1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2012-2014 Matteo Landi
5 * Copyright (C) 2012-2016 Luigi Rizzo
6 * Copyright (C) 2012-2016 Giuseppe Lettieri
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #ifdef linux
32 #include "bsd_glue.h"
33 #endif /* linux */
34
35 #ifdef __APPLE__
36 #include "osx_glue.h"
37 #endif /* __APPLE__ */
38
39 #ifdef __FreeBSD__
40 #include <sys/cdefs.h> /* prerequisite */
41 __FBSDID("$FreeBSD$");
42
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h> /* MALLOC_DEFINE */
46 #include <sys/proc.h>
47 #include <vm/vm.h> /* vtophys */
48 #include <vm/pmap.h> /* vtophys */
49 #include <sys/socket.h> /* sockaddrs */
50 #include <sys/selinfo.h>
51 #include <sys/sysctl.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/vnet.h>
55 #include <machine/bus.h> /* bus_dmamap_* */
56
57 /* M_NETMAP only used in here */
58 MALLOC_DECLARE(M_NETMAP);
59 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
60
61 #endif /* __FreeBSD__ */
62
63 #ifdef _WIN32
64 #include <win_glue.h>
65 #endif
66
67 #include <net/netmap.h>
68 #include <dev/netmap/netmap_kern.h>
69 #include <net/netmap_virt.h>
70 #include "netmap_mem2.h"
71
72 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
73 #define NETMAP_BUF_MAX_NUM 8*4096 /* if too big takes too much time to allocate */
74 #else
75 #define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */
76 #endif
77
78 #define NETMAP_POOL_MAX_NAMSZ 32
79
80
81 enum {
82 NETMAP_IF_POOL = 0,
83 NETMAP_RING_POOL,
84 NETMAP_BUF_POOL,
85 NETMAP_POOLS_NR
86 };
87
88
89 struct netmap_obj_params {
90 u_int size;
91 u_int num;
92
93 u_int last_size;
94 u_int last_num;
95 };
96
97 struct netmap_obj_pool {
98 char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */
99
100 /* ---------------------------------------------------*/
101 /* these are only meaningful if the pool is finalized */
102 /* (see 'finalized' field in netmap_mem_d) */
103 size_t memtotal; /* actual total memory space */
104
105 struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
106 uint32_t *bitmap; /* one bit per buffer, 1 means free */
107 uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
108 uint32_t bitmap_slots; /* number of uint32 entries in bitmap */
109
110 u_int objtotal; /* actual total number of objects. */
111 u_int numclusters; /* actual number of clusters */
112 u_int objfree; /* number of free objects. */
113
114 int alloc_done; /* we have allocated the memory */
115 /* ---------------------------------------------------*/
116
117 /* limits */
118 u_int objminsize; /* minimum object size */
119 u_int objmaxsize; /* maximum object size */
120 u_int nummin; /* minimum number of objects */
121 u_int nummax; /* maximum number of objects */
122
123 /* these are changed only by config */
124 u_int _objtotal; /* total number of objects */
125 u_int _objsize; /* object size */
126 u_int _clustsize; /* cluster size */
127 u_int _clustentries; /* objects per cluster */
128 u_int _numclusters; /* number of clusters */
129
130 /* requested values */
131 u_int r_objtotal;
132 u_int r_objsize;
133 };
134
135 #define NMA_LOCK_T NM_MTX_T
136 #define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx)
137 #define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx)
138 #define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx)
139 #define NMA_SPINLOCK(n) NM_MTX_SPINLOCK((n)->nm_mtx)
140 #define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx)
141
142 struct netmap_mem_ops {
143 int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
144 int (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
145 u_int *memflags, uint16_t *id);
146
147 vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
148 int (*nmd_config)(struct netmap_mem_d *);
149 int (*nmd_finalize)(struct netmap_mem_d *);
150 void (*nmd_deref)(struct netmap_mem_d *);
151 ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
152 void (*nmd_delete)(struct netmap_mem_d *);
153
154 struct netmap_if * (*nmd_if_new)(struct netmap_adapter *,
155 struct netmap_priv_d *);
156 void (*nmd_if_delete)(struct netmap_adapter *, struct netmap_if *);
157 int (*nmd_rings_create)(struct netmap_adapter *);
158 void (*nmd_rings_delete)(struct netmap_adapter *);
159 };
160
161 struct netmap_mem_d {
162 NMA_LOCK_T nm_mtx; /* protect the allocator */
163 size_t nm_totalsize; /* shorthand */
164
165 u_int flags;
166 #define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */
167 #define NETMAP_MEM_HIDDEN 0x8 /* beeing prepared */
168 int lasterr; /* last error for curr config */
169 int active; /* active users */
170 int refcount;
171 /* the three allocators */
172 struct netmap_obj_pool pools[NETMAP_POOLS_NR];
173
174 nm_memid_t nm_id; /* allocator identifier */
175 int nm_grp; /* iommu groupd id */
176
177 /* list of all existing allocators, sorted by nm_id */
178 struct netmap_mem_d *prev, *next;
179
180 struct netmap_mem_ops *ops;
181
182 struct netmap_obj_params params[NETMAP_POOLS_NR];
183
184 #define NM_MEM_NAMESZ 16
185 char name[NM_MEM_NAMESZ];
186 };
187
188 int
netmap_mem_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)189 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
190 {
191 int rv;
192
193 NMA_LOCK(nmd);
194 rv = nmd->ops->nmd_get_lut(nmd, lut);
195 NMA_UNLOCK(nmd);
196
197 return rv;
198 }
199
200 int
netmap_mem_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * memid)201 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
202 u_int *memflags, nm_memid_t *memid)
203 {
204 int rv;
205
206 NMA_LOCK(nmd);
207 rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
208 NMA_UNLOCK(nmd);
209
210 return rv;
211 }
212
213 vm_paddr_t
netmap_mem_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)214 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
215 {
216 vm_paddr_t pa;
217
218 #if defined(__FreeBSD__)
219 /* This function is called by netmap_dev_pager_fault(), which holds a
220 * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
221 * spin on the trylock. */
222 NMA_SPINLOCK(nmd);
223 #else
224 NMA_LOCK(nmd);
225 #endif
226 pa = nmd->ops->nmd_ofstophys(nmd, off);
227 NMA_UNLOCK(nmd);
228
229 return pa;
230 }
231
232 static int
netmap_mem_config(struct netmap_mem_d * nmd)233 netmap_mem_config(struct netmap_mem_d *nmd)
234 {
235 if (nmd->active) {
236 /* already in use. Not fatal, but we
237 * cannot change the configuration
238 */
239 return 0;
240 }
241
242 return nmd->ops->nmd_config(nmd);
243 }
244
245 ssize_t
netmap_mem_if_offset(struct netmap_mem_d * nmd,const void * off)246 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
247 {
248 ssize_t rv;
249
250 NMA_LOCK(nmd);
251 rv = nmd->ops->nmd_if_offset(nmd, off);
252 NMA_UNLOCK(nmd);
253
254 return rv;
255 }
256
257 static void
netmap_mem_delete(struct netmap_mem_d * nmd)258 netmap_mem_delete(struct netmap_mem_d *nmd)
259 {
260 nmd->ops->nmd_delete(nmd);
261 }
262
263 struct netmap_if *
netmap_mem_if_new(struct netmap_adapter * na,struct netmap_priv_d * priv)264 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
265 {
266 struct netmap_if *nifp;
267 struct netmap_mem_d *nmd = na->nm_mem;
268
269 NMA_LOCK(nmd);
270 nifp = nmd->ops->nmd_if_new(na, priv);
271 NMA_UNLOCK(nmd);
272
273 return nifp;
274 }
275
276 void
netmap_mem_if_delete(struct netmap_adapter * na,struct netmap_if * nif)277 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
278 {
279 struct netmap_mem_d *nmd = na->nm_mem;
280
281 NMA_LOCK(nmd);
282 nmd->ops->nmd_if_delete(na, nif);
283 NMA_UNLOCK(nmd);
284 }
285
286 int
netmap_mem_rings_create(struct netmap_adapter * na)287 netmap_mem_rings_create(struct netmap_adapter *na)
288 {
289 int rv;
290 struct netmap_mem_d *nmd = na->nm_mem;
291
292 NMA_LOCK(nmd);
293 rv = nmd->ops->nmd_rings_create(na);
294 NMA_UNLOCK(nmd);
295
296 return rv;
297 }
298
299 void
netmap_mem_rings_delete(struct netmap_adapter * na)300 netmap_mem_rings_delete(struct netmap_adapter *na)
301 {
302 struct netmap_mem_d *nmd = na->nm_mem;
303
304 NMA_LOCK(nmd);
305 nmd->ops->nmd_rings_delete(na);
306 NMA_UNLOCK(nmd);
307 }
308
309 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
310 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
311 static int nm_mem_assign_group(struct netmap_mem_d *, bus_dma_tag_t);
312 static void nm_mem_release_id(struct netmap_mem_d *);
313
314 nm_memid_t
netmap_mem_get_id(struct netmap_mem_d * nmd)315 netmap_mem_get_id(struct netmap_mem_d *nmd)
316 {
317 return nmd->nm_id;
318 }
319
320 #ifdef NM_DEBUG_MEM_PUTGET
321 #define NM_DBG_REFC(nmd, func, line) \
322 nm_prinf("%d mem[%d] -> %d", line, (nmd)->nm_id, (nmd)->refcount);
323 #else
324 #define NM_DBG_REFC(nmd, func, line)
325 #endif
326
327 /* circular list of all existing allocators */
328 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
329 NM_MTX_T nm_mem_list_lock;
330
331 struct netmap_mem_d *
__netmap_mem_get(struct netmap_mem_d * nmd,const char * func,int line)332 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
333 {
334 NM_MTX_LOCK(nm_mem_list_lock);
335 nmd->refcount++;
336 NM_DBG_REFC(nmd, func, line);
337 NM_MTX_UNLOCK(nm_mem_list_lock);
338 return nmd;
339 }
340
341 void
__netmap_mem_put(struct netmap_mem_d * nmd,const char * func,int line)342 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
343 {
344 int last;
345 NM_MTX_LOCK(nm_mem_list_lock);
346 last = (--nmd->refcount == 0);
347 if (last)
348 nm_mem_release_id(nmd);
349 NM_DBG_REFC(nmd, func, line);
350 NM_MTX_UNLOCK(nm_mem_list_lock);
351 if (last)
352 netmap_mem_delete(nmd);
353 }
354
355 int
netmap_mem_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)356 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
357 {
358 int lasterr = 0;
359 if (nm_mem_assign_group(nmd, na->pdev) < 0) {
360 return ENOMEM;
361 }
362
363 NMA_LOCK(nmd);
364
365 if (netmap_mem_config(nmd))
366 goto out;
367
368 nmd->active++;
369
370 nmd->lasterr = nmd->ops->nmd_finalize(nmd);
371
372 if (!nmd->lasterr && na->pdev) {
373 nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
374 }
375
376 out:
377 lasterr = nmd->lasterr;
378 NMA_UNLOCK(nmd);
379
380 if (lasterr)
381 netmap_mem_deref(nmd, na);
382
383 return lasterr;
384 }
385
386 static int
nm_isset(uint32_t * bitmap,u_int i)387 nm_isset(uint32_t *bitmap, u_int i)
388 {
389 return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
390 }
391
392
393 static int
netmap_init_obj_allocator_bitmap(struct netmap_obj_pool * p)394 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
395 {
396 u_int n, j;
397
398 if (p->bitmap == NULL) {
399 /* Allocate the bitmap */
400 n = (p->objtotal + 31) / 32;
401 p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n);
402 if (p->bitmap == NULL) {
403 nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
404 p->name);
405 return ENOMEM;
406 }
407 p->bitmap_slots = n;
408 } else {
409 memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0]));
410 }
411
412 p->objfree = 0;
413 /*
414 * Set all the bits in the bitmap that have
415 * corresponding buffers to 1 to indicate they are
416 * free.
417 */
418 for (j = 0; j < p->objtotal; j++) {
419 if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
420 if (netmap_debug & NM_DEBUG_MEM)
421 nm_prinf("skipping %s %d", p->name, j);
422 continue;
423 }
424 p->bitmap[ (j>>5) ] |= ( 1U << (j & 31U) );
425 p->objfree++;
426 }
427
428 if (netmap_verbose)
429 nm_prinf("%s free %u", p->name, p->objfree);
430 if (p->objfree == 0) {
431 if (netmap_verbose)
432 nm_prerr("%s: no objects available", p->name);
433 return ENOMEM;
434 }
435
436 return 0;
437 }
438
439 static int
netmap_mem_init_bitmaps(struct netmap_mem_d * nmd)440 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
441 {
442 int i, error = 0;
443
444 for (i = 0; i < NETMAP_POOLS_NR; i++) {
445 struct netmap_obj_pool *p = &nmd->pools[i];
446
447 error = netmap_init_obj_allocator_bitmap(p);
448 if (error)
449 return error;
450 }
451
452 /*
453 * buffers 0 and 1 are reserved
454 */
455 if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
456 nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name);
457 return ENOMEM;
458 }
459
460 nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
461 if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
462 /* XXX This check is a workaround that prevents a
463 * NULL pointer crash which currently happens only
464 * with ptnetmap guests.
465 * Removed shared-info --> is the bug still there? */
466 nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
467 }
468 return 0;
469 }
470
471 int
netmap_mem_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)472 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
473 {
474 int last_user = 0;
475 NMA_LOCK(nmd);
476 if (na->active_fds <= 0)
477 netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
478 if (nmd->active == 1) {
479 last_user = 1;
480 /*
481 * Reset the allocator when it falls out of use so that any
482 * pool resources leaked by unclean application exits are
483 * reclaimed.
484 */
485 netmap_mem_init_bitmaps(nmd);
486 }
487 nmd->ops->nmd_deref(nmd);
488
489 nmd->active--;
490 if (last_user) {
491 nmd->nm_grp = -1;
492 nmd->lasterr = 0;
493 }
494
495 NMA_UNLOCK(nmd);
496 return last_user;
497 }
498
499
500 /* accessor functions */
501 static int
netmap_mem2_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)502 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
503 {
504 lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
505 #ifdef __FreeBSD__
506 lut->plut = lut->lut;
507 #endif
508 lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
509 lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
510
511 return 0;
512 }
513
514 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
515 [NETMAP_IF_POOL] = {
516 .size = 1024,
517 .num = 2,
518 },
519 [NETMAP_RING_POOL] = {
520 .size = 5*PAGE_SIZE,
521 .num = 4,
522 },
523 [NETMAP_BUF_POOL] = {
524 .size = 2048,
525 .num = 4098,
526 },
527 };
528
529
530 /*
531 * nm_mem is the memory allocator used for all physical interfaces
532 * running in netmap mode.
533 * Virtual (VALE) ports will have each its own allocator.
534 */
535 extern struct netmap_mem_ops netmap_mem_global_ops; /* forward */
536 struct netmap_mem_d nm_mem = { /* Our memory allocator. */
537 .pools = {
538 [NETMAP_IF_POOL] = {
539 .name = "netmap_if",
540 .objminsize = sizeof(struct netmap_if),
541 .objmaxsize = 4096,
542 .nummin = 10, /* don't be stingy */
543 .nummax = 10000, /* XXX very large */
544 },
545 [NETMAP_RING_POOL] = {
546 .name = "netmap_ring",
547 .objminsize = sizeof(struct netmap_ring),
548 .objmaxsize = 32*PAGE_SIZE,
549 .nummin = 2,
550 .nummax = 1024,
551 },
552 [NETMAP_BUF_POOL] = {
553 .name = "netmap_buf",
554 .objminsize = 64,
555 .objmaxsize = 65536,
556 .nummin = 4,
557 .nummax = 1000000, /* one million! */
558 },
559 },
560
561 .params = {
562 [NETMAP_IF_POOL] = {
563 .size = 1024,
564 .num = 100,
565 },
566 [NETMAP_RING_POOL] = {
567 .size = 9*PAGE_SIZE,
568 .num = 200,
569 },
570 [NETMAP_BUF_POOL] = {
571 .size = 2048,
572 .num = NETMAP_BUF_MAX_NUM,
573 },
574 },
575
576 .nm_id = 1,
577 .nm_grp = -1,
578
579 .prev = &nm_mem,
580 .next = &nm_mem,
581
582 .ops = &netmap_mem_global_ops,
583
584 .name = "1"
585 };
586
587
588 /* blueprint for the private memory allocators */
589 /* XXX clang is not happy about using name as a print format */
590 static const struct netmap_mem_d nm_blueprint = {
591 .pools = {
592 [NETMAP_IF_POOL] = {
593 .name = "%s_if",
594 .objminsize = sizeof(struct netmap_if),
595 .objmaxsize = 4096,
596 .nummin = 1,
597 .nummax = 100,
598 },
599 [NETMAP_RING_POOL] = {
600 .name = "%s_ring",
601 .objminsize = sizeof(struct netmap_ring),
602 .objmaxsize = 32*PAGE_SIZE,
603 .nummin = 2,
604 .nummax = 1024,
605 },
606 [NETMAP_BUF_POOL] = {
607 .name = "%s_buf",
608 .objminsize = 64,
609 .objmaxsize = 65536,
610 .nummin = 4,
611 .nummax = 1000000, /* one million! */
612 },
613 },
614
615 .nm_grp = -1,
616
617 .flags = NETMAP_MEM_PRIVATE,
618
619 .ops = &netmap_mem_global_ops,
620 };
621
622 /* memory allocator related sysctls */
623
624 #define STRINGIFY(x) #x
625
626
627 #define DECLARE_SYSCTLS(id, name) \
628 SYSBEGIN(mem2_ ## name); \
629 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
630 CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
631 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
632 CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
633 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
634 CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
635 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
636 CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
637 SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
638 CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
639 "Default size of private netmap " STRINGIFY(name) "s"); \
640 SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
641 CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
642 "Default number of private netmap " STRINGIFY(name) "s"); \
643 SYSEND
644
645 SYSCTL_DECL(_dev_netmap);
646 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
647 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
648 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
649
650 /* call with nm_mem_list_lock held */
651 static int
nm_mem_assign_id_locked(struct netmap_mem_d * nmd)652 nm_mem_assign_id_locked(struct netmap_mem_d *nmd)
653 {
654 nm_memid_t id;
655 struct netmap_mem_d *scan = netmap_last_mem_d;
656 int error = ENOMEM;
657
658 do {
659 /* we rely on unsigned wrap around */
660 id = scan->nm_id + 1;
661 if (id == 0) /* reserve 0 as error value */
662 id = 1;
663 scan = scan->next;
664 if (id != scan->nm_id) {
665 nmd->nm_id = id;
666 nmd->prev = scan->prev;
667 nmd->next = scan;
668 scan->prev->next = nmd;
669 scan->prev = nmd;
670 netmap_last_mem_d = nmd;
671 nmd->refcount = 1;
672 NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
673 error = 0;
674 break;
675 }
676 } while (scan != netmap_last_mem_d);
677
678 return error;
679 }
680
681 /* call with nm_mem_list_lock *not* held */
682 static int
nm_mem_assign_id(struct netmap_mem_d * nmd)683 nm_mem_assign_id(struct netmap_mem_d *nmd)
684 {
685 int ret;
686
687 NM_MTX_LOCK(nm_mem_list_lock);
688 ret = nm_mem_assign_id_locked(nmd);
689 NM_MTX_UNLOCK(nm_mem_list_lock);
690
691 return ret;
692 }
693
694 /* call with nm_mem_list_lock held */
695 static void
nm_mem_release_id(struct netmap_mem_d * nmd)696 nm_mem_release_id(struct netmap_mem_d *nmd)
697 {
698 nmd->prev->next = nmd->next;
699 nmd->next->prev = nmd->prev;
700
701 if (netmap_last_mem_d == nmd)
702 netmap_last_mem_d = nmd->prev;
703
704 nmd->prev = nmd->next = NULL;
705 }
706
707 struct netmap_mem_d *
netmap_mem_find(nm_memid_t id)708 netmap_mem_find(nm_memid_t id)
709 {
710 struct netmap_mem_d *nmd;
711
712 NM_MTX_LOCK(nm_mem_list_lock);
713 nmd = netmap_last_mem_d;
714 do {
715 if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
716 nmd->refcount++;
717 NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
718 NM_MTX_UNLOCK(nm_mem_list_lock);
719 return nmd;
720 }
721 nmd = nmd->next;
722 } while (nmd != netmap_last_mem_d);
723 NM_MTX_UNLOCK(nm_mem_list_lock);
724 return NULL;
725 }
726
727 static int
nm_mem_assign_group(struct netmap_mem_d * nmd,bus_dma_tag_t dev)728 nm_mem_assign_group(struct netmap_mem_d *nmd, bus_dma_tag_t dev)
729 {
730 int err = 0, id;
731 id = nm_iommu_group_id(dev);
732 if (netmap_debug & NM_DEBUG_MEM)
733 nm_prinf("iommu_group %d", id);
734
735 NMA_LOCK(nmd);
736
737 if (nmd->nm_grp < 0)
738 nmd->nm_grp = id;
739
740 if (nmd->nm_grp != id) {
741 if (netmap_verbose)
742 nm_prerr("iommu group mismatch: %u vs %u",
743 nmd->nm_grp, id);
744 nmd->lasterr = err = ENOMEM;
745 }
746
747 NMA_UNLOCK(nmd);
748 return err;
749 }
750
751 static struct lut_entry *
nm_alloc_lut(u_int nobj)752 nm_alloc_lut(u_int nobj)
753 {
754 size_t n = sizeof(struct lut_entry) * nobj;
755 struct lut_entry *lut;
756 #ifdef linux
757 lut = vmalloc(n);
758 #else
759 lut = nm_os_malloc(n);
760 #endif
761 return lut;
762 }
763
764 static void
nm_free_lut(struct lut_entry * lut,u_int objtotal)765 nm_free_lut(struct lut_entry *lut, u_int objtotal)
766 {
767 bzero(lut, sizeof(struct lut_entry) * objtotal);
768 #ifdef linux
769 vfree(lut);
770 #else
771 nm_os_free(lut);
772 #endif
773 }
774
775 #if defined(linux) || defined(_WIN32)
776 static struct plut_entry *
nm_alloc_plut(u_int nobj)777 nm_alloc_plut(u_int nobj)
778 {
779 size_t n = sizeof(struct plut_entry) * nobj;
780 struct plut_entry *lut;
781 lut = vmalloc(n);
782 return lut;
783 }
784
785 static void
nm_free_plut(struct plut_entry * lut)786 nm_free_plut(struct plut_entry * lut)
787 {
788 vfree(lut);
789 }
790 #endif /* linux or _WIN32 */
791
792
793 /*
794 * First, find the allocator that contains the requested offset,
795 * then locate the cluster through a lookup table.
796 */
797 static vm_paddr_t
netmap_mem2_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t offset)798 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
799 {
800 int i;
801 vm_ooffset_t o = offset;
802 vm_paddr_t pa;
803 struct netmap_obj_pool *p;
804
805 p = nmd->pools;
806
807 for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
808 if (offset >= p[i].memtotal)
809 continue;
810 // now lookup the cluster's address
811 #ifndef _WIN32
812 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
813 offset % p[i]._objsize;
814 #else
815 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
816 pa.QuadPart += offset % p[i]._objsize;
817 #endif
818 return pa;
819 }
820 /* this is only in case of errors */
821 nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o,
822 p[NETMAP_IF_POOL].memtotal,
823 p[NETMAP_IF_POOL].memtotal
824 + p[NETMAP_RING_POOL].memtotal,
825 p[NETMAP_IF_POOL].memtotal
826 + p[NETMAP_RING_POOL].memtotal
827 + p[NETMAP_BUF_POOL].memtotal);
828 #ifndef _WIN32
829 return 0; /* bad address */
830 #else
831 vm_paddr_t res;
832 res.QuadPart = 0;
833 return res;
834 #endif
835 }
836
837 #ifdef _WIN32
838
839 /*
840 * win32_build_virtual_memory_for_userspace
841 *
842 * This function get all the object making part of the pools and maps
843 * a contiguous virtual memory space for the userspace
844 * It works this way
845 * 1 - allocate a Memory Descriptor List wide as the sum
846 * of the memory needed for the pools
847 * 2 - cycle all the objects in every pool and for every object do
848 *
849 * 2a - cycle all the objects in every pool, get the list
850 * of the physical address descriptors
851 * 2b - calculate the offset in the array of pages desciptor in the
852 * main MDL
853 * 2c - copy the descriptors of the object in the main MDL
854 *
855 * 3 - return the resulting MDL that needs to be mapped in userland
856 *
857 * In this way we will have an MDL that describes all the memory for the
858 * objects in a single object
859 */
860
861 PMDL
win32_build_user_vm_map(struct netmap_mem_d * nmd)862 win32_build_user_vm_map(struct netmap_mem_d* nmd)
863 {
864 u_int memflags, ofs = 0;
865 PMDL mainMdl, tempMdl;
866 uint64_t memsize;
867 int i, j;
868
869 if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
870 nm_prerr("memory not finalised yet");
871 return NULL;
872 }
873
874 mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
875 if (mainMdl == NULL) {
876 nm_prerr("failed to allocate mdl");
877 return NULL;
878 }
879
880 NMA_LOCK(nmd);
881 for (i = 0; i < NETMAP_POOLS_NR; i++) {
882 struct netmap_obj_pool *p = &nmd->pools[i];
883 int clsz = p->_clustsize;
884 int clobjs = p->_clustentries; /* objects per cluster */
885 int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
886 PPFN_NUMBER pSrc, pDst;
887
888 /* each pool has a different cluster size so we need to reallocate */
889 tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
890 if (tempMdl == NULL) {
891 NMA_UNLOCK(nmd);
892 nm_prerr("fail to allocate tempMdl");
893 IoFreeMdl(mainMdl);
894 return NULL;
895 }
896 pSrc = MmGetMdlPfnArray(tempMdl);
897 /* create one entry per cluster, the lut[] has one entry per object */
898 for (j = 0; j < p->numclusters; j++, ofs += clsz) {
899 pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
900 MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
901 MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
902 RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
903 mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
904 }
905 IoFreeMdl(tempMdl);
906 }
907 NMA_UNLOCK(nmd);
908 return mainMdl;
909 }
910
911 #endif /* _WIN32 */
912
913 /*
914 * helper function for OS-specific mmap routines (currently only windows).
915 * Given an nmd and a pool index, returns the cluster size and number of clusters.
916 * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
917 * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
918 */
919
920 int
netmap_mem2_get_pool_info(struct netmap_mem_d * nmd,u_int pool,u_int * clustsize,u_int * numclusters)921 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
922 {
923 if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
924 return 1; /* invalid arguments */
925 // NMA_LOCK_ASSERT(nmd);
926 if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
927 *clustsize = *numclusters = 0;
928 return 1; /* not ready yet */
929 }
930 *clustsize = nmd->pools[pool]._clustsize;
931 *numclusters = nmd->pools[pool].numclusters;
932 return 0; /* success */
933 }
934
935 static int
netmap_mem2_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * id)936 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
937 u_int *memflags, nm_memid_t *id)
938 {
939 int error = 0;
940 error = netmap_mem_config(nmd);
941 if (error)
942 goto out;
943 if (size) {
944 if (nmd->flags & NETMAP_MEM_FINALIZED) {
945 *size = nmd->nm_totalsize;
946 } else {
947 int i;
948 *size = 0;
949 for (i = 0; i < NETMAP_POOLS_NR; i++) {
950 struct netmap_obj_pool *p = nmd->pools + i;
951 *size += ((size_t)p->_numclusters * (size_t)p->_clustsize);
952 }
953 }
954 }
955 if (memflags)
956 *memflags = nmd->flags;
957 if (id)
958 *id = nmd->nm_id;
959 out:
960 return error;
961 }
962
963 /*
964 * we store objects by kernel address, need to find the offset
965 * within the pool to export the value to userspace.
966 * Algorithm: scan until we find the cluster, then add the
967 * actual offset in the cluster
968 */
969 static ssize_t
netmap_obj_offset(struct netmap_obj_pool * p,const void * vaddr)970 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
971 {
972 int i, k = p->_clustentries, n = p->objtotal;
973 ssize_t ofs = 0;
974
975 for (i = 0; i < n; i += k, ofs += p->_clustsize) {
976 const char *base = p->lut[i].vaddr;
977 ssize_t relofs = (const char *) vaddr - base;
978
979 if (relofs < 0 || relofs >= p->_clustsize)
980 continue;
981
982 ofs = ofs + relofs;
983 nm_prdis("%s: return offset %d (cluster %d) for pointer %p",
984 p->name, ofs, i, vaddr);
985 return ofs;
986 }
987 nm_prerr("address %p is not contained inside any cluster (%s)",
988 vaddr, p->name);
989 return 0; /* An error occurred */
990 }
991
992 /* Helper functions which convert virtual addresses to offsets */
993 #define netmap_if_offset(n, v) \
994 netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
995
996 #define netmap_ring_offset(n, v) \
997 ((n)->pools[NETMAP_IF_POOL].memtotal + \
998 netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
999
1000 static ssize_t
netmap_mem2_if_offset(struct netmap_mem_d * nmd,const void * addr)1001 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
1002 {
1003 return netmap_if_offset(nmd, addr);
1004 }
1005
1006 /*
1007 * report the index, and use start position as a hint,
1008 * otherwise buffer allocation becomes terribly expensive.
1009 */
1010 static void *
netmap_obj_malloc(struct netmap_obj_pool * p,u_int len,uint32_t * start,uint32_t * index)1011 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
1012 {
1013 uint32_t i = 0; /* index in the bitmap */
1014 uint32_t mask, j = 0; /* slot counter */
1015 void *vaddr = NULL;
1016
1017 if (len > p->_objsize) {
1018 nm_prerr("%s request size %d too large", p->name, len);
1019 return NULL;
1020 }
1021
1022 if (p->objfree == 0) {
1023 nm_prerr("no more %s objects", p->name);
1024 return NULL;
1025 }
1026 if (start)
1027 i = *start;
1028
1029 /* termination is guaranteed by p->free, but better check bounds on i */
1030 while (vaddr == NULL && i < p->bitmap_slots) {
1031 uint32_t cur = p->bitmap[i];
1032 if (cur == 0) { /* bitmask is fully used */
1033 i++;
1034 continue;
1035 }
1036 /* locate a slot */
1037 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
1038 ;
1039
1040 p->bitmap[i] &= ~mask; /* mark object as in use */
1041 p->objfree--;
1042
1043 vaddr = p->lut[i * 32 + j].vaddr;
1044 if (index)
1045 *index = i * 32 + j;
1046 }
1047 nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
1048
1049 if (start)
1050 *start = i;
1051 return vaddr;
1052 }
1053
1054
1055 /*
1056 * free by index, not by address.
1057 * XXX should we also cleanup the content ?
1058 */
1059 static int
netmap_obj_free(struct netmap_obj_pool * p,uint32_t j)1060 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
1061 {
1062 uint32_t *ptr, mask;
1063
1064 if (j >= p->objtotal) {
1065 nm_prerr("invalid index %u, max %u", j, p->objtotal);
1066 return 1;
1067 }
1068 ptr = &p->bitmap[j / 32];
1069 mask = (1 << (j % 32));
1070 if (*ptr & mask) {
1071 nm_prerr("ouch, double free on buffer %d", j);
1072 return 1;
1073 } else {
1074 *ptr |= mask;
1075 p->objfree++;
1076 return 0;
1077 }
1078 }
1079
1080 /*
1081 * free by address. This is slow but is only used for a few
1082 * objects (rings, nifp)
1083 */
1084 static void
netmap_obj_free_va(struct netmap_obj_pool * p,void * vaddr)1085 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
1086 {
1087 u_int i, j, n = p->numclusters;
1088
1089 for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
1090 void *base = p->lut[i * p->_clustentries].vaddr;
1091 ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
1092
1093 /* Given address, is out of the scope of the current cluster.*/
1094 if (base == NULL || vaddr < base || relofs >= p->_clustsize)
1095 continue;
1096
1097 j = j + relofs / p->_objsize;
1098 /* KASSERT(j != 0, ("Cannot free object 0")); */
1099 netmap_obj_free(p, j);
1100 return;
1101 }
1102 nm_prerr("address %p is not contained inside any cluster (%s)",
1103 vaddr, p->name);
1104 }
1105
1106 unsigned
netmap_mem_bufsize(struct netmap_mem_d * nmd)1107 netmap_mem_bufsize(struct netmap_mem_d *nmd)
1108 {
1109 return nmd->pools[NETMAP_BUF_POOL]._objsize;
1110 }
1111
1112 #define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
1113 #define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
1114 #define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
1115 #define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
1116 #define netmap_buf_malloc(n, _pos, _index) \
1117 netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
1118
1119
1120 #if 0 /* currently unused */
1121 /* Return the index associated to the given packet buffer */
1122 #define netmap_buf_index(n, v) \
1123 (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
1124 #endif
1125
1126 /*
1127 * allocate extra buffers in a linked list.
1128 * returns the actual number.
1129 */
1130 uint32_t
netmap_extra_alloc(struct netmap_adapter * na,uint32_t * head,uint32_t n)1131 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
1132 {
1133 struct netmap_mem_d *nmd = na->nm_mem;
1134 uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
1135
1136 NMA_LOCK(nmd);
1137
1138 *head = 0; /* default, 'null' index ie empty list */
1139 for (i = 0 ; i < n; i++) {
1140 uint32_t cur = *head; /* save current head */
1141 uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
1142 if (p == NULL) {
1143 nm_prerr("no more buffers after %d of %d", i, n);
1144 *head = cur; /* restore */
1145 break;
1146 }
1147 nm_prdis(5, "allocate buffer %d -> %d", *head, cur);
1148 *p = cur; /* link to previous head */
1149 }
1150
1151 NMA_UNLOCK(nmd);
1152
1153 return i;
1154 }
1155
1156 static void
netmap_extra_free(struct netmap_adapter * na,uint32_t head)1157 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
1158 {
1159 struct lut_entry *lut = na->na_lut.lut;
1160 struct netmap_mem_d *nmd = na->nm_mem;
1161 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1162 uint32_t i, cur, *buf;
1163
1164 nm_prdis("freeing the extra list");
1165 for (i = 0; head >=2 && head < p->objtotal; i++) {
1166 cur = head;
1167 buf = lut[head].vaddr;
1168 head = *buf;
1169 *buf = 0;
1170 if (netmap_obj_free(p, cur))
1171 break;
1172 }
1173 if (head != 0)
1174 nm_prerr("breaking with head %d", head);
1175 if (netmap_debug & NM_DEBUG_MEM)
1176 nm_prinf("freed %d buffers", i);
1177 }
1178
1179
1180 /* Return nonzero on error */
1181 static int
netmap_new_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1182 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1183 {
1184 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1185 u_int i = 0; /* slot counter */
1186 uint32_t pos = 0; /* slot in p->bitmap */
1187 uint32_t index = 0; /* buffer index */
1188
1189 for (i = 0; i < n; i++) {
1190 void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
1191 if (vaddr == NULL) {
1192 nm_prerr("no more buffers after %d of %d", i, n);
1193 goto cleanup;
1194 }
1195 slot[i].buf_idx = index;
1196 slot[i].len = p->_objsize;
1197 slot[i].flags = 0;
1198 slot[i].ptr = 0;
1199 }
1200
1201 nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
1202 return (0);
1203
1204 cleanup:
1205 while (i > 0) {
1206 i--;
1207 netmap_obj_free(p, slot[i].buf_idx);
1208 }
1209 bzero(slot, n * sizeof(slot[0]));
1210 return (ENOMEM);
1211 }
1212
1213 static void
netmap_mem_set_ring(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n,uint32_t index)1214 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
1215 {
1216 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1217 u_int i;
1218
1219 for (i = 0; i < n; i++) {
1220 slot[i].buf_idx = index;
1221 slot[i].len = p->_objsize;
1222 slot[i].flags = 0;
1223 }
1224 }
1225
1226
1227 static void
netmap_free_buf(struct netmap_mem_d * nmd,uint32_t i)1228 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
1229 {
1230 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1231
1232 if (i < 2 || i >= p->objtotal) {
1233 nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
1234 return;
1235 }
1236 netmap_obj_free(p, i);
1237 }
1238
1239
1240 static void
netmap_free_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1241 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1242 {
1243 u_int i;
1244
1245 for (i = 0; i < n; i++) {
1246 if (slot[i].buf_idx > 1)
1247 netmap_free_buf(nmd, slot[i].buf_idx);
1248 }
1249 nm_prdis("%s: released some buffers, available: %u",
1250 p->name, p->objfree);
1251 }
1252
1253 static void
netmap_reset_obj_allocator(struct netmap_obj_pool * p)1254 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
1255 {
1256
1257 if (p == NULL)
1258 return;
1259 if (p->bitmap)
1260 nm_os_free(p->bitmap);
1261 p->bitmap = NULL;
1262 if (p->invalid_bitmap)
1263 nm_os_free(p->invalid_bitmap);
1264 p->invalid_bitmap = NULL;
1265 if (!p->alloc_done) {
1266 /* allocation was done by somebody else.
1267 * Let them clean up after themselves.
1268 */
1269 return;
1270 }
1271 if (p->lut) {
1272 u_int i;
1273
1274 /*
1275 * Free each cluster allocated in
1276 * netmap_finalize_obj_allocator(). The cluster start
1277 * addresses are stored at multiples of p->_clusterentries
1278 * in the lut.
1279 */
1280 for (i = 0; i < p->objtotal; i += p->_clustentries) {
1281 contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
1282 }
1283 nm_free_lut(p->lut, p->objtotal);
1284 }
1285 p->lut = NULL;
1286 p->objtotal = 0;
1287 p->memtotal = 0;
1288 p->numclusters = 0;
1289 p->objfree = 0;
1290 p->alloc_done = 0;
1291 }
1292
1293 /*
1294 * Free all resources related to an allocator.
1295 */
1296 static void
netmap_destroy_obj_allocator(struct netmap_obj_pool * p)1297 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
1298 {
1299 if (p == NULL)
1300 return;
1301 netmap_reset_obj_allocator(p);
1302 }
1303
1304 /*
1305 * We receive a request for objtotal objects, of size objsize each.
1306 * Internally we may round up both numbers, as we allocate objects
1307 * in small clusters multiple of the page size.
1308 * We need to keep track of objtotal and clustentries,
1309 * as they are needed when freeing memory.
1310 *
1311 * XXX note -- userspace needs the buffers to be contiguous,
1312 * so we cannot afford gaps at the end of a cluster.
1313 */
1314
1315
1316 /* call with NMA_LOCK held */
1317 static int
netmap_config_obj_allocator(struct netmap_obj_pool * p,u_int objtotal,u_int objsize)1318 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
1319 {
1320 int i;
1321 u_int clustsize; /* the cluster size, multiple of page size */
1322 u_int clustentries; /* how many objects per entry */
1323
1324 /* we store the current request, so we can
1325 * detect configuration changes later */
1326 p->r_objtotal = objtotal;
1327 p->r_objsize = objsize;
1328
1329 #define MAX_CLUSTSIZE (1<<22) // 4 MB
1330 #define LINE_ROUND NM_CACHE_ALIGN // 64
1331 if (objsize >= MAX_CLUSTSIZE) {
1332 /* we could do it but there is no point */
1333 nm_prerr("unsupported allocation for %d bytes", objsize);
1334 return EINVAL;
1335 }
1336 /* make sure objsize is a multiple of LINE_ROUND */
1337 i = (objsize & (LINE_ROUND - 1));
1338 if (i) {
1339 nm_prinf("aligning object by %d bytes", LINE_ROUND - i);
1340 objsize += LINE_ROUND - i;
1341 }
1342 if (objsize < p->objminsize || objsize > p->objmaxsize) {
1343 nm_prerr("requested objsize %d out of range [%d, %d]",
1344 objsize, p->objminsize, p->objmaxsize);
1345 return EINVAL;
1346 }
1347 if (objtotal < p->nummin || objtotal > p->nummax) {
1348 nm_prerr("requested objtotal %d out of range [%d, %d]",
1349 objtotal, p->nummin, p->nummax);
1350 return EINVAL;
1351 }
1352 /*
1353 * Compute number of objects using a brute-force approach:
1354 * given a max cluster size,
1355 * we try to fill it with objects keeping track of the
1356 * wasted space to the next page boundary.
1357 */
1358 for (clustentries = 0, i = 1;; i++) {
1359 u_int delta, used = i * objsize;
1360 if (used > MAX_CLUSTSIZE)
1361 break;
1362 delta = used % PAGE_SIZE;
1363 if (delta == 0) { // exact solution
1364 clustentries = i;
1365 break;
1366 }
1367 }
1368 /* exact solution not found */
1369 if (clustentries == 0) {
1370 nm_prerr("unsupported allocation for %d bytes", objsize);
1371 return EINVAL;
1372 }
1373 /* compute clustsize */
1374 clustsize = clustentries * objsize;
1375 if (netmap_debug & NM_DEBUG_MEM)
1376 nm_prinf("objsize %d clustsize %d objects %d",
1377 objsize, clustsize, clustentries);
1378
1379 /*
1380 * The number of clusters is n = ceil(objtotal/clustentries)
1381 * objtotal' = n * clustentries
1382 */
1383 p->_clustentries = clustentries;
1384 p->_clustsize = clustsize;
1385 p->_numclusters = (objtotal + clustentries - 1) / clustentries;
1386
1387 /* actual values (may be larger than requested) */
1388 p->_objsize = objsize;
1389 p->_objtotal = p->_numclusters * clustentries;
1390
1391 return 0;
1392 }
1393
1394 /* call with NMA_LOCK held */
1395 static int
netmap_finalize_obj_allocator(struct netmap_obj_pool * p)1396 netmap_finalize_obj_allocator(struct netmap_obj_pool *p)
1397 {
1398 int i; /* must be signed */
1399 size_t n;
1400
1401 if (p->lut) {
1402 /* if the lut is already there we assume that also all the
1403 * clusters have already been allocated, possibily by somebody
1404 * else (e.g., extmem). In the latter case, the alloc_done flag
1405 * will remain at zero, so that we will not attempt to
1406 * deallocate the clusters by ourselves in
1407 * netmap_reset_obj_allocator.
1408 */
1409 return 0;
1410 }
1411
1412 /* optimistically assume we have enough memory */
1413 p->numclusters = p->_numclusters;
1414 p->objtotal = p->_objtotal;
1415 p->alloc_done = 1;
1416
1417 p->lut = nm_alloc_lut(p->objtotal);
1418 if (p->lut == NULL) {
1419 nm_prerr("Unable to create lookup table for '%s'", p->name);
1420 goto clean;
1421 }
1422
1423 /*
1424 * Allocate clusters, init pointers
1425 */
1426
1427 n = p->_clustsize;
1428 for (i = 0; i < (int)p->objtotal;) {
1429 int lim = i + p->_clustentries;
1430 char *clust;
1431
1432 /*
1433 * XXX Note, we only need contigmalloc() for buffers attached
1434 * to native interfaces. In all other cases (nifp, netmap rings
1435 * and even buffers for VALE ports or emulated interfaces) we
1436 * can live with standard malloc, because the hardware will not
1437 * access the pages directly.
1438 */
1439 clust = contigmalloc(n, M_NETMAP, M_NOWAIT | M_ZERO,
1440 (size_t)0, -1UL, PAGE_SIZE, 0);
1441 if (clust == NULL) {
1442 /*
1443 * If we get here, there is a severe memory shortage,
1444 * so halve the allocated memory to reclaim some.
1445 */
1446 nm_prerr("Unable to create cluster at %d for '%s' allocator",
1447 i, p->name);
1448 if (i < 2) /* nothing to halve */
1449 goto out;
1450 lim = i / 2;
1451 for (i--; i >= lim; i--) {
1452 if (i % p->_clustentries == 0 && p->lut[i].vaddr)
1453 contigfree(p->lut[i].vaddr,
1454 n, M_NETMAP);
1455 p->lut[i].vaddr = NULL;
1456 }
1457 out:
1458 p->objtotal = i;
1459 /* we may have stopped in the middle of a cluster */
1460 p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
1461 break;
1462 }
1463 /*
1464 * Set lut state for all buffers in the current cluster.
1465 *
1466 * [i, lim) is the set of buffer indexes that cover the
1467 * current cluster.
1468 *
1469 * 'clust' is really the address of the current buffer in
1470 * the current cluster as we index through it with a stride
1471 * of p->_objsize.
1472 */
1473 for (; i < lim; i++, clust += p->_objsize) {
1474 p->lut[i].vaddr = clust;
1475 #if !defined(linux) && !defined(_WIN32)
1476 p->lut[i].paddr = vtophys(clust);
1477 #endif
1478 }
1479 }
1480 p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize;
1481 if (netmap_verbose)
1482 nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'",
1483 p->numclusters, p->_clustsize >> 10,
1484 p->memtotal >> 10, p->name);
1485
1486 return 0;
1487
1488 clean:
1489 netmap_reset_obj_allocator(p);
1490 return ENOMEM;
1491 }
1492
1493 /* call with lock held */
1494 static int
netmap_mem_params_changed(struct netmap_obj_params * p)1495 netmap_mem_params_changed(struct netmap_obj_params* p)
1496 {
1497 int i, rv = 0;
1498
1499 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1500 if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
1501 p[i].last_size = p[i].size;
1502 p[i].last_num = p[i].num;
1503 rv = 1;
1504 }
1505 }
1506 return rv;
1507 }
1508
1509 static void
netmap_mem_reset_all(struct netmap_mem_d * nmd)1510 netmap_mem_reset_all(struct netmap_mem_d *nmd)
1511 {
1512 int i;
1513
1514 if (netmap_debug & NM_DEBUG_MEM)
1515 nm_prinf("resetting %p", nmd);
1516 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1517 netmap_reset_obj_allocator(&nmd->pools[i]);
1518 }
1519 nmd->flags &= ~NETMAP_MEM_FINALIZED;
1520 }
1521
1522 static int
netmap_mem_unmap(struct netmap_obj_pool * p,struct netmap_adapter * na)1523 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
1524 {
1525 int i, lim = p->objtotal;
1526 struct netmap_lut *lut;
1527
1528 if (na == NULL || na->pdev == NULL)
1529 return 0;
1530
1531 lut = &na->na_lut;
1532 #if defined(__FreeBSD__)
1533 /* On FreeBSD mapping and unmapping is performed by the txsync
1534 * and rxsync routine, packet by packet. */
1535 (void)i;
1536 (void)lim;
1537 (void)lut;
1538 #elif defined(_WIN32)
1539 (void)i;
1540 (void)lim;
1541 (void)lut;
1542 nm_prerr("unsupported on Windows");
1543 #else /* linux */
1544 nm_prdis("unmapping and freeing plut for %s", na->name);
1545 if (lut->plut == NULL)
1546 return 0;
1547 for (i = 0; i < lim; i += p->_clustentries) {
1548 if (lut->plut[i].paddr)
1549 netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
1550 }
1551 nm_free_plut(lut->plut);
1552 lut->plut = NULL;
1553 #endif /* linux */
1554
1555 return 0;
1556 }
1557
1558 static int
netmap_mem_map(struct netmap_obj_pool * p,struct netmap_adapter * na)1559 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
1560 {
1561 int error = 0;
1562 int i, lim = p->objtotal;
1563 struct netmap_lut *lut = &na->na_lut;
1564
1565 if (na->pdev == NULL)
1566 return 0;
1567
1568 #if defined(__FreeBSD__)
1569 /* On FreeBSD mapping and unmapping is performed by the txsync
1570 * and rxsync routine, packet by packet. */
1571 (void)i;
1572 (void)lim;
1573 (void)lut;
1574 #elif defined(_WIN32)
1575 (void)i;
1576 (void)lim;
1577 (void)lut;
1578 nm_prerr("unsupported on Windows");
1579 #else /* linux */
1580
1581 if (lut->plut != NULL) {
1582 nm_prdis("plut already allocated for %s", na->name);
1583 return 0;
1584 }
1585
1586 nm_prdis("allocating physical lut for %s", na->name);
1587 lut->plut = nm_alloc_plut(lim);
1588 if (lut->plut == NULL) {
1589 nm_prerr("Failed to allocate physical lut for %s", na->name);
1590 return ENOMEM;
1591 }
1592
1593 for (i = 0; i < lim; i += p->_clustentries) {
1594 lut->plut[i].paddr = 0;
1595 }
1596
1597 for (i = 0; i < lim; i += p->_clustentries) {
1598 int j;
1599
1600 if (p->lut[i].vaddr == NULL)
1601 continue;
1602
1603 error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
1604 p->lut[i].vaddr, p->_clustsize);
1605 if (error) {
1606 nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name);
1607 break;
1608 }
1609
1610 for (j = 1; j < p->_clustentries; j++) {
1611 lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
1612 }
1613 }
1614
1615 if (error)
1616 netmap_mem_unmap(p, na);
1617
1618 #endif /* linux */
1619
1620 return error;
1621 }
1622
1623 static int
netmap_mem_finalize_all(struct netmap_mem_d * nmd)1624 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
1625 {
1626 int i;
1627 if (nmd->flags & NETMAP_MEM_FINALIZED)
1628 return 0;
1629 nmd->lasterr = 0;
1630 nmd->nm_totalsize = 0;
1631 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1632 nmd->lasterr = netmap_finalize_obj_allocator(&nmd->pools[i]);
1633 if (nmd->lasterr)
1634 goto error;
1635 nmd->nm_totalsize += nmd->pools[i].memtotal;
1636 }
1637 nmd->lasterr = netmap_mem_init_bitmaps(nmd);
1638 if (nmd->lasterr)
1639 goto error;
1640
1641 nmd->flags |= NETMAP_MEM_FINALIZED;
1642
1643 if (netmap_verbose)
1644 nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB",
1645 nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
1646 nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
1647 nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
1648
1649 if (netmap_verbose)
1650 nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
1651
1652
1653 return 0;
1654 error:
1655 netmap_mem_reset_all(nmd);
1656 return nmd->lasterr;
1657 }
1658
1659 /*
1660 * allocator for private memory
1661 */
1662 static void *
_netmap_mem_private_new(size_t size,struct netmap_obj_params * p,struct netmap_mem_ops * ops,int * perr)1663 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p,
1664 struct netmap_mem_ops *ops, int *perr)
1665 {
1666 struct netmap_mem_d *d = NULL;
1667 int i, err = 0;
1668
1669 d = nm_os_malloc(size);
1670 if (d == NULL) {
1671 err = ENOMEM;
1672 goto error;
1673 }
1674
1675 *d = nm_blueprint;
1676 d->ops = ops;
1677
1678 err = nm_mem_assign_id(d);
1679 if (err)
1680 goto error_free;
1681 snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
1682
1683 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1684 snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
1685 nm_blueprint.pools[i].name,
1686 d->name);
1687 d->params[i].num = p[i].num;
1688 d->params[i].size = p[i].size;
1689 }
1690
1691 NMA_LOCK_INIT(d);
1692
1693 err = netmap_mem_config(d);
1694 if (err)
1695 goto error_rel_id;
1696
1697 d->flags &= ~NETMAP_MEM_FINALIZED;
1698
1699 return d;
1700
1701 error_rel_id:
1702 NMA_LOCK_DESTROY(d);
1703 nm_mem_release_id(d);
1704 error_free:
1705 nm_os_free(d);
1706 error:
1707 if (perr)
1708 *perr = err;
1709 return NULL;
1710 }
1711
1712 struct netmap_mem_d *
netmap_mem_private_new(u_int txr,u_int txd,u_int rxr,u_int rxd,u_int extra_bufs,u_int npipes,int * perr)1713 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
1714 u_int extra_bufs, u_int npipes, int *perr)
1715 {
1716 struct netmap_mem_d *d = NULL;
1717 struct netmap_obj_params p[NETMAP_POOLS_NR];
1718 int i;
1719 u_int v, maxd;
1720 /* account for the fake host rings */
1721 txr++;
1722 rxr++;
1723
1724 /* copy the min values */
1725 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1726 p[i] = netmap_min_priv_params[i];
1727 }
1728
1729 /* possibly increase them to fit user request */
1730 v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
1731 if (p[NETMAP_IF_POOL].size < v)
1732 p[NETMAP_IF_POOL].size = v;
1733 v = 2 + 4 * npipes;
1734 if (p[NETMAP_IF_POOL].num < v)
1735 p[NETMAP_IF_POOL].num = v;
1736 maxd = (txd > rxd) ? txd : rxd;
1737 v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
1738 if (p[NETMAP_RING_POOL].size < v)
1739 p[NETMAP_RING_POOL].size = v;
1740 /* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
1741 * and two rx rings (again, 1 normal and 1 fake host)
1742 */
1743 v = txr + rxr + 8 * npipes;
1744 if (p[NETMAP_RING_POOL].num < v)
1745 p[NETMAP_RING_POOL].num = v;
1746 /* for each pipe we only need the buffers for the 4 "real" rings.
1747 * On the other end, the pipe ring dimension may be different from
1748 * the parent port ring dimension. As a compromise, we allocate twice the
1749 * space actually needed if the pipe rings were the same size as the parent rings
1750 */
1751 v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
1752 /* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
1753 if (p[NETMAP_BUF_POOL].num < v)
1754 p[NETMAP_BUF_POOL].num = v;
1755
1756 if (netmap_verbose)
1757 nm_prinf("req if %d*%d ring %d*%d buf %d*%d",
1758 p[NETMAP_IF_POOL].num,
1759 p[NETMAP_IF_POOL].size,
1760 p[NETMAP_RING_POOL].num,
1761 p[NETMAP_RING_POOL].size,
1762 p[NETMAP_BUF_POOL].num,
1763 p[NETMAP_BUF_POOL].size);
1764
1765 d = _netmap_mem_private_new(sizeof(*d), p, &netmap_mem_global_ops, perr);
1766
1767 return d;
1768 }
1769
1770
1771 /* call with lock held */
1772 static int
netmap_mem2_config(struct netmap_mem_d * nmd)1773 netmap_mem2_config(struct netmap_mem_d *nmd)
1774 {
1775 int i;
1776
1777 if (!netmap_mem_params_changed(nmd->params))
1778 goto out;
1779
1780 nm_prdis("reconfiguring");
1781
1782 if (nmd->flags & NETMAP_MEM_FINALIZED) {
1783 /* reset previous allocation */
1784 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1785 netmap_reset_obj_allocator(&nmd->pools[i]);
1786 }
1787 nmd->flags &= ~NETMAP_MEM_FINALIZED;
1788 }
1789
1790 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1791 nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
1792 nmd->params[i].num, nmd->params[i].size);
1793 if (nmd->lasterr)
1794 goto out;
1795 }
1796
1797 out:
1798
1799 return nmd->lasterr;
1800 }
1801
1802 static int
netmap_mem2_finalize(struct netmap_mem_d * nmd)1803 netmap_mem2_finalize(struct netmap_mem_d *nmd)
1804 {
1805 if (nmd->flags & NETMAP_MEM_FINALIZED)
1806 goto out;
1807
1808 if (netmap_mem_finalize_all(nmd))
1809 goto out;
1810
1811 nmd->lasterr = 0;
1812
1813 out:
1814 return nmd->lasterr;
1815 }
1816
1817 static void
netmap_mem2_delete(struct netmap_mem_d * nmd)1818 netmap_mem2_delete(struct netmap_mem_d *nmd)
1819 {
1820 int i;
1821
1822 for (i = 0; i < NETMAP_POOLS_NR; i++) {
1823 netmap_destroy_obj_allocator(&nmd->pools[i]);
1824 }
1825
1826 NMA_LOCK_DESTROY(nmd);
1827 if (nmd != &nm_mem)
1828 nm_os_free(nmd);
1829 }
1830
1831 #ifdef WITH_EXTMEM
1832 /* doubly linekd list of all existing external allocators */
1833 static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
1834 NM_MTX_T nm_mem_ext_list_lock;
1835 #endif /* WITH_EXTMEM */
1836
1837 int
netmap_mem_init(void)1838 netmap_mem_init(void)
1839 {
1840 NM_MTX_INIT(nm_mem_list_lock);
1841 NMA_LOCK_INIT(&nm_mem);
1842 netmap_mem_get(&nm_mem);
1843 #ifdef WITH_EXTMEM
1844 NM_MTX_INIT(nm_mem_ext_list_lock);
1845 #endif /* WITH_EXTMEM */
1846 return (0);
1847 }
1848
1849 void
netmap_mem_fini(void)1850 netmap_mem_fini(void)
1851 {
1852 netmap_mem_put(&nm_mem);
1853 }
1854
1855 static void
netmap_free_rings(struct netmap_adapter * na)1856 netmap_free_rings(struct netmap_adapter *na)
1857 {
1858 enum txrx t;
1859
1860 for_rx_tx(t) {
1861 u_int i;
1862 for (i = 0; i < netmap_all_rings(na, t); i++) {
1863 struct netmap_kring *kring = NMR(na, t)[i];
1864 struct netmap_ring *ring = kring->ring;
1865
1866 if (ring == NULL || kring->users > 0 || (kring->nr_kflags & NKR_NEEDRING)) {
1867 if (netmap_debug & NM_DEBUG_MEM)
1868 nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)",
1869 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
1870 continue;
1871 }
1872 if (netmap_debug & NM_DEBUG_MEM)
1873 nm_prinf("deleting ring %s", kring->name);
1874 if (!(kring->nr_kflags & NKR_FAKERING)) {
1875 nm_prdis("freeing bufs for %s", kring->name);
1876 netmap_free_bufs(na->nm_mem, ring->slot, kring->nkr_num_slots);
1877 } else {
1878 nm_prdis("NOT freeing bufs for %s", kring->name);
1879 }
1880 netmap_ring_free(na->nm_mem, ring);
1881 kring->ring = NULL;
1882 }
1883 }
1884 }
1885
1886 /* call with NMA_LOCK held *
1887 *
1888 * Allocate netmap rings and buffers for this card
1889 * The rings are contiguous, but have variable size.
1890 * The kring array must follow the layout described
1891 * in netmap_krings_create().
1892 */
1893 static int
netmap_mem2_rings_create(struct netmap_adapter * na)1894 netmap_mem2_rings_create(struct netmap_adapter *na)
1895 {
1896 enum txrx t;
1897
1898 for_rx_tx(t) {
1899 u_int i;
1900
1901 for (i = 0; i < netmap_all_rings(na, t); i++) {
1902 struct netmap_kring *kring = NMR(na, t)[i];
1903 struct netmap_ring *ring = kring->ring;
1904 u_int len, ndesc;
1905
1906 if (ring || (!kring->users && !(kring->nr_kflags & NKR_NEEDRING))) {
1907 /* uneeded, or already created by somebody else */
1908 if (netmap_debug & NM_DEBUG_MEM)
1909 nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)",
1910 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
1911 continue;
1912 }
1913 if (netmap_debug & NM_DEBUG_MEM)
1914 nm_prinf("creating %s", kring->name);
1915 ndesc = kring->nkr_num_slots;
1916 len = sizeof(struct netmap_ring) +
1917 ndesc * sizeof(struct netmap_slot);
1918 ring = netmap_ring_malloc(na->nm_mem, len);
1919 if (ring == NULL) {
1920 nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t));
1921 goto cleanup;
1922 }
1923 nm_prdis("txring at %p", ring);
1924 kring->ring = ring;
1925 *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
1926 *(int64_t *)(uintptr_t)&ring->buf_ofs =
1927 (na->nm_mem->pools[NETMAP_IF_POOL].memtotal +
1928 na->nm_mem->pools[NETMAP_RING_POOL].memtotal) -
1929 netmap_ring_offset(na->nm_mem, ring);
1930
1931 /* copy values from kring */
1932 ring->head = kring->rhead;
1933 ring->cur = kring->rcur;
1934 ring->tail = kring->rtail;
1935 *(uint32_t *)(uintptr_t)&ring->nr_buf_size =
1936 netmap_mem_bufsize(na->nm_mem);
1937 nm_prdis("%s h %d c %d t %d", kring->name,
1938 ring->head, ring->cur, ring->tail);
1939 nm_prdis("initializing slots for %s_ring", nm_txrx2str(t));
1940 if (!(kring->nr_kflags & NKR_FAKERING)) {
1941 /* this is a real ring */
1942 if (netmap_debug & NM_DEBUG_MEM)
1943 nm_prinf("allocating buffers for %s", kring->name);
1944 if (netmap_new_bufs(na->nm_mem, ring->slot, ndesc)) {
1945 nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
1946 goto cleanup;
1947 }
1948 } else {
1949 /* this is a fake ring, set all indices to 0 */
1950 if (netmap_debug & NM_DEBUG_MEM)
1951 nm_prinf("NOT allocating buffers for %s", kring->name);
1952 netmap_mem_set_ring(na->nm_mem, ring->slot, ndesc, 0);
1953 }
1954 /* ring info */
1955 *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
1956 *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
1957 }
1958 }
1959
1960 return 0;
1961
1962 cleanup:
1963 /* we cannot actually cleanup here, since we don't own kring->users
1964 * and kring->nr_klags & NKR_NEEDRING. The caller must decrement
1965 * the first or zero-out the second, then call netmap_free_rings()
1966 * to do the cleanup
1967 */
1968
1969 return ENOMEM;
1970 }
1971
1972 static void
netmap_mem2_rings_delete(struct netmap_adapter * na)1973 netmap_mem2_rings_delete(struct netmap_adapter *na)
1974 {
1975 /* last instance, release bufs and rings */
1976 netmap_free_rings(na);
1977 }
1978
1979
1980 /* call with NMA_LOCK held */
1981 /*
1982 * Allocate the per-fd structure netmap_if.
1983 *
1984 * We assume that the configuration stored in na
1985 * (number of tx/rx rings and descs) does not change while
1986 * the interface is in netmap mode.
1987 */
1988 static struct netmap_if *
netmap_mem2_if_new(struct netmap_adapter * na,struct netmap_priv_d * priv)1989 netmap_mem2_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
1990 {
1991 struct netmap_if *nifp;
1992 ssize_t base; /* handy for relative offsets between rings and nifp */
1993 u_int i, len, n[NR_TXRX], ntot;
1994 enum txrx t;
1995
1996 ntot = 0;
1997 for_rx_tx(t) {
1998 /* account for the (eventually fake) host rings */
1999 n[t] = netmap_all_rings(na, t);
2000 ntot += n[t];
2001 }
2002 /*
2003 * the descriptor is followed inline by an array of offsets
2004 * to the tx and rx rings in the shared memory region.
2005 */
2006
2007 len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
2008 nifp = netmap_if_malloc(na->nm_mem, len);
2009 if (nifp == NULL) {
2010 return NULL;
2011 }
2012
2013 /* initialize base fields -- override const */
2014 *(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
2015 *(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
2016 *(u_int *)(uintptr_t)&nifp->ni_host_tx_rings =
2017 (na->num_host_tx_rings ? na->num_host_tx_rings : 1);
2018 *(u_int *)(uintptr_t)&nifp->ni_host_rx_rings =
2019 (na->num_host_rx_rings ? na->num_host_rx_rings : 1);
2020 strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name));
2021
2022 /*
2023 * fill the slots for the rx and tx rings. They contain the offset
2024 * between the ring and nifp, so the information is usable in
2025 * userspace to reach the ring from the nifp.
2026 */
2027 base = netmap_if_offset(na->nm_mem, nifp);
2028 for (i = 0; i < n[NR_TX]; i++) {
2029 /* XXX instead of ofs == 0 maybe use the offset of an error
2030 * ring, like we do for buffers? */
2031 ssize_t ofs = 0;
2032
2033 if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
2034 && i < priv->np_qlast[NR_TX]) {
2035 ofs = netmap_ring_offset(na->nm_mem,
2036 na->tx_rings[i]->ring) - base;
2037 }
2038 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
2039 }
2040 for (i = 0; i < n[NR_RX]; i++) {
2041 /* XXX instead of ofs == 0 maybe use the offset of an error
2042 * ring, like we do for buffers? */
2043 ssize_t ofs = 0;
2044
2045 if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
2046 && i < priv->np_qlast[NR_RX]) {
2047 ofs = netmap_ring_offset(na->nm_mem,
2048 na->rx_rings[i]->ring) - base;
2049 }
2050 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
2051 }
2052
2053 return (nifp);
2054 }
2055
2056 static void
netmap_mem2_if_delete(struct netmap_adapter * na,struct netmap_if * nifp)2057 netmap_mem2_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
2058 {
2059 if (nifp == NULL)
2060 /* nothing to do */
2061 return;
2062 if (nifp->ni_bufs_head)
2063 netmap_extra_free(na, nifp->ni_bufs_head);
2064 netmap_if_free(na->nm_mem, nifp);
2065 }
2066
2067 static void
netmap_mem2_deref(struct netmap_mem_d * nmd)2068 netmap_mem2_deref(struct netmap_mem_d *nmd)
2069 {
2070
2071 if (netmap_debug & NM_DEBUG_MEM)
2072 nm_prinf("active = %d", nmd->active);
2073
2074 }
2075
2076 struct netmap_mem_ops netmap_mem_global_ops = {
2077 .nmd_get_lut = netmap_mem2_get_lut,
2078 .nmd_get_info = netmap_mem2_get_info,
2079 .nmd_ofstophys = netmap_mem2_ofstophys,
2080 .nmd_config = netmap_mem2_config,
2081 .nmd_finalize = netmap_mem2_finalize,
2082 .nmd_deref = netmap_mem2_deref,
2083 .nmd_delete = netmap_mem2_delete,
2084 .nmd_if_offset = netmap_mem2_if_offset,
2085 .nmd_if_new = netmap_mem2_if_new,
2086 .nmd_if_delete = netmap_mem2_if_delete,
2087 .nmd_rings_create = netmap_mem2_rings_create,
2088 .nmd_rings_delete = netmap_mem2_rings_delete
2089 };
2090
2091 int
netmap_mem_pools_info_get(struct nmreq_pools_info * req,struct netmap_mem_d * nmd)2092 netmap_mem_pools_info_get(struct nmreq_pools_info *req,
2093 struct netmap_mem_d *nmd)
2094 {
2095 int ret;
2096
2097 ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
2098 &req->nr_mem_id);
2099 if (ret) {
2100 return ret;
2101 }
2102
2103 NMA_LOCK(nmd);
2104 req->nr_if_pool_offset = 0;
2105 req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
2106 req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
2107
2108 req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
2109 req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
2110 req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
2111
2112 req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
2113 nmd->pools[NETMAP_RING_POOL].memtotal;
2114 req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
2115 req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
2116 NMA_UNLOCK(nmd);
2117
2118 return 0;
2119 }
2120
2121 #ifdef WITH_EXTMEM
2122 struct netmap_mem_ext {
2123 struct netmap_mem_d up;
2124
2125 struct nm_os_extmem *os;
2126 struct netmap_mem_ext *next, *prev;
2127 };
2128
2129 /* call with nm_mem_list_lock held */
2130 static void
netmap_mem_ext_register(struct netmap_mem_ext * e)2131 netmap_mem_ext_register(struct netmap_mem_ext *e)
2132 {
2133 NM_MTX_LOCK(nm_mem_ext_list_lock);
2134 if (netmap_mem_ext_list)
2135 netmap_mem_ext_list->prev = e;
2136 e->next = netmap_mem_ext_list;
2137 netmap_mem_ext_list = e;
2138 e->prev = NULL;
2139 NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2140 }
2141
2142 /* call with nm_mem_list_lock held */
2143 static void
netmap_mem_ext_unregister(struct netmap_mem_ext * e)2144 netmap_mem_ext_unregister(struct netmap_mem_ext *e)
2145 {
2146 if (e->prev)
2147 e->prev->next = e->next;
2148 else
2149 netmap_mem_ext_list = e->next;
2150 if (e->next)
2151 e->next->prev = e->prev;
2152 e->prev = e->next = NULL;
2153 }
2154
2155 static struct netmap_mem_ext *
netmap_mem_ext_search(struct nm_os_extmem * os)2156 netmap_mem_ext_search(struct nm_os_extmem *os)
2157 {
2158 struct netmap_mem_ext *e;
2159
2160 NM_MTX_LOCK(nm_mem_ext_list_lock);
2161 for (e = netmap_mem_ext_list; e; e = e->next) {
2162 if (nm_os_extmem_isequal(e->os, os)) {
2163 netmap_mem_get(&e->up);
2164 break;
2165 }
2166 }
2167 NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2168 return e;
2169 }
2170
2171
2172 static void
netmap_mem_ext_delete(struct netmap_mem_d * d)2173 netmap_mem_ext_delete(struct netmap_mem_d *d)
2174 {
2175 int i;
2176 struct netmap_mem_ext *e =
2177 (struct netmap_mem_ext *)d;
2178
2179 netmap_mem_ext_unregister(e);
2180
2181 for (i = 0; i < NETMAP_POOLS_NR; i++) {
2182 struct netmap_obj_pool *p = &d->pools[i];
2183
2184 if (p->lut) {
2185 nm_free_lut(p->lut, p->objtotal);
2186 p->lut = NULL;
2187 }
2188 }
2189 if (e->os)
2190 nm_os_extmem_delete(e->os);
2191 netmap_mem2_delete(d);
2192 }
2193
2194 static int
netmap_mem_ext_config(struct netmap_mem_d * nmd)2195 netmap_mem_ext_config(struct netmap_mem_d *nmd)
2196 {
2197 return 0;
2198 }
2199
2200 struct netmap_mem_ops netmap_mem_ext_ops = {
2201 .nmd_get_lut = netmap_mem2_get_lut,
2202 .nmd_get_info = netmap_mem2_get_info,
2203 .nmd_ofstophys = netmap_mem2_ofstophys,
2204 .nmd_config = netmap_mem_ext_config,
2205 .nmd_finalize = netmap_mem2_finalize,
2206 .nmd_deref = netmap_mem2_deref,
2207 .nmd_delete = netmap_mem_ext_delete,
2208 .nmd_if_offset = netmap_mem2_if_offset,
2209 .nmd_if_new = netmap_mem2_if_new,
2210 .nmd_if_delete = netmap_mem2_if_delete,
2211 .nmd_rings_create = netmap_mem2_rings_create,
2212 .nmd_rings_delete = netmap_mem2_rings_delete
2213 };
2214
2215 struct netmap_mem_d *
netmap_mem_ext_create(uint64_t usrptr,struct nmreq_pools_info * pi,int * perror)2216 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
2217 {
2218 int error = 0;
2219 int i, j;
2220 struct netmap_mem_ext *nme;
2221 char *clust;
2222 size_t off;
2223 struct nm_os_extmem *os = NULL;
2224 int nr_pages;
2225
2226 // XXX sanity checks
2227 if (pi->nr_if_pool_objtotal == 0)
2228 pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
2229 if (pi->nr_if_pool_objsize == 0)
2230 pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
2231 if (pi->nr_ring_pool_objtotal == 0)
2232 pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
2233 if (pi->nr_ring_pool_objsize == 0)
2234 pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
2235 if (pi->nr_buf_pool_objtotal == 0)
2236 pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
2237 if (pi->nr_buf_pool_objsize == 0)
2238 pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
2239 if (netmap_verbose & NM_DEBUG_MEM)
2240 nm_prinf("if %d %d ring %d %d buf %d %d",
2241 pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
2242 pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
2243 pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
2244
2245 os = nm_os_extmem_create(usrptr, pi, &error);
2246 if (os == NULL) {
2247 nm_prerr("os extmem creation failed");
2248 goto out;
2249 }
2250
2251 nme = netmap_mem_ext_search(os);
2252 if (nme) {
2253 nm_os_extmem_delete(os);
2254 return &nme->up;
2255 }
2256 if (netmap_verbose & NM_DEBUG_MEM)
2257 nm_prinf("not found, creating new");
2258
2259 nme = _netmap_mem_private_new(sizeof(*nme),
2260 (struct netmap_obj_params[]){
2261 { pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
2262 { pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
2263 { pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
2264 &netmap_mem_ext_ops,
2265 &error);
2266 if (nme == NULL)
2267 goto out_unmap;
2268
2269 nr_pages = nm_os_extmem_nr_pages(os);
2270
2271 /* from now on pages will be released by nme destructor;
2272 * we let res = 0 to prevent release in out_unmap below
2273 */
2274 nme->os = os;
2275 os = NULL; /* pass ownership */
2276
2277 clust = nm_os_extmem_nextpage(nme->os);
2278 off = 0;
2279 for (i = 0; i < NETMAP_POOLS_NR; i++) {
2280 struct netmap_obj_pool *p = &nme->up.pools[i];
2281 struct netmap_obj_params *o = &nme->up.params[i];
2282
2283 p->_objsize = o->size;
2284 p->_clustsize = o->size;
2285 p->_clustentries = 1;
2286
2287 p->lut = nm_alloc_lut(o->num);
2288 if (p->lut == NULL) {
2289 error = ENOMEM;
2290 goto out_delete;
2291 }
2292
2293 p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
2294 p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
2295 if (p->invalid_bitmap == NULL) {
2296 error = ENOMEM;
2297 goto out_delete;
2298 }
2299
2300 if (nr_pages == 0) {
2301 p->objtotal = 0;
2302 p->memtotal = 0;
2303 p->objfree = 0;
2304 continue;
2305 }
2306
2307 for (j = 0; j < o->num && nr_pages > 0; j++) {
2308 size_t noff;
2309
2310 p->lut[j].vaddr = clust + off;
2311 #if !defined(linux) && !defined(_WIN32)
2312 p->lut[j].paddr = vtophys(p->lut[j].vaddr);
2313 #endif
2314 nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr);
2315 noff = off + p->_objsize;
2316 if (noff < PAGE_SIZE) {
2317 off = noff;
2318 continue;
2319 }
2320 nm_prdis("too big, recomputing offset...");
2321 while (noff >= PAGE_SIZE) {
2322 char *old_clust = clust;
2323 noff -= PAGE_SIZE;
2324 clust = nm_os_extmem_nextpage(nme->os);
2325 nr_pages--;
2326 nm_prdis("noff %zu page %p nr_pages %d", noff,
2327 page_to_virt(*pages), nr_pages);
2328 if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
2329 (nr_pages == 0 ||
2330 old_clust + PAGE_SIZE != clust))
2331 {
2332 /* out of space or non contiguous,
2333 * drop this object
2334 * */
2335 p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
2336 nm_prdis("non contiguous at off %zu, drop", noff);
2337 }
2338 if (nr_pages == 0)
2339 break;
2340 }
2341 off = noff;
2342 }
2343 p->objtotal = j;
2344 p->numclusters = p->objtotal;
2345 p->memtotal = j * (size_t)p->_objsize;
2346 nm_prdis("%d memtotal %zu", j, p->memtotal);
2347 }
2348
2349 netmap_mem_ext_register(nme);
2350
2351 return &nme->up;
2352
2353 out_delete:
2354 netmap_mem_put(&nme->up);
2355 out_unmap:
2356 if (os)
2357 nm_os_extmem_delete(os);
2358 out:
2359 if (perror)
2360 *perror = error;
2361 return NULL;
2362
2363 }
2364 #endif /* WITH_EXTMEM */
2365
2366
2367 #ifdef WITH_PTNETMAP
2368 struct mem_pt_if {
2369 struct mem_pt_if *next;
2370 struct ifnet *ifp;
2371 unsigned int nifp_offset;
2372 };
2373
2374 /* Netmap allocator for ptnetmap guests. */
2375 struct netmap_mem_ptg {
2376 struct netmap_mem_d up;
2377
2378 vm_paddr_t nm_paddr; /* physical address in the guest */
2379 void *nm_addr; /* virtual address in the guest */
2380 struct netmap_lut buf_lut; /* lookup table for BUF pool in the guest */
2381 nm_memid_t host_mem_id; /* allocator identifier in the host */
2382 struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
2383 struct mem_pt_if *pt_ifs; /* list of interfaces in passthrough */
2384 };
2385
2386 /* Link a passthrough interface to a passthrough netmap allocator. */
2387 static int
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d * nmd,struct ifnet * ifp,unsigned int nifp_offset)2388 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, struct ifnet *ifp,
2389 unsigned int nifp_offset)
2390 {
2391 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2392 struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
2393
2394 if (!ptif) {
2395 return ENOMEM;
2396 }
2397
2398 NMA_LOCK(nmd);
2399
2400 ptif->ifp = ifp;
2401 ptif->nifp_offset = nifp_offset;
2402
2403 if (ptnmd->pt_ifs) {
2404 ptif->next = ptnmd->pt_ifs;
2405 }
2406 ptnmd->pt_ifs = ptif;
2407
2408 NMA_UNLOCK(nmd);
2409
2410 nm_prinf("ifp=%s,nifp_offset=%u",
2411 ptif->ifp->if_xname, ptif->nifp_offset);
2412
2413 return 0;
2414 }
2415
2416 /* Called with NMA_LOCK(nmd) held. */
2417 static struct mem_pt_if *
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d * nmd,struct ifnet * ifp)2418 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, struct ifnet *ifp)
2419 {
2420 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2421 struct mem_pt_if *curr;
2422
2423 for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2424 if (curr->ifp == ifp) {
2425 return curr;
2426 }
2427 }
2428
2429 return NULL;
2430 }
2431
2432 /* Unlink a passthrough interface from a passthrough netmap allocator. */
2433 int
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d * nmd,struct ifnet * ifp)2434 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, struct ifnet *ifp)
2435 {
2436 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2437 struct mem_pt_if *prev = NULL;
2438 struct mem_pt_if *curr;
2439 int ret = -1;
2440
2441 NMA_LOCK(nmd);
2442
2443 for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2444 if (curr->ifp == ifp) {
2445 if (prev) {
2446 prev->next = curr->next;
2447 } else {
2448 ptnmd->pt_ifs = curr->next;
2449 }
2450 nm_prinf("removed (ifp=%s,nifp_offset=%u)",
2451 curr->ifp->if_xname, curr->nifp_offset);
2452 nm_os_free(curr);
2453 ret = 0;
2454 break;
2455 }
2456 prev = curr;
2457 }
2458
2459 NMA_UNLOCK(nmd);
2460
2461 return ret;
2462 }
2463
2464 static int
netmap_mem_pt_guest_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)2465 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
2466 {
2467 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2468
2469 if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
2470 return EINVAL;
2471 }
2472
2473 *lut = ptnmd->buf_lut;
2474 return 0;
2475 }
2476
2477 static int
netmap_mem_pt_guest_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,uint16_t * id)2478 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
2479 u_int *memflags, uint16_t *id)
2480 {
2481 int error = 0;
2482
2483 error = nmd->ops->nmd_config(nmd);
2484 if (error)
2485 goto out;
2486
2487 if (size)
2488 *size = nmd->nm_totalsize;
2489 if (memflags)
2490 *memflags = nmd->flags;
2491 if (id)
2492 *id = nmd->nm_id;
2493
2494 out:
2495
2496 return error;
2497 }
2498
2499 static vm_paddr_t
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)2500 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
2501 {
2502 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2503 vm_paddr_t paddr;
2504 /* if the offset is valid, just return csb->base_addr + off */
2505 paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
2506 nm_prdis("off %lx padr %lx", off, (unsigned long)paddr);
2507 return paddr;
2508 }
2509
2510 static int
netmap_mem_pt_guest_config(struct netmap_mem_d * nmd)2511 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
2512 {
2513 /* nothing to do, we are configured on creation
2514 * and configuration never changes thereafter
2515 */
2516 return 0;
2517 }
2518
2519 static int
netmap_mem_pt_guest_finalize(struct netmap_mem_d * nmd)2520 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd)
2521 {
2522 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2523 uint64_t mem_size;
2524 uint32_t bufsize;
2525 uint32_t nbuffers;
2526 uint32_t poolofs;
2527 vm_paddr_t paddr;
2528 char *vaddr;
2529 int i;
2530 int error = 0;
2531
2532 if (nmd->flags & NETMAP_MEM_FINALIZED)
2533 goto out;
2534
2535 if (ptnmd->ptn_dev == NULL) {
2536 nm_prerr("ptnetmap memdev not attached");
2537 error = ENOMEM;
2538 goto out;
2539 }
2540 /* Map memory through ptnetmap-memdev BAR. */
2541 error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
2542 &ptnmd->nm_addr, &mem_size);
2543 if (error)
2544 goto out;
2545
2546 /* Initialize the lut using the information contained in the
2547 * ptnetmap memory device. */
2548 bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2549 PTNET_MDEV_IO_BUF_POOL_OBJSZ);
2550 nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2551 PTNET_MDEV_IO_BUF_POOL_OBJNUM);
2552
2553 /* allocate the lut */
2554 if (ptnmd->buf_lut.lut == NULL) {
2555 nm_prinf("allocating lut");
2556 ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
2557 if (ptnmd->buf_lut.lut == NULL) {
2558 nm_prerr("lut allocation failed");
2559 return ENOMEM;
2560 }
2561 }
2562
2563 /* we have physically contiguous memory mapped through PCI BAR */
2564 poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2565 PTNET_MDEV_IO_BUF_POOL_OFS);
2566 vaddr = (char *)(ptnmd->nm_addr) + poolofs;
2567 paddr = ptnmd->nm_paddr + poolofs;
2568
2569 for (i = 0; i < nbuffers; i++) {
2570 ptnmd->buf_lut.lut[i].vaddr = vaddr;
2571 vaddr += bufsize;
2572 paddr += bufsize;
2573 }
2574
2575 ptnmd->buf_lut.objtotal = nbuffers;
2576 ptnmd->buf_lut.objsize = bufsize;
2577 nmd->nm_totalsize = mem_size;
2578
2579 /* Initialize these fields as are needed by
2580 * netmap_mem_bufsize().
2581 * XXX please improve this, why do we need this
2582 * replication? maybe we nmd->pools[] should no be
2583 * there for the guest allocator? */
2584 nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
2585 nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
2586
2587 nmd->flags |= NETMAP_MEM_FINALIZED;
2588 out:
2589 return error;
2590 }
2591
2592 static void
netmap_mem_pt_guest_deref(struct netmap_mem_d * nmd)2593 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd)
2594 {
2595 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2596
2597 if (nmd->active == 1 &&
2598 (nmd->flags & NETMAP_MEM_FINALIZED)) {
2599 nmd->flags &= ~NETMAP_MEM_FINALIZED;
2600 /* unmap ptnetmap-memdev memory */
2601 if (ptnmd->ptn_dev) {
2602 nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
2603 }
2604 ptnmd->nm_addr = NULL;
2605 ptnmd->nm_paddr = 0;
2606 }
2607 }
2608
2609 static ssize_t
netmap_mem_pt_guest_if_offset(struct netmap_mem_d * nmd,const void * vaddr)2610 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
2611 {
2612 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2613
2614 return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
2615 }
2616
2617 static void
netmap_mem_pt_guest_delete(struct netmap_mem_d * nmd)2618 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
2619 {
2620 if (nmd == NULL)
2621 return;
2622 if (netmap_verbose)
2623 nm_prinf("deleting %p", nmd);
2624 if (nmd->active > 0)
2625 nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active);
2626 if (netmap_verbose)
2627 nm_prinf("done deleting %p", nmd);
2628 NMA_LOCK_DESTROY(nmd);
2629 nm_os_free(nmd);
2630 }
2631
2632 static struct netmap_if *
netmap_mem_pt_guest_if_new(struct netmap_adapter * na,struct netmap_priv_d * priv)2633 netmap_mem_pt_guest_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
2634 {
2635 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2636 struct mem_pt_if *ptif;
2637 struct netmap_if *nifp = NULL;
2638
2639 ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2640 if (ptif == NULL) {
2641 nm_prerr("interface %s is not in passthrough", na->name);
2642 goto out;
2643 }
2644
2645 nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
2646 ptif->nifp_offset);
2647 out:
2648 return nifp;
2649 }
2650
2651 static void
netmap_mem_pt_guest_if_delete(struct netmap_adapter * na,struct netmap_if * nifp)2652 netmap_mem_pt_guest_if_delete(struct netmap_adapter *na, struct netmap_if *nifp)
2653 {
2654 struct mem_pt_if *ptif;
2655
2656 ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2657 if (ptif == NULL) {
2658 nm_prerr("interface %s is not in passthrough", na->name);
2659 }
2660 }
2661
2662 static int
netmap_mem_pt_guest_rings_create(struct netmap_adapter * na)2663 netmap_mem_pt_guest_rings_create(struct netmap_adapter *na)
2664 {
2665 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)na->nm_mem;
2666 struct mem_pt_if *ptif;
2667 struct netmap_if *nifp;
2668 int i, error = -1;
2669
2670 ptif = netmap_mem_pt_guest_ifp_lookup(na->nm_mem, na->ifp);
2671 if (ptif == NULL) {
2672 nm_prerr("interface %s is not in passthrough", na->name);
2673 goto out;
2674 }
2675
2676
2677 /* point each kring to the corresponding backend ring */
2678 nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
2679 for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
2680 struct netmap_kring *kring = na->tx_rings[i];
2681 if (kring->ring)
2682 continue;
2683 kring->ring = (struct netmap_ring *)
2684 ((char *)nifp + nifp->ring_ofs[i]);
2685 }
2686 for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
2687 struct netmap_kring *kring = na->rx_rings[i];
2688 if (kring->ring)
2689 continue;
2690 kring->ring = (struct netmap_ring *)
2691 ((char *)nifp +
2692 nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]);
2693 }
2694
2695 error = 0;
2696 out:
2697 return error;
2698 }
2699
2700 static void
netmap_mem_pt_guest_rings_delete(struct netmap_adapter * na)2701 netmap_mem_pt_guest_rings_delete(struct netmap_adapter *na)
2702 {
2703 #if 0
2704 enum txrx t;
2705
2706 for_rx_tx(t) {
2707 u_int i;
2708 for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
2709 struct netmap_kring *kring = &NMR(na, t)[i];
2710
2711 kring->ring = NULL;
2712 }
2713 }
2714 #endif
2715 }
2716
2717 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
2718 .nmd_get_lut = netmap_mem_pt_guest_get_lut,
2719 .nmd_get_info = netmap_mem_pt_guest_get_info,
2720 .nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
2721 .nmd_config = netmap_mem_pt_guest_config,
2722 .nmd_finalize = netmap_mem_pt_guest_finalize,
2723 .nmd_deref = netmap_mem_pt_guest_deref,
2724 .nmd_if_offset = netmap_mem_pt_guest_if_offset,
2725 .nmd_delete = netmap_mem_pt_guest_delete,
2726 .nmd_if_new = netmap_mem_pt_guest_if_new,
2727 .nmd_if_delete = netmap_mem_pt_guest_if_delete,
2728 .nmd_rings_create = netmap_mem_pt_guest_rings_create,
2729 .nmd_rings_delete = netmap_mem_pt_guest_rings_delete
2730 };
2731
2732 /* Called with nm_mem_list_lock held. */
2733 static struct netmap_mem_d *
netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)2734 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
2735 {
2736 struct netmap_mem_d *mem = NULL;
2737 struct netmap_mem_d *scan = netmap_last_mem_d;
2738
2739 do {
2740 /* find ptnetmap allocator through host ID */
2741 if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
2742 ((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
2743 mem = scan;
2744 mem->refcount++;
2745 NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
2746 break;
2747 }
2748 scan = scan->next;
2749 } while (scan != netmap_last_mem_d);
2750
2751 return mem;
2752 }
2753
2754 /* Called with nm_mem_list_lock held. */
2755 static struct netmap_mem_d *
netmap_mem_pt_guest_create(nm_memid_t mem_id)2756 netmap_mem_pt_guest_create(nm_memid_t mem_id)
2757 {
2758 struct netmap_mem_ptg *ptnmd;
2759 int err = 0;
2760
2761 ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
2762 if (ptnmd == NULL) {
2763 err = ENOMEM;
2764 goto error;
2765 }
2766
2767 ptnmd->up.ops = &netmap_mem_pt_guest_ops;
2768 ptnmd->host_mem_id = mem_id;
2769 ptnmd->pt_ifs = NULL;
2770
2771 /* Assign new id in the guest (We have the lock) */
2772 err = nm_mem_assign_id_locked(&ptnmd->up);
2773 if (err)
2774 goto error;
2775
2776 ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
2777 ptnmd->up.flags |= NETMAP_MEM_IO;
2778
2779 NMA_LOCK_INIT(&ptnmd->up);
2780
2781 snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
2782
2783
2784 return &ptnmd->up;
2785 error:
2786 netmap_mem_pt_guest_delete(&ptnmd->up);
2787 return NULL;
2788 }
2789
2790 /*
2791 * find host id in guest allocators and create guest allocator
2792 * if it is not there
2793 */
2794 static struct netmap_mem_d *
netmap_mem_pt_guest_get(nm_memid_t mem_id)2795 netmap_mem_pt_guest_get(nm_memid_t mem_id)
2796 {
2797 struct netmap_mem_d *nmd;
2798
2799 NM_MTX_LOCK(nm_mem_list_lock);
2800 nmd = netmap_mem_pt_guest_find_memid(mem_id);
2801 if (nmd == NULL) {
2802 nmd = netmap_mem_pt_guest_create(mem_id);
2803 }
2804 NM_MTX_UNLOCK(nm_mem_list_lock);
2805
2806 return nmd;
2807 }
2808
2809 /*
2810 * The guest allocator can be created by ptnetmap_memdev (during the device
2811 * attach) or by ptnetmap device (ptnet), during the netmap_attach.
2812 *
2813 * The order is not important (we have different order in LINUX and FreeBSD).
2814 * The first one, creates the device, and the second one simply attaches it.
2815 */
2816
2817 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
2818 * the guest */
2819 struct netmap_mem_d *
netmap_mem_pt_guest_attach(struct ptnetmap_memdev * ptn_dev,nm_memid_t mem_id)2820 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
2821 {
2822 struct netmap_mem_d *nmd;
2823 struct netmap_mem_ptg *ptnmd;
2824
2825 nmd = netmap_mem_pt_guest_get(mem_id);
2826
2827 /* assign this device to the guest allocator */
2828 if (nmd) {
2829 ptnmd = (struct netmap_mem_ptg *)nmd;
2830 ptnmd->ptn_dev = ptn_dev;
2831 }
2832
2833 return nmd;
2834 }
2835
2836 /* Called when ptnet device is attaching */
2837 struct netmap_mem_d *
netmap_mem_pt_guest_new(struct ifnet * ifp,unsigned int nifp_offset,unsigned int memid)2838 netmap_mem_pt_guest_new(struct ifnet *ifp,
2839 unsigned int nifp_offset,
2840 unsigned int memid)
2841 {
2842 struct netmap_mem_d *nmd;
2843
2844 if (ifp == NULL) {
2845 return NULL;
2846 }
2847
2848 nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
2849
2850 if (nmd) {
2851 netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
2852 }
2853
2854 return nmd;
2855 }
2856
2857 #endif /* WITH_PTNETMAP */
2858