xref: /freebsd-13.1/sys/dev/acpica/acpi_timer.c (revision f39bf9a2)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_acpi.h"
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/eventhandler.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/sysctl.h>
38 #include <sys/timetc.h>
39 
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43 
44 #include <contrib/dev/acpica/include/acpi.h>
45 #include <contrib/dev/acpica/include/accommon.h>
46 
47 #include <dev/acpica/acpivar.h>
48 #include <dev/pci/pcivar.h>
49 
50 /*
51  * A timecounter based on the free-running ACPI timer.
52  *
53  * Based on the i386-only mp_clock.c by <[email protected]>.
54  */
55 
56 /* Hooks for the ACPI CA debugging infrastructure */
57 #define _COMPONENT	ACPI_TIMER
58 ACPI_MODULE_NAME("TIMER")
59 
60 static device_t			acpi_timer_dev;
61 static struct resource		*acpi_timer_reg;
62 static bus_space_handle_t	acpi_timer_bsh;
63 static bus_space_tag_t		acpi_timer_bst;
64 static eventhandler_tag		acpi_timer_eh;
65 
66 static u_int	acpi_timer_frequency = 14318182 / 4;
67 
68 /* Knob to disable acpi_timer device */
69 bool acpi_timer_disabled = false;
70 
71 static void	acpi_timer_identify(driver_t *driver, device_t parent);
72 static int	acpi_timer_probe(device_t dev);
73 static int	acpi_timer_attach(device_t dev);
74 static void	acpi_timer_resume_handler(struct timecounter *);
75 static void	acpi_timer_suspend_handler(struct timecounter *);
76 static u_int	acpi_timer_get_timecount(struct timecounter *tc);
77 static u_int	acpi_timer_get_timecount_safe(struct timecounter *tc);
78 static int	acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
79 static void	acpi_timer_boot_test(void);
80 
81 static int	acpi_timer_test(void);
82 #ifdef __i386__
83 static int	acpi_timer_test_enabled = 1;
84 #else
85 static int	acpi_timer_test_enabled = 0;
86 #endif
87 TUNABLE_INT("hw.acpi.timer_test_enabled", &acpi_timer_test_enabled);
88 
89 static device_method_t acpi_timer_methods[] = {
90     DEVMETHOD(device_identify,	acpi_timer_identify),
91     DEVMETHOD(device_probe,	acpi_timer_probe),
92     DEVMETHOD(device_attach,	acpi_timer_attach),
93 
94     DEVMETHOD_END
95 };
96 
97 static driver_t acpi_timer_driver = {
98     "acpi_timer",
99     acpi_timer_methods,
100     0,
101 };
102 
103 static devclass_t acpi_timer_devclass;
104 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, 0, 0);
105 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
106 
107 static struct timecounter acpi_timer_timecounter = {
108 	acpi_timer_get_timecount_safe,	/* get_timecount function */
109 	0,				/* no poll_pps */
110 	0,				/* no default counter_mask */
111 	0,				/* no default frequency */
112 	"ACPI",				/* name */
113 	-1				/* quality (chosen later) */
114 };
115 
116 static __inline uint32_t
acpi_timer_read(void)117 acpi_timer_read(void)
118 {
119 
120     return (bus_space_read_4(acpi_timer_bst, acpi_timer_bsh, 0));
121 }
122 
123 /*
124  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
125  * we will be using.
126  */
127 static void
acpi_timer_identify(driver_t * driver,device_t parent)128 acpi_timer_identify(driver_t *driver, device_t parent)
129 {
130     device_t dev;
131     rman_res_t rlen, rstart;
132     int rid, rtype;
133 
134     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
135 
136     if (acpi_disabled("timer") || (acpi_quirks & ACPI_Q_TIMER) ||
137 	acpi_timer_dev || acpi_timer_disabled ||
138 	AcpiGbl_FADT.PmTimerLength == 0)
139 	return_VOID;
140 
141     if ((dev = BUS_ADD_CHILD(parent, 2, "acpi_timer", 0)) == NULL) {
142 	device_printf(parent, "could not add acpi_timer0\n");
143 	return_VOID;
144     }
145     acpi_timer_dev = dev;
146 
147     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
148     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
149 	rtype = SYS_RES_MEMORY;
150 	break;
151     case ACPI_ADR_SPACE_SYSTEM_IO:
152 	rtype = SYS_RES_IOPORT;
153 	break;
154     default:
155 	return_VOID;
156     }
157     rid = 0;
158     rlen = AcpiGbl_FADT.PmTimerLength;
159     rstart = AcpiGbl_FADT.XPmTimerBlock.Address;
160     if (bus_set_resource(dev, rtype, rid, rstart, rlen))
161 	device_printf(dev, "couldn't set resource (%s 0x%jx+0x%jx)\n",
162 	    (rtype == SYS_RES_IOPORT) ? "port" : "mem", rstart, rlen);
163     return_VOID;
164 }
165 
166 static int
acpi_timer_probe(device_t dev)167 acpi_timer_probe(device_t dev)
168 {
169     char desc[40];
170     int i, j, rid, rtype;
171 
172     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
173 
174     if (dev != acpi_timer_dev)
175 	return (ENXIO);
176 
177     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
178     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
179 	rtype = SYS_RES_MEMORY;
180 	break;
181     case ACPI_ADR_SPACE_SYSTEM_IO:
182 	rtype = SYS_RES_IOPORT;
183 	break;
184     default:
185 	return (ENXIO);
186     }
187     rid = 0;
188     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
189     if (acpi_timer_reg == NULL) {
190 	device_printf(dev, "couldn't allocate resource (%s 0x%lx)\n",
191 	    (rtype == SYS_RES_IOPORT) ? "port" : "mem",
192 	    (u_long)AcpiGbl_FADT.XPmTimerBlock.Address);
193 	return (ENXIO);
194     }
195     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
196     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
197     if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER)
198 	acpi_timer_timecounter.tc_counter_mask = 0xffffffff;
199     else
200 	acpi_timer_timecounter.tc_counter_mask = 0x00ffffff;
201     acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
202     acpi_timer_timecounter.tc_flags = TC_FLAGS_SUSPEND_SAFE;
203     if (testenv("debug.acpi.timer_test"))
204 	acpi_timer_boot_test();
205 
206     /*
207      * If all tests of the counter succeed, use the ACPI-fast method.  If
208      * at least one failed, default to using the safe routine, which reads
209      * the timer multiple times to get a consistent value before returning.
210      */
211     j = 0;
212     if (bootverbose)
213 	printf("ACPI timer:");
214     for (i = 0; i < 10; i++)
215 	j += acpi_timer_test();
216     if (bootverbose)
217 	printf(" -> %d\n", j);
218     if (j == 10) {
219 	acpi_timer_timecounter.tc_name = "ACPI-fast";
220 	acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount;
221 	acpi_timer_timecounter.tc_quality = 900;
222     } else {
223 	acpi_timer_timecounter.tc_name = "ACPI-safe";
224 	acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount_safe;
225 	acpi_timer_timecounter.tc_quality = 850;
226     }
227     tc_init(&acpi_timer_timecounter);
228 
229     sprintf(desc, "%d-bit timer at %u.%06uMHz",
230 	(AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) != 0 ? 32 : 24,
231 	acpi_timer_frequency / 1000000, acpi_timer_frequency % 1000000);
232     device_set_desc_copy(dev, desc);
233 
234     /* Release the resource, we'll allocate it again during attach. */
235     bus_release_resource(dev, rtype, rid, acpi_timer_reg);
236     return (0);
237 }
238 
239 static int
acpi_timer_attach(device_t dev)240 acpi_timer_attach(device_t dev)
241 {
242     int rid, rtype;
243 
244     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
245 
246     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
247     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
248 	rtype = SYS_RES_MEMORY;
249 	break;
250     case ACPI_ADR_SPACE_SYSTEM_IO:
251 	rtype = SYS_RES_IOPORT;
252 	break;
253     default:
254 	return (ENXIO);
255     }
256     rid = 0;
257     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
258     if (acpi_timer_reg == NULL)
259 	return (ENXIO);
260     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
261     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
262 
263     /* Register suspend event handler. */
264     if (EVENTHANDLER_REGISTER(power_suspend, acpi_timer_suspend_handler,
265 	&acpi_timer_timecounter, EVENTHANDLER_PRI_LAST) == NULL)
266 	device_printf(dev, "failed to register suspend event handler\n");
267 
268     return (0);
269 }
270 
271 static void
acpi_timer_resume_handler(struct timecounter * newtc)272 acpi_timer_resume_handler(struct timecounter *newtc)
273 {
274 	struct timecounter *tc;
275 
276 	tc = timecounter;
277 	if (tc != newtc) {
278 		if (bootverbose)
279 			device_printf(acpi_timer_dev,
280 			    "restoring timecounter, %s -> %s\n",
281 			    tc->tc_name, newtc->tc_name);
282 		(void)newtc->tc_get_timecount(newtc);
283 		timecounter = newtc;
284 	}
285 }
286 
287 static void
acpi_timer_suspend_handler(struct timecounter * newtc)288 acpi_timer_suspend_handler(struct timecounter *newtc)
289 {
290 	struct timecounter *tc;
291 
292 	/* Deregister existing resume event handler. */
293 	if (acpi_timer_eh != NULL) {
294 		EVENTHANDLER_DEREGISTER(power_resume, acpi_timer_eh);
295 		acpi_timer_eh = NULL;
296 	}
297 
298 	if ((timecounter->tc_flags & TC_FLAGS_SUSPEND_SAFE) != 0) {
299 		/*
300 		 * If we are using a suspend safe timecounter, don't
301 		 * save/restore it across suspend/resume.
302 		 */
303 		return;
304 	}
305 
306 	KASSERT(newtc == &acpi_timer_timecounter,
307 	    ("acpi_timer_suspend_handler: wrong timecounter"));
308 
309 	tc = timecounter;
310 	if (tc != newtc) {
311 		if (bootverbose)
312 			device_printf(acpi_timer_dev,
313 			    "switching timecounter, %s -> %s\n",
314 			    tc->tc_name, newtc->tc_name);
315 		(void)acpi_timer_read();
316 		(void)acpi_timer_read();
317 		timecounter = newtc;
318 		acpi_timer_eh = EVENTHANDLER_REGISTER(power_resume,
319 		    acpi_timer_resume_handler, tc, EVENTHANDLER_PRI_LAST);
320 	}
321 }
322 
323 /*
324  * Fetch current time value from reliable hardware.
325  */
326 static u_int
acpi_timer_get_timecount(struct timecounter * tc)327 acpi_timer_get_timecount(struct timecounter *tc)
328 {
329     return (acpi_timer_read());
330 }
331 
332 /*
333  * Fetch current time value from hardware that may not correctly
334  * latch the counter.  We need to read until we have three monotonic
335  * samples and then use the middle one, otherwise we are not protected
336  * against the fact that the bits can be wrong in two directions.  If
337  * we only cared about monosity, two reads would be enough.
338  */
339 static u_int
acpi_timer_get_timecount_safe(struct timecounter * tc)340 acpi_timer_get_timecount_safe(struct timecounter *tc)
341 {
342     u_int u1, u2, u3;
343 
344     u2 = acpi_timer_read();
345     u3 = acpi_timer_read();
346     do {
347 	u1 = u2;
348 	u2 = u3;
349 	u3 = acpi_timer_read();
350     } while (u1 > u2 || u2 > u3);
351 
352     return (u2);
353 }
354 
355 /*
356  * Timecounter freqency adjustment interface.
357  */
358 static int
acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)359 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
360 {
361     int error;
362     u_int freq;
363 
364     if (acpi_timer_timecounter.tc_frequency == 0)
365 	return (EOPNOTSUPP);
366     freq = acpi_timer_frequency;
367     error = sysctl_handle_int(oidp, &freq, 0, req);
368     if (error == 0 && req->newptr != NULL) {
369 	acpi_timer_frequency = freq;
370 	acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
371     }
372 
373     return (error);
374 }
375 
376 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq,
377     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
378     acpi_timer_sysctl_freq, "I",
379     "ACPI timer frequency");
380 
381 /*
382  * Some ACPI timers are known or believed to suffer from implementation
383  * problems which can lead to erroneous values being read.  This function
384  * tests for consistent results from the timer and returns 1 if it believes
385  * the timer is consistent, otherwise it returns 0.
386  *
387  * It appears the cause is that the counter is not latched to the PCI bus
388  * clock when read:
389  *
390  * ] 20. ACPI Timer Errata
391  * ]
392  * ]   Problem: The power management timer may return improper result when
393  * ]   read. Although the timer value settles properly after incrementing,
394  * ]   while incrementing there is a 3nS window every 69.8nS where the
395  * ]   timer value is indeterminate (a 4.2% chance that the data will be
396  * ]   incorrect when read). As a result, the ACPI free running count up
397  * ]   timer specification is violated due to erroneous reads.  Implication:
398  * ]   System hangs due to the "inaccuracy" of the timer when used by
399  * ]   software for time critical events and delays.
400  * ]
401  * ] Workaround: Read the register twice and compare.
402  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
403  * ] in the PIIX4M.
404  */
405 #define N 2000
406 static int
acpi_timer_test()407 acpi_timer_test()
408 {
409     uint32_t last, this;
410     int delta, max, max2, min, n;
411     register_t s;
412 
413     /* Skip the test based on the hw.acpi.timer_test_enabled tunable. */
414     if (!acpi_timer_test_enabled)
415 	return (1);
416 
417     TSENTER();
418 
419     min = INT32_MAX;
420     max = max2 = 0;
421 
422     /* Test the timer with interrupts disabled to get accurate results. */
423     s = intr_disable();
424     last = acpi_timer_read();
425     for (n = 0; n < N; n++) {
426 	this = acpi_timer_read();
427 	delta = acpi_TimerDelta(this, last);
428 	if (delta > max) {
429 	    max2 = max;
430 	    max = delta;
431 	} else if (delta > max2)
432 	    max2 = delta;
433 	if (delta < min)
434 	    min = delta;
435 	last = this;
436     }
437     intr_restore(s);
438 
439     delta = max2 - min;
440     if ((max - min > 8 || delta > 3) && vm_guest == VM_GUEST_NO)
441 	n = 0;
442     else if (min < 0 || max == 0 || max2 == 0)
443 	n = 0;
444     else
445 	n = 1;
446     if (bootverbose)
447 	printf(" %d/%d", n, delta);
448 
449     TSEXIT();
450 
451     return (n);
452 }
453 #undef N
454 
455 /*
456  * Test harness for verifying ACPI timer behaviour.
457  * Boot with debug.acpi.timer_test set to invoke this.
458  */
459 static void
acpi_timer_boot_test(void)460 acpi_timer_boot_test(void)
461 {
462     uint32_t u1, u2, u3;
463 
464     u1 = acpi_timer_read();
465     u2 = acpi_timer_read();
466     u3 = acpi_timer_read();
467 
468     device_printf(acpi_timer_dev, "timer test in progress, reboot to quit.\n");
469     for (;;) {
470 	/*
471 	 * The failure case is where u3 > u1, but u2 does not fall between
472 	 * the two, ie. it contains garbage.
473 	 */
474 	if (u3 > u1) {
475 	    if (u2 < u1 || u2 > u3)
476 		device_printf(acpi_timer_dev,
477 			      "timer is not monotonic: 0x%08x,0x%08x,0x%08x\n",
478 			      u1, u2, u3);
479 	}
480 	u1 = u2;
481 	u2 = u3;
482 	u3 = acpi_timer_read();
483     }
484 }
485