1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1994, Sean Eric Fagan
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Sean Eric Fagan.
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/ktr.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/syscallsubr.h>
44 #include <sys/sysent.h>
45 #include <sys/sysproto.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/ptrace.h>
50 #include <sys/rwlock.h>
51 #include <sys/sx.h>
52 #include <sys/malloc.h>
53 #include <sys/signalvar.h>
54 #include <sys/caprights.h>
55 #include <sys/filedesc.h>
56
57 #include <machine/reg.h>
58
59 #include <security/audit/audit.h>
60
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_param.h>
69
70 #ifdef COMPAT_FREEBSD32
71 #include <sys/procfs.h>
72 #endif
73
74 /*
75 * Functions implemented using PROC_ACTION():
76 *
77 * proc_read_regs(proc, regs)
78 * Get the current user-visible register set from the process
79 * and copy it into the regs structure (<machine/reg.h>).
80 * The process is stopped at the time read_regs is called.
81 *
82 * proc_write_regs(proc, regs)
83 * Update the current register set from the passed in regs
84 * structure. Take care to avoid clobbering special CPU
85 * registers or privileged bits in the PSL.
86 * Depending on the architecture this may have fix-up work to do,
87 * especially if the IAR or PCW are modified.
88 * The process is stopped at the time write_regs is called.
89 *
90 * proc_read_fpregs, proc_write_fpregs
91 * deal with the floating point register set, otherwise as above.
92 *
93 * proc_read_dbregs, proc_write_dbregs
94 * deal with the processor debug register set, otherwise as above.
95 *
96 * proc_sstep(proc)
97 * Arrange for the process to trap after executing a single instruction.
98 */
99
100 #define PROC_ACTION(action) do { \
101 int error; \
102 \
103 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \
104 if ((td->td_proc->p_flag & P_INMEM) == 0) \
105 error = EIO; \
106 else \
107 error = (action); \
108 return (error); \
109 } while(0)
110
111 int
proc_read_regs(struct thread * td,struct reg * regs)112 proc_read_regs(struct thread *td, struct reg *regs)
113 {
114
115 PROC_ACTION(fill_regs(td, regs));
116 }
117
118 int
proc_write_regs(struct thread * td,struct reg * regs)119 proc_write_regs(struct thread *td, struct reg *regs)
120 {
121
122 PROC_ACTION(set_regs(td, regs));
123 }
124
125 int
proc_read_dbregs(struct thread * td,struct dbreg * dbregs)126 proc_read_dbregs(struct thread *td, struct dbreg *dbregs)
127 {
128
129 PROC_ACTION(fill_dbregs(td, dbregs));
130 }
131
132 int
proc_write_dbregs(struct thread * td,struct dbreg * dbregs)133 proc_write_dbregs(struct thread *td, struct dbreg *dbregs)
134 {
135
136 PROC_ACTION(set_dbregs(td, dbregs));
137 }
138
139 /*
140 * Ptrace doesn't support fpregs at all, and there are no security holes
141 * or translations for fpregs, so we can just copy them.
142 */
143 int
proc_read_fpregs(struct thread * td,struct fpreg * fpregs)144 proc_read_fpregs(struct thread *td, struct fpreg *fpregs)
145 {
146
147 PROC_ACTION(fill_fpregs(td, fpregs));
148 }
149
150 int
proc_write_fpregs(struct thread * td,struct fpreg * fpregs)151 proc_write_fpregs(struct thread *td, struct fpreg *fpregs)
152 {
153
154 PROC_ACTION(set_fpregs(td, fpregs));
155 }
156
157 #ifdef COMPAT_FREEBSD32
158 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */
159 int
proc_read_regs32(struct thread * td,struct reg32 * regs32)160 proc_read_regs32(struct thread *td, struct reg32 *regs32)
161 {
162
163 PROC_ACTION(fill_regs32(td, regs32));
164 }
165
166 int
proc_write_regs32(struct thread * td,struct reg32 * regs32)167 proc_write_regs32(struct thread *td, struct reg32 *regs32)
168 {
169
170 PROC_ACTION(set_regs32(td, regs32));
171 }
172
173 int
proc_read_dbregs32(struct thread * td,struct dbreg32 * dbregs32)174 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
175 {
176
177 PROC_ACTION(fill_dbregs32(td, dbregs32));
178 }
179
180 int
proc_write_dbregs32(struct thread * td,struct dbreg32 * dbregs32)181 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32)
182 {
183
184 PROC_ACTION(set_dbregs32(td, dbregs32));
185 }
186
187 int
proc_read_fpregs32(struct thread * td,struct fpreg32 * fpregs32)188 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
189 {
190
191 PROC_ACTION(fill_fpregs32(td, fpregs32));
192 }
193
194 int
proc_write_fpregs32(struct thread * td,struct fpreg32 * fpregs32)195 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32)
196 {
197
198 PROC_ACTION(set_fpregs32(td, fpregs32));
199 }
200 #endif
201
202 int
proc_sstep(struct thread * td)203 proc_sstep(struct thread *td)
204 {
205
206 PROC_ACTION(ptrace_single_step(td));
207 }
208
209 int
proc_rwmem(struct proc * p,struct uio * uio)210 proc_rwmem(struct proc *p, struct uio *uio)
211 {
212 vm_map_t map;
213 vm_offset_t pageno; /* page number */
214 vm_prot_t reqprot;
215 int error, fault_flags, page_offset, writing;
216
217 /*
218 * Assert that someone has locked this vmspace. (Should be
219 * curthread but we can't assert that.) This keeps the process
220 * from exiting out from under us until this operation completes.
221 */
222 PROC_ASSERT_HELD(p);
223 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
224
225 /*
226 * The map we want...
227 */
228 map = &p->p_vmspace->vm_map;
229
230 /*
231 * If we are writing, then we request vm_fault() to create a private
232 * copy of each page. Since these copies will not be writeable by the
233 * process, we must explicity request that they be dirtied.
234 */
235 writing = uio->uio_rw == UIO_WRITE;
236 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ;
237 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL;
238
239 /*
240 * Only map in one page at a time. We don't have to, but it
241 * makes things easier. This way is trivial - right?
242 */
243 do {
244 vm_offset_t uva;
245 u_int len;
246 vm_page_t m;
247
248 uva = (vm_offset_t)uio->uio_offset;
249
250 /*
251 * Get the page number of this segment.
252 */
253 pageno = trunc_page(uva);
254 page_offset = uva - pageno;
255
256 /*
257 * How many bytes to copy
258 */
259 len = min(PAGE_SIZE - page_offset, uio->uio_resid);
260
261 /*
262 * Fault and hold the page on behalf of the process.
263 */
264 error = vm_fault(map, pageno, reqprot, fault_flags, &m);
265 if (error != KERN_SUCCESS) {
266 if (error == KERN_RESOURCE_SHORTAGE)
267 error = ENOMEM;
268 else
269 error = EFAULT;
270 break;
271 }
272
273 /*
274 * Now do the i/o move.
275 */
276 error = uiomove_fromphys(&m, page_offset, len, uio);
277
278 /* Make the I-cache coherent for breakpoints. */
279 if (writing && error == 0) {
280 vm_map_lock_read(map);
281 if (vm_map_check_protection(map, pageno, pageno +
282 PAGE_SIZE, VM_PROT_EXECUTE))
283 vm_sync_icache(map, uva, len);
284 vm_map_unlock_read(map);
285 }
286
287 /*
288 * Release the page.
289 */
290 vm_page_unwire(m, PQ_ACTIVE);
291
292 } while (error == 0 && uio->uio_resid > 0);
293
294 return (error);
295 }
296
297 static ssize_t
proc_iop(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len,enum uio_rw rw)298 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
299 size_t len, enum uio_rw rw)
300 {
301 struct iovec iov;
302 struct uio uio;
303 ssize_t slen;
304
305 MPASS(len < SSIZE_MAX);
306 slen = (ssize_t)len;
307
308 iov.iov_base = (caddr_t)buf;
309 iov.iov_len = len;
310 uio.uio_iov = &iov;
311 uio.uio_iovcnt = 1;
312 uio.uio_offset = va;
313 uio.uio_resid = slen;
314 uio.uio_segflg = UIO_SYSSPACE;
315 uio.uio_rw = rw;
316 uio.uio_td = td;
317 proc_rwmem(p, &uio);
318 if (uio.uio_resid == slen)
319 return (-1);
320 return (slen - uio.uio_resid);
321 }
322
323 ssize_t
proc_readmem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)324 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
325 size_t len)
326 {
327
328 return (proc_iop(td, p, va, buf, len, UIO_READ));
329 }
330
331 ssize_t
proc_writemem(struct thread * td,struct proc * p,vm_offset_t va,void * buf,size_t len)332 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf,
333 size_t len)
334 {
335
336 return (proc_iop(td, p, va, buf, len, UIO_WRITE));
337 }
338
339 static int
ptrace_vm_entry(struct thread * td,struct proc * p,struct ptrace_vm_entry * pve)340 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve)
341 {
342 struct vattr vattr;
343 vm_map_t map;
344 vm_map_entry_t entry;
345 vm_object_t obj, tobj, lobj;
346 struct vmspace *vm;
347 struct vnode *vp;
348 char *freepath, *fullpath;
349 u_int pathlen;
350 int error, index;
351
352 error = 0;
353 obj = NULL;
354
355 vm = vmspace_acquire_ref(p);
356 map = &vm->vm_map;
357 vm_map_lock_read(map);
358
359 do {
360 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
361 ("Submap in map header"));
362 index = 0;
363 VM_MAP_ENTRY_FOREACH(entry, map) {
364 if (index >= pve->pve_entry &&
365 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
366 break;
367 index++;
368 }
369 if (index < pve->pve_entry) {
370 error = EINVAL;
371 break;
372 }
373 if (entry == &map->header) {
374 error = ENOENT;
375 break;
376 }
377
378 /* We got an entry. */
379 pve->pve_entry = index + 1;
380 pve->pve_timestamp = map->timestamp;
381 pve->pve_start = entry->start;
382 pve->pve_end = entry->end - 1;
383 pve->pve_offset = entry->offset;
384 pve->pve_prot = entry->protection;
385
386 /* Backing object's path needed? */
387 if (pve->pve_pathlen == 0)
388 break;
389
390 pathlen = pve->pve_pathlen;
391 pve->pve_pathlen = 0;
392
393 obj = entry->object.vm_object;
394 if (obj != NULL)
395 VM_OBJECT_RLOCK(obj);
396 } while (0);
397
398 vm_map_unlock_read(map);
399
400 pve->pve_fsid = VNOVAL;
401 pve->pve_fileid = VNOVAL;
402
403 if (error == 0 && obj != NULL) {
404 lobj = obj;
405 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
406 if (tobj != obj)
407 VM_OBJECT_RLOCK(tobj);
408 if (lobj != obj)
409 VM_OBJECT_RUNLOCK(lobj);
410 lobj = tobj;
411 pve->pve_offset += tobj->backing_object_offset;
412 }
413 vp = vm_object_vnode(lobj);
414 if (vp != NULL)
415 vref(vp);
416 if (lobj != obj)
417 VM_OBJECT_RUNLOCK(lobj);
418 VM_OBJECT_RUNLOCK(obj);
419
420 if (vp != NULL) {
421 freepath = NULL;
422 fullpath = NULL;
423 vn_fullpath(vp, &fullpath, &freepath);
424 vn_lock(vp, LK_SHARED | LK_RETRY);
425 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) {
426 pve->pve_fileid = vattr.va_fileid;
427 pve->pve_fsid = vattr.va_fsid;
428 }
429 vput(vp);
430
431 if (fullpath != NULL) {
432 pve->pve_pathlen = strlen(fullpath) + 1;
433 if (pve->pve_pathlen <= pathlen) {
434 error = copyout(fullpath, pve->pve_path,
435 pve->pve_pathlen);
436 } else
437 error = ENAMETOOLONG;
438 }
439 if (freepath != NULL)
440 free(freepath, M_TEMP);
441 }
442 }
443 vmspace_free(vm);
444 if (error == 0)
445 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p",
446 p->p_pid, pve->pve_entry, pve->pve_start);
447
448 return (error);
449 }
450
451 /*
452 * Process debugging system call.
453 */
454 #ifndef _SYS_SYSPROTO_H_
455 struct ptrace_args {
456 int req;
457 pid_t pid;
458 caddr_t addr;
459 int data;
460 };
461 #endif
462
463 int
sys_ptrace(struct thread * td,struct ptrace_args * uap)464 sys_ptrace(struct thread *td, struct ptrace_args *uap)
465 {
466 /*
467 * XXX this obfuscation is to reduce stack usage, but the register
468 * structs may be too large to put on the stack anyway.
469 */
470 union {
471 struct ptrace_io_desc piod;
472 struct ptrace_lwpinfo pl;
473 struct ptrace_vm_entry pve;
474 struct ptrace_coredump pc;
475 struct dbreg dbreg;
476 struct fpreg fpreg;
477 struct reg reg;
478 char args[sizeof(td->td_sa.args)];
479 struct ptrace_sc_ret psr;
480 int ptevents;
481 } r;
482 void *addr;
483 int error;
484
485 if (!allow_ptrace)
486 return (ENOSYS);
487 error = 0;
488
489 AUDIT_ARG_PID(uap->pid);
490 AUDIT_ARG_CMD(uap->req);
491 AUDIT_ARG_VALUE(uap->data);
492 addr = &r;
493 switch (uap->req) {
494 case PT_GET_EVENT_MASK:
495 case PT_LWPINFO:
496 case PT_GET_SC_ARGS:
497 case PT_GET_SC_RET:
498 break;
499 case PT_GETREGS:
500 bzero(&r.reg, sizeof(r.reg));
501 break;
502 case PT_GETFPREGS:
503 bzero(&r.fpreg, sizeof(r.fpreg));
504 break;
505 case PT_GETDBREGS:
506 bzero(&r.dbreg, sizeof(r.dbreg));
507 break;
508 case PT_SETREGS:
509 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
510 break;
511 case PT_SETFPREGS:
512 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
513 break;
514 case PT_SETDBREGS:
515 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
516 break;
517 case PT_SET_EVENT_MASK:
518 if (uap->data != sizeof(r.ptevents))
519 error = EINVAL;
520 else
521 error = copyin(uap->addr, &r.ptevents, uap->data);
522 break;
523 case PT_IO:
524 error = copyin(uap->addr, &r.piod, sizeof(r.piod));
525 break;
526 case PT_VM_ENTRY:
527 error = copyin(uap->addr, &r.pve, sizeof(r.pve));
528 break;
529 case PT_COREDUMP:
530 if (uap->data != sizeof(r.pc))
531 error = EINVAL;
532 else
533 error = copyin(uap->addr, &r.pc, uap->data);
534 break;
535 default:
536 addr = uap->addr;
537 break;
538 }
539 if (error)
540 return (error);
541
542 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data);
543 if (error)
544 return (error);
545
546 switch (uap->req) {
547 case PT_VM_ENTRY:
548 error = copyout(&r.pve, uap->addr, sizeof(r.pve));
549 break;
550 case PT_IO:
551 error = copyout(&r.piod, uap->addr, sizeof(r.piod));
552 break;
553 case PT_GETREGS:
554 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
555 break;
556 case PT_GETFPREGS:
557 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
558 break;
559 case PT_GETDBREGS:
560 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
561 break;
562 case PT_GET_EVENT_MASK:
563 /* NB: The size in uap->data is validated in kern_ptrace(). */
564 error = copyout(&r.ptevents, uap->addr, uap->data);
565 break;
566 case PT_LWPINFO:
567 /* NB: The size in uap->data is validated in kern_ptrace(). */
568 error = copyout(&r.pl, uap->addr, uap->data);
569 break;
570 case PT_GET_SC_ARGS:
571 error = copyout(r.args, uap->addr, MIN(uap->data,
572 sizeof(r.args)));
573 break;
574 case PT_GET_SC_RET:
575 error = copyout(&r.psr, uap->addr, MIN(uap->data,
576 sizeof(r.psr)));
577 break;
578 }
579
580 return (error);
581 }
582
583 #ifdef COMPAT_FREEBSD32
584 /*
585 * PROC_READ(regs, td2, addr);
586 * becomes either:
587 * proc_read_regs(td2, addr);
588 * or
589 * proc_read_regs32(td2, addr);
590 * .. except this is done at runtime. There is an additional
591 * complication in that PROC_WRITE disallows 32 bit consumers
592 * from writing to 64 bit address space targets.
593 */
594 #define PROC_READ(w, t, a) wrap32 ? \
595 proc_read_ ## w ## 32(t, a) : \
596 proc_read_ ## w (t, a)
597 #define PROC_WRITE(w, t, a) wrap32 ? \
598 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \
599 proc_write_ ## w (t, a)
600 #else
601 #define PROC_READ(w, t, a) proc_read_ ## w (t, a)
602 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a)
603 #endif
604
605 void
proc_set_traced(struct proc * p,bool stop)606 proc_set_traced(struct proc *p, bool stop)
607 {
608
609 sx_assert(&proctree_lock, SX_XLOCKED);
610 PROC_LOCK_ASSERT(p, MA_OWNED);
611 p->p_flag |= P_TRACED;
612 if (stop)
613 p->p_flag2 |= P2_PTRACE_FSTP;
614 p->p_ptevents = PTRACE_DEFAULT;
615 }
616
617 void
ptrace_unsuspend(struct proc * p)618 ptrace_unsuspend(struct proc *p)
619 {
620 PROC_LOCK_ASSERT(p, MA_OWNED);
621
622 PROC_SLOCK(p);
623 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED);
624 thread_unsuspend(p);
625 PROC_SUNLOCK(p);
626 itimer_proc_continue(p);
627 kqtimer_proc_continue(p);
628 }
629
630 static int
proc_can_ptrace(struct thread * td,struct proc * p)631 proc_can_ptrace(struct thread *td, struct proc *p)
632 {
633 int error;
634
635 PROC_LOCK_ASSERT(p, MA_OWNED);
636
637 if ((p->p_flag & P_WEXIT) != 0)
638 return (ESRCH);
639
640 if ((error = p_cansee(td, p)) != 0)
641 return (error);
642 if ((error = p_candebug(td, p)) != 0)
643 return (error);
644
645 /* not being traced... */
646 if ((p->p_flag & P_TRACED) == 0)
647 return (EPERM);
648
649 /* not being traced by YOU */
650 if (p->p_pptr != td->td_proc)
651 return (EBUSY);
652
653 /* not currently stopped */
654 if ((p->p_flag & P_STOPPED_TRACE) == 0 ||
655 p->p_suspcount != p->p_numthreads ||
656 (p->p_flag & P_WAITED) == 0)
657 return (EBUSY);
658
659 return (0);
660 }
661
662 static struct thread *
ptrace_sel_coredump_thread(struct proc * p)663 ptrace_sel_coredump_thread(struct proc *p)
664 {
665 struct thread *td2;
666
667 PROC_LOCK_ASSERT(p, MA_OWNED);
668 MPASS((p->p_flag & P_STOPPED_TRACE) != 0);
669
670 FOREACH_THREAD_IN_PROC(p, td2) {
671 if ((td2->td_dbgflags & TDB_SSWITCH) != 0)
672 return (td2);
673 }
674 return (NULL);
675 }
676
677 int
kern_ptrace(struct thread * td,int req,pid_t pid,void * addr,int data)678 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data)
679 {
680 struct iovec iov;
681 struct uio uio;
682 struct proc *curp, *p, *pp;
683 struct thread *td2 = NULL, *td3;
684 struct ptrace_io_desc *piod = NULL;
685 struct ptrace_lwpinfo *pl;
686 struct ptrace_sc_ret *psr;
687 struct file *fp;
688 struct ptrace_coredump *pc;
689 struct thr_coredump_req *tcq;
690 int error, num, tmp;
691 lwpid_t tid = 0, *buf;
692 #ifdef COMPAT_FREEBSD32
693 int wrap32 = 0, safe = 0;
694 #endif
695 bool proctree_locked, p2_req_set;
696
697 curp = td->td_proc;
698 proctree_locked = false;
699 p2_req_set = false;
700
701 /* Lock proctree before locking the process. */
702 switch (req) {
703 case PT_TRACE_ME:
704 case PT_ATTACH:
705 case PT_STEP:
706 case PT_CONTINUE:
707 case PT_TO_SCE:
708 case PT_TO_SCX:
709 case PT_SYSCALL:
710 case PT_FOLLOW_FORK:
711 case PT_LWP_EVENTS:
712 case PT_GET_EVENT_MASK:
713 case PT_SET_EVENT_MASK:
714 case PT_DETACH:
715 case PT_GET_SC_ARGS:
716 sx_xlock(&proctree_lock);
717 proctree_locked = true;
718 break;
719 default:
720 break;
721 }
722
723 if (req == PT_TRACE_ME) {
724 p = td->td_proc;
725 PROC_LOCK(p);
726 } else {
727 if (pid <= PID_MAX) {
728 if ((p = pfind(pid)) == NULL) {
729 if (proctree_locked)
730 sx_xunlock(&proctree_lock);
731 return (ESRCH);
732 }
733 } else {
734 td2 = tdfind(pid, -1);
735 if (td2 == NULL) {
736 if (proctree_locked)
737 sx_xunlock(&proctree_lock);
738 return (ESRCH);
739 }
740 p = td2->td_proc;
741 tid = pid;
742 pid = p->p_pid;
743 }
744 }
745 AUDIT_ARG_PROCESS(p);
746
747 if ((p->p_flag & P_WEXIT) != 0) {
748 error = ESRCH;
749 goto fail;
750 }
751 if ((error = p_cansee(td, p)) != 0)
752 goto fail;
753
754 if ((error = p_candebug(td, p)) != 0)
755 goto fail;
756
757 /*
758 * System processes can't be debugged.
759 */
760 if ((p->p_flag & P_SYSTEM) != 0) {
761 error = EINVAL;
762 goto fail;
763 }
764
765 if (tid == 0) {
766 if ((p->p_flag & P_STOPPED_TRACE) != 0) {
767 KASSERT(p->p_xthread != NULL, ("NULL p_xthread"));
768 td2 = p->p_xthread;
769 } else {
770 td2 = FIRST_THREAD_IN_PROC(p);
771 }
772 tid = td2->td_tid;
773 }
774
775 #ifdef COMPAT_FREEBSD32
776 /*
777 * Test if we're a 32 bit client and what the target is.
778 * Set the wrap controls accordingly.
779 */
780 if (SV_CURPROC_FLAG(SV_ILP32)) {
781 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32))
782 safe = 1;
783 wrap32 = 1;
784 }
785 #endif
786 /*
787 * Permissions check
788 */
789 switch (req) {
790 case PT_TRACE_ME:
791 /*
792 * Always legal, when there is a parent process which
793 * could trace us. Otherwise, reject.
794 */
795 if ((p->p_flag & P_TRACED) != 0) {
796 error = EBUSY;
797 goto fail;
798 }
799 if (p->p_pptr == initproc) {
800 error = EPERM;
801 goto fail;
802 }
803 break;
804
805 case PT_ATTACH:
806 /* Self */
807 if (p == td->td_proc) {
808 error = EINVAL;
809 goto fail;
810 }
811
812 /* Already traced */
813 if (p->p_flag & P_TRACED) {
814 error = EBUSY;
815 goto fail;
816 }
817
818 /* Can't trace an ancestor if you're being traced. */
819 if (curp->p_flag & P_TRACED) {
820 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) {
821 if (pp == p) {
822 error = EINVAL;
823 goto fail;
824 }
825 }
826 }
827
828 /* OK */
829 break;
830
831 case PT_CLEARSTEP:
832 /* Allow thread to clear single step for itself */
833 if (td->td_tid == tid)
834 break;
835
836 /* FALLTHROUGH */
837 default:
838 /*
839 * Check for ptrace eligibility before waiting for
840 * holds to drain.
841 */
842 error = proc_can_ptrace(td, p);
843 if (error != 0)
844 goto fail;
845
846 /*
847 * Block parallel ptrace requests. Most important, do
848 * not allow other thread in debugger to continue the
849 * debuggee until coredump finished.
850 */
851 while ((p->p_flag2 & P2_PTRACEREQ) != 0) {
852 if (proctree_locked)
853 sx_xunlock(&proctree_lock);
854 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH |
855 (proctree_locked ? PDROP : 0), "pptrace", 0);
856 if (proctree_locked) {
857 sx_xlock(&proctree_lock);
858 PROC_LOCK(p);
859 }
860 if (error == 0 && td2->td_proc != p)
861 error = ESRCH;
862 if (error == 0)
863 error = proc_can_ptrace(td, p);
864 if (error != 0)
865 goto fail;
866 }
867
868 /* Ok */
869 break;
870 }
871
872 /*
873 * Keep this process around and request parallel ptrace()
874 * request to wait until we finish this request.
875 */
876 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0);
877 p->p_flag2 |= P2_PTRACEREQ;
878 p2_req_set = true;
879 _PHOLD(p);
880
881 /*
882 * Actually do the requests
883 */
884
885 td->td_retval[0] = 0;
886
887 switch (req) {
888 case PT_TRACE_ME:
889 /* set my trace flag and "owner" so it can read/write me */
890 proc_set_traced(p, false);
891 if (p->p_flag & P_PPWAIT)
892 p->p_flag |= P_PPTRACE;
893 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid);
894 break;
895
896 case PT_ATTACH:
897 /* security check done above */
898 /*
899 * It would be nice if the tracing relationship was separate
900 * from the parent relationship but that would require
901 * another set of links in the proc struct or for "wait"
902 * to scan the entire proc table. To make life easier,
903 * we just re-parent the process we're trying to trace.
904 * The old parent is remembered so we can put things back
905 * on a "detach".
906 */
907 proc_set_traced(p, true);
908 proc_reparent(p, td->td_proc, false);
909 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid,
910 p->p_oppid);
911
912 sx_xunlock(&proctree_lock);
913 proctree_locked = false;
914 MPASS(p->p_xthread == NULL);
915 MPASS((p->p_flag & P_STOPPED_TRACE) == 0);
916
917 /*
918 * If already stopped due to a stop signal, clear the
919 * existing stop before triggering a traced SIGSTOP.
920 */
921 if ((p->p_flag & P_STOPPED_SIG) != 0) {
922 PROC_SLOCK(p);
923 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED);
924 thread_unsuspend(p);
925 PROC_SUNLOCK(p);
926 }
927
928 kern_psignal(p, SIGSTOP);
929 break;
930
931 case PT_CLEARSTEP:
932 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid,
933 p->p_pid);
934 error = ptrace_clear_single_step(td2);
935 break;
936
937 case PT_SETSTEP:
938 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid,
939 p->p_pid);
940 error = ptrace_single_step(td2);
941 break;
942
943 case PT_SUSPEND:
944 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid,
945 p->p_pid);
946 td2->td_dbgflags |= TDB_SUSPEND;
947 thread_lock(td2);
948 td2->td_flags |= TDF_NEEDSUSPCHK;
949 thread_unlock(td2);
950 break;
951
952 case PT_RESUME:
953 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid,
954 p->p_pid);
955 td2->td_dbgflags &= ~TDB_SUSPEND;
956 break;
957
958 case PT_FOLLOW_FORK:
959 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid,
960 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled",
961 data ? "enabled" : "disabled");
962 if (data)
963 p->p_ptevents |= PTRACE_FORK;
964 else
965 p->p_ptevents &= ~PTRACE_FORK;
966 break;
967
968 case PT_LWP_EVENTS:
969 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid,
970 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled",
971 data ? "enabled" : "disabled");
972 if (data)
973 p->p_ptevents |= PTRACE_LWP;
974 else
975 p->p_ptevents &= ~PTRACE_LWP;
976 break;
977
978 case PT_GET_EVENT_MASK:
979 if (data != sizeof(p->p_ptevents)) {
980 error = EINVAL;
981 break;
982 }
983 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid,
984 p->p_ptevents);
985 *(int *)addr = p->p_ptevents;
986 break;
987
988 case PT_SET_EVENT_MASK:
989 if (data != sizeof(p->p_ptevents)) {
990 error = EINVAL;
991 break;
992 }
993 tmp = *(int *)addr;
994 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX |
995 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) {
996 error = EINVAL;
997 break;
998 }
999 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x",
1000 p->p_pid, p->p_ptevents, tmp);
1001 p->p_ptevents = tmp;
1002 break;
1003
1004 case PT_GET_SC_ARGS:
1005 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid);
1006 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0
1007 #ifdef COMPAT_FREEBSD32
1008 || (wrap32 && !safe)
1009 #endif
1010 ) {
1011 error = EINVAL;
1012 break;
1013 }
1014 bzero(addr, sizeof(td2->td_sa.args));
1015 /* See the explanation in linux_ptrace_get_syscall_info(). */
1016 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) ==
1017 SV_ABI_LINUX ? sizeof(td2->td_sa.args) :
1018 td2->td_sa.callp->sy_narg * sizeof(register_t));
1019 break;
1020
1021 case PT_GET_SC_RET:
1022 if ((td2->td_dbgflags & (TDB_SCX)) == 0
1023 #ifdef COMPAT_FREEBSD32
1024 || (wrap32 && !safe)
1025 #endif
1026 ) {
1027 error = EINVAL;
1028 break;
1029 }
1030 psr = addr;
1031 bzero(psr, sizeof(*psr));
1032 psr->sr_error = td2->td_errno;
1033 if (psr->sr_error == 0) {
1034 psr->sr_retval[0] = td2->td_retval[0];
1035 psr->sr_retval[1] = td2->td_retval[1];
1036 }
1037 CTR4(KTR_PTRACE,
1038 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx",
1039 p->p_pid, psr->sr_error, psr->sr_retval[0],
1040 psr->sr_retval[1]);
1041 break;
1042
1043 case PT_STEP:
1044 case PT_CONTINUE:
1045 case PT_TO_SCE:
1046 case PT_TO_SCX:
1047 case PT_SYSCALL:
1048 case PT_DETACH:
1049 /* Zero means do not send any signal */
1050 if (data < 0 || data > _SIG_MAXSIG) {
1051 error = EINVAL;
1052 break;
1053 }
1054
1055 switch (req) {
1056 case PT_STEP:
1057 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d",
1058 td2->td_tid, p->p_pid, data);
1059 error = ptrace_single_step(td2);
1060 if (error)
1061 goto out;
1062 break;
1063 case PT_CONTINUE:
1064 case PT_TO_SCE:
1065 case PT_TO_SCX:
1066 case PT_SYSCALL:
1067 if (addr != (void *)1) {
1068 error = ptrace_set_pc(td2,
1069 (u_long)(uintfptr_t)addr);
1070 if (error)
1071 goto out;
1072 }
1073 switch (req) {
1074 case PT_TO_SCE:
1075 p->p_ptevents |= PTRACE_SCE;
1076 CTR4(KTR_PTRACE,
1077 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d",
1078 p->p_pid, p->p_ptevents,
1079 (u_long)(uintfptr_t)addr, data);
1080 break;
1081 case PT_TO_SCX:
1082 p->p_ptevents |= PTRACE_SCX;
1083 CTR4(KTR_PTRACE,
1084 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d",
1085 p->p_pid, p->p_ptevents,
1086 (u_long)(uintfptr_t)addr, data);
1087 break;
1088 case PT_SYSCALL:
1089 p->p_ptevents |= PTRACE_SYSCALL;
1090 CTR4(KTR_PTRACE,
1091 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d",
1092 p->p_pid, p->p_ptevents,
1093 (u_long)(uintfptr_t)addr, data);
1094 break;
1095 case PT_CONTINUE:
1096 CTR3(KTR_PTRACE,
1097 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d",
1098 p->p_pid, (u_long)(uintfptr_t)addr, data);
1099 break;
1100 }
1101 break;
1102 case PT_DETACH:
1103 /*
1104 * Clear P_TRACED before reparenting
1105 * a detached process back to its original
1106 * parent. Otherwise the debugee will be set
1107 * as an orphan of the debugger.
1108 */
1109 p->p_flag &= ~(P_TRACED | P_WAITED);
1110
1111 /*
1112 * Reset the process parent.
1113 */
1114 if (p->p_oppid != p->p_pptr->p_pid) {
1115 PROC_LOCK(p->p_pptr);
1116 sigqueue_take(p->p_ksi);
1117 PROC_UNLOCK(p->p_pptr);
1118
1119 pp = proc_realparent(p);
1120 proc_reparent(p, pp, false);
1121 if (pp == initproc)
1122 p->p_sigparent = SIGCHLD;
1123 CTR3(KTR_PTRACE,
1124 "PT_DETACH: pid %d reparented to pid %d, sig %d",
1125 p->p_pid, pp->p_pid, data);
1126 } else {
1127 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d",
1128 p->p_pid, data);
1129 }
1130
1131 p->p_ptevents = 0;
1132 FOREACH_THREAD_IN_PROC(p, td3) {
1133 if ((td3->td_dbgflags & TDB_FSTP) != 0) {
1134 sigqueue_delete(&td3->td_sigqueue,
1135 SIGSTOP);
1136 }
1137 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP |
1138 TDB_SUSPEND);
1139 }
1140
1141 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) {
1142 sigqueue_delete(&p->p_sigqueue, SIGSTOP);
1143 p->p_flag2 &= ~P2_PTRACE_FSTP;
1144 }
1145
1146 /* should we send SIGCHLD? */
1147 /* childproc_continued(p); */
1148 break;
1149 }
1150
1151 sx_xunlock(&proctree_lock);
1152 proctree_locked = false;
1153
1154 sendsig:
1155 MPASS(!proctree_locked);
1156
1157 /*
1158 * Clear the pending event for the thread that just
1159 * reported its event (p_xthread). This may not be
1160 * the thread passed to PT_CONTINUE, PT_STEP, etc. if
1161 * the debugger is resuming a different thread.
1162 *
1163 * Deliver any pending signal via the reporting thread.
1164 */
1165 MPASS(p->p_xthread != NULL);
1166 p->p_xthread->td_dbgflags &= ~TDB_XSIG;
1167 p->p_xthread->td_xsig = data;
1168 p->p_xthread = NULL;
1169 p->p_xsig = data;
1170
1171 /*
1172 * P_WKILLED is insurance that a PT_KILL/SIGKILL
1173 * always works immediately, even if another thread is
1174 * unsuspended first and attempts to handle a
1175 * different signal or if the POSIX.1b style signal
1176 * queue cannot accommodate any new signals.
1177 */
1178 if (data == SIGKILL)
1179 proc_wkilled(p);
1180
1181 /*
1182 * Unsuspend all threads. To leave a thread
1183 * suspended, use PT_SUSPEND to suspend it before
1184 * continuing the process.
1185 */
1186 ptrace_unsuspend(p);
1187 break;
1188
1189 case PT_WRITE_I:
1190 case PT_WRITE_D:
1191 td2->td_dbgflags |= TDB_USERWR;
1192 PROC_UNLOCK(p);
1193 error = 0;
1194 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data,
1195 sizeof(int)) != sizeof(int))
1196 error = ENOMEM;
1197 else
1198 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x",
1199 p->p_pid, addr, data);
1200 PROC_LOCK(p);
1201 break;
1202
1203 case PT_READ_I:
1204 case PT_READ_D:
1205 PROC_UNLOCK(p);
1206 error = tmp = 0;
1207 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp,
1208 sizeof(int)) != sizeof(int))
1209 error = ENOMEM;
1210 else
1211 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x",
1212 p->p_pid, addr, tmp);
1213 td->td_retval[0] = tmp;
1214 PROC_LOCK(p);
1215 break;
1216
1217 case PT_IO:
1218 piod = addr;
1219 iov.iov_base = piod->piod_addr;
1220 iov.iov_len = piod->piod_len;
1221 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs;
1222 uio.uio_resid = piod->piod_len;
1223 uio.uio_iov = &iov;
1224 uio.uio_iovcnt = 1;
1225 uio.uio_segflg = UIO_USERSPACE;
1226 uio.uio_td = td;
1227 switch (piod->piod_op) {
1228 case PIOD_READ_D:
1229 case PIOD_READ_I:
1230 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)",
1231 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1232 uio.uio_rw = UIO_READ;
1233 break;
1234 case PIOD_WRITE_D:
1235 case PIOD_WRITE_I:
1236 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)",
1237 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid);
1238 td2->td_dbgflags |= TDB_USERWR;
1239 uio.uio_rw = UIO_WRITE;
1240 break;
1241 default:
1242 error = EINVAL;
1243 goto out;
1244 }
1245 PROC_UNLOCK(p);
1246 error = proc_rwmem(p, &uio);
1247 piod->piod_len -= uio.uio_resid;
1248 PROC_LOCK(p);
1249 break;
1250
1251 case PT_KILL:
1252 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid);
1253 data = SIGKILL;
1254 goto sendsig; /* in PT_CONTINUE above */
1255
1256 case PT_SETREGS:
1257 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid,
1258 p->p_pid);
1259 td2->td_dbgflags |= TDB_USERWR;
1260 error = PROC_WRITE(regs, td2, addr);
1261 break;
1262
1263 case PT_GETREGS:
1264 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid,
1265 p->p_pid);
1266 error = PROC_READ(regs, td2, addr);
1267 break;
1268
1269 case PT_SETFPREGS:
1270 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid,
1271 p->p_pid);
1272 td2->td_dbgflags |= TDB_USERWR;
1273 error = PROC_WRITE(fpregs, td2, addr);
1274 break;
1275
1276 case PT_GETFPREGS:
1277 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid,
1278 p->p_pid);
1279 error = PROC_READ(fpregs, td2, addr);
1280 break;
1281
1282 case PT_SETDBREGS:
1283 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid,
1284 p->p_pid);
1285 td2->td_dbgflags |= TDB_USERWR;
1286 error = PROC_WRITE(dbregs, td2, addr);
1287 break;
1288
1289 case PT_GETDBREGS:
1290 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid,
1291 p->p_pid);
1292 error = PROC_READ(dbregs, td2, addr);
1293 break;
1294
1295 case PT_LWPINFO:
1296 if (data <= 0 || data > sizeof(*pl)) {
1297 error = EINVAL;
1298 break;
1299 }
1300 pl = addr;
1301 bzero(pl, sizeof(*pl));
1302 pl->pl_lwpid = td2->td_tid;
1303 pl->pl_event = PL_EVENT_NONE;
1304 pl->pl_flags = 0;
1305 if (td2->td_dbgflags & TDB_XSIG) {
1306 pl->pl_event = PL_EVENT_SIGNAL;
1307 if (td2->td_si.si_signo != 0 &&
1308 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo)
1309 + sizeof(pl->pl_siginfo)){
1310 pl->pl_flags |= PL_FLAG_SI;
1311 pl->pl_siginfo = td2->td_si;
1312 }
1313 }
1314 if (td2->td_dbgflags & TDB_SCE)
1315 pl->pl_flags |= PL_FLAG_SCE;
1316 else if (td2->td_dbgflags & TDB_SCX)
1317 pl->pl_flags |= PL_FLAG_SCX;
1318 if (td2->td_dbgflags & TDB_EXEC)
1319 pl->pl_flags |= PL_FLAG_EXEC;
1320 if (td2->td_dbgflags & TDB_FORK) {
1321 pl->pl_flags |= PL_FLAG_FORKED;
1322 pl->pl_child_pid = td2->td_dbg_forked;
1323 if (td2->td_dbgflags & TDB_VFORK)
1324 pl->pl_flags |= PL_FLAG_VFORKED;
1325 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) ==
1326 TDB_VFORK)
1327 pl->pl_flags |= PL_FLAG_VFORK_DONE;
1328 if (td2->td_dbgflags & TDB_CHILD)
1329 pl->pl_flags |= PL_FLAG_CHILD;
1330 if (td2->td_dbgflags & TDB_BORN)
1331 pl->pl_flags |= PL_FLAG_BORN;
1332 if (td2->td_dbgflags & TDB_EXIT)
1333 pl->pl_flags |= PL_FLAG_EXITED;
1334 pl->pl_sigmask = td2->td_sigmask;
1335 pl->pl_siglist = td2->td_siglist;
1336 strcpy(pl->pl_tdname, td2->td_name);
1337 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) {
1338 pl->pl_syscall_code = td2->td_sa.code;
1339 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg;
1340 } else {
1341 pl->pl_syscall_code = 0;
1342 pl->pl_syscall_narg = 0;
1343 }
1344 CTR6(KTR_PTRACE,
1345 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d",
1346 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags,
1347 pl->pl_child_pid, pl->pl_syscall_code);
1348 break;
1349
1350 case PT_GETNUMLWPS:
1351 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid,
1352 p->p_numthreads);
1353 td->td_retval[0] = p->p_numthreads;
1354 break;
1355
1356 case PT_GETLWPLIST:
1357 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d",
1358 p->p_pid, data, p->p_numthreads);
1359 if (data <= 0) {
1360 error = EINVAL;
1361 break;
1362 }
1363 num = imin(p->p_numthreads, data);
1364 PROC_UNLOCK(p);
1365 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK);
1366 tmp = 0;
1367 PROC_LOCK(p);
1368 FOREACH_THREAD_IN_PROC(p, td2) {
1369 if (tmp >= num)
1370 break;
1371 buf[tmp++] = td2->td_tid;
1372 }
1373 PROC_UNLOCK(p);
1374 error = copyout(buf, addr, tmp * sizeof(lwpid_t));
1375 free(buf, M_TEMP);
1376 if (!error)
1377 td->td_retval[0] = tmp;
1378 PROC_LOCK(p);
1379 break;
1380
1381 case PT_VM_TIMESTAMP:
1382 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d",
1383 p->p_pid, p->p_vmspace->vm_map.timestamp);
1384 td->td_retval[0] = p->p_vmspace->vm_map.timestamp;
1385 break;
1386
1387 case PT_VM_ENTRY:
1388 PROC_UNLOCK(p);
1389 error = ptrace_vm_entry(td, p, addr);
1390 PROC_LOCK(p);
1391 break;
1392
1393 case PT_COREDUMP:
1394 pc = addr;
1395 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d",
1396 p->p_pid, pc->pc_fd);
1397
1398 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) {
1399 error = EINVAL;
1400 break;
1401 }
1402 PROC_UNLOCK(p);
1403
1404 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO);
1405 fp = NULL;
1406 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp);
1407 if (error != 0)
1408 goto coredump_cleanup_nofp;
1409 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) {
1410 error = EPIPE;
1411 goto coredump_cleanup;
1412 }
1413
1414 PROC_LOCK(p);
1415 error = proc_can_ptrace(td, p);
1416 if (error != 0)
1417 goto coredump_cleanup_locked;
1418
1419 td2 = ptrace_sel_coredump_thread(p);
1420 if (td2 == NULL) {
1421 error = EBUSY;
1422 goto coredump_cleanup_locked;
1423 }
1424 KASSERT((td2->td_dbgflags & TDB_COREDUMPRQ) == 0,
1425 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid));
1426
1427 tcq->tc_vp = fp->f_vnode;
1428 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit;
1429 tcq->tc_flags = SVC_PT_COREDUMP;
1430 if ((pc->pc_flags & PC_COMPRESS) == 0)
1431 tcq->tc_flags |= SVC_NOCOMPRESS;
1432 if ((pc->pc_flags & PC_ALL) != 0)
1433 tcq->tc_flags |= SVC_ALL;
1434 td2->td_coredump = tcq;
1435 td2->td_dbgflags |= TDB_COREDUMPRQ;
1436 thread_run_flash(td2);
1437 while ((td2->td_dbgflags & TDB_COREDUMPRQ) != 0)
1438 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0);
1439 error = tcq->tc_error;
1440 coredump_cleanup_locked:
1441 PROC_UNLOCK(p);
1442 coredump_cleanup:
1443 fdrop(fp, td);
1444 coredump_cleanup_nofp:
1445 free(tcq, M_TEMP);
1446 PROC_LOCK(p);
1447 break;
1448
1449 default:
1450 #ifdef __HAVE_PTRACE_MACHDEP
1451 if (req >= PT_FIRSTMACH) {
1452 PROC_UNLOCK(p);
1453 error = cpu_ptrace(td2, req, addr, data);
1454 PROC_LOCK(p);
1455 } else
1456 #endif
1457 /* Unknown request. */
1458 error = EINVAL;
1459 break;
1460 }
1461 out:
1462 /* Drop our hold on this process now that the request has completed. */
1463 _PRELE(p);
1464 fail:
1465 if (p2_req_set) {
1466 if ((p->p_flag2 & P2_PTRACEREQ) != 0)
1467 wakeup(&p->p_flag2);
1468 p->p_flag2 &= ~P2_PTRACEREQ;
1469 }
1470 PROC_UNLOCK(p);
1471 if (proctree_locked)
1472 sx_xunlock(&proctree_lock);
1473 return (error);
1474 }
1475 #undef PROC_READ
1476 #undef PROC_WRITE
1477