1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2013-2016 Vincenzo Maffione
5 * Copyright (C) 2013-2016 Luigi Rizzo
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * This module implements netmap support on top of standard,
32 * unmodified device drivers.
33 *
34 * A NIOCREGIF request is handled here if the device does not
35 * have native support. TX and RX rings are emulated as follows:
36 *
37 * NIOCREGIF
38 * We preallocate a block of TX mbufs (roughly as many as
39 * tx descriptors; the number is not critical) to speed up
40 * operation during transmissions. The refcount on most of
41 * these buffers is artificially bumped up so we can recycle
42 * them more easily. Also, the destructor is intercepted
43 * so we use it as an interrupt notification to wake up
44 * processes blocked on a poll().
45 *
46 * For each receive ring we allocate one "struct mbq"
47 * (an mbuf tailq plus a spinlock). We intercept packets
48 * (through if_input)
49 * on the receive path and put them in the mbq from which
50 * netmap receive routines can grab them.
51 *
52 * TX:
53 * in the generic_txsync() routine, netmap buffers are copied
54 * (or linked, in a future) to the preallocated mbufs
55 * and pushed to the transmit queue. Some of these mbufs
56 * (those with NS_REPORT, or otherwise every half ring)
57 * have the refcount=1, others have refcount=2.
58 * When the destructor is invoked, we take that as
59 * a notification that all mbufs up to that one in
60 * the specific ring have been completed, and generate
61 * the equivalent of a transmit interrupt.
62 *
63 * RX:
64 *
65 */
66
67 #ifdef __FreeBSD__
68
69 #include <sys/cdefs.h> /* prerequisite */
70 __FBSDID("$FreeBSD$");
71
72 #include <sys/types.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/lock.h> /* PROT_EXEC */
76 #include <sys/rwlock.h>
77 #include <sys/socket.h> /* sockaddrs */
78 #include <sys/selinfo.h>
79 #include <net/if.h>
80 #include <net/if_types.h>
81 #include <net/if_var.h>
82 #include <machine/bus.h> /* bus_dmamap_* in netmap_kern.h */
83
84 #include <net/netmap.h>
85 #include <dev/netmap/netmap_kern.h>
86 #include <dev/netmap/netmap_mem2.h>
87
88 #define MBUF_RXQ(m) ((m)->m_pkthdr.flowid)
89 #define smp_mb()
90
91 #elif defined _WIN32
92
93 #include "win_glue.h"
94
95 #define MBUF_TXQ(m) 0//((m)->m_pkthdr.flowid)
96 #define MBUF_RXQ(m) 0//((m)->m_pkthdr.flowid)
97 #define smp_mb() //XXX: to be correctly defined
98
99 #else /* linux */
100
101 #include "bsd_glue.h"
102
103 #include <linux/ethtool.h> /* struct ethtool_ops, get_ringparam */
104 #include <linux/hrtimer.h>
105
106 static inline struct mbuf *
nm_os_get_mbuf(struct ifnet * ifp,int len)107 nm_os_get_mbuf(struct ifnet *ifp, int len)
108 {
109 return alloc_skb(ifp->needed_headroom + len +
110 ifp->needed_tailroom, GFP_ATOMIC);
111 }
112
113 #endif /* linux */
114
115
116 /* Common headers. */
117 #include <net/netmap.h>
118 #include <dev/netmap/netmap_kern.h>
119 #include <dev/netmap/netmap_mem2.h>
120
121
122 #define for_each_kring_n(_i, _k, _karr, _n) \
123 for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124
125 #define for_each_tx_kring(_i, _k, _na) \
126 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127 #define for_each_tx_kring_h(_i, _k, _na) \
128 for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129
130 #define for_each_rx_kring(_i, _k, _na) \
131 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132 #define for_each_rx_kring_h(_i, _k, _na) \
133 for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134
135
136 /* ======================== PERFORMANCE STATISTICS =========================== */
137
138 #ifdef RATE_GENERIC
139 #define IFRATE(x) x
140 struct rate_stats {
141 unsigned long txpkt;
142 unsigned long txsync;
143 unsigned long txirq;
144 unsigned long txrepl;
145 unsigned long txdrop;
146 unsigned long rxpkt;
147 unsigned long rxirq;
148 unsigned long rxsync;
149 };
150
151 struct rate_context {
152 unsigned refcount;
153 struct timer_list timer;
154 struct rate_stats new;
155 struct rate_stats old;
156 };
157
158 #define RATE_PRINTK(_NAME_) \
159 printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160 #define RATE_PERIOD 2
rate_callback(unsigned long arg)161 static void rate_callback(unsigned long arg)
162 {
163 struct rate_context * ctx = (struct rate_context *)arg;
164 struct rate_stats cur = ctx->new;
165 int r;
166
167 RATE_PRINTK(txpkt);
168 RATE_PRINTK(txsync);
169 RATE_PRINTK(txirq);
170 RATE_PRINTK(txrepl);
171 RATE_PRINTK(txdrop);
172 RATE_PRINTK(rxpkt);
173 RATE_PRINTK(rxsync);
174 RATE_PRINTK(rxirq);
175 printk("\n");
176
177 ctx->old = cur;
178 r = mod_timer(&ctx->timer, jiffies +
179 msecs_to_jiffies(RATE_PERIOD * 1000));
180 if (unlikely(r))
181 nm_prerr("mod_timer() failed");
182 }
183
184 static struct rate_context rate_ctx;
185
generic_rate(int txp,int txs,int txi,int rxp,int rxs,int rxi)186 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187 {
188 if (txp) rate_ctx.new.txpkt++;
189 if (txs) rate_ctx.new.txsync++;
190 if (txi) rate_ctx.new.txirq++;
191 if (rxp) rate_ctx.new.rxpkt++;
192 if (rxs) rate_ctx.new.rxsync++;
193 if (rxi) rate_ctx.new.rxirq++;
194 }
195
196 #else /* !RATE */
197 #define IFRATE(x)
198 #endif /* !RATE */
199
200
201 /* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202
203 /*
204 * Wrapper used by the generic adapter layer to notify
205 * the poller threads. Differently from netmap_rx_irq(), we check
206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207 */
208 void
netmap_generic_irq(struct netmap_adapter * na,u_int q,u_int * work_done)209 netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210 {
211 if (unlikely(!nm_netmap_on(na)))
212 return;
213
214 netmap_common_irq(na, q, work_done);
215 #ifdef RATE_GENERIC
216 if (work_done)
217 rate_ctx.new.rxirq++;
218 else
219 rate_ctx.new.txirq++;
220 #endif /* RATE_GENERIC */
221 }
222
223 static int
generic_netmap_unregister(struct netmap_adapter * na)224 generic_netmap_unregister(struct netmap_adapter *na)
225 {
226 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227 struct netmap_kring *kring = NULL;
228 int i, r;
229
230 if (na->active_fds == 0) {
231 na->na_flags &= ~NAF_NETMAP_ON;
232
233 /* Stop intercepting packets on the RX path. */
234 nm_os_catch_rx(gna, 0);
235
236 /* Release packet steering control. */
237 nm_os_catch_tx(gna, 0);
238 }
239
240 netmap_krings_mode_commit(na, /*onoff=*/0);
241
242 for_each_rx_kring(r, kring, na) {
243 /* Free the mbufs still pending in the RX queues,
244 * that did not end up into the corresponding netmap
245 * RX rings. */
246 mbq_safe_purge(&kring->rx_queue);
247 nm_os_mitigation_cleanup(&gna->mit[r]);
248 }
249
250 /* Decrement reference counter for the mbufs in the
251 * TX pools. These mbufs can be still pending in drivers,
252 * (e.g. this happens with virtio-net driver, which
253 * does lazy reclaiming of transmitted mbufs). */
254 for_each_tx_kring(r, kring, na) {
255 /* We must remove the destructor on the TX event,
256 * because the destructor invokes netmap code, and
257 * the netmap module may disappear before the
258 * TX event is consumed. */
259 mtx_lock_spin(&kring->tx_event_lock);
260 if (kring->tx_event) {
261 SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
262 }
263 kring->tx_event = NULL;
264 mtx_unlock_spin(&kring->tx_event_lock);
265 }
266
267 if (na->active_fds == 0) {
268 nm_os_free(gna->mit);
269
270 for_each_rx_kring(r, kring, na) {
271 mbq_safe_fini(&kring->rx_queue);
272 }
273
274 for_each_tx_kring(r, kring, na) {
275 mtx_destroy(&kring->tx_event_lock);
276 if (kring->tx_pool == NULL) {
277 continue;
278 }
279
280 for (i=0; i<na->num_tx_desc; i++) {
281 if (kring->tx_pool[i]) {
282 m_freem(kring->tx_pool[i]);
283 }
284 }
285 nm_os_free(kring->tx_pool);
286 kring->tx_pool = NULL;
287 }
288
289 #ifdef RATE_GENERIC
290 if (--rate_ctx.refcount == 0) {
291 nm_prinf("del_timer()");
292 del_timer(&rate_ctx.timer);
293 }
294 #endif
295 nm_prinf("Emulated adapter for %s deactivated", na->name);
296 }
297
298 return 0;
299 }
300
301 /* Enable/disable netmap mode for a generic network interface. */
302 static int
generic_netmap_register(struct netmap_adapter * na,int enable)303 generic_netmap_register(struct netmap_adapter *na, int enable)
304 {
305 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
306 struct netmap_kring *kring = NULL;
307 int error;
308 int i, r;
309
310 if (!na) {
311 return EINVAL;
312 }
313
314 if (!enable) {
315 /* This is actually an unregif. */
316 return generic_netmap_unregister(na);
317 }
318
319 if (na->active_fds == 0) {
320 nm_prinf("Emulated adapter for %s activated", na->name);
321 /* Do all memory allocations when (na->active_fds == 0), to
322 * simplify error management. */
323
324 /* Allocate memory for mitigation support on all the rx queues. */
325 gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
326 if (!gna->mit) {
327 nm_prerr("mitigation allocation failed");
328 error = ENOMEM;
329 goto out;
330 }
331
332 for_each_rx_kring(r, kring, na) {
333 /* Init mitigation support. */
334 nm_os_mitigation_init(&gna->mit[r], r, na);
335
336 /* Initialize the rx queue, as generic_rx_handler() can
337 * be called as soon as nm_os_catch_rx() returns.
338 */
339 mbq_safe_init(&kring->rx_queue);
340 }
341
342 /*
343 * Prepare mbuf pools (parallel to the tx rings), for packet
344 * transmission. Don't preallocate the mbufs here, it's simpler
345 * to leave this task to txsync.
346 */
347 for_each_tx_kring(r, kring, na) {
348 kring->tx_pool = NULL;
349 }
350 for_each_tx_kring(r, kring, na) {
351 kring->tx_pool =
352 nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
353 if (!kring->tx_pool) {
354 nm_prerr("tx_pool allocation failed");
355 error = ENOMEM;
356 goto free_tx_pools;
357 }
358 mtx_init(&kring->tx_event_lock, "tx_event_lock",
359 NULL, MTX_SPIN);
360 }
361 }
362
363 netmap_krings_mode_commit(na, /*onoff=*/1);
364
365 for_each_tx_kring(r, kring, na) {
366 /* Initialize tx_pool and tx_event. */
367 for (i=0; i<na->num_tx_desc; i++) {
368 kring->tx_pool[i] = NULL;
369 }
370
371 kring->tx_event = NULL;
372 }
373
374 if (na->active_fds == 0) {
375 /* Prepare to intercept incoming traffic. */
376 error = nm_os_catch_rx(gna, 1);
377 if (error) {
378 nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
379 goto free_tx_pools;
380 }
381
382 /* Let netmap control the packet steering. */
383 error = nm_os_catch_tx(gna, 1);
384 if (error) {
385 nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
386 goto catch_rx;
387 }
388
389 na->na_flags |= NAF_NETMAP_ON;
390
391 #ifdef RATE_GENERIC
392 if (rate_ctx.refcount == 0) {
393 nm_prinf("setup_timer()");
394 memset(&rate_ctx, 0, sizeof(rate_ctx));
395 setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
396 if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
397 nm_prerr("Error: mod_timer()");
398 }
399 }
400 rate_ctx.refcount++;
401 #endif /* RATE */
402 }
403
404 return 0;
405
406 /* Here (na->active_fds == 0) holds. */
407 catch_rx:
408 nm_os_catch_rx(gna, 0);
409 free_tx_pools:
410 for_each_tx_kring(r, kring, na) {
411 mtx_destroy(&kring->tx_event_lock);
412 if (kring->tx_pool == NULL) {
413 continue;
414 }
415 nm_os_free(kring->tx_pool);
416 kring->tx_pool = NULL;
417 }
418 for_each_rx_kring(r, kring, na) {
419 mbq_safe_fini(&kring->rx_queue);
420 }
421 nm_os_free(gna->mit);
422 out:
423
424 return error;
425 }
426
427 /*
428 * Callback invoked when the device driver frees an mbuf used
429 * by netmap to transmit a packet. This usually happens when
430 * the NIC notifies the driver that transmission is completed.
431 */
432 static void
generic_mbuf_destructor(struct mbuf * m)433 generic_mbuf_destructor(struct mbuf *m)
434 {
435 struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
436 struct netmap_kring *kring;
437 unsigned int r = MBUF_TXQ(m);
438 unsigned int r_orig = r;
439
440 if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
441 nm_prerr("Error: no netmap adapter on device %p",
442 GEN_TX_MBUF_IFP(m));
443 return;
444 }
445
446 /*
447 * First, clear the event mbuf.
448 * In principle, the event 'm' should match the one stored
449 * on ring 'r'. However we check it explicitely to stay
450 * safe against lower layers (qdisc, driver, etc.) changing
451 * MBUF_TXQ(m) under our feet. If the match is not found
452 * on 'r', we try to see if it belongs to some other ring.
453 */
454 for (;;) {
455 bool match = false;
456
457 kring = na->tx_rings[r];
458 mtx_lock_spin(&kring->tx_event_lock);
459 if (kring->tx_event == m) {
460 kring->tx_event = NULL;
461 match = true;
462 }
463 mtx_unlock_spin(&kring->tx_event_lock);
464
465 if (match) {
466 if (r != r_orig) {
467 nm_prlim(1, "event %p migrated: ring %u --> %u",
468 m, r_orig, r);
469 }
470 break;
471 }
472
473 if (++r == na->num_tx_rings) r = 0;
474
475 if (r == r_orig) {
476 nm_prlim(1, "Cannot match event %p", m);
477 return;
478 }
479 }
480
481 /* Second, wake up clients. They will reclaim the event through
482 * txsync. */
483 netmap_generic_irq(na, r, NULL);
484 #ifdef __FreeBSD__
485 #if __FreeBSD_version <= 1200050
486 void_mbuf_dtor(m, NULL, NULL);
487 #else /* __FreeBSD_version >= 1200051 */
488 void_mbuf_dtor(m);
489 #endif /* __FreeBSD_version >= 1200051 */
490 #endif
491 }
492
493 /* Record completed transmissions and update hwtail.
494 *
495 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
496 * nr_hwcur is the first unsent buffer.
497 */
498 static u_int
generic_netmap_tx_clean(struct netmap_kring * kring,int txqdisc)499 generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
500 {
501 u_int const lim = kring->nkr_num_slots - 1;
502 u_int nm_i = nm_next(kring->nr_hwtail, lim);
503 u_int hwcur = kring->nr_hwcur;
504 u_int n = 0;
505 struct mbuf **tx_pool = kring->tx_pool;
506
507 nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
508
509 while (nm_i != hwcur) { /* buffers not completed */
510 struct mbuf *m = tx_pool[nm_i];
511
512 if (txqdisc) {
513 if (m == NULL) {
514 /* Nothing to do, this is going
515 * to be replenished. */
516 nm_prlim(3, "Is this happening?");
517
518 } else if (MBUF_QUEUED(m)) {
519 break; /* Not dequeued yet. */
520
521 } else if (MBUF_REFCNT(m) != 1) {
522 /* This mbuf has been dequeued but is still busy
523 * (refcount is 2).
524 * Leave it to the driver and replenish. */
525 m_freem(m);
526 tx_pool[nm_i] = NULL;
527 }
528
529 } else {
530 if (unlikely(m == NULL)) {
531 int event_consumed;
532
533 /* This slot was used to place an event. */
534 mtx_lock_spin(&kring->tx_event_lock);
535 event_consumed = (kring->tx_event == NULL);
536 mtx_unlock_spin(&kring->tx_event_lock);
537 if (!event_consumed) {
538 /* The event has not been consumed yet,
539 * still busy in the driver. */
540 break;
541 }
542 /* The event has been consumed, we can go
543 * ahead. */
544
545 } else if (MBUF_REFCNT(m) != 1) {
546 /* This mbuf is still busy: its refcnt is 2. */
547 break;
548 }
549 }
550
551 n++;
552 nm_i = nm_next(nm_i, lim);
553 }
554 kring->nr_hwtail = nm_prev(nm_i, lim);
555 nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
556
557 return n;
558 }
559
560 /* Compute a slot index in the middle between inf and sup. */
561 static inline u_int
ring_middle(u_int inf,u_int sup,u_int lim)562 ring_middle(u_int inf, u_int sup, u_int lim)
563 {
564 u_int n = lim + 1;
565 u_int e;
566
567 if (sup >= inf) {
568 e = (sup + inf) / 2;
569 } else { /* wrap around */
570 e = (sup + n + inf) / 2;
571 if (e >= n) {
572 e -= n;
573 }
574 }
575
576 if (unlikely(e >= n)) {
577 nm_prerr("This cannot happen");
578 e = 0;
579 }
580
581 return e;
582 }
583
584 static void
generic_set_tx_event(struct netmap_kring * kring,u_int hwcur)585 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
586 {
587 u_int lim = kring->nkr_num_slots - 1;
588 struct mbuf *m;
589 u_int e;
590 u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
591
592 if (ntc == hwcur) {
593 return; /* all buffers are free */
594 }
595
596 /*
597 * We have pending packets in the driver between hwtail+1
598 * and hwcur, and we have to chose one of these slot to
599 * generate a notification.
600 * There is a race but this is only called within txsync which
601 * does a double check.
602 */
603 #if 0
604 /* Choose a slot in the middle, so that we don't risk ending
605 * up in a situation where the client continuously wake up,
606 * fills one or a few TX slots and go to sleep again. */
607 e = ring_middle(ntc, hwcur, lim);
608 #else
609 /* Choose the first pending slot, to be safe against driver
610 * reordering mbuf transmissions. */
611 e = ntc;
612 #endif
613
614 m = kring->tx_pool[e];
615 if (m == NULL) {
616 /* An event is already in place. */
617 return;
618 }
619
620 mtx_lock_spin(&kring->tx_event_lock);
621 if (kring->tx_event) {
622 /* An event is already in place. */
623 mtx_unlock_spin(&kring->tx_event_lock);
624 return;
625 }
626
627 SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
628 kring->tx_event = m;
629 mtx_unlock_spin(&kring->tx_event_lock);
630
631 kring->tx_pool[e] = NULL;
632
633 nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
634
635 /* Decrement the refcount. This will free it if we lose the race
636 * with the driver. */
637 m_freem(m);
638 smp_mb();
639 }
640
641
642 /*
643 * generic_netmap_txsync() transforms netmap buffers into mbufs
644 * and passes them to the standard device driver
645 * (ndo_start_xmit() or ifp->if_transmit() ).
646 * On linux this is not done directly, but using dev_queue_xmit(),
647 * since it implements the TX flow control (and takes some locks).
648 */
649 static int
generic_netmap_txsync(struct netmap_kring * kring,int flags)650 generic_netmap_txsync(struct netmap_kring *kring, int flags)
651 {
652 struct netmap_adapter *na = kring->na;
653 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
654 struct ifnet *ifp = na->ifp;
655 struct netmap_ring *ring = kring->ring;
656 u_int nm_i; /* index into the netmap ring */ // j
657 u_int const lim = kring->nkr_num_slots - 1;
658 u_int const head = kring->rhead;
659 u_int ring_nr = kring->ring_id;
660
661 IFRATE(rate_ctx.new.txsync++);
662
663 rmb();
664
665 /*
666 * First part: process new packets to send.
667 */
668 nm_i = kring->nr_hwcur;
669 if (nm_i != head) { /* we have new packets to send */
670 struct nm_os_gen_arg a;
671 u_int event = -1;
672 #ifdef __FreeBSD__
673 struct epoch_tracker et;
674
675 NET_EPOCH_ENTER(et);
676 #endif
677
678 if (gna->txqdisc && nm_kr_txempty(kring)) {
679 /* In txqdisc mode, we ask for a delayed notification,
680 * but only when cur == hwtail, which means that the
681 * client is going to block. */
682 event = ring_middle(nm_i, head, lim);
683 nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
684 "head=%u,hwtail=%u)", nm_i, event, head,
685 kring->nr_hwtail);
686 }
687
688 a.ifp = ifp;
689 a.ring_nr = ring_nr;
690 a.head = a.tail = NULL;
691
692 while (nm_i != head) {
693 struct netmap_slot *slot = &ring->slot[nm_i];
694 u_int len = slot->len;
695 void *addr = NMB(na, slot);
696 /* device-specific */
697 struct mbuf *m;
698 int tx_ret;
699
700 NM_CHECK_ADDR_LEN(na, addr, len);
701
702 /* Tale a mbuf from the tx pool (replenishing the pool
703 * entry if necessary) and copy in the user packet. */
704 m = kring->tx_pool[nm_i];
705 if (unlikely(m == NULL)) {
706 kring->tx_pool[nm_i] = m =
707 nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
708 if (m == NULL) {
709 nm_prlim(2, "Failed to replenish mbuf");
710 /* Here we could schedule a timer which
711 * retries to replenish after a while,
712 * and notifies the client when it
713 * manages to replenish some slots. In
714 * any case we break early to avoid
715 * crashes. */
716 break;
717 }
718 IFRATE(rate_ctx.new.txrepl++);
719 }
720
721 a.m = m;
722 a.addr = addr;
723 a.len = len;
724 a.qevent = (nm_i == event);
725 /* When not in txqdisc mode, we should ask
726 * notifications when NS_REPORT is set, or roughly
727 * every half ring. To optimize this, we set a
728 * notification event when the client runs out of
729 * TX ring space, or when transmission fails. In
730 * the latter case we also break early.
731 */
732 tx_ret = nm_os_generic_xmit_frame(&a);
733 if (unlikely(tx_ret)) {
734 if (!gna->txqdisc) {
735 /*
736 * No room for this mbuf in the device driver.
737 * Request a notification FOR A PREVIOUS MBUF,
738 * then call generic_netmap_tx_clean(kring) to do the
739 * double check and see if we can free more buffers.
740 * If there is space continue, else break;
741 * NOTE: the double check is necessary if the problem
742 * occurs in the txsync call after selrecord().
743 * Also, we need some way to tell the caller that not
744 * all buffers were queued onto the device (this was
745 * not a problem with native netmap driver where space
746 * is preallocated). The bridge has a similar problem
747 * and we solve it there by dropping the excess packets.
748 */
749 generic_set_tx_event(kring, nm_i);
750 if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
751 /* space now available */
752 continue;
753 } else {
754 break;
755 }
756 }
757
758 /* In txqdisc mode, the netmap-aware qdisc
759 * queue has the same length as the number of
760 * netmap slots (N). Since tail is advanced
761 * only when packets are dequeued, qdisc
762 * queue overrun cannot happen, so
763 * nm_os_generic_xmit_frame() did not fail
764 * because of that.
765 * However, packets can be dropped because
766 * carrier is off, or because our qdisc is
767 * being deactivated, or possibly for other
768 * reasons. In these cases, we just let the
769 * packet to be dropped. */
770 IFRATE(rate_ctx.new.txdrop++);
771 }
772
773 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
774 nm_i = nm_next(nm_i, lim);
775 IFRATE(rate_ctx.new.txpkt++);
776 }
777 if (a.head != NULL) {
778 a.addr = NULL;
779 nm_os_generic_xmit_frame(&a);
780 }
781 /* Update hwcur to the next slot to transmit. Here nm_i
782 * is not necessarily head, we could break early. */
783 kring->nr_hwcur = nm_i;
784
785 #ifdef __FreeBSD__
786 NET_EPOCH_EXIT(et);
787 #endif
788 }
789
790 /*
791 * Second, reclaim completed buffers
792 */
793 if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
794 /* No more available slots? Set a notification event
795 * on a netmap slot that will be cleaned in the future.
796 * No doublecheck is performed, since txsync() will be
797 * called twice by netmap_poll().
798 */
799 generic_set_tx_event(kring, nm_i);
800 }
801
802 generic_netmap_tx_clean(kring, gna->txqdisc);
803
804 return 0;
805 }
806
807
808 /*
809 * This handler is registered (through nm_os_catch_rx())
810 * within the attached network interface
811 * in the RX subsystem, so that every mbuf passed up by
812 * the driver can be stolen to the network stack.
813 * Stolen packets are put in a queue where the
814 * generic_netmap_rxsync() callback can extract them.
815 * Returns 1 if the packet was stolen, 0 otherwise.
816 */
817 int
generic_rx_handler(struct ifnet * ifp,struct mbuf * m)818 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
819 {
820 struct netmap_adapter *na = NA(ifp);
821 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
822 struct netmap_kring *kring;
823 u_int work_done;
824 u_int r = MBUF_RXQ(m); /* receive ring number */
825
826 if (r >= na->num_rx_rings) {
827 r = r % na->num_rx_rings;
828 }
829
830 kring = na->rx_rings[r];
831
832 if (kring->nr_mode == NKR_NETMAP_OFF) {
833 /* We must not intercept this mbuf. */
834 return 0;
835 }
836
837 /* limit the size of the queue */
838 if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
839 /* This may happen when GRO/LRO features are enabled for
840 * the NIC driver when the generic adapter does not
841 * support RX scatter-gather. */
842 nm_prlim(2, "Warning: driver pushed up big packet "
843 "(size=%d)", (int)MBUF_LEN(m));
844 m_freem(m);
845 } else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
846 m_freem(m);
847 } else {
848 mbq_safe_enqueue(&kring->rx_queue, m);
849 }
850
851 if (netmap_generic_mit < 32768) {
852 /* no rx mitigation, pass notification up */
853 netmap_generic_irq(na, r, &work_done);
854 } else {
855 /* same as send combining, filter notification if there is a
856 * pending timer, otherwise pass it up and start a timer.
857 */
858 if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
859 /* Record that there is some pending work. */
860 gna->mit[r].mit_pending = 1;
861 } else {
862 netmap_generic_irq(na, r, &work_done);
863 nm_os_mitigation_start(&gna->mit[r]);
864 }
865 }
866
867 /* We have intercepted the mbuf. */
868 return 1;
869 }
870
871 /*
872 * generic_netmap_rxsync() extracts mbufs from the queue filled by
873 * generic_netmap_rx_handler() and puts their content in the netmap
874 * receive ring.
875 * Access must be protected because the rx handler is asynchronous,
876 */
877 static int
generic_netmap_rxsync(struct netmap_kring * kring,int flags)878 generic_netmap_rxsync(struct netmap_kring *kring, int flags)
879 {
880 struct netmap_ring *ring = kring->ring;
881 struct netmap_adapter *na = kring->na;
882 u_int nm_i; /* index into the netmap ring */ //j,
883 u_int n;
884 u_int const lim = kring->nkr_num_slots - 1;
885 u_int const head = kring->rhead;
886 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
887
888 /* Adapter-specific variables. */
889 u_int nm_buf_len = NETMAP_BUF_SIZE(na);
890 struct mbq tmpq;
891 struct mbuf *m;
892 int avail; /* in bytes */
893 int mlen;
894 int copy;
895
896 if (head > lim)
897 return netmap_ring_reinit(kring);
898
899 IFRATE(rate_ctx.new.rxsync++);
900
901 /*
902 * First part: skip past packets that userspace has released.
903 * This can possibly make room for the second part.
904 */
905 nm_i = kring->nr_hwcur;
906 if (nm_i != head) {
907 /* Userspace has released some packets. */
908 for (n = 0; nm_i != head; n++) {
909 struct netmap_slot *slot = &ring->slot[nm_i];
910
911 slot->flags &= ~NS_BUF_CHANGED;
912 nm_i = nm_next(nm_i, lim);
913 }
914 kring->nr_hwcur = head;
915 }
916
917 /*
918 * Second part: import newly received packets.
919 */
920 if (!netmap_no_pendintr && !force_update) {
921 return 0;
922 }
923
924 nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
925
926 /* Compute the available space (in bytes) in this netmap ring.
927 * The first slot that is not considered in is the one before
928 * nr_hwcur. */
929
930 avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
931 if (avail < 0)
932 avail += lim + 1;
933 avail *= nm_buf_len;
934
935 /* First pass: While holding the lock on the RX mbuf queue,
936 * extract as many mbufs as they fit the available space,
937 * and put them in a temporary queue.
938 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
939 * to update avail, we do the update in a while loop that we
940 * also use to set the RX slots, but without performing the copy. */
941 mbq_init(&tmpq);
942 mbq_lock(&kring->rx_queue);
943 for (n = 0;; n++) {
944 m = mbq_peek(&kring->rx_queue);
945 if (!m) {
946 /* No more packets from the driver. */
947 break;
948 }
949
950 mlen = MBUF_LEN(m);
951 if (mlen > avail) {
952 /* No more space in the ring. */
953 break;
954 }
955
956 mbq_dequeue(&kring->rx_queue);
957
958 while (mlen) {
959 copy = nm_buf_len;
960 if (mlen < copy) {
961 copy = mlen;
962 }
963 mlen -= copy;
964 avail -= nm_buf_len;
965
966 ring->slot[nm_i].len = copy;
967 ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
968 nm_i = nm_next(nm_i, lim);
969 }
970
971 mbq_enqueue(&tmpq, m);
972 }
973 mbq_unlock(&kring->rx_queue);
974
975 /* Second pass: Drain the temporary queue, going over the used RX slots,
976 * and perform the copy out of the RX queue lock. */
977 nm_i = kring->nr_hwtail;
978
979 for (;;) {
980 void *nmaddr;
981 int ofs = 0;
982 int morefrag;
983
984 m = mbq_dequeue(&tmpq);
985 if (!m) {
986 break;
987 }
988
989 do {
990 nmaddr = NMB(na, &ring->slot[nm_i]);
991 /* We only check the address here on generic rx rings. */
992 if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
993 m_freem(m);
994 mbq_purge(&tmpq);
995 mbq_fini(&tmpq);
996 return netmap_ring_reinit(kring);
997 }
998
999 copy = ring->slot[nm_i].len;
1000 m_copydata(m, ofs, copy, nmaddr);
1001 ofs += copy;
1002 morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
1003 nm_i = nm_next(nm_i, lim);
1004 } while (morefrag);
1005
1006 m_freem(m);
1007 }
1008
1009 mbq_fini(&tmpq);
1010
1011 if (n) {
1012 kring->nr_hwtail = nm_i;
1013 IFRATE(rate_ctx.new.rxpkt += n);
1014 }
1015 kring->nr_kflags &= ~NKR_PENDINTR;
1016
1017 return 0;
1018 }
1019
1020 static void
generic_netmap_dtor(struct netmap_adapter * na)1021 generic_netmap_dtor(struct netmap_adapter *na)
1022 {
1023 struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1024 struct ifnet *ifp = netmap_generic_getifp(gna);
1025 struct netmap_adapter *prev_na = gna->prev;
1026
1027 if (prev_na != NULL) {
1028 netmap_adapter_put(prev_na);
1029 if (nm_iszombie(na)) {
1030 /*
1031 * The driver has been removed without releasing
1032 * the reference so we need to do it here.
1033 */
1034 netmap_adapter_put(prev_na);
1035 }
1036 nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1037 }
1038 NM_RESTORE_NA(ifp, prev_na);
1039 /*
1040 * netmap_detach_common(), that it's called after this function,
1041 * overrides WNA(ifp) if na->ifp is not NULL.
1042 */
1043 na->ifp = NULL;
1044 nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1045 }
1046
1047 int
na_is_generic(struct netmap_adapter * na)1048 na_is_generic(struct netmap_adapter *na)
1049 {
1050 return na->nm_register == generic_netmap_register;
1051 }
1052
1053 /*
1054 * generic_netmap_attach() makes it possible to use netmap on
1055 * a device without native netmap support.
1056 * This is less performant than native support but potentially
1057 * faster than raw sockets or similar schemes.
1058 *
1059 * In this "emulated" mode, netmap rings do not necessarily
1060 * have the same size as those in the NIC. We use a default
1061 * value and possibly override it if the OS has ways to fetch the
1062 * actual configuration.
1063 */
1064 int
generic_netmap_attach(struct ifnet * ifp)1065 generic_netmap_attach(struct ifnet *ifp)
1066 {
1067 struct netmap_adapter *na;
1068 struct netmap_generic_adapter *gna;
1069 int retval;
1070 u_int num_tx_desc, num_rx_desc;
1071
1072 #ifdef __FreeBSD__
1073 if (ifp->if_type == IFT_LOOP) {
1074 nm_prerr("if_loop is not supported by %s", __func__);
1075 return EINVAL;
1076 }
1077 #endif
1078
1079 if (NM_NA_CLASH(ifp)) {
1080 /* If NA(ifp) is not null but there is no valid netmap
1081 * adapter it means that someone else is using the same
1082 * pointer (e.g. ax25_ptr on linux). This happens for
1083 * instance when also PF_RING is in use. */
1084 nm_prerr("Error: netmap adapter hook is busy");
1085 return EBUSY;
1086 }
1087
1088 num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1089
1090 nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1091 if (num_tx_desc == 0 || num_rx_desc == 0) {
1092 nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1093 return EINVAL;
1094 }
1095
1096 gna = nm_os_malloc(sizeof(*gna));
1097 if (gna == NULL) {
1098 nm_prerr("no memory on attach, give up");
1099 return ENOMEM;
1100 }
1101 na = (struct netmap_adapter *)gna;
1102 strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1103 na->ifp = ifp;
1104 na->num_tx_desc = num_tx_desc;
1105 na->num_rx_desc = num_rx_desc;
1106 na->rx_buf_maxsize = 32768;
1107 na->nm_register = &generic_netmap_register;
1108 na->nm_txsync = &generic_netmap_txsync;
1109 na->nm_rxsync = &generic_netmap_rxsync;
1110 na->nm_dtor = &generic_netmap_dtor;
1111 /* when using generic, NAF_NETMAP_ON is set so we force
1112 * NAF_SKIP_INTR to use the regular interrupt handler
1113 */
1114 na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1115
1116 nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1117 ifp->num_tx_queues, ifp->real_num_tx_queues,
1118 ifp->tx_queue_len);
1119 nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1120 ifp->num_rx_queues, ifp->real_num_rx_queues);
1121
1122 nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1123
1124 retval = netmap_attach_common(na);
1125 if (retval) {
1126 nm_os_free(gna);
1127 return retval;
1128 }
1129
1130 if (NM_NA_VALID(ifp)) {
1131 gna->prev = NA(ifp); /* save old na */
1132 netmap_adapter_get(gna->prev);
1133 }
1134 NM_ATTACH_NA(ifp, na);
1135
1136 nm_os_generic_set_features(gna);
1137
1138 nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1139 gna->prev ? gna->prev->name : "NULL");
1140
1141 return retval;
1142 }
1143