1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright (c) 2021, Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the Intel Corporation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*$FreeBSD$*/
32
33 #include "ice_switch.h"
34 #include "ice_flex_type.h"
35 #include "ice_flow.h"
36
37 #define ICE_ETH_DA_OFFSET 0
38 #define ICE_ETH_ETHTYPE_OFFSET 12
39 #define ICE_ETH_VLAN_TCI_OFFSET 14
40 #define ICE_MAX_VLAN_ID 0xFFF
41 #define ICE_IPV6_ETHER_ID 0x86DD
42 #define ICE_ETH_P_8021Q 0x8100
43
44 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
45 * struct to configure any switch filter rules.
46 * {DA (6 bytes), SA(6 bytes),
47 * Ether type (2 bytes for header without VLAN tag) OR
48 * VLAN tag (4 bytes for header with VLAN tag) }
49 *
50 * Word on Hardcoded values
51 * byte 0 = 0x2: to identify it as locally administered DA MAC
52 * byte 6 = 0x2: to identify it as locally administered SA MAC
53 * byte 12 = 0x81 & byte 13 = 0x00:
54 * In case of VLAN filter first two bytes defines ether type (0x8100)
55 * and remaining two bytes are placeholder for programming a given VLAN ID
56 * In case of Ether type filter it is treated as header without VLAN tag
57 * and byte 12 and 13 is used to program a given Ether type instead
58 */
59 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
60 0x2, 0, 0, 0, 0, 0,
61 0x81, 0, 0, 0};
62
63 /**
64 * ice_init_def_sw_recp - initialize the recipe book keeping tables
65 * @hw: pointer to the HW struct
66 * @recp_list: pointer to sw recipe list
67 *
68 * Allocate memory for the entire recipe table and initialize the structures/
69 * entries corresponding to basic recipes.
70 */
71 enum ice_status
ice_init_def_sw_recp(struct ice_hw * hw,struct ice_sw_recipe ** recp_list)72 ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list)
73 {
74 struct ice_sw_recipe *recps;
75 u8 i;
76
77 recps = (struct ice_sw_recipe *)
78 ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
79 if (!recps)
80 return ICE_ERR_NO_MEMORY;
81
82 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
83 recps[i].root_rid = i;
84 INIT_LIST_HEAD(&recps[i].filt_rules);
85 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
86 INIT_LIST_HEAD(&recps[i].rg_list);
87 ice_init_lock(&recps[i].filt_rule_lock);
88 }
89
90 *recp_list = recps;
91
92 return ICE_SUCCESS;
93 }
94
95 /**
96 * ice_aq_get_sw_cfg - get switch configuration
97 * @hw: pointer to the hardware structure
98 * @buf: pointer to the result buffer
99 * @buf_size: length of the buffer available for response
100 * @req_desc: pointer to requested descriptor
101 * @num_elems: pointer to number of elements
102 * @cd: pointer to command details structure or NULL
103 *
104 * Get switch configuration (0x0200) to be placed in buf.
105 * This admin command returns information such as initial VSI/port number
106 * and switch ID it belongs to.
107 *
108 * NOTE: *req_desc is both an input/output parameter.
109 * The caller of this function first calls this function with *request_desc set
110 * to 0. If the response from f/w has *req_desc set to 0, all the switch
111 * configuration information has been returned; if non-zero (meaning not all
112 * the information was returned), the caller should call this function again
113 * with *req_desc set to the previous value returned by f/w to get the
114 * next block of switch configuration information.
115 *
116 * *num_elems is output only parameter. This reflects the number of elements
117 * in response buffer. The caller of this function to use *num_elems while
118 * parsing the response buffer.
119 */
120 static enum ice_status
ice_aq_get_sw_cfg(struct ice_hw * hw,struct ice_aqc_get_sw_cfg_resp_elem * buf,u16 buf_size,u16 * req_desc,u16 * num_elems,struct ice_sq_cd * cd)121 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
122 u16 buf_size, u16 *req_desc, u16 *num_elems,
123 struct ice_sq_cd *cd)
124 {
125 struct ice_aqc_get_sw_cfg *cmd;
126 struct ice_aq_desc desc;
127 enum ice_status status;
128
129 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
130 cmd = &desc.params.get_sw_conf;
131 cmd->element = CPU_TO_LE16(*req_desc);
132
133 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
134 if (!status) {
135 *req_desc = LE16_TO_CPU(cmd->element);
136 *num_elems = LE16_TO_CPU(cmd->num_elems);
137 }
138
139 return status;
140 }
141
142 /**
143 * ice_alloc_rss_global_lut - allocate a RSS global LUT
144 * @hw: pointer to the HW struct
145 * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource
146 * @global_lut_id: output parameter for the RSS global LUT's ID
147 */
ice_alloc_rss_global_lut(struct ice_hw * hw,bool shared_res,u16 * global_lut_id)148 enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id)
149 {
150 struct ice_aqc_alloc_free_res_elem *sw_buf;
151 enum ice_status status;
152 u16 buf_len;
153
154 buf_len = ice_struct_size(sw_buf, elem, 1);
155 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
156 if (!sw_buf)
157 return ICE_ERR_NO_MEMORY;
158
159 sw_buf->num_elems = CPU_TO_LE16(1);
160 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH |
161 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
162 ICE_AQC_RES_TYPE_FLAG_DEDICATED));
163
164 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL);
165 if (status) {
166 ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n",
167 shared_res ? "shared" : "dedicated", status);
168 goto ice_alloc_global_lut_exit;
169 }
170
171 *global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
172
173 ice_alloc_global_lut_exit:
174 ice_free(hw, sw_buf);
175 return status;
176 }
177
178 /**
179 * ice_free_rss_global_lut - free a RSS global LUT
180 * @hw: pointer to the HW struct
181 * @global_lut_id: ID of the RSS global LUT to free
182 */
ice_free_rss_global_lut(struct ice_hw * hw,u16 global_lut_id)183 enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id)
184 {
185 struct ice_aqc_alloc_free_res_elem *sw_buf;
186 u16 buf_len, num_elems = 1;
187 enum ice_status status;
188
189 buf_len = ice_struct_size(sw_buf, elem, num_elems);
190 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
191 if (!sw_buf)
192 return ICE_ERR_NO_MEMORY;
193
194 sw_buf->num_elems = CPU_TO_LE16(num_elems);
195 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH);
196 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id);
197
198 status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL);
199 if (status)
200 ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n",
201 global_lut_id, status);
202
203 ice_free(hw, sw_buf);
204 return status;
205 }
206
207 /**
208 * ice_alloc_sw - allocate resources specific to switch
209 * @hw: pointer to the HW struct
210 * @ena_stats: true to turn on VEB stats
211 * @shared_res: true for shared resource, false for dedicated resource
212 * @sw_id: switch ID returned
213 * @counter_id: VEB counter ID returned
214 *
215 * allocates switch resources (SWID and VEB counter) (0x0208)
216 */
217 enum ice_status
ice_alloc_sw(struct ice_hw * hw,bool ena_stats,bool shared_res,u16 * sw_id,u16 * counter_id)218 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
219 u16 *counter_id)
220 {
221 struct ice_aqc_alloc_free_res_elem *sw_buf;
222 struct ice_aqc_res_elem *sw_ele;
223 enum ice_status status;
224 u16 buf_len;
225
226 buf_len = ice_struct_size(sw_buf, elem, 1);
227 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
228 if (!sw_buf)
229 return ICE_ERR_NO_MEMORY;
230
231 /* Prepare buffer for switch ID.
232 * The number of resource entries in buffer is passed as 1 since only a
233 * single switch/VEB instance is allocated, and hence a single sw_id
234 * is requested.
235 */
236 sw_buf->num_elems = CPU_TO_LE16(1);
237 sw_buf->res_type =
238 CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
239 (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
240 ICE_AQC_RES_TYPE_FLAG_DEDICATED));
241
242 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
243 ice_aqc_opc_alloc_res, NULL);
244
245 if (status)
246 goto ice_alloc_sw_exit;
247
248 sw_ele = &sw_buf->elem[0];
249 *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
250
251 if (ena_stats) {
252 /* Prepare buffer for VEB Counter */
253 enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
254 struct ice_aqc_alloc_free_res_elem *counter_buf;
255 struct ice_aqc_res_elem *counter_ele;
256
257 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
258 ice_malloc(hw, buf_len);
259 if (!counter_buf) {
260 status = ICE_ERR_NO_MEMORY;
261 goto ice_alloc_sw_exit;
262 }
263
264 /* The number of resource entries in buffer is passed as 1 since
265 * only a single switch/VEB instance is allocated, and hence a
266 * single VEB counter is requested.
267 */
268 counter_buf->num_elems = CPU_TO_LE16(1);
269 counter_buf->res_type =
270 CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
271 ICE_AQC_RES_TYPE_FLAG_DEDICATED);
272 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
273 opc, NULL);
274
275 if (status) {
276 ice_free(hw, counter_buf);
277 goto ice_alloc_sw_exit;
278 }
279 counter_ele = &counter_buf->elem[0];
280 *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
281 ice_free(hw, counter_buf);
282 }
283
284 ice_alloc_sw_exit:
285 ice_free(hw, sw_buf);
286 return status;
287 }
288
289 /**
290 * ice_free_sw - free resources specific to switch
291 * @hw: pointer to the HW struct
292 * @sw_id: switch ID returned
293 * @counter_id: VEB counter ID returned
294 *
295 * free switch resources (SWID and VEB counter) (0x0209)
296 *
297 * NOTE: This function frees multiple resources. It continues
298 * releasing other resources even after it encounters error.
299 * The error code returned is the last error it encountered.
300 */
ice_free_sw(struct ice_hw * hw,u16 sw_id,u16 counter_id)301 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
302 {
303 struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
304 enum ice_status status, ret_status;
305 u16 buf_len;
306
307 buf_len = ice_struct_size(sw_buf, elem, 1);
308 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
309 if (!sw_buf)
310 return ICE_ERR_NO_MEMORY;
311
312 /* Prepare buffer to free for switch ID res.
313 * The number of resource entries in buffer is passed as 1 since only a
314 * single switch/VEB instance is freed, and hence a single sw_id
315 * is released.
316 */
317 sw_buf->num_elems = CPU_TO_LE16(1);
318 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
319 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
320
321 ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
322 ice_aqc_opc_free_res, NULL);
323
324 if (ret_status)
325 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
326
327 /* Prepare buffer to free for VEB Counter resource */
328 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
329 ice_malloc(hw, buf_len);
330 if (!counter_buf) {
331 ice_free(hw, sw_buf);
332 return ICE_ERR_NO_MEMORY;
333 }
334
335 /* The number of resource entries in buffer is passed as 1 since only a
336 * single switch/VEB instance is freed, and hence a single VEB counter
337 * is released
338 */
339 counter_buf->num_elems = CPU_TO_LE16(1);
340 counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
341 counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
342
343 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
344 ice_aqc_opc_free_res, NULL);
345 if (status) {
346 ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n");
347 ret_status = status;
348 }
349
350 ice_free(hw, counter_buf);
351 ice_free(hw, sw_buf);
352 return ret_status;
353 }
354
355 /**
356 * ice_aq_add_vsi
357 * @hw: pointer to the HW struct
358 * @vsi_ctx: pointer to a VSI context struct
359 * @cd: pointer to command details structure or NULL
360 *
361 * Add a VSI context to the hardware (0x0210)
362 */
363 enum ice_status
ice_aq_add_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)364 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
365 struct ice_sq_cd *cd)
366 {
367 struct ice_aqc_add_update_free_vsi_resp *res;
368 struct ice_aqc_add_get_update_free_vsi *cmd;
369 struct ice_aq_desc desc;
370 enum ice_status status;
371
372 cmd = &desc.params.vsi_cmd;
373 res = &desc.params.add_update_free_vsi_res;
374
375 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
376
377 if (!vsi_ctx->alloc_from_pool)
378 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
379 ICE_AQ_VSI_IS_VALID);
380 cmd->vf_id = vsi_ctx->vf_num;
381
382 cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
383
384 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
385
386 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
387 sizeof(vsi_ctx->info), cd);
388
389 if (!status) {
390 vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
391 vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
392 vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
393 }
394
395 return status;
396 }
397
398 /**
399 * ice_aq_free_vsi
400 * @hw: pointer to the HW struct
401 * @vsi_ctx: pointer to a VSI context struct
402 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
403 * @cd: pointer to command details structure or NULL
404 *
405 * Free VSI context info from hardware (0x0213)
406 */
407 enum ice_status
ice_aq_free_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)408 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
409 bool keep_vsi_alloc, struct ice_sq_cd *cd)
410 {
411 struct ice_aqc_add_update_free_vsi_resp *resp;
412 struct ice_aqc_add_get_update_free_vsi *cmd;
413 struct ice_aq_desc desc;
414 enum ice_status status;
415
416 cmd = &desc.params.vsi_cmd;
417 resp = &desc.params.add_update_free_vsi_res;
418
419 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
420
421 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
422 if (keep_vsi_alloc)
423 cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
424
425 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
426 if (!status) {
427 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
428 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
429 }
430
431 return status;
432 }
433
434 /**
435 * ice_aq_update_vsi
436 * @hw: pointer to the HW struct
437 * @vsi_ctx: pointer to a VSI context struct
438 * @cd: pointer to command details structure or NULL
439 *
440 * Update VSI context in the hardware (0x0211)
441 */
442 enum ice_status
ice_aq_update_vsi(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)443 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
444 struct ice_sq_cd *cd)
445 {
446 struct ice_aqc_add_update_free_vsi_resp *resp;
447 struct ice_aqc_add_get_update_free_vsi *cmd;
448 struct ice_aq_desc desc;
449 enum ice_status status;
450
451 cmd = &desc.params.vsi_cmd;
452 resp = &desc.params.add_update_free_vsi_res;
453
454 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
455
456 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
457
458 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
459
460 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
461 sizeof(vsi_ctx->info), cd);
462
463 if (!status) {
464 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
465 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
466 }
467
468 return status;
469 }
470
471 /**
472 * ice_is_vsi_valid - check whether the VSI is valid or not
473 * @hw: pointer to the HW struct
474 * @vsi_handle: VSI handle
475 *
476 * check whether the VSI is valid or not
477 */
ice_is_vsi_valid(struct ice_hw * hw,u16 vsi_handle)478 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
479 {
480 return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
481 }
482
483 /**
484 * ice_get_hw_vsi_num - return the HW VSI number
485 * @hw: pointer to the HW struct
486 * @vsi_handle: VSI handle
487 *
488 * return the HW VSI number
489 * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
490 */
ice_get_hw_vsi_num(struct ice_hw * hw,u16 vsi_handle)491 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
492 {
493 return hw->vsi_ctx[vsi_handle]->vsi_num;
494 }
495
496 /**
497 * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
498 * @hw: pointer to the HW struct
499 * @vsi_handle: VSI handle
500 *
501 * return the VSI context entry for a given VSI handle
502 */
ice_get_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)503 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
504 {
505 return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
506 }
507
508 /**
509 * ice_save_vsi_ctx - save the VSI context for a given VSI handle
510 * @hw: pointer to the HW struct
511 * @vsi_handle: VSI handle
512 * @vsi: VSI context pointer
513 *
514 * save the VSI context entry for a given VSI handle
515 */
516 static void
ice_save_vsi_ctx(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi)517 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
518 {
519 hw->vsi_ctx[vsi_handle] = vsi;
520 }
521
522 /**
523 * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
524 * @hw: pointer to the HW struct
525 * @vsi_handle: VSI handle
526 */
ice_clear_vsi_q_ctx(struct ice_hw * hw,u16 vsi_handle)527 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
528 {
529 struct ice_vsi_ctx *vsi;
530 u8 i;
531
532 vsi = ice_get_vsi_ctx(hw, vsi_handle);
533 if (!vsi)
534 return;
535 ice_for_each_traffic_class(i) {
536 if (vsi->lan_q_ctx[i]) {
537 ice_free(hw, vsi->lan_q_ctx[i]);
538 vsi->lan_q_ctx[i] = NULL;
539 }
540 }
541 }
542
543 /**
544 * ice_clear_vsi_ctx - clear the VSI context entry
545 * @hw: pointer to the HW struct
546 * @vsi_handle: VSI handle
547 *
548 * clear the VSI context entry
549 */
ice_clear_vsi_ctx(struct ice_hw * hw,u16 vsi_handle)550 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
551 {
552 struct ice_vsi_ctx *vsi;
553
554 vsi = ice_get_vsi_ctx(hw, vsi_handle);
555 if (vsi) {
556 ice_clear_vsi_q_ctx(hw, vsi_handle);
557 ice_free(hw, vsi);
558 hw->vsi_ctx[vsi_handle] = NULL;
559 }
560 }
561
562 /**
563 * ice_clear_all_vsi_ctx - clear all the VSI context entries
564 * @hw: pointer to the HW struct
565 */
ice_clear_all_vsi_ctx(struct ice_hw * hw)566 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
567 {
568 u16 i;
569
570 for (i = 0; i < ICE_MAX_VSI; i++)
571 ice_clear_vsi_ctx(hw, i);
572 }
573
574 /**
575 * ice_add_vsi - add VSI context to the hardware and VSI handle list
576 * @hw: pointer to the HW struct
577 * @vsi_handle: unique VSI handle provided by drivers
578 * @vsi_ctx: pointer to a VSI context struct
579 * @cd: pointer to command details structure or NULL
580 *
581 * Add a VSI context to the hardware also add it into the VSI handle list.
582 * If this function gets called after reset for existing VSIs then update
583 * with the new HW VSI number in the corresponding VSI handle list entry.
584 */
585 enum ice_status
ice_add_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)586 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
587 struct ice_sq_cd *cd)
588 {
589 struct ice_vsi_ctx *tmp_vsi_ctx;
590 enum ice_status status;
591
592 if (vsi_handle >= ICE_MAX_VSI)
593 return ICE_ERR_PARAM;
594 status = ice_aq_add_vsi(hw, vsi_ctx, cd);
595 if (status)
596 return status;
597 tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
598 if (!tmp_vsi_ctx) {
599 /* Create a new VSI context */
600 tmp_vsi_ctx = (struct ice_vsi_ctx *)
601 ice_malloc(hw, sizeof(*tmp_vsi_ctx));
602 if (!tmp_vsi_ctx) {
603 ice_aq_free_vsi(hw, vsi_ctx, false, cd);
604 return ICE_ERR_NO_MEMORY;
605 }
606 *tmp_vsi_ctx = *vsi_ctx;
607
608 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
609 } else {
610 /* update with new HW VSI num */
611 tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
612 }
613
614 return ICE_SUCCESS;
615 }
616
617 /**
618 * ice_free_vsi- free VSI context from hardware and VSI handle list
619 * @hw: pointer to the HW struct
620 * @vsi_handle: unique VSI handle
621 * @vsi_ctx: pointer to a VSI context struct
622 * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
623 * @cd: pointer to command details structure or NULL
624 *
625 * Free VSI context info from hardware as well as from VSI handle list
626 */
627 enum ice_status
ice_free_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,bool keep_vsi_alloc,struct ice_sq_cd * cd)628 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
629 bool keep_vsi_alloc, struct ice_sq_cd *cd)
630 {
631 enum ice_status status;
632
633 if (!ice_is_vsi_valid(hw, vsi_handle))
634 return ICE_ERR_PARAM;
635 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
636 status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
637 if (!status)
638 ice_clear_vsi_ctx(hw, vsi_handle);
639 return status;
640 }
641
642 /**
643 * ice_update_vsi
644 * @hw: pointer to the HW struct
645 * @vsi_handle: unique VSI handle
646 * @vsi_ctx: pointer to a VSI context struct
647 * @cd: pointer to command details structure or NULL
648 *
649 * Update VSI context in the hardware
650 */
651 enum ice_status
ice_update_vsi(struct ice_hw * hw,u16 vsi_handle,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)652 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
653 struct ice_sq_cd *cd)
654 {
655 if (!ice_is_vsi_valid(hw, vsi_handle))
656 return ICE_ERR_PARAM;
657 vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
658 return ice_aq_update_vsi(hw, vsi_ctx, cd);
659 }
660
661 /**
662 * ice_aq_get_vsi_params
663 * @hw: pointer to the HW struct
664 * @vsi_ctx: pointer to a VSI context struct
665 * @cd: pointer to command details structure or NULL
666 *
667 * Get VSI context info from hardware (0x0212)
668 */
669 enum ice_status
ice_aq_get_vsi_params(struct ice_hw * hw,struct ice_vsi_ctx * vsi_ctx,struct ice_sq_cd * cd)670 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
671 struct ice_sq_cd *cd)
672 {
673 struct ice_aqc_add_get_update_free_vsi *cmd;
674 struct ice_aqc_get_vsi_resp *resp;
675 struct ice_aq_desc desc;
676 enum ice_status status;
677
678 cmd = &desc.params.vsi_cmd;
679 resp = &desc.params.get_vsi_resp;
680
681 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
682
683 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
684
685 status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
686 sizeof(vsi_ctx->info), cd);
687 if (!status) {
688 vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
689 ICE_AQ_VSI_NUM_M;
690 vsi_ctx->vf_num = resp->vf_id;
691 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
692 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
693 }
694
695 return status;
696 }
697
698 /**
699 * ice_aq_add_update_mir_rule - add/update a mirror rule
700 * @hw: pointer to the HW struct
701 * @rule_type: Rule Type
702 * @dest_vsi: VSI number to which packets will be mirrored
703 * @count: length of the list
704 * @mr_buf: buffer for list of mirrored VSI numbers
705 * @cd: pointer to command details structure or NULL
706 * @rule_id: Rule ID
707 *
708 * Add/Update Mirror Rule (0x260).
709 */
710 enum ice_status
ice_aq_add_update_mir_rule(struct ice_hw * hw,u16 rule_type,u16 dest_vsi,u16 count,struct ice_mir_rule_buf * mr_buf,struct ice_sq_cd * cd,u16 * rule_id)711 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
712 u16 count, struct ice_mir_rule_buf *mr_buf,
713 struct ice_sq_cd *cd, u16 *rule_id)
714 {
715 struct ice_aqc_add_update_mir_rule *cmd;
716 struct ice_aq_desc desc;
717 enum ice_status status;
718 __le16 *mr_list = NULL;
719 u16 buf_size = 0;
720
721 switch (rule_type) {
722 case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
723 case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
724 /* Make sure count and mr_buf are set for these rule_types */
725 if (!(count && mr_buf))
726 return ICE_ERR_PARAM;
727
728 buf_size = count * sizeof(__le16);
729 mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
730 if (!mr_list)
731 return ICE_ERR_NO_MEMORY;
732 break;
733 case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
734 case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
735 /* Make sure count and mr_buf are not set for these
736 * rule_types
737 */
738 if (count || mr_buf)
739 return ICE_ERR_PARAM;
740 break;
741 default:
742 ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type);
743 return ICE_ERR_OUT_OF_RANGE;
744 }
745
746 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
747
748 /* Pre-process 'mr_buf' items for add/update of virtual port
749 * ingress/egress mirroring (but not physical port ingress/egress
750 * mirroring)
751 */
752 if (mr_buf) {
753 int i;
754
755 for (i = 0; i < count; i++) {
756 u16 id;
757
758 id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
759
760 /* Validate specified VSI number, make sure it is less
761 * than ICE_MAX_VSI, if not return with error.
762 */
763 if (id >= ICE_MAX_VSI) {
764 ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n",
765 id);
766 ice_free(hw, mr_list);
767 return ICE_ERR_OUT_OF_RANGE;
768 }
769
770 /* add VSI to mirror rule */
771 if (mr_buf[i].add)
772 mr_list[i] =
773 CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
774 else /* remove VSI from mirror rule */
775 mr_list[i] = CPU_TO_LE16(id);
776 }
777 }
778
779 cmd = &desc.params.add_update_rule;
780 if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
781 cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
782 ICE_AQC_RULE_ID_VALID_M);
783 cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
784 cmd->num_entries = CPU_TO_LE16(count);
785 cmd->dest = CPU_TO_LE16(dest_vsi);
786
787 status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
788 if (!status)
789 *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
790
791 ice_free(hw, mr_list);
792
793 return status;
794 }
795
796 /**
797 * ice_aq_delete_mir_rule - delete a mirror rule
798 * @hw: pointer to the HW struct
799 * @rule_id: Mirror rule ID (to be deleted)
800 * @keep_allocd: if set, the VSI stays part of the PF allocated res,
801 * otherwise it is returned to the shared pool
802 * @cd: pointer to command details structure or NULL
803 *
804 * Delete Mirror Rule (0x261).
805 */
806 enum ice_status
ice_aq_delete_mir_rule(struct ice_hw * hw,u16 rule_id,bool keep_allocd,struct ice_sq_cd * cd)807 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
808 struct ice_sq_cd *cd)
809 {
810 struct ice_aqc_delete_mir_rule *cmd;
811 struct ice_aq_desc desc;
812
813 /* rule_id should be in the range 0...63 */
814 if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
815 return ICE_ERR_OUT_OF_RANGE;
816
817 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
818
819 cmd = &desc.params.del_rule;
820 rule_id |= ICE_AQC_RULE_ID_VALID_M;
821 cmd->rule_id = CPU_TO_LE16(rule_id);
822
823 if (keep_allocd)
824 cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
825
826 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
827 }
828
829 /**
830 * ice_aq_alloc_free_vsi_list
831 * @hw: pointer to the HW struct
832 * @vsi_list_id: VSI list ID returned or used for lookup
833 * @lkup_type: switch rule filter lookup type
834 * @opc: switch rules population command type - pass in the command opcode
835 *
836 * allocates or free a VSI list resource
837 */
838 static enum ice_status
ice_aq_alloc_free_vsi_list(struct ice_hw * hw,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type,enum ice_adminq_opc opc)839 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
840 enum ice_sw_lkup_type lkup_type,
841 enum ice_adminq_opc opc)
842 {
843 struct ice_aqc_alloc_free_res_elem *sw_buf;
844 struct ice_aqc_res_elem *vsi_ele;
845 enum ice_status status;
846 u16 buf_len;
847
848 buf_len = ice_struct_size(sw_buf, elem, 1);
849 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
850 if (!sw_buf)
851 return ICE_ERR_NO_MEMORY;
852 sw_buf->num_elems = CPU_TO_LE16(1);
853
854 if (lkup_type == ICE_SW_LKUP_MAC ||
855 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
856 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
857 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
858 lkup_type == ICE_SW_LKUP_PROMISC ||
859 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
860 lkup_type == ICE_SW_LKUP_LAST) {
861 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
862 } else if (lkup_type == ICE_SW_LKUP_VLAN) {
863 sw_buf->res_type =
864 CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
865 } else {
866 status = ICE_ERR_PARAM;
867 goto ice_aq_alloc_free_vsi_list_exit;
868 }
869
870 if (opc == ice_aqc_opc_free_res)
871 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
872
873 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
874 if (status)
875 goto ice_aq_alloc_free_vsi_list_exit;
876
877 if (opc == ice_aqc_opc_alloc_res) {
878 vsi_ele = &sw_buf->elem[0];
879 *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
880 }
881
882 ice_aq_alloc_free_vsi_list_exit:
883 ice_free(hw, sw_buf);
884 return status;
885 }
886
887 /**
888 * ice_aq_set_storm_ctrl - Sets storm control configuration
889 * @hw: pointer to the HW struct
890 * @bcast_thresh: represents the upper threshold for broadcast storm control
891 * @mcast_thresh: represents the upper threshold for multicast storm control
892 * @ctl_bitmask: storm control knobs
893 *
894 * Sets the storm control configuration (0x0280)
895 */
896 enum ice_status
ice_aq_set_storm_ctrl(struct ice_hw * hw,u32 bcast_thresh,u32 mcast_thresh,u32 ctl_bitmask)897 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
898 u32 ctl_bitmask)
899 {
900 struct ice_aqc_storm_cfg *cmd;
901 struct ice_aq_desc desc;
902
903 cmd = &desc.params.storm_conf;
904
905 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
906
907 cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
908 cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
909 cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
910
911 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
912 }
913
914 /**
915 * ice_aq_get_storm_ctrl - gets storm control configuration
916 * @hw: pointer to the HW struct
917 * @bcast_thresh: represents the upper threshold for broadcast storm control
918 * @mcast_thresh: represents the upper threshold for multicast storm control
919 * @ctl_bitmask: storm control knobs
920 *
921 * Gets the storm control configuration (0x0281)
922 */
923 enum ice_status
ice_aq_get_storm_ctrl(struct ice_hw * hw,u32 * bcast_thresh,u32 * mcast_thresh,u32 * ctl_bitmask)924 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
925 u32 *ctl_bitmask)
926 {
927 enum ice_status status;
928 struct ice_aq_desc desc;
929
930 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
931
932 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
933 if (!status) {
934 struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
935
936 if (bcast_thresh)
937 *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
938 ICE_AQ_THRESHOLD_M;
939 if (mcast_thresh)
940 *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
941 ICE_AQ_THRESHOLD_M;
942 if (ctl_bitmask)
943 *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
944 }
945
946 return status;
947 }
948
949 /**
950 * ice_aq_sw_rules - add/update/remove switch rules
951 * @hw: pointer to the HW struct
952 * @rule_list: pointer to switch rule population list
953 * @rule_list_sz: total size of the rule list in bytes
954 * @num_rules: number of switch rules in the rule_list
955 * @opc: switch rules population command type - pass in the command opcode
956 * @cd: pointer to command details structure or NULL
957 *
958 * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
959 */
960 static enum ice_status
ice_aq_sw_rules(struct ice_hw * hw,void * rule_list,u16 rule_list_sz,u8 num_rules,enum ice_adminq_opc opc,struct ice_sq_cd * cd)961 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
962 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
963 {
964 struct ice_aq_desc desc;
965 enum ice_status status;
966
967 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
968
969 if (opc != ice_aqc_opc_add_sw_rules &&
970 opc != ice_aqc_opc_update_sw_rules &&
971 opc != ice_aqc_opc_remove_sw_rules)
972 return ICE_ERR_PARAM;
973
974 ice_fill_dflt_direct_cmd_desc(&desc, opc);
975
976 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
977 desc.params.sw_rules.num_rules_fltr_entry_index =
978 CPU_TO_LE16(num_rules);
979 status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
980 if (opc != ice_aqc_opc_add_sw_rules &&
981 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
982 status = ICE_ERR_DOES_NOT_EXIST;
983
984 return status;
985 }
986
987 /* ice_init_port_info - Initialize port_info with switch configuration data
988 * @pi: pointer to port_info
989 * @vsi_port_num: VSI number or port number
990 * @type: Type of switch element (port or VSI)
991 * @swid: switch ID of the switch the element is attached to
992 * @pf_vf_num: PF or VF number
993 * @is_vf: true if the element is a VF, false otherwise
994 */
995 static void
ice_init_port_info(struct ice_port_info * pi,u16 vsi_port_num,u8 type,u16 swid,u16 pf_vf_num,bool is_vf)996 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
997 u16 swid, u16 pf_vf_num, bool is_vf)
998 {
999 switch (type) {
1000 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1001 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1002 pi->sw_id = swid;
1003 pi->pf_vf_num = pf_vf_num;
1004 pi->is_vf = is_vf;
1005 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
1006 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
1007 break;
1008 default:
1009 ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
1010 break;
1011 }
1012 }
1013
1014 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1015 * @hw: pointer to the hardware structure
1016 */
ice_get_initial_sw_cfg(struct ice_hw * hw)1017 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
1018 {
1019 struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
1020 enum ice_status status;
1021 u8 num_total_ports;
1022 u16 req_desc = 0;
1023 u16 num_elems;
1024 u8 j = 0;
1025 u16 i;
1026
1027 num_total_ports = 1;
1028
1029 rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *)
1030 ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1031
1032 if (!rbuf)
1033 return ICE_ERR_NO_MEMORY;
1034
1035 /* Multiple calls to ice_aq_get_sw_cfg may be required
1036 * to get all the switch configuration information. The need
1037 * for additional calls is indicated by ice_aq_get_sw_cfg
1038 * writing a non-zero value in req_desc
1039 */
1040 do {
1041 struct ice_aqc_get_sw_cfg_resp_elem *ele;
1042
1043 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1044 &req_desc, &num_elems, NULL);
1045
1046 if (status)
1047 break;
1048
1049 for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
1050 u16 pf_vf_num, swid, vsi_port_num;
1051 bool is_vf = false;
1052 u8 res_type;
1053
1054 vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1055 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1056
1057 pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1058 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1059
1060 swid = LE16_TO_CPU(ele->swid);
1061
1062 if (LE16_TO_CPU(ele->pf_vf_num) &
1063 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1064 is_vf = true;
1065
1066 res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >>
1067 ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
1068
1069 switch (res_type) {
1070 case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1071 case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1072 if (j == num_total_ports) {
1073 ice_debug(hw, ICE_DBG_SW, "more ports than expected\n");
1074 status = ICE_ERR_CFG;
1075 goto out;
1076 }
1077 ice_init_port_info(hw->port_info,
1078 vsi_port_num, res_type, swid,
1079 pf_vf_num, is_vf);
1080 j++;
1081 break;
1082 default:
1083 break;
1084 }
1085 }
1086 } while (req_desc && !status);
1087
1088 out:
1089 ice_free(hw, rbuf);
1090 return status;
1091 }
1092
1093 /**
1094 * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1095 * @hw: pointer to the hardware structure
1096 * @fi: filter info structure to fill/update
1097 *
1098 * This helper function populates the lb_en and lan_en elements of the provided
1099 * ice_fltr_info struct using the switch's type and characteristics of the
1100 * switch rule being configured.
1101 */
ice_fill_sw_info(struct ice_hw * hw,struct ice_fltr_info * fi)1102 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1103 {
1104 fi->lb_en = false;
1105 fi->lan_en = false;
1106 if ((fi->flag & ICE_FLTR_TX) &&
1107 (fi->fltr_act == ICE_FWD_TO_VSI ||
1108 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1109 fi->fltr_act == ICE_FWD_TO_Q ||
1110 fi->fltr_act == ICE_FWD_TO_QGRP)) {
1111 /* Setting LB for prune actions will result in replicated
1112 * packets to the internal switch that will be dropped.
1113 */
1114 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1115 fi->lb_en = true;
1116
1117 /* Set lan_en to TRUE if
1118 * 1. The switch is a VEB AND
1119 * 2
1120 * 2.1 The lookup is a directional lookup like ethertype,
1121 * promiscuous, ethertype-MAC, promiscuous-VLAN
1122 * and default-port OR
1123 * 2.2 The lookup is VLAN, OR
1124 * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1125 * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1126 *
1127 * OR
1128 *
1129 * The switch is a VEPA.
1130 *
1131 * In all other cases, the LAN enable has to be set to false.
1132 */
1133 if (hw->evb_veb) {
1134 if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1135 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1136 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1137 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1138 fi->lkup_type == ICE_SW_LKUP_DFLT ||
1139 fi->lkup_type == ICE_SW_LKUP_VLAN ||
1140 (fi->lkup_type == ICE_SW_LKUP_MAC &&
1141 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1142 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1143 !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
1144 fi->lan_en = true;
1145 } else {
1146 fi->lan_en = true;
1147 }
1148 }
1149 }
1150
1151 /**
1152 * ice_fill_sw_rule - Helper function to fill switch rule structure
1153 * @hw: pointer to the hardware structure
1154 * @f_info: entry containing packet forwarding information
1155 * @s_rule: switch rule structure to be filled in based on mac_entry
1156 * @opc: switch rules population command type - pass in the command opcode
1157 */
1158 static void
ice_fill_sw_rule(struct ice_hw * hw,struct ice_fltr_info * f_info,struct ice_aqc_sw_rules_elem * s_rule,enum ice_adminq_opc opc)1159 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1160 struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
1161 {
1162 u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1163 u16 vlan_tpid = ICE_ETH_P_8021Q;
1164 void *daddr = NULL;
1165 u16 eth_hdr_sz;
1166 u8 *eth_hdr;
1167 u32 act = 0;
1168 __be16 *off;
1169 u8 q_rgn;
1170
1171 if (opc == ice_aqc_opc_remove_sw_rules) {
1172 s_rule->pdata.lkup_tx_rx.act = 0;
1173 s_rule->pdata.lkup_tx_rx.index =
1174 CPU_TO_LE16(f_info->fltr_rule_id);
1175 s_rule->pdata.lkup_tx_rx.hdr_len = 0;
1176 return;
1177 }
1178
1179 eth_hdr_sz = sizeof(dummy_eth_header);
1180 eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
1181
1182 /* initialize the ether header with a dummy header */
1183 ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1184 ice_fill_sw_info(hw, f_info);
1185
1186 switch (f_info->fltr_act) {
1187 case ICE_FWD_TO_VSI:
1188 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1189 ICE_SINGLE_ACT_VSI_ID_M;
1190 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1191 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1192 ICE_SINGLE_ACT_VALID_BIT;
1193 break;
1194 case ICE_FWD_TO_VSI_LIST:
1195 act |= ICE_SINGLE_ACT_VSI_LIST;
1196 act |= (f_info->fwd_id.vsi_list_id <<
1197 ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1198 ICE_SINGLE_ACT_VSI_LIST_ID_M;
1199 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1200 act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1201 ICE_SINGLE_ACT_VALID_BIT;
1202 break;
1203 case ICE_FWD_TO_Q:
1204 act |= ICE_SINGLE_ACT_TO_Q;
1205 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1206 ICE_SINGLE_ACT_Q_INDEX_M;
1207 break;
1208 case ICE_DROP_PACKET:
1209 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1210 ICE_SINGLE_ACT_VALID_BIT;
1211 break;
1212 case ICE_FWD_TO_QGRP:
1213 q_rgn = f_info->qgrp_size > 0 ?
1214 (u8)ice_ilog2(f_info->qgrp_size) : 0;
1215 act |= ICE_SINGLE_ACT_TO_Q;
1216 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1217 ICE_SINGLE_ACT_Q_INDEX_M;
1218 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1219 ICE_SINGLE_ACT_Q_REGION_M;
1220 break;
1221 default:
1222 return;
1223 }
1224
1225 if (f_info->lb_en)
1226 act |= ICE_SINGLE_ACT_LB_ENABLE;
1227 if (f_info->lan_en)
1228 act |= ICE_SINGLE_ACT_LAN_ENABLE;
1229
1230 switch (f_info->lkup_type) {
1231 case ICE_SW_LKUP_MAC:
1232 daddr = f_info->l_data.mac.mac_addr;
1233 break;
1234 case ICE_SW_LKUP_VLAN:
1235 vlan_id = f_info->l_data.vlan.vlan_id;
1236 if (f_info->l_data.vlan.tpid_valid)
1237 vlan_tpid = f_info->l_data.vlan.tpid;
1238 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1239 f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1240 act |= ICE_SINGLE_ACT_PRUNE;
1241 act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1242 }
1243 break;
1244 case ICE_SW_LKUP_ETHERTYPE_MAC:
1245 daddr = f_info->l_data.ethertype_mac.mac_addr;
1246 /* fall-through */
1247 case ICE_SW_LKUP_ETHERTYPE:
1248 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1249 *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1250 break;
1251 case ICE_SW_LKUP_MAC_VLAN:
1252 daddr = f_info->l_data.mac_vlan.mac_addr;
1253 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1254 break;
1255 case ICE_SW_LKUP_PROMISC_VLAN:
1256 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1257 /* fall-through */
1258 case ICE_SW_LKUP_PROMISC:
1259 daddr = f_info->l_data.mac_vlan.mac_addr;
1260 break;
1261 default:
1262 break;
1263 }
1264
1265 s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
1266 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1267 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1268
1269 /* Recipe set depending on lookup type */
1270 s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
1271 s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
1272 s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1273
1274 if (daddr)
1275 ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1276 ICE_NONDMA_TO_NONDMA);
1277
1278 if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1279 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1280 *off = CPU_TO_BE16(vlan_id);
1281 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1282 *off = CPU_TO_BE16(vlan_tpid);
1283 }
1284
1285 /* Create the switch rule with the final dummy Ethernet header */
1286 if (opc != ice_aqc_opc_update_sw_rules)
1287 s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
1288 }
1289
1290 /**
1291 * ice_add_marker_act
1292 * @hw: pointer to the hardware structure
1293 * @m_ent: the management entry for which sw marker needs to be added
1294 * @sw_marker: sw marker to tag the Rx descriptor with
1295 * @l_id: large action resource ID
1296 *
1297 * Create a large action to hold software marker and update the switch rule
1298 * entry pointed by m_ent with newly created large action
1299 */
1300 static enum ice_status
ice_add_marker_act(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_ent,u16 sw_marker,u16 l_id)1301 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1302 u16 sw_marker, u16 l_id)
1303 {
1304 struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
1305 /* For software marker we need 3 large actions
1306 * 1. FWD action: FWD TO VSI or VSI LIST
1307 * 2. GENERIC VALUE action to hold the profile ID
1308 * 3. GENERIC VALUE action to hold the software marker ID
1309 */
1310 const u16 num_lg_acts = 3;
1311 enum ice_status status;
1312 u16 lg_act_size;
1313 u16 rules_size;
1314 u32 act;
1315 u16 id;
1316
1317 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1318 return ICE_ERR_PARAM;
1319
1320 /* Create two back-to-back switch rules and submit them to the HW using
1321 * one memory buffer:
1322 * 1. Large Action
1323 * 2. Look up Tx Rx
1324 */
1325 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
1326 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1327 lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1328 if (!lg_act)
1329 return ICE_ERR_NO_MEMORY;
1330
1331 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1332
1333 /* Fill in the first switch rule i.e. large action */
1334 lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1335 lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1336 lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
1337
1338 /* First action VSI forwarding or VSI list forwarding depending on how
1339 * many VSIs
1340 */
1341 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1342 m_ent->fltr_info.fwd_id.hw_vsi_id;
1343
1344 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1345 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
1346 if (m_ent->vsi_count > 1)
1347 act |= ICE_LG_ACT_VSI_LIST;
1348 lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1349
1350 /* Second action descriptor type */
1351 act = ICE_LG_ACT_GENERIC;
1352
1353 act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1354 lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1355
1356 act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1357 ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1358
1359 /* Third action Marker value */
1360 act |= ICE_LG_ACT_GENERIC;
1361 act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1362 ICE_LG_ACT_GENERIC_VALUE_M;
1363
1364 lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
1365
1366 /* call the fill switch rule to fill the lookup Tx Rx structure */
1367 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1368 ice_aqc_opc_update_sw_rules);
1369
1370 /* Update the action to point to the large action ID */
1371 rx_tx->pdata.lkup_tx_rx.act =
1372 CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1373 ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1374 ICE_SINGLE_ACT_PTR_VAL_M));
1375
1376 /* Use the filter rule ID of the previously created rule with single
1377 * act. Once the update happens, hardware will treat this as large
1378 * action
1379 */
1380 rx_tx->pdata.lkup_tx_rx.index =
1381 CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1382
1383 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1384 ice_aqc_opc_update_sw_rules, NULL);
1385 if (!status) {
1386 m_ent->lg_act_idx = l_id;
1387 m_ent->sw_marker_id = sw_marker;
1388 }
1389
1390 ice_free(hw, lg_act);
1391 return status;
1392 }
1393
1394 /**
1395 * ice_add_counter_act - add/update filter rule with counter action
1396 * @hw: pointer to the hardware structure
1397 * @m_ent: the management entry for which counter needs to be added
1398 * @counter_id: VLAN counter ID returned as part of allocate resource
1399 * @l_id: large action resource ID
1400 */
1401 static enum ice_status
ice_add_counter_act(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_ent,u16 counter_id,u16 l_id)1402 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1403 u16 counter_id, u16 l_id)
1404 {
1405 struct ice_aqc_sw_rules_elem *lg_act;
1406 struct ice_aqc_sw_rules_elem *rx_tx;
1407 enum ice_status status;
1408 /* 2 actions will be added while adding a large action counter */
1409 const int num_acts = 2;
1410 u16 lg_act_size;
1411 u16 rules_size;
1412 u16 f_rule_id;
1413 u32 act;
1414 u16 id;
1415
1416 if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1417 return ICE_ERR_PARAM;
1418
1419 /* Create two back-to-back switch rules and submit them to the HW using
1420 * one memory buffer:
1421 * 1. Large Action
1422 * 2. Look up Tx Rx
1423 */
1424 lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
1425 rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1426 lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1427 if (!lg_act)
1428 return ICE_ERR_NO_MEMORY;
1429
1430 rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1431
1432 /* Fill in the first switch rule i.e. large action */
1433 lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1434 lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1435 lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
1436
1437 /* First action VSI forwarding or VSI list forwarding depending on how
1438 * many VSIs
1439 */
1440 id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1441 m_ent->fltr_info.fwd_id.hw_vsi_id;
1442
1443 act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1444 act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1445 ICE_LG_ACT_VSI_LIST_ID_M;
1446 if (m_ent->vsi_count > 1)
1447 act |= ICE_LG_ACT_VSI_LIST;
1448 lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1449
1450 /* Second action counter ID */
1451 act = ICE_LG_ACT_STAT_COUNT;
1452 act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1453 ICE_LG_ACT_STAT_COUNT_M;
1454 lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1455
1456 /* call the fill switch rule to fill the lookup Tx Rx structure */
1457 ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1458 ice_aqc_opc_update_sw_rules);
1459
1460 act = ICE_SINGLE_ACT_PTR;
1461 act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1462 rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1463
1464 /* Use the filter rule ID of the previously created rule with single
1465 * act. Once the update happens, hardware will treat this as large
1466 * action
1467 */
1468 f_rule_id = m_ent->fltr_info.fltr_rule_id;
1469 rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
1470
1471 status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1472 ice_aqc_opc_update_sw_rules, NULL);
1473 if (!status) {
1474 m_ent->lg_act_idx = l_id;
1475 m_ent->counter_index = counter_id;
1476 }
1477
1478 ice_free(hw, lg_act);
1479 return status;
1480 }
1481
1482 /**
1483 * ice_create_vsi_list_map
1484 * @hw: pointer to the hardware structure
1485 * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1486 * @num_vsi: number of VSI handles in the array
1487 * @vsi_list_id: VSI list ID generated as part of allocate resource
1488 *
1489 * Helper function to create a new entry of VSI list ID to VSI mapping
1490 * using the given VSI list ID
1491 */
1492 static struct ice_vsi_list_map_info *
ice_create_vsi_list_map(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id)1493 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1494 u16 vsi_list_id)
1495 {
1496 struct ice_switch_info *sw = hw->switch_info;
1497 struct ice_vsi_list_map_info *v_map;
1498 int i;
1499
1500 v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map));
1501 if (!v_map)
1502 return NULL;
1503
1504 v_map->vsi_list_id = vsi_list_id;
1505 v_map->ref_cnt = 1;
1506 for (i = 0; i < num_vsi; i++)
1507 ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1508
1509 LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1510 return v_map;
1511 }
1512
1513 /**
1514 * ice_update_vsi_list_rule
1515 * @hw: pointer to the hardware structure
1516 * @vsi_handle_arr: array of VSI handles to form a VSI list
1517 * @num_vsi: number of VSI handles in the array
1518 * @vsi_list_id: VSI list ID generated as part of allocate resource
1519 * @remove: Boolean value to indicate if this is a remove action
1520 * @opc: switch rules population command type - pass in the command opcode
1521 * @lkup_type: lookup type of the filter
1522 *
1523 * Call AQ command to add a new switch rule or update existing switch rule
1524 * using the given VSI list ID
1525 */
1526 static enum ice_status
ice_update_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 vsi_list_id,bool remove,enum ice_adminq_opc opc,enum ice_sw_lkup_type lkup_type)1527 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1528 u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1529 enum ice_sw_lkup_type lkup_type)
1530 {
1531 struct ice_aqc_sw_rules_elem *s_rule;
1532 enum ice_status status;
1533 u16 s_rule_size;
1534 u16 rule_type;
1535 int i;
1536
1537 if (!num_vsi)
1538 return ICE_ERR_PARAM;
1539
1540 if (lkup_type == ICE_SW_LKUP_MAC ||
1541 lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1542 lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1543 lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1544 lkup_type == ICE_SW_LKUP_PROMISC ||
1545 lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1546 lkup_type == ICE_SW_LKUP_LAST)
1547 rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1548 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1549 else if (lkup_type == ICE_SW_LKUP_VLAN)
1550 rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1551 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1552 else
1553 return ICE_ERR_PARAM;
1554
1555 s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
1556 s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
1557 if (!s_rule)
1558 return ICE_ERR_NO_MEMORY;
1559 for (i = 0; i < num_vsi; i++) {
1560 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1561 status = ICE_ERR_PARAM;
1562 goto exit;
1563 }
1564 /* AQ call requires hw_vsi_id(s) */
1565 s_rule->pdata.vsi_list.vsi[i] =
1566 CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1567 }
1568
1569 s_rule->type = CPU_TO_LE16(rule_type);
1570 s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
1571 s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
1572
1573 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1574
1575 exit:
1576 ice_free(hw, s_rule);
1577 return status;
1578 }
1579
1580 /**
1581 * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1582 * @hw: pointer to the HW struct
1583 * @vsi_handle_arr: array of VSI handles to form a VSI list
1584 * @num_vsi: number of VSI handles in the array
1585 * @vsi_list_id: stores the ID of the VSI list to be created
1586 * @lkup_type: switch rule filter's lookup type
1587 */
1588 static enum ice_status
ice_create_vsi_list_rule(struct ice_hw * hw,u16 * vsi_handle_arr,u16 num_vsi,u16 * vsi_list_id,enum ice_sw_lkup_type lkup_type)1589 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1590 u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1591 {
1592 enum ice_status status;
1593
1594 status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1595 ice_aqc_opc_alloc_res);
1596 if (status)
1597 return status;
1598
1599 /* Update the newly created VSI list to include the specified VSIs */
1600 return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1601 *vsi_list_id, false,
1602 ice_aqc_opc_add_sw_rules, lkup_type);
1603 }
1604
1605 /**
1606 * ice_create_pkt_fwd_rule
1607 * @hw: pointer to the hardware structure
1608 * @recp_list: corresponding filter management list
1609 * @f_entry: entry containing packet forwarding information
1610 *
1611 * Create switch rule with given filter information and add an entry
1612 * to the corresponding filter management list to track this switch rule
1613 * and VSI mapping
1614 */
1615 static enum ice_status
ice_create_pkt_fwd_rule(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)1616 ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1617 struct ice_fltr_list_entry *f_entry)
1618 {
1619 struct ice_fltr_mgmt_list_entry *fm_entry;
1620 struct ice_aqc_sw_rules_elem *s_rule;
1621 enum ice_status status;
1622
1623 s_rule = (struct ice_aqc_sw_rules_elem *)
1624 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1625 if (!s_rule)
1626 return ICE_ERR_NO_MEMORY;
1627 fm_entry = (struct ice_fltr_mgmt_list_entry *)
1628 ice_malloc(hw, sizeof(*fm_entry));
1629 if (!fm_entry) {
1630 status = ICE_ERR_NO_MEMORY;
1631 goto ice_create_pkt_fwd_rule_exit;
1632 }
1633
1634 fm_entry->fltr_info = f_entry->fltr_info;
1635
1636 /* Initialize all the fields for the management entry */
1637 fm_entry->vsi_count = 1;
1638 fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1639 fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1640 fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1641
1642 ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1643 ice_aqc_opc_add_sw_rules);
1644
1645 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1646 ice_aqc_opc_add_sw_rules, NULL);
1647 if (status) {
1648 ice_free(hw, fm_entry);
1649 goto ice_create_pkt_fwd_rule_exit;
1650 }
1651
1652 f_entry->fltr_info.fltr_rule_id =
1653 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1654 fm_entry->fltr_info.fltr_rule_id =
1655 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1656
1657 /* The book keeping entries will get removed when base driver
1658 * calls remove filter AQ command
1659 */
1660 LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules);
1661
1662 ice_create_pkt_fwd_rule_exit:
1663 ice_free(hw, s_rule);
1664 return status;
1665 }
1666
1667 /**
1668 * ice_update_pkt_fwd_rule
1669 * @hw: pointer to the hardware structure
1670 * @f_info: filter information for switch rule
1671 *
1672 * Call AQ command to update a previously created switch rule with a
1673 * VSI list ID
1674 */
1675 static enum ice_status
ice_update_pkt_fwd_rule(struct ice_hw * hw,struct ice_fltr_info * f_info)1676 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1677 {
1678 struct ice_aqc_sw_rules_elem *s_rule;
1679 enum ice_status status;
1680
1681 s_rule = (struct ice_aqc_sw_rules_elem *)
1682 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1683 if (!s_rule)
1684 return ICE_ERR_NO_MEMORY;
1685
1686 ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
1687
1688 s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
1689
1690 /* Update switch rule with new rule set to forward VSI list */
1691 status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1692 ice_aqc_opc_update_sw_rules, NULL);
1693
1694 ice_free(hw, s_rule);
1695 return status;
1696 }
1697
1698 /**
1699 * ice_update_sw_rule_bridge_mode
1700 * @hw: pointer to the HW struct
1701 *
1702 * Updates unicast switch filter rules based on VEB/VEPA mode
1703 */
ice_update_sw_rule_bridge_mode(struct ice_hw * hw)1704 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
1705 {
1706 struct ice_switch_info *sw = hw->switch_info;
1707 struct ice_fltr_mgmt_list_entry *fm_entry;
1708 enum ice_status status = ICE_SUCCESS;
1709 struct LIST_HEAD_TYPE *rule_head;
1710 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1711
1712 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
1713 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
1714
1715 ice_acquire_lock(rule_lock);
1716 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
1717 list_entry) {
1718 struct ice_fltr_info *fi = &fm_entry->fltr_info;
1719 u8 *addr = fi->l_data.mac.mac_addr;
1720
1721 /* Update unicast Tx rules to reflect the selected
1722 * VEB/VEPA mode
1723 */
1724 if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
1725 (fi->fltr_act == ICE_FWD_TO_VSI ||
1726 fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1727 fi->fltr_act == ICE_FWD_TO_Q ||
1728 fi->fltr_act == ICE_FWD_TO_QGRP)) {
1729 status = ice_update_pkt_fwd_rule(hw, fi);
1730 if (status)
1731 break;
1732 }
1733 }
1734
1735 ice_release_lock(rule_lock);
1736
1737 return status;
1738 }
1739
1740 /**
1741 * ice_add_update_vsi_list
1742 * @hw: pointer to the hardware structure
1743 * @m_entry: pointer to current filter management list entry
1744 * @cur_fltr: filter information from the book keeping entry
1745 * @new_fltr: filter information with the new VSI to be added
1746 *
1747 * Call AQ command to add or update previously created VSI list with new VSI.
1748 *
1749 * Helper function to do book keeping associated with adding filter information
1750 * The algorithm to do the book keeping is described below :
1751 * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
1752 * if only one VSI has been added till now
1753 * Allocate a new VSI list and add two VSIs
1754 * to this list using switch rule command
1755 * Update the previously created switch rule with the
1756 * newly created VSI list ID
1757 * if a VSI list was previously created
1758 * Add the new VSI to the previously created VSI list set
1759 * using the update switch rule command
1760 */
1761 static enum ice_status
ice_add_update_vsi_list(struct ice_hw * hw,struct ice_fltr_mgmt_list_entry * m_entry,struct ice_fltr_info * cur_fltr,struct ice_fltr_info * new_fltr)1762 ice_add_update_vsi_list(struct ice_hw *hw,
1763 struct ice_fltr_mgmt_list_entry *m_entry,
1764 struct ice_fltr_info *cur_fltr,
1765 struct ice_fltr_info *new_fltr)
1766 {
1767 enum ice_status status = ICE_SUCCESS;
1768 u16 vsi_list_id = 0;
1769
1770 if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
1771 cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
1772 return ICE_ERR_NOT_IMPL;
1773
1774 if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
1775 new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
1776 (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
1777 cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
1778 return ICE_ERR_NOT_IMPL;
1779
1780 if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
1781 /* Only one entry existed in the mapping and it was not already
1782 * a part of a VSI list. So, create a VSI list with the old and
1783 * new VSIs.
1784 */
1785 struct ice_fltr_info tmp_fltr;
1786 u16 vsi_handle_arr[2];
1787
1788 /* A rule already exists with the new VSI being added */
1789 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
1790 return ICE_ERR_ALREADY_EXISTS;
1791
1792 vsi_handle_arr[0] = cur_fltr->vsi_handle;
1793 vsi_handle_arr[1] = new_fltr->vsi_handle;
1794 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
1795 &vsi_list_id,
1796 new_fltr->lkup_type);
1797 if (status)
1798 return status;
1799
1800 tmp_fltr = *new_fltr;
1801 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
1802 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
1803 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
1804 /* Update the previous switch rule of "MAC forward to VSI" to
1805 * "MAC fwd to VSI list"
1806 */
1807 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
1808 if (status)
1809 return status;
1810
1811 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
1812 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
1813 m_entry->vsi_list_info =
1814 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
1815 vsi_list_id);
1816
1817 if (!m_entry->vsi_list_info)
1818 return ICE_ERR_NO_MEMORY;
1819
1820 /* If this entry was large action then the large action needs
1821 * to be updated to point to FWD to VSI list
1822 */
1823 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
1824 status =
1825 ice_add_marker_act(hw, m_entry,
1826 m_entry->sw_marker_id,
1827 m_entry->lg_act_idx);
1828 } else {
1829 u16 vsi_handle = new_fltr->vsi_handle;
1830 enum ice_adminq_opc opcode;
1831
1832 if (!m_entry->vsi_list_info)
1833 return ICE_ERR_CFG;
1834
1835 /* A rule already exists with the new VSI being added */
1836 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
1837 return ICE_SUCCESS;
1838
1839 /* Update the previously created VSI list set with
1840 * the new VSI ID passed in
1841 */
1842 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
1843 opcode = ice_aqc_opc_update_sw_rules;
1844
1845 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
1846 vsi_list_id, false, opcode,
1847 new_fltr->lkup_type);
1848 /* update VSI list mapping info with new VSI ID */
1849 if (!status)
1850 ice_set_bit(vsi_handle,
1851 m_entry->vsi_list_info->vsi_map);
1852 }
1853 if (!status)
1854 m_entry->vsi_count++;
1855 return status;
1856 }
1857
1858 /**
1859 * ice_find_rule_entry - Search a rule entry
1860 * @list_head: head of rule list
1861 * @f_info: rule information
1862 *
1863 * Helper function to search for a given rule entry
1864 * Returns pointer to entry storing the rule if found
1865 */
1866 static struct ice_fltr_mgmt_list_entry *
ice_find_rule_entry(struct LIST_HEAD_TYPE * list_head,struct ice_fltr_info * f_info)1867 ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head,
1868 struct ice_fltr_info *f_info)
1869 {
1870 struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
1871
1872 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
1873 list_entry) {
1874 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
1875 sizeof(f_info->l_data)) &&
1876 f_info->flag == list_itr->fltr_info.flag) {
1877 ret = list_itr;
1878 break;
1879 }
1880 }
1881 return ret;
1882 }
1883
1884 /**
1885 * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
1886 * @recp_list: VSI lists needs to be searched
1887 * @vsi_handle: VSI handle to be found in VSI list
1888 * @vsi_list_id: VSI list ID found containing vsi_handle
1889 *
1890 * Helper function to search a VSI list with single entry containing given VSI
1891 * handle element. This can be extended further to search VSI list with more
1892 * than 1 vsi_count. Returns pointer to VSI list entry if found.
1893 */
1894 static struct ice_vsi_list_map_info *
ice_find_vsi_list_entry(struct ice_sw_recipe * recp_list,u16 vsi_handle,u16 * vsi_list_id)1895 ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle,
1896 u16 *vsi_list_id)
1897 {
1898 struct ice_vsi_list_map_info *map_info = NULL;
1899 struct LIST_HEAD_TYPE *list_head;
1900
1901 list_head = &recp_list->filt_rules;
1902 if (recp_list->adv_rule) {
1903 struct ice_adv_fltr_mgmt_list_entry *list_itr;
1904
1905 LIST_FOR_EACH_ENTRY(list_itr, list_head,
1906 ice_adv_fltr_mgmt_list_entry,
1907 list_entry) {
1908 if (list_itr->vsi_list_info) {
1909 map_info = list_itr->vsi_list_info;
1910 if (ice_is_bit_set(map_info->vsi_map,
1911 vsi_handle)) {
1912 *vsi_list_id = map_info->vsi_list_id;
1913 return map_info;
1914 }
1915 }
1916 }
1917 } else {
1918 struct ice_fltr_mgmt_list_entry *list_itr;
1919
1920 LIST_FOR_EACH_ENTRY(list_itr, list_head,
1921 ice_fltr_mgmt_list_entry,
1922 list_entry) {
1923 if (list_itr->vsi_count == 1 &&
1924 list_itr->vsi_list_info) {
1925 map_info = list_itr->vsi_list_info;
1926 if (ice_is_bit_set(map_info->vsi_map,
1927 vsi_handle)) {
1928 *vsi_list_id = map_info->vsi_list_id;
1929 return map_info;
1930 }
1931 }
1932 }
1933 }
1934 return NULL;
1935 }
1936
1937 /**
1938 * ice_add_rule_internal - add rule for a given lookup type
1939 * @hw: pointer to the hardware structure
1940 * @recp_list: recipe list for which rule has to be added
1941 * @lport: logic port number on which function add rule
1942 * @f_entry: structure containing MAC forwarding information
1943 *
1944 * Adds or updates the rule lists for a given recipe
1945 */
1946 static enum ice_status
ice_add_rule_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,u8 lport,struct ice_fltr_list_entry * f_entry)1947 ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
1948 u8 lport, struct ice_fltr_list_entry *f_entry)
1949 {
1950 struct ice_fltr_info *new_fltr, *cur_fltr;
1951 struct ice_fltr_mgmt_list_entry *m_entry;
1952 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
1953 enum ice_status status = ICE_SUCCESS;
1954
1955 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
1956 return ICE_ERR_PARAM;
1957
1958 /* Load the hw_vsi_id only if the fwd action is fwd to VSI */
1959 if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
1960 f_entry->fltr_info.fwd_id.hw_vsi_id =
1961 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
1962
1963 rule_lock = &recp_list->filt_rule_lock;
1964
1965 ice_acquire_lock(rule_lock);
1966 new_fltr = &f_entry->fltr_info;
1967 if (new_fltr->flag & ICE_FLTR_RX)
1968 new_fltr->src = lport;
1969 else if (new_fltr->flag & ICE_FLTR_TX)
1970 new_fltr->src =
1971 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
1972
1973 m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
1974 if (!m_entry) {
1975 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
1976 goto exit_add_rule_internal;
1977 }
1978
1979 cur_fltr = &m_entry->fltr_info;
1980 status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
1981
1982 exit_add_rule_internal:
1983 ice_release_lock(rule_lock);
1984 return status;
1985 }
1986
1987 /**
1988 * ice_remove_vsi_list_rule
1989 * @hw: pointer to the hardware structure
1990 * @vsi_list_id: VSI list ID generated as part of allocate resource
1991 * @lkup_type: switch rule filter lookup type
1992 *
1993 * The VSI list should be emptied before this function is called to remove the
1994 * VSI list.
1995 */
1996 static enum ice_status
ice_remove_vsi_list_rule(struct ice_hw * hw,u16 vsi_list_id,enum ice_sw_lkup_type lkup_type)1997 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
1998 enum ice_sw_lkup_type lkup_type)
1999 {
2000 /* Free the vsi_list resource that we allocated. It is assumed that the
2001 * list is empty at this point.
2002 */
2003 return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2004 ice_aqc_opc_free_res);
2005 }
2006
2007 /**
2008 * ice_rem_update_vsi_list
2009 * @hw: pointer to the hardware structure
2010 * @vsi_handle: VSI handle of the VSI to remove
2011 * @fm_list: filter management entry for which the VSI list management needs to
2012 * be done
2013 */
2014 static enum ice_status
ice_rem_update_vsi_list(struct ice_hw * hw,u16 vsi_handle,struct ice_fltr_mgmt_list_entry * fm_list)2015 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2016 struct ice_fltr_mgmt_list_entry *fm_list)
2017 {
2018 enum ice_sw_lkup_type lkup_type;
2019 enum ice_status status = ICE_SUCCESS;
2020 u16 vsi_list_id;
2021
2022 if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2023 fm_list->vsi_count == 0)
2024 return ICE_ERR_PARAM;
2025
2026 /* A rule with the VSI being removed does not exist */
2027 if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2028 return ICE_ERR_DOES_NOT_EXIST;
2029
2030 lkup_type = fm_list->fltr_info.lkup_type;
2031 vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2032 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2033 ice_aqc_opc_update_sw_rules,
2034 lkup_type);
2035 if (status)
2036 return status;
2037
2038 fm_list->vsi_count--;
2039 ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2040
2041 if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2042 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2043 struct ice_vsi_list_map_info *vsi_list_info =
2044 fm_list->vsi_list_info;
2045 u16 rem_vsi_handle;
2046
2047 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2048 ICE_MAX_VSI);
2049 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2050 return ICE_ERR_OUT_OF_RANGE;
2051
2052 /* Make sure VSI list is empty before removing it below */
2053 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2054 vsi_list_id, true,
2055 ice_aqc_opc_update_sw_rules,
2056 lkup_type);
2057 if (status)
2058 return status;
2059
2060 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2061 tmp_fltr_info.fwd_id.hw_vsi_id =
2062 ice_get_hw_vsi_num(hw, rem_vsi_handle);
2063 tmp_fltr_info.vsi_handle = rem_vsi_handle;
2064 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2065 if (status) {
2066 ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2067 tmp_fltr_info.fwd_id.hw_vsi_id, status);
2068 return status;
2069 }
2070
2071 fm_list->fltr_info = tmp_fltr_info;
2072 }
2073
2074 if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2075 (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2076 struct ice_vsi_list_map_info *vsi_list_info =
2077 fm_list->vsi_list_info;
2078
2079 /* Remove the VSI list since it is no longer used */
2080 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2081 if (status) {
2082 ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
2083 vsi_list_id, status);
2084 return status;
2085 }
2086
2087 LIST_DEL(&vsi_list_info->list_entry);
2088 ice_free(hw, vsi_list_info);
2089 fm_list->vsi_list_info = NULL;
2090 }
2091
2092 return status;
2093 }
2094
2095 /**
2096 * ice_remove_rule_internal - Remove a filter rule of a given type
2097 *
2098 * @hw: pointer to the hardware structure
2099 * @recp_list: recipe list for which the rule needs to removed
2100 * @f_entry: rule entry containing filter information
2101 */
2102 static enum ice_status
ice_remove_rule_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)2103 ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2104 struct ice_fltr_list_entry *f_entry)
2105 {
2106 struct ice_fltr_mgmt_list_entry *list_elem;
2107 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2108 enum ice_status status = ICE_SUCCESS;
2109 bool remove_rule = false;
2110 u16 vsi_handle;
2111
2112 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2113 return ICE_ERR_PARAM;
2114 f_entry->fltr_info.fwd_id.hw_vsi_id =
2115 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2116
2117 rule_lock = &recp_list->filt_rule_lock;
2118 ice_acquire_lock(rule_lock);
2119 list_elem = ice_find_rule_entry(&recp_list->filt_rules,
2120 &f_entry->fltr_info);
2121 if (!list_elem) {
2122 status = ICE_ERR_DOES_NOT_EXIST;
2123 goto exit;
2124 }
2125
2126 if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2127 remove_rule = true;
2128 } else if (!list_elem->vsi_list_info) {
2129 status = ICE_ERR_DOES_NOT_EXIST;
2130 goto exit;
2131 } else if (list_elem->vsi_list_info->ref_cnt > 1) {
2132 /* a ref_cnt > 1 indicates that the vsi_list is being
2133 * shared by multiple rules. Decrement the ref_cnt and
2134 * remove this rule, but do not modify the list, as it
2135 * is in-use by other rules.
2136 */
2137 list_elem->vsi_list_info->ref_cnt--;
2138 remove_rule = true;
2139 } else {
2140 /* a ref_cnt of 1 indicates the vsi_list is only used
2141 * by one rule. However, the original removal request is only
2142 * for a single VSI. Update the vsi_list first, and only
2143 * remove the rule if there are no further VSIs in this list.
2144 */
2145 vsi_handle = f_entry->fltr_info.vsi_handle;
2146 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2147 if (status)
2148 goto exit;
2149 /* if VSI count goes to zero after updating the VSI list */
2150 if (list_elem->vsi_count == 0)
2151 remove_rule = true;
2152 }
2153
2154 if (remove_rule) {
2155 /* Remove the lookup rule */
2156 struct ice_aqc_sw_rules_elem *s_rule;
2157
2158 s_rule = (struct ice_aqc_sw_rules_elem *)
2159 ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
2160 if (!s_rule) {
2161 status = ICE_ERR_NO_MEMORY;
2162 goto exit;
2163 }
2164
2165 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2166 ice_aqc_opc_remove_sw_rules);
2167
2168 status = ice_aq_sw_rules(hw, s_rule,
2169 ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
2170 ice_aqc_opc_remove_sw_rules, NULL);
2171
2172 /* Remove a book keeping from the list */
2173 ice_free(hw, s_rule);
2174
2175 if (status)
2176 goto exit;
2177
2178 LIST_DEL(&list_elem->list_entry);
2179 ice_free(hw, list_elem);
2180 }
2181 exit:
2182 ice_release_lock(rule_lock);
2183 return status;
2184 }
2185
2186 /**
2187 * ice_aq_get_res_alloc - get allocated resources
2188 * @hw: pointer to the HW struct
2189 * @num_entries: pointer to u16 to store the number of resource entries returned
2190 * @buf: pointer to buffer
2191 * @buf_size: size of buf
2192 * @cd: pointer to command details structure or NULL
2193 *
2194 * The caller-supplied buffer must be large enough to store the resource
2195 * information for all resource types. Each resource type is an
2196 * ice_aqc_get_res_resp_elem structure.
2197 */
2198 enum ice_status
ice_aq_get_res_alloc(struct ice_hw * hw,u16 * num_entries,struct ice_aqc_get_res_resp_elem * buf,u16 buf_size,struct ice_sq_cd * cd)2199 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries,
2200 struct ice_aqc_get_res_resp_elem *buf, u16 buf_size,
2201 struct ice_sq_cd *cd)
2202 {
2203 struct ice_aqc_get_res_alloc *resp;
2204 enum ice_status status;
2205 struct ice_aq_desc desc;
2206
2207 if (!buf)
2208 return ICE_ERR_BAD_PTR;
2209
2210 if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2211 return ICE_ERR_INVAL_SIZE;
2212
2213 resp = &desc.params.get_res;
2214
2215 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2216 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2217
2218 if (!status && num_entries)
2219 *num_entries = LE16_TO_CPU(resp->resp_elem_num);
2220
2221 return status;
2222 }
2223
2224 /**
2225 * ice_aq_get_res_descs - get allocated resource descriptors
2226 * @hw: pointer to the hardware structure
2227 * @num_entries: number of resource entries in buffer
2228 * @buf: structure to hold response data buffer
2229 * @buf_size: size of buffer
2230 * @res_type: resource type
2231 * @res_shared: is resource shared
2232 * @desc_id: input - first desc ID to start; output - next desc ID
2233 * @cd: pointer to command details structure or NULL
2234 */
2235 enum ice_status
ice_aq_get_res_descs(struct ice_hw * hw,u16 num_entries,struct ice_aqc_res_elem * buf,u16 buf_size,u16 res_type,bool res_shared,u16 * desc_id,struct ice_sq_cd * cd)2236 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2237 struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type,
2238 bool res_shared, u16 *desc_id, struct ice_sq_cd *cd)
2239 {
2240 struct ice_aqc_get_allocd_res_desc *cmd;
2241 struct ice_aq_desc desc;
2242 enum ice_status status;
2243
2244 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2245
2246 cmd = &desc.params.get_res_desc;
2247
2248 if (!buf)
2249 return ICE_ERR_PARAM;
2250
2251 if (buf_size != (num_entries * sizeof(*buf)))
2252 return ICE_ERR_PARAM;
2253
2254 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2255
2256 cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2257 ICE_AQC_RES_TYPE_M) | (res_shared ?
2258 ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2259 cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2260
2261 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2262 if (!status)
2263 *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2264
2265 return status;
2266 }
2267
2268 /**
2269 * ice_add_mac_rule - Add a MAC address based filter rule
2270 * @hw: pointer to the hardware structure
2271 * @m_list: list of MAC addresses and forwarding information
2272 * @sw: pointer to switch info struct for which function add rule
2273 * @lport: logic port number on which function add rule
2274 *
2275 * IMPORTANT: When the umac_shared flag is set to false and m_list has
2276 * multiple unicast addresses, the function assumes that all the
2277 * addresses are unique in a given add_mac call. It doesn't
2278 * check for duplicates in this case, removing duplicates from a given
2279 * list should be taken care of in the caller of this function.
2280 */
2281 static enum ice_status
ice_add_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list,struct ice_switch_info * sw,u8 lport)2282 ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2283 struct ice_switch_info *sw, u8 lport)
2284 {
2285 struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC];
2286 struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
2287 struct ice_fltr_list_entry *m_list_itr;
2288 struct LIST_HEAD_TYPE *rule_head;
2289 u16 total_elem_left, s_rule_size;
2290 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2291 enum ice_status status = ICE_SUCCESS;
2292 u16 num_unicast = 0;
2293 u8 elem_sent;
2294
2295 s_rule = NULL;
2296 rule_lock = &recp_list->filt_rule_lock;
2297 rule_head = &recp_list->filt_rules;
2298
2299 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2300 list_entry) {
2301 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2302 u16 vsi_handle;
2303 u16 hw_vsi_id;
2304
2305 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2306 vsi_handle = m_list_itr->fltr_info.vsi_handle;
2307 if (!ice_is_vsi_valid(hw, vsi_handle))
2308 return ICE_ERR_PARAM;
2309 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2310 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2311 /* update the src in case it is VSI num */
2312 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2313 return ICE_ERR_PARAM;
2314 m_list_itr->fltr_info.src = hw_vsi_id;
2315 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2316 IS_ZERO_ETHER_ADDR(add))
2317 return ICE_ERR_PARAM;
2318 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
2319 /* Don't overwrite the unicast address */
2320 ice_acquire_lock(rule_lock);
2321 if (ice_find_rule_entry(rule_head,
2322 &m_list_itr->fltr_info)) {
2323 ice_release_lock(rule_lock);
2324 continue;
2325 }
2326 ice_release_lock(rule_lock);
2327 num_unicast++;
2328 } else if (IS_MULTICAST_ETHER_ADDR(add) ||
2329 (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) {
2330 m_list_itr->status =
2331 ice_add_rule_internal(hw, recp_list, lport,
2332 m_list_itr);
2333 if (m_list_itr->status)
2334 return m_list_itr->status;
2335 }
2336 }
2337
2338 ice_acquire_lock(rule_lock);
2339 /* Exit if no suitable entries were found for adding bulk switch rule */
2340 if (!num_unicast) {
2341 status = ICE_SUCCESS;
2342 goto ice_add_mac_exit;
2343 }
2344
2345 /* Allocate switch rule buffer for the bulk update for unicast */
2346 s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
2347 s_rule = (struct ice_aqc_sw_rules_elem *)
2348 ice_calloc(hw, num_unicast, s_rule_size);
2349 if (!s_rule) {
2350 status = ICE_ERR_NO_MEMORY;
2351 goto ice_add_mac_exit;
2352 }
2353
2354 r_iter = s_rule;
2355 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2356 list_entry) {
2357 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2358 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2359
2360 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2361 ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2362 ice_aqc_opc_add_sw_rules);
2363 r_iter = (struct ice_aqc_sw_rules_elem *)
2364 ((u8 *)r_iter + s_rule_size);
2365 }
2366 }
2367
2368 /* Call AQ bulk switch rule update for all unicast addresses */
2369 r_iter = s_rule;
2370 /* Call AQ switch rule in AQ_MAX chunk */
2371 for (total_elem_left = num_unicast; total_elem_left > 0;
2372 total_elem_left -= elem_sent) {
2373 struct ice_aqc_sw_rules_elem *entry = r_iter;
2374
2375 elem_sent = MIN_T(u8, total_elem_left,
2376 (ICE_AQ_MAX_BUF_LEN / s_rule_size));
2377 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2378 elem_sent, ice_aqc_opc_add_sw_rules,
2379 NULL);
2380 if (status)
2381 goto ice_add_mac_exit;
2382 r_iter = (struct ice_aqc_sw_rules_elem *)
2383 ((u8 *)r_iter + (elem_sent * s_rule_size));
2384 }
2385
2386 /* Fill up rule ID based on the value returned from FW */
2387 r_iter = s_rule;
2388 LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2389 list_entry) {
2390 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2391 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2392 struct ice_fltr_mgmt_list_entry *fm_entry;
2393
2394 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2395 f_info->fltr_rule_id =
2396 LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
2397 f_info->fltr_act = ICE_FWD_TO_VSI;
2398 /* Create an entry to track this MAC address */
2399 fm_entry = (struct ice_fltr_mgmt_list_entry *)
2400 ice_malloc(hw, sizeof(*fm_entry));
2401 if (!fm_entry) {
2402 status = ICE_ERR_NO_MEMORY;
2403 goto ice_add_mac_exit;
2404 }
2405 fm_entry->fltr_info = *f_info;
2406 fm_entry->vsi_count = 1;
2407 /* The book keeping entries will get removed when
2408 * base driver calls remove filter AQ command
2409 */
2410
2411 LIST_ADD(&fm_entry->list_entry, rule_head);
2412 r_iter = (struct ice_aqc_sw_rules_elem *)
2413 ((u8 *)r_iter + s_rule_size);
2414 }
2415 }
2416
2417 ice_add_mac_exit:
2418 ice_release_lock(rule_lock);
2419 if (s_rule)
2420 ice_free(hw, s_rule);
2421 return status;
2422 }
2423
2424 /**
2425 * ice_add_mac - Add a MAC address based filter rule
2426 * @hw: pointer to the hardware structure
2427 * @m_list: list of MAC addresses and forwarding information
2428 *
2429 * Function add MAC rule for logical port from HW struct
2430 */
ice_add_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list)2431 enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2432 {
2433 if (!m_list || !hw)
2434 return ICE_ERR_PARAM;
2435
2436 return ice_add_mac_rule(hw, m_list, hw->switch_info,
2437 hw->port_info->lport);
2438 }
2439
2440 /**
2441 * ice_add_vlan_internal - Add one VLAN based filter rule
2442 * @hw: pointer to the hardware structure
2443 * @recp_list: recipe list for which rule has to be added
2444 * @f_entry: filter entry containing one VLAN information
2445 */
2446 static enum ice_status
ice_add_vlan_internal(struct ice_hw * hw,struct ice_sw_recipe * recp_list,struct ice_fltr_list_entry * f_entry)2447 ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list,
2448 struct ice_fltr_list_entry *f_entry)
2449 {
2450 struct ice_fltr_mgmt_list_entry *v_list_itr;
2451 struct ice_fltr_info *new_fltr, *cur_fltr;
2452 enum ice_sw_lkup_type lkup_type;
2453 u16 vsi_list_id = 0, vsi_handle;
2454 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2455 enum ice_status status = ICE_SUCCESS;
2456
2457 if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2458 return ICE_ERR_PARAM;
2459
2460 f_entry->fltr_info.fwd_id.hw_vsi_id =
2461 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2462 new_fltr = &f_entry->fltr_info;
2463
2464 /* VLAN ID should only be 12 bits */
2465 if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2466 return ICE_ERR_PARAM;
2467
2468 if (new_fltr->src_id != ICE_SRC_ID_VSI)
2469 return ICE_ERR_PARAM;
2470
2471 new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2472 lkup_type = new_fltr->lkup_type;
2473 vsi_handle = new_fltr->vsi_handle;
2474 rule_lock = &recp_list->filt_rule_lock;
2475 ice_acquire_lock(rule_lock);
2476 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr);
2477 if (!v_list_itr) {
2478 struct ice_vsi_list_map_info *map_info = NULL;
2479
2480 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2481 /* All VLAN pruning rules use a VSI list. Check if
2482 * there is already a VSI list containing VSI that we
2483 * want to add. If found, use the same vsi_list_id for
2484 * this new VLAN rule or else create a new list.
2485 */
2486 map_info = ice_find_vsi_list_entry(recp_list,
2487 vsi_handle,
2488 &vsi_list_id);
2489 if (!map_info) {
2490 status = ice_create_vsi_list_rule(hw,
2491 &vsi_handle,
2492 1,
2493 &vsi_list_id,
2494 lkup_type);
2495 if (status)
2496 goto exit;
2497 }
2498 /* Convert the action to forwarding to a VSI list. */
2499 new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2500 new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2501 }
2502
2503 status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry);
2504 if (!status) {
2505 v_list_itr = ice_find_rule_entry(&recp_list->filt_rules,
2506 new_fltr);
2507 if (!v_list_itr) {
2508 status = ICE_ERR_DOES_NOT_EXIST;
2509 goto exit;
2510 }
2511 /* reuse VSI list for new rule and increment ref_cnt */
2512 if (map_info) {
2513 v_list_itr->vsi_list_info = map_info;
2514 map_info->ref_cnt++;
2515 } else {
2516 v_list_itr->vsi_list_info =
2517 ice_create_vsi_list_map(hw, &vsi_handle,
2518 1, vsi_list_id);
2519 }
2520 }
2521 } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2522 /* Update existing VSI list to add new VSI ID only if it used
2523 * by one VLAN rule.
2524 */
2525 cur_fltr = &v_list_itr->fltr_info;
2526 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2527 new_fltr);
2528 } else {
2529 /* If VLAN rule exists and VSI list being used by this rule is
2530 * referenced by more than 1 VLAN rule. Then create a new VSI
2531 * list appending previous VSI with new VSI and update existing
2532 * VLAN rule to point to new VSI list ID
2533 */
2534 struct ice_fltr_info tmp_fltr;
2535 u16 vsi_handle_arr[2];
2536 u16 cur_handle;
2537
2538 /* Current implementation only supports reusing VSI list with
2539 * one VSI count. We should never hit below condition
2540 */
2541 if (v_list_itr->vsi_count > 1 &&
2542 v_list_itr->vsi_list_info->ref_cnt > 1) {
2543 ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2544 status = ICE_ERR_CFG;
2545 goto exit;
2546 }
2547
2548 cur_handle =
2549 ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2550 ICE_MAX_VSI);
2551
2552 /* A rule already exists with the new VSI being added */
2553 if (cur_handle == vsi_handle) {
2554 status = ICE_ERR_ALREADY_EXISTS;
2555 goto exit;
2556 }
2557
2558 vsi_handle_arr[0] = cur_handle;
2559 vsi_handle_arr[1] = vsi_handle;
2560 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2561 &vsi_list_id, lkup_type);
2562 if (status)
2563 goto exit;
2564
2565 tmp_fltr = v_list_itr->fltr_info;
2566 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2567 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2568 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2569 /* Update the previous switch rule to a new VSI list which
2570 * includes current VSI that is requested
2571 */
2572 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2573 if (status)
2574 goto exit;
2575
2576 /* before overriding VSI list map info. decrement ref_cnt of
2577 * previous VSI list
2578 */
2579 v_list_itr->vsi_list_info->ref_cnt--;
2580
2581 /* now update to newly created list */
2582 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2583 v_list_itr->vsi_list_info =
2584 ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2585 vsi_list_id);
2586 v_list_itr->vsi_count++;
2587 }
2588
2589 exit:
2590 ice_release_lock(rule_lock);
2591 return status;
2592 }
2593
2594 /**
2595 * ice_add_vlan_rule - Add VLAN based filter rule
2596 * @hw: pointer to the hardware structure
2597 * @v_list: list of VLAN entries and forwarding information
2598 * @sw: pointer to switch info struct for which function add rule
2599 */
2600 static enum ice_status
ice_add_vlan_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list,struct ice_switch_info * sw)2601 ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2602 struct ice_switch_info *sw)
2603 {
2604 struct ice_fltr_list_entry *v_list_itr;
2605 struct ice_sw_recipe *recp_list;
2606
2607 recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN];
2608 LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2609 list_entry) {
2610 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2611 return ICE_ERR_PARAM;
2612 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2613 v_list_itr->status = ice_add_vlan_internal(hw, recp_list,
2614 v_list_itr);
2615 if (v_list_itr->status)
2616 return v_list_itr->status;
2617 }
2618 return ICE_SUCCESS;
2619 }
2620
2621 /**
2622 * ice_add_vlan - Add a VLAN based filter rule
2623 * @hw: pointer to the hardware structure
2624 * @v_list: list of VLAN and forwarding information
2625 *
2626 * Function add VLAN rule for logical port from HW struct
2627 */
ice_add_vlan(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list)2628 enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2629 {
2630 if (!v_list || !hw)
2631 return ICE_ERR_PARAM;
2632
2633 return ice_add_vlan_rule(hw, v_list, hw->switch_info);
2634 }
2635
2636 /**
2637 * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule
2638 * @hw: pointer to the hardware structure
2639 * @em_list: list of ether type MAC filter, MAC is optional
2640 * @sw: pointer to switch info struct for which function add rule
2641 * @lport: logic port number on which function add rule
2642 *
2643 * This function requires the caller to populate the entries in
2644 * the filter list with the necessary fields (including flags to
2645 * indicate Tx or Rx rules).
2646 */
2647 static enum ice_status
ice_add_eth_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list,struct ice_switch_info * sw,u8 lport)2648 ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2649 struct ice_switch_info *sw, u8 lport)
2650 {
2651 struct ice_fltr_list_entry *em_list_itr;
2652
2653 LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2654 list_entry) {
2655 struct ice_sw_recipe *recp_list;
2656 enum ice_sw_lkup_type l_type;
2657
2658 l_type = em_list_itr->fltr_info.lkup_type;
2659 recp_list = &sw->recp_list[l_type];
2660
2661 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2662 l_type != ICE_SW_LKUP_ETHERTYPE)
2663 return ICE_ERR_PARAM;
2664
2665 em_list_itr->status = ice_add_rule_internal(hw, recp_list,
2666 lport,
2667 em_list_itr);
2668 if (em_list_itr->status)
2669 return em_list_itr->status;
2670 }
2671 return ICE_SUCCESS;
2672 }
2673
2674 /**
2675 * ice_add_eth_mac - Add a ethertype based filter rule
2676 * @hw: pointer to the hardware structure
2677 * @em_list: list of ethertype and forwarding information
2678 *
2679 * Function add ethertype rule for logical port from HW struct
2680 */
2681 enum ice_status
ice_add_eth_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list)2682 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2683 {
2684 if (!em_list || !hw)
2685 return ICE_ERR_PARAM;
2686
2687 return ice_add_eth_mac_rule(hw, em_list, hw->switch_info,
2688 hw->port_info->lport);
2689 }
2690
2691 /**
2692 * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule
2693 * @hw: pointer to the hardware structure
2694 * @em_list: list of ethertype or ethertype MAC entries
2695 * @sw: pointer to switch info struct for which function add rule
2696 */
2697 static enum ice_status
ice_remove_eth_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list,struct ice_switch_info * sw)2698 ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list,
2699 struct ice_switch_info *sw)
2700 {
2701 struct ice_fltr_list_entry *em_list_itr, *tmp;
2702
2703 LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
2704 list_entry) {
2705 struct ice_sw_recipe *recp_list;
2706 enum ice_sw_lkup_type l_type;
2707
2708 l_type = em_list_itr->fltr_info.lkup_type;
2709
2710 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2711 l_type != ICE_SW_LKUP_ETHERTYPE)
2712 return ICE_ERR_PARAM;
2713
2714 recp_list = &sw->recp_list[l_type];
2715 em_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2716 em_list_itr);
2717 if (em_list_itr->status)
2718 return em_list_itr->status;
2719 }
2720 return ICE_SUCCESS;
2721 }
2722
2723 /**
2724 * ice_remove_eth_mac - remove a ethertype based filter rule
2725 * @hw: pointer to the hardware structure
2726 * @em_list: list of ethertype and forwarding information
2727 *
2728 */
2729 enum ice_status
ice_remove_eth_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * em_list)2730 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2731 {
2732 if (!em_list || !hw)
2733 return ICE_ERR_PARAM;
2734
2735 return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info);
2736 }
2737
2738 /**
2739 * ice_rem_sw_rule_info
2740 * @hw: pointer to the hardware structure
2741 * @rule_head: pointer to the switch list structure that we want to delete
2742 */
2743 static void
ice_rem_sw_rule_info(struct ice_hw * hw,struct LIST_HEAD_TYPE * rule_head)2744 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
2745 {
2746 if (!LIST_EMPTY(rule_head)) {
2747 struct ice_fltr_mgmt_list_entry *entry;
2748 struct ice_fltr_mgmt_list_entry *tmp;
2749
2750 LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
2751 ice_fltr_mgmt_list_entry, list_entry) {
2752 LIST_DEL(&entry->list_entry);
2753 ice_free(hw, entry);
2754 }
2755 }
2756 }
2757
2758 /**
2759 * ice_rem_all_sw_rules_info
2760 * @hw: pointer to the hardware structure
2761 */
ice_rem_all_sw_rules_info(struct ice_hw * hw)2762 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
2763 {
2764 struct ice_switch_info *sw = hw->switch_info;
2765 u8 i;
2766
2767 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
2768 struct LIST_HEAD_TYPE *rule_head;
2769
2770 rule_head = &sw->recp_list[i].filt_rules;
2771 if (!sw->recp_list[i].adv_rule)
2772 ice_rem_sw_rule_info(hw, rule_head);
2773 }
2774 }
2775
2776 /**
2777 * ice_cfg_dflt_vsi - change state of VSI to set/clear default
2778 * @pi: pointer to the port_info structure
2779 * @vsi_handle: VSI handle to set as default
2780 * @set: true to add the above mentioned switch rule, false to remove it
2781 * @direction: ICE_FLTR_RX or ICE_FLTR_TX
2782 *
2783 * add filter rule to set/unset given VSI as default VSI for the switch
2784 * (represented by swid)
2785 */
2786 enum ice_status
ice_cfg_dflt_vsi(struct ice_port_info * pi,u16 vsi_handle,bool set,u8 direction)2787 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
2788 u8 direction)
2789 {
2790 struct ice_aqc_sw_rules_elem *s_rule;
2791 struct ice_fltr_info f_info;
2792 struct ice_hw *hw = pi->hw;
2793 enum ice_adminq_opc opcode;
2794 enum ice_status status;
2795 u16 s_rule_size;
2796 u16 hw_vsi_id;
2797
2798 if (!ice_is_vsi_valid(hw, vsi_handle))
2799 return ICE_ERR_PARAM;
2800 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2801
2802 s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
2803 ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
2804
2805 s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
2806 if (!s_rule)
2807 return ICE_ERR_NO_MEMORY;
2808
2809 ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
2810
2811 f_info.lkup_type = ICE_SW_LKUP_DFLT;
2812 f_info.flag = direction;
2813 f_info.fltr_act = ICE_FWD_TO_VSI;
2814 f_info.fwd_id.hw_vsi_id = hw_vsi_id;
2815
2816 if (f_info.flag & ICE_FLTR_RX) {
2817 f_info.src = pi->lport;
2818 f_info.src_id = ICE_SRC_ID_LPORT;
2819 if (!set)
2820 f_info.fltr_rule_id =
2821 pi->dflt_rx_vsi_rule_id;
2822 } else if (f_info.flag & ICE_FLTR_TX) {
2823 f_info.src_id = ICE_SRC_ID_VSI;
2824 f_info.src = hw_vsi_id;
2825 if (!set)
2826 f_info.fltr_rule_id =
2827 pi->dflt_tx_vsi_rule_id;
2828 }
2829
2830 if (set)
2831 opcode = ice_aqc_opc_add_sw_rules;
2832 else
2833 opcode = ice_aqc_opc_remove_sw_rules;
2834
2835 ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
2836
2837 status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
2838 if (status || !(f_info.flag & ICE_FLTR_TX_RX))
2839 goto out;
2840 if (set) {
2841 u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
2842
2843 if (f_info.flag & ICE_FLTR_TX) {
2844 pi->dflt_tx_vsi_num = hw_vsi_id;
2845 pi->dflt_tx_vsi_rule_id = index;
2846 } else if (f_info.flag & ICE_FLTR_RX) {
2847 pi->dflt_rx_vsi_num = hw_vsi_id;
2848 pi->dflt_rx_vsi_rule_id = index;
2849 }
2850 } else {
2851 if (f_info.flag & ICE_FLTR_TX) {
2852 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
2853 pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
2854 } else if (f_info.flag & ICE_FLTR_RX) {
2855 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
2856 pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
2857 }
2858 }
2859
2860 out:
2861 ice_free(hw, s_rule);
2862 return status;
2863 }
2864
2865 /**
2866 * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
2867 * @list_head: head of rule list
2868 * @f_info: rule information
2869 *
2870 * Helper function to search for a unicast rule entry - this is to be used
2871 * to remove unicast MAC filter that is not shared with other VSIs on the
2872 * PF switch.
2873 *
2874 * Returns pointer to entry storing the rule if found
2875 */
2876 static struct ice_fltr_mgmt_list_entry *
ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE * list_head,struct ice_fltr_info * f_info)2877 ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head,
2878 struct ice_fltr_info *f_info)
2879 {
2880 struct ice_fltr_mgmt_list_entry *list_itr;
2881
2882 LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
2883 list_entry) {
2884 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
2885 sizeof(f_info->l_data)) &&
2886 f_info->fwd_id.hw_vsi_id ==
2887 list_itr->fltr_info.fwd_id.hw_vsi_id &&
2888 f_info->flag == list_itr->fltr_info.flag)
2889 return list_itr;
2890 }
2891 return NULL;
2892 }
2893
2894 /**
2895 * ice_remove_mac_rule - remove a MAC based filter rule
2896 * @hw: pointer to the hardware structure
2897 * @m_list: list of MAC addresses and forwarding information
2898 * @recp_list: list from which function remove MAC address
2899 *
2900 * This function removes either a MAC filter rule or a specific VSI from a
2901 * VSI list for a multicast MAC address.
2902 *
2903 * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
2904 * ice_add_mac. Caller should be aware that this call will only work if all
2905 * the entries passed into m_list were added previously. It will not attempt to
2906 * do a partial remove of entries that were found.
2907 */
2908 static enum ice_status
ice_remove_mac_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list,struct ice_sw_recipe * recp_list)2909 ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list,
2910 struct ice_sw_recipe *recp_list)
2911 {
2912 struct ice_fltr_list_entry *list_itr, *tmp;
2913 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2914
2915 if (!m_list)
2916 return ICE_ERR_PARAM;
2917
2918 rule_lock = &recp_list->filt_rule_lock;
2919 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
2920 list_entry) {
2921 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
2922 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
2923 u16 vsi_handle;
2924
2925 if (l_type != ICE_SW_LKUP_MAC)
2926 return ICE_ERR_PARAM;
2927
2928 vsi_handle = list_itr->fltr_info.vsi_handle;
2929 if (!ice_is_vsi_valid(hw, vsi_handle))
2930 return ICE_ERR_PARAM;
2931
2932 list_itr->fltr_info.fwd_id.hw_vsi_id =
2933 ice_get_hw_vsi_num(hw, vsi_handle);
2934 if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) {
2935 /* Don't remove the unicast address that belongs to
2936 * another VSI on the switch, since it is not being
2937 * shared...
2938 */
2939 ice_acquire_lock(rule_lock);
2940 if (!ice_find_ucast_rule_entry(&recp_list->filt_rules,
2941 &list_itr->fltr_info)) {
2942 ice_release_lock(rule_lock);
2943 return ICE_ERR_DOES_NOT_EXIST;
2944 }
2945 ice_release_lock(rule_lock);
2946 }
2947 list_itr->status = ice_remove_rule_internal(hw, recp_list,
2948 list_itr);
2949 if (list_itr->status)
2950 return list_itr->status;
2951 }
2952 return ICE_SUCCESS;
2953 }
2954
2955 /**
2956 * ice_remove_mac - remove a MAC address based filter rule
2957 * @hw: pointer to the hardware structure
2958 * @m_list: list of MAC addresses and forwarding information
2959 *
2960 */
ice_remove_mac(struct ice_hw * hw,struct LIST_HEAD_TYPE * m_list)2961 enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2962 {
2963 struct ice_sw_recipe *recp_list;
2964
2965 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
2966 return ice_remove_mac_rule(hw, m_list, recp_list);
2967 }
2968
2969 /**
2970 * ice_remove_vlan_rule - Remove VLAN based filter rule
2971 * @hw: pointer to the hardware structure
2972 * @v_list: list of VLAN entries and forwarding information
2973 * @recp_list: list from which function remove VLAN
2974 */
2975 static enum ice_status
ice_remove_vlan_rule(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list,struct ice_sw_recipe * recp_list)2976 ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list,
2977 struct ice_sw_recipe *recp_list)
2978 {
2979 struct ice_fltr_list_entry *v_list_itr, *tmp;
2980
2981 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
2982 list_entry) {
2983 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
2984
2985 if (l_type != ICE_SW_LKUP_VLAN)
2986 return ICE_ERR_PARAM;
2987 v_list_itr->status = ice_remove_rule_internal(hw, recp_list,
2988 v_list_itr);
2989 if (v_list_itr->status)
2990 return v_list_itr->status;
2991 }
2992 return ICE_SUCCESS;
2993 }
2994
2995 /**
2996 * ice_remove_vlan - remove a VLAN address based filter rule
2997 * @hw: pointer to the hardware structure
2998 * @v_list: list of VLAN and forwarding information
2999 *
3000 */
3001 enum ice_status
ice_remove_vlan(struct ice_hw * hw,struct LIST_HEAD_TYPE * v_list)3002 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3003 {
3004 struct ice_sw_recipe *recp_list;
3005
3006 if (!v_list || !hw)
3007 return ICE_ERR_PARAM;
3008
3009 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN];
3010 return ice_remove_vlan_rule(hw, v_list, recp_list);
3011 }
3012
3013 /**
3014 * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3015 * @fm_entry: filter entry to inspect
3016 * @vsi_handle: VSI handle to compare with filter info
3017 */
3018 static bool
ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry * fm_entry,u16 vsi_handle)3019 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3020 {
3021 return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3022 fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3023 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3024 fm_entry->vsi_list_info &&
3025 (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3026 vsi_handle))));
3027 }
3028
3029 /**
3030 * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3031 * @hw: pointer to the hardware structure
3032 * @vsi_handle: VSI handle to remove filters from
3033 * @vsi_list_head: pointer to the list to add entry to
3034 * @fi: pointer to fltr_info of filter entry to copy & add
3035 *
3036 * Helper function, used when creating a list of filters to remove from
3037 * a specific VSI. The entry added to vsi_list_head is a COPY of the
3038 * original filter entry, with the exception of fltr_info.fltr_act and
3039 * fltr_info.fwd_id fields. These are set such that later logic can
3040 * extract which VSI to remove the fltr from, and pass on that information.
3041 */
3042 static enum ice_status
ice_add_entry_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct LIST_HEAD_TYPE * vsi_list_head,struct ice_fltr_info * fi)3043 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3044 struct LIST_HEAD_TYPE *vsi_list_head,
3045 struct ice_fltr_info *fi)
3046 {
3047 struct ice_fltr_list_entry *tmp;
3048
3049 /* this memory is freed up in the caller function
3050 * once filters for this VSI are removed
3051 */
3052 tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3053 if (!tmp)
3054 return ICE_ERR_NO_MEMORY;
3055
3056 tmp->fltr_info = *fi;
3057
3058 /* Overwrite these fields to indicate which VSI to remove filter from,
3059 * so find and remove logic can extract the information from the
3060 * list entries. Note that original entries will still have proper
3061 * values.
3062 */
3063 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3064 tmp->fltr_info.vsi_handle = vsi_handle;
3065 tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3066
3067 LIST_ADD(&tmp->list_entry, vsi_list_head);
3068
3069 return ICE_SUCCESS;
3070 }
3071
3072 /**
3073 * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3074 * @hw: pointer to the hardware structure
3075 * @vsi_handle: VSI handle to remove filters from
3076 * @lkup_list_head: pointer to the list that has certain lookup type filters
3077 * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3078 *
3079 * Locates all filters in lkup_list_head that are used by the given VSI,
3080 * and adds COPIES of those entries to vsi_list_head (intended to be used
3081 * to remove the listed filters).
3082 * Note that this means all entries in vsi_list_head must be explicitly
3083 * deallocated by the caller when done with list.
3084 */
3085 static enum ice_status
ice_add_to_vsi_fltr_list(struct ice_hw * hw,u16 vsi_handle,struct LIST_HEAD_TYPE * lkup_list_head,struct LIST_HEAD_TYPE * vsi_list_head)3086 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3087 struct LIST_HEAD_TYPE *lkup_list_head,
3088 struct LIST_HEAD_TYPE *vsi_list_head)
3089 {
3090 struct ice_fltr_mgmt_list_entry *fm_entry;
3091 enum ice_status status = ICE_SUCCESS;
3092
3093 /* check to make sure VSI ID is valid and within boundary */
3094 if (!ice_is_vsi_valid(hw, vsi_handle))
3095 return ICE_ERR_PARAM;
3096
3097 LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3098 ice_fltr_mgmt_list_entry, list_entry) {
3099 if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
3100 continue;
3101
3102 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3103 vsi_list_head,
3104 &fm_entry->fltr_info);
3105 if (status)
3106 return status;
3107 }
3108 return status;
3109 }
3110
3111 /**
3112 * ice_determine_promisc_mask
3113 * @fi: filter info to parse
3114 *
3115 * Helper function to determine which ICE_PROMISC_ mask corresponds
3116 * to given filter into.
3117 */
ice_determine_promisc_mask(struct ice_fltr_info * fi)3118 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
3119 {
3120 u16 vid = fi->l_data.mac_vlan.vlan_id;
3121 u8 *macaddr = fi->l_data.mac.mac_addr;
3122 bool is_tx_fltr = false;
3123 u8 promisc_mask = 0;
3124
3125 if (fi->flag == ICE_FLTR_TX)
3126 is_tx_fltr = true;
3127
3128 if (IS_BROADCAST_ETHER_ADDR(macaddr))
3129 promisc_mask |= is_tx_fltr ?
3130 ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
3131 else if (IS_MULTICAST_ETHER_ADDR(macaddr))
3132 promisc_mask |= is_tx_fltr ?
3133 ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
3134 else if (IS_UNICAST_ETHER_ADDR(macaddr))
3135 promisc_mask |= is_tx_fltr ?
3136 ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
3137 if (vid)
3138 promisc_mask |= is_tx_fltr ?
3139 ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
3140
3141 return promisc_mask;
3142 }
3143
3144 /**
3145 * _ice_get_vsi_promisc - get promiscuous mode of given VSI
3146 * @hw: pointer to the hardware structure
3147 * @vsi_handle: VSI handle to retrieve info from
3148 * @promisc_mask: pointer to mask to be filled in
3149 * @vid: VLAN ID of promisc VLAN VSI
3150 * @sw: pointer to switch info struct for which function add rule
3151 * @lkup: switch rule filter lookup type
3152 */
3153 static enum ice_status
_ice_get_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 * promisc_mask,u16 * vid,struct ice_switch_info * sw,enum ice_sw_lkup_type lkup)3154 _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3155 u16 *vid, struct ice_switch_info *sw,
3156 enum ice_sw_lkup_type lkup)
3157 {
3158 struct ice_fltr_mgmt_list_entry *itr;
3159 struct LIST_HEAD_TYPE *rule_head;
3160 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3161
3162 if (!ice_is_vsi_valid(hw, vsi_handle) ||
3163 (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN))
3164 return ICE_ERR_PARAM;
3165
3166 *vid = 0;
3167 *promisc_mask = 0;
3168 rule_head = &sw->recp_list[lkup].filt_rules;
3169 rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3170
3171 ice_acquire_lock(rule_lock);
3172 LIST_FOR_EACH_ENTRY(itr, rule_head,
3173 ice_fltr_mgmt_list_entry, list_entry) {
3174 /* Continue if this filter doesn't apply to this VSI or the
3175 * VSI ID is not in the VSI map for this filter
3176 */
3177 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3178 continue;
3179
3180 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3181 }
3182 ice_release_lock(rule_lock);
3183
3184 return ICE_SUCCESS;
3185 }
3186
3187 /**
3188 * ice_get_vsi_promisc - get promiscuous mode of given VSI
3189 * @hw: pointer to the hardware structure
3190 * @vsi_handle: VSI handle to retrieve info from
3191 * @promisc_mask: pointer to mask to be filled in
3192 * @vid: VLAN ID of promisc VLAN VSI
3193 */
3194 enum ice_status
ice_get_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 * promisc_mask,u16 * vid)3195 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3196 u16 *vid)
3197 {
3198 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3199 vid, hw->switch_info, ICE_SW_LKUP_PROMISC);
3200 }
3201
3202 /**
3203 * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3204 * @hw: pointer to the hardware structure
3205 * @vsi_handle: VSI handle to retrieve info from
3206 * @promisc_mask: pointer to mask to be filled in
3207 * @vid: VLAN ID of promisc VLAN VSI
3208 */
3209 enum ice_status
ice_get_vsi_vlan_promisc(struct ice_hw * hw,u16 vsi_handle,u8 * promisc_mask,u16 * vid)3210 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3211 u16 *vid)
3212 {
3213 return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask,
3214 vid, hw->switch_info,
3215 ICE_SW_LKUP_PROMISC_VLAN);
3216 }
3217
3218 /**
3219 * ice_remove_promisc - Remove promisc based filter rules
3220 * @hw: pointer to the hardware structure
3221 * @recp_id: recipe ID for which the rule needs to removed
3222 * @v_list: list of promisc entries
3223 */
3224 static enum ice_status
ice_remove_promisc(struct ice_hw * hw,u8 recp_id,struct LIST_HEAD_TYPE * v_list)3225 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3226 struct LIST_HEAD_TYPE *v_list)
3227 {
3228 struct ice_fltr_list_entry *v_list_itr, *tmp;
3229 struct ice_sw_recipe *recp_list;
3230
3231 recp_list = &hw->switch_info->recp_list[recp_id];
3232 LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3233 list_entry) {
3234 v_list_itr->status =
3235 ice_remove_rule_internal(hw, recp_list, v_list_itr);
3236 if (v_list_itr->status)
3237 return v_list_itr->status;
3238 }
3239 return ICE_SUCCESS;
3240 }
3241
3242 /**
3243 * _ice_clear_vsi_promisc - clear specified promiscuous mode(s)
3244 * @hw: pointer to the hardware structure
3245 * @vsi_handle: VSI handle to clear mode
3246 * @promisc_mask: mask of promiscuous config bits to clear
3247 * @vid: VLAN ID to clear VLAN promiscuous
3248 * @sw: pointer to switch info struct for which function add rule
3249 */
3250 static enum ice_status
_ice_clear_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid,struct ice_switch_info * sw)3251 _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3252 u16 vid, struct ice_switch_info *sw)
3253 {
3254 struct ice_fltr_list_entry *fm_entry, *tmp;
3255 struct LIST_HEAD_TYPE remove_list_head;
3256 struct ice_fltr_mgmt_list_entry *itr;
3257 struct LIST_HEAD_TYPE *rule_head;
3258 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3259 enum ice_status status = ICE_SUCCESS;
3260 u8 recipe_id;
3261
3262 if (!ice_is_vsi_valid(hw, vsi_handle))
3263 return ICE_ERR_PARAM;
3264
3265 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
3266 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3267 else
3268 recipe_id = ICE_SW_LKUP_PROMISC;
3269
3270 rule_head = &sw->recp_list[recipe_id].filt_rules;
3271 rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3272
3273 INIT_LIST_HEAD(&remove_list_head);
3274
3275 ice_acquire_lock(rule_lock);
3276 LIST_FOR_EACH_ENTRY(itr, rule_head,
3277 ice_fltr_mgmt_list_entry, list_entry) {
3278 struct ice_fltr_info *fltr_info;
3279 u8 fltr_promisc_mask = 0;
3280
3281 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3282 continue;
3283 fltr_info = &itr->fltr_info;
3284
3285 if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
3286 vid != fltr_info->l_data.mac_vlan.vlan_id)
3287 continue;
3288
3289 fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
3290
3291 /* Skip if filter is not completely specified by given mask */
3292 if (fltr_promisc_mask & ~promisc_mask)
3293 continue;
3294
3295 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3296 &remove_list_head,
3297 fltr_info);
3298 if (status) {
3299 ice_release_lock(rule_lock);
3300 goto free_fltr_list;
3301 }
3302 }
3303 ice_release_lock(rule_lock);
3304
3305 status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3306
3307 free_fltr_list:
3308 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3309 ice_fltr_list_entry, list_entry) {
3310 LIST_DEL(&fm_entry->list_entry);
3311 ice_free(hw, fm_entry);
3312 }
3313
3314 return status;
3315 }
3316
3317 /**
3318 * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3319 * @hw: pointer to the hardware structure
3320 * @vsi_handle: VSI handle to clear mode
3321 * @promisc_mask: mask of promiscuous config bits to clear
3322 * @vid: VLAN ID to clear VLAN promiscuous
3323 */
3324 enum ice_status
ice_clear_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid)3325 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle,
3326 u8 promisc_mask, u16 vid)
3327 {
3328 return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask,
3329 vid, hw->switch_info);
3330 }
3331
3332 /**
3333 * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3334 * @hw: pointer to the hardware structure
3335 * @vsi_handle: VSI handle to configure
3336 * @promisc_mask: mask of promiscuous config bits
3337 * @vid: VLAN ID to set VLAN promiscuous
3338 * @lport: logical port number to configure promisc mode
3339 * @sw: pointer to switch info struct for which function add rule
3340 */
3341 static enum ice_status
_ice_set_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid,u8 lport,struct ice_switch_info * sw)3342 _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3343 u16 vid, u8 lport, struct ice_switch_info *sw)
3344 {
3345 enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3346 struct ice_fltr_list_entry f_list_entry;
3347 struct ice_fltr_info new_fltr;
3348 enum ice_status status = ICE_SUCCESS;
3349 bool is_tx_fltr;
3350 u16 hw_vsi_id;
3351 int pkt_type;
3352 u8 recipe_id;
3353
3354 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3355
3356 if (!ice_is_vsi_valid(hw, vsi_handle))
3357 return ICE_ERR_PARAM;
3358 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3359
3360 ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3361
3362 if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
3363 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3364 new_fltr.l_data.mac_vlan.vlan_id = vid;
3365 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3366 } else {
3367 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3368 recipe_id = ICE_SW_LKUP_PROMISC;
3369 }
3370
3371 /* Separate filters must be set for each direction/packet type
3372 * combination, so we will loop over the mask value, store the
3373 * individual type, and clear it out in the input mask as it
3374 * is found.
3375 */
3376 while (promisc_mask) {
3377 struct ice_sw_recipe *recp_list;
3378 u8 *mac_addr;
3379
3380 pkt_type = 0;
3381 is_tx_fltr = false;
3382
3383 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
3384 promisc_mask &= ~ICE_PROMISC_UCAST_RX;
3385 pkt_type = UCAST_FLTR;
3386 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
3387 promisc_mask &= ~ICE_PROMISC_UCAST_TX;
3388 pkt_type = UCAST_FLTR;
3389 is_tx_fltr = true;
3390 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
3391 promisc_mask &= ~ICE_PROMISC_MCAST_RX;
3392 pkt_type = MCAST_FLTR;
3393 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
3394 promisc_mask &= ~ICE_PROMISC_MCAST_TX;
3395 pkt_type = MCAST_FLTR;
3396 is_tx_fltr = true;
3397 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
3398 promisc_mask &= ~ICE_PROMISC_BCAST_RX;
3399 pkt_type = BCAST_FLTR;
3400 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
3401 promisc_mask &= ~ICE_PROMISC_BCAST_TX;
3402 pkt_type = BCAST_FLTR;
3403 is_tx_fltr = true;
3404 }
3405
3406 /* Check for VLAN promiscuous flag */
3407 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
3408 promisc_mask &= ~ICE_PROMISC_VLAN_RX;
3409 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
3410 promisc_mask &= ~ICE_PROMISC_VLAN_TX;
3411 is_tx_fltr = true;
3412 }
3413
3414 /* Set filter DA based on packet type */
3415 mac_addr = new_fltr.l_data.mac.mac_addr;
3416 if (pkt_type == BCAST_FLTR) {
3417 ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3418 } else if (pkt_type == MCAST_FLTR ||
3419 pkt_type == UCAST_FLTR) {
3420 /* Use the dummy ether header DA */
3421 ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3422 ICE_NONDMA_TO_NONDMA);
3423 if (pkt_type == MCAST_FLTR)
3424 mac_addr[0] |= 0x1; /* Set multicast bit */
3425 }
3426
3427 /* Need to reset this to zero for all iterations */
3428 new_fltr.flag = 0;
3429 if (is_tx_fltr) {
3430 new_fltr.flag |= ICE_FLTR_TX;
3431 new_fltr.src = hw_vsi_id;
3432 } else {
3433 new_fltr.flag |= ICE_FLTR_RX;
3434 new_fltr.src = lport;
3435 }
3436
3437 new_fltr.fltr_act = ICE_FWD_TO_VSI;
3438 new_fltr.vsi_handle = vsi_handle;
3439 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3440 f_list_entry.fltr_info = new_fltr;
3441 recp_list = &sw->recp_list[recipe_id];
3442
3443 status = ice_add_rule_internal(hw, recp_list, lport,
3444 &f_list_entry);
3445 if (status != ICE_SUCCESS)
3446 goto set_promisc_exit;
3447 }
3448
3449 set_promisc_exit:
3450 return status;
3451 }
3452
3453 /**
3454 * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3455 * @hw: pointer to the hardware structure
3456 * @vsi_handle: VSI handle to configure
3457 * @promisc_mask: mask of promiscuous config bits
3458 * @vid: VLAN ID to set VLAN promiscuous
3459 */
3460 enum ice_status
ice_set_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,u16 vid)3461 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3462 u16 vid)
3463 {
3464 return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid,
3465 hw->port_info->lport,
3466 hw->switch_info);
3467 }
3468
3469 /**
3470 * _ice_set_vlan_vsi_promisc
3471 * @hw: pointer to the hardware structure
3472 * @vsi_handle: VSI handle to configure
3473 * @promisc_mask: mask of promiscuous config bits
3474 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3475 * @lport: logical port number to configure promisc mode
3476 * @sw: pointer to switch info struct for which function add rule
3477 *
3478 * Configure VSI with all associated VLANs to given promiscuous mode(s)
3479 */
3480 static enum ice_status
_ice_set_vlan_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,bool rm_vlan_promisc,u8 lport,struct ice_switch_info * sw)3481 _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3482 bool rm_vlan_promisc, u8 lport,
3483 struct ice_switch_info *sw)
3484 {
3485 struct ice_fltr_list_entry *list_itr, *tmp;
3486 struct LIST_HEAD_TYPE vsi_list_head;
3487 struct LIST_HEAD_TYPE *vlan_head;
3488 struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3489 enum ice_status status;
3490 u16 vlan_id;
3491
3492 INIT_LIST_HEAD(&vsi_list_head);
3493 vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3494 vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3495 ice_acquire_lock(vlan_lock);
3496 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3497 &vsi_list_head);
3498 ice_release_lock(vlan_lock);
3499 if (status)
3500 goto free_fltr_list;
3501
3502 LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3503 list_entry) {
3504 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3505 if (rm_vlan_promisc)
3506 status = _ice_clear_vsi_promisc(hw, vsi_handle,
3507 promisc_mask,
3508 vlan_id, sw);
3509 else
3510 status = _ice_set_vsi_promisc(hw, vsi_handle,
3511 promisc_mask, vlan_id,
3512 lport, sw);
3513 if (status)
3514 break;
3515 }
3516
3517 free_fltr_list:
3518 LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3519 ice_fltr_list_entry, list_entry) {
3520 LIST_DEL(&list_itr->list_entry);
3521 ice_free(hw, list_itr);
3522 }
3523 return status;
3524 }
3525
3526 /**
3527 * ice_set_vlan_vsi_promisc
3528 * @hw: pointer to the hardware structure
3529 * @vsi_handle: VSI handle to configure
3530 * @promisc_mask: mask of promiscuous config bits
3531 * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3532 *
3533 * Configure VSI with all associated VLANs to given promiscuous mode(s)
3534 */
3535 enum ice_status
ice_set_vlan_vsi_promisc(struct ice_hw * hw,u16 vsi_handle,u8 promisc_mask,bool rm_vlan_promisc)3536 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3537 bool rm_vlan_promisc)
3538 {
3539 return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask,
3540 rm_vlan_promisc, hw->port_info->lport,
3541 hw->switch_info);
3542 }
3543
3544 /**
3545 * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3546 * @hw: pointer to the hardware structure
3547 * @vsi_handle: VSI handle to remove filters from
3548 * @recp_list: recipe list from which function remove fltr
3549 * @lkup: switch rule filter lookup type
3550 */
3551 static void
ice_remove_vsi_lkup_fltr(struct ice_hw * hw,u16 vsi_handle,struct ice_sw_recipe * recp_list,enum ice_sw_lkup_type lkup)3552 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3553 struct ice_sw_recipe *recp_list,
3554 enum ice_sw_lkup_type lkup)
3555 {
3556 struct ice_fltr_list_entry *fm_entry;
3557 struct LIST_HEAD_TYPE remove_list_head;
3558 struct LIST_HEAD_TYPE *rule_head;
3559 struct ice_fltr_list_entry *tmp;
3560 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3561 enum ice_status status;
3562
3563 INIT_LIST_HEAD(&remove_list_head);
3564 rule_lock = &recp_list[lkup].filt_rule_lock;
3565 rule_head = &recp_list[lkup].filt_rules;
3566 ice_acquire_lock(rule_lock);
3567 status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3568 &remove_list_head);
3569 ice_release_lock(rule_lock);
3570 if (status)
3571 goto free_fltr_list;
3572
3573 switch (lkup) {
3574 case ICE_SW_LKUP_MAC:
3575 ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]);
3576 break;
3577 case ICE_SW_LKUP_VLAN:
3578 ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]);
3579 break;
3580 case ICE_SW_LKUP_PROMISC:
3581 case ICE_SW_LKUP_PROMISC_VLAN:
3582 ice_remove_promisc(hw, lkup, &remove_list_head);
3583 break;
3584 case ICE_SW_LKUP_MAC_VLAN:
3585 ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3586 break;
3587 case ICE_SW_LKUP_ETHERTYPE:
3588 case ICE_SW_LKUP_ETHERTYPE_MAC:
3589 ice_remove_eth_mac(hw, &remove_list_head);
3590 break;
3591 case ICE_SW_LKUP_DFLT:
3592 ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n");
3593 break;
3594 case ICE_SW_LKUP_LAST:
3595 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3596 break;
3597 }
3598
3599 free_fltr_list:
3600 LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3601 ice_fltr_list_entry, list_entry) {
3602 LIST_DEL(&fm_entry->list_entry);
3603 ice_free(hw, fm_entry);
3604 }
3605 }
3606
3607 /**
3608 * ice_remove_vsi_fltr_rule - Remove all filters for a VSI
3609 * @hw: pointer to the hardware structure
3610 * @vsi_handle: VSI handle to remove filters from
3611 * @sw: pointer to switch info struct
3612 */
3613 static void
ice_remove_vsi_fltr_rule(struct ice_hw * hw,u16 vsi_handle,struct ice_switch_info * sw)3614 ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle,
3615 struct ice_switch_info *sw)
3616 {
3617 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3618
3619 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3620 sw->recp_list, ICE_SW_LKUP_MAC);
3621 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3622 sw->recp_list, ICE_SW_LKUP_MAC_VLAN);
3623 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3624 sw->recp_list, ICE_SW_LKUP_PROMISC);
3625 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3626 sw->recp_list, ICE_SW_LKUP_VLAN);
3627 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3628 sw->recp_list, ICE_SW_LKUP_DFLT);
3629 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3630 sw->recp_list, ICE_SW_LKUP_ETHERTYPE);
3631 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3632 sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC);
3633 ice_remove_vsi_lkup_fltr(hw, vsi_handle,
3634 sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN);
3635 }
3636
3637 /**
3638 * ice_remove_vsi_fltr - Remove all filters for a VSI
3639 * @hw: pointer to the hardware structure
3640 * @vsi_handle: VSI handle to remove filters from
3641 */
ice_remove_vsi_fltr(struct ice_hw * hw,u16 vsi_handle)3642 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3643 {
3644 ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info);
3645 }
3646
3647 /**
3648 * ice_alloc_res_cntr - allocating resource counter
3649 * @hw: pointer to the hardware structure
3650 * @type: type of resource
3651 * @alloc_shared: if set it is shared else dedicated
3652 * @num_items: number of entries requested for FD resource type
3653 * @counter_id: counter index returned by AQ call
3654 */
3655 static enum ice_status
ice_alloc_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 * counter_id)3656 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3657 u16 *counter_id)
3658 {
3659 struct ice_aqc_alloc_free_res_elem *buf;
3660 enum ice_status status;
3661 u16 buf_len;
3662
3663 /* Allocate resource */
3664 buf_len = ice_struct_size(buf, elem, 1);
3665 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3666 if (!buf)
3667 return ICE_ERR_NO_MEMORY;
3668
3669 buf->num_elems = CPU_TO_LE16(num_items);
3670 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3671 ICE_AQC_RES_TYPE_M) | alloc_shared);
3672
3673 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3674 ice_aqc_opc_alloc_res, NULL);
3675 if (status)
3676 goto exit;
3677
3678 *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3679
3680 exit:
3681 ice_free(hw, buf);
3682 return status;
3683 }
3684
3685 /**
3686 * ice_free_res_cntr - free resource counter
3687 * @hw: pointer to the hardware structure
3688 * @type: type of resource
3689 * @alloc_shared: if set it is shared else dedicated
3690 * @num_items: number of entries to be freed for FD resource type
3691 * @counter_id: counter ID resource which needs to be freed
3692 */
3693 static enum ice_status
ice_free_res_cntr(struct ice_hw * hw,u8 type,u8 alloc_shared,u16 num_items,u16 counter_id)3694 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3695 u16 counter_id)
3696 {
3697 struct ice_aqc_alloc_free_res_elem *buf;
3698 enum ice_status status;
3699 u16 buf_len;
3700
3701 /* Free resource */
3702 buf_len = ice_struct_size(buf, elem, 1);
3703 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3704 if (!buf)
3705 return ICE_ERR_NO_MEMORY;
3706
3707 buf->num_elems = CPU_TO_LE16(num_items);
3708 buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3709 ICE_AQC_RES_TYPE_M) | alloc_shared);
3710 buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3711
3712 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3713 ice_aqc_opc_free_res, NULL);
3714 if (status)
3715 ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
3716
3717 ice_free(hw, buf);
3718 return status;
3719 }
3720
3721 /**
3722 * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3723 * @hw: pointer to the hardware structure
3724 * @counter_id: returns counter index
3725 */
ice_alloc_vlan_res_counter(struct ice_hw * hw,u16 * counter_id)3726 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3727 {
3728 return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3729 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3730 counter_id);
3731 }
3732
3733 /**
3734 * ice_free_vlan_res_counter - Free counter resource for VLAN type
3735 * @hw: pointer to the hardware structure
3736 * @counter_id: counter index to be freed
3737 */
ice_free_vlan_res_counter(struct ice_hw * hw,u16 counter_id)3738 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3739 {
3740 return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3741 ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3742 counter_id);
3743 }
3744
3745 /**
3746 * ice_alloc_res_lg_act - add large action resource
3747 * @hw: pointer to the hardware structure
3748 * @l_id: large action ID to fill it in
3749 * @num_acts: number of actions to hold with a large action entry
3750 */
3751 static enum ice_status
ice_alloc_res_lg_act(struct ice_hw * hw,u16 * l_id,u16 num_acts)3752 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
3753 {
3754 struct ice_aqc_alloc_free_res_elem *sw_buf;
3755 enum ice_status status;
3756 u16 buf_len;
3757
3758 if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
3759 return ICE_ERR_PARAM;
3760
3761 /* Allocate resource for large action */
3762 buf_len = ice_struct_size(sw_buf, elem, 1);
3763 sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
3764 if (!sw_buf)
3765 return ICE_ERR_NO_MEMORY;
3766
3767 sw_buf->num_elems = CPU_TO_LE16(1);
3768
3769 /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
3770 * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
3771 * If num_acts is greater than 2, then use
3772 * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
3773 * The num_acts cannot exceed 4. This was ensured at the
3774 * beginning of the function.
3775 */
3776 if (num_acts == 1)
3777 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
3778 else if (num_acts == 2)
3779 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
3780 else
3781 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
3782
3783 status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
3784 ice_aqc_opc_alloc_res, NULL);
3785 if (!status)
3786 *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
3787
3788 ice_free(hw, sw_buf);
3789 return status;
3790 }
3791
3792 /**
3793 * ice_add_mac_with_sw_marker - add filter with sw marker
3794 * @hw: pointer to the hardware structure
3795 * @f_info: filter info structure containing the MAC filter information
3796 * @sw_marker: sw marker to tag the Rx descriptor with
3797 */
3798 enum ice_status
ice_add_mac_with_sw_marker(struct ice_hw * hw,struct ice_fltr_info * f_info,u16 sw_marker)3799 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3800 u16 sw_marker)
3801 {
3802 struct ice_fltr_mgmt_list_entry *m_entry;
3803 struct ice_fltr_list_entry fl_info;
3804 struct ice_sw_recipe *recp_list;
3805 struct LIST_HEAD_TYPE l_head;
3806 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3807 enum ice_status ret;
3808 bool entry_exists;
3809 u16 lg_act_id;
3810
3811 if (f_info->fltr_act != ICE_FWD_TO_VSI)
3812 return ICE_ERR_PARAM;
3813
3814 if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3815 return ICE_ERR_PARAM;
3816
3817 if (sw_marker == ICE_INVAL_SW_MARKER_ID)
3818 return ICE_ERR_PARAM;
3819
3820 if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3821 return ICE_ERR_PARAM;
3822 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3823
3824 /* Add filter if it doesn't exist so then the adding of large
3825 * action always results in update
3826 */
3827
3828 INIT_LIST_HEAD(&l_head);
3829 fl_info.fltr_info = *f_info;
3830 LIST_ADD(&fl_info.list_entry, &l_head);
3831
3832 entry_exists = false;
3833 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
3834 hw->port_info->lport);
3835 if (ret == ICE_ERR_ALREADY_EXISTS)
3836 entry_exists = true;
3837 else if (ret)
3838 return ret;
3839
3840 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3841 rule_lock = &recp_list->filt_rule_lock;
3842 ice_acquire_lock(rule_lock);
3843 /* Get the book keeping entry for the filter */
3844 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
3845 if (!m_entry)
3846 goto exit_error;
3847
3848 /* If counter action was enabled for this rule then don't enable
3849 * sw marker large action
3850 */
3851 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
3852 ret = ICE_ERR_PARAM;
3853 goto exit_error;
3854 }
3855
3856 /* if same marker was added before */
3857 if (m_entry->sw_marker_id == sw_marker) {
3858 ret = ICE_ERR_ALREADY_EXISTS;
3859 goto exit_error;
3860 }
3861
3862 /* Allocate a hardware table entry to hold large act. Three actions
3863 * for marker based large action
3864 */
3865 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
3866 if (ret)
3867 goto exit_error;
3868
3869 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
3870 goto exit_error;
3871
3872 /* Update the switch rule to add the marker action */
3873 ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
3874 if (!ret) {
3875 ice_release_lock(rule_lock);
3876 return ret;
3877 }
3878
3879 exit_error:
3880 ice_release_lock(rule_lock);
3881 /* only remove entry if it did not exist previously */
3882 if (!entry_exists)
3883 ret = ice_remove_mac(hw, &l_head);
3884
3885 return ret;
3886 }
3887
3888 /**
3889 * ice_add_mac_with_counter - add filter with counter enabled
3890 * @hw: pointer to the hardware structure
3891 * @f_info: pointer to filter info structure containing the MAC filter
3892 * information
3893 */
3894 enum ice_status
ice_add_mac_with_counter(struct ice_hw * hw,struct ice_fltr_info * f_info)3895 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
3896 {
3897 struct ice_fltr_mgmt_list_entry *m_entry;
3898 struct ice_fltr_list_entry fl_info;
3899 struct ice_sw_recipe *recp_list;
3900 struct LIST_HEAD_TYPE l_head;
3901 struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3902 enum ice_status ret;
3903 bool entry_exist;
3904 u16 counter_id;
3905 u16 lg_act_id;
3906
3907 if (f_info->fltr_act != ICE_FWD_TO_VSI)
3908 return ICE_ERR_PARAM;
3909
3910 if (f_info->lkup_type != ICE_SW_LKUP_MAC)
3911 return ICE_ERR_PARAM;
3912
3913 if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
3914 return ICE_ERR_PARAM;
3915 f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
3916 recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC];
3917
3918 entry_exist = false;
3919
3920 rule_lock = &recp_list->filt_rule_lock;
3921
3922 /* Add filter if it doesn't exist so then the adding of large
3923 * action always results in update
3924 */
3925 INIT_LIST_HEAD(&l_head);
3926
3927 fl_info.fltr_info = *f_info;
3928 LIST_ADD(&fl_info.list_entry, &l_head);
3929
3930 ret = ice_add_mac_rule(hw, &l_head, hw->switch_info,
3931 hw->port_info->lport);
3932 if (ret == ICE_ERR_ALREADY_EXISTS)
3933 entry_exist = true;
3934 else if (ret)
3935 return ret;
3936
3937 ice_acquire_lock(rule_lock);
3938 m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info);
3939 if (!m_entry) {
3940 ret = ICE_ERR_BAD_PTR;
3941 goto exit_error;
3942 }
3943
3944 /* Don't enable counter for a filter for which sw marker was enabled */
3945 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
3946 ret = ICE_ERR_PARAM;
3947 goto exit_error;
3948 }
3949
3950 /* If a counter was already enabled then don't need to add again */
3951 if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
3952 ret = ICE_ERR_ALREADY_EXISTS;
3953 goto exit_error;
3954 }
3955
3956 /* Allocate a hardware table entry to VLAN counter */
3957 ret = ice_alloc_vlan_res_counter(hw, &counter_id);
3958 if (ret)
3959 goto exit_error;
3960
3961 /* Allocate a hardware table entry to hold large act. Two actions for
3962 * counter based large action
3963 */
3964 ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
3965 if (ret)
3966 goto exit_error;
3967
3968 if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
3969 goto exit_error;
3970
3971 /* Update the switch rule to add the counter action */
3972 ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
3973 if (!ret) {
3974 ice_release_lock(rule_lock);
3975 return ret;
3976 }
3977
3978 exit_error:
3979 ice_release_lock(rule_lock);
3980 /* only remove entry if it did not exist previously */
3981 if (!entry_exist)
3982 ret = ice_remove_mac(hw, &l_head);
3983
3984 return ret;
3985 }
3986
3987 /**
3988 * ice_replay_fltr - Replay all the filters stored by a specific list head
3989 * @hw: pointer to the hardware structure
3990 * @list_head: list for which filters needs to be replayed
3991 * @recp_id: Recipe ID for which rules need to be replayed
3992 */
3993 static enum ice_status
ice_replay_fltr(struct ice_hw * hw,u8 recp_id,struct LIST_HEAD_TYPE * list_head)3994 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
3995 {
3996 struct ice_fltr_mgmt_list_entry *itr;
3997 enum ice_status status = ICE_SUCCESS;
3998 struct ice_sw_recipe *recp_list;
3999 u8 lport = hw->port_info->lport;
4000 struct LIST_HEAD_TYPE l_head;
4001
4002 if (LIST_EMPTY(list_head))
4003 return status;
4004
4005 recp_list = &hw->switch_info->recp_list[recp_id];
4006 /* Move entries from the given list_head to a temporary l_head so that
4007 * they can be replayed. Otherwise when trying to re-add the same
4008 * filter, the function will return already exists
4009 */
4010 LIST_REPLACE_INIT(list_head, &l_head);
4011
4012 /* Mark the given list_head empty by reinitializing it so filters
4013 * could be added again by *handler
4014 */
4015 LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
4016 list_entry) {
4017 struct ice_fltr_list_entry f_entry;
4018 u16 vsi_handle;
4019
4020 f_entry.fltr_info = itr->fltr_info;
4021 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
4022 status = ice_add_rule_internal(hw, recp_list, lport,
4023 &f_entry);
4024 if (status != ICE_SUCCESS)
4025 goto end;
4026 continue;
4027 }
4028
4029 /* Add a filter per VSI separately */
4030 ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map,
4031 ICE_MAX_VSI) {
4032 if (!ice_is_vsi_valid(hw, vsi_handle))
4033 break;
4034
4035 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4036 f_entry.fltr_info.vsi_handle = vsi_handle;
4037 f_entry.fltr_info.fwd_id.hw_vsi_id =
4038 ice_get_hw_vsi_num(hw, vsi_handle);
4039 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4040 if (recp_id == ICE_SW_LKUP_VLAN)
4041 status = ice_add_vlan_internal(hw, recp_list,
4042 &f_entry);
4043 else
4044 status = ice_add_rule_internal(hw, recp_list,
4045 lport,
4046 &f_entry);
4047 if (status != ICE_SUCCESS)
4048 goto end;
4049 }
4050 }
4051 end:
4052 /* Clear the filter management list */
4053 ice_rem_sw_rule_info(hw, &l_head);
4054 return status;
4055 }
4056
4057 /**
4058 * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
4059 * @hw: pointer to the hardware structure
4060 *
4061 * NOTE: This function does not clean up partially added filters on error.
4062 * It is up to caller of the function to issue a reset or fail early.
4063 */
ice_replay_all_fltr(struct ice_hw * hw)4064 enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
4065 {
4066 struct ice_switch_info *sw = hw->switch_info;
4067 enum ice_status status = ICE_SUCCESS;
4068 u8 i;
4069
4070 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4071 struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
4072
4073 status = ice_replay_fltr(hw, i, head);
4074 if (status != ICE_SUCCESS)
4075 return status;
4076 }
4077 return status;
4078 }
4079
4080 /**
4081 * ice_replay_vsi_fltr - Replay filters for requested VSI
4082 * @hw: pointer to the hardware structure
4083 * @pi: pointer to port information structure
4084 * @sw: pointer to switch info struct for which function replays filters
4085 * @vsi_handle: driver VSI handle
4086 * @recp_id: Recipe ID for which rules need to be replayed
4087 * @list_head: list for which filters need to be replayed
4088 *
4089 * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
4090 * It is required to pass valid VSI handle.
4091 */
4092 static enum ice_status
ice_replay_vsi_fltr(struct ice_hw * hw,struct ice_port_info * pi,struct ice_switch_info * sw,u16 vsi_handle,u8 recp_id,struct LIST_HEAD_TYPE * list_head)4093 ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4094 struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id,
4095 struct LIST_HEAD_TYPE *list_head)
4096 {
4097 struct ice_fltr_mgmt_list_entry *itr;
4098 enum ice_status status = ICE_SUCCESS;
4099 struct ice_sw_recipe *recp_list;
4100 u16 hw_vsi_id;
4101
4102 if (LIST_EMPTY(list_head))
4103 return status;
4104 recp_list = &sw->recp_list[recp_id];
4105 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4106
4107 LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
4108 list_entry) {
4109 struct ice_fltr_list_entry f_entry;
4110
4111 f_entry.fltr_info = itr->fltr_info;
4112 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
4113 itr->fltr_info.vsi_handle == vsi_handle) {
4114 /* update the src in case it is VSI num */
4115 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4116 f_entry.fltr_info.src = hw_vsi_id;
4117 status = ice_add_rule_internal(hw, recp_list,
4118 pi->lport,
4119 &f_entry);
4120 if (status != ICE_SUCCESS)
4121 goto end;
4122 continue;
4123 }
4124 if (!itr->vsi_list_info ||
4125 !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
4126 continue;
4127 /* Clearing it so that the logic can add it back */
4128 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
4129 f_entry.fltr_info.vsi_handle = vsi_handle;
4130 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
4131 /* update the src in case it is VSI num */
4132 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
4133 f_entry.fltr_info.src = hw_vsi_id;
4134 if (recp_id == ICE_SW_LKUP_VLAN)
4135 status = ice_add_vlan_internal(hw, recp_list, &f_entry);
4136 else
4137 status = ice_add_rule_internal(hw, recp_list,
4138 pi->lport,
4139 &f_entry);
4140 if (status != ICE_SUCCESS)
4141 goto end;
4142 }
4143 end:
4144 return status;
4145 }
4146
4147 /**
4148 * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
4149 * @hw: pointer to the hardware structure
4150 * @pi: pointer to port information structure
4151 * @vsi_handle: driver VSI handle
4152 *
4153 * Replays filters for requested VSI via vsi_handle.
4154 */
4155 enum ice_status
ice_replay_vsi_all_fltr(struct ice_hw * hw,struct ice_port_info * pi,u16 vsi_handle)4156 ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi,
4157 u16 vsi_handle)
4158 {
4159 struct ice_switch_info *sw = hw->switch_info;
4160 enum ice_status status = ICE_SUCCESS;
4161 u8 i;
4162
4163 /* Update the recipes that were created */
4164 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4165 struct LIST_HEAD_TYPE *head;
4166
4167 head = &sw->recp_list[i].filt_replay_rules;
4168 if (!sw->recp_list[i].adv_rule)
4169 status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i,
4170 head);
4171 if (status != ICE_SUCCESS)
4172 return status;
4173 }
4174
4175 return ICE_SUCCESS;
4176 }
4177
4178 /**
4179 * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules
4180 * @hw: pointer to the HW struct
4181 * @sw: pointer to switch info struct for which function removes filters
4182 *
4183 * Deletes the filter replay rules for given switch
4184 */
ice_rm_sw_replay_rule_info(struct ice_hw * hw,struct ice_switch_info * sw)4185 void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw)
4186 {
4187 u8 i;
4188
4189 if (!sw)
4190 return;
4191
4192 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4193 if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
4194 struct LIST_HEAD_TYPE *l_head;
4195
4196 l_head = &sw->recp_list[i].filt_replay_rules;
4197 if (!sw->recp_list[i].adv_rule)
4198 ice_rem_sw_rule_info(hw, l_head);
4199 }
4200 }
4201 }
4202
4203 /**
4204 * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
4205 * @hw: pointer to the HW struct
4206 *
4207 * Deletes the filter replay rules.
4208 */
ice_rm_all_sw_replay_rule_info(struct ice_hw * hw)4209 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
4210 {
4211 ice_rm_sw_replay_rule_info(hw, hw->switch_info);
4212 }
4213
4214