1 /*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <sys/cdefs.h>
8 __FBSDID("$FreeBSD$");
9
10 #include "igc_api.h"
11
12 static s32 igc_wait_autoneg(struct igc_hw *hw);
13
14 /**
15 * igc_init_phy_ops_generic - Initialize PHY function pointers
16 * @hw: pointer to the HW structure
17 *
18 * Setups up the function pointers to no-op functions
19 **/
igc_init_phy_ops_generic(struct igc_hw * hw)20 void igc_init_phy_ops_generic(struct igc_hw *hw)
21 {
22 struct igc_phy_info *phy = &hw->phy;
23 DEBUGFUNC("igc_init_phy_ops_generic");
24
25 /* Initialize function pointers */
26 phy->ops.init_params = igc_null_ops_generic;
27 phy->ops.acquire = igc_null_ops_generic;
28 phy->ops.check_reset_block = igc_null_ops_generic;
29 phy->ops.force_speed_duplex = igc_null_ops_generic;
30 phy->ops.get_info = igc_null_ops_generic;
31 phy->ops.set_page = igc_null_set_page;
32 phy->ops.read_reg = igc_null_read_reg;
33 phy->ops.read_reg_locked = igc_null_read_reg;
34 phy->ops.read_reg_page = igc_null_read_reg;
35 phy->ops.release = igc_null_phy_generic;
36 phy->ops.reset = igc_null_ops_generic;
37 phy->ops.set_d0_lplu_state = igc_null_lplu_state;
38 phy->ops.set_d3_lplu_state = igc_null_lplu_state;
39 phy->ops.write_reg = igc_null_write_reg;
40 phy->ops.write_reg_locked = igc_null_write_reg;
41 phy->ops.write_reg_page = igc_null_write_reg;
42 phy->ops.power_up = igc_null_phy_generic;
43 phy->ops.power_down = igc_null_phy_generic;
44 }
45
46 /**
47 * igc_null_set_page - No-op function, return 0
48 * @hw: pointer to the HW structure
49 * @data: dummy variable
50 **/
igc_null_set_page(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG data)51 s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw,
52 u16 IGC_UNUSEDARG data)
53 {
54 DEBUGFUNC("igc_null_set_page");
55 return IGC_SUCCESS;
56 }
57
58 /**
59 * igc_null_read_reg - No-op function, return 0
60 * @hw: pointer to the HW structure
61 * @offset: dummy variable
62 * @data: dummy variable
63 **/
igc_null_read_reg(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG offset,u16 IGC_UNUSEDARG * data)64 s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw,
65 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG *data)
66 {
67 DEBUGFUNC("igc_null_read_reg");
68 return IGC_SUCCESS;
69 }
70
71 /**
72 * igc_null_phy_generic - No-op function, return void
73 * @hw: pointer to the HW structure
74 **/
igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG * hw)75 void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw)
76 {
77 DEBUGFUNC("igc_null_phy_generic");
78 return;
79 }
80
81 /**
82 * igc_null_lplu_state - No-op function, return 0
83 * @hw: pointer to the HW structure
84 * @active: dummy variable
85 **/
igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG * hw,bool IGC_UNUSEDARG active)86 s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw,
87 bool IGC_UNUSEDARG active)
88 {
89 DEBUGFUNC("igc_null_lplu_state");
90 return IGC_SUCCESS;
91 }
92
93 /**
94 * igc_null_write_reg - No-op function, return 0
95 * @hw: pointer to the HW structure
96 * @offset: dummy variable
97 * @data: dummy variable
98 **/
igc_null_write_reg(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG offset,u16 IGC_UNUSEDARG data)99 s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw,
100 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data)
101 {
102 DEBUGFUNC("igc_null_write_reg");
103 return IGC_SUCCESS;
104 }
105
106 /**
107 * igc_check_reset_block_generic - Check if PHY reset is blocked
108 * @hw: pointer to the HW structure
109 *
110 * Read the PHY management control register and check whether a PHY reset
111 * is blocked. If a reset is not blocked return IGC_SUCCESS, otherwise
112 * return IGC_BLK_PHY_RESET (12).
113 **/
igc_check_reset_block_generic(struct igc_hw * hw)114 s32 igc_check_reset_block_generic(struct igc_hw *hw)
115 {
116 u32 manc;
117
118 DEBUGFUNC("igc_check_reset_block");
119
120 manc = IGC_READ_REG(hw, IGC_MANC);
121
122 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
123 IGC_BLK_PHY_RESET : IGC_SUCCESS;
124 }
125
126 /**
127 * igc_get_phy_id - Retrieve the PHY ID and revision
128 * @hw: pointer to the HW structure
129 *
130 * Reads the PHY registers and stores the PHY ID and possibly the PHY
131 * revision in the hardware structure.
132 **/
igc_get_phy_id(struct igc_hw * hw)133 s32 igc_get_phy_id(struct igc_hw *hw)
134 {
135 struct igc_phy_info *phy = &hw->phy;
136 s32 ret_val = IGC_SUCCESS;
137 u16 phy_id;
138
139 DEBUGFUNC("igc_get_phy_id");
140
141 if (!phy->ops.read_reg)
142 return IGC_SUCCESS;
143
144 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
145 if (ret_val)
146 return ret_val;
147
148 phy->id = (u32)(phy_id << 16);
149 usec_delay(200);
150 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
151 if (ret_val)
152 return ret_val;
153
154 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
155 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
156
157 return IGC_SUCCESS;
158 }
159
160 /**
161 * igc_read_phy_reg_mdic - Read MDI control register
162 * @hw: pointer to the HW structure
163 * @offset: register offset to be read
164 * @data: pointer to the read data
165 *
166 * Reads the MDI control register in the PHY at offset and stores the
167 * information read to data.
168 **/
igc_read_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 * data)169 s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
170 {
171 struct igc_phy_info *phy = &hw->phy;
172 u32 i, mdic = 0;
173
174 DEBUGFUNC("igc_read_phy_reg_mdic");
175
176 if (offset > MAX_PHY_REG_ADDRESS) {
177 DEBUGOUT1("PHY Address %d is out of range\n", offset);
178 return -IGC_ERR_PARAM;
179 }
180
181 /* Set up Op-code, Phy Address, and register offset in the MDI
182 * Control register. The MAC will take care of interfacing with the
183 * PHY to retrieve the desired data.
184 */
185 mdic = ((offset << IGC_MDIC_REG_SHIFT) |
186 (phy->addr << IGC_MDIC_PHY_SHIFT) |
187 (IGC_MDIC_OP_READ));
188
189 IGC_WRITE_REG(hw, IGC_MDIC, mdic);
190
191 /* Poll the ready bit to see if the MDI read completed
192 * Increasing the time out as testing showed failures with
193 * the lower time out
194 */
195 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
196 usec_delay_irq(50);
197 mdic = IGC_READ_REG(hw, IGC_MDIC);
198 if (mdic & IGC_MDIC_READY)
199 break;
200 }
201 if (!(mdic & IGC_MDIC_READY)) {
202 DEBUGOUT("MDI Read did not complete\n");
203 return -IGC_ERR_PHY;
204 }
205 if (mdic & IGC_MDIC_ERROR) {
206 DEBUGOUT("MDI Error\n");
207 return -IGC_ERR_PHY;
208 }
209 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
210 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
211 offset,
212 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
213 return -IGC_ERR_PHY;
214 }
215 *data = (u16) mdic;
216
217 return IGC_SUCCESS;
218 }
219
220 /**
221 * igc_write_phy_reg_mdic - Write MDI control register
222 * @hw: pointer to the HW structure
223 * @offset: register offset to write to
224 * @data: data to write to register at offset
225 *
226 * Writes data to MDI control register in the PHY at offset.
227 **/
igc_write_phy_reg_mdic(struct igc_hw * hw,u32 offset,u16 data)228 s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
229 {
230 struct igc_phy_info *phy = &hw->phy;
231 u32 i, mdic = 0;
232
233 DEBUGFUNC("igc_write_phy_reg_mdic");
234
235 if (offset > MAX_PHY_REG_ADDRESS) {
236 DEBUGOUT1("PHY Address %d is out of range\n", offset);
237 return -IGC_ERR_PARAM;
238 }
239
240 /* Set up Op-code, Phy Address, and register offset in the MDI
241 * Control register. The MAC will take care of interfacing with the
242 * PHY to retrieve the desired data.
243 */
244 mdic = (((u32)data) |
245 (offset << IGC_MDIC_REG_SHIFT) |
246 (phy->addr << IGC_MDIC_PHY_SHIFT) |
247 (IGC_MDIC_OP_WRITE));
248
249 IGC_WRITE_REG(hw, IGC_MDIC, mdic);
250
251 /* Poll the ready bit to see if the MDI read completed
252 * Increasing the time out as testing showed failures with
253 * the lower time out
254 */
255 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
256 usec_delay_irq(50);
257 mdic = IGC_READ_REG(hw, IGC_MDIC);
258 if (mdic & IGC_MDIC_READY)
259 break;
260 }
261 if (!(mdic & IGC_MDIC_READY)) {
262 DEBUGOUT("MDI Write did not complete\n");
263 return -IGC_ERR_PHY;
264 }
265 if (mdic & IGC_MDIC_ERROR) {
266 DEBUGOUT("MDI Error\n");
267 return -IGC_ERR_PHY;
268 }
269 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
270 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
271 offset,
272 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
273 return -IGC_ERR_PHY;
274 }
275
276 return IGC_SUCCESS;
277 }
278
279 /**
280 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
281 * @hw: pointer to the HW structure
282 *
283 * Reads the MII auto-neg advertisement register and/or the 1000T control
284 * register and if the PHY is already setup for auto-negotiation, then
285 * return successful. Otherwise, setup advertisement and flow control to
286 * the appropriate values for the wanted auto-negotiation.
287 **/
igc_phy_setup_autoneg(struct igc_hw * hw)288 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
289 {
290 struct igc_phy_info *phy = &hw->phy;
291 s32 ret_val;
292 u16 mii_autoneg_adv_reg;
293 u16 mii_1000t_ctrl_reg = 0;
294 u16 aneg_multigbt_an_ctrl = 0;
295
296 DEBUGFUNC("igc_phy_setup_autoneg");
297
298 phy->autoneg_advertised &= phy->autoneg_mask;
299
300 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
301 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
302 if (ret_val)
303 return ret_val;
304
305 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
306 /* Read the MII 1000Base-T Control Register (Address 9). */
307 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
308 &mii_1000t_ctrl_reg);
309 if (ret_val)
310 return ret_val;
311 }
312
313 if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
314 hw->phy.id == I225_I_PHY_ID) {
315 /* Read the MULTI GBT AN Control Register - reg 7.32 */
316 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
317 MMD_DEVADDR_SHIFT) |
318 ANEG_MULTIGBT_AN_CTRL,
319 &aneg_multigbt_an_ctrl);
320
321 if (ret_val)
322 return ret_val;
323 }
324
325 /* Need to parse both autoneg_advertised and fc and set up
326 * the appropriate PHY registers. First we will parse for
327 * autoneg_advertised software override. Since we can advertise
328 * a plethora of combinations, we need to check each bit
329 * individually.
330 */
331
332 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
333 * Advertisement Register (Address 4) and the 1000 mb speed bits in
334 * the 1000Base-T Control Register (Address 9).
335 */
336 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
337 NWAY_AR_100TX_HD_CAPS |
338 NWAY_AR_10T_FD_CAPS |
339 NWAY_AR_10T_HD_CAPS);
340 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
341
342 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
343
344 /* Do we want to advertise 10 Mb Half Duplex? */
345 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
346 DEBUGOUT("Advertise 10mb Half duplex\n");
347 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
348 }
349
350 /* Do we want to advertise 10 Mb Full Duplex? */
351 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
352 DEBUGOUT("Advertise 10mb Full duplex\n");
353 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
354 }
355
356 /* Do we want to advertise 100 Mb Half Duplex? */
357 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
358 DEBUGOUT("Advertise 100mb Half duplex\n");
359 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
360 }
361
362 /* Do we want to advertise 100 Mb Full Duplex? */
363 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
364 DEBUGOUT("Advertise 100mb Full duplex\n");
365 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
366 }
367
368 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
369 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
370 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
371
372 /* Do we want to advertise 1000 Mb Full Duplex? */
373 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
374 DEBUGOUT("Advertise 1000mb Full duplex\n");
375 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
376 }
377
378 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
379 if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
380 DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
381
382 /* Do we want to advertise 2500 Mb Full Duplex? */
383 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
384 DEBUGOUT("Advertise 2500mb Full duplex\n");
385 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
386 } else {
387 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
388 }
389
390 /* Check for a software override of the flow control settings, and
391 * setup the PHY advertisement registers accordingly. If
392 * auto-negotiation is enabled, then software will have to set the
393 * "PAUSE" bits to the correct value in the Auto-Negotiation
394 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
395 * negotiation.
396 *
397 * The possible values of the "fc" parameter are:
398 * 0: Flow control is completely disabled
399 * 1: Rx flow control is enabled (we can receive pause frames
400 * but not send pause frames).
401 * 2: Tx flow control is enabled (we can send pause frames
402 * but we do not support receiving pause frames).
403 * 3: Both Rx and Tx flow control (symmetric) are enabled.
404 * other: No software override. The flow control configuration
405 * in the EEPROM is used.
406 */
407 switch (hw->fc.current_mode) {
408 case igc_fc_none:
409 /* Flow control (Rx & Tx) is completely disabled by a
410 * software over-ride.
411 */
412 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
413 break;
414 case igc_fc_rx_pause:
415 /* Rx Flow control is enabled, and Tx Flow control is
416 * disabled, by a software over-ride.
417 *
418 * Since there really isn't a way to advertise that we are
419 * capable of Rx Pause ONLY, we will advertise that we
420 * support both symmetric and asymmetric Rx PAUSE. Later
421 * (in igc_config_fc_after_link_up) we will disable the
422 * hw's ability to send PAUSE frames.
423 */
424 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
425 break;
426 case igc_fc_tx_pause:
427 /* Tx Flow control is enabled, and Rx Flow control is
428 * disabled, by a software over-ride.
429 */
430 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
431 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
432 break;
433 case igc_fc_full:
434 /* Flow control (both Rx and Tx) is enabled by a software
435 * over-ride.
436 */
437 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
438 break;
439 default:
440 DEBUGOUT("Flow control param set incorrectly\n");
441 return -IGC_ERR_CONFIG;
442 }
443
444 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
445 if (ret_val)
446 return ret_val;
447
448 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
449
450 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
451 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
452 mii_1000t_ctrl_reg);
453
454 if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
455 hw->phy.id == I225_I_PHY_ID)
456 ret_val = phy->ops.write_reg(hw,
457 (STANDARD_AN_REG_MASK <<
458 MMD_DEVADDR_SHIFT) |
459 ANEG_MULTIGBT_AN_CTRL,
460 aneg_multigbt_an_ctrl);
461
462 return ret_val;
463 }
464
465 /**
466 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
467 * @hw: pointer to the HW structure
468 *
469 * Performs initial bounds checking on autoneg advertisement parameter, then
470 * configure to advertise the full capability. Setup the PHY to autoneg
471 * and restart the negotiation process between the link partner. If
472 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
473 **/
igc_copper_link_autoneg(struct igc_hw * hw)474 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
475 {
476 struct igc_phy_info *phy = &hw->phy;
477 s32 ret_val;
478 u16 phy_ctrl;
479
480 DEBUGFUNC("igc_copper_link_autoneg");
481
482 /* Perform some bounds checking on the autoneg advertisement
483 * parameter.
484 */
485 phy->autoneg_advertised &= phy->autoneg_mask;
486
487 /* If autoneg_advertised is zero, we assume it was not defaulted
488 * by the calling code so we set to advertise full capability.
489 */
490 if (!phy->autoneg_advertised)
491 phy->autoneg_advertised = phy->autoneg_mask;
492
493 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
494 ret_val = igc_phy_setup_autoneg(hw);
495 if (ret_val) {
496 DEBUGOUT("Error Setting up Auto-Negotiation\n");
497 return ret_val;
498 }
499 DEBUGOUT("Restarting Auto-Neg\n");
500
501 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
502 * the Auto Neg Restart bit in the PHY control register.
503 */
504 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
505 if (ret_val)
506 return ret_val;
507
508 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
509 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
510 if (ret_val)
511 return ret_val;
512
513 /* Does the user want to wait for Auto-Neg to complete here, or
514 * check at a later time (for example, callback routine).
515 */
516 if (phy->autoneg_wait_to_complete) {
517 ret_val = igc_wait_autoneg(hw);
518 if (ret_val) {
519 DEBUGOUT("Error while waiting for autoneg to complete\n");
520 return ret_val;
521 }
522 }
523
524 hw->mac.get_link_status = true;
525
526 return ret_val;
527 }
528
529 /**
530 * igc_setup_copper_link_generic - Configure copper link settings
531 * @hw: pointer to the HW structure
532 *
533 * Calls the appropriate function to configure the link for auto-neg or forced
534 * speed and duplex. Then we check for link, once link is established calls
535 * to configure collision distance and flow control are called. If link is
536 * not established, we return -IGC_ERR_PHY (-2).
537 **/
igc_setup_copper_link_generic(struct igc_hw * hw)538 s32 igc_setup_copper_link_generic(struct igc_hw *hw)
539 {
540 s32 ret_val;
541 bool link;
542
543 DEBUGFUNC("igc_setup_copper_link_generic");
544
545 if (hw->mac.autoneg) {
546 /* Setup autoneg and flow control advertisement and perform
547 * autonegotiation.
548 */
549 ret_val = igc_copper_link_autoneg(hw);
550 if (ret_val)
551 return ret_val;
552 } else {
553 /* PHY will be set to 10H, 10F, 100H or 100F
554 * depending on user settings.
555 */
556 DEBUGOUT("Forcing Speed and Duplex\n");
557 ret_val = hw->phy.ops.force_speed_duplex(hw);
558 if (ret_val) {
559 DEBUGOUT("Error Forcing Speed and Duplex\n");
560 return ret_val;
561 }
562 }
563
564 /* Check link status. Wait up to 100 microseconds for link to become
565 * valid.
566 */
567 ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
568 &link);
569 if (ret_val)
570 return ret_val;
571
572 if (link) {
573 DEBUGOUT("Valid link established!!!\n");
574 hw->mac.ops.config_collision_dist(hw);
575 ret_val = igc_config_fc_after_link_up_generic(hw);
576 } else {
577 DEBUGOUT("Unable to establish link!!!\n");
578 }
579
580 return ret_val;
581 }
582
583 /**
584 * igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
585 * @hw: pointer to the HW structure
586 * @phy_ctrl: pointer to current value of PHY_CONTROL
587 *
588 * Forces speed and duplex on the PHY by doing the following: disable flow
589 * control, force speed/duplex on the MAC, disable auto speed detection,
590 * disable auto-negotiation, configure duplex, configure speed, configure
591 * the collision distance, write configuration to CTRL register. The
592 * caller must write to the PHY_CONTROL register for these settings to
593 * take affect.
594 **/
igc_phy_force_speed_duplex_setup(struct igc_hw * hw,u16 * phy_ctrl)595 void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl)
596 {
597 struct igc_mac_info *mac = &hw->mac;
598 u32 ctrl;
599
600 DEBUGFUNC("igc_phy_force_speed_duplex_setup");
601
602 /* Turn off flow control when forcing speed/duplex */
603 hw->fc.current_mode = igc_fc_none;
604
605 /* Force speed/duplex on the mac */
606 ctrl = IGC_READ_REG(hw, IGC_CTRL);
607 ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
608 ctrl &= ~IGC_CTRL_SPD_SEL;
609
610 /* Disable Auto Speed Detection */
611 ctrl &= ~IGC_CTRL_ASDE;
612
613 /* Disable autoneg on the phy */
614 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
615
616 /* Forcing Full or Half Duplex? */
617 if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) {
618 ctrl &= ~IGC_CTRL_FD;
619 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
620 DEBUGOUT("Half Duplex\n");
621 } else {
622 ctrl |= IGC_CTRL_FD;
623 *phy_ctrl |= MII_CR_FULL_DUPLEX;
624 DEBUGOUT("Full Duplex\n");
625 }
626
627 /* Forcing 10mb or 100mb? */
628 if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) {
629 ctrl |= IGC_CTRL_SPD_100;
630 *phy_ctrl |= MII_CR_SPEED_100;
631 *phy_ctrl &= ~MII_CR_SPEED_1000;
632 DEBUGOUT("Forcing 100mb\n");
633 } else {
634 ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100);
635 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
636 DEBUGOUT("Forcing 10mb\n");
637 }
638
639 hw->mac.ops.config_collision_dist(hw);
640
641 IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
642 }
643
644 /**
645 * igc_set_d3_lplu_state_generic - Sets low power link up state for D3
646 * @hw: pointer to the HW structure
647 * @active: boolean used to enable/disable lplu
648 *
649 * Success returns 0, Failure returns 1
650 *
651 * The low power link up (lplu) state is set to the power management level D3
652 * and SmartSpeed is disabled when active is true, else clear lplu for D3
653 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
654 * is used during Dx states where the power conservation is most important.
655 * During driver activity, SmartSpeed should be enabled so performance is
656 * maintained.
657 **/
igc_set_d3_lplu_state_generic(struct igc_hw * hw,bool active)658 s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active)
659 {
660 struct igc_phy_info *phy = &hw->phy;
661 s32 ret_val;
662 u16 data;
663
664 DEBUGFUNC("igc_set_d3_lplu_state_generic");
665
666 if (!hw->phy.ops.read_reg)
667 return IGC_SUCCESS;
668
669 ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data);
670 if (ret_val)
671 return ret_val;
672
673 if (!active) {
674 data &= ~IGP02IGC_PM_D3_LPLU;
675 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
676 data);
677 if (ret_val)
678 return ret_val;
679 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
680 * during Dx states where the power conservation is most
681 * important. During driver activity we should enable
682 * SmartSpeed, so performance is maintained.
683 */
684 if (phy->smart_speed == igc_smart_speed_on) {
685 ret_val = phy->ops.read_reg(hw,
686 IGP01IGC_PHY_PORT_CONFIG,
687 &data);
688 if (ret_val)
689 return ret_val;
690
691 data |= IGP01IGC_PSCFR_SMART_SPEED;
692 ret_val = phy->ops.write_reg(hw,
693 IGP01IGC_PHY_PORT_CONFIG,
694 data);
695 if (ret_val)
696 return ret_val;
697 } else if (phy->smart_speed == igc_smart_speed_off) {
698 ret_val = phy->ops.read_reg(hw,
699 IGP01IGC_PHY_PORT_CONFIG,
700 &data);
701 if (ret_val)
702 return ret_val;
703
704 data &= ~IGP01IGC_PSCFR_SMART_SPEED;
705 ret_val = phy->ops.write_reg(hw,
706 IGP01IGC_PHY_PORT_CONFIG,
707 data);
708 if (ret_val)
709 return ret_val;
710 }
711 } else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) ||
712 (phy->autoneg_advertised == IGC_ALL_NOT_GIG) ||
713 (phy->autoneg_advertised == IGC_ALL_10_SPEED)) {
714 data |= IGP02IGC_PM_D3_LPLU;
715 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
716 data);
717 if (ret_val)
718 return ret_val;
719
720 /* When LPLU is enabled, we should disable SmartSpeed */
721 ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
722 &data);
723 if (ret_val)
724 return ret_val;
725
726 data &= ~IGP01IGC_PSCFR_SMART_SPEED;
727 ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
728 data);
729 }
730
731 return ret_val;
732 }
733
734 /**
735 * igc_check_downshift_generic - Checks whether a downshift in speed occurred
736 * @hw: pointer to the HW structure
737 *
738 * Success returns 0, Failure returns 1
739 *
740 * A downshift is detected by querying the PHY link health.
741 **/
igc_check_downshift_generic(struct igc_hw * hw)742 s32 igc_check_downshift_generic(struct igc_hw *hw)
743 {
744 struct igc_phy_info *phy = &hw->phy;
745 s32 ret_val;
746
747 DEBUGFUNC("igc_check_downshift_generic");
748
749 switch (phy->type) {
750 case igc_phy_i225:
751 default:
752 /* speed downshift not supported */
753 phy->speed_downgraded = false;
754 return IGC_SUCCESS;
755 }
756
757 return ret_val;
758 }
759
760 /**
761 * igc_wait_autoneg - Wait for auto-neg completion
762 * @hw: pointer to the HW structure
763 *
764 * Waits for auto-negotiation to complete or for the auto-negotiation time
765 * limit to expire, which ever happens first.
766 **/
igc_wait_autoneg(struct igc_hw * hw)767 static s32 igc_wait_autoneg(struct igc_hw *hw)
768 {
769 s32 ret_val = IGC_SUCCESS;
770 u16 i, phy_status;
771
772 DEBUGFUNC("igc_wait_autoneg");
773
774 if (!hw->phy.ops.read_reg)
775 return IGC_SUCCESS;
776
777 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
778 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
779 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
780 if (ret_val)
781 break;
782 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
783 if (ret_val)
784 break;
785 if (phy_status & MII_SR_AUTONEG_COMPLETE)
786 break;
787 msec_delay(100);
788 }
789
790 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
791 * has completed.
792 */
793 return ret_val;
794 }
795
796 /**
797 * igc_phy_has_link_generic - Polls PHY for link
798 * @hw: pointer to the HW structure
799 * @iterations: number of times to poll for link
800 * @usec_interval: delay between polling attempts
801 * @success: pointer to whether polling was successful or not
802 *
803 * Polls the PHY status register for link, 'iterations' number of times.
804 **/
igc_phy_has_link_generic(struct igc_hw * hw,u32 iterations,u32 usec_interval,bool * success)805 s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations,
806 u32 usec_interval, bool *success)
807 {
808 s32 ret_val = IGC_SUCCESS;
809 u16 i, phy_status;
810
811 DEBUGFUNC("igc_phy_has_link_generic");
812
813 if (!hw->phy.ops.read_reg)
814 return IGC_SUCCESS;
815
816 for (i = 0; i < iterations; i++) {
817 /* Some PHYs require the PHY_STATUS register to be read
818 * twice due to the link bit being sticky. No harm doing
819 * it across the board.
820 */
821 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
822 if (ret_val) {
823 /* If the first read fails, another entity may have
824 * ownership of the resources, wait and try again to
825 * see if they have relinquished the resources yet.
826 */
827 if (usec_interval >= 1000)
828 msec_delay(usec_interval/1000);
829 else
830 usec_delay(usec_interval);
831 }
832 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
833 if (ret_val)
834 break;
835 if (phy_status & MII_SR_LINK_STATUS)
836 break;
837 if (usec_interval >= 1000)
838 msec_delay(usec_interval/1000);
839 else
840 usec_delay(usec_interval);
841 }
842
843 *success = (i < iterations);
844
845 return ret_val;
846 }
847
848 /**
849 * igc_phy_hw_reset_generic - PHY hardware reset
850 * @hw: pointer to the HW structure
851 *
852 * Verify the reset block is not blocking us from resetting. Acquire
853 * semaphore (if necessary) and read/set/write the device control reset
854 * bit in the PHY. Wait the appropriate delay time for the device to
855 * reset and release the semaphore (if necessary).
856 **/
igc_phy_hw_reset_generic(struct igc_hw * hw)857 s32 igc_phy_hw_reset_generic(struct igc_hw *hw)
858 {
859 struct igc_phy_info *phy = &hw->phy;
860 s32 ret_val;
861 u32 ctrl, timeout = 10000, phpm = 0;
862
863 DEBUGFUNC("igc_phy_hw_reset_generic");
864
865 if (phy->ops.check_reset_block) {
866 ret_val = phy->ops.check_reset_block(hw);
867 if (ret_val)
868 return IGC_SUCCESS;
869 }
870
871 ret_val = phy->ops.acquire(hw);
872 if (ret_val)
873 return ret_val;
874
875 phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
876
877 ctrl = IGC_READ_REG(hw, IGC_CTRL);
878 IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
879 IGC_WRITE_FLUSH(hw);
880
881 usec_delay(phy->reset_delay_us);
882
883 IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
884 IGC_WRITE_FLUSH(hw);
885
886 usec_delay(150);
887
888 do {
889 phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
890 timeout--;
891 usec_delay(1);
892 } while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout);
893
894 if (!timeout)
895 DEBUGOUT("Timeout expired after a phy reset\n");
896
897 phy->ops.release(hw);
898
899 return ret_val;
900 }
901
902 /**
903 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
904 * @hw: pointer to the HW structure
905 *
906 * In the case of a PHY power down to save power, or to turn off link during a
907 * driver unload, or wake on lan is not enabled, restore the link to previous
908 * settings.
909 **/
igc_power_up_phy_copper(struct igc_hw * hw)910 void igc_power_up_phy_copper(struct igc_hw *hw)
911 {
912 u16 mii_reg = 0;
913
914 /* The PHY will retain its settings across a power down/up cycle */
915 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
916 mii_reg &= ~MII_CR_POWER_DOWN;
917 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
918 usec_delay(300);
919 }
920
921 /**
922 * igc_power_down_phy_copper - Restore copper link in case of PHY power down
923 * @hw: pointer to the HW structure
924 *
925 * In the case of a PHY power down to save power, or to turn off link during a
926 * driver unload, or wake on lan is not enabled, restore the link to previous
927 * settings.
928 **/
igc_power_down_phy_copper(struct igc_hw * hw)929 void igc_power_down_phy_copper(struct igc_hw *hw)
930 {
931 u16 mii_reg = 0;
932
933 /* The PHY will retain its settings across a power down/up cycle */
934 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
935 mii_reg |= MII_CR_POWER_DOWN;
936 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
937 msec_delay(1);
938 }
939 /**
940 * igc_write_phy_reg_gpy - Write GPY PHY register
941 * @hw: pointer to the HW structure
942 * @offset: register offset to write to
943 * @data: data to write at register offset
944 *
945 * Acquires semaphore, if necessary, then writes the data to PHY register
946 * at the offset. Release any acquired semaphores before exiting.
947 **/
igc_write_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 data)948 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
949 {
950 s32 ret_val;
951 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
952
953 DEBUGFUNC("igc_write_phy_reg_gpy");
954
955 offset = offset & GPY_REG_MASK;
956
957 if (!dev_addr) {
958 ret_val = hw->phy.ops.acquire(hw);
959 if (ret_val)
960 return ret_val;
961 ret_val = igc_write_phy_reg_mdic(hw, offset, data);
962 if (ret_val)
963 return ret_val;
964 hw->phy.ops.release(hw);
965 } else {
966 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
967 data);
968 }
969 return ret_val;
970 }
971
972 /**
973 * igc_read_phy_reg_gpy - Read GPY PHY register
974 * @hw: pointer to the HW structure
975 * @offset: lower half is register offset to read to
976 * upper half is MMD to use.
977 * @data: data to read at register offset
978 *
979 * Acquires semaphore, if necessary, then reads the data in the PHY register
980 * at the offset. Release any acquired semaphores before exiting.
981 **/
igc_read_phy_reg_gpy(struct igc_hw * hw,u32 offset,u16 * data)982 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
983 {
984 s32 ret_val;
985 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
986
987 DEBUGFUNC("igc_read_phy_reg_gpy");
988
989 offset = offset & GPY_REG_MASK;
990
991 if (!dev_addr) {
992 ret_val = hw->phy.ops.acquire(hw);
993 if (ret_val)
994 return ret_val;
995 ret_val = igc_read_phy_reg_mdic(hw, offset, data);
996 if (ret_val)
997 return ret_val;
998 hw->phy.ops.release(hw);
999 } else {
1000 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
1001 data);
1002 }
1003 return ret_val;
1004 }
1005
1006
1007 /**
1008 * __igc_access_xmdio_reg - Read/write XMDIO register
1009 * @hw: pointer to the HW structure
1010 * @address: XMDIO address to program
1011 * @dev_addr: device address to program
1012 * @data: pointer to value to read/write from/to the XMDIO address
1013 * @read: boolean flag to indicate read or write
1014 **/
__igc_access_xmdio_reg(struct igc_hw * hw,u16 address,u8 dev_addr,u16 * data,bool read)1015 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
1016 u8 dev_addr, u16 *data, bool read)
1017 {
1018 s32 ret_val;
1019
1020 DEBUGFUNC("__igc_access_xmdio_reg");
1021
1022 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
1023 if (ret_val)
1024 return ret_val;
1025
1026 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
1027 if (ret_val)
1028 return ret_val;
1029
1030 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
1031 dev_addr);
1032 if (ret_val)
1033 return ret_val;
1034
1035 if (read)
1036 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
1037 else
1038 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
1039 if (ret_val)
1040 return ret_val;
1041
1042 /* Recalibrate the device back to 0 */
1043 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
1044 if (ret_val)
1045 return ret_val;
1046
1047 return ret_val;
1048 }
1049
1050 /**
1051 * igc_read_xmdio_reg - Read XMDIO register
1052 * @hw: pointer to the HW structure
1053 * @addr: XMDIO address to program
1054 * @dev_addr: device address to program
1055 * @data: value to be read from the EMI address
1056 **/
igc_read_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 * data)1057 s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data)
1058 {
1059 DEBUGFUNC("igc_read_xmdio_reg");
1060
1061 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
1062 }
1063
1064 /**
1065 * igc_write_xmdio_reg - Write XMDIO register
1066 * @hw: pointer to the HW structure
1067 * @addr: XMDIO address to program
1068 * @dev_addr: device address to program
1069 * @data: value to be written to the XMDIO address
1070 **/
igc_write_xmdio_reg(struct igc_hw * hw,u16 addr,u8 dev_addr,u16 data)1071 s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data)
1072 {
1073 DEBUGFUNC("igc_write_xmdio_reg");
1074
1075 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
1076 }
1077