1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Stanislav Sedov <[email protected]>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Driver for Attansic Technology Corp. L2 FastEthernet adapter.
28 *
29 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/mutex.h>
44 #include <sys/rman.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 #include <net/if_vlan_var.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71
72 #include <machine/bus.h>
73
74 #include "miibus_if.h"
75
76 #include "if_aereg.h"
77 #include "if_aevar.h"
78
79 /*
80 * Devices supported by this driver.
81 */
82 static struct ae_dev {
83 uint16_t vendorid;
84 uint16_t deviceid;
85 const char *name;
86 } ae_devs[] = {
87 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
88 "Attansic Technology Corp, L2 FastEthernet" },
89 };
90 #define AE_DEVS_COUNT nitems(ae_devs)
91
92 static struct resource_spec ae_res_spec_mem[] = {
93 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
94 { -1, 0, 0 }
95 };
96 static struct resource_spec ae_res_spec_irq[] = {
97 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
98 { -1, 0, 0 }
99 };
100 static struct resource_spec ae_res_spec_msi[] = {
101 { SYS_RES_IRQ, 1, RF_ACTIVE },
102 { -1, 0, 0 }
103 };
104
105 static int ae_probe(device_t dev);
106 static int ae_attach(device_t dev);
107 static void ae_pcie_init(ae_softc_t *sc);
108 static void ae_phy_reset(ae_softc_t *sc);
109 static void ae_phy_init(ae_softc_t *sc);
110 static int ae_reset(ae_softc_t *sc);
111 static void ae_init(void *arg);
112 static int ae_init_locked(ae_softc_t *sc);
113 static int ae_detach(device_t dev);
114 static int ae_miibus_readreg(device_t dev, int phy, int reg);
115 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val);
116 static void ae_miibus_statchg(device_t dev);
117 static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
118 static int ae_mediachange(struct ifnet *ifp);
119 static void ae_retrieve_address(ae_softc_t *sc);
120 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
121 int error);
122 static int ae_alloc_rings(ae_softc_t *sc);
123 static void ae_dma_free(ae_softc_t *sc);
124 static int ae_shutdown(device_t dev);
125 static int ae_suspend(device_t dev);
126 static void ae_powersave_disable(ae_softc_t *sc);
127 static void ae_powersave_enable(ae_softc_t *sc);
128 static int ae_resume(device_t dev);
129 static unsigned int ae_tx_avail_size(ae_softc_t *sc);
130 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head);
131 static void ae_start(struct ifnet *ifp);
132 static void ae_start_locked(struct ifnet *ifp);
133 static void ae_link_task(void *arg, int pending);
134 static void ae_stop_rxmac(ae_softc_t *sc);
135 static void ae_stop_txmac(ae_softc_t *sc);
136 static void ae_mac_config(ae_softc_t *sc);
137 static int ae_intr(void *arg);
138 static void ae_int_task(void *arg, int pending);
139 static void ae_tx_intr(ae_softc_t *sc);
140 static void ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
141 static void ae_rx_intr(ae_softc_t *sc);
142 static void ae_watchdog(ae_softc_t *sc);
143 static void ae_tick(void *arg);
144 static void ae_rxfilter(ae_softc_t *sc);
145 static void ae_rxvlan(ae_softc_t *sc);
146 static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
147 static void ae_stop(ae_softc_t *sc);
148 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
149 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
150 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
151 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
152 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
153 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
154 static void ae_init_tunables(ae_softc_t *sc);
155
156 static device_method_t ae_methods[] = {
157 /* Device interface. */
158 DEVMETHOD(device_probe, ae_probe),
159 DEVMETHOD(device_attach, ae_attach),
160 DEVMETHOD(device_detach, ae_detach),
161 DEVMETHOD(device_shutdown, ae_shutdown),
162 DEVMETHOD(device_suspend, ae_suspend),
163 DEVMETHOD(device_resume, ae_resume),
164
165 /* MII interface. */
166 DEVMETHOD(miibus_readreg, ae_miibus_readreg),
167 DEVMETHOD(miibus_writereg, ae_miibus_writereg),
168 DEVMETHOD(miibus_statchg, ae_miibus_statchg),
169 { NULL, NULL }
170 };
171 static driver_t ae_driver = {
172 "ae",
173 ae_methods,
174 sizeof(ae_softc_t)
175 };
176 static devclass_t ae_devclass;
177
178 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ae, ae_devs,
180 nitems(ae_devs));
181 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
182 MODULE_DEPEND(ae, pci, 1, 1, 1);
183 MODULE_DEPEND(ae, ether, 1, 1, 1);
184 MODULE_DEPEND(ae, miibus, 1, 1, 1);
185
186 /*
187 * Tunables.
188 */
189 static int msi_disable = 0;
190 TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
191
192 #define AE_READ_4(sc, reg) \
193 bus_read_4((sc)->mem[0], (reg))
194 #define AE_READ_2(sc, reg) \
195 bus_read_2((sc)->mem[0], (reg))
196 #define AE_READ_1(sc, reg) \
197 bus_read_1((sc)->mem[0], (reg))
198 #define AE_WRITE_4(sc, reg, val) \
199 bus_write_4((sc)->mem[0], (reg), (val))
200 #define AE_WRITE_2(sc, reg, val) \
201 bus_write_2((sc)->mem[0], (reg), (val))
202 #define AE_WRITE_1(sc, reg, val) \
203 bus_write_1((sc)->mem[0], (reg), (val))
204 #define AE_PHY_READ(sc, reg) \
205 ae_miibus_readreg(sc->dev, 0, reg)
206 #define AE_PHY_WRITE(sc, reg, val) \
207 ae_miibus_writereg(sc->dev, 0, reg, val)
208 #define AE_CHECK_EADDR_VALID(eaddr) \
209 ((eaddr[0] == 0 && eaddr[1] == 0) || \
210 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
211 #define AE_RXD_VLAN(vtag) \
212 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
213 #define AE_TXD_VLAN(vtag) \
214 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
215
216 static int
ae_probe(device_t dev)217 ae_probe(device_t dev)
218 {
219 uint16_t deviceid, vendorid;
220 int i;
221
222 vendorid = pci_get_vendor(dev);
223 deviceid = pci_get_device(dev);
224
225 /*
226 * Search through the list of supported devs for matching one.
227 */
228 for (i = 0; i < AE_DEVS_COUNT; i++) {
229 if (vendorid == ae_devs[i].vendorid &&
230 deviceid == ae_devs[i].deviceid) {
231 device_set_desc(dev, ae_devs[i].name);
232 return (BUS_PROBE_DEFAULT);
233 }
234 }
235 return (ENXIO);
236 }
237
238 static int
ae_attach(device_t dev)239 ae_attach(device_t dev)
240 {
241 ae_softc_t *sc;
242 struct ifnet *ifp;
243 uint8_t chiprev;
244 uint32_t pcirev;
245 int nmsi, pmc;
246 int error;
247
248 sc = device_get_softc(dev); /* Automatically allocated and zeroed
249 on attach. */
250 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
251 sc->dev = dev;
252
253 /*
254 * Initialize mutexes and tasks.
255 */
256 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
257 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
258 TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
259 TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
260
261 pci_enable_busmaster(dev); /* Enable bus mastering. */
262
263 sc->spec_mem = ae_res_spec_mem;
264
265 /*
266 * Allocate memory-mapped registers.
267 */
268 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
269 if (error != 0) {
270 device_printf(dev, "could not allocate memory resources.\n");
271 sc->spec_mem = NULL;
272 goto fail;
273 }
274
275 /*
276 * Retrieve PCI and chip revisions.
277 */
278 pcirev = pci_get_revid(dev);
279 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
280 AE_MASTER_REVNUM_MASK;
281 if (bootverbose) {
282 device_printf(dev, "pci device revision: %#04x\n", pcirev);
283 device_printf(dev, "chip id: %#02x\n", chiprev);
284 }
285 nmsi = pci_msi_count(dev);
286 if (bootverbose)
287 device_printf(dev, "MSI count: %d.\n", nmsi);
288
289 /*
290 * Allocate interrupt resources.
291 */
292 if (msi_disable == 0 && nmsi == 1) {
293 error = pci_alloc_msi(dev, &nmsi);
294 if (error == 0) {
295 device_printf(dev, "Using MSI messages.\n");
296 sc->spec_irq = ae_res_spec_msi;
297 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
298 if (error != 0) {
299 device_printf(dev, "MSI allocation failed.\n");
300 sc->spec_irq = NULL;
301 pci_release_msi(dev);
302 } else {
303 sc->flags |= AE_FLAG_MSI;
304 }
305 }
306 }
307 if (sc->spec_irq == NULL) {
308 sc->spec_irq = ae_res_spec_irq;
309 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
310 if (error != 0) {
311 device_printf(dev, "could not allocate IRQ resources.\n");
312 sc->spec_irq = NULL;
313 goto fail;
314 }
315 }
316
317 ae_init_tunables(sc);
318
319 ae_phy_reset(sc); /* Reset PHY. */
320 error = ae_reset(sc); /* Reset the controller itself. */
321 if (error != 0)
322 goto fail;
323
324 ae_pcie_init(sc);
325
326 ae_retrieve_address(sc); /* Load MAC address. */
327
328 error = ae_alloc_rings(sc); /* Allocate ring buffers. */
329 if (error != 0)
330 goto fail;
331
332 ifp = sc->ifp = if_alloc(IFT_ETHER);
333 if (ifp == NULL) {
334 device_printf(dev, "could not allocate ifnet structure.\n");
335 error = ENXIO;
336 goto fail;
337 }
338
339 ifp->if_softc = sc;
340 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
341 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
342 ifp->if_ioctl = ae_ioctl;
343 ifp->if_start = ae_start;
344 ifp->if_init = ae_init;
345 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
346 ifp->if_hwassist = 0;
347 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
348 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
349 IFQ_SET_READY(&ifp->if_snd);
350 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
351 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
352 sc->flags |= AE_FLAG_PMG;
353 }
354 ifp->if_capenable = ifp->if_capabilities;
355
356 /*
357 * Configure and attach MII bus.
358 */
359 error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
360 ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
361 MII_OFFSET_ANY, 0);
362 if (error != 0) {
363 device_printf(dev, "attaching PHYs failed\n");
364 goto fail;
365 }
366
367 ether_ifattach(ifp, sc->eaddr);
368 /* Tell the upper layer(s) we support long frames. */
369 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
370
371 /*
372 * Create and run all helper tasks.
373 */
374 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
375 taskqueue_thread_enqueue, &sc->tq);
376 if (sc->tq == NULL) {
377 device_printf(dev, "could not create taskqueue.\n");
378 ether_ifdetach(ifp);
379 error = ENXIO;
380 goto fail;
381 }
382 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
383 device_get_nameunit(sc->dev));
384
385 /*
386 * Configure interrupt handlers.
387 */
388 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
389 ae_intr, NULL, sc, &sc->intrhand);
390 if (error != 0) {
391 device_printf(dev, "could not set up interrupt handler.\n");
392 taskqueue_free(sc->tq);
393 sc->tq = NULL;
394 ether_ifdetach(ifp);
395 goto fail;
396 }
397
398 fail:
399 if (error != 0)
400 ae_detach(dev);
401
402 return (error);
403 }
404
405 #define AE_SYSCTL(stx, parent, name, desc, ptr) \
406 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
407
408 static void
ae_init_tunables(ae_softc_t * sc)409 ae_init_tunables(ae_softc_t *sc)
410 {
411 struct sysctl_ctx_list *ctx;
412 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
413 struct ae_stats *ae_stats;
414
415 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
416 ae_stats = &sc->stats;
417
418 ctx = device_get_sysctl_ctx(sc->dev);
419 root = device_get_sysctl_tree(sc->dev);
420 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
421 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ae statistics");
422
423 /*
424 * Receiver statistcics.
425 */
426 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
427 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
428 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
429 "broadcast frames", &ae_stats->rx_bcast);
430 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
431 "multicast frames", &ae_stats->rx_mcast);
432 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
433 "PAUSE frames", &ae_stats->rx_pause);
434 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
435 "control frames", &ae_stats->rx_ctrl);
436 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
437 "frames with CRC errors", &ae_stats->rx_crcerr);
438 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
439 "frames with invalid opcode", &ae_stats->rx_codeerr);
440 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
441 "runt frames", &ae_stats->rx_runt);
442 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
443 "fragmented frames", &ae_stats->rx_frag);
444 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
445 "frames with alignment errors", &ae_stats->rx_align);
446 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
447 "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
448
449 /*
450 * Receiver statistcics.
451 */
452 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
453 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
454 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
455 "broadcast frames", &ae_stats->tx_bcast);
456 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
457 "multicast frames", &ae_stats->tx_mcast);
458 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
459 "PAUSE frames", &ae_stats->tx_pause);
460 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
461 "control frames", &ae_stats->tx_ctrl);
462 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
463 "deferrals occuried", &ae_stats->tx_defer);
464 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
465 "excessive deferrals occuried", &ae_stats->tx_excdefer);
466 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
467 "single collisions occuried", &ae_stats->tx_singlecol);
468 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
469 "multiple collisions occuried", &ae_stats->tx_multicol);
470 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
471 "late collisions occuried", &ae_stats->tx_latecol);
472 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
473 "transmit aborts due collisions", &ae_stats->tx_abortcol);
474 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
475 "Tx FIFO underruns", &ae_stats->tx_underrun);
476 }
477
478 static void
ae_pcie_init(ae_softc_t * sc)479 ae_pcie_init(ae_softc_t *sc)
480 {
481
482 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
483 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
484 }
485
486 static void
ae_phy_reset(ae_softc_t * sc)487 ae_phy_reset(ae_softc_t *sc)
488 {
489
490 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
491 DELAY(1000); /* XXX: pause(9) ? */
492 }
493
494 static int
ae_reset(ae_softc_t * sc)495 ae_reset(ae_softc_t *sc)
496 {
497 int i;
498
499 /*
500 * Issue a soft reset.
501 */
502 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
503 bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
504 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
505
506 /*
507 * Wait for reset to complete.
508 */
509 for (i = 0; i < AE_RESET_TIMEOUT; i++) {
510 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
511 break;
512 DELAY(10);
513 }
514 if (i == AE_RESET_TIMEOUT) {
515 device_printf(sc->dev, "reset timeout.\n");
516 return (ENXIO);
517 }
518
519 /*
520 * Wait for everything to enter idle state.
521 */
522 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
523 if (AE_READ_4(sc, AE_IDLE_REG) == 0)
524 break;
525 DELAY(100);
526 }
527 if (i == AE_IDLE_TIMEOUT) {
528 device_printf(sc->dev, "could not enter idle state.\n");
529 return (ENXIO);
530 }
531 return (0);
532 }
533
534 static void
ae_init(void * arg)535 ae_init(void *arg)
536 {
537 ae_softc_t *sc;
538
539 sc = (ae_softc_t *)arg;
540 AE_LOCK(sc);
541 ae_init_locked(sc);
542 AE_UNLOCK(sc);
543 }
544
545 static void
ae_phy_init(ae_softc_t * sc)546 ae_phy_init(ae_softc_t *sc)
547 {
548
549 /*
550 * Enable link status change interrupt.
551 * XXX magic numbers.
552 */
553 #ifdef notyet
554 AE_PHY_WRITE(sc, 18, 0xc00);
555 #endif
556 }
557
558 static int
ae_init_locked(ae_softc_t * sc)559 ae_init_locked(ae_softc_t *sc)
560 {
561 struct ifnet *ifp;
562 struct mii_data *mii;
563 uint8_t eaddr[ETHER_ADDR_LEN];
564 uint32_t val;
565 bus_addr_t addr;
566
567 AE_LOCK_ASSERT(sc);
568
569 ifp = sc->ifp;
570 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
571 return (0);
572 mii = device_get_softc(sc->miibus);
573
574 ae_stop(sc);
575 ae_reset(sc);
576 ae_pcie_init(sc); /* Initialize PCIE stuff. */
577 ae_phy_init(sc);
578 ae_powersave_disable(sc);
579
580 /*
581 * Clear and disable interrupts.
582 */
583 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
584
585 /*
586 * Set the MAC address.
587 */
588 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
589 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
590 AE_WRITE_4(sc, AE_EADDR0_REG, val);
591 val = eaddr[0] << 8 | eaddr[1];
592 AE_WRITE_4(sc, AE_EADDR1_REG, val);
593
594 bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
595 bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
596 bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
597 /*
598 * Set ring buffers base addresses.
599 */
600 addr = sc->dma_rxd_busaddr;
601 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
602 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
603 addr = sc->dma_txd_busaddr;
604 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
605 addr = sc->dma_txs_busaddr;
606 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
607
608 /*
609 * Configure ring buffers sizes.
610 */
611 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
612 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
613 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
614
615 /*
616 * Configure interframe gap parameters.
617 */
618 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
619 AE_IFG_TXIPG_MASK) |
620 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
621 AE_IFG_RXIPG_MASK) |
622 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
623 AE_IFG_IPGR1_MASK) |
624 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
625 AE_IFG_IPGR2_MASK);
626 AE_WRITE_4(sc, AE_IFG_REG, val);
627
628 /*
629 * Configure half-duplex operation.
630 */
631 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
632 AE_HDPX_LCOL_MASK) |
633 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
634 AE_HDPX_RETRY_MASK) |
635 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
636 AE_HDPX_ABEBT_MASK) |
637 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
638 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
639 AE_WRITE_4(sc, AE_HDPX_REG, val);
640
641 /*
642 * Configure interrupt moderate timer.
643 */
644 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
645 val = AE_READ_4(sc, AE_MASTER_REG);
646 val |= AE_MASTER_IMT_EN;
647 AE_WRITE_4(sc, AE_MASTER_REG, val);
648
649 /*
650 * Configure interrupt clearing timer.
651 */
652 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
653
654 /*
655 * Configure MTU.
656 */
657 val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
658 ETHER_CRC_LEN;
659 AE_WRITE_2(sc, AE_MTU_REG, val);
660
661 /*
662 * Configure cut-through threshold.
663 */
664 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
665
666 /*
667 * Configure flow control.
668 */
669 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
670 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
671 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
672 (AE_RXD_COUNT_DEFAULT / 12));
673
674 /*
675 * Init mailboxes.
676 */
677 sc->txd_cur = sc->rxd_cur = 0;
678 sc->txs_ack = sc->txd_ack = 0;
679 sc->rxd_cur = 0;
680 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
681 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
682
683 sc->tx_inproc = 0; /* Number of packets the chip processes now. */
684 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */
685
686 /*
687 * Enable DMA.
688 */
689 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
690 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
691
692 /*
693 * Check if everything is OK.
694 */
695 val = AE_READ_4(sc, AE_ISR_REG);
696 if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
697 device_printf(sc->dev, "Initialization failed.\n");
698 return (ENXIO);
699 }
700
701 /*
702 * Clear interrupt status.
703 */
704 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
705 AE_WRITE_4(sc, AE_ISR_REG, 0x0);
706
707 /*
708 * Enable interrupts.
709 */
710 val = AE_READ_4(sc, AE_MASTER_REG);
711 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
712 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
713
714 /*
715 * Disable WOL.
716 */
717 AE_WRITE_4(sc, AE_WOL_REG, 0);
718
719 /*
720 * Configure MAC.
721 */
722 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
723 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
724 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
725 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
726 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
727 AE_MAC_PREAMBLE_MASK);
728 AE_WRITE_4(sc, AE_MAC_REG, val);
729
730 /*
731 * Configure Rx MAC.
732 */
733 ae_rxfilter(sc);
734 ae_rxvlan(sc);
735
736 /*
737 * Enable Tx/Rx.
738 */
739 val = AE_READ_4(sc, AE_MAC_REG);
740 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
741
742 sc->flags &= ~AE_FLAG_LINK;
743 mii_mediachg(mii); /* Switch to the current media. */
744
745 callout_reset(&sc->tick_ch, hz, ae_tick, sc);
746
747 ifp->if_drv_flags |= IFF_DRV_RUNNING;
748 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
749
750 #ifdef AE_DEBUG
751 device_printf(sc->dev, "Initialization complete.\n");
752 #endif
753
754 return (0);
755 }
756
757 static int
ae_detach(device_t dev)758 ae_detach(device_t dev)
759 {
760 struct ae_softc *sc;
761 struct ifnet *ifp;
762
763 sc = device_get_softc(dev);
764 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
765 ifp = sc->ifp;
766 if (device_is_attached(dev)) {
767 AE_LOCK(sc);
768 sc->flags |= AE_FLAG_DETACH;
769 ae_stop(sc);
770 AE_UNLOCK(sc);
771 callout_drain(&sc->tick_ch);
772 taskqueue_drain(sc->tq, &sc->int_task);
773 taskqueue_drain(taskqueue_swi, &sc->link_task);
774 ether_ifdetach(ifp);
775 }
776 if (sc->tq != NULL) {
777 taskqueue_drain(sc->tq, &sc->int_task);
778 taskqueue_free(sc->tq);
779 sc->tq = NULL;
780 }
781 if (sc->miibus != NULL) {
782 device_delete_child(dev, sc->miibus);
783 sc->miibus = NULL;
784 }
785 bus_generic_detach(sc->dev);
786 ae_dma_free(sc);
787 if (sc->intrhand != NULL) {
788 bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
789 sc->intrhand = NULL;
790 }
791 if (ifp != NULL) {
792 if_free(ifp);
793 sc->ifp = NULL;
794 }
795 if (sc->spec_irq != NULL)
796 bus_release_resources(dev, sc->spec_irq, sc->irq);
797 if (sc->spec_mem != NULL)
798 bus_release_resources(dev, sc->spec_mem, sc->mem);
799 if ((sc->flags & AE_FLAG_MSI) != 0)
800 pci_release_msi(dev);
801 mtx_destroy(&sc->mtx);
802
803 return (0);
804 }
805
806 static int
ae_miibus_readreg(device_t dev,int phy,int reg)807 ae_miibus_readreg(device_t dev, int phy, int reg)
808 {
809 ae_softc_t *sc;
810 uint32_t val;
811 int i;
812
813 sc = device_get_softc(dev);
814 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
815
816 /*
817 * Locking is done in upper layers.
818 */
819
820 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
821 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
822 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
823 AE_WRITE_4(sc, AE_MDIO_REG, val);
824
825 /*
826 * Wait for operation to complete.
827 */
828 for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
829 DELAY(2);
830 val = AE_READ_4(sc, AE_MDIO_REG);
831 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
832 break;
833 }
834 if (i == AE_MDIO_TIMEOUT) {
835 device_printf(sc->dev, "phy read timeout: %d.\n", reg);
836 return (0);
837 }
838 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
839 }
840
841 static int
ae_miibus_writereg(device_t dev,int phy,int reg,int val)842 ae_miibus_writereg(device_t dev, int phy, int reg, int val)
843 {
844 ae_softc_t *sc;
845 uint32_t aereg;
846 int i;
847
848 sc = device_get_softc(dev);
849 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
850
851 /*
852 * Locking is done in upper layers.
853 */
854
855 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
856 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
857 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
858 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
859 AE_WRITE_4(sc, AE_MDIO_REG, aereg);
860
861 /*
862 * Wait for operation to complete.
863 */
864 for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
865 DELAY(2);
866 aereg = AE_READ_4(sc, AE_MDIO_REG);
867 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
868 break;
869 }
870 if (i == AE_MDIO_TIMEOUT) {
871 device_printf(sc->dev, "phy write timeout: %d.\n", reg);
872 }
873 return (0);
874 }
875
876 static void
ae_miibus_statchg(device_t dev)877 ae_miibus_statchg(device_t dev)
878 {
879 ae_softc_t *sc;
880
881 sc = device_get_softc(dev);
882 taskqueue_enqueue(taskqueue_swi, &sc->link_task);
883 }
884
885 static void
ae_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)886 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
887 {
888 ae_softc_t *sc;
889 struct mii_data *mii;
890
891 sc = ifp->if_softc;
892 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
893
894 AE_LOCK(sc);
895 mii = device_get_softc(sc->miibus);
896 mii_pollstat(mii);
897 ifmr->ifm_status = mii->mii_media_status;
898 ifmr->ifm_active = mii->mii_media_active;
899 AE_UNLOCK(sc);
900 }
901
902 static int
ae_mediachange(struct ifnet * ifp)903 ae_mediachange(struct ifnet *ifp)
904 {
905 ae_softc_t *sc;
906 struct mii_data *mii;
907 struct mii_softc *mii_sc;
908 int error;
909
910 /* XXX: check IFF_UP ?? */
911 sc = ifp->if_softc;
912 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
913 AE_LOCK(sc);
914 mii = device_get_softc(sc->miibus);
915 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
916 PHY_RESET(mii_sc);
917 error = mii_mediachg(mii);
918 AE_UNLOCK(sc);
919
920 return (error);
921 }
922
923 static int
ae_check_eeprom_present(ae_softc_t * sc,int * vpdc)924 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
925 {
926 int error;
927 uint32_t val;
928
929 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
930
931 /*
932 * Not sure why, but Linux does this.
933 */
934 val = AE_READ_4(sc, AE_SPICTL_REG);
935 if ((val & AE_SPICTL_VPD_EN) != 0) {
936 val &= ~AE_SPICTL_VPD_EN;
937 AE_WRITE_4(sc, AE_SPICTL_REG, val);
938 }
939 error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
940 return (error);
941 }
942
943 static int
ae_vpd_read_word(ae_softc_t * sc,int reg,uint32_t * word)944 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
945 {
946 uint32_t val;
947 int i;
948
949 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */
950
951 /*
952 * VPD registers start at offset 0x100. Read them.
953 */
954 val = 0x100 + reg * 4;
955 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
956 AE_VPD_CAP_ADDR_MASK);
957 for (i = 0; i < AE_VPD_TIMEOUT; i++) {
958 DELAY(2000);
959 val = AE_READ_4(sc, AE_VPD_CAP_REG);
960 if ((val & AE_VPD_CAP_DONE) != 0)
961 break;
962 }
963 if (i == AE_VPD_TIMEOUT) {
964 device_printf(sc->dev, "timeout reading VPD register %d.\n",
965 reg);
966 return (ETIMEDOUT);
967 }
968 *word = AE_READ_4(sc, AE_VPD_DATA_REG);
969 return (0);
970 }
971
972 static int
ae_get_vpd_eaddr(ae_softc_t * sc,uint32_t * eaddr)973 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
974 {
975 uint32_t word, reg, val;
976 int error;
977 int found;
978 int vpdc;
979 int i;
980
981 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
982 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
983
984 /*
985 * Check for EEPROM.
986 */
987 error = ae_check_eeprom_present(sc, &vpdc);
988 if (error != 0)
989 return (error);
990
991 /*
992 * Read the VPD configuration space.
993 * Each register is prefixed with signature,
994 * so we can check if it is valid.
995 */
996 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
997 error = ae_vpd_read_word(sc, i, &word);
998 if (error != 0)
999 break;
1000
1001 /*
1002 * Check signature.
1003 */
1004 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
1005 break;
1006 reg = word >> AE_VPD_REG_SHIFT;
1007 i++; /* Move to the next word. */
1008
1009 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
1010 continue;
1011
1012 error = ae_vpd_read_word(sc, i, &val);
1013 if (error != 0)
1014 break;
1015 if (reg == AE_EADDR0_REG)
1016 eaddr[0] = val;
1017 else
1018 eaddr[1] = val;
1019 found++;
1020 }
1021
1022 if (found < 2)
1023 return (ENOENT);
1024
1025 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
1026 if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1027 if (bootverbose)
1028 device_printf(sc->dev,
1029 "VPD ethernet address registers are invalid.\n");
1030 return (EINVAL);
1031 }
1032 return (0);
1033 }
1034
1035 static int
ae_get_reg_eaddr(ae_softc_t * sc,uint32_t * eaddr)1036 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
1037 {
1038
1039 /*
1040 * BIOS is supposed to set this.
1041 */
1042 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
1043 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
1044 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
1045
1046 if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
1047 if (bootverbose)
1048 device_printf(sc->dev,
1049 "Ethernet address registers are invalid.\n");
1050 return (EINVAL);
1051 }
1052 return (0);
1053 }
1054
1055 static void
ae_retrieve_address(ae_softc_t * sc)1056 ae_retrieve_address(ae_softc_t *sc)
1057 {
1058 uint32_t eaddr[2] = {0, 0};
1059 int error;
1060
1061 /*
1062 *Check for EEPROM.
1063 */
1064 error = ae_get_vpd_eaddr(sc, eaddr);
1065 if (error != 0)
1066 error = ae_get_reg_eaddr(sc, eaddr);
1067 if (error != 0) {
1068 if (bootverbose)
1069 device_printf(sc->dev,
1070 "Generating random ethernet address.\n");
1071 eaddr[0] = arc4random();
1072
1073 /*
1074 * Set OUI to ASUSTek COMPUTER INC.
1075 */
1076 sc->eaddr[0] = 0x02; /* U/L bit set. */
1077 sc->eaddr[1] = 0x1f;
1078 sc->eaddr[2] = 0xc6;
1079 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1080 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1081 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1082 } else {
1083 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
1084 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
1085 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
1086 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
1087 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
1088 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
1089 }
1090 }
1091
1092 static void
ae_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1093 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1094 {
1095 bus_addr_t *addr = arg;
1096
1097 if (error != 0)
1098 return;
1099 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
1100 nsegs));
1101 *addr = segs[0].ds_addr;
1102 }
1103
1104 static int
ae_alloc_rings(ae_softc_t * sc)1105 ae_alloc_rings(ae_softc_t *sc)
1106 {
1107 bus_addr_t busaddr;
1108 int error;
1109
1110 /*
1111 * Create parent DMA tag.
1112 */
1113 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1114 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1115 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
1116 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
1117 &sc->dma_parent_tag);
1118 if (error != 0) {
1119 device_printf(sc->dev, "could not creare parent DMA tag.\n");
1120 return (error);
1121 }
1122
1123 /*
1124 * Create DMA tag for TxD.
1125 */
1126 error = bus_dma_tag_create(sc->dma_parent_tag,
1127 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1128 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
1129 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
1130 &sc->dma_txd_tag);
1131 if (error != 0) {
1132 device_printf(sc->dev, "could not creare TxD DMA tag.\n");
1133 return (error);
1134 }
1135
1136 /*
1137 * Create DMA tag for TxS.
1138 */
1139 error = bus_dma_tag_create(sc->dma_parent_tag,
1140 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
1142 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
1143 &sc->dma_txs_tag);
1144 if (error != 0) {
1145 device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1146 return (error);
1147 }
1148
1149 /*
1150 * Create DMA tag for RxD.
1151 */
1152 error = bus_dma_tag_create(sc->dma_parent_tag,
1153 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1154 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
1155 AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
1156 &sc->dma_rxd_tag);
1157 if (error != 0) {
1158 device_printf(sc->dev, "could not creare TxS DMA tag.\n");
1159 return (error);
1160 }
1161
1162 /*
1163 * Allocate TxD DMA memory.
1164 */
1165 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
1166 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1167 &sc->dma_txd_map);
1168 if (error != 0) {
1169 device_printf(sc->dev,
1170 "could not allocate DMA memory for TxD ring.\n");
1171 return (error);
1172 }
1173 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
1174 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1175 if (error != 0 || busaddr == 0) {
1176 device_printf(sc->dev,
1177 "could not load DMA map for TxD ring.\n");
1178 return (error);
1179 }
1180 sc->dma_txd_busaddr = busaddr;
1181
1182 /*
1183 * Allocate TxS DMA memory.
1184 */
1185 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
1186 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1187 &sc->dma_txs_map);
1188 if (error != 0) {
1189 device_printf(sc->dev,
1190 "could not allocate DMA memory for TxS ring.\n");
1191 return (error);
1192 }
1193 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
1194 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1195 if (error != 0 || busaddr == 0) {
1196 device_printf(sc->dev,
1197 "could not load DMA map for TxS ring.\n");
1198 return (error);
1199 }
1200 sc->dma_txs_busaddr = busaddr;
1201
1202 /*
1203 * Allocate RxD DMA memory.
1204 */
1205 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
1206 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1207 &sc->dma_rxd_map);
1208 if (error != 0) {
1209 device_printf(sc->dev,
1210 "could not allocate DMA memory for RxD ring.\n");
1211 return (error);
1212 }
1213 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
1214 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
1215 ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
1216 if (error != 0 || busaddr == 0) {
1217 device_printf(sc->dev,
1218 "could not load DMA map for RxD ring.\n");
1219 return (error);
1220 }
1221 sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
1222 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
1223
1224 return (0);
1225 }
1226
1227 static void
ae_dma_free(ae_softc_t * sc)1228 ae_dma_free(ae_softc_t *sc)
1229 {
1230
1231 if (sc->dma_txd_tag != NULL) {
1232 if (sc->dma_txd_busaddr != 0)
1233 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
1234 if (sc->txd_base != NULL)
1235 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
1236 sc->dma_txd_map);
1237 bus_dma_tag_destroy(sc->dma_txd_tag);
1238 sc->dma_txd_tag = NULL;
1239 sc->txd_base = NULL;
1240 sc->dma_txd_busaddr = 0;
1241 }
1242 if (sc->dma_txs_tag != NULL) {
1243 if (sc->dma_txs_busaddr != 0)
1244 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
1245 if (sc->txs_base != NULL)
1246 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
1247 sc->dma_txs_map);
1248 bus_dma_tag_destroy(sc->dma_txs_tag);
1249 sc->dma_txs_tag = NULL;
1250 sc->txs_base = NULL;
1251 sc->dma_txs_busaddr = 0;
1252 }
1253 if (sc->dma_rxd_tag != NULL) {
1254 if (sc->dma_rxd_busaddr != 0)
1255 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
1256 if (sc->rxd_base_dma != NULL)
1257 bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma,
1258 sc->dma_rxd_map);
1259 bus_dma_tag_destroy(sc->dma_rxd_tag);
1260 sc->dma_rxd_tag = NULL;
1261 sc->rxd_base_dma = NULL;
1262 sc->dma_rxd_busaddr = 0;
1263 }
1264 if (sc->dma_parent_tag != NULL) {
1265 bus_dma_tag_destroy(sc->dma_parent_tag);
1266 sc->dma_parent_tag = NULL;
1267 }
1268 }
1269
1270 static int
ae_shutdown(device_t dev)1271 ae_shutdown(device_t dev)
1272 {
1273 ae_softc_t *sc;
1274 int error;
1275
1276 sc = device_get_softc(dev);
1277 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
1278
1279 error = ae_suspend(dev);
1280 AE_LOCK(sc);
1281 ae_powersave_enable(sc);
1282 AE_UNLOCK(sc);
1283 return (error);
1284 }
1285
1286 static void
ae_powersave_disable(ae_softc_t * sc)1287 ae_powersave_disable(ae_softc_t *sc)
1288 {
1289 uint32_t val;
1290
1291 AE_LOCK_ASSERT(sc);
1292
1293 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1294 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1295 if (val & AE_PHY_DBG_POWERSAVE) {
1296 val &= ~AE_PHY_DBG_POWERSAVE;
1297 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
1298 DELAY(1000);
1299 }
1300 }
1301
1302 static void
ae_powersave_enable(ae_softc_t * sc)1303 ae_powersave_enable(ae_softc_t *sc)
1304 {
1305 uint32_t val;
1306
1307 AE_LOCK_ASSERT(sc);
1308
1309 /*
1310 * XXX magic numbers.
1311 */
1312 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
1313 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
1314 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
1315 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
1316 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
1317 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
1318 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
1319 }
1320
1321 static void
ae_pm_init(ae_softc_t * sc)1322 ae_pm_init(ae_softc_t *sc)
1323 {
1324 struct ifnet *ifp;
1325 uint32_t val;
1326 uint16_t pmstat;
1327 struct mii_data *mii;
1328 int pmc;
1329
1330 AE_LOCK_ASSERT(sc);
1331
1332 ifp = sc->ifp;
1333 if ((sc->flags & AE_FLAG_PMG) == 0) {
1334 /* Disable WOL entirely. */
1335 AE_WRITE_4(sc, AE_WOL_REG, 0);
1336 return;
1337 }
1338
1339 /*
1340 * Configure WOL if enabled.
1341 */
1342 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1343 mii = device_get_softc(sc->miibus);
1344 mii_pollstat(mii);
1345 if ((mii->mii_media_status & IFM_AVALID) != 0 &&
1346 (mii->mii_media_status & IFM_ACTIVE) != 0) {
1347 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
1348 AE_WOL_MAGIC_PME);
1349
1350 /*
1351 * Configure MAC.
1352 */
1353 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
1354 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
1355 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
1356 AE_HALFBUF_MASK) | \
1357 ((AE_MAC_PREAMBLE_DEFAULT << \
1358 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
1359 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
1360 if ((IFM_OPTIONS(mii->mii_media_active) & \
1361 IFM_FDX) != 0)
1362 val |= AE_MAC_FULL_DUPLEX;
1363 AE_WRITE_4(sc, AE_MAC_REG, val);
1364
1365 } else { /* No link. */
1366 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
1367 AE_WOL_LNKCHG_PME);
1368 AE_WRITE_4(sc, AE_MAC_REG, 0);
1369 }
1370 } else {
1371 ae_powersave_enable(sc);
1372 }
1373
1374 /*
1375 * PCIE hacks. Magic numbers.
1376 */
1377 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
1378 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
1379 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
1380 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
1381 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
1382 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
1383
1384 /*
1385 * Configure PME.
1386 */
1387 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1388 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1389 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1390 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1391 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1392 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1393 }
1394 }
1395
1396 static int
ae_suspend(device_t dev)1397 ae_suspend(device_t dev)
1398 {
1399 ae_softc_t *sc;
1400
1401 sc = device_get_softc(dev);
1402
1403 AE_LOCK(sc);
1404 ae_stop(sc);
1405 ae_pm_init(sc);
1406 AE_UNLOCK(sc);
1407
1408 return (0);
1409 }
1410
1411 static int
ae_resume(device_t dev)1412 ae_resume(device_t dev)
1413 {
1414 ae_softc_t *sc;
1415
1416 sc = device_get_softc(dev);
1417 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1418
1419 AE_LOCK(sc);
1420 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */
1421 if ((sc->ifp->if_flags & IFF_UP) != 0)
1422 ae_init_locked(sc);
1423 AE_UNLOCK(sc);
1424
1425 return (0);
1426 }
1427
1428 static unsigned int
ae_tx_avail_size(ae_softc_t * sc)1429 ae_tx_avail_size(ae_softc_t *sc)
1430 {
1431 unsigned int avail;
1432
1433 if (sc->txd_cur >= sc->txd_ack)
1434 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
1435 else
1436 avail = sc->txd_ack - sc->txd_cur;
1437
1438 return (avail);
1439 }
1440
1441 static int
ae_encap(ae_softc_t * sc,struct mbuf ** m_head)1442 ae_encap(ae_softc_t *sc, struct mbuf **m_head)
1443 {
1444 struct mbuf *m0;
1445 ae_txd_t *hdr;
1446 unsigned int to_end;
1447 uint16_t len;
1448
1449 AE_LOCK_ASSERT(sc);
1450
1451 m0 = *m_head;
1452 len = m0->m_pkthdr.len;
1453
1454 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
1455 len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
1456 #ifdef AE_DEBUG
1457 if_printf(sc->ifp, "No free Tx available.\n");
1458 #endif
1459 return ENOBUFS;
1460 }
1461
1462 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
1463 bzero(hdr, sizeof(*hdr));
1464 /* Skip header size. */
1465 sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
1466 /* Space available to the end of the ring */
1467 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
1468 if (to_end >= len) {
1469 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
1470 } else {
1471 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
1472 sc->txd_cur));
1473 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
1474 }
1475
1476 /*
1477 * Set TxD flags and parameters.
1478 */
1479 if ((m0->m_flags & M_VLANTAG) != 0) {
1480 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
1481 hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
1482 } else {
1483 hdr->len = htole16(len);
1484 }
1485
1486 /*
1487 * Set current TxD position and round up to a 4-byte boundary.
1488 */
1489 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1490 if (sc->txd_cur == sc->txd_ack)
1491 sc->flags &= ~AE_FLAG_TXAVAIL;
1492 #ifdef AE_DEBUG
1493 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
1494 #endif
1495
1496 /*
1497 * Update TxS position and check if there are empty TxS available.
1498 */
1499 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
1500 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
1501 if (sc->txs_cur == sc->txs_ack)
1502 sc->flags &= ~AE_FLAG_TXAVAIL;
1503
1504 /*
1505 * Synchronize DMA memory.
1506 */
1507 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
1508 BUS_DMASYNC_PREWRITE);
1509 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1510 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1511
1512 return (0);
1513 }
1514
1515 static void
ae_start(struct ifnet * ifp)1516 ae_start(struct ifnet *ifp)
1517 {
1518 ae_softc_t *sc;
1519
1520 sc = ifp->if_softc;
1521 AE_LOCK(sc);
1522 ae_start_locked(ifp);
1523 AE_UNLOCK(sc);
1524 }
1525
1526 static void
ae_start_locked(struct ifnet * ifp)1527 ae_start_locked(struct ifnet *ifp)
1528 {
1529 ae_softc_t *sc;
1530 unsigned int count;
1531 struct mbuf *m0;
1532 int error;
1533
1534 sc = ifp->if_softc;
1535 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1536 AE_LOCK_ASSERT(sc);
1537
1538 #ifdef AE_DEBUG
1539 if_printf(ifp, "Start called.\n");
1540 #endif
1541
1542 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1543 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
1544 return;
1545
1546 count = 0;
1547 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1548 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1549 if (m0 == NULL)
1550 break; /* Nothing to do. */
1551
1552 error = ae_encap(sc, &m0);
1553 if (error != 0) {
1554 if (m0 != NULL) {
1555 IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1556 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1557 #ifdef AE_DEBUG
1558 if_printf(ifp, "Setting OACTIVE.\n");
1559 #endif
1560 }
1561 break;
1562 }
1563 count++;
1564 sc->tx_inproc++;
1565
1566 /* Bounce a copy of the frame to BPF. */
1567 ETHER_BPF_MTAP(ifp, m0);
1568
1569 m_freem(m0);
1570 }
1571
1572 if (count > 0) { /* Something was dequeued. */
1573 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
1574 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */
1575 #ifdef AE_DEBUG
1576 if_printf(ifp, "%d packets dequeued.\n", count);
1577 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
1578 #endif
1579 }
1580 }
1581
1582 static void
ae_link_task(void * arg,int pending)1583 ae_link_task(void *arg, int pending)
1584 {
1585 ae_softc_t *sc;
1586 struct mii_data *mii;
1587 struct ifnet *ifp;
1588 uint32_t val;
1589
1590 sc = (ae_softc_t *)arg;
1591 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1592 AE_LOCK(sc);
1593
1594 ifp = sc->ifp;
1595 mii = device_get_softc(sc->miibus);
1596 if (mii == NULL || ifp == NULL ||
1597 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1598 AE_UNLOCK(sc); /* XXX: could happen? */
1599 return;
1600 }
1601
1602 sc->flags &= ~AE_FLAG_LINK;
1603 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
1604 (IFM_AVALID | IFM_ACTIVE)) {
1605 switch(IFM_SUBTYPE(mii->mii_media_active)) {
1606 case IFM_10_T:
1607 case IFM_100_TX:
1608 sc->flags |= AE_FLAG_LINK;
1609 break;
1610 default:
1611 break;
1612 }
1613 }
1614
1615 /*
1616 * Stop Rx/Tx MACs.
1617 */
1618 ae_stop_rxmac(sc);
1619 ae_stop_txmac(sc);
1620
1621 if ((sc->flags & AE_FLAG_LINK) != 0) {
1622 ae_mac_config(sc);
1623
1624 /*
1625 * Restart DMA engines.
1626 */
1627 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
1628 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
1629
1630 /*
1631 * Enable Rx and Tx MACs.
1632 */
1633 val = AE_READ_4(sc, AE_MAC_REG);
1634 val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
1635 AE_WRITE_4(sc, AE_MAC_REG, val);
1636 }
1637 AE_UNLOCK(sc);
1638 }
1639
1640 static void
ae_stop_rxmac(ae_softc_t * sc)1641 ae_stop_rxmac(ae_softc_t *sc)
1642 {
1643 uint32_t val;
1644 int i;
1645
1646 AE_LOCK_ASSERT(sc);
1647
1648 /*
1649 * Stop Rx MAC engine.
1650 */
1651 val = AE_READ_4(sc, AE_MAC_REG);
1652 if ((val & AE_MAC_RX_EN) != 0) {
1653 val &= ~AE_MAC_RX_EN;
1654 AE_WRITE_4(sc, AE_MAC_REG, val);
1655 }
1656
1657 /*
1658 * Stop Rx DMA engine.
1659 */
1660 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
1661 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
1662
1663 /*
1664 * Wait for IDLE state.
1665 */
1666 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1667 val = AE_READ_4(sc, AE_IDLE_REG);
1668 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
1669 break;
1670 DELAY(100);
1671 }
1672 if (i == AE_IDLE_TIMEOUT)
1673 device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
1674 }
1675
1676 static void
ae_stop_txmac(ae_softc_t * sc)1677 ae_stop_txmac(ae_softc_t *sc)
1678 {
1679 uint32_t val;
1680 int i;
1681
1682 AE_LOCK_ASSERT(sc);
1683
1684 /*
1685 * Stop Tx MAC engine.
1686 */
1687 val = AE_READ_4(sc, AE_MAC_REG);
1688 if ((val & AE_MAC_TX_EN) != 0) {
1689 val &= ~AE_MAC_TX_EN;
1690 AE_WRITE_4(sc, AE_MAC_REG, val);
1691 }
1692
1693 /*
1694 * Stop Tx DMA engine.
1695 */
1696 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
1697 AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
1698
1699 /*
1700 * Wait for IDLE state.
1701 */
1702 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
1703 val = AE_READ_4(sc, AE_IDLE_REG);
1704 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
1705 break;
1706 DELAY(100);
1707 }
1708 if (i == AE_IDLE_TIMEOUT)
1709 device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
1710 }
1711
1712 static void
ae_mac_config(ae_softc_t * sc)1713 ae_mac_config(ae_softc_t *sc)
1714 {
1715 struct mii_data *mii;
1716 uint32_t val;
1717
1718 AE_LOCK_ASSERT(sc);
1719
1720 mii = device_get_softc(sc->miibus);
1721 val = AE_READ_4(sc, AE_MAC_REG);
1722 val &= ~AE_MAC_FULL_DUPLEX;
1723 /* XXX disable AE_MAC_TX_FLOW_EN? */
1724
1725 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1726 val |= AE_MAC_FULL_DUPLEX;
1727
1728 AE_WRITE_4(sc, AE_MAC_REG, val);
1729 }
1730
1731 static int
ae_intr(void * arg)1732 ae_intr(void *arg)
1733 {
1734 ae_softc_t *sc;
1735 uint32_t val;
1736
1737 sc = (ae_softc_t *)arg;
1738 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
1739
1740 val = AE_READ_4(sc, AE_ISR_REG);
1741 if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
1742 return (FILTER_STRAY);
1743
1744 /* Disable interrupts. */
1745 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
1746
1747 /* Schedule interrupt processing. */
1748 taskqueue_enqueue(sc->tq, &sc->int_task);
1749
1750 return (FILTER_HANDLED);
1751 }
1752
1753 static void
ae_int_task(void * arg,int pending)1754 ae_int_task(void *arg, int pending)
1755 {
1756 ae_softc_t *sc;
1757 struct ifnet *ifp;
1758 uint32_t val;
1759
1760 sc = (ae_softc_t *)arg;
1761
1762 AE_LOCK(sc);
1763
1764 ifp = sc->ifp;
1765
1766 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */
1767 if (val == 0) {
1768 AE_UNLOCK(sc);
1769 return;
1770 }
1771
1772 /*
1773 * Clear interrupts and disable them.
1774 */
1775 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
1776
1777 #ifdef AE_DEBUG
1778 if_printf(ifp, "Interrupt received: 0x%08x\n", val);
1779 #endif
1780
1781 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1782 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
1783 AE_ISR_PHY_LINKDOWN)) != 0) {
1784 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785 ae_init_locked(sc);
1786 AE_UNLOCK(sc);
1787 return;
1788 }
1789 if ((val & AE_ISR_TX_EVENT) != 0)
1790 ae_tx_intr(sc);
1791 if ((val & AE_ISR_RX_EVENT) != 0)
1792 ae_rx_intr(sc);
1793 /*
1794 * Re-enable interrupts.
1795 */
1796 AE_WRITE_4(sc, AE_ISR_REG, 0);
1797
1798 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
1799 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800 ae_start_locked(ifp);
1801 }
1802 }
1803
1804 AE_UNLOCK(sc);
1805 }
1806
1807 static void
ae_tx_intr(ae_softc_t * sc)1808 ae_tx_intr(ae_softc_t *sc)
1809 {
1810 struct ifnet *ifp;
1811 ae_txd_t *txd;
1812 ae_txs_t *txs;
1813 uint16_t flags;
1814
1815 AE_LOCK_ASSERT(sc);
1816
1817 ifp = sc->ifp;
1818
1819 #ifdef AE_DEBUG
1820 if_printf(ifp, "Tx interrupt occuried.\n");
1821 #endif
1822
1823 /*
1824 * Syncronize DMA buffers.
1825 */
1826 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1827 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1828 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1829 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1830
1831 for (;;) {
1832 txs = sc->txs_base + sc->txs_ack;
1833 flags = le16toh(txs->flags);
1834 if ((flags & AE_TXS_UPDATE) == 0)
1835 break;
1836 txs->flags = htole16(flags & ~AE_TXS_UPDATE);
1837 /* Update stats. */
1838 ae_update_stats_tx(flags, &sc->stats);
1839
1840 /*
1841 * Update TxS position.
1842 */
1843 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
1844 sc->flags |= AE_FLAG_TXAVAIL;
1845
1846 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
1847 if (txs->len != txd->len)
1848 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
1849 le16toh(txs->len), le16toh(txd->len));
1850
1851 /*
1852 * Move txd ack and align on 4-byte boundary.
1853 */
1854 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
1855 sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
1856
1857 if ((flags & AE_TXS_SUCCESS) != 0)
1858 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1859 else
1860 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861
1862 sc->tx_inproc--;
1863 }
1864
1865 if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
1866 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1867 if (sc->tx_inproc < 0) {
1868 if_printf(ifp, "Received stray Tx interrupt(s).\n");
1869 sc->tx_inproc = 0;
1870 }
1871
1872 if (sc->tx_inproc == 0)
1873 sc->wd_timer = 0; /* Unarm watchdog. */
1874
1875 /*
1876 * Syncronize DMA buffers.
1877 */
1878 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
1879 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
1881 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1882 }
1883
1884 static void
ae_rxeof(ae_softc_t * sc,ae_rxd_t * rxd)1885 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
1886 {
1887 struct ifnet *ifp;
1888 struct mbuf *m;
1889 unsigned int size;
1890 uint16_t flags;
1891
1892 AE_LOCK_ASSERT(sc);
1893
1894 ifp = sc->ifp;
1895 flags = le16toh(rxd->flags);
1896
1897 #ifdef AE_DEBUG
1898 if_printf(ifp, "Rx interrupt occuried.\n");
1899 #endif
1900 size = le16toh(rxd->len) - ETHER_CRC_LEN;
1901 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
1902 if_printf(ifp, "Runt frame received.");
1903 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1904 return;
1905 }
1906
1907 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
1908 if (m == NULL) {
1909 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1910 return;
1911 }
1912
1913 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1914 (flags & AE_RXD_HAS_VLAN) != 0) {
1915 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
1916 m->m_flags |= M_VLANTAG;
1917 }
1918
1919 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1920 /*
1921 * Pass it through.
1922 */
1923 AE_UNLOCK(sc);
1924 (*ifp->if_input)(ifp, m);
1925 AE_LOCK(sc);
1926 }
1927
1928 static void
ae_rx_intr(ae_softc_t * sc)1929 ae_rx_intr(ae_softc_t *sc)
1930 {
1931 ae_rxd_t *rxd;
1932 struct ifnet *ifp;
1933 uint16_t flags;
1934 int count;
1935
1936 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1937
1938 AE_LOCK_ASSERT(sc);
1939
1940 ifp = sc->ifp;
1941
1942 /*
1943 * Syncronize DMA buffers.
1944 */
1945 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1946 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1947
1948 for (count = 0;; count++) {
1949 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
1950 flags = le16toh(rxd->flags);
1951 if ((flags & AE_RXD_UPDATE) == 0)
1952 break;
1953 rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
1954 /* Update stats. */
1955 ae_update_stats_rx(flags, &sc->stats);
1956
1957 /*
1958 * Update position index.
1959 */
1960 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
1961
1962 if ((flags & AE_RXD_SUCCESS) != 0)
1963 ae_rxeof(sc, rxd);
1964 else
1965 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1966 }
1967
1968 if (count > 0) {
1969 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
1970 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1971 /*
1972 * Update Rx index.
1973 */
1974 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
1975 }
1976 }
1977
1978 static void
ae_watchdog(ae_softc_t * sc)1979 ae_watchdog(ae_softc_t *sc)
1980 {
1981 struct ifnet *ifp;
1982
1983 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
1984 AE_LOCK_ASSERT(sc);
1985 ifp = sc->ifp;
1986
1987 if (sc->wd_timer == 0 || --sc->wd_timer != 0)
1988 return; /* Noting to do. */
1989
1990 if ((sc->flags & AE_FLAG_LINK) == 0)
1991 if_printf(ifp, "watchdog timeout (missed link).\n");
1992 else
1993 if_printf(ifp, "watchdog timeout - resetting.\n");
1994
1995 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1996 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1997 ae_init_locked(sc);
1998 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1999 ae_start_locked(ifp);
2000 }
2001
2002 static void
ae_tick(void * arg)2003 ae_tick(void *arg)
2004 {
2005 ae_softc_t *sc;
2006 struct mii_data *mii;
2007
2008 sc = (ae_softc_t *)arg;
2009 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2010 AE_LOCK_ASSERT(sc);
2011
2012 mii = device_get_softc(sc->miibus);
2013 mii_tick(mii);
2014 ae_watchdog(sc); /* Watchdog check. */
2015 callout_reset(&sc->tick_ch, hz, ae_tick, sc);
2016 }
2017
2018 static void
ae_rxvlan(ae_softc_t * sc)2019 ae_rxvlan(ae_softc_t *sc)
2020 {
2021 struct ifnet *ifp;
2022 uint32_t val;
2023
2024 AE_LOCK_ASSERT(sc);
2025 ifp = sc->ifp;
2026 val = AE_READ_4(sc, AE_MAC_REG);
2027 val &= ~AE_MAC_RMVLAN_EN;
2028 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2029 val |= AE_MAC_RMVLAN_EN;
2030 AE_WRITE_4(sc, AE_MAC_REG, val);
2031 }
2032
2033 static u_int
ae_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2034 ae_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2035 {
2036 uint32_t crc, *mchash = arg;
2037
2038 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2039 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2040
2041 return (1);
2042 }
2043
2044 static void
ae_rxfilter(ae_softc_t * sc)2045 ae_rxfilter(ae_softc_t *sc)
2046 {
2047 struct ifnet *ifp;
2048 uint32_t mchash[2];
2049 uint32_t rxcfg;
2050
2051 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
2052
2053 AE_LOCK_ASSERT(sc);
2054
2055 ifp = sc->ifp;
2056
2057 rxcfg = AE_READ_4(sc, AE_MAC_REG);
2058 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
2059
2060 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2061 rxcfg |= AE_MAC_BCAST_EN;
2062 if ((ifp->if_flags & IFF_PROMISC) != 0)
2063 rxcfg |= AE_MAC_PROMISC_EN;
2064 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2065 rxcfg |= AE_MAC_MCAST_EN;
2066
2067 /*
2068 * Wipe old settings.
2069 */
2070 AE_WRITE_4(sc, AE_REG_MHT0, 0);
2071 AE_WRITE_4(sc, AE_REG_MHT1, 0);
2072 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2073 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
2074 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
2075 AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2076 return;
2077 }
2078
2079 /*
2080 * Load multicast tables.
2081 */
2082 bzero(mchash, sizeof(mchash));
2083 if_foreach_llmaddr(ifp, ae_hash_maddr, &mchash);
2084 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
2085 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
2086 AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
2087 }
2088
2089 static int
ae_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)2090 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2091 {
2092 struct ae_softc *sc;
2093 struct ifreq *ifr;
2094 struct mii_data *mii;
2095 int error, mask;
2096
2097 sc = ifp->if_softc;
2098 ifr = (struct ifreq *)data;
2099 error = 0;
2100
2101 switch (cmd) {
2102 case SIOCSIFMTU:
2103 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2104 error = EINVAL;
2105 else if (ifp->if_mtu != ifr->ifr_mtu) {
2106 AE_LOCK(sc);
2107 ifp->if_mtu = ifr->ifr_mtu;
2108 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2109 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2110 ae_init_locked(sc);
2111 }
2112 AE_UNLOCK(sc);
2113 }
2114 break;
2115 case SIOCSIFFLAGS:
2116 AE_LOCK(sc);
2117 if ((ifp->if_flags & IFF_UP) != 0) {
2118 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2119 if (((ifp->if_flags ^ sc->if_flags)
2120 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2121 ae_rxfilter(sc);
2122 } else {
2123 if ((sc->flags & AE_FLAG_DETACH) == 0)
2124 ae_init_locked(sc);
2125 }
2126 } else {
2127 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2128 ae_stop(sc);
2129 }
2130 sc->if_flags = ifp->if_flags;
2131 AE_UNLOCK(sc);
2132 break;
2133 case SIOCADDMULTI:
2134 case SIOCDELMULTI:
2135 AE_LOCK(sc);
2136 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2137 ae_rxfilter(sc);
2138 AE_UNLOCK(sc);
2139 break;
2140 case SIOCSIFMEDIA:
2141 case SIOCGIFMEDIA:
2142 mii = device_get_softc(sc->miibus);
2143 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2144 break;
2145 case SIOCSIFCAP:
2146 AE_LOCK(sc);
2147 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2148 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2149 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2150 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2151 ae_rxvlan(sc);
2152 }
2153 VLAN_CAPABILITIES(ifp);
2154 AE_UNLOCK(sc);
2155 break;
2156 default:
2157 error = ether_ioctl(ifp, cmd, data);
2158 break;
2159 }
2160 return (error);
2161 }
2162
2163 static void
ae_stop(ae_softc_t * sc)2164 ae_stop(ae_softc_t *sc)
2165 {
2166 struct ifnet *ifp;
2167 int i;
2168
2169 AE_LOCK_ASSERT(sc);
2170
2171 ifp = sc->ifp;
2172 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2173 sc->flags &= ~AE_FLAG_LINK;
2174 sc->wd_timer = 0; /* Cancel watchdog. */
2175 callout_stop(&sc->tick_ch);
2176
2177 /*
2178 * Clear and disable interrupts.
2179 */
2180 AE_WRITE_4(sc, AE_IMR_REG, 0);
2181 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
2182
2183 /*
2184 * Stop Rx/Tx MACs.
2185 */
2186 ae_stop_txmac(sc);
2187 ae_stop_rxmac(sc);
2188
2189 /*
2190 * Stop DMA engines.
2191 */
2192 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
2193 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
2194
2195 /*
2196 * Wait for everything to enter idle state.
2197 */
2198 for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
2199 if (AE_READ_4(sc, AE_IDLE_REG) == 0)
2200 break;
2201 DELAY(100);
2202 }
2203 if (i == AE_IDLE_TIMEOUT)
2204 device_printf(sc->dev, "could not enter idle state in stop.\n");
2205 }
2206
2207 static void
ae_update_stats_tx(uint16_t flags,ae_stats_t * stats)2208 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
2209 {
2210
2211 if ((flags & AE_TXS_BCAST) != 0)
2212 stats->tx_bcast++;
2213 if ((flags & AE_TXS_MCAST) != 0)
2214 stats->tx_mcast++;
2215 if ((flags & AE_TXS_PAUSE) != 0)
2216 stats->tx_pause++;
2217 if ((flags & AE_TXS_CTRL) != 0)
2218 stats->tx_ctrl++;
2219 if ((flags & AE_TXS_DEFER) != 0)
2220 stats->tx_defer++;
2221 if ((flags & AE_TXS_EXCDEFER) != 0)
2222 stats->tx_excdefer++;
2223 if ((flags & AE_TXS_SINGLECOL) != 0)
2224 stats->tx_singlecol++;
2225 if ((flags & AE_TXS_MULTICOL) != 0)
2226 stats->tx_multicol++;
2227 if ((flags & AE_TXS_LATECOL) != 0)
2228 stats->tx_latecol++;
2229 if ((flags & AE_TXS_ABORTCOL) != 0)
2230 stats->tx_abortcol++;
2231 if ((flags & AE_TXS_UNDERRUN) != 0)
2232 stats->tx_underrun++;
2233 }
2234
2235 static void
ae_update_stats_rx(uint16_t flags,ae_stats_t * stats)2236 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
2237 {
2238
2239 if ((flags & AE_RXD_BCAST) != 0)
2240 stats->rx_bcast++;
2241 if ((flags & AE_RXD_MCAST) != 0)
2242 stats->rx_mcast++;
2243 if ((flags & AE_RXD_PAUSE) != 0)
2244 stats->rx_pause++;
2245 if ((flags & AE_RXD_CTRL) != 0)
2246 stats->rx_ctrl++;
2247 if ((flags & AE_RXD_CRCERR) != 0)
2248 stats->rx_crcerr++;
2249 if ((flags & AE_RXD_CODEERR) != 0)
2250 stats->rx_codeerr++;
2251 if ((flags & AE_RXD_RUNT) != 0)
2252 stats->rx_runt++;
2253 if ((flags & AE_RXD_FRAG) != 0)
2254 stats->rx_frag++;
2255 if ((flags & AE_RXD_TRUNC) != 0)
2256 stats->rx_trunc++;
2257 if ((flags & AE_RXD_ALIGN) != 0)
2258 stats->rx_align++;
2259 }
2260