1 /*-
2 * Copyright (c) 2004 Marcel Moolenaar
3 * Copyright (c) 2001 Doug Rabson
4 * Copyright (c) 2016, 2018 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/efi.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/linker.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/clock.h>
44 #include <sys/proc.h>
45 #include <sys/reboot.h>
46 #include <sys/rwlock.h>
47 #include <sys/sched.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/vmmeter.h>
51
52 #include <machine/fpu.h>
53 #include <machine/efi.h>
54 #include <machine/metadata.h>
55 #include <machine/vmparam.h>
56
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60
61 static struct efi_systbl *efi_systbl;
62 static eventhandler_tag efi_shutdown_tag;
63 /*
64 * The following pointers point to tables in the EFI runtime service data pages.
65 * Care should be taken to make sure that we've properly entered the EFI runtime
66 * environment (efi_enter()) before dereferencing them.
67 */
68 static struct efi_cfgtbl *efi_cfgtbl;
69 static struct efi_rt *efi_runtime;
70
71 static int efi_status2err[25] = {
72 0, /* EFI_SUCCESS */
73 ENOEXEC, /* EFI_LOAD_ERROR */
74 EINVAL, /* EFI_INVALID_PARAMETER */
75 ENOSYS, /* EFI_UNSUPPORTED */
76 EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */
77 EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */
78 EBUSY, /* EFI_NOT_READY */
79 EIO, /* EFI_DEVICE_ERROR */
80 EROFS, /* EFI_WRITE_PROTECTED */
81 EAGAIN, /* EFI_OUT_OF_RESOURCES */
82 EIO, /* EFI_VOLUME_CORRUPTED */
83 ENOSPC, /* EFI_VOLUME_FULL */
84 ENXIO, /* EFI_NO_MEDIA */
85 ESTALE, /* EFI_MEDIA_CHANGED */
86 ENOENT, /* EFI_NOT_FOUND */
87 EACCES, /* EFI_ACCESS_DENIED */
88 ETIMEDOUT, /* EFI_NO_RESPONSE */
89 EADDRNOTAVAIL, /* EFI_NO_MAPPING */
90 ETIMEDOUT, /* EFI_TIMEOUT */
91 EDOOFUS, /* EFI_NOT_STARTED */
92 EALREADY, /* EFI_ALREADY_STARTED */
93 ECANCELED, /* EFI_ABORTED */
94 EPROTO, /* EFI_ICMP_ERROR */
95 EPROTO, /* EFI_TFTP_ERROR */
96 EPROTO /* EFI_PROTOCOL_ERROR */
97 };
98
99 static int efi_enter(void);
100 static void efi_leave(void);
101
102 static int
efi_status_to_errno(efi_status status)103 efi_status_to_errno(efi_status status)
104 {
105 u_long code;
106
107 code = status & 0x3ffffffffffffffful;
108 return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
109 }
110
111 static struct mtx efi_lock;
112 static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
113 "EFI");
114 static bool efi_poweroff = true;
115 SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
116 "If true, use EFI runtime services to power off in preference to ACPI");
117
118 static bool
efi_is_in_map(struct efi_md * map,int ndesc,int descsz,vm_offset_t addr)119 efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
120 {
121 struct efi_md *p;
122 int i;
123
124 for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
125 descsz)) {
126 if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
127 continue;
128
129 if (addr >= (uintptr_t)p->md_virt &&
130 addr < (uintptr_t)p->md_virt + p->md_pages * PAGE_SIZE)
131 return (true);
132 }
133
134 return (false);
135 }
136
137 static void
efi_shutdown_final(void * dummy __unused,int howto)138 efi_shutdown_final(void *dummy __unused, int howto)
139 {
140
141 /*
142 * On some systems, ACPI S5 is missing or does not function properly.
143 * When present, shutdown via EFI Runtime Services instead, unless
144 * disabled.
145 */
146 if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
147 (void)efi_reset_system(EFI_RESET_SHUTDOWN);
148 }
149
150 static int
efi_init(void)151 efi_init(void)
152 {
153 struct efi_map_header *efihdr;
154 struct efi_md *map;
155 struct efi_rt *rtdm;
156 caddr_t kmdp;
157 size_t efisz;
158 int ndesc, rt_disabled;
159
160 rt_disabled = 0;
161 TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
162 if (rt_disabled == 1)
163 return (0);
164 mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
165
166 if (efi_systbl_phys == 0) {
167 if (bootverbose)
168 printf("EFI systbl not available\n");
169 return (0);
170 }
171
172 efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
173 if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
174 efi_systbl = NULL;
175 if (bootverbose)
176 printf("EFI systbl signature invalid\n");
177 return (0);
178 }
179 efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
180 (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
181 if (efi_cfgtbl == NULL) {
182 if (bootverbose)
183 printf("EFI config table is not present\n");
184 }
185
186 kmdp = preload_search_by_type("elf kernel");
187 if (kmdp == NULL)
188 kmdp = preload_search_by_type("elf64 kernel");
189 efihdr = (struct efi_map_header *)preload_search_info(kmdp,
190 MODINFO_METADATA | MODINFOMD_EFI_MAP);
191 if (efihdr == NULL) {
192 if (bootverbose)
193 printf("EFI map is not present\n");
194 return (0);
195 }
196 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
197 map = (struct efi_md *)((uint8_t *)efihdr + efisz);
198 if (efihdr->descriptor_size == 0)
199 return (ENOMEM);
200
201 ndesc = efihdr->memory_size / efihdr->descriptor_size;
202 if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
203 if (bootverbose)
204 printf("EFI cannot create runtime map\n");
205 return (ENOMEM);
206 }
207
208 efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
209 (struct efi_rt *)efi_systbl->st_rt;
210 if (efi_runtime == NULL) {
211 if (bootverbose)
212 printf("EFI runtime services table is not present\n");
213 efi_destroy_1t1_map();
214 return (ENXIO);
215 }
216
217 #if defined(__aarch64__) || defined(__amd64__)
218 /*
219 * Some UEFI implementations have multiple implementations of the
220 * RS->GetTime function. They switch from one we can only use early
221 * in the boot process to one valid as a RunTime service only when we
222 * call RS->SetVirtualAddressMap. As this is not always the case, e.g.
223 * with an old loader.efi, check if the RS->GetTime function is within
224 * the EFI map, and fail to attach if not.
225 */
226 rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
227 if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
228 (vm_offset_t)rtdm->rt_gettime)) {
229 if (bootverbose)
230 printf(
231 "EFI runtime services table has an invalid pointer\n");
232 efi_runtime = NULL;
233 efi_destroy_1t1_map();
234 return (ENXIO);
235 }
236 #endif
237
238 /*
239 * We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
240 */
241 efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
242 efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
243
244 return (0);
245 }
246
247 static void
efi_uninit(void)248 efi_uninit(void)
249 {
250
251 /* Most likely disabled by tunable */
252 if (efi_runtime == NULL)
253 return;
254 if (efi_shutdown_tag != NULL)
255 EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
256 efi_destroy_1t1_map();
257
258 efi_systbl = NULL;
259 efi_cfgtbl = NULL;
260 efi_runtime = NULL;
261
262 mtx_destroy(&efi_lock);
263 }
264
265 int
efi_rt_ok(void)266 efi_rt_ok(void)
267 {
268
269 if (efi_runtime == NULL)
270 return (ENXIO);
271 return (0);
272 }
273
274 static int
efi_enter(void)275 efi_enter(void)
276 {
277 struct thread *td;
278 pmap_t curpmap;
279 int error;
280
281 if (efi_runtime == NULL)
282 return (ENXIO);
283 td = curthread;
284 curpmap = &td->td_proc->p_vmspace->vm_pmap;
285 PMAP_LOCK(curpmap);
286 mtx_lock(&efi_lock);
287 fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
288 error = efi_arch_enter();
289 if (error != 0) {
290 fpu_kern_leave(td, NULL);
291 mtx_unlock(&efi_lock);
292 PMAP_UNLOCK(curpmap);
293 }
294 return (error);
295 }
296
297 static void
efi_leave(void)298 efi_leave(void)
299 {
300 struct thread *td;
301 pmap_t curpmap;
302
303 efi_arch_leave();
304
305 curpmap = &curproc->p_vmspace->vm_pmap;
306 td = curthread;
307 fpu_kern_leave(td, NULL);
308 mtx_unlock(&efi_lock);
309 PMAP_UNLOCK(curpmap);
310 }
311
312 int
efi_get_table(struct uuid * uuid,void ** ptr)313 efi_get_table(struct uuid *uuid, void **ptr)
314 {
315 struct efi_cfgtbl *ct;
316 u_long count;
317 int error;
318
319 if (efi_cfgtbl == NULL || efi_systbl == NULL)
320 return (ENXIO);
321 error = efi_enter();
322 if (error != 0)
323 return (error);
324 count = efi_systbl->st_entries;
325 ct = efi_cfgtbl;
326 while (count--) {
327 if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
328 *ptr = ct->ct_data;
329 efi_leave();
330 return (0);
331 }
332 ct++;
333 }
334
335 efi_leave();
336 return (ENOENT);
337 }
338
339 static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
340 SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
341 &efi_rt_handle_faults, 0,
342 "Call EFI RT methods with fault handler wrapper around");
343
344 static int
efi_rt_arch_call_nofault(struct efirt_callinfo * ec)345 efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
346 {
347
348 switch (ec->ec_argcnt) {
349 case 0:
350 ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
351 break;
352 case 1:
353 ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
354 (ec->ec_arg1);
355 break;
356 case 2:
357 ec->ec_efi_status = ((register_t (*)(register_t, register_t))
358 ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
359 break;
360 case 3:
361 ec->ec_efi_status = ((register_t (*)(register_t, register_t,
362 register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
363 ec->ec_arg3);
364 break;
365 case 4:
366 ec->ec_efi_status = ((register_t (*)(register_t, register_t,
367 register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
368 ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
369 break;
370 case 5:
371 ec->ec_efi_status = ((register_t (*)(register_t, register_t,
372 register_t, register_t, register_t))ec->ec_fptr)(
373 ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
374 ec->ec_arg5);
375 break;
376 default:
377 panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
378 }
379
380 return (0);
381 }
382
383 static int
efi_call(struct efirt_callinfo * ecp)384 efi_call(struct efirt_callinfo *ecp)
385 {
386 int error;
387
388 error = efi_enter();
389 if (error != 0)
390 return (error);
391 error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
392 efi_rt_arch_call_nofault(ecp);
393 efi_leave();
394 if (error == 0)
395 error = efi_status_to_errno(ecp->ec_efi_status);
396 else if (bootverbose)
397 printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
398 return (error);
399 }
400
401 #define EFI_RT_METHOD_PA(method) \
402 ((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t) \
403 efi_runtime))->method)
404
405 static int
efi_get_time_locked(struct efi_tm * tm,struct efi_tmcap * tmcap)406 efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
407 {
408 struct efirt_callinfo ec;
409
410 EFI_TIME_OWNED();
411 if (efi_runtime == NULL)
412 return (ENXIO);
413 bzero(&ec, sizeof(ec));
414 ec.ec_name = "rt_gettime";
415 ec.ec_argcnt = 2;
416 ec.ec_arg1 = (uintptr_t)tm;
417 ec.ec_arg2 = (uintptr_t)tmcap;
418 ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
419 return (efi_call(&ec));
420 }
421
422 int
efi_get_time(struct efi_tm * tm)423 efi_get_time(struct efi_tm *tm)
424 {
425 struct efi_tmcap dummy;
426 int error;
427
428 if (efi_runtime == NULL)
429 return (ENXIO);
430 EFI_TIME_LOCK();
431 /*
432 * UEFI spec states that the Capabilities argument to GetTime is
433 * optional, but some UEFI implementations choke when passed a NULL
434 * pointer. Pass a dummy efi_tmcap, even though we won't use it,
435 * to workaround such implementations.
436 */
437 error = efi_get_time_locked(tm, &dummy);
438 EFI_TIME_UNLOCK();
439 return (error);
440 }
441
442 int
efi_get_time_capabilities(struct efi_tmcap * tmcap)443 efi_get_time_capabilities(struct efi_tmcap *tmcap)
444 {
445 struct efi_tm dummy;
446 int error;
447
448 if (efi_runtime == NULL)
449 return (ENXIO);
450 EFI_TIME_LOCK();
451 error = efi_get_time_locked(&dummy, tmcap);
452 EFI_TIME_UNLOCK();
453 return (error);
454 }
455
456 int
efi_reset_system(enum efi_reset type)457 efi_reset_system(enum efi_reset type)
458 {
459 struct efirt_callinfo ec;
460
461 switch (type) {
462 case EFI_RESET_COLD:
463 case EFI_RESET_WARM:
464 case EFI_RESET_SHUTDOWN:
465 break;
466 default:
467 return (EINVAL);
468 }
469 if (efi_runtime == NULL)
470 return (ENXIO);
471 bzero(&ec, sizeof(ec));
472 ec.ec_name = "rt_reset";
473 ec.ec_argcnt = 4;
474 ec.ec_arg1 = (uintptr_t)type;
475 ec.ec_arg2 = (uintptr_t)0;
476 ec.ec_arg3 = (uintptr_t)0;
477 ec.ec_arg4 = (uintptr_t)NULL;
478 ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
479 return (efi_call(&ec));
480 }
481
482 static int
efi_set_time_locked(struct efi_tm * tm)483 efi_set_time_locked(struct efi_tm *tm)
484 {
485 struct efirt_callinfo ec;
486
487 EFI_TIME_OWNED();
488 if (efi_runtime == NULL)
489 return (ENXIO);
490 bzero(&ec, sizeof(ec));
491 ec.ec_name = "rt_settime";
492 ec.ec_argcnt = 1;
493 ec.ec_arg1 = (uintptr_t)tm;
494 ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
495 return (efi_call(&ec));
496 }
497
498 int
efi_set_time(struct efi_tm * tm)499 efi_set_time(struct efi_tm *tm)
500 {
501 int error;
502
503 if (efi_runtime == NULL)
504 return (ENXIO);
505 EFI_TIME_LOCK();
506 error = efi_set_time_locked(tm);
507 EFI_TIME_UNLOCK();
508 return (error);
509 }
510
511 int
efi_var_get(efi_char * name,struct uuid * vendor,uint32_t * attrib,size_t * datasize,void * data)512 efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
513 size_t *datasize, void *data)
514 {
515 struct efirt_callinfo ec;
516
517 if (efi_runtime == NULL)
518 return (ENXIO);
519 bzero(&ec, sizeof(ec));
520 ec.ec_argcnt = 5;
521 ec.ec_name = "rt_getvar";
522 ec.ec_arg1 = (uintptr_t)name;
523 ec.ec_arg2 = (uintptr_t)vendor;
524 ec.ec_arg3 = (uintptr_t)attrib;
525 ec.ec_arg4 = (uintptr_t)datasize;
526 ec.ec_arg5 = (uintptr_t)data;
527 ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
528 return (efi_call(&ec));
529 }
530
531 int
efi_var_nextname(size_t * namesize,efi_char * name,struct uuid * vendor)532 efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
533 {
534 struct efirt_callinfo ec;
535
536 if (efi_runtime == NULL)
537 return (ENXIO);
538 bzero(&ec, sizeof(ec));
539 ec.ec_argcnt = 3;
540 ec.ec_name = "rt_scanvar";
541 ec.ec_arg1 = (uintptr_t)namesize;
542 ec.ec_arg2 = (uintptr_t)name;
543 ec.ec_arg3 = (uintptr_t)vendor;
544 ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
545 return (efi_call(&ec));
546 }
547
548 int
efi_var_set(efi_char * name,struct uuid * vendor,uint32_t attrib,size_t datasize,void * data)549 efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
550 size_t datasize, void *data)
551 {
552 struct efirt_callinfo ec;
553
554 if (efi_runtime == NULL)
555 return (ENXIO);
556 bzero(&ec, sizeof(ec));
557 ec.ec_argcnt = 5;
558 ec.ec_name = "rt_setvar";
559 ec.ec_arg1 = (uintptr_t)name;
560 ec.ec_arg2 = (uintptr_t)vendor;
561 ec.ec_arg3 = (uintptr_t)attrib;
562 ec.ec_arg4 = (uintptr_t)datasize;
563 ec.ec_arg5 = (uintptr_t)data;
564 ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
565 return (efi_call(&ec));
566 }
567
568 static int
efirt_modevents(module_t m,int event,void * arg __unused)569 efirt_modevents(module_t m, int event, void *arg __unused)
570 {
571
572 switch (event) {
573 case MOD_LOAD:
574 return (efi_init());
575
576 case MOD_UNLOAD:
577 efi_uninit();
578 return (0);
579
580 case MOD_SHUTDOWN:
581 return (0);
582
583 default:
584 return (EOPNOTSUPP);
585 }
586 }
587
588 static moduledata_t efirt_moddata = {
589 .name = "efirt",
590 .evhand = efirt_modevents,
591 .priv = NULL,
592 };
593 /* After fpuinitstate, before efidev */
594 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
595 MODULE_VERSION(efirt, 1);
596