xref: /freebsd-13.1/sys/kern/sys_pipe.c (revision bbba66e3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1996 John S. Dyson
5  * Copyright (c) 2012 Giovanni Trematerra
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Absolutely no warranty of function or purpose is made by the author
18  *    John S. Dyson.
19  * 4. Modifications may be freely made to this file if the above conditions
20  *    are met.
21  */
22 
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 
30 /*
31  * This code has two modes of operation, a small write mode and a large
32  * write mode.  The small write mode acts like conventional pipes with
33  * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
34  * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
35  * and PIPE_SIZE in size, the sending process pins the underlying pages in
36  * memory, and the receiving process copies directly from these pinned pages
37  * in the sending process.
38  *
39  * If the sending process receives a signal, it is possible that it will
40  * go away, and certainly its address space can change, because control
41  * is returned back to the user-mode side.  In that case, the pipe code
42  * arranges to copy the buffer supplied by the user process, to a pageable
43  * kernel buffer, and the receiving process will grab the data from the
44  * pageable kernel buffer.  Since signals don't happen all that often,
45  * the copy operation is normally eliminated.
46  *
47  * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
48  * happen for small transfers so that the system will not spend all of
49  * its time context switching.
50  *
51  * In order to limit the resource use of pipes, two sysctls exist:
52  *
53  * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
54  * address space available to us in pipe_map. This value is normally
55  * autotuned, but may also be loader tuned.
56  *
57  * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
58  * memory in use by pipes.
59  *
60  * Based on how large pipekva is relative to maxpipekva, the following
61  * will happen:
62  *
63  * 0% - 50%:
64  *     New pipes are given 16K of memory backing, pipes may dynamically
65  *     grow to as large as 64K where needed.
66  * 50% - 75%:
67  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68  *     existing pipes may NOT grow.
69  * 75% - 100%:
70  *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
71  *     existing pipes will be shrunk down to 4K whenever possible.
72  *
73  * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
74  * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
75  * resize which MUST occur for reverse-direction pipes when they are
76  * first used.
77  *
78  * Additional information about the current state of pipes may be obtained
79  * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
80  * and kern.ipc.piperesizefail.
81  *
82  * Locking rules:  There are two locks present here:  A mutex, used via
83  * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
84  * the flag, as mutexes can not persist over uiomove.  The mutex
85  * exists only to guard access to the flag, and is not in itself a
86  * locking mechanism.  Also note that there is only a single mutex for
87  * both directions of a pipe.
88  *
89  * As pipelock() may have to sleep before it can acquire the flag, it
90  * is important to reread all data after a call to pipelock(); everything
91  * in the structure may have changed.
92  */
93 
94 #include <sys/cdefs.h>
95 __FBSDID("$FreeBSD$");
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/fcntl.h>
101 #include <sys/file.h>
102 #include <sys/filedesc.h>
103 #include <sys/filio.h>
104 #include <sys/kernel.h>
105 #include <sys/lock.h>
106 #include <sys/mutex.h>
107 #include <sys/ttycom.h>
108 #include <sys/stat.h>
109 #include <sys/malloc.h>
110 #include <sys/poll.h>
111 #include <sys/selinfo.h>
112 #include <sys/signalvar.h>
113 #include <sys/syscallsubr.h>
114 #include <sys/sysctl.h>
115 #include <sys/sysproto.h>
116 #include <sys/pipe.h>
117 #include <sys/proc.h>
118 #include <sys/vnode.h>
119 #include <sys/uio.h>
120 #include <sys/user.h>
121 #include <sys/event.h>
122 
123 #include <security/mac/mac_framework.h>
124 
125 #include <vm/vm.h>
126 #include <vm/vm_param.h>
127 #include <vm/vm_object.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_extern.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_map.h>
132 #include <vm/vm_page.h>
133 #include <vm/uma.h>
134 
135 /*
136  * Use this define if you want to disable *fancy* VM things.  Expect an
137  * approx 30% decrease in transfer rate.  This could be useful for
138  * NetBSD or OpenBSD.
139  */
140 /* #define PIPE_NODIRECT */
141 
142 #define PIPE_PEER(pipe)	\
143 	(((pipe)->pipe_type & PIPE_TYPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
144 
145 /*
146  * interfaces to the outside world
147  */
148 static fo_rdwr_t	pipe_read;
149 static fo_rdwr_t	pipe_write;
150 static fo_truncate_t	pipe_truncate;
151 static fo_ioctl_t	pipe_ioctl;
152 static fo_poll_t	pipe_poll;
153 static fo_kqfilter_t	pipe_kqfilter;
154 static fo_stat_t	pipe_stat;
155 static fo_close_t	pipe_close;
156 static fo_chmod_t	pipe_chmod;
157 static fo_chown_t	pipe_chown;
158 static fo_fill_kinfo_t	pipe_fill_kinfo;
159 
160 struct fileops pipeops = {
161 	.fo_read = pipe_read,
162 	.fo_write = pipe_write,
163 	.fo_truncate = pipe_truncate,
164 	.fo_ioctl = pipe_ioctl,
165 	.fo_poll = pipe_poll,
166 	.fo_kqfilter = pipe_kqfilter,
167 	.fo_stat = pipe_stat,
168 	.fo_close = pipe_close,
169 	.fo_chmod = pipe_chmod,
170 	.fo_chown = pipe_chown,
171 	.fo_sendfile = invfo_sendfile,
172 	.fo_fill_kinfo = pipe_fill_kinfo,
173 	.fo_flags = DFLAG_PASSABLE
174 };
175 
176 static void	filt_pipedetach(struct knote *kn);
177 static void	filt_pipedetach_notsup(struct knote *kn);
178 static int	filt_pipenotsup(struct knote *kn, long hint);
179 static int	filt_piperead(struct knote *kn, long hint);
180 static int	filt_pipewrite(struct knote *kn, long hint);
181 
182 static struct filterops pipe_nfiltops = {
183 	.f_isfd = 1,
184 	.f_detach = filt_pipedetach_notsup,
185 	.f_event = filt_pipenotsup
186 };
187 static struct filterops pipe_rfiltops = {
188 	.f_isfd = 1,
189 	.f_detach = filt_pipedetach,
190 	.f_event = filt_piperead
191 };
192 static struct filterops pipe_wfiltops = {
193 	.f_isfd = 1,
194 	.f_detach = filt_pipedetach,
195 	.f_event = filt_pipewrite
196 };
197 
198 /*
199  * Default pipe buffer size(s), this can be kind-of large now because pipe
200  * space is pageable.  The pipe code will try to maintain locality of
201  * reference for performance reasons, so small amounts of outstanding I/O
202  * will not wipe the cache.
203  */
204 #define MINPIPESIZE (PIPE_SIZE/3)
205 #define MAXPIPESIZE (2*PIPE_SIZE/3)
206 
207 static long amountpipekva;
208 static int pipefragretry;
209 static int pipeallocfail;
210 static int piperesizefail;
211 static int piperesizeallowed = 1;
212 
213 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
214 	   &maxpipekva, 0, "Pipe KVA limit");
215 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
216 	   &amountpipekva, 0, "Pipe KVA usage");
217 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
218 	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
219 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
220 	  &pipeallocfail, 0, "Pipe allocation failures");
221 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
222 	  &piperesizefail, 0, "Pipe resize failures");
223 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
224 	  &piperesizeallowed, 0, "Pipe resizing allowed");
225 
226 static void pipeinit(void *dummy __unused);
227 static void pipeclose(struct pipe *cpipe);
228 static void pipe_free_kmem(struct pipe *cpipe);
229 static int pipe_create(struct pipe *pipe, bool backing);
230 static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
231 static __inline int pipelock(struct pipe *cpipe, int catch);
232 static __inline void pipeunlock(struct pipe *cpipe);
233 static void pipe_timestamp(struct timespec *tsp);
234 #ifndef PIPE_NODIRECT
235 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
236 static void pipe_destroy_write_buffer(struct pipe *wpipe);
237 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
238 static void pipe_clone_write_buffer(struct pipe *wpipe);
239 #endif
240 static int pipespace(struct pipe *cpipe, int size);
241 static int pipespace_new(struct pipe *cpipe, int size);
242 
243 static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
244 static int	pipe_zone_init(void *mem, int size, int flags);
245 static void	pipe_zone_fini(void *mem, int size);
246 
247 static uma_zone_t pipe_zone;
248 static struct unrhdr64 pipeino_unr;
249 static dev_t pipedev_ino;
250 
251 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
252 
253 static void
pipeinit(void * dummy __unused)254 pipeinit(void *dummy __unused)
255 {
256 
257 	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
258 	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
259 	    UMA_ALIGN_PTR, 0);
260 	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
261 	new_unrhdr64(&pipeino_unr, 1);
262 	pipedev_ino = devfs_alloc_cdp_inode();
263 	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
264 }
265 
266 static int
pipe_zone_ctor(void * mem,int size,void * arg,int flags)267 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
268 {
269 	struct pipepair *pp;
270 	struct pipe *rpipe, *wpipe;
271 
272 	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
273 
274 	pp = (struct pipepair *)mem;
275 
276 	/*
277 	 * We zero both pipe endpoints to make sure all the kmem pointers
278 	 * are NULL, flag fields are zero'd, etc.  We timestamp both
279 	 * endpoints with the same time.
280 	 */
281 	rpipe = &pp->pp_rpipe;
282 	bzero(rpipe, sizeof(*rpipe));
283 	pipe_timestamp(&rpipe->pipe_ctime);
284 	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
285 
286 	wpipe = &pp->pp_wpipe;
287 	bzero(wpipe, sizeof(*wpipe));
288 	wpipe->pipe_ctime = rpipe->pipe_ctime;
289 	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
290 
291 	rpipe->pipe_peer = wpipe;
292 	rpipe->pipe_pair = pp;
293 	wpipe->pipe_peer = rpipe;
294 	wpipe->pipe_pair = pp;
295 
296 	/*
297 	 * Mark both endpoints as present; they will later get free'd
298 	 * one at a time.  When both are free'd, then the whole pair
299 	 * is released.
300 	 */
301 	rpipe->pipe_present = PIPE_ACTIVE;
302 	wpipe->pipe_present = PIPE_ACTIVE;
303 
304 	/*
305 	 * Eventually, the MAC Framework may initialize the label
306 	 * in ctor or init, but for now we do it elswhere to avoid
307 	 * blocking in ctor or init.
308 	 */
309 	pp->pp_label = NULL;
310 
311 	return (0);
312 }
313 
314 static int
pipe_zone_init(void * mem,int size,int flags)315 pipe_zone_init(void *mem, int size, int flags)
316 {
317 	struct pipepair *pp;
318 
319 	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
320 
321 	pp = (struct pipepair *)mem;
322 
323 	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_NEW);
324 	return (0);
325 }
326 
327 static void
pipe_zone_fini(void * mem,int size)328 pipe_zone_fini(void *mem, int size)
329 {
330 	struct pipepair *pp;
331 
332 	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
333 
334 	pp = (struct pipepair *)mem;
335 
336 	mtx_destroy(&pp->pp_mtx);
337 }
338 
339 static int
pipe_paircreate(struct thread * td,struct pipepair ** p_pp)340 pipe_paircreate(struct thread *td, struct pipepair **p_pp)
341 {
342 	struct pipepair *pp;
343 	struct pipe *rpipe, *wpipe;
344 	int error;
345 
346 	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
347 #ifdef MAC
348 	/*
349 	 * The MAC label is shared between the connected endpoints.  As a
350 	 * result mac_pipe_init() and mac_pipe_create() are called once
351 	 * for the pair, and not on the endpoints.
352 	 */
353 	mac_pipe_init(pp);
354 	mac_pipe_create(td->td_ucred, pp);
355 #endif
356 	rpipe = &pp->pp_rpipe;
357 	wpipe = &pp->pp_wpipe;
358 
359 	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
360 	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
361 
362 	/*
363 	 * Only the forward direction pipe is backed by big buffer by
364 	 * default.
365 	 */
366 	error = pipe_create(rpipe, true);
367 	if (error != 0)
368 		goto fail;
369 	error = pipe_create(wpipe, false);
370 	if (error != 0) {
371 		/*
372 		 * This cleanup leaves the pipe inode number for rpipe
373 		 * still allocated, but never used.  We do not free
374 		 * inode numbers for opened pipes, which is required
375 		 * for correctness because numbers must be unique.
376 		 * But also it avoids any memory use by the unr
377 		 * allocator, so stashing away the transient inode
378 		 * number is reasonable.
379 		 */
380 		pipe_free_kmem(rpipe);
381 		goto fail;
382 	}
383 
384 	rpipe->pipe_state |= PIPE_DIRECTOK;
385 	wpipe->pipe_state |= PIPE_DIRECTOK;
386 	return (0);
387 
388 fail:
389 	knlist_destroy(&rpipe->pipe_sel.si_note);
390 	knlist_destroy(&wpipe->pipe_sel.si_note);
391 #ifdef MAC
392 	mac_pipe_destroy(pp);
393 #endif
394 	uma_zfree(pipe_zone, pp);
395 	return (error);
396 }
397 
398 int
pipe_named_ctor(struct pipe ** ppipe,struct thread * td)399 pipe_named_ctor(struct pipe **ppipe, struct thread *td)
400 {
401 	struct pipepair *pp;
402 	int error;
403 
404 	error = pipe_paircreate(td, &pp);
405 	if (error != 0)
406 		return (error);
407 	pp->pp_rpipe.pipe_type |= PIPE_TYPE_NAMED;
408 	*ppipe = &pp->pp_rpipe;
409 	return (0);
410 }
411 
412 void
pipe_dtor(struct pipe * dpipe)413 pipe_dtor(struct pipe *dpipe)
414 {
415 	struct pipe *peer;
416 
417 	peer = (dpipe->pipe_type & PIPE_TYPE_NAMED) != 0 ? dpipe->pipe_peer : NULL;
418 	funsetown(&dpipe->pipe_sigio);
419 	pipeclose(dpipe);
420 	if (peer != NULL) {
421 		funsetown(&peer->pipe_sigio);
422 		pipeclose(peer);
423 	}
424 }
425 
426 /*
427  * Get a timestamp.
428  *
429  * This used to be vfs_timestamp but the higher precision is unnecessary and
430  * can very negatively affect performance in virtualized environments (e.g., on
431  * vms running on amd64 when using the rdtscp instruction).
432  */
433 static void
pipe_timestamp(struct timespec * tsp)434 pipe_timestamp(struct timespec *tsp)
435 {
436 
437 	getnanotime(tsp);
438 }
439 
440 /*
441  * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
442  * the zone pick up the pieces via pipeclose().
443  */
444 int
kern_pipe(struct thread * td,int fildes[2],int flags,struct filecaps * fcaps1,struct filecaps * fcaps2)445 kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1,
446     struct filecaps *fcaps2)
447 {
448 	struct file *rf, *wf;
449 	struct pipe *rpipe, *wpipe;
450 	struct pipepair *pp;
451 	int fd, fflags, error;
452 
453 	error = pipe_paircreate(td, &pp);
454 	if (error != 0)
455 		return (error);
456 	rpipe = &pp->pp_rpipe;
457 	wpipe = &pp->pp_wpipe;
458 	error = falloc_caps(td, &rf, &fd, flags, fcaps1);
459 	if (error) {
460 		pipeclose(rpipe);
461 		pipeclose(wpipe);
462 		return (error);
463 	}
464 	/* An extra reference on `rf' has been held for us by falloc_caps(). */
465 	fildes[0] = fd;
466 
467 	fflags = FREAD | FWRITE;
468 	if ((flags & O_NONBLOCK) != 0)
469 		fflags |= FNONBLOCK;
470 
471 	/*
472 	 * Warning: once we've gotten past allocation of the fd for the
473 	 * read-side, we can only drop the read side via fdrop() in order
474 	 * to avoid races against processes which manage to dup() the read
475 	 * side while we are blocked trying to allocate the write side.
476 	 */
477 	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
478 	error = falloc_caps(td, &wf, &fd, flags, fcaps2);
479 	if (error) {
480 		fdclose(td, rf, fildes[0]);
481 		fdrop(rf, td);
482 		/* rpipe has been closed by fdrop(). */
483 		pipeclose(wpipe);
484 		return (error);
485 	}
486 	/* An extra reference on `wf' has been held for us by falloc_caps(). */
487 	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
488 	fdrop(wf, td);
489 	fildes[1] = fd;
490 	fdrop(rf, td);
491 
492 	return (0);
493 }
494 
495 #ifdef COMPAT_FREEBSD10
496 /* ARGSUSED */
497 int
freebsd10_pipe(struct thread * td,struct freebsd10_pipe_args * uap __unused)498 freebsd10_pipe(struct thread *td, struct freebsd10_pipe_args *uap __unused)
499 {
500 	int error;
501 	int fildes[2];
502 
503 	error = kern_pipe(td, fildes, 0, NULL, NULL);
504 	if (error)
505 		return (error);
506 
507 	td->td_retval[0] = fildes[0];
508 	td->td_retval[1] = fildes[1];
509 
510 	return (0);
511 }
512 #endif
513 
514 int
sys_pipe2(struct thread * td,struct pipe2_args * uap)515 sys_pipe2(struct thread *td, struct pipe2_args *uap)
516 {
517 	int error, fildes[2];
518 
519 	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
520 		return (EINVAL);
521 	error = kern_pipe(td, fildes, uap->flags, NULL, NULL);
522 	if (error)
523 		return (error);
524 	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
525 	if (error) {
526 		(void)kern_close(td, fildes[0]);
527 		(void)kern_close(td, fildes[1]);
528 	}
529 	return (error);
530 }
531 
532 /*
533  * Allocate kva for pipe circular buffer, the space is pageable
534  * This routine will 'realloc' the size of a pipe safely, if it fails
535  * it will retain the old buffer.
536  * If it fails it will return ENOMEM.
537  */
538 static int
pipespace_new(struct pipe * cpipe,int size)539 pipespace_new(struct pipe *cpipe, int size)
540 {
541 	caddr_t buffer;
542 	int error, cnt, firstseg;
543 	static int curfail = 0;
544 	static struct timeval lastfail;
545 
546 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
547 	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
548 		("pipespace: resize of direct writes not allowed"));
549 retry:
550 	cnt = cpipe->pipe_buffer.cnt;
551 	if (cnt > size)
552 		size = cnt;
553 
554 	size = round_page(size);
555 	buffer = (caddr_t) vm_map_min(pipe_map);
556 
557 	error = vm_map_find(pipe_map, NULL, 0, (vm_offset_t *)&buffer, size, 0,
558 	    VMFS_ANY_SPACE, VM_PROT_RW, VM_PROT_RW, 0);
559 	if (error != KERN_SUCCESS) {
560 		if (cpipe->pipe_buffer.buffer == NULL &&
561 		    size > SMALL_PIPE_SIZE) {
562 			size = SMALL_PIPE_SIZE;
563 			pipefragretry++;
564 			goto retry;
565 		}
566 		if (cpipe->pipe_buffer.buffer == NULL) {
567 			pipeallocfail++;
568 			if (ppsratecheck(&lastfail, &curfail, 1))
569 				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
570 		} else {
571 			piperesizefail++;
572 		}
573 		return (ENOMEM);
574 	}
575 
576 	/* copy data, then free old resources if we're resizing */
577 	if (cnt > 0) {
578 		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
579 			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
580 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
581 				buffer, firstseg);
582 			if ((cnt - firstseg) > 0)
583 				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
584 					cpipe->pipe_buffer.in);
585 		} else {
586 			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
587 				buffer, cnt);
588 		}
589 	}
590 	pipe_free_kmem(cpipe);
591 	cpipe->pipe_buffer.buffer = buffer;
592 	cpipe->pipe_buffer.size = size;
593 	cpipe->pipe_buffer.in = cnt;
594 	cpipe->pipe_buffer.out = 0;
595 	cpipe->pipe_buffer.cnt = cnt;
596 	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
597 	return (0);
598 }
599 
600 /*
601  * Wrapper for pipespace_new() that performs locking assertions.
602  */
603 static int
pipespace(struct pipe * cpipe,int size)604 pipespace(struct pipe *cpipe, int size)
605 {
606 
607 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
608 	    ("Unlocked pipe passed to pipespace"));
609 	return (pipespace_new(cpipe, size));
610 }
611 
612 /*
613  * lock a pipe for I/O, blocking other access
614  */
615 static __inline int
pipelock(struct pipe * cpipe,int catch)616 pipelock(struct pipe *cpipe, int catch)
617 {
618 	int error, prio;
619 
620 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
621 
622 	prio = PRIBIO;
623 	if (catch)
624 		prio |= PCATCH;
625 	while (cpipe->pipe_state & PIPE_LOCKFL) {
626 		KASSERT(cpipe->pipe_waiters >= 0,
627 		    ("%s: bad waiter count %d", __func__,
628 		    cpipe->pipe_waiters));
629 		cpipe->pipe_waiters++;
630 		error = msleep(cpipe, PIPE_MTX(cpipe),
631 		    prio, "pipelk", 0);
632 		cpipe->pipe_waiters--;
633 		if (error != 0)
634 			return (error);
635 	}
636 	cpipe->pipe_state |= PIPE_LOCKFL;
637 	return (0);
638 }
639 
640 /*
641  * unlock a pipe I/O lock
642  */
643 static __inline void
pipeunlock(struct pipe * cpipe)644 pipeunlock(struct pipe *cpipe)
645 {
646 
647 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
648 	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
649 		("Unlocked pipe passed to pipeunlock"));
650 	KASSERT(cpipe->pipe_waiters >= 0,
651 	    ("%s: bad waiter count %d", __func__,
652 	    cpipe->pipe_waiters));
653 	cpipe->pipe_state &= ~PIPE_LOCKFL;
654 	if (cpipe->pipe_waiters > 0) {
655 		wakeup_one(cpipe);
656 	}
657 }
658 
659 void
pipeselwakeup(struct pipe * cpipe)660 pipeselwakeup(struct pipe *cpipe)
661 {
662 
663 	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
664 	if (cpipe->pipe_state & PIPE_SEL) {
665 		selwakeuppri(&cpipe->pipe_sel, PSOCK);
666 		if (!SEL_WAITING(&cpipe->pipe_sel))
667 			cpipe->pipe_state &= ~PIPE_SEL;
668 	}
669 	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
670 		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
671 	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
672 }
673 
674 /*
675  * Initialize and allocate VM and memory for pipe.  The structure
676  * will start out zero'd from the ctor, so we just manage the kmem.
677  */
678 static int
pipe_create(struct pipe * pipe,bool large_backing)679 pipe_create(struct pipe *pipe, bool large_backing)
680 {
681 	int error;
682 
683 	error = pipespace_new(pipe, !large_backing || amountpipekva >
684 	    maxpipekva / 2 ? SMALL_PIPE_SIZE : PIPE_SIZE);
685 	if (error == 0)
686 		pipe->pipe_ino = alloc_unr64(&pipeino_unr);
687 	return (error);
688 }
689 
690 /* ARGSUSED */
691 static int
pipe_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)692 pipe_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
693     int flags, struct thread *td)
694 {
695 	struct pipe *rpipe;
696 	int error;
697 	int nread = 0;
698 	int size;
699 
700 	rpipe = fp->f_data;
701 	PIPE_LOCK(rpipe);
702 	++rpipe->pipe_busy;
703 	error = pipelock(rpipe, 1);
704 	if (error)
705 		goto unlocked_error;
706 
707 #ifdef MAC
708 	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
709 	if (error)
710 		goto locked_error;
711 #endif
712 	if (amountpipekva > (3 * maxpipekva) / 4) {
713 		if ((rpipe->pipe_state & PIPE_DIRECTW) == 0 &&
714 		    rpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
715 		    rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
716 		    piperesizeallowed == 1) {
717 			PIPE_UNLOCK(rpipe);
718 			pipespace(rpipe, SMALL_PIPE_SIZE);
719 			PIPE_LOCK(rpipe);
720 		}
721 	}
722 
723 	while (uio->uio_resid) {
724 		/*
725 		 * normal pipe buffer receive
726 		 */
727 		if (rpipe->pipe_buffer.cnt > 0) {
728 			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
729 			if (size > rpipe->pipe_buffer.cnt)
730 				size = rpipe->pipe_buffer.cnt;
731 			if (size > uio->uio_resid)
732 				size = uio->uio_resid;
733 
734 			PIPE_UNLOCK(rpipe);
735 			error = uiomove(
736 			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
737 			    size, uio);
738 			PIPE_LOCK(rpipe);
739 			if (error)
740 				break;
741 
742 			rpipe->pipe_buffer.out += size;
743 			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
744 				rpipe->pipe_buffer.out = 0;
745 
746 			rpipe->pipe_buffer.cnt -= size;
747 
748 			/*
749 			 * If there is no more to read in the pipe, reset
750 			 * its pointers to the beginning.  This improves
751 			 * cache hit stats.
752 			 */
753 			if (rpipe->pipe_buffer.cnt == 0) {
754 				rpipe->pipe_buffer.in = 0;
755 				rpipe->pipe_buffer.out = 0;
756 			}
757 			nread += size;
758 #ifndef PIPE_NODIRECT
759 		/*
760 		 * Direct copy, bypassing a kernel buffer.
761 		 */
762 		} else if ((size = rpipe->pipe_pages.cnt) != 0) {
763 			if (size > uio->uio_resid)
764 				size = (u_int) uio->uio_resid;
765 			PIPE_UNLOCK(rpipe);
766 			error = uiomove_fromphys(rpipe->pipe_pages.ms,
767 			    rpipe->pipe_pages.pos, size, uio);
768 			PIPE_LOCK(rpipe);
769 			if (error)
770 				break;
771 			nread += size;
772 			rpipe->pipe_pages.pos += size;
773 			rpipe->pipe_pages.cnt -= size;
774 			if (rpipe->pipe_pages.cnt == 0) {
775 				rpipe->pipe_state &= ~PIPE_WANTW;
776 				wakeup(rpipe);
777 			}
778 #endif
779 		} else {
780 			/*
781 			 * detect EOF condition
782 			 * read returns 0 on EOF, no need to set error
783 			 */
784 			if (rpipe->pipe_state & PIPE_EOF)
785 				break;
786 
787 			/*
788 			 * If the "write-side" has been blocked, wake it up now.
789 			 */
790 			if (rpipe->pipe_state & PIPE_WANTW) {
791 				rpipe->pipe_state &= ~PIPE_WANTW;
792 				wakeup(rpipe);
793 			}
794 
795 			/*
796 			 * Break if some data was read.
797 			 */
798 			if (nread > 0)
799 				break;
800 
801 			/*
802 			 * Unlock the pipe buffer for our remaining processing.
803 			 * We will either break out with an error or we will
804 			 * sleep and relock to loop.
805 			 */
806 			pipeunlock(rpipe);
807 
808 			/*
809 			 * Handle non-blocking mode operation or
810 			 * wait for more data.
811 			 */
812 			if (fp->f_flag & FNONBLOCK) {
813 				error = EAGAIN;
814 			} else {
815 				rpipe->pipe_state |= PIPE_WANTR;
816 				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
817 				    PRIBIO | PCATCH,
818 				    "piperd", 0)) == 0)
819 					error = pipelock(rpipe, 1);
820 			}
821 			if (error)
822 				goto unlocked_error;
823 		}
824 	}
825 #ifdef MAC
826 locked_error:
827 #endif
828 	pipeunlock(rpipe);
829 
830 	/* XXX: should probably do this before getting any locks. */
831 	if (error == 0)
832 		pipe_timestamp(&rpipe->pipe_atime);
833 unlocked_error:
834 	--rpipe->pipe_busy;
835 
836 	/*
837 	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
838 	 */
839 	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
840 		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
841 		wakeup(rpipe);
842 	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
843 		/*
844 		 * Handle write blocking hysteresis.
845 		 */
846 		if (rpipe->pipe_state & PIPE_WANTW) {
847 			rpipe->pipe_state &= ~PIPE_WANTW;
848 			wakeup(rpipe);
849 		}
850 	}
851 
852 	/*
853 	 * Only wake up writers if there was actually something read.
854 	 * Otherwise, when calling read(2) at EOF, a spurious wakeup occurs.
855 	 */
856 	if (nread > 0 &&
857 	    rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
858 		pipeselwakeup(rpipe);
859 
860 	PIPE_UNLOCK(rpipe);
861 	if (nread > 0)
862 		td->td_ru.ru_msgrcv++;
863 	return (error);
864 }
865 
866 #ifndef PIPE_NODIRECT
867 /*
868  * Map the sending processes' buffer into kernel space and wire it.
869  * This is similar to a physical write operation.
870  */
871 static int
pipe_build_write_buffer(struct pipe * wpipe,struct uio * uio)872 pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio)
873 {
874 	u_int size;
875 	int i;
876 
877 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
878 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
879 	    ("%s: PIPE_DIRECTW set on %p", __func__, wpipe));
880 	KASSERT(wpipe->pipe_pages.cnt == 0,
881 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
882 
883 	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
884                 size = wpipe->pipe_buffer.size;
885 	else
886                 size = uio->uio_iov->iov_len;
887 
888 	wpipe->pipe_state |= PIPE_DIRECTW;
889 	PIPE_UNLOCK(wpipe);
890 	i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
891 	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
892 	    wpipe->pipe_pages.ms, PIPENPAGES);
893 	PIPE_LOCK(wpipe);
894 	if (i < 0) {
895 		wpipe->pipe_state &= ~PIPE_DIRECTW;
896 		return (EFAULT);
897 	}
898 
899 	wpipe->pipe_pages.npages = i;
900 	wpipe->pipe_pages.pos =
901 	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
902 	wpipe->pipe_pages.cnt = size;
903 
904 	uio->uio_iov->iov_len -= size;
905 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
906 	if (uio->uio_iov->iov_len == 0)
907 		uio->uio_iov++;
908 	uio->uio_resid -= size;
909 	uio->uio_offset += size;
910 	return (0);
911 }
912 
913 /*
914  * Unwire the process buffer.
915  */
916 static void
pipe_destroy_write_buffer(struct pipe * wpipe)917 pipe_destroy_write_buffer(struct pipe *wpipe)
918 {
919 
920 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
921 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
922 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
923 	KASSERT(wpipe->pipe_pages.cnt == 0,
924 	    ("%s: pipe map for %p contains residual data", __func__, wpipe));
925 
926 	wpipe->pipe_state &= ~PIPE_DIRECTW;
927 	vm_page_unhold_pages(wpipe->pipe_pages.ms, wpipe->pipe_pages.npages);
928 	wpipe->pipe_pages.npages = 0;
929 }
930 
931 /*
932  * In the case of a signal, the writing process might go away.  This
933  * code copies the data into the circular buffer so that the source
934  * pages can be freed without loss of data.
935  */
936 static void
pipe_clone_write_buffer(struct pipe * wpipe)937 pipe_clone_write_buffer(struct pipe *wpipe)
938 {
939 	struct uio uio;
940 	struct iovec iov;
941 	int size;
942 	int pos;
943 
944 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
945 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) != 0,
946 	    ("%s: PIPE_DIRECTW not set on %p", __func__, wpipe));
947 
948 	size = wpipe->pipe_pages.cnt;
949 	pos = wpipe->pipe_pages.pos;
950 	wpipe->pipe_pages.cnt = 0;
951 
952 	wpipe->pipe_buffer.in = size;
953 	wpipe->pipe_buffer.out = 0;
954 	wpipe->pipe_buffer.cnt = size;
955 
956 	PIPE_UNLOCK(wpipe);
957 	iov.iov_base = wpipe->pipe_buffer.buffer;
958 	iov.iov_len = size;
959 	uio.uio_iov = &iov;
960 	uio.uio_iovcnt = 1;
961 	uio.uio_offset = 0;
962 	uio.uio_resid = size;
963 	uio.uio_segflg = UIO_SYSSPACE;
964 	uio.uio_rw = UIO_READ;
965 	uio.uio_td = curthread;
966 	uiomove_fromphys(wpipe->pipe_pages.ms, pos, size, &uio);
967 	PIPE_LOCK(wpipe);
968 	pipe_destroy_write_buffer(wpipe);
969 }
970 
971 /*
972  * This implements the pipe buffer write mechanism.  Note that only
973  * a direct write OR a normal pipe write can be pending at any given time.
974  * If there are any characters in the pipe buffer, the direct write will
975  * be deferred until the receiving process grabs all of the bytes from
976  * the pipe buffer.  Then the direct mapping write is set-up.
977  */
978 static int
pipe_direct_write(struct pipe * wpipe,struct uio * uio)979 pipe_direct_write(struct pipe *wpipe, struct uio *uio)
980 {
981 	int error;
982 
983 retry:
984 	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
985 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
986 		error = EPIPE;
987 		goto error1;
988 	}
989 	if (wpipe->pipe_state & PIPE_DIRECTW) {
990 		if (wpipe->pipe_state & PIPE_WANTR) {
991 			wpipe->pipe_state &= ~PIPE_WANTR;
992 			wakeup(wpipe);
993 		}
994 		pipeselwakeup(wpipe);
995 		wpipe->pipe_state |= PIPE_WANTW;
996 		pipeunlock(wpipe);
997 		error = msleep(wpipe, PIPE_MTX(wpipe),
998 		    PRIBIO | PCATCH, "pipdww", 0);
999 		pipelock(wpipe, 0);
1000 		if (error != 0)
1001 			goto error1;
1002 		goto retry;
1003 	}
1004 	if (wpipe->pipe_buffer.cnt > 0) {
1005 		if (wpipe->pipe_state & PIPE_WANTR) {
1006 			wpipe->pipe_state &= ~PIPE_WANTR;
1007 			wakeup(wpipe);
1008 		}
1009 		pipeselwakeup(wpipe);
1010 		wpipe->pipe_state |= PIPE_WANTW;
1011 		pipeunlock(wpipe);
1012 		error = msleep(wpipe, PIPE_MTX(wpipe),
1013 		    PRIBIO | PCATCH, "pipdwc", 0);
1014 		pipelock(wpipe, 0);
1015 		if (error != 0)
1016 			goto error1;
1017 		goto retry;
1018 	}
1019 
1020 	error = pipe_build_write_buffer(wpipe, uio);
1021 	if (error) {
1022 		goto error1;
1023 	}
1024 
1025 	while (wpipe->pipe_pages.cnt != 0 &&
1026 	    (wpipe->pipe_state & PIPE_EOF) == 0) {
1027 		if (wpipe->pipe_state & PIPE_WANTR) {
1028 			wpipe->pipe_state &= ~PIPE_WANTR;
1029 			wakeup(wpipe);
1030 		}
1031 		pipeselwakeup(wpipe);
1032 		wpipe->pipe_state |= PIPE_WANTW;
1033 		pipeunlock(wpipe);
1034 		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1035 		    "pipdwt", 0);
1036 		pipelock(wpipe, 0);
1037 		if (error != 0)
1038 			break;
1039 	}
1040 
1041 	if ((wpipe->pipe_state & PIPE_EOF) != 0) {
1042 		wpipe->pipe_pages.cnt = 0;
1043 		pipe_destroy_write_buffer(wpipe);
1044 		pipeselwakeup(wpipe);
1045 		error = EPIPE;
1046 	} else if (error == EINTR || error == ERESTART) {
1047 		pipe_clone_write_buffer(wpipe);
1048 	} else {
1049 		pipe_destroy_write_buffer(wpipe);
1050 	}
1051 	KASSERT((wpipe->pipe_state & PIPE_DIRECTW) == 0,
1052 	    ("pipe %p leaked PIPE_DIRECTW", wpipe));
1053 	return (error);
1054 
1055 error1:
1056 	wakeup(wpipe);
1057 	return (error);
1058 }
1059 #endif
1060 
1061 static int
pipe_write(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)1062 pipe_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
1063     int flags, struct thread *td)
1064 {
1065 	struct pipe *wpipe, *rpipe;
1066 	ssize_t orig_resid;
1067 	int desiredsize, error;
1068 
1069 	rpipe = fp->f_data;
1070 	wpipe = PIPE_PEER(rpipe);
1071 	PIPE_LOCK(rpipe);
1072 	error = pipelock(wpipe, 1);
1073 	if (error) {
1074 		PIPE_UNLOCK(rpipe);
1075 		return (error);
1076 	}
1077 	/*
1078 	 * detect loss of pipe read side, issue SIGPIPE if lost.
1079 	 */
1080 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1081 	    (wpipe->pipe_state & PIPE_EOF)) {
1082 		pipeunlock(wpipe);
1083 		PIPE_UNLOCK(rpipe);
1084 		return (EPIPE);
1085 	}
1086 #ifdef MAC
1087 	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1088 	if (error) {
1089 		pipeunlock(wpipe);
1090 		PIPE_UNLOCK(rpipe);
1091 		return (error);
1092 	}
1093 #endif
1094 	++wpipe->pipe_busy;
1095 
1096 	/* Choose a larger size if it's advantageous */
1097 	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1098 	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1099 		if (piperesizeallowed != 1)
1100 			break;
1101 		if (amountpipekva > maxpipekva / 2)
1102 			break;
1103 		if (desiredsize == BIG_PIPE_SIZE)
1104 			break;
1105 		desiredsize = desiredsize * 2;
1106 	}
1107 
1108 	/* Choose a smaller size if we're in a OOM situation */
1109 	if (amountpipekva > (3 * maxpipekva) / 4 &&
1110 	    wpipe->pipe_buffer.size > SMALL_PIPE_SIZE &&
1111 	    wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE &&
1112 	    piperesizeallowed == 1)
1113 		desiredsize = SMALL_PIPE_SIZE;
1114 
1115 	/* Resize if the above determined that a new size was necessary */
1116 	if (desiredsize != wpipe->pipe_buffer.size &&
1117 	    (wpipe->pipe_state & PIPE_DIRECTW) == 0) {
1118 		PIPE_UNLOCK(wpipe);
1119 		pipespace(wpipe, desiredsize);
1120 		PIPE_LOCK(wpipe);
1121 	}
1122 	MPASS(wpipe->pipe_buffer.size != 0);
1123 
1124 	orig_resid = uio->uio_resid;
1125 
1126 	while (uio->uio_resid) {
1127 		int space;
1128 
1129 		if (wpipe->pipe_state & PIPE_EOF) {
1130 			error = EPIPE;
1131 			break;
1132 		}
1133 #ifndef PIPE_NODIRECT
1134 		/*
1135 		 * If the transfer is large, we can gain performance if
1136 		 * we do process-to-process copies directly.
1137 		 * If the write is non-blocking, we don't use the
1138 		 * direct write mechanism.
1139 		 *
1140 		 * The direct write mechanism will detect the reader going
1141 		 * away on us.
1142 		 */
1143 		if (uio->uio_segflg == UIO_USERSPACE &&
1144 		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1145 		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1146 		    (fp->f_flag & FNONBLOCK) == 0) {
1147 			error = pipe_direct_write(wpipe, uio);
1148 			if (error != 0)
1149 				break;
1150 			continue;
1151 		}
1152 #endif
1153 
1154 		/*
1155 		 * Pipe buffered writes cannot be coincidental with
1156 		 * direct writes.  We wait until the currently executing
1157 		 * direct write is completed before we start filling the
1158 		 * pipe buffer.  We break out if a signal occurs or the
1159 		 * reader goes away.
1160 		 */
1161 		if (wpipe->pipe_pages.cnt != 0) {
1162 			if (wpipe->pipe_state & PIPE_WANTR) {
1163 				wpipe->pipe_state &= ~PIPE_WANTR;
1164 				wakeup(wpipe);
1165 			}
1166 			pipeselwakeup(wpipe);
1167 			wpipe->pipe_state |= PIPE_WANTW;
1168 			pipeunlock(wpipe);
1169 			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1170 			    "pipbww", 0);
1171 			pipelock(wpipe, 0);
1172 			if (error != 0)
1173 				break;
1174 			continue;
1175 		}
1176 
1177 		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1178 
1179 		/* Writes of size <= PIPE_BUF must be atomic. */
1180 		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1181 			space = 0;
1182 
1183 		if (space > 0) {
1184 			int size;	/* Transfer size */
1185 			int segsize;	/* first segment to transfer */
1186 
1187 			/*
1188 			 * Transfer size is minimum of uio transfer
1189 			 * and free space in pipe buffer.
1190 			 */
1191 			if (space > uio->uio_resid)
1192 				size = uio->uio_resid;
1193 			else
1194 				size = space;
1195 			/*
1196 			 * First segment to transfer is minimum of
1197 			 * transfer size and contiguous space in
1198 			 * pipe buffer.  If first segment to transfer
1199 			 * is less than the transfer size, we've got
1200 			 * a wraparound in the buffer.
1201 			 */
1202 			segsize = wpipe->pipe_buffer.size -
1203 				wpipe->pipe_buffer.in;
1204 			if (segsize > size)
1205 				segsize = size;
1206 
1207 			/* Transfer first segment */
1208 
1209 			PIPE_UNLOCK(rpipe);
1210 			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1211 					segsize, uio);
1212 			PIPE_LOCK(rpipe);
1213 
1214 			if (error == 0 && segsize < size) {
1215 				KASSERT(wpipe->pipe_buffer.in + segsize ==
1216 					wpipe->pipe_buffer.size,
1217 					("Pipe buffer wraparound disappeared"));
1218 				/*
1219 				 * Transfer remaining part now, to
1220 				 * support atomic writes.  Wraparound
1221 				 * happened.
1222 				 */
1223 
1224 				PIPE_UNLOCK(rpipe);
1225 				error = uiomove(
1226 				    &wpipe->pipe_buffer.buffer[0],
1227 				    size - segsize, uio);
1228 				PIPE_LOCK(rpipe);
1229 			}
1230 			if (error == 0) {
1231 				wpipe->pipe_buffer.in += size;
1232 				if (wpipe->pipe_buffer.in >=
1233 				    wpipe->pipe_buffer.size) {
1234 					KASSERT(wpipe->pipe_buffer.in ==
1235 						size - segsize +
1236 						wpipe->pipe_buffer.size,
1237 						("Expected wraparound bad"));
1238 					wpipe->pipe_buffer.in = size - segsize;
1239 				}
1240 
1241 				wpipe->pipe_buffer.cnt += size;
1242 				KASSERT(wpipe->pipe_buffer.cnt <=
1243 					wpipe->pipe_buffer.size,
1244 					("Pipe buffer overflow"));
1245 			}
1246 			if (error != 0)
1247 				break;
1248 			continue;
1249 		} else {
1250 			/*
1251 			 * If the "read-side" has been blocked, wake it up now.
1252 			 */
1253 			if (wpipe->pipe_state & PIPE_WANTR) {
1254 				wpipe->pipe_state &= ~PIPE_WANTR;
1255 				wakeup(wpipe);
1256 			}
1257 
1258 			/*
1259 			 * don't block on non-blocking I/O
1260 			 */
1261 			if (fp->f_flag & FNONBLOCK) {
1262 				error = EAGAIN;
1263 				break;
1264 			}
1265 
1266 			/*
1267 			 * We have no more space and have something to offer,
1268 			 * wake up select/poll.
1269 			 */
1270 			pipeselwakeup(wpipe);
1271 
1272 			wpipe->pipe_state |= PIPE_WANTW;
1273 			pipeunlock(wpipe);
1274 			error = msleep(wpipe, PIPE_MTX(rpipe),
1275 			    PRIBIO | PCATCH, "pipewr", 0);
1276 			pipelock(wpipe, 0);
1277 			if (error != 0)
1278 				break;
1279 			continue;
1280 		}
1281 	}
1282 
1283 	--wpipe->pipe_busy;
1284 
1285 	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1286 		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1287 		wakeup(wpipe);
1288 	} else if (wpipe->pipe_buffer.cnt > 0) {
1289 		/*
1290 		 * If we have put any characters in the buffer, we wake up
1291 		 * the reader.
1292 		 */
1293 		if (wpipe->pipe_state & PIPE_WANTR) {
1294 			wpipe->pipe_state &= ~PIPE_WANTR;
1295 			wakeup(wpipe);
1296 		}
1297 	}
1298 
1299 	/*
1300 	 * Don't return EPIPE if any byte was written.
1301 	 * EINTR and other interrupts are handled by generic I/O layer.
1302 	 * Do not pretend that I/O succeeded for obvious user error
1303 	 * like EFAULT.
1304 	 */
1305 	if (uio->uio_resid != orig_resid && error == EPIPE)
1306 		error = 0;
1307 
1308 	if (error == 0)
1309 		pipe_timestamp(&wpipe->pipe_mtime);
1310 
1311 	/*
1312 	 * We have something to offer,
1313 	 * wake up select/poll.
1314 	 */
1315 	if (wpipe->pipe_buffer.cnt)
1316 		pipeselwakeup(wpipe);
1317 
1318 	pipeunlock(wpipe);
1319 	PIPE_UNLOCK(rpipe);
1320 	if (uio->uio_resid != orig_resid)
1321 		td->td_ru.ru_msgsnd++;
1322 	return (error);
1323 }
1324 
1325 /* ARGSUSED */
1326 static int
pipe_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)1327 pipe_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1328     struct thread *td)
1329 {
1330 	struct pipe *cpipe;
1331 	int error;
1332 
1333 	cpipe = fp->f_data;
1334 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1335 		error = vnops.fo_truncate(fp, length, active_cred, td);
1336 	else
1337 		error = invfo_truncate(fp, length, active_cred, td);
1338 	return (error);
1339 }
1340 
1341 /*
1342  * we implement a very minimal set of ioctls for compatibility with sockets.
1343  */
1344 static int
pipe_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)1345 pipe_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred,
1346     struct thread *td)
1347 {
1348 	struct pipe *mpipe = fp->f_data;
1349 	int error;
1350 
1351 	PIPE_LOCK(mpipe);
1352 
1353 #ifdef MAC
1354 	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1355 	if (error) {
1356 		PIPE_UNLOCK(mpipe);
1357 		return (error);
1358 	}
1359 #endif
1360 
1361 	error = 0;
1362 	switch (cmd) {
1363 	case FIONBIO:
1364 		break;
1365 
1366 	case FIOASYNC:
1367 		if (*(int *)data) {
1368 			mpipe->pipe_state |= PIPE_ASYNC;
1369 		} else {
1370 			mpipe->pipe_state &= ~PIPE_ASYNC;
1371 		}
1372 		break;
1373 
1374 	case FIONREAD:
1375 		if (!(fp->f_flag & FREAD)) {
1376 			*(int *)data = 0;
1377 			PIPE_UNLOCK(mpipe);
1378 			return (0);
1379 		}
1380 		if (mpipe->pipe_pages.cnt != 0)
1381 			*(int *)data = mpipe->pipe_pages.cnt;
1382 		else
1383 			*(int *)data = mpipe->pipe_buffer.cnt;
1384 		break;
1385 
1386 	case FIOSETOWN:
1387 		PIPE_UNLOCK(mpipe);
1388 		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1389 		goto out_unlocked;
1390 
1391 	case FIOGETOWN:
1392 		*(int *)data = fgetown(&mpipe->pipe_sigio);
1393 		break;
1394 
1395 	/* This is deprecated, FIOSETOWN should be used instead. */
1396 	case TIOCSPGRP:
1397 		PIPE_UNLOCK(mpipe);
1398 		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1399 		goto out_unlocked;
1400 
1401 	/* This is deprecated, FIOGETOWN should be used instead. */
1402 	case TIOCGPGRP:
1403 		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1404 		break;
1405 
1406 	default:
1407 		error = ENOTTY;
1408 		break;
1409 	}
1410 	PIPE_UNLOCK(mpipe);
1411 out_unlocked:
1412 	return (error);
1413 }
1414 
1415 static int
pipe_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)1416 pipe_poll(struct file *fp, int events, struct ucred *active_cred,
1417     struct thread *td)
1418 {
1419 	struct pipe *rpipe;
1420 	struct pipe *wpipe;
1421 	int levents, revents;
1422 #ifdef MAC
1423 	int error;
1424 #endif
1425 
1426 	revents = 0;
1427 	rpipe = fp->f_data;
1428 	wpipe = PIPE_PEER(rpipe);
1429 	PIPE_LOCK(rpipe);
1430 #ifdef MAC
1431 	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1432 	if (error)
1433 		goto locked_error;
1434 #endif
1435 	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1436 		if (rpipe->pipe_pages.cnt > 0 || rpipe->pipe_buffer.cnt > 0)
1437 			revents |= events & (POLLIN | POLLRDNORM);
1438 
1439 	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1440 		if (wpipe->pipe_present != PIPE_ACTIVE ||
1441 		    (wpipe->pipe_state & PIPE_EOF) ||
1442 		    ((wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1443 		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1444 			 wpipe->pipe_buffer.size == 0)))
1445 			revents |= events & (POLLOUT | POLLWRNORM);
1446 
1447 	levents = events &
1448 	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1449 	if (rpipe->pipe_type & PIPE_TYPE_NAMED && fp->f_flag & FREAD && levents &&
1450 	    fp->f_pipegen == rpipe->pipe_wgen)
1451 		events |= POLLINIGNEOF;
1452 
1453 	if ((events & POLLINIGNEOF) == 0) {
1454 		if (rpipe->pipe_state & PIPE_EOF) {
1455 			if (fp->f_flag & FREAD)
1456 				revents |= (events & (POLLIN | POLLRDNORM));
1457 			if (wpipe->pipe_present != PIPE_ACTIVE ||
1458 			    (wpipe->pipe_state & PIPE_EOF))
1459 				revents |= POLLHUP;
1460 		}
1461 	}
1462 
1463 	if (revents == 0) {
1464 		/*
1465 		 * Add ourselves regardless of eventmask as we have to return
1466 		 * POLLHUP even if it was not asked for.
1467 		 */
1468 		if ((fp->f_flag & FREAD) != 0) {
1469 			selrecord(td, &rpipe->pipe_sel);
1470 			if (SEL_WAITING(&rpipe->pipe_sel))
1471 				rpipe->pipe_state |= PIPE_SEL;
1472 		}
1473 
1474 		if ((fp->f_flag & FWRITE) != 0 &&
1475 		    wpipe->pipe_present == PIPE_ACTIVE) {
1476 			selrecord(td, &wpipe->pipe_sel);
1477 			if (SEL_WAITING(&wpipe->pipe_sel))
1478 				wpipe->pipe_state |= PIPE_SEL;
1479 		}
1480 	}
1481 #ifdef MAC
1482 locked_error:
1483 #endif
1484 	PIPE_UNLOCK(rpipe);
1485 
1486 	return (revents);
1487 }
1488 
1489 /*
1490  * We shouldn't need locks here as we're doing a read and this should
1491  * be a natural race.
1492  */
1493 static int
pipe_stat(struct file * fp,struct stat * ub,struct ucred * active_cred,struct thread * td)1494 pipe_stat(struct file *fp, struct stat *ub, struct ucred *active_cred,
1495     struct thread *td)
1496 {
1497 	struct pipe *pipe;
1498 #ifdef MAC
1499 	int error;
1500 #endif
1501 
1502 	pipe = fp->f_data;
1503 #ifdef MAC
1504 	if (mac_pipe_check_stat_enabled()) {
1505 		PIPE_LOCK(pipe);
1506 		error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1507 		PIPE_UNLOCK(pipe);
1508 		if (error) {
1509 			return (error);
1510 		}
1511 	}
1512 #endif
1513 
1514 	/* For named pipes ask the underlying filesystem. */
1515 	if (pipe->pipe_type & PIPE_TYPE_NAMED) {
1516 		return (vnops.fo_stat(fp, ub, active_cred, td));
1517 	}
1518 
1519 	bzero(ub, sizeof(*ub));
1520 	ub->st_mode = S_IFIFO;
1521 	ub->st_blksize = PAGE_SIZE;
1522 	if (pipe->pipe_pages.cnt != 0)
1523 		ub->st_size = pipe->pipe_pages.cnt;
1524 	else
1525 		ub->st_size = pipe->pipe_buffer.cnt;
1526 	ub->st_blocks = howmany(ub->st_size, ub->st_blksize);
1527 	ub->st_atim = pipe->pipe_atime;
1528 	ub->st_mtim = pipe->pipe_mtime;
1529 	ub->st_ctim = pipe->pipe_ctime;
1530 	ub->st_uid = fp->f_cred->cr_uid;
1531 	ub->st_gid = fp->f_cred->cr_gid;
1532 	ub->st_dev = pipedev_ino;
1533 	ub->st_ino = pipe->pipe_ino;
1534 	/*
1535 	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1536 	 */
1537 	return (0);
1538 }
1539 
1540 /* ARGSUSED */
1541 static int
pipe_close(struct file * fp,struct thread * td)1542 pipe_close(struct file *fp, struct thread *td)
1543 {
1544 
1545 	if (fp->f_vnode != NULL)
1546 		return vnops.fo_close(fp, td);
1547 	fp->f_ops = &badfileops;
1548 	pipe_dtor(fp->f_data);
1549 	fp->f_data = NULL;
1550 	return (0);
1551 }
1552 
1553 static int
pipe_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)1554 pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1555 {
1556 	struct pipe *cpipe;
1557 	int error;
1558 
1559 	cpipe = fp->f_data;
1560 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1561 		error = vn_chmod(fp, mode, active_cred, td);
1562 	else
1563 		error = invfo_chmod(fp, mode, active_cred, td);
1564 	return (error);
1565 }
1566 
1567 static int
pipe_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)1568 pipe_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1569     struct thread *td)
1570 {
1571 	struct pipe *cpipe;
1572 	int error;
1573 
1574 	cpipe = fp->f_data;
1575 	if (cpipe->pipe_type & PIPE_TYPE_NAMED)
1576 		error = vn_chown(fp, uid, gid, active_cred, td);
1577 	else
1578 		error = invfo_chown(fp, uid, gid, active_cred, td);
1579 	return (error);
1580 }
1581 
1582 static int
pipe_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)1583 pipe_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
1584 {
1585 	struct pipe *pi;
1586 
1587 	if (fp->f_type == DTYPE_FIFO)
1588 		return (vn_fill_kinfo(fp, kif, fdp));
1589 	kif->kf_type = KF_TYPE_PIPE;
1590 	pi = fp->f_data;
1591 	kif->kf_un.kf_pipe.kf_pipe_addr = (uintptr_t)pi;
1592 	kif->kf_un.kf_pipe.kf_pipe_peer = (uintptr_t)pi->pipe_peer;
1593 	kif->kf_un.kf_pipe.kf_pipe_buffer_cnt = pi->pipe_buffer.cnt;
1594 	return (0);
1595 }
1596 
1597 static void
pipe_free_kmem(struct pipe * cpipe)1598 pipe_free_kmem(struct pipe *cpipe)
1599 {
1600 
1601 	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1602 	    ("pipe_free_kmem: pipe mutex locked"));
1603 
1604 	if (cpipe->pipe_buffer.buffer != NULL) {
1605 		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1606 		vm_map_remove(pipe_map,
1607 		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1608 		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1609 		cpipe->pipe_buffer.buffer = NULL;
1610 	}
1611 #ifndef PIPE_NODIRECT
1612 	{
1613 		cpipe->pipe_pages.cnt = 0;
1614 		cpipe->pipe_pages.pos = 0;
1615 		cpipe->pipe_pages.npages = 0;
1616 	}
1617 #endif
1618 }
1619 
1620 /*
1621  * shutdown the pipe
1622  */
1623 static void
pipeclose(struct pipe * cpipe)1624 pipeclose(struct pipe *cpipe)
1625 {
1626 	struct pipepair *pp;
1627 	struct pipe *ppipe;
1628 
1629 	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1630 
1631 	PIPE_LOCK(cpipe);
1632 	pipelock(cpipe, 0);
1633 	pp = cpipe->pipe_pair;
1634 
1635 	/*
1636 	 * If the other side is blocked, wake it up saying that
1637 	 * we want to close it down.
1638 	 */
1639 	cpipe->pipe_state |= PIPE_EOF;
1640 	while (cpipe->pipe_busy) {
1641 		wakeup(cpipe);
1642 		cpipe->pipe_state |= PIPE_WANT;
1643 		pipeunlock(cpipe);
1644 		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1645 		pipelock(cpipe, 0);
1646 	}
1647 
1648 	pipeselwakeup(cpipe);
1649 
1650 	/*
1651 	 * Disconnect from peer, if any.
1652 	 */
1653 	ppipe = cpipe->pipe_peer;
1654 	if (ppipe->pipe_present == PIPE_ACTIVE) {
1655 		ppipe->pipe_state |= PIPE_EOF;
1656 		wakeup(ppipe);
1657 		pipeselwakeup(ppipe);
1658 	}
1659 
1660 	/*
1661 	 * Mark this endpoint as free.  Release kmem resources.  We
1662 	 * don't mark this endpoint as unused until we've finished
1663 	 * doing that, or the pipe might disappear out from under
1664 	 * us.
1665 	 */
1666 	PIPE_UNLOCK(cpipe);
1667 	pipe_free_kmem(cpipe);
1668 	PIPE_LOCK(cpipe);
1669 	cpipe->pipe_present = PIPE_CLOSING;
1670 	pipeunlock(cpipe);
1671 
1672 	/*
1673 	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1674 	 * PIPE_FINALIZED, that allows other end to free the
1675 	 * pipe_pair, only after the knotes are completely dismantled.
1676 	 */
1677 	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1678 	cpipe->pipe_present = PIPE_FINALIZED;
1679 	seldrain(&cpipe->pipe_sel);
1680 	knlist_destroy(&cpipe->pipe_sel.si_note);
1681 
1682 	/*
1683 	 * If both endpoints are now closed, release the memory for the
1684 	 * pipe pair.  If not, unlock.
1685 	 */
1686 	if (ppipe->pipe_present == PIPE_FINALIZED) {
1687 		PIPE_UNLOCK(cpipe);
1688 #ifdef MAC
1689 		mac_pipe_destroy(pp);
1690 #endif
1691 		uma_zfree(pipe_zone, cpipe->pipe_pair);
1692 	} else
1693 		PIPE_UNLOCK(cpipe);
1694 }
1695 
1696 /*ARGSUSED*/
1697 static int
pipe_kqfilter(struct file * fp,struct knote * kn)1698 pipe_kqfilter(struct file *fp, struct knote *kn)
1699 {
1700 	struct pipe *cpipe;
1701 
1702 	/*
1703 	 * If a filter is requested that is not supported by this file
1704 	 * descriptor, don't return an error, but also don't ever generate an
1705 	 * event.
1706 	 */
1707 	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1708 		kn->kn_fop = &pipe_nfiltops;
1709 		return (0);
1710 	}
1711 	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1712 		kn->kn_fop = &pipe_nfiltops;
1713 		return (0);
1714 	}
1715 	cpipe = fp->f_data;
1716 	PIPE_LOCK(cpipe);
1717 	switch (kn->kn_filter) {
1718 	case EVFILT_READ:
1719 		kn->kn_fop = &pipe_rfiltops;
1720 		break;
1721 	case EVFILT_WRITE:
1722 		kn->kn_fop = &pipe_wfiltops;
1723 		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1724 			/* other end of pipe has been closed */
1725 			PIPE_UNLOCK(cpipe);
1726 			return (EPIPE);
1727 		}
1728 		cpipe = PIPE_PEER(cpipe);
1729 		break;
1730 	default:
1731 		PIPE_UNLOCK(cpipe);
1732 		return (EINVAL);
1733 	}
1734 
1735 	kn->kn_hook = cpipe;
1736 	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1737 	PIPE_UNLOCK(cpipe);
1738 	return (0);
1739 }
1740 
1741 static void
filt_pipedetach(struct knote * kn)1742 filt_pipedetach(struct knote *kn)
1743 {
1744 	struct pipe *cpipe = kn->kn_hook;
1745 
1746 	PIPE_LOCK(cpipe);
1747 	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1748 	PIPE_UNLOCK(cpipe);
1749 }
1750 
1751 /*ARGSUSED*/
1752 static int
filt_piperead(struct knote * kn,long hint)1753 filt_piperead(struct knote *kn, long hint)
1754 {
1755 	struct file *fp = kn->kn_fp;
1756 	struct pipe *rpipe = kn->kn_hook;
1757 
1758 	PIPE_LOCK_ASSERT(rpipe, MA_OWNED);
1759 	kn->kn_data = rpipe->pipe_buffer.cnt;
1760 	if (kn->kn_data == 0)
1761 		kn->kn_data = rpipe->pipe_pages.cnt;
1762 
1763 	if ((rpipe->pipe_state & PIPE_EOF) != 0 &&
1764 	    ((rpipe->pipe_type & PIPE_TYPE_NAMED) == 0 ||
1765 	    fp->f_pipegen != rpipe->pipe_wgen)) {
1766 		kn->kn_flags |= EV_EOF;
1767 		return (1);
1768 	}
1769 	kn->kn_flags &= ~EV_EOF;
1770 	return (kn->kn_data > 0);
1771 }
1772 
1773 /*ARGSUSED*/
1774 static int
filt_pipewrite(struct knote * kn,long hint)1775 filt_pipewrite(struct knote *kn, long hint)
1776 {
1777 	struct pipe *wpipe = kn->kn_hook;
1778 
1779 	/*
1780 	 * If this end of the pipe is closed, the knote was removed from the
1781 	 * knlist and the list lock (i.e., the pipe lock) is therefore not held.
1782 	 */
1783 	if (wpipe->pipe_present == PIPE_ACTIVE ||
1784 	    (wpipe->pipe_type & PIPE_TYPE_NAMED) != 0) {
1785 		PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
1786 
1787 		if (wpipe->pipe_state & PIPE_DIRECTW) {
1788 			kn->kn_data = 0;
1789 		} else if (wpipe->pipe_buffer.size > 0) {
1790 			kn->kn_data = wpipe->pipe_buffer.size -
1791 			    wpipe->pipe_buffer.cnt;
1792 		} else {
1793 			kn->kn_data = PIPE_BUF;
1794 		}
1795 	}
1796 
1797 	if (wpipe->pipe_present != PIPE_ACTIVE ||
1798 	    (wpipe->pipe_state & PIPE_EOF)) {
1799 		kn->kn_flags |= EV_EOF;
1800 		return (1);
1801 	}
1802 	kn->kn_flags &= ~EV_EOF;
1803 	return (kn->kn_data >= PIPE_BUF);
1804 }
1805 
1806 static void
filt_pipedetach_notsup(struct knote * kn)1807 filt_pipedetach_notsup(struct knote *kn)
1808 {
1809 
1810 }
1811 
1812 static int
filt_pipenotsup(struct knote * kn,long hint)1813 filt_pipenotsup(struct knote *kn, long hint)
1814 {
1815 
1816 	return (0);
1817 }
1818