX_UNLOCK(ctx);
5230 IFNET_WUNLOCK();
5231
5232 return (0);
5233
5234 fail_detach:
5235 ether_ifdetach(ctx->ifc_ifp);
5236 fail_queues:
5237 iflib_tqg_detach(ctx);
5238 iflib_tx_structures_free(ctx);
5239 iflib_rx_structures_free(ctx);
5240 IFDI_DETACH(ctx);
5241 IFDI_QUEUES_FREE(ctx);
5242 fail_intr_free:
5243 iflib_free_intr_mem(ctx);
5244 fail_unlock:
5245 CTX_UNLOCK(ctx);
5246 IFNET_WUNLOCK();
5247 iflib_deregister(ctx);
5248 fail_ctx_free:
5249 device_set_softc(ctx->ifc_dev, NULL);
5250 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5251 free(ctx->ifc_softc, M_IFLIB);
5252 free(ctx, M_IFLIB);
5253 return (err);
5254 }
5255
5256 int
iflib_pseudo_register(device_t dev,if_shared_ctx_t sctx,if_ctx_t * ctxp,struct iflib_cloneattach_ctx * clctx)5257 iflib_pseudo_register(device_t dev, if_shared_ctx_t sctx, if_ctx_t *ctxp,
5258 struct iflib_cloneattach_ctx *clctx)
5259 {
5260 int num_txd, num_rxd;
5261 int err;
5262 if_ctx_t ctx;
5263 if_t ifp;
5264 if_softc_ctx_t scctx;
5265 int i;
5266 void *sc;
5267
5268 ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK|M_ZERO);
5269 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO);
5270 ctx->ifc_flags |= IFC_SC_ALLOCATED;
5271 if (sctx->isc_flags & (IFLIB_PSEUDO|IFLIB_VIRTUAL))
5272 ctx->ifc_flags |= IFC_PSEUDO;
5273
5274 ctx->ifc_sctx = sctx;
5275 ctx->ifc_softc = sc;
5276 ctx->ifc_dev = dev;
5277
5278 if ((err = iflib_register(ctx)) != 0) {
5279 device_printf(dev, "%s: iflib_register failed %d\n", __func__, err);
5280 goto fail_ctx_free;
5281 }
5282 iflib_add_device_sysctl_pre(ctx);
5283
5284 scctx = &ctx->ifc_softc_ctx;
5285 ifp = ctx->ifc_ifp;
5286
5287 iflib_reset_qvalues(ctx);
5288 CTX_LOCK(ctx);
5289 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5290 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5291 goto fail_unlock;
5292 }
5293 if (sctx->isc_flags & IFLIB_GEN_MAC)
5294 ether_gen_addr(ifp, &ctx->ifc_mac);
5295 if ((err = IFDI_CLONEATTACH(ctx, clctx->cc_ifc, clctx->cc_name,
5296 clctx->cc_params)) != 0) {
5297 device_printf(dev, "IFDI_CLONEATTACH failed %d\n", err);
5298 goto fail_unlock;
5299 }
5300 #ifdef INVARIANTS
5301 if (scctx->isc_capabilities & IFCAP_TXCSUM)
5302 MPASS(scctx->isc_tx_csum_flags);
5303 #endif
5304
5305 if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_LINKSTATE);
5306 if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_LINKSTATE);
5307
5308 ifp->if_flags |= IFF_NOGROUP;
5309 if (sctx->isc_flags & IFLIB_PSEUDO) {
5310 ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO, 0, NULL);
5311 ifmedia_set(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO);
5312 if (sctx->isc_flags & IFLIB_PSEUDO_ETHER) {
5313 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5314 } else {
5315 if_attach(ctx->ifc_ifp);
5316 bpfattach(ctx->ifc_ifp, DLT_NULL, sizeof(u_int32_t));
5317 }
5318
5319 if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5320 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5321 goto fail_detach;
5322 }
5323 *ctxp = ctx;
5324
5325 /*
5326 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5327 * This must appear after the call to ether_ifattach() because
5328 * ether_ifattach() sets if_hdrlen to the default value.
5329 */
5330 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5331 if_setifheaderlen(ifp,
5332 sizeof(struct ether_vlan_header));
5333
5334 if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5335 iflib_add_device_sysctl_post(ctx);
5336 ctx->ifc_flags |= IFC_INIT_DONE;
5337 CTX_UNLOCK(ctx);
5338 return (0);
5339 }
5340 ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
5341 ifmedia_add(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO, 0, NULL);
5342 ifmedia_set(ctx->ifc_mediap, IFM_ETHER | IFM_AUTO);
5343
5344 _iflib_pre_assert(scctx);
5345 ctx->ifc_txrx = *scctx->isc_txrx;
5346
5347 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5348 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5349 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5350 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5351
5352 num_txd = iflib_num_tx_descs(ctx);
5353 num_rxd = iflib_num_rx_descs(ctx);
5354
5355 /* XXX change for per-queue sizes */
5356 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5357 num_txd, num_rxd);
5358
5359 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5360 scctx->isc_tx_nsegments = max(1, num_txd /
5361 MAX_SINGLE_PACKET_FRACTION);
5362 if (scctx->isc_tx_tso_segments_max > num_txd /
5363 MAX_SINGLE_PACKET_FRACTION)
5364 scctx->isc_tx_tso_segments_max = max(1,
5365 num_txd / MAX_SINGLE_PACKET_FRACTION);
5366
5367 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5368 if (if_getcapabilities(ifp) & IFCAP_TSO) {
5369 /*
5370 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5371 * but some MACs do.
5372 */
5373 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5374 IP_MAXPACKET));
5375 /*
5376 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5377 * into account. In the worst case, each of these calls will
5378 * add another mbuf and, thus, the requirement for another DMA
5379 * segment. So for best performance, it doesn't make sense to
5380 * advertize a maximum of TSO segments that typically will
5381 * require defragmentation in iflib_encap().
5382 */
5383 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5384 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5385 }
5386 if (scctx->isc_rss_table_size == 0)
5387 scctx->isc_rss_table_size = 64;
5388 scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1;
5389
5390 GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5391 /* XXX format name */
5392 taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx,
5393 NULL, NULL, "admin");
5394
5395 /* XXX --- can support > 1 -- but keep it simple for now */
5396 scctx->isc_intr = IFLIB_INTR_LEGACY;
5397
5398 /* Get memory for the station queues */
5399 if ((err = iflib_queues_alloc(ctx))) {
5400 device_printf(dev, "Unable to allocate queue memory\n");
5401 goto fail_iflib_detach;
5402 }
5403
5404 if ((err = iflib_qset_structures_setup(ctx))) {
5405 device_printf(dev, "qset structure setup failed %d\n", err);
5406 goto fail_queues;
5407 }
5408
5409 /*
5410 * XXX What if anything do we want to do about interrupts?
5411 */
5412 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5413 if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5414 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5415 goto fail_detach;
5416 }
5417
5418 /*
5419 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5420 * This must appear after the call to ether_ifattach() because
5421 * ether_ifattach() sets if_hdrlen to the default value.
5422 */
5423 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5424 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5425
5426 /* XXX handle more than one queue */
5427 for (i = 0; i < scctx->isc_nrxqsets; i++)
5428 IFDI_RX_CLSET(ctx, 0, i, ctx->ifc_rxqs[i].ifr_fl[0].ifl_sds.ifsd_cl);
5429
5430 *ctxp = ctx;
5431
5432 if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter);
5433 iflib_add_device_sysctl_post(ctx);
5434 ctx->ifc_flags |= IFC_INIT_DONE;
5435 CTX_UNLOCK(ctx);
5436
5437 return (0);
5438 fail_detach:
5439 ether_ifdetach(ctx->ifc_ifp);
5440 fail_queues:
5441 iflib_tqg_detach(ctx);
5442 iflib_tx_structures_free(ctx);
5443 iflib_rx_structures_free(ctx);
5444 fail_iflib_detach:
5445 IFDI_DETACH(ctx);
5446 IFDI_QUEUES_FREE(ctx);
5447 fail_unlock:
5448 CTX_UNLOCK(ctx);
5449 iflib_deregister(ctx);
5450 fail_ctx_free:
5451 free(ctx->ifc_softc, M_IFLIB);
5452 free(ctx, M_IFLIB);
5453 return (err);
5454 }
5455
5456 int
iflib_pseudo_deregister(if_ctx_t ctx)5457 iflib_pseudo_deregister(if_ctx_t ctx)
5458 {
5459 if_t ifp = ctx->ifc_ifp;
5460 if_shared_ctx_t sctx = ctx->ifc_sctx;
5461
5462 /* Unregister VLAN event handlers early */
5463 iflib_unregister_vlan_handlers(ctx);
5464
5465 if ((sctx->isc_flags & IFLIB_PSEUDO) &&
5466 (sctx->isc_flags & IFLIB_PSEUDO_ETHER) == 0) {
5467 bpfdetach(ifp);
5468 if_detach(ifp);
5469 } else {
5470 ether_ifdetach(ifp);
5471 }
5472
5473 iflib_tqg_detach(ctx);
5474 iflib_tx_structures_free(ctx);
5475 iflib_rx_structures_free(ctx);
5476 IFDI_DETACH(ctx);
5477 IFDI_QUEUES_FREE(ctx);
5478
5479 iflib_deregister(ctx);
5480
5481 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5482 free(ctx->ifc_softc, M_IFLIB);
5483 free(ctx, M_IFLIB);
5484 return (0);
5485 }
5486
5487 int
iflib_device_attach(device_t dev)5488 iflib_device_attach(device_t dev)
5489 {
5490 if_ctx_t ctx;
5491 if_shared_ctx_t sctx;
5492
5493 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5494 return (ENOTSUP);
5495
5496 pci_enable_busmaster(dev);
5497
5498 return (iflib_device_register(dev, NULL, sctx, &ctx));
5499 }
5500
5501 int
iflib_device_deregister(if_ctx_t ctx)5502 iflib_device_deregister(if_ctx_t ctx)
5503 {
5504 if_t ifp = ctx->ifc_ifp;
5505 device_t dev = ctx->ifc_dev;
5506
5507 /* Make sure VLANS are not using driver */
5508 if (if_vlantrunkinuse(ifp)) {
5509 device_printf(dev, "Vlan in use, detach first\n");
5510 return (EBUSY);
5511 }
5512 #ifdef PCI_IOV
5513 if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5514 device_printf(dev, "SR-IOV in use; detach first.\n");
5515 return (EBUSY);
5516 }
5517 #endif
5518
5519 STATE_LOCK(ctx);
5520 ctx->ifc_flags |= IFC_IN_DETACH;
5521 STATE_UNLOCK(ctx);
5522
5523 /* Unregister VLAN handlers before calling iflib_stop() */
5524 iflib_unregister_vlan_handlers(ctx);
5525
5526 iflib_netmap_detach(ifp);
5527 ether_ifdetach(ifp);
5528
5529 CTX_LOCK(ctx);
5530 iflib_stop(ctx);
5531 CTX_UNLOCK(ctx);
5532
5533 iflib_rem_pfil(ctx);
5534 if (ctx->ifc_led_dev != NULL)
5535 led_destroy(ctx->ifc_led_dev);
5536
5537 iflib_tqg_detach(ctx);
5538 iflib_tx_structures_free(ctx);
5539 iflib_rx_structures_free(ctx);
5540
5541 CTX_LOCK(ctx);
5542 IFDI_DETACH(ctx);
5543 IFDI_QUEUES_FREE(ctx);
5544 CTX_UNLOCK(ctx);
5545
5546 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5547 iflib_free_intr_mem(ctx);
5548
5549 bus_generic_detach(dev);
5550
5551 iflib_deregister(ctx);
5552
5553 device_set_softc(ctx->ifc_dev, NULL);
5554 if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5555 free(ctx->ifc_softc, M_IFLIB);
5556 unref_ctx_core_offset(ctx);
5557 free(ctx, M_IFLIB);
5558 return (0);
5559 }
5560
5561 static void
iflib_tqg_detach(if_ctx_t ctx)5562 iflib_tqg_detach(if_ctx_t ctx)
5563 {
5564 iflib_txq_t txq;
5565 iflib_rxq_t rxq;
5566 int i;
5567 struct taskqgroup *tqg;
5568
5569 /* XXX drain any dependent tasks */
5570 tqg = qgroup_if_io_tqg;
5571 for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5572 callout_drain(&txq->ift_timer);
5573 #ifdef DEV_NETMAP
5574 callout_drain(&txq->ift_netmap_timer);
5575 #endif /* DEV_NETMAP */
5576 if (txq->ift_task.gt_uniq != NULL)
5577 taskqgroup_detach(tqg, &txq->ift_task);
5578 }
5579 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5580 if (rxq->ifr_task.gt_uniq != NULL)
5581 taskqgroup_detach(tqg, &rxq->ifr_task);
5582 }
5583 tqg = qgroup_if_config_tqg;
5584 if (ctx->ifc_admin_task.gt_uniq != NULL)
5585 taskqgroup_detach(tqg, &ctx->ifc_admin_task);
5586 if (ctx->ifc_vflr_task.gt_uniq != NULL)
5587 taskqgroup_detach(tqg, &ctx->ifc_vflr_task);
5588 }
5589
5590 static void
iflib_free_intr_mem(if_ctx_t ctx)5591 iflib_free_intr_mem(if_ctx_t ctx)
5592 {
5593
5594 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5595 iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5596 }
5597 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5598 pci_release_msi(ctx->ifc_dev);
5599 }
5600 if (ctx->ifc_msix_mem != NULL) {
5601 bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5602 rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5603 ctx->ifc_msix_mem = NULL;
5604 }
5605 }
5606
5607 int
iflib_device_detach(device_t dev)5608 iflib_device_detach(device_t dev)
5609 {
5610 if_ctx_t ctx = device_get_softc(dev);
5611
5612 return (iflib_device_deregister(ctx));
5613 }
5614
5615 int
iflib_device_suspend(device_t dev)5616 iflib_device_suspend(device_t dev)
5617 {
5618 if_ctx_t ctx = device_get_softc(dev);
5619
5620 CTX_LOCK(ctx);
5621 IFDI_SUSPEND(ctx);
5622 CTX_UNLOCK(ctx);
5623
5624 return bus_generic_suspend(dev);
5625 }
5626 int
iflib_device_shutdown(device_t dev)5627 iflib_device_shutdown(device_t dev)
5628 {
5629 if_ctx_t ctx = device_get_softc(dev);
5630
5631 CTX_LOCK(ctx);
5632 IFDI_SHUTDOWN(ctx);
5633 CTX_UNLOCK(ctx);
5634
5635 return bus_generic_suspend(dev);
5636 }
5637
5638 int
iflib_device_resume(device_t dev)5639 iflib_device_resume(device_t dev)
5640 {
5641 if_ctx_t ctx = device_get_softc(dev);
5642 iflib_txq_t txq = ctx->ifc_txqs;
5643
5644 CTX_LOCK(ctx);
5645 IFDI_RESUME(ctx);
5646 iflib_if_init_locked(ctx);
5647 CTX_UNLOCK(ctx);
5648 for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5649 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5650
5651 return (bus_generic_resume(dev));
5652 }
5653
5654 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5655 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5656 {
5657 int error;
5658 if_ctx_t ctx = device_get_softc(dev);
5659
5660 CTX_LOCK(ctx);
5661 error = IFDI_IOV_INIT(ctx, num_vfs, params);
5662 CTX_UNLOCK(ctx);
5663
5664 return (error);
5665 }
5666
5667 void
iflib_device_iov_uninit(device_t dev)5668 iflib_device_iov_uninit(device_t dev)
5669 {
5670 if_ctx_t ctx = device_get_softc(dev);
5671
5672 CTX_LOCK(ctx);
5673 IFDI_IOV_UNINIT(ctx);
5674 CTX_UNLOCK(ctx);
5675 }
5676
5677 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5678 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5679 {
5680 int error;
5681 if_ctx_t ctx = device_get_softc(dev);
5682
5683 CTX_LOCK(ctx);
5684 error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5685 CTX_UNLOCK(ctx);
5686
5687 return (error);
5688 }
5689
5690 /*********************************************************************
5691 *
5692 * MODULE FUNCTION DEFINITIONS
5693 *
5694 **********************************************************************/
5695
5696 /*
5697 * - Start a fast taskqueue thread for each core
5698 * - Start a taskqueue for control operations
5699 */
5700 static int
iflib_module_init(void)5701 iflib_module_init(void)
5702 {
5703 iflib_timer_default = hz / 2;
5704 return (0);
5705 }
5706
5707 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5708 iflib_module_event_handler(module_t mod, int what, void *arg)
5709 {
5710 int err;
5711
5712 switch (what) {
5713 case MOD_LOAD:
5714 if ((err = iflib_module_init()) != 0)
5715 return (err);
5716 break;
5717 case MOD_UNLOAD:
5718 return (EBUSY);
5719 default:
5720 return (EOPNOTSUPP);
5721 }
5722
5723 return (0);
5724 }
5725
5726 /*********************************************************************
5727 *
5728 * PUBLIC FUNCTION DEFINITIONS
5729 * ordered as in iflib.h
5730 *
5731 **********************************************************************/
5732
5733 static void
_iflib_assert(if_shared_ctx_t sctx)5734 _iflib_assert(if_shared_ctx_t sctx)
5735 {
5736 int i;
5737
5738 MPASS(sctx->isc_tx_maxsize);
5739 MPASS(sctx->isc_tx_maxsegsize);
5740
5741 MPASS(sctx->isc_rx_maxsize);
5742 MPASS(sctx->isc_rx_nsegments);
5743 MPASS(sctx->isc_rx_maxsegsize);
5744
5745 MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5746 for (i = 0; i < sctx->isc_nrxqs; i++) {
5747 MPASS(sctx->isc_nrxd_min[i]);
5748 MPASS(powerof2(sctx->isc_nrxd_min[i]));
5749 MPASS(sctx->isc_nrxd_max[i]);
5750 MPASS(powerof2(sctx->isc_nrxd_max[i]));
5751 MPASS(sctx->isc_nrxd_default[i]);
5752 MPASS(powerof2(sctx->isc_nrxd_default[i]));
5753 }
5754
5755 MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5756 for (i = 0; i < sctx->isc_ntxqs; i++) {
5757 MPASS(sctx->isc_ntxd_min[i]);
5758 MPASS(powerof2(sctx->isc_ntxd_min[i]));
5759 MPASS(sctx->isc_ntxd_max[i]);
5760 MPASS(powerof2(sctx->isc_ntxd_max[i]));
5761 MPASS(sctx->isc_ntxd_default[i]);
5762 MPASS(powerof2(sctx->isc_ntxd_default[i]));
5763 }
5764 }
5765
5766 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5767 _iflib_pre_assert(if_softc_ctx_t scctx)
5768 {
5769
5770 MPASS(scctx->isc_txrx->ift_txd_encap);
5771 MPASS(scctx->isc_txrx->ift_txd_flush);
5772 MPASS(scctx->isc_txrx->ift_txd_credits_update);
5773 MPASS(scctx->isc_txrx->ift_rxd_available);
5774 MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5775 MPASS(scctx->isc_txrx->ift_rxd_refill);
5776 MPASS(scctx->isc_txrx->ift_rxd_flush);
5777 }
5778
5779 static int
iflib_register(if_ctx_t ctx)5780 iflib_register(if_ctx_t ctx)
5781 {
5782 if_shared_ctx_t sctx = ctx->ifc_sctx;
5783 driver_t *driver = sctx->isc_driver;
5784 device_t dev = ctx->ifc_dev;
5785 if_t ifp;
5786 u_char type;
5787 int iflags;
5788
5789 if ((sctx->isc_flags & IFLIB_PSEUDO) == 0)
5790 _iflib_assert(sctx);
5791
5792 CTX_LOCK_INIT(ctx);
5793 STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5794 if (sctx->isc_flags & IFLIB_PSEUDO) {
5795 if (sctx->isc_flags & IFLIB_PSEUDO_ETHER)
5796 type = IFT_ETHER;
5797 else
5798 type = IFT_PPP;
5799 } else
5800 type = IFT_ETHER;
5801 ifp = ctx->ifc_ifp = if_alloc(type);
5802 if (ifp == NULL) {
5803 device_printf(dev, "can not allocate ifnet structure\n");
5804 return (ENOMEM);
5805 }
5806
5807 /*
5808 * Initialize our context's device specific methods
5809 */
5810 kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5811 kobj_class_compile((kobj_class_t) driver);
5812
5813 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5814 if_setsoftc(ifp, ctx);
5815 if_setdev(ifp, dev);
5816 if_setinitfn(ifp, iflib_if_init);
5817 if_setioctlfn(ifp, iflib_if_ioctl);
5818 #ifdef ALTQ
5819 if_setstartfn(ifp, iflib_altq_if_start);
5820 if_settransmitfn(ifp, iflib_altq_if_transmit);
5821 if_setsendqready(ifp);
5822 #else
5823 if_settransmitfn(ifp, iflib_if_transmit);
5824 #endif
5825 if_setqflushfn(ifp, iflib_if_qflush);
5826 iflags = IFF_MULTICAST | IFF_KNOWSEPOCH;
5827
5828 if ((sctx->isc_flags & IFLIB_PSEUDO) &&
5829 (sctx->isc_flags & IFLIB_PSEUDO_ETHER) == 0)
5830 iflags |= IFF_POINTOPOINT;
5831 else
5832 iflags |= IFF_BROADCAST | IFF_SIMPLEX;
5833 if_setflags(ifp, iflags);
5834 ctx->ifc_vlan_attach_event =
5835 EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5836 EVENTHANDLER_PRI_FIRST);
5837 ctx->ifc_vlan_detach_event =
5838 EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5839 EVENTHANDLER_PRI_FIRST);
5840
5841 if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5842 ctx->ifc_mediap = &ctx->ifc_media;
5843 ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5844 iflib_media_change, iflib_media_status);
5845 }
5846 return (0);
5847 }
5848
5849 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5850 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5851 {
5852 /* Unregister VLAN events */
5853 if (ctx->ifc_vlan_attach_event != NULL) {
5854 EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5855 ctx->ifc_vlan_attach_event = NULL;
5856 }
5857 if (ctx->ifc_vlan_detach_event != NULL) {
5858 EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5859 ctx->ifc_vlan_detach_event = NULL;
5860 }
5861
5862 }
5863
5864 static void
iflib_deregister(if_ctx_t ctx)5865 iflib_deregister(if_ctx_t ctx)
5866 {
5867 if_t ifp = ctx->ifc_ifp;
5868
5869 /* Remove all media */
5870 ifmedia_removeall(&ctx->ifc_media);
5871
5872 /* Ensure that VLAN event handlers are unregistered */
5873 iflib_unregister_vlan_handlers(ctx);
5874
5875 /* Release kobject reference */
5876 kobj_delete((kobj_t) ctx, NULL);
5877
5878 /* Free the ifnet structure */
5879 if_free(ifp);
5880
5881 STATE_LOCK_DESTROY(ctx);
5882
5883 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5884 CTX_LOCK_DESTROY(ctx);
5885 }
5886
5887 static int
iflib_queues_alloc(if_ctx_t ctx)5888 iflib_queues_alloc(if_ctx_t ctx)
5889 {
5890 if_shared_ctx_t sctx = ctx->ifc_sctx;
5891 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5892 device_t dev = ctx->ifc_dev;
5893 int nrxqsets = scctx->isc_nrxqsets;
5894 int ntxqsets = scctx->isc_ntxqsets;
5895 iflib_txq_t txq;
5896 iflib_rxq_t rxq;
5897 iflib_fl_t fl = NULL;
5898 int i, j, cpu, err, txconf, rxconf;
5899 iflib_dma_info_t ifdip;
5900 uint32_t *rxqsizes = scctx->isc_rxqsizes;
5901 uint32_t *txqsizes = scctx->isc_txqsizes;
5902 uint8_t nrxqs = sctx->isc_nrxqs;
5903 uint8_t ntxqs = sctx->isc_ntxqs;
5904 int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5905 int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5906 caddr_t *vaddrs;
5907 uint64_t *paddrs;
5908
5909 KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5910 KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5911 KASSERT(nrxqs >= fl_offset + nfree_lists,
5912 ("there must be at least a rxq for each free list"));
5913
5914 /* Allocate the TX ring struct memory */
5915 if (!(ctx->ifc_txqs =
5916 (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5917 ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5918 device_printf(dev, "Unable to allocate TX ring memory\n");
5919 err = ENOMEM;
5920 goto fail;
5921 }
5922
5923 /* Now allocate the RX */
5924 if (!(ctx->ifc_rxqs =
5925 (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5926 nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5927 device_printf(dev, "Unable to allocate RX ring memory\n");
5928 err = ENOMEM;
5929 goto rx_fail;
5930 }
5931
5932 txq = ctx->ifc_txqs;
5933 rxq = ctx->ifc_rxqs;
5934
5935 /*
5936 * XXX handle allocation failure
5937 */
5938 for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5939 /* Set up some basics */
5940
5941 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5942 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5943 device_printf(dev,
5944 "Unable to allocate TX DMA info memory\n");
5945 err = ENOMEM;
5946 goto err_tx_desc;
5947 }
5948 txq->ift_ifdi = ifdip;
5949 for (j = 0; j < ntxqs; j++, ifdip++) {
5950 if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5951 device_printf(dev,
5952 "Unable to allocate TX descriptors\n");
5953 err = ENOMEM;
5954 goto err_tx_desc;
5955 }
5956 txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5957 bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5958 }
5959 txq->ift_ctx = ctx;
5960 txq->ift_id = i;
5961 if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5962 txq->ift_br_offset = 1;
5963 } else {
5964 txq->ift_br_offset = 0;
5965 }
5966
5967 if (iflib_txsd_alloc(txq)) {
5968 device_printf(dev, "Critical Failure setting up TX buffers\n");
5969 err = ENOMEM;
5970 goto err_tx_desc;
5971 }
5972
5973 /* Initialize the TX lock */
5974 snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5975 device_get_nameunit(dev), txq->ift_id);
5976 mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5977 callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5978 txq->ift_timer.c_cpu = cpu;
5979 #ifdef DEV_NETMAP
5980 callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5981 txq->ift_netmap_timer.c_cpu = cpu;
5982 #endif /* DEV_NETMAP */
5983
5984 err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5985 iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5986 if (err) {
5987 /* XXX free any allocated rings */
5988 device_printf(dev, "Unable to allocate buf_ring\n");
5989 goto err_tx_desc;
5990 }
5991 }
5992
5993 for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5994 /* Set up some basics */
5995 callout_init(&rxq->ifr_watchdog, 1);
5996
5997 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5998 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5999 device_printf(dev,
6000 "Unable to allocate RX DMA info memory\n");
6001 err = ENOMEM;
6002 goto err_tx_desc;
6003 }
6004
6005 rxq->ifr_ifdi = ifdip;
6006 /* XXX this needs to be changed if #rx queues != #tx queues */
6007 rxq->ifr_ntxqirq = 1;
6008 rxq->ifr_txqid[0] = i;
6009 for (j = 0; j < nrxqs; j++, ifdip++) {
6010 if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
6011 device_printf(dev,
6012 "Unable to allocate RX descriptors\n");
6013 err = ENOMEM;
6014 goto err_tx_desc;
6015 }
6016 bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
6017 }
6018 rxq->ifr_ctx = ctx;
6019 rxq->ifr_id = i;
6020 rxq->ifr_fl_offset = fl_offset;
6021 rxq->ifr_nfl = nfree_lists;
6022 if (!(fl =
6023 (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
6024 device_printf(dev, "Unable to allocate free list memory\n");
6025 err = ENOMEM;
6026 goto err_tx_desc;
6027 }
6028 rxq->ifr_fl = fl;
6029 for (j = 0; j < nfree_lists; j++) {
6030 fl[j].ifl_rxq = rxq;
6031 fl[j].ifl_id = j;
6032 fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
6033 fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
6034 }
6035 /* Allocate receive buffers for the ring */
6036 if (iflib_rxsd_alloc(rxq)) {
6037 device_printf(dev,
6038 "Critical Failure setting up receive buffers\n");
6039 err = ENOMEM;
6040 goto err_rx_desc;
6041 }
6042
6043 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
6044 fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
6045 M_WAITOK);
6046 }
6047
6048 /* TXQs */
6049 vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
6050 paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK);
6051 for (i = 0; i < ntxqsets; i++) {
6052 iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
6053
6054 for (j = 0; j < ntxqs; j++, di++) {
6055 vaddrs[i*ntxqs + j] = di->idi_vaddr;
6056 paddrs[i*ntxqs + j] = di->idi_paddr;
6057 }
6058 }
6059 if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
6060 device_printf(ctx->ifc_dev,
6061 "Unable to allocate device TX queue\n");
6062 iflib_tx_structures_free(ctx);
6063 free(vaddrs, M_IFLIB);
6064 free(paddrs, M_IFLIB);
6065 goto err_rx_desc;
6066 }
6067 free(vaddrs, M_IFLIB);
6068 free(paddrs, M_IFLIB);
6069
6070 /* RXQs */
6071 vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
6072 paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK);
6073 for (i = 0; i < nrxqsets; i++) {
6074 iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
6075
6076 for (j = 0; j < nrxqs; j++, di++) {
6077 vaddrs[i*nrxqs + j] = di->idi_vaddr;
6078 paddrs[i*nrxqs + j] = di->idi_paddr;
6079 }
6080 }
6081 if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
6082 device_printf(ctx->ifc_dev,
6083 "Unable to allocate device RX queue\n");
6084 iflib_tx_structures_free(ctx);
6085 free(vaddrs, M_IFLIB);
6086 free(paddrs, M_IFLIB);
6087 goto err_rx_desc;
6088 }
6089 free(vaddrs, M_IFLIB);
6090 free(paddrs, M_IFLIB);
6091
6092 return (0);
6093
6094 /* XXX handle allocation failure changes */
6095 err_rx_desc:
6096 err_tx_desc:
6097 rx_fail:
6098 if (ctx->ifc_rxqs != NULL)
6099 free(ctx->ifc_rxqs, M_IFLIB);
6100 ctx->ifc_rxqs = NULL;
6101 if (ctx->ifc_txqs != NULL)
6102 free(ctx->ifc_txqs, M_IFLIB);
6103 ctx->ifc_txqs = NULL;
6104 fail:
6105 return (err);
6106 }
6107
6108 static int
iflib_tx_structures_setup(if_ctx_t ctx)6109 iflib_tx_structures_setup(if_ctx_t ctx)
6110 {
6111 iflib_txq_t txq = ctx->ifc_txqs;
6112 int i;
6113
6114 for (i = 0; i < NTXQSETS(ctx); i++, txq++)
6115 iflib_txq_setup(txq);
6116
6117 return (0);
6118 }
6119
6120 static void
iflib_tx_structures_free(if_ctx_t ctx)6121 iflib_tx_structures_free(if_ctx_t ctx)
6122 {
6123 iflib_txq_t txq = ctx->ifc_txqs;
6124 if_shared_ctx_t sctx = ctx->ifc_sctx;
6125 int i, j;
6126
6127 for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6128 for (j = 0; j < sctx->isc_ntxqs; j++)
6129 iflib_dma_free(&txq->ift_ifdi[j]);
6130 iflib_txq_destroy(txq);
6131 }
6132 free(ctx->ifc_txqs, M_IFLIB);
6133 ctx->ifc_txqs = NULL;
6134 }
6135
6136 /*********************************************************************
6137 *
6138 * Initialize all receive rings.
6139 *
6140 **********************************************************************/
6141 static int
iflib_rx_structures_setup(if_ctx_t ctx)6142 iflib_rx_structures_setup(if_ctx_t ctx)
6143 {
6144 iflib_rxq_t rxq = ctx->ifc_rxqs;
6145 int q;
6146 #if defined(INET6) || defined(INET)
6147 int err, i;
6148 #endif
6149
6150 for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6151 #if defined(INET6) || defined(INET)
6152 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO) {
6153 err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6154 TCP_LRO_ENTRIES, min(1024,
6155 ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6156 if (err != 0) {
6157 device_printf(ctx->ifc_dev,
6158 "LRO Initialization failed!\n");
6159 goto fail;
6160 }
6161 }
6162 #endif
6163 IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6164 }
6165 return (0);
6166 #if defined(INET6) || defined(INET)
6167 fail:
6168 /*
6169 * Free LRO resources allocated so far, we will only handle
6170 * the rings that completed, the failing case will have
6171 * cleaned up for itself. 'q' failed, so its the terminus.
6172 */
6173 rxq = ctx->ifc_rxqs;
6174 for (i = 0; i < q; ++i, rxq++) {
6175 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
6176 tcp_lro_free(&rxq->ifr_lc);
6177 }
6178 return (err);
6179 #endif
6180 }
6181
6182 /*********************************************************************
6183 *
6184 * Free all receive rings.
6185 *
6186 **********************************************************************/
6187 static void
iflib_rx_structures_free(if_ctx_t ctx)6188 iflib_rx_structures_free(if_ctx_t ctx)
6189 {
6190 iflib_rxq_t rxq = ctx->ifc_rxqs;
6191 if_shared_ctx_t sctx = ctx->ifc_sctx;
6192 int i, j;
6193
6194 for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6195 for (j = 0; j < sctx->isc_nrxqs; j++)
6196 iflib_dma_free(&rxq->ifr_ifdi[j]);
6197 iflib_rx_sds_free(rxq);
6198 #if defined(INET6) || defined(INET)
6199 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_LRO)
6200 tcp_lro_free(&rxq->ifr_lc);
6201 #endif
6202 }
6203 free(ctx->ifc_rxqs, M_IFLIB);
6204 ctx->ifc_rxqs = NULL;
6205 }
6206
6207 static int
iflib_qset_structures_setup(if_ctx_t ctx)6208 iflib_qset_structures_setup(if_ctx_t ctx)
6209 {
6210 int err;
6211
6212 /*
6213 * It is expected that the caller takes care of freeing queues if this
6214 * fails.
6215 */
6216 if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6217 device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6218 return (err);
6219 }
6220
6221 if ((err = iflib_rx_structures_setup(ctx)) != 0)
6222 device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6223
6224 return (err);
6225 }
6226
6227 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6228 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6229 driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6230 {
6231
6232 return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6233 }
6234
6235 /* Just to avoid copy/paste */
6236 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6237 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6238 int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6239 const char *name)
6240 {
6241 device_t dev;
6242 unsigned int base_cpuid, cpuid;
6243 int err;
6244
6245 dev = ctx->ifc_dev;
6246 base_cpuid = ctx->ifc_sysctl_core_offset;
6247 cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6248 err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6249 irq ? irq->ii_res : NULL, name);
6250 if (err) {
6251 device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6252 return (err);
6253 }
6254 #ifdef notyet
6255 if (cpuid > ctx->ifc_cpuid_highest)
6256 ctx->ifc_cpuid_highest = cpuid;
6257 #endif
6258 return (0);
6259 }
6260
6261 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6262 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6263 iflib_intr_type_t type, driver_filter_t *filter,
6264 void *filter_arg, int qid, const char *name)
6265 {
6266 device_t dev;
6267 struct grouptask *gtask;
6268 struct taskqgroup *tqg;
6269 iflib_filter_info_t info;
6270 gtask_fn_t *fn;
6271 int tqrid, err;
6272 driver_filter_t *intr_fast;
6273 void *q;
6274
6275 info = &ctx->ifc_filter_info;
6276 tqrid = rid;
6277
6278 switch (type) {
6279 /* XXX merge tx/rx for netmap? */
6280 case IFLIB_INTR_TX:
6281 q = &ctx->ifc_txqs[qid];
6282 info = &ctx->ifc_txqs[qid].ift_filter_info;
6283 gtask = &ctx->ifc_txqs[qid].ift_task;
6284 tqg = qgroup_if_io_tqg;
6285 fn = _task_fn_tx;
6286 intr_fast = iflib_fast_intr;
6287 GROUPTASK_INIT(gtask, 0, fn, q);
6288 ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6289 break;
6290 case IFLIB_INTR_RX:
6291 q = &ctx->ifc_rxqs[qid];
6292 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6293 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6294 tqg = qgroup_if_io_tqg;
6295 fn = _task_fn_rx;
6296 intr_fast = iflib_fast_intr;
6297 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6298 break;
6299 case IFLIB_INTR_RXTX:
6300 q = &ctx->ifc_rxqs[qid];
6301 info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6302 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6303 tqg = qgroup_if_io_tqg;
6304 fn = _task_fn_rx;
6305 intr_fast = iflib_fast_intr_rxtx;
6306 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6307 break;
6308 case IFLIB_INTR_ADMIN:
6309 q = ctx;
6310 tqrid = -1;
6311 info = &ctx->ifc_filter_info;
6312 gtask = &ctx->ifc_admin_task;
6313 tqg = qgroup_if_config_tqg;
6314 fn = _task_fn_admin;
6315 intr_fast = iflib_fast_intr_ctx;
6316 break;
6317 default:
6318 device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6319 __func__);
6320 return (EINVAL);
6321 }
6322
6323 info->ifi_filter = filter;
6324 info->ifi_filter_arg = filter_arg;
6325 info->ifi_task = gtask;
6326 info->ifi_ctx = q;
6327
6328 dev = ctx->ifc_dev;
6329 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6330 if (err != 0) {
6331 device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6332 return (err);
6333 }
6334 if (type == IFLIB_INTR_ADMIN)
6335 return (0);
6336
6337 if (tqrid != -1) {
6338 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6339 name);
6340 if (err)
6341 return (err);
6342 } else {
6343 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6344 }
6345
6346 return (0);
6347 }
6348
6349 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6350 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, void *arg, int qid, const char *name)
6351 {
6352 device_t dev;
6353 struct grouptask *gtask;
6354 struct taskqgroup *tqg;
6355 gtask_fn_t *fn;
6356 void *q;
6357 int err;
6358
6359 switch (type) {
6360 case IFLIB_INTR_TX:
6361 q = &ctx->ifc_txqs[qid];
6362 gtask = &ctx->ifc_txqs[qid].ift_task;
6363 tqg = qgroup_if_io_tqg;
6364 fn = _task_fn_tx;
6365 GROUPTASK_INIT(gtask, 0, fn, q);
6366 break;
6367 case IFLIB_INTR_RX:
6368 q = &ctx->ifc_rxqs[qid];
6369 gtask = &ctx->ifc_rxqs[qid].ifr_task;
6370 tqg = qgroup_if_io_tqg;
6371 fn = _task_fn_rx;
6372 NET_GROUPTASK_INIT(gtask, 0, fn, q);
6373 break;
6374 case IFLIB_INTR_IOV:
6375 q = ctx;
6376 gtask = &ctx->ifc_vflr_task;
6377 tqg = qgroup_if_config_tqg;
6378 fn = _task_fn_iov;
6379 GROUPTASK_INIT(gtask, 0, fn, q);
6380 break;
6381 default:
6382 panic("unknown net intr type");
6383 }
6384 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6385 if (err) {
6386 dev = ctx->ifc_dev;
6387 taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6388 name);
6389 }
6390 }
6391
6392 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6393 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6394 {
6395
6396 if (irq->ii_tag)
6397 bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6398
6399 if (irq->ii_res)
6400 bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6401 rman_get_rid(irq->ii_res), irq->ii_res);
6402 }
6403
6404 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6405 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6406 {
6407 iflib_txq_t txq = ctx->ifc_txqs;
6408 iflib_rxq_t rxq = ctx->ifc_rxqs;
6409 if_irq_t irq = &ctx->ifc_legacy_irq;
6410 iflib_filter_info_t info;
6411 device_t dev;
6412 struct grouptask *gtask;
6413 struct resource *res;
6414 struct taskqgroup *tqg;
6415 void *q;
6416 int err, tqrid;
6417 bool rx_only;
6418
6419 q = &ctx->ifc_rxqs[0];
6420 info = &rxq[0].ifr_filter_info;
6421 gtask = &rxq[0].ifr_task;
6422 tqg = qgroup_if_io_tqg;
6423 tqrid = *rid;
6424 rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6425
6426 ctx->ifc_flags |= IFC_LEGACY;
6427 info->ifi_filter = filter;
6428 info->ifi_filter_arg = filter_arg;
6429 info->ifi_task = gtask;
6430 info->ifi_ctx = rx_only ? ctx : q;
6431
6432 dev = ctx->ifc_dev;
6433 /* We allocate a single interrupt resource */
6434 err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr_ctx :
6435 iflib_fast_intr_rxtx, NULL, info, name);
6436 if (err != 0)
6437 return (err);
6438 NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, q);
6439 res = irq->ii_res;
6440 taskqgroup_attach(tqg, gtask, q, dev, res, name);
6441
6442 GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6443 taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6444 "tx");
6445 return (0);
6446 }
6447
6448 void
iflib_led_create(if_ctx_t ctx)6449 iflib_led_create(if_ctx_t ctx)
6450 {
6451
6452 ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6453 device_get_nameunit(ctx->ifc_dev));
6454 }
6455
6456 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6457 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6458 {
6459
6460 GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6461 }
6462
6463 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6464 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6465 {
6466
6467 GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6468 }
6469
6470 void
iflib_admin_intr_deferred(if_ctx_t ctx)6471 iflib_admin_intr_deferred(if_ctx_t ctx)
6472 {
6473
6474 MPASS(ctx->ifc_admin_task.gt_taskqueue != NULL);
6475 GROUPTASK_ENQUEUE(&ctx->ifc_admin_task);
6476 }
6477
6478 void
iflib_iov_intr_deferred(if_ctx_t ctx)6479 iflib_iov_intr_deferred(if_ctx_t ctx)
6480 {
6481
6482 GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task);
6483 }
6484
6485 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6486 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6487 {
6488
6489 taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6490 name);
6491 }
6492
6493 void
iflib_config_gtask_init(void * ctx,struct grouptask * gtask,gtask_fn_t * fn,const char * name)6494 iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn,
6495 const char *name)
6496 {
6497
6498 GROUPTASK_INIT(gtask, 0, fn, ctx);
6499 taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, NULL, NULL,
6500 name);
6501 }
6502
6503 void
iflib_config_gtask_deinit(struct grouptask * gtask)6504 iflib_config_gtask_deinit(struct grouptask *gtask)
6505 {
6506
6507 taskqgroup_detach(qgroup_if_config_tqg, gtask);
6508 }
6509
6510 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6511 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6512 {
6513 if_t ifp = ctx->ifc_ifp;
6514 iflib_txq_t txq = ctx->ifc_txqs;
6515
6516 if_setbaudrate(ifp, baudrate);
6517 if (baudrate >= IF_Gbps(10)) {
6518 STATE_LOCK(ctx);
6519 ctx->ifc_flags |= IFC_PREFETCH;
6520 STATE_UNLOCK(ctx);
6521 }
6522 /* If link down, disable watchdog */
6523 if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6524 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6525 txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6526 }
6527 ctx->ifc_link_state = link_state;
6528 if_link_state_change(ifp, link_state);
6529 }
6530
6531 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6532 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6533 {
6534 int credits;
6535 #ifdef INVARIANTS
6536 int credits_pre = txq->ift_cidx_processed;
6537 #endif
6538
6539 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6540 BUS_DMASYNC_POSTREAD);
6541 if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6542 return (0);
6543
6544 txq->ift_processed += credits;
6545 txq->ift_cidx_processed += credits;
6546
6547 MPASS(credits_pre + credits == txq->ift_cidx_processed);
6548 if (txq->ift_cidx_processed >= txq->ift_size)
6549 txq->ift_cidx_processed -= txq->ift_size;
6550 return (credits);
6551 }
6552
6553 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6554 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6555 {
6556 iflib_fl_t fl;
6557 u_int i;
6558
6559 for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6560 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6561 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6562 return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6563 budget));
6564 }
6565
6566 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6567 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6568 const char *description, if_int_delay_info_t info,
6569 int offset, int value)
6570 {
6571 info->iidi_ctx = ctx;
6572 info->iidi_offset = offset;
6573 info->iidi_value = value;
6574 SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6575 SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6576 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6577 info, 0, iflib_sysctl_int_delay, "I", description);
6578 }
6579
6580 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6581 iflib_ctx_lock_get(if_ctx_t ctx)
6582 {
6583
6584 return (&ctx->ifc_ctx_sx);
6585 }
6586
6587 static int
iflib_msix_init(if_ctx_t ctx)6588 iflib_msix_init(if_ctx_t ctx)
6589 {
6590 device_t dev = ctx->ifc_dev;
6591 if_shared_ctx_t sctx = ctx->ifc_sctx;
6592 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6593 int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6594 int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6595
6596 iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6597 iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6598
6599 if (bootverbose)
6600 device_printf(dev, "msix_init qsets capped at %d\n",
6601 imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6602
6603 /* Override by tuneable */
6604 if (scctx->isc_disable_msix)
6605 goto msi;
6606
6607 /* First try MSI-X */
6608 if ((msgs = pci_msix_count(dev)) == 0) {
6609 if (bootverbose)
6610 device_printf(dev, "MSI-X not supported or disabled\n");
6611 goto msi;
6612 }
6613
6614 bar = ctx->ifc_softc_ctx.isc_msix_bar;
6615 /*
6616 * bar == -1 => "trust me I know what I'm doing"
6617 * Some drivers are for hardware that is so shoddily
6618 * documented that no one knows which bars are which
6619 * so the developer has to map all bars. This hack
6620 * allows shoddy garbage to use MSI-X in this framework.
6621 */
6622 if (bar != -1) {
6623 ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6624 SYS_RES_MEMORY, &bar, RF_ACTIVE);
6625 if (ctx->ifc_msix_mem == NULL) {
6626 device_printf(dev, "Unable to map MSI-X table\n");
6627 goto msi;
6628 }
6629 }
6630
6631 admincnt = sctx->isc_admin_intrcnt;
6632 #if IFLIB_DEBUG
6633 /* use only 1 qset in debug mode */
6634 queuemsgs = min(msgs - admincnt, 1);
6635 #else
6636 queuemsgs = msgs - admincnt;
6637 #endif
6638 #ifdef RSS
6639 queues = imin(queuemsgs, rss_getnumbuckets());
6640 #else
6641 queues = queuemsgs;
6642 #endif
6643 queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6644 if (bootverbose)
6645 device_printf(dev,
6646 "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6647 CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6648 #ifdef RSS
6649 /* If we're doing RSS, clamp at the number of RSS buckets */
6650 if (queues > rss_getnumbuckets())
6651 queues = rss_getnumbuckets();
6652 #endif
6653 if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6654 rx_queues = iflib_num_rx_queues;
6655 else
6656 rx_queues = queues;
6657
6658 if (rx_queues > scctx->isc_nrxqsets)
6659 rx_queues = scctx->isc_nrxqsets;
6660
6661 /*
6662 * We want this to be all logical CPUs by default
6663 */
6664 if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6665 tx_queues = iflib_num_tx_queues;
6666 else
6667 tx_queues = mp_ncpus;
6668
6669 if (tx_queues > scctx->isc_ntxqsets)
6670 tx_queues = scctx->isc_ntxqsets;
6671
6672 if (ctx->ifc_sysctl_qs_eq_override == 0) {
6673 #ifdef INVARIANTS
6674 if (tx_queues != rx_queues)
6675 device_printf(dev,
6676 "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6677 min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6678 #endif
6679 tx_queues = min(rx_queues, tx_queues);
6680 rx_queues = min(rx_queues, tx_queues);
6681 }
6682
6683 vectors = rx_queues + admincnt;
6684 if (msgs < vectors) {
6685 device_printf(dev,
6686 "insufficient number of MSI-X vectors "
6687 "(supported %d, need %d)\n", msgs, vectors);
6688 goto msi;
6689 }
6690
6691 device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6692 tx_queues);
6693 msgs = vectors;
6694 if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6695 if (vectors != msgs) {
6696 device_printf(dev,
6697 "Unable to allocate sufficient MSI-X vectors "
6698 "(got %d, need %d)\n", vectors, msgs);
6699 pci_release_msi(dev);
6700 if (bar != -1) {
6701 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6702 ctx->ifc_msix_mem);
6703 ctx->ifc_msix_mem = NULL;
6704 }
6705 goto msi;
6706 }
6707 device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6708 vectors);
6709 scctx->isc_vectors = vectors;
6710 scctx->isc_nrxqsets = rx_queues;
6711 scctx->isc_ntxqsets = tx_queues;
6712 scctx->isc_intr = IFLIB_INTR_MSIX;
6713
6714 return (vectors);
6715 } else {
6716 device_printf(dev,
6717 "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6718 err);
6719 if (bar != -1) {
6720 bus_release_resource(dev, SYS_RES_MEMORY, bar,
6721 ctx->ifc_msix_mem);
6722 ctx->ifc_msix_mem = NULL;
6723 }
6724 }
6725
6726 msi:
6727 vectors = pci_msi_count(dev);
6728 scctx->isc_nrxqsets = 1;
6729 scctx->isc_ntxqsets = 1;
6730 scctx->isc_vectors = vectors;
6731 if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6732 device_printf(dev,"Using an MSI interrupt\n");
6733 scctx->isc_intr = IFLIB_INTR_MSI;
6734 } else {
6735 scctx->isc_vectors = 1;
6736 device_printf(dev,"Using a Legacy interrupt\n");
6737 scctx->isc_intr = IFLIB_INTR_LEGACY;
6738 }
6739
6740 return (vectors);
6741 }
6742
6743 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6744
6745 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6746 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6747 {
6748 int rc;
6749 uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6750 struct sbuf *sb;
6751 const char *ring_state = "UNKNOWN";
6752
6753 /* XXX needed ? */
6754 rc = sysctl_wire_old_buffer(req, 0);
6755 MPASS(rc == 0);
6756 if (rc != 0)
6757 return (rc);
6758 sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6759 MPASS(sb != NULL);
6760 if (sb == NULL)
6761 return (ENOMEM);
6762 if (state[3] <= 3)
6763 ring_state = ring_states[state[3]];
6764
6765 sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6766 state[0], state[1], state[2], ring_state);
6767 rc = sbuf_finish(sb);
6768 sbuf_delete(sb);
6769 return(rc);
6770 }
6771
6772 enum iflib_ndesc_handler {
6773 IFLIB_NTXD_HANDLER,
6774 IFLIB_NRXD_HANDLER,
6775 };
6776
6777 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6778 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6779 {
6780 if_ctx_t ctx = (void *)arg1;
6781 enum iflib_ndesc_handler type = arg2;
6782 char buf[256] = {0};
6783 qidx_t *ndesc;
6784 char *p, *next;
6785 int nqs, rc, i;
6786
6787 nqs = 8;
6788 switch(type) {
6789 case IFLIB_NTXD_HANDLER:
6790 ndesc = ctx->ifc_sysctl_ntxds;
6791 if (ctx->ifc_sctx)
6792 nqs = ctx->ifc_sctx->isc_ntxqs;
6793 break;
6794 case IFLIB_NRXD_HANDLER:
6795 ndesc = ctx->ifc_sysctl_nrxds;
6796 if (ctx->ifc_sctx)
6797 nqs = ctx->ifc_sctx->isc_nrxqs;
6798 break;
6799 default:
6800 printf("%s: unhandled type\n", __func__);
6801 return (EINVAL);
6802 }
6803 if (nqs == 0)
6804 nqs = 8;
6805
6806 for (i=0; i<8; i++) {
6807 if (i >= nqs)
6808 break;
6809 if (i)
6810 strcat(buf, ",");
6811 sprintf(strchr(buf, 0), "%d", ndesc[i]);
6812 }
6813
6814 rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6815 if (rc || req->newptr == NULL)
6816 return rc;
6817
6818 for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6819 i++, p = strsep(&next, " ,")) {
6820 ndesc[i] = strtoul(p, NULL, 10);
6821 }
6822
6823 return(rc);
6824 }
6825
6826 #define NAME_BUFLEN 32
6827 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6828 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6829 {
6830 device_t dev = iflib_get_dev(ctx);
6831 struct sysctl_oid_list *child, *oid_list;
6832 struct sysctl_ctx_list *ctx_list;
6833 struct sysctl_oid *node;
6834
6835 ctx_list = device_get_sysctl_ctx(dev);
6836 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6837 ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib",
6838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "IFLIB fields");
6839 oid_list = SYSCTL_CHILDREN(node);
6840
6841 SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6842 CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version,
6843 "driver version");
6844
6845 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6846 CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6847 "# of txqs to use, 0 => use default #");
6848 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6849 CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6850 "# of rxqs to use, 0 => use default #");
6851 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6852 CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6853 "permit #txq != #rxq");
6854 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6855 CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6856 "disable MSI-X (default 0)");
6857 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6858 CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0,
6859 "set the RX budget");
6860 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6861 CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6862 "cause TX to abdicate instead of running to completion");
6863 ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6864 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6865 CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6866 "offset to start using cores at");
6867 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6868 CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6869 "use separate cores for TX and RX");
6870 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6871 CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6872 "try to make use of logical cores for TX and RX");
6873
6874 /* XXX change for per-queue sizes */
6875 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6876 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6877 IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6878 "list of # of TX descriptors to use, 0 = use default #");
6879 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6880 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6881 IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6882 "list of # of RX descriptors to use, 0 = use default #");
6883 }
6884
6885 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6886 iflib_add_device_sysctl_post(if_ctx_t ctx)
6887 {
6888 if_shared_ctx_t sctx = ctx->ifc_sctx;
6889 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6890 device_t dev = iflib_get_dev(ctx);
6891 struct sysctl_oid_list *child;
6892 struct sysctl_ctx_list *ctx_list;
6893 iflib_fl_t fl;
6894 iflib_txq_t txq;
6895 iflib_rxq_t rxq;
6896 int i, j;
6897 char namebuf[NAME_BUFLEN];
6898 char *qfmt;
6899 struct sysctl_oid *queue_node, *fl_node, *node;
6900 struct sysctl_oid_list *queue_list, *fl_list;
6901 ctx_list = device_get_sysctl_ctx(dev);
6902
6903 node = ctx->ifc_sysctl_node;
6904 child = SYSCTL_CHILDREN(node);
6905
6906 if (scctx->isc_ntxqsets > 100)
6907 qfmt = "txq%03d";
6908 else if (scctx->isc_ntxqsets > 10)
6909 qfmt = "txq%02d";
6910 else
6911 qfmt = "txq%d";
6912 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6913 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6914 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6915 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6916 queue_list = SYSCTL_CHILDREN(queue_node);
6917 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6918 CTLFLAG_RD,
6919 &txq->ift_task.gt_cpu, 0, "cpu this queue is bound to");
6920 #if MEMORY_LOGGING
6921 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6922 CTLFLAG_RD,
6923 &txq->ift_dequeued, "total mbufs freed");
6924 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6925 CTLFLAG_RD,
6926 &txq->ift_enqueued, "total mbufs enqueued");
6927 #endif
6928 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6929 CTLFLAG_RD,
6930 &txq->ift_mbuf_defrag, "# of times m_defrag was called");
6931 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6932 CTLFLAG_RD,
6933 &txq->ift_pullups, "# of times m_pullup was called");
6934 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed",
6935 CTLFLAG_RD,
6936 &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6937 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail",
6938 CTLFLAG_RD,
6939 &txq->ift_no_desc_avail, "# of times no descriptors were available");
6940 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed",
6941 CTLFLAG_RD,
6942 &txq->ift_map_failed, "# of times DMA map failed");
6943 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig",
6944 CTLFLAG_RD,
6945 &txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG");
6946 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup",
6947 CTLFLAG_RD,
6948 &txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG");
6949 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6950 CTLFLAG_RD,
6951 &txq->ift_pidx, 1, "Producer Index");
6952 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6953 CTLFLAG_RD,
6954 &txq->ift_cidx, 1, "Consumer Index");
6955 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed",
6956 CTLFLAG_RD,
6957 &txq->ift_cidx_processed, 1, "Consumer Index seen by credit update");
6958 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6959 CTLFLAG_RD,
6960 &txq->ift_in_use, 1, "descriptors in use");
6961 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed",
6962 CTLFLAG_RD,
6963 &txq->ift_processed, "descriptors procesed for clean");
6964 SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6965 CTLFLAG_RD,
6966 &txq->ift_cleaned, "total cleaned");
6967 SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6968 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6969 __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6970 mp_ring_state_handler, "A", "soft ring state");
6971 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues",
6972 CTLFLAG_RD, &txq->ift_br->enqueues,
6973 "# of enqueues to the mp_ring for this queue");
6974 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops",
6975 CTLFLAG_RD, &txq->ift_br->drops,
6976 "# of drops in the mp_ring for this queue");
6977 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts",
6978 CTLFLAG_RD, &txq->ift_br->starts,
6979 "# of normal consumer starts in the mp_ring for this queue");
6980 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls",
6981 CTLFLAG_RD, &txq->ift_br->stalls,
6982 "# of consumer stalls in the mp_ring for this queue");
6983 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts",
6984 CTLFLAG_RD, &txq->ift_br->restarts,
6985 "# of consumer restarts in the mp_ring for this queue");
6986 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications",
6987 CTLFLAG_RD, &txq->ift_br->abdications,
6988 "# of consumer abdications in the mp_ring for this queue");
6989 }
6990
6991 if (scctx->isc_nrxqsets > 100)
6992 qfmt = "rxq%03d";
6993 else if (scctx->isc_nrxqsets > 10)
6994 qfmt = "rxq%02d";
6995 else
6996 qfmt = "rxq%d";
6997 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
6998 snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6999 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
7000 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
7001 queue_list = SYSCTL_CHILDREN(queue_node);
7002 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
7003 CTLFLAG_RD,
7004 &rxq->ifr_task.gt_cpu, 0, "cpu this queue is bound to");
7005 if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
7006 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx",
7007 CTLFLAG_RD,
7008 &rxq->ifr_cq_cidx, 1, "Consumer Index");
7009 }
7010
7011 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
7012 snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
7013 fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf,
7014 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist Name");
7015 fl_list = SYSCTL_CHILDREN(fl_node);
7016 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
7017 CTLFLAG_RD,
7018 &fl->ifl_pidx, 1, "Producer Index");
7019 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
7020 CTLFLAG_RD,
7021 &fl->ifl_cidx, 1, "Consumer Index");
7022 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
7023 CTLFLAG_RD,
7024 &fl->ifl_credits, 1, "credits available");
7025 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
7026 CTLFLAG_RD,
7027 &fl->ifl_buf_size, 1, "buffer size");
7028 #if MEMORY_LOGGING
7029 SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued",
7030 CTLFLAG_RD,
7031 &fl->ifl_m_enqueued, "mbufs allocated");
7032 SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued",
7033 CTLFLAG_RD,
7034 &fl->ifl_m_dequeued, "mbufs freed");
7035 SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued",
7036 CTLFLAG_RD,
7037 &fl->ifl_cl_enqueued, "clusters allocated");
7038 SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued",
7039 CTLFLAG_RD,
7040 &fl->ifl_cl_dequeued, "clusters freed");
7041 #endif
7042 }
7043 }
7044
7045 }
7046
7047 void
iflib_request_reset(if_ctx_t ctx)7048 iflib_request_reset(if_ctx_t ctx)
7049 {
7050
7051 STATE_LOCK(ctx);
7052 ctx->ifc_flags |= IFC_DO_RESET;
7053 STATE_UNLOCK(ctx);
7054 }
7055
7056 #ifndef __NO_STRICT_ALIGNMENT
7057 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7058 iflib_fixup_rx(struct mbuf *m)
7059 {
7060 struct mbuf *n;
7061
7062 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7063 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7064 m->m_data += ETHER_HDR_LEN;
7065 n = m;
7066 } else {
7067 MGETHDR(n, M_NOWAIT, MT_DATA);
7068 if (n == NULL) {
7069 m_freem(m);
7070 return (NULL);
7071 }
7072 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7073 m->m_data += ETHER_HDR_LEN;
7074 m->m_len -= ETHER_HDR_LEN;
7075 n->m_len = ETHER_HDR_LEN;
7076 M_MOVE_PKTHDR(n, m);
7077 n->m_next = m;
7078 }
7079 return (n);
7080 }
7081 #endif
7082
7083 #ifdef DEBUGNET
7084 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7085 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7086 {
7087 if_ctx_t ctx;
7088
7089 ctx = if_getsoftc(ifp);
7090 CTX_LOCK(ctx);
7091 *nrxr = NRXQSETS(ctx);
7092 *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7093 *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7094 CTX_UNLOCK(ctx);
7095 }
7096
7097 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7098 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7099 {
7100 if_ctx_t ctx;
7101 if_softc_ctx_t scctx;
7102 iflib_fl_t fl;
7103 iflib_rxq_t rxq;
7104 int i, j;
7105
7106 ctx = if_getsoftc(ifp);
7107 scctx = &ctx->ifc_softc_ctx;
7108
7109 switch (event) {
7110 case DEBUGNET_START:
7111 for (i = 0; i < scctx->isc_nrxqsets; i++) {
7112 rxq = &ctx->ifc_rxqs[i];
7113 for (j = 0; j < rxq->ifr_nfl; j++) {
7114 fl = rxq->ifr_fl;
7115 fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7116 }
7117 }
7118 iflib_no_tx_batch = 1;
7119 break;
7120 default:
7121 break;
7122 }
7123 }
7124
7125 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7126 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7127 {
7128 if_ctx_t ctx;
7129 iflib_txq_t txq;
7130 int error;
7131
7132 ctx = if_getsoftc(ifp);
7133 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7134 IFF_DRV_RUNNING)
7135 return (EBUSY);
7136
7137 txq = &ctx->ifc_txqs[0];
7138 error = iflib_encap(txq, &m);
7139 if (error == 0)
7140 (void)iflib_txd_db_check(txq, true);
7141 return (error);
7142 }
7143
7144 static int
iflib_debugnet_poll(if_t ifp,int count)7145 iflib_debugnet_poll(if_t ifp, int count)
7146 {
7147 struct epoch_tracker et;
7148 if_ctx_t ctx;
7149 if_softc_ctx_t scctx;
7150 iflib_txq_t txq;
7151 int i;
7152
7153 ctx = if_getsoftc(ifp);
7154 scctx = &ctx->ifc_softc_ctx;
7155
7156 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7157 IFF_DRV_RUNNING)
7158 return (EBUSY);
7159
7160 txq = &ctx->ifc_txqs[0];
7161 (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx));
7162
7163 NET_EPOCH_ENTER(et);
7164 for (i = 0; i < scctx->isc_nrxqsets; i++)
7165 (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7166 NET_EPOCH_EXIT(et);
7167 return (0);
7168 }
7169 #endif /* DEBUGNET */
7170