1 /*-
2 * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
3 * All rights reserved.
4 * Copyright (c) 2020-2022 The FreeBSD Foundation
5 *
6 * Portions of this software were developed by Björn Zeeb
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/filio.h>
45 #include <sys/pciio.h>
46 #include <sys/pctrie.h>
47 #include <sys/rwlock.h>
48
49 #include <vm/vm.h>
50 #include <vm/pmap.h>
51
52 #include <machine/stdarg.h>
53
54 #include <dev/pci/pcivar.h>
55 #include <dev/pci/pci_private.h>
56 #include <dev/pci/pci_iov.h>
57 #include <dev/backlight/backlight.h>
58
59 #include <linux/kobject.h>
60 #include <linux/device.h>
61 #include <linux/slab.h>
62 #include <linux/module.h>
63 #include <linux/cdev.h>
64 #include <linux/file.h>
65 #include <linux/sysfs.h>
66 #include <linux/mm.h>
67 #include <linux/io.h>
68 #include <linux/vmalloc.h>
69 #include <linux/pci.h>
70 #include <linux/compat.h>
71
72 #include <linux/backlight.h>
73
74 #include "backlight_if.h"
75 #include "pcib_if.h"
76
77 /* Undef the linux function macro defined in linux/pci.h */
78 #undef pci_get_class
79
80 static device_probe_t linux_pci_probe;
81 static device_attach_t linux_pci_attach;
82 static device_detach_t linux_pci_detach;
83 static device_suspend_t linux_pci_suspend;
84 static device_resume_t linux_pci_resume;
85 static device_shutdown_t linux_pci_shutdown;
86 static pci_iov_init_t linux_pci_iov_init;
87 static pci_iov_uninit_t linux_pci_iov_uninit;
88 static pci_iov_add_vf_t linux_pci_iov_add_vf;
89 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
90 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
91 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
92
93 static device_method_t pci_methods[] = {
94 DEVMETHOD(device_probe, linux_pci_probe),
95 DEVMETHOD(device_attach, linux_pci_attach),
96 DEVMETHOD(device_detach, linux_pci_detach),
97 DEVMETHOD(device_suspend, linux_pci_suspend),
98 DEVMETHOD(device_resume, linux_pci_resume),
99 DEVMETHOD(device_shutdown, linux_pci_shutdown),
100 DEVMETHOD(pci_iov_init, linux_pci_iov_init),
101 DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
102 DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
103
104 /* backlight interface */
105 DEVMETHOD(backlight_update_status, linux_backlight_update_status),
106 DEVMETHOD(backlight_get_status, linux_backlight_get_status),
107 DEVMETHOD(backlight_get_info, linux_backlight_get_info),
108 DEVMETHOD_END
109 };
110
111 struct linux_dma_priv {
112 uint64_t dma_mask;
113 bus_dma_tag_t dmat;
114 uint64_t dma_coherent_mask;
115 bus_dma_tag_t dmat_coherent;
116 struct mtx lock;
117 struct pctrie ptree;
118 };
119 #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
120 #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
121
122 static bool
linux_is_drm(struct pci_driver * pdrv)123 linux_is_drm(struct pci_driver *pdrv)
124 {
125 return (pdrv->name != NULL && strcmp(pdrv->name, "drmn") == 0);
126 }
127
128 static int
linux_pdev_dma_uninit(struct pci_dev * pdev)129 linux_pdev_dma_uninit(struct pci_dev *pdev)
130 {
131 struct linux_dma_priv *priv;
132
133 priv = pdev->dev.dma_priv;
134 if (priv->dmat)
135 bus_dma_tag_destroy(priv->dmat);
136 if (priv->dmat_coherent)
137 bus_dma_tag_destroy(priv->dmat_coherent);
138 mtx_destroy(&priv->lock);
139 pdev->dev.dma_priv = NULL;
140 free(priv, M_DEVBUF);
141 return (0);
142 }
143
144 static int
linux_pdev_dma_init(struct pci_dev * pdev)145 linux_pdev_dma_init(struct pci_dev *pdev)
146 {
147 struct linux_dma_priv *priv;
148 int error;
149
150 priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
151
152 mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
153 pctrie_init(&priv->ptree);
154
155 pdev->dev.dma_priv = priv;
156
157 /* Create a default DMA tags. */
158 error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
159 if (error != 0)
160 goto err;
161 /* Coherent is lower 32bit only by default in Linux. */
162 error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
163 if (error != 0)
164 goto err;
165
166 return (error);
167
168 err:
169 linux_pdev_dma_uninit(pdev);
170 return (error);
171 }
172
173 int
linux_dma_tag_init(struct device * dev,u64 dma_mask)174 linux_dma_tag_init(struct device *dev, u64 dma_mask)
175 {
176 struct linux_dma_priv *priv;
177 int error;
178
179 priv = dev->dma_priv;
180
181 if (priv->dmat) {
182 if (priv->dma_mask == dma_mask)
183 return (0);
184
185 bus_dma_tag_destroy(priv->dmat);
186 }
187
188 priv->dma_mask = dma_mask;
189
190 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
191 1, 0, /* alignment, boundary */
192 dma_mask, /* lowaddr */
193 BUS_SPACE_MAXADDR, /* highaddr */
194 NULL, NULL, /* filtfunc, filtfuncarg */
195 BUS_SPACE_MAXSIZE, /* maxsize */
196 1, /* nsegments */
197 BUS_SPACE_MAXSIZE, /* maxsegsz */
198 0, /* flags */
199 NULL, NULL, /* lockfunc, lockfuncarg */
200 &priv->dmat);
201 return (-error);
202 }
203
204 int
linux_dma_tag_init_coherent(struct device * dev,u64 dma_mask)205 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
206 {
207 struct linux_dma_priv *priv;
208 int error;
209
210 priv = dev->dma_priv;
211
212 if (priv->dmat_coherent) {
213 if (priv->dma_coherent_mask == dma_mask)
214 return (0);
215
216 bus_dma_tag_destroy(priv->dmat_coherent);
217 }
218
219 priv->dma_coherent_mask = dma_mask;
220
221 error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
222 1, 0, /* alignment, boundary */
223 dma_mask, /* lowaddr */
224 BUS_SPACE_MAXADDR, /* highaddr */
225 NULL, NULL, /* filtfunc, filtfuncarg */
226 BUS_SPACE_MAXSIZE, /* maxsize */
227 1, /* nsegments */
228 BUS_SPACE_MAXSIZE, /* maxsegsz */
229 0, /* flags */
230 NULL, NULL, /* lockfunc, lockfuncarg */
231 &priv->dmat_coherent);
232 return (-error);
233 }
234
235 static struct pci_driver *
linux_pci_find(device_t dev,const struct pci_device_id ** idp)236 linux_pci_find(device_t dev, const struct pci_device_id **idp)
237 {
238 const struct pci_device_id *id;
239 struct pci_driver *pdrv;
240 uint16_t vendor;
241 uint16_t device;
242 uint16_t subvendor;
243 uint16_t subdevice;
244
245 vendor = pci_get_vendor(dev);
246 device = pci_get_device(dev);
247 subvendor = pci_get_subvendor(dev);
248 subdevice = pci_get_subdevice(dev);
249
250 spin_lock(&pci_lock);
251 list_for_each_entry(pdrv, &pci_drivers, node) {
252 for (id = pdrv->id_table; id->vendor != 0; id++) {
253 if (vendor == id->vendor &&
254 (PCI_ANY_ID == id->device || device == id->device) &&
255 (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
256 (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
257 *idp = id;
258 spin_unlock(&pci_lock);
259 return (pdrv);
260 }
261 }
262 }
263 spin_unlock(&pci_lock);
264 return (NULL);
265 }
266
267 static void
lkpi_pci_dev_release(struct device * dev)268 lkpi_pci_dev_release(struct device *dev)
269 {
270
271 lkpi_devres_release_free_list(dev);
272 spin_lock_destroy(&dev->devres_lock);
273 }
274
275 static void
lkpifill_pci_dev(device_t dev,struct pci_dev * pdev)276 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
277 {
278
279 pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
280 pdev->vendor = pci_get_vendor(dev);
281 pdev->device = pci_get_device(dev);
282 pdev->subsystem_vendor = pci_get_subvendor(dev);
283 pdev->subsystem_device = pci_get_subdevice(dev);
284 pdev->class = pci_get_class(dev);
285 pdev->revision = pci_get_revid(dev);
286 pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
287 /*
288 * This should be the upstream bridge; pci_upstream_bridge()
289 * handles that case on demand as otherwise we'll shadow the
290 * entire PCI hierarchy.
291 */
292 pdev->bus->self = pdev;
293 pdev->bus->number = pci_get_bus(dev);
294 pdev->bus->domain = pci_get_domain(dev);
295 pdev->dev.bsddev = dev;
296 pdev->dev.parent = &linux_root_device;
297 pdev->dev.release = lkpi_pci_dev_release;
298 INIT_LIST_HEAD(&pdev->dev.irqents);
299 kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
300 kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
301 kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
302 kobject_name(&pdev->dev.kobj));
303 spin_lock_init(&pdev->dev.devres_lock);
304 INIT_LIST_HEAD(&pdev->dev.devres_head);
305 }
306
307 static void
lkpinew_pci_dev_release(struct device * dev)308 lkpinew_pci_dev_release(struct device *dev)
309 {
310 struct pci_dev *pdev;
311
312 pdev = to_pci_dev(dev);
313 if (pdev->root != NULL)
314 pci_dev_put(pdev->root);
315 if (pdev->bus->self != pdev)
316 pci_dev_put(pdev->bus->self);
317 free(pdev->bus, M_DEVBUF);
318 free(pdev, M_DEVBUF);
319 }
320
321 struct pci_dev *
lkpinew_pci_dev(device_t dev)322 lkpinew_pci_dev(device_t dev)
323 {
324 struct pci_dev *pdev;
325
326 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
327 lkpifill_pci_dev(dev, pdev);
328 pdev->dev.release = lkpinew_pci_dev_release;
329
330 return (pdev);
331 }
332
333 struct pci_dev *
lkpi_pci_get_class(unsigned int class,struct pci_dev * from)334 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
335 {
336 device_t dev;
337 device_t devfrom = NULL;
338 struct pci_dev *pdev;
339
340 if (from != NULL)
341 devfrom = from->dev.bsddev;
342
343 dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
344 if (dev == NULL)
345 return (NULL);
346
347 pdev = lkpinew_pci_dev(dev);
348 return (pdev);
349 }
350
351 struct pci_dev *
lkpi_pci_get_domain_bus_and_slot(int domain,unsigned int bus,unsigned int devfn)352 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
353 unsigned int devfn)
354 {
355 device_t dev;
356 struct pci_dev *pdev;
357
358 dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
359 if (dev == NULL)
360 return (NULL);
361
362 pdev = lkpinew_pci_dev(dev);
363 return (pdev);
364 }
365
366 static int
linux_pci_probe(device_t dev)367 linux_pci_probe(device_t dev)
368 {
369 const struct pci_device_id *id;
370 struct pci_driver *pdrv;
371
372 if ((pdrv = linux_pci_find(dev, &id)) == NULL)
373 return (ENXIO);
374 if (device_get_driver(dev) != &pdrv->bsddriver)
375 return (ENXIO);
376 device_set_desc(dev, pdrv->name);
377
378 /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
379 if (pdrv->bsd_probe_return == 0)
380 return (BUS_PROBE_DEFAULT);
381 else
382 return (pdrv->bsd_probe_return);
383 }
384
385 static int
linux_pci_attach(device_t dev)386 linux_pci_attach(device_t dev)
387 {
388 const struct pci_device_id *id;
389 struct pci_driver *pdrv;
390 struct pci_dev *pdev;
391
392 pdrv = linux_pci_find(dev, &id);
393 pdev = device_get_softc(dev);
394
395 MPASS(pdrv != NULL);
396 MPASS(pdev != NULL);
397
398 return (linux_pci_attach_device(dev, pdrv, id, pdev));
399 }
400
401 int
linux_pci_attach_device(device_t dev,struct pci_driver * pdrv,const struct pci_device_id * id,struct pci_dev * pdev)402 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
403 const struct pci_device_id *id, struct pci_dev *pdev)
404 {
405 struct resource_list_entry *rle;
406 device_t parent;
407 uintptr_t rid;
408 int error;
409 bool isdrm;
410
411 linux_set_current(curthread);
412
413 parent = device_get_parent(dev);
414 isdrm = pdrv != NULL && linux_is_drm(pdrv);
415
416 if (isdrm) {
417 struct pci_devinfo *dinfo;
418
419 dinfo = device_get_ivars(parent);
420 device_set_ivars(dev, dinfo);
421 }
422
423 lkpifill_pci_dev(dev, pdev);
424 if (isdrm)
425 PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
426 else
427 PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
428 pdev->devfn = rid;
429 pdev->pdrv = pdrv;
430 rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
431 if (rle != NULL)
432 pdev->dev.irq = rle->start;
433 else
434 pdev->dev.irq = LINUX_IRQ_INVALID;
435 pdev->irq = pdev->dev.irq;
436 error = linux_pdev_dma_init(pdev);
437 if (error)
438 goto out_dma_init;
439
440 TAILQ_INIT(&pdev->mmio);
441
442 spin_lock(&pci_lock);
443 list_add(&pdev->links, &pci_devices);
444 spin_unlock(&pci_lock);
445
446 if (pdrv != NULL) {
447 error = pdrv->probe(pdev, id);
448 if (error)
449 goto out_probe;
450 }
451 return (0);
452
453 out_probe:
454 free(pdev->bus, M_DEVBUF);
455 linux_pdev_dma_uninit(pdev);
456 out_dma_init:
457 spin_lock(&pci_lock);
458 list_del(&pdev->links);
459 spin_unlock(&pci_lock);
460 put_device(&pdev->dev);
461 return (-error);
462 }
463
464 static int
linux_pci_detach(device_t dev)465 linux_pci_detach(device_t dev)
466 {
467 struct pci_dev *pdev;
468
469 pdev = device_get_softc(dev);
470
471 MPASS(pdev != NULL);
472
473 device_set_desc(dev, NULL);
474
475 return (linux_pci_detach_device(pdev));
476 }
477
478 int
linux_pci_detach_device(struct pci_dev * pdev)479 linux_pci_detach_device(struct pci_dev *pdev)
480 {
481
482 linux_set_current(curthread);
483
484 if (pdev->pdrv != NULL)
485 pdev->pdrv->remove(pdev);
486
487 if (pdev->root != NULL)
488 pci_dev_put(pdev->root);
489 free(pdev->bus, M_DEVBUF);
490 linux_pdev_dma_uninit(pdev);
491
492 spin_lock(&pci_lock);
493 list_del(&pdev->links);
494 spin_unlock(&pci_lock);
495 put_device(&pdev->dev);
496
497 return (0);
498 }
499
500 static int
lkpi_pci_disable_dev(struct device * dev)501 lkpi_pci_disable_dev(struct device *dev)
502 {
503
504 (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
505 (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
506 return (0);
507 }
508
509 struct pci_devres *
lkpi_pci_devres_get_alloc(struct pci_dev * pdev)510 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
511 {
512 struct pci_devres *dr;
513
514 dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
515 if (dr == NULL) {
516 dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
517 GFP_KERNEL | __GFP_ZERO);
518 if (dr != NULL)
519 lkpi_devres_add(&pdev->dev, dr);
520 }
521
522 return (dr);
523 }
524
525 void
lkpi_pci_devres_release(struct device * dev,void * p)526 lkpi_pci_devres_release(struct device *dev, void *p)
527 {
528 struct pci_devres *dr;
529 struct pci_dev *pdev;
530 int bar;
531
532 pdev = to_pci_dev(dev);
533 dr = p;
534
535 if (pdev->msix_enabled)
536 lkpi_pci_disable_msix(pdev);
537 if (pdev->msi_enabled)
538 lkpi_pci_disable_msi(pdev);
539
540 if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
541 dr->enable_io = false;
542
543 if (dr->region_mask == 0)
544 return;
545 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
546
547 if ((dr->region_mask & (1 << bar)) == 0)
548 continue;
549 pci_release_region(pdev, bar);
550 }
551 }
552
553 struct pcim_iomap_devres *
lkpi_pcim_iomap_devres_find(struct pci_dev * pdev)554 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
555 {
556 struct pcim_iomap_devres *dr;
557
558 dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
559 NULL, NULL);
560 if (dr == NULL) {
561 dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
562 sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
563 if (dr != NULL)
564 lkpi_devres_add(&pdev->dev, dr);
565 }
566
567 if (dr == NULL)
568 device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
569
570 return (dr);
571 }
572
573 void
lkpi_pcim_iomap_table_release(struct device * dev,void * p)574 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
575 {
576 struct pcim_iomap_devres *dr;
577 struct pci_dev *pdev;
578 int bar;
579
580 dr = p;
581 pdev = to_pci_dev(dev);
582 for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
583
584 if (dr->mmio_table[bar] == NULL)
585 continue;
586
587 pci_iounmap(pdev, dr->mmio_table[bar]);
588 }
589 }
590
591 static int
linux_pci_suspend(device_t dev)592 linux_pci_suspend(device_t dev)
593 {
594 const struct dev_pm_ops *pmops;
595 struct pm_message pm = { };
596 struct pci_dev *pdev;
597 int error;
598
599 error = 0;
600 linux_set_current(curthread);
601 pdev = device_get_softc(dev);
602 pmops = pdev->pdrv->driver.pm;
603
604 if (pdev->pdrv->suspend != NULL)
605 error = -pdev->pdrv->suspend(pdev, pm);
606 else if (pmops != NULL && pmops->suspend != NULL) {
607 error = -pmops->suspend(&pdev->dev);
608 if (error == 0 && pmops->suspend_late != NULL)
609 error = -pmops->suspend_late(&pdev->dev);
610 }
611 return (error);
612 }
613
614 static int
linux_pci_resume(device_t dev)615 linux_pci_resume(device_t dev)
616 {
617 const struct dev_pm_ops *pmops;
618 struct pci_dev *pdev;
619 int error;
620
621 error = 0;
622 linux_set_current(curthread);
623 pdev = device_get_softc(dev);
624 pmops = pdev->pdrv->driver.pm;
625
626 if (pdev->pdrv->resume != NULL)
627 error = -pdev->pdrv->resume(pdev);
628 else if (pmops != NULL && pmops->resume != NULL) {
629 if (pmops->resume_early != NULL)
630 error = -pmops->resume_early(&pdev->dev);
631 if (error == 0 && pmops->resume != NULL)
632 error = -pmops->resume(&pdev->dev);
633 }
634 return (error);
635 }
636
637 static int
linux_pci_shutdown(device_t dev)638 linux_pci_shutdown(device_t dev)
639 {
640 struct pci_dev *pdev;
641
642 linux_set_current(curthread);
643 pdev = device_get_softc(dev);
644 if (pdev->pdrv->shutdown != NULL)
645 pdev->pdrv->shutdown(pdev);
646 return (0);
647 }
648
649 static int
linux_pci_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * pf_config)650 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
651 {
652 struct pci_dev *pdev;
653 int error;
654
655 linux_set_current(curthread);
656 pdev = device_get_softc(dev);
657 if (pdev->pdrv->bsd_iov_init != NULL)
658 error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
659 else
660 error = EINVAL;
661 return (error);
662 }
663
664 static void
linux_pci_iov_uninit(device_t dev)665 linux_pci_iov_uninit(device_t dev)
666 {
667 struct pci_dev *pdev;
668
669 linux_set_current(curthread);
670 pdev = device_get_softc(dev);
671 if (pdev->pdrv->bsd_iov_uninit != NULL)
672 pdev->pdrv->bsd_iov_uninit(dev);
673 }
674
675 static int
linux_pci_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * vf_config)676 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
677 {
678 struct pci_dev *pdev;
679 int error;
680
681 linux_set_current(curthread);
682 pdev = device_get_softc(dev);
683 if (pdev->pdrv->bsd_iov_add_vf != NULL)
684 error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
685 else
686 error = EINVAL;
687 return (error);
688 }
689
690 static int
_linux_pci_register_driver(struct pci_driver * pdrv,devclass_t dc)691 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
692 {
693 int error;
694
695 linux_set_current(curthread);
696 spin_lock(&pci_lock);
697 list_add(&pdrv->node, &pci_drivers);
698 spin_unlock(&pci_lock);
699 if (pdrv->bsddriver.name == NULL)
700 pdrv->bsddriver.name = pdrv->name;
701 pdrv->bsddriver.methods = pci_methods;
702 pdrv->bsddriver.size = sizeof(struct pci_dev);
703
704 mtx_lock(&Giant);
705 error = devclass_add_driver(dc, &pdrv->bsddriver,
706 BUS_PASS_DEFAULT, &pdrv->bsdclass);
707 mtx_unlock(&Giant);
708 return (-error);
709 }
710
711 int
linux_pci_register_driver(struct pci_driver * pdrv)712 linux_pci_register_driver(struct pci_driver *pdrv)
713 {
714 devclass_t dc;
715
716 dc = devclass_find("pci");
717 if (dc == NULL)
718 return (-ENXIO);
719 return (_linux_pci_register_driver(pdrv, dc));
720 }
721
722 struct resource_list_entry *
linux_pci_reserve_bar(struct pci_dev * pdev,struct resource_list * rl,int type,int rid)723 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
724 int type, int rid)
725 {
726 device_t dev;
727 struct resource *res;
728
729 KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
730 ("trying to reserve non-BAR type %d", type));
731
732 dev = pdev->pdrv != NULL && linux_is_drm(pdev->pdrv) ?
733 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
734 res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
735 1, 1, 0);
736 if (res == NULL)
737 return (NULL);
738 return (resource_list_find(rl, type, rid));
739 }
740
741 unsigned long
pci_resource_start(struct pci_dev * pdev,int bar)742 pci_resource_start(struct pci_dev *pdev, int bar)
743 {
744 struct resource_list_entry *rle;
745 rman_res_t newstart;
746 device_t dev;
747
748 if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
749 return (0);
750 dev = pdev->pdrv != NULL && linux_is_drm(pdev->pdrv) ?
751 device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
752 if (BUS_TRANSLATE_RESOURCE(dev, rle->type, rle->start, &newstart)) {
753 device_printf(pdev->dev.bsddev, "translate of %#jx failed\n",
754 (uintmax_t)rle->start);
755 return (0);
756 }
757 return (newstart);
758 }
759
760 unsigned long
pci_resource_len(struct pci_dev * pdev,int bar)761 pci_resource_len(struct pci_dev *pdev, int bar)
762 {
763 struct resource_list_entry *rle;
764
765 if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
766 return (0);
767 return (rle->count);
768 }
769
770 int
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)771 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
772 {
773 struct resource *res;
774 struct pci_devres *dr;
775 struct pci_mmio_region *mmio;
776 int rid;
777 int type;
778
779 type = pci_resource_type(pdev, bar);
780 if (type < 0)
781 return (-ENODEV);
782 rid = PCIR_BAR(bar);
783 res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
784 RF_ACTIVE|RF_SHAREABLE);
785 if (res == NULL) {
786 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
787 "bar %d type %d rid %d\n",
788 __func__, bar, type, PCIR_BAR(bar));
789 return (-ENODEV);
790 }
791
792 /*
793 * It seems there is an implicit devres tracking on these if the device
794 * is managed; otherwise the resources are not automatiaclly freed on
795 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
796 * drivers.
797 */
798 dr = lkpi_pci_devres_find(pdev);
799 if (dr != NULL) {
800 dr->region_mask |= (1 << bar);
801 dr->region_table[bar] = res;
802 }
803
804 /* Even if the device is not managed we need to track it for iomap. */
805 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
806 mmio->rid = PCIR_BAR(bar);
807 mmio->type = type;
808 mmio->res = res;
809 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
810
811 return (0);
812 }
813
814 struct resource *
_lkpi_pci_iomap(struct pci_dev * pdev,int bar,int mmio_size __unused)815 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
816 {
817 struct pci_mmio_region *mmio, *p;
818 int type;
819
820 type = pci_resource_type(pdev, bar);
821 if (type < 0) {
822 device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
823 __func__, bar, type);
824 return (NULL);
825 }
826
827 /*
828 * Check for duplicate mappings.
829 * This can happen if a driver calls pci_request_region() first.
830 */
831 TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
832 if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
833 return (mmio->res);
834 }
835 }
836
837 mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
838 mmio->rid = PCIR_BAR(bar);
839 mmio->type = type;
840 mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
841 &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
842 if (mmio->res == NULL) {
843 device_printf(pdev->dev.bsddev, "%s: failed to alloc "
844 "bar %d type %d rid %d\n",
845 __func__, bar, type, PCIR_BAR(bar));
846 free(mmio, M_DEVBUF);
847 return (NULL);
848 }
849 TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
850
851 return (mmio->res);
852 }
853
854 int
linux_pci_register_drm_driver(struct pci_driver * pdrv)855 linux_pci_register_drm_driver(struct pci_driver *pdrv)
856 {
857 devclass_t dc;
858
859 dc = devclass_create("vgapci");
860 if (dc == NULL)
861 return (-ENXIO);
862 pdrv->name = "drmn";
863 return (_linux_pci_register_driver(pdrv, dc));
864 }
865
866 void
linux_pci_unregister_driver(struct pci_driver * pdrv)867 linux_pci_unregister_driver(struct pci_driver *pdrv)
868 {
869 devclass_t bus;
870
871 bus = devclass_find("pci");
872
873 spin_lock(&pci_lock);
874 list_del(&pdrv->node);
875 spin_unlock(&pci_lock);
876 mtx_lock(&Giant);
877 if (bus != NULL)
878 devclass_delete_driver(bus, &pdrv->bsddriver);
879 mtx_unlock(&Giant);
880 }
881
882 void
linux_pci_unregister_drm_driver(struct pci_driver * pdrv)883 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
884 {
885 devclass_t bus;
886
887 bus = devclass_find("vgapci");
888
889 spin_lock(&pci_lock);
890 list_del(&pdrv->node);
891 spin_unlock(&pci_lock);
892 mtx_lock(&Giant);
893 if (bus != NULL)
894 devclass_delete_driver(bus, &pdrv->bsddriver);
895 mtx_unlock(&Giant);
896 }
897
898 int
pci_alloc_irq_vectors(struct pci_dev * pdev,int minv,int maxv,unsigned int flags)899 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
900 unsigned int flags)
901 {
902 int error;
903
904 if (flags & PCI_IRQ_MSIX) {
905 struct msix_entry *entries;
906 int i;
907
908 entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
909 if (entries == NULL) {
910 error = -ENOMEM;
911 goto out;
912 }
913 for (i = 0; i < maxv; ++i)
914 entries[i].entry = i;
915 error = pci_enable_msix(pdev, entries, maxv);
916 out:
917 kfree(entries);
918 if (error == 0 && pdev->msix_enabled)
919 return (pdev->dev.irq_end - pdev->dev.irq_start);
920 }
921 if (flags & PCI_IRQ_MSI) {
922 error = pci_enable_msi(pdev);
923 if (error == 0 && pdev->msi_enabled)
924 return (pdev->dev.irq_end - pdev->dev.irq_start);
925 }
926 if (flags & PCI_IRQ_LEGACY) {
927 if (pdev->irq)
928 return (1);
929 }
930
931 return (-EINVAL);
932 }
933
934 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
935
936 struct linux_dma_obj {
937 void *vaddr;
938 uint64_t dma_addr;
939 bus_dmamap_t dmamap;
940 bus_dma_tag_t dmat;
941 };
942
943 static uma_zone_t linux_dma_trie_zone;
944 static uma_zone_t linux_dma_obj_zone;
945
946 static void
linux_dma_init(void * arg)947 linux_dma_init(void *arg)
948 {
949
950 linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
951 pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
952 UMA_ALIGN_PTR, 0);
953 linux_dma_obj_zone = uma_zcreate("linux_dma_object",
954 sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
955 UMA_ALIGN_PTR, 0);
956
957 }
958 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
959
960 static void
linux_dma_uninit(void * arg)961 linux_dma_uninit(void *arg)
962 {
963
964 uma_zdestroy(linux_dma_obj_zone);
965 uma_zdestroy(linux_dma_trie_zone);
966 }
967 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
968
969 static void *
linux_dma_trie_alloc(struct pctrie * ptree)970 linux_dma_trie_alloc(struct pctrie *ptree)
971 {
972
973 return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
974 }
975
976 static void
linux_dma_trie_free(struct pctrie * ptree,void * node)977 linux_dma_trie_free(struct pctrie *ptree, void *node)
978 {
979
980 uma_zfree(linux_dma_trie_zone, node);
981 }
982
983 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
984 linux_dma_trie_free);
985
986 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
987 static dma_addr_t
linux_dma_map_phys_common(struct device * dev,vm_paddr_t phys,size_t len,bus_dma_tag_t dmat)988 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
989 bus_dma_tag_t dmat)
990 {
991 struct linux_dma_priv *priv;
992 struct linux_dma_obj *obj;
993 int error, nseg;
994 bus_dma_segment_t seg;
995
996 priv = dev->dma_priv;
997
998 /*
999 * If the resultant mapping will be entirely 1:1 with the
1000 * physical address, short-circuit the remainder of the
1001 * bus_dma API. This avoids tracking collisions in the pctrie
1002 * with the additional benefit of reducing overhead.
1003 */
1004 if (bus_dma_id_mapped(dmat, phys, len))
1005 return (phys);
1006
1007 obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
1008 if (obj == NULL) {
1009 return (0);
1010 }
1011 obj->dmat = dmat;
1012
1013 DMA_PRIV_LOCK(priv);
1014 if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
1015 DMA_PRIV_UNLOCK(priv);
1016 uma_zfree(linux_dma_obj_zone, obj);
1017 return (0);
1018 }
1019
1020 nseg = -1;
1021 if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
1022 BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
1023 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1024 DMA_PRIV_UNLOCK(priv);
1025 uma_zfree(linux_dma_obj_zone, obj);
1026 return (0);
1027 }
1028
1029 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1030 obj->dma_addr = seg.ds_addr;
1031
1032 error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
1033 if (error != 0) {
1034 bus_dmamap_unload(obj->dmat, obj->dmamap);
1035 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1036 DMA_PRIV_UNLOCK(priv);
1037 uma_zfree(linux_dma_obj_zone, obj);
1038 return (0);
1039 }
1040 DMA_PRIV_UNLOCK(priv);
1041 return (obj->dma_addr);
1042 }
1043 #else
1044 static dma_addr_t
linux_dma_map_phys_common(struct device * dev __unused,vm_paddr_t phys,size_t len __unused,bus_dma_tag_t dmat __unused)1045 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
1046 size_t len __unused, bus_dma_tag_t dmat __unused)
1047 {
1048 return (phys);
1049 }
1050 #endif
1051
1052 dma_addr_t
linux_dma_map_phys(struct device * dev,vm_paddr_t phys,size_t len)1053 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
1054 {
1055 struct linux_dma_priv *priv;
1056
1057 priv = dev->dma_priv;
1058 return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
1059 }
1060
1061 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1062 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1063 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1064 {
1065 struct linux_dma_priv *priv;
1066 struct linux_dma_obj *obj;
1067
1068 priv = dev->dma_priv;
1069
1070 if (pctrie_is_empty(&priv->ptree))
1071 return;
1072
1073 DMA_PRIV_LOCK(priv);
1074 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1075 if (obj == NULL) {
1076 DMA_PRIV_UNLOCK(priv);
1077 return;
1078 }
1079 LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
1080 bus_dmamap_unload(obj->dmat, obj->dmamap);
1081 bus_dmamap_destroy(obj->dmat, obj->dmamap);
1082 DMA_PRIV_UNLOCK(priv);
1083
1084 uma_zfree(linux_dma_obj_zone, obj);
1085 }
1086 #else
1087 void
linux_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t len)1088 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
1089 {
1090 }
1091 #endif
1092
1093 void *
linux_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1094 linux_dma_alloc_coherent(struct device *dev, size_t size,
1095 dma_addr_t *dma_handle, gfp_t flag)
1096 {
1097 struct linux_dma_priv *priv;
1098 vm_paddr_t high;
1099 size_t align;
1100 void *mem;
1101
1102 if (dev == NULL || dev->dma_priv == NULL) {
1103 *dma_handle = 0;
1104 return (NULL);
1105 }
1106 priv = dev->dma_priv;
1107 if (priv->dma_coherent_mask)
1108 high = priv->dma_coherent_mask;
1109 else
1110 /* Coherent is lower 32bit only by default in Linux. */
1111 high = BUS_SPACE_MAXADDR_32BIT;
1112 align = PAGE_SIZE << get_order(size);
1113 /* Always zero the allocation. */
1114 flag |= M_ZERO;
1115 mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
1116 align, 0, VM_MEMATTR_DEFAULT);
1117 if (mem != NULL) {
1118 *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
1119 priv->dmat_coherent);
1120 if (*dma_handle == 0) {
1121 kmem_free((vm_offset_t)mem, size);
1122 mem = NULL;
1123 }
1124 } else {
1125 *dma_handle = 0;
1126 }
1127 return (mem);
1128 }
1129
1130 void
linuxkpi_dma_sync(struct device * dev,dma_addr_t dma_addr,size_t size,bus_dmasync_op_t op)1131 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
1132 bus_dmasync_op_t op)
1133 {
1134 struct linux_dma_priv *priv;
1135 struct linux_dma_obj *obj;
1136
1137 priv = dev->dma_priv;
1138
1139 if (pctrie_is_empty(&priv->ptree))
1140 return;
1141
1142 DMA_PRIV_LOCK(priv);
1143 obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
1144 if (obj == NULL) {
1145 DMA_PRIV_UNLOCK(priv);
1146 return;
1147 }
1148
1149 bus_dmamap_sync(obj->dmat, obj->dmamap, op);
1150 DMA_PRIV_UNLOCK(priv);
1151 }
1152
1153 int
linux_dma_map_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction direction,unsigned long attrs __unused)1154 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
1155 enum dma_data_direction direction, unsigned long attrs __unused)
1156 {
1157 struct linux_dma_priv *priv;
1158 struct scatterlist *sg;
1159 int i, nseg;
1160 bus_dma_segment_t seg;
1161
1162 priv = dev->dma_priv;
1163
1164 DMA_PRIV_LOCK(priv);
1165
1166 /* create common DMA map in the first S/G entry */
1167 if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
1168 DMA_PRIV_UNLOCK(priv);
1169 return (0);
1170 }
1171
1172 /* load all S/G list entries */
1173 for_each_sg(sgl, sg, nents, i) {
1174 nseg = -1;
1175 if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
1176 sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
1177 &seg, &nseg) != 0) {
1178 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1179 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1180 DMA_PRIV_UNLOCK(priv);
1181 return (0);
1182 }
1183 KASSERT(nseg == 0,
1184 ("More than one segment (nseg=%d)", nseg + 1));
1185
1186 sg_dma_address(sg) = seg.ds_addr;
1187 }
1188
1189 switch (direction) {
1190 case DMA_BIDIRECTIONAL:
1191 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1192 break;
1193 case DMA_TO_DEVICE:
1194 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1195 break;
1196 case DMA_FROM_DEVICE:
1197 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
1198 break;
1199 default:
1200 break;
1201 }
1202
1203 DMA_PRIV_UNLOCK(priv);
1204
1205 return (nents);
1206 }
1207
1208 void
linux_dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sgl,int nents __unused,enum dma_data_direction direction,unsigned long attrs __unused)1209 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
1210 int nents __unused, enum dma_data_direction direction,
1211 unsigned long attrs __unused)
1212 {
1213 struct linux_dma_priv *priv;
1214
1215 priv = dev->dma_priv;
1216
1217 DMA_PRIV_LOCK(priv);
1218
1219 switch (direction) {
1220 case DMA_BIDIRECTIONAL:
1221 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1222 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
1223 break;
1224 case DMA_TO_DEVICE:
1225 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
1226 break;
1227 case DMA_FROM_DEVICE:
1228 bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
1229 break;
1230 default:
1231 break;
1232 }
1233
1234 bus_dmamap_unload(priv->dmat, sgl->dma_map);
1235 bus_dmamap_destroy(priv->dmat, sgl->dma_map);
1236 DMA_PRIV_UNLOCK(priv);
1237 }
1238
1239 struct dma_pool {
1240 struct device *pool_device;
1241 uma_zone_t pool_zone;
1242 struct mtx pool_lock;
1243 bus_dma_tag_t pool_dmat;
1244 size_t pool_entry_size;
1245 struct pctrie pool_ptree;
1246 };
1247
1248 #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
1249 #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
1250
1251 static inline int
dma_pool_obj_ctor(void * mem,int size,void * arg,int flags)1252 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
1253 {
1254 struct linux_dma_obj *obj = mem;
1255 struct dma_pool *pool = arg;
1256 int error, nseg;
1257 bus_dma_segment_t seg;
1258
1259 nseg = -1;
1260 DMA_POOL_LOCK(pool);
1261 error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
1262 vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
1263 &seg, &nseg);
1264 DMA_POOL_UNLOCK(pool);
1265 if (error != 0) {
1266 return (error);
1267 }
1268 KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
1269 obj->dma_addr = seg.ds_addr;
1270
1271 return (0);
1272 }
1273
1274 static void
dma_pool_obj_dtor(void * mem,int size,void * arg)1275 dma_pool_obj_dtor(void *mem, int size, void *arg)
1276 {
1277 struct linux_dma_obj *obj = mem;
1278 struct dma_pool *pool = arg;
1279
1280 DMA_POOL_LOCK(pool);
1281 bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
1282 DMA_POOL_UNLOCK(pool);
1283 }
1284
1285 static int
dma_pool_obj_import(void * arg,void ** store,int count,int domain __unused,int flags)1286 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
1287 int flags)
1288 {
1289 struct dma_pool *pool = arg;
1290 struct linux_dma_obj *obj;
1291 int error, i;
1292
1293 for (i = 0; i < count; i++) {
1294 obj = uma_zalloc(linux_dma_obj_zone, flags);
1295 if (obj == NULL)
1296 break;
1297
1298 error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
1299 BUS_DMA_NOWAIT, &obj->dmamap);
1300 if (error!= 0) {
1301 uma_zfree(linux_dma_obj_zone, obj);
1302 break;
1303 }
1304
1305 store[i] = obj;
1306 }
1307
1308 return (i);
1309 }
1310
1311 static void
dma_pool_obj_release(void * arg,void ** store,int count)1312 dma_pool_obj_release(void *arg, void **store, int count)
1313 {
1314 struct dma_pool *pool = arg;
1315 struct linux_dma_obj *obj;
1316 int i;
1317
1318 for (i = 0; i < count; i++) {
1319 obj = store[i];
1320 bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
1321 uma_zfree(linux_dma_obj_zone, obj);
1322 }
1323 }
1324
1325 struct dma_pool *
linux_dma_pool_create(char * name,struct device * dev,size_t size,size_t align,size_t boundary)1326 linux_dma_pool_create(char *name, struct device *dev, size_t size,
1327 size_t align, size_t boundary)
1328 {
1329 struct linux_dma_priv *priv;
1330 struct dma_pool *pool;
1331
1332 priv = dev->dma_priv;
1333
1334 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1335 pool->pool_device = dev;
1336 pool->pool_entry_size = size;
1337
1338 if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
1339 align, boundary, /* alignment, boundary */
1340 priv->dma_mask, /* lowaddr */
1341 BUS_SPACE_MAXADDR, /* highaddr */
1342 NULL, NULL, /* filtfunc, filtfuncarg */
1343 size, /* maxsize */
1344 1, /* nsegments */
1345 size, /* maxsegsz */
1346 0, /* flags */
1347 NULL, NULL, /* lockfunc, lockfuncarg */
1348 &pool->pool_dmat)) {
1349 kfree(pool);
1350 return (NULL);
1351 }
1352
1353 pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
1354 dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
1355 dma_pool_obj_release, pool, 0);
1356
1357 mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
1358 pctrie_init(&pool->pool_ptree);
1359
1360 return (pool);
1361 }
1362
1363 void
linux_dma_pool_destroy(struct dma_pool * pool)1364 linux_dma_pool_destroy(struct dma_pool *pool)
1365 {
1366
1367 uma_zdestroy(pool->pool_zone);
1368 bus_dma_tag_destroy(pool->pool_dmat);
1369 mtx_destroy(&pool->pool_lock);
1370 kfree(pool);
1371 }
1372
1373 void
lkpi_dmam_pool_destroy(struct device * dev,void * p)1374 lkpi_dmam_pool_destroy(struct device *dev, void *p)
1375 {
1376 struct dma_pool *pool;
1377
1378 pool = *(struct dma_pool **)p;
1379 LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
1380 linux_dma_pool_destroy(pool);
1381 }
1382
1383 void *
linux_dma_pool_alloc(struct dma_pool * pool,gfp_t mem_flags,dma_addr_t * handle)1384 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
1385 dma_addr_t *handle)
1386 {
1387 struct linux_dma_obj *obj;
1388
1389 obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
1390 if (obj == NULL)
1391 return (NULL);
1392
1393 DMA_POOL_LOCK(pool);
1394 if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
1395 DMA_POOL_UNLOCK(pool);
1396 uma_zfree_arg(pool->pool_zone, obj, pool);
1397 return (NULL);
1398 }
1399 DMA_POOL_UNLOCK(pool);
1400
1401 *handle = obj->dma_addr;
1402 return (obj->vaddr);
1403 }
1404
1405 void
linux_dma_pool_free(struct dma_pool * pool,void * vaddr,dma_addr_t dma_addr)1406 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
1407 {
1408 struct linux_dma_obj *obj;
1409
1410 DMA_POOL_LOCK(pool);
1411 obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
1412 if (obj == NULL) {
1413 DMA_POOL_UNLOCK(pool);
1414 return;
1415 }
1416 LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
1417 DMA_POOL_UNLOCK(pool);
1418
1419 uma_zfree_arg(pool->pool_zone, obj, pool);
1420 }
1421
1422 static int
linux_backlight_get_status(device_t dev,struct backlight_props * props)1423 linux_backlight_get_status(device_t dev, struct backlight_props *props)
1424 {
1425 struct pci_dev *pdev;
1426
1427 linux_set_current(curthread);
1428 pdev = device_get_softc(dev);
1429
1430 props->brightness = pdev->dev.bd->props.brightness;
1431 props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
1432 props->nlevels = 0;
1433
1434 return (0);
1435 }
1436
1437 static int
linux_backlight_get_info(device_t dev,struct backlight_info * info)1438 linux_backlight_get_info(device_t dev, struct backlight_info *info)
1439 {
1440 struct pci_dev *pdev;
1441
1442 linux_set_current(curthread);
1443 pdev = device_get_softc(dev);
1444
1445 info->type = BACKLIGHT_TYPE_PANEL;
1446 strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
1447 return (0);
1448 }
1449
1450 static int
linux_backlight_update_status(device_t dev,struct backlight_props * props)1451 linux_backlight_update_status(device_t dev, struct backlight_props *props)
1452 {
1453 struct pci_dev *pdev;
1454
1455 linux_set_current(curthread);
1456 pdev = device_get_softc(dev);
1457
1458 pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
1459 props->brightness / 100;
1460 pdev->dev.bd->props.power = props->brightness == 0 ?
1461 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
1462 return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
1463 }
1464
1465 struct backlight_device *
linux_backlight_device_register(const char * name,struct device * dev,void * data,const struct backlight_ops * ops,struct backlight_properties * props)1466 linux_backlight_device_register(const char *name, struct device *dev,
1467 void *data, const struct backlight_ops *ops, struct backlight_properties *props)
1468 {
1469
1470 dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
1471 dev->bd->ops = ops;
1472 dev->bd->props.type = props->type;
1473 dev->bd->props.max_brightness = props->max_brightness;
1474 dev->bd->props.brightness = props->brightness;
1475 dev->bd->props.power = props->power;
1476 dev->bd->data = data;
1477 dev->bd->dev = dev;
1478 dev->bd->name = strdup(name, M_DEVBUF);
1479
1480 dev->backlight_dev = backlight_register(name, dev->bsddev);
1481
1482 return (dev->bd);
1483 }
1484
1485 void
linux_backlight_device_unregister(struct backlight_device * bd)1486 linux_backlight_device_unregister(struct backlight_device *bd)
1487 {
1488
1489 backlight_destroy(bd->dev->backlight_dev);
1490 free(bd->name, M_DEVBUF);
1491 free(bd, M_DEVBUF);
1492 }
1493