xref: /freebsd-13.1/libexec/rtld-elf/rtld.c (revision 6914c8ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <[email protected]>.
6  * Copyright 2009-2013 Konstantin Belousov <[email protected]>.
7  * Copyright 2012 John Marino <[email protected]>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <[email protected]>.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73 
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83 
84 struct dlerror_save {
85 	int seen;
86 	char *msg;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94     const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96     const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103     int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143     const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145     const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153     int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155     RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163     int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181     const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int  rtld_verify_versions(const Objlist *);
186 static int  rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int  object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191     struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194     const unsigned long);
195 
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198 
199 int __sys_openat(int, const char *, int, ...);
200 
201 /*
202  * Data declarations.
203  */
204 struct r_debug r_debug __exported;	/* for GDB; */
205 static bool libmap_disable;	/* Disable libmap */
206 static bool ld_loadfltr;	/* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust;		/* False for setuid and setgid programs */
209 static bool dangerous_ld_env;	/* True if environment variables have been
210 				   used to affect the libraries loaded */
211 bool ld_bind_not;		/* Disable PLT update */
212 static const char *ld_bind_now;	/* Environment variable for immediate binding */
213 static const char *ld_debug;	/* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 				       weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload;	/* Environment variable for libraries to
219 				   load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 				   descriptors */
222 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
223 static const char *ld_tracing;	/* Called from ldd to print libs */
224 static const char *ld_utrace;	/* Use utrace() to log events. */
225 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
226 static Obj_Entry *obj_main;	/* The main program shared object */
227 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
228 static unsigned int obj_count;	/* Number of objects in obj_list */
229 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
230 
231 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
232   STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main =	/* Objects loaded at program startup */
234   STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini =	/* Objects needing fini() calls */
236   STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
241 
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244 
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261 
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266 
267 
268 int npagesizes;
269 static int osreldate;
270 size_t *pagesizes;
271 
272 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
273 static int max_stack_flags;
274 
275 /*
276  * Global declarations normally provided by crt1.  The dynamic linker is
277  * not built with crt1, so we have to provide them ourselves.
278  */
279 char *__progname;
280 char **environ;
281 
282 /*
283  * Used to pass argc, argv to init functions.
284  */
285 int main_argc;
286 char **main_argv;
287 
288 /*
289  * Globals to control TLS allocation.
290  */
291 size_t tls_last_offset;		/* Static TLS offset of last module */
292 size_t tls_last_size;		/* Static TLS size of last module */
293 size_t tls_static_space;	/* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
296 int tls_max_index = 1;		/* Largest module index allocated */
297 
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300 
301 /*
302  * Globals for path names, and such
303  */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309 
310 static void (*rtld_exit_ptr)(void);
311 
312 /*
313  * Fill in a DoneList with an allocation large enough to hold all of
314  * the currently-loaded objects.  Keep this as a macro since it calls
315  * alloca and we want that to occur within the scope of the caller.
316  */
317 #define donelist_init(dlp)					\
318     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
319     assert((dlp)->objs != NULL),				\
320     (dlp)->num_alloc = obj_count,				\
321     (dlp)->num_used = 0)
322 
323 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
324 	if (ld_utrace != NULL)					\
325 		ld_utrace_log(e, h, mb, ms, r, n);		\
326 } while (0)
327 
328 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330     int refcnt, const char *name)
331 {
332 	struct utrace_rtld ut;
333 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334 
335 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 	ut.event = event;
337 	ut.handle = handle;
338 	ut.mapbase = mapbase;
339 	ut.mapsize = mapsize;
340 	ut.refcnt = refcnt;
341 	bzero(ut.name, sizeof(ut.name));
342 	if (name)
343 		strlcpy(ut.name, name, sizeof(ut.name));
344 	utrace(&ut, sizeof(ut));
345 }
346 
347 enum {
348 	LD_BIND_NOW = 0,
349 	LD_PRELOAD,
350 	LD_LIBMAP,
351 	LD_LIBRARY_PATH,
352 	LD_LIBRARY_PATH_FDS,
353 	LD_LIBMAP_DISABLE,
354 	LD_BIND_NOT,
355 	LD_DEBUG,
356 	LD_ELF_HINTS_PATH,
357 	LD_LOADFLTR,
358 	LD_LIBRARY_PATH_RPATH,
359 	LD_PRELOAD_FDS,
360 	LD_DYNAMIC_WEAK,
361 	LD_TRACE_LOADED_OBJECTS,
362 	LD_UTRACE,
363 	LD_DUMP_REL_PRE,
364 	LD_DUMP_REL_POST,
365 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 	LD_TRACE_LOADED_OBJECTS_FMT1,
367 	LD_TRACE_LOADED_OBJECTS_FMT2,
368 	LD_TRACE_LOADED_OBJECTS_ALL,
369 	LD_SHOW_AUXV,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 };
404 
405 static const char *
ld_get_env_var(int idx)406 ld_get_env_var(int idx)
407 {
408 	return (ld_env_vars[idx].val);
409 }
410 
411 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)412 rtld_get_env_val(char **env, const char *name, size_t name_len)
413 {
414 	char **m, *n, *v;
415 
416 	for (m = env; *m != NULL; m++) {
417 		n = *m;
418 		v = strchr(n, '=');
419 		if (v == NULL) {
420 			/* corrupt environment? */
421 			continue;
422 		}
423 		if (v - n == (ptrdiff_t)name_len &&
424 		    strncmp(name, n, name_len) == 0)
425 			return (v + 1);
426 	}
427 	return (NULL);
428 }
429 
430 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)431 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
432 {
433 	struct ld_env_var_desc *lvd;
434 	size_t prefix_len, nlen;
435 	char **m, *n, *v;
436 	int i;
437 
438 	prefix_len = strlen(env_prefix);
439 	for (m = env; *m != NULL; m++) {
440 		n = *m;
441 		if (strncmp(env_prefix, n, prefix_len) != 0) {
442 			/* Not a rtld environment variable. */
443 			continue;
444 		}
445 		n += prefix_len;
446 		v = strchr(n, '=');
447 		if (v == NULL) {
448 			/* corrupt environment? */
449 			continue;
450 		}
451 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
452 			lvd = &ld_env_vars[i];
453 			if (lvd->val != NULL) {
454 				/* Saw higher-priority variable name already. */
455 				continue;
456 			}
457 			nlen = strlen(lvd->n);
458 			if (v - n == (ptrdiff_t)nlen &&
459 			    strncmp(lvd->n, n, nlen) == 0) {
460 				lvd->val = v + 1;
461 				break;
462 			}
463 		}
464 	}
465 }
466 
467 static void
rtld_init_env_vars(char ** env)468 rtld_init_env_vars(char **env)
469 {
470 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
471 }
472 
473 static void
set_ld_elf_hints_path(void)474 set_ld_elf_hints_path(void)
475 {
476 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
477 		ld_elf_hints_path = ld_elf_hints_default;
478 }
479 
480 /*
481  * Main entry point for dynamic linking.  The first argument is the
482  * stack pointer.  The stack is expected to be laid out as described
483  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
484  * Specifically, the stack pointer points to a word containing
485  * ARGC.  Following that in the stack is a null-terminated sequence
486  * of pointers to argument strings.  Then comes a null-terminated
487  * sequence of pointers to environment strings.  Finally, there is a
488  * sequence of "auxiliary vector" entries.
489  *
490  * The second argument points to a place to store the dynamic linker's
491  * exit procedure pointer and the third to a place to store the main
492  * program's object.
493  *
494  * The return value is the main program's entry point.
495  */
496 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)497 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
498 {
499     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
500     Objlist_Entry *entry;
501     Obj_Entry *last_interposer, *obj, *preload_tail;
502     const Elf_Phdr *phdr;
503     Objlist initlist;
504     RtldLockState lockstate;
505     struct stat st;
506     Elf_Addr *argcp;
507     char **argv, **env, **envp, *kexecpath;
508     const char *argv0, *binpath, *library_path_rpath;
509     struct ld_env_var_desc *lvd;
510     caddr_t imgentry;
511     char buf[MAXPATHLEN];
512     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
513     size_t sz;
514 #ifdef __powerpc__
515     int old_auxv_format = 1;
516 #endif
517     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
518 
519     /*
520      * On entry, the dynamic linker itself has not been relocated yet.
521      * Be very careful not to reference any global data until after
522      * init_rtld has returned.  It is OK to reference file-scope statics
523      * and string constants, and to call static and global functions.
524      */
525 
526     /* Find the auxiliary vector on the stack. */
527     argcp = sp;
528     argc = *sp++;
529     argv = (char **) sp;
530     sp += argc + 1;	/* Skip over arguments and NULL terminator */
531     env = (char **) sp;
532     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
533 	;
534     aux = (Elf_Auxinfo *) sp;
535 
536     /* Digest the auxiliary vector. */
537     for (i = 0;  i < AT_COUNT;  i++)
538 	aux_info[i] = NULL;
539     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
540 	if (auxp->a_type < AT_COUNT)
541 	    aux_info[auxp->a_type] = auxp;
542 #ifdef __powerpc__
543 	if (auxp->a_type == 23) /* AT_STACKPROT */
544 	    old_auxv_format = 0;
545 #endif
546     }
547 
548 #ifdef __powerpc__
549     if (old_auxv_format) {
550 	/* Remap from old-style auxv numbers. */
551 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
552 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
553 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
554 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
555 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
556 	aux_info[13] = NULL;		/* AT_GID */
557 
558 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
559 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
560 	aux_info[16] = aux_info[14];	/* AT_CANARY */
561 	aux_info[14] = NULL;		/* AT_EGID */
562     }
563 #endif
564 
565     /* Initialize and relocate ourselves. */
566     assert(aux_info[AT_BASE] != NULL);
567     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
568 
569     dlerror_dflt_init();
570 
571     __progname = obj_rtld.path;
572     argv0 = argv[0] != NULL ? argv[0] : "(null)";
573     environ = env;
574     main_argc = argc;
575     main_argv = argv;
576 
577     if (aux_info[AT_BSDFLAGS] != NULL &&
578 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
579 	    ld_fast_sigblock = true;
580 
581     trust = !issetugid();
582     direct_exec = false;
583 
584     md_abi_variant_hook(aux_info);
585     rtld_init_env_vars(env);
586 
587     fd = -1;
588     if (aux_info[AT_EXECFD] != NULL) {
589 	fd = aux_info[AT_EXECFD]->a_un.a_val;
590     } else {
591 	assert(aux_info[AT_PHDR] != NULL);
592 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
593 	if (phdr == obj_rtld.phdr) {
594 	    if (!trust) {
595 		_rtld_error("Tainted process refusing to run binary %s",
596 		    argv0);
597 		rtld_die();
598 	    }
599 	    direct_exec = true;
600 
601 	    dbg("opening main program in direct exec mode");
602 	    if (argc >= 2) {
603 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
604 		  &argv0, &dir_ignore);
605 		explicit_fd = (fd != -1);
606 		binpath = NULL;
607 		if (!explicit_fd)
608 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
609 		if (fstat(fd, &st) == -1) {
610 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
611 		      explicit_fd ? "user-provided descriptor" : argv0,
612 		      rtld_strerror(errno));
613 		    rtld_die();
614 		}
615 
616 		/*
617 		 * Rough emulation of the permission checks done by
618 		 * execve(2), only Unix DACs are checked, ACLs are
619 		 * ignored.  Preserve the semantic of disabling owner
620 		 * to execute if owner x bit is cleared, even if
621 		 * others x bit is enabled.
622 		 * mmap(2) does not allow to mmap with PROT_EXEC if
623 		 * binary' file comes from noexec mount.  We cannot
624 		 * set a text reference on the binary.
625 		 */
626 		dir_enable = false;
627 		if (st.st_uid == geteuid()) {
628 		    if ((st.st_mode & S_IXUSR) != 0)
629 			dir_enable = true;
630 		} else if (st.st_gid == getegid()) {
631 		    if ((st.st_mode & S_IXGRP) != 0)
632 			dir_enable = true;
633 		} else if ((st.st_mode & S_IXOTH) != 0) {
634 		    dir_enable = true;
635 		}
636 		if (!dir_enable && !dir_ignore) {
637 		    _rtld_error("No execute permission for binary %s",
638 		        argv0);
639 		    rtld_die();
640 		}
641 
642 		/*
643 		 * For direct exec mode, argv[0] is the interpreter
644 		 * name, we must remove it and shift arguments left
645 		 * before invoking binary main.  Since stack layout
646 		 * places environment pointers and aux vectors right
647 		 * after the terminating NULL, we must shift
648 		 * environment and aux as well.
649 		 */
650 		main_argc = argc - rtld_argc;
651 		for (i = 0; i <= main_argc; i++)
652 		    argv[i] = argv[i + rtld_argc];
653 		*argcp -= rtld_argc;
654 		environ = env = envp = argv + main_argc + 1;
655 		dbg("move env from %p to %p", envp + rtld_argc, envp);
656 		do {
657 		    *envp = *(envp + rtld_argc);
658 		}  while (*envp++ != NULL);
659 		aux = auxp = (Elf_Auxinfo *)envp;
660 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
661 		dbg("move aux from %p to %p", auxpf, aux);
662 		/* XXXKIB insert place for AT_EXECPATH if not present */
663 		for (;; auxp++, auxpf++) {
664 		    *auxp = *auxpf;
665 		    if (auxp->a_type == AT_NULL)
666 			    break;
667 		}
668 		/* Since the auxiliary vector has moved, redigest it. */
669 		for (i = 0;  i < AT_COUNT;  i++)
670 		    aux_info[i] = NULL;
671 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
672 		    if (auxp->a_type < AT_COUNT)
673 			aux_info[auxp->a_type] = auxp;
674 		}
675 
676 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
677 		if (binpath == NULL) {
678 		    aux_info[AT_EXECPATH] = NULL;
679 		} else {
680 		    if (aux_info[AT_EXECPATH] == NULL) {
681 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
682 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
683 		    }
684 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
685 		      binpath);
686 		}
687 	    } else {
688 		_rtld_error("No binary");
689 		rtld_die();
690 	    }
691 	}
692     }
693 
694     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
695 
696     /*
697      * If the process is tainted, then we un-set the dangerous environment
698      * variables.  The process will be marked as tainted until setuid(2)
699      * is called.  If any child process calls setuid(2) we do not want any
700      * future processes to honor the potentially un-safe variables.
701      */
702     if (!trust) {
703 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
704 		    lvd = &ld_env_vars[i];
705 		    if (lvd->unsecure)
706 			    lvd->val = NULL;
707 	    }
708     }
709 
710     ld_debug = ld_get_env_var(LD_DEBUG);
711     if (ld_bind_now == NULL)
712 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
713     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
714     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
715     libmap_override = ld_get_env_var(LD_LIBMAP);
716     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
717     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
718     ld_preload = ld_get_env_var(LD_PRELOAD);
719     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
720     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
721     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
722     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
723     if (library_path_rpath != NULL) {
724 	    if (library_path_rpath[0] == 'y' ||
725 		library_path_rpath[0] == 'Y' ||
726 		library_path_rpath[0] == '1')
727 		    ld_library_path_rpath = true;
728 	    else
729 		    ld_library_path_rpath = false;
730     }
731     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
732 	ld_library_path != NULL || ld_preload != NULL ||
733 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
734     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
735     ld_utrace = ld_get_env_var(LD_UTRACE);
736 
737     set_ld_elf_hints_path();
738     if (ld_debug != NULL && *ld_debug != '\0')
739 	debug = 1;
740     dbg("%s is initialized, base address = %p", __progname,
741 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
742     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
743     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
744 
745     dbg("initializing thread locks");
746     lockdflt_init();
747 
748     /*
749      * Load the main program, or process its program header if it is
750      * already loaded.
751      */
752     if (fd != -1) {	/* Load the main program. */
753 	dbg("loading main program");
754 	obj_main = map_object(fd, argv0, NULL);
755 	close(fd);
756 	if (obj_main == NULL)
757 	    rtld_die();
758 	max_stack_flags = obj_main->stack_flags;
759     } else {				/* Main program already loaded. */
760 	dbg("processing main program's program header");
761 	assert(aux_info[AT_PHDR] != NULL);
762 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
763 	assert(aux_info[AT_PHNUM] != NULL);
764 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
765 	assert(aux_info[AT_PHENT] != NULL);
766 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
767 	assert(aux_info[AT_ENTRY] != NULL);
768 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
769 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
770 	    rtld_die();
771     }
772 
773     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
774 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
775 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
776 	    if (kexecpath[0] == '/')
777 		    obj_main->path = kexecpath;
778 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
779 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
780 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
781 		    obj_main->path = xstrdup(argv0);
782 	    else
783 		    obj_main->path = xstrdup(buf);
784     } else {
785 	    dbg("No AT_EXECPATH or direct exec");
786 	    obj_main->path = xstrdup(argv0);
787     }
788     dbg("obj_main path %s", obj_main->path);
789     obj_main->mainprog = true;
790 
791     if (aux_info[AT_STACKPROT] != NULL &&
792       aux_info[AT_STACKPROT]->a_un.a_val != 0)
793 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
794 
795 #ifndef COMPAT_32BIT
796     /*
797      * Get the actual dynamic linker pathname from the executable if
798      * possible.  (It should always be possible.)  That ensures that
799      * gdb will find the right dynamic linker even if a non-standard
800      * one is being used.
801      */
802     if (obj_main->interp != NULL &&
803       strcmp(obj_main->interp, obj_rtld.path) != 0) {
804 	free(obj_rtld.path);
805 	obj_rtld.path = xstrdup(obj_main->interp);
806         __progname = obj_rtld.path;
807     }
808 #endif
809 
810     if (!digest_dynamic(obj_main, 0))
811 	rtld_die();
812     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
813 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
814 	obj_main->dynsymcount);
815 
816     linkmap_add(obj_main);
817     linkmap_add(&obj_rtld);
818 
819     /* Link the main program into the list of objects. */
820     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
821     obj_count++;
822     obj_loads++;
823 
824     /* Initialize a fake symbol for resolving undefined weak references. */
825     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
826     sym_zero.st_shndx = SHN_UNDEF;
827     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
828 
829     if (!libmap_disable)
830         libmap_disable = (bool)lm_init(libmap_override);
831 
832     if (aux_info[AT_KPRELOAD] != NULL &&
833       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
834 	dbg("loading kernel vdso");
835 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
836 	    rtld_die();
837     }
838 
839     dbg("loading LD_PRELOAD_FDS libraries");
840     if (load_preload_objects(ld_preload_fds, true) == -1)
841 	rtld_die();
842 
843     dbg("loading LD_PRELOAD libraries");
844     if (load_preload_objects(ld_preload, false) == -1)
845 	rtld_die();
846     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
847 
848     dbg("loading needed objects");
849     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
850       0) == -1)
851 	rtld_die();
852 
853     /* Make a list of all objects loaded at startup. */
854     last_interposer = obj_main;
855     TAILQ_FOREACH(obj, &obj_list, next) {
856 	if (obj->marker)
857 	    continue;
858 	if (obj->z_interpose && obj != obj_main) {
859 	    objlist_put_after(&list_main, last_interposer, obj);
860 	    last_interposer = obj;
861 	} else {
862 	    objlist_push_tail(&list_main, obj);
863 	}
864     	obj->refcount++;
865     }
866 
867     dbg("checking for required versions");
868     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
869 	rtld_die();
870 
871     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
872        dump_auxv(aux_info);
873 
874     if (ld_tracing) {		/* We're done */
875 	trace_loaded_objects(obj_main);
876 	exit(0);
877     }
878 
879     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
880        dump_relocations(obj_main);
881        exit (0);
882     }
883 
884     /*
885      * Processing tls relocations requires having the tls offsets
886      * initialized.  Prepare offsets before starting initial
887      * relocation processing.
888      */
889     dbg("initializing initial thread local storage offsets");
890     STAILQ_FOREACH(entry, &list_main, link) {
891 	/*
892 	 * Allocate all the initial objects out of the static TLS
893 	 * block even if they didn't ask for it.
894 	 */
895 	allocate_tls_offset(entry->obj);
896     }
897 
898     if (relocate_objects(obj_main,
899       ld_bind_now != NULL && *ld_bind_now != '\0',
900       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
901 	rtld_die();
902 
903     dbg("doing copy relocations");
904     if (do_copy_relocations(obj_main) == -1)
905 	rtld_die();
906 
907     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
908        dump_relocations(obj_main);
909        exit (0);
910     }
911 
912     ifunc_init(aux);
913 
914     /*
915      * Setup TLS for main thread.  This must be done after the
916      * relocations are processed, since tls initialization section
917      * might be the subject for relocations.
918      */
919     dbg("initializing initial thread local storage");
920     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
921 
922     dbg("initializing key program variables");
923     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
924     set_program_var("environ", env);
925     set_program_var("__elf_aux_vector", aux);
926 
927     /* Make a list of init functions to call. */
928     objlist_init(&initlist);
929     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
930       preload_tail, &initlist);
931 
932     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
933 
934     map_stacks_exec(NULL);
935 
936     if (!obj_main->crt_no_init) {
937 	/*
938 	 * Make sure we don't call the main program's init and fini
939 	 * functions for binaries linked with old crt1 which calls
940 	 * _init itself.
941 	 */
942 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
943 	obj_main->preinit_array = obj_main->init_array =
944 	    obj_main->fini_array = (Elf_Addr)NULL;
945     }
946 
947     if (direct_exec) {
948 	/* Set osrel for direct-execed binary */
949 	mib[0] = CTL_KERN;
950 	mib[1] = KERN_PROC;
951 	mib[2] = KERN_PROC_OSREL;
952 	mib[3] = getpid();
953 	osrel = obj_main->osrel;
954 	sz = sizeof(old_osrel);
955 	dbg("setting osrel to %d", osrel);
956 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
957     }
958 
959     wlock_acquire(rtld_bind_lock, &lockstate);
960 
961     dbg("resolving ifuncs");
962     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
963       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
964 	rtld_die();
965 
966     rtld_exit_ptr = rtld_exit;
967     if (obj_main->crt_no_init)
968 	preinit_main();
969     objlist_call_init(&initlist, &lockstate);
970     _r_debug_postinit(&obj_main->linkmap);
971     objlist_clear(&initlist);
972     dbg("loading filtees");
973     TAILQ_FOREACH(obj, &obj_list, next) {
974 	if (obj->marker)
975 	    continue;
976 	if (ld_loadfltr || obj->z_loadfltr)
977 	    load_filtees(obj, 0, &lockstate);
978     }
979 
980     dbg("enforcing main obj relro");
981     if (obj_enforce_relro(obj_main) == -1)
982 	rtld_die();
983 
984     lock_release(rtld_bind_lock, &lockstate);
985 
986     dbg("transferring control to program entry point = %p", obj_main->entry);
987 
988     /* Return the exit procedure and the program entry point. */
989     *exit_proc = rtld_exit_ptr;
990     *objp = obj_main;
991     return ((func_ptr_type)obj_main->entry);
992 }
993 
994 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)995 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
996 {
997 	void *ptr;
998 	Elf_Addr target;
999 
1000 	ptr = (void *)make_function_pointer(def, obj);
1001 	target = call_ifunc_resolver(ptr);
1002 	return ((void *)target);
1003 }
1004 
1005 /*
1006  * NB: MIPS uses a private version of this function (_mips_rtld_bind).
1007  * Changes to this function should be applied there as well.
1008  */
1009 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1010 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1011 {
1012     const Elf_Rel *rel;
1013     const Elf_Sym *def;
1014     const Obj_Entry *defobj;
1015     Elf_Addr *where;
1016     Elf_Addr target;
1017     RtldLockState lockstate;
1018 
1019     rlock_acquire(rtld_bind_lock, &lockstate);
1020     if (sigsetjmp(lockstate.env, 0) != 0)
1021 	    lock_upgrade(rtld_bind_lock, &lockstate);
1022     if (obj->pltrel)
1023 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1024     else
1025 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1026 
1027     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1028     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1029 	NULL, &lockstate);
1030     if (def == NULL)
1031 	rtld_die();
1032     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1033 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1034     else
1035 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1036 
1037     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1038       defobj->strtab + def->st_name,
1039       obj->path == NULL ? NULL : basename(obj->path),
1040       (void *)target,
1041       defobj->path == NULL ? NULL : basename(defobj->path));
1042 
1043     /*
1044      * Write the new contents for the jmpslot. Note that depending on
1045      * architecture, the value which we need to return back to the
1046      * lazy binding trampoline may or may not be the target
1047      * address. The value returned from reloc_jmpslot() is the value
1048      * that the trampoline needs.
1049      */
1050     target = reloc_jmpslot(where, target, defobj, obj, rel);
1051     lock_release(rtld_bind_lock, &lockstate);
1052     return (target);
1053 }
1054 
1055 /*
1056  * Error reporting function.  Use it like printf.  If formats the message
1057  * into a buffer, and sets things up so that the next call to dlerror()
1058  * will return the message.
1059  */
1060 void
_rtld_error(const char * fmt,...)1061 _rtld_error(const char *fmt, ...)
1062 {
1063 	va_list ap;
1064 
1065 	va_start(ap, fmt);
1066 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1067 	    fmt, ap);
1068 	va_end(ap);
1069 	*lockinfo.dlerror_seen() = 0;
1070 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1071 }
1072 
1073 /*
1074  * Return a dynamically-allocated copy of the current error message, if any.
1075  */
1076 static struct dlerror_save *
errmsg_save(void)1077 errmsg_save(void)
1078 {
1079 	struct dlerror_save *res;
1080 
1081 	res = xmalloc(sizeof(*res));
1082 	res->seen = *lockinfo.dlerror_seen();
1083 	if (res->seen == 0)
1084 		res->msg = xstrdup(lockinfo.dlerror_loc());
1085 	return (res);
1086 }
1087 
1088 /*
1089  * Restore the current error message from a copy which was previously saved
1090  * by errmsg_save().  The copy is freed.
1091  */
1092 static void
errmsg_restore(struct dlerror_save * saved_msg)1093 errmsg_restore(struct dlerror_save *saved_msg)
1094 {
1095 	if (saved_msg == NULL || saved_msg->seen == 1) {
1096 		*lockinfo.dlerror_seen() = 1;
1097 	} else {
1098 		*lockinfo.dlerror_seen() = 0;
1099 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1100 		    lockinfo.dlerror_loc_sz);
1101 		free(saved_msg->msg);
1102 	}
1103 	free(saved_msg);
1104 }
1105 
1106 static const char *
basename(const char * name)1107 basename(const char *name)
1108 {
1109 	const char *p;
1110 
1111 	p = strrchr(name, '/');
1112 	return (p != NULL ? p + 1 : name);
1113 }
1114 
1115 static struct utsname uts;
1116 
1117 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1118 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1119     const char *subst, bool may_free)
1120 {
1121 	char *p, *p1, *res, *resp;
1122 	int subst_len, kw_len, subst_count, old_len, new_len;
1123 
1124 	kw_len = strlen(kw);
1125 
1126 	/*
1127 	 * First, count the number of the keyword occurrences, to
1128 	 * preallocate the final string.
1129 	 */
1130 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1131 		p1 = strstr(p, kw);
1132 		if (p1 == NULL)
1133 			break;
1134 	}
1135 
1136 	/*
1137 	 * If the keyword is not found, just return.
1138 	 *
1139 	 * Return non-substituted string if resolution failed.  We
1140 	 * cannot do anything more reasonable, the failure mode of the
1141 	 * caller is unresolved library anyway.
1142 	 */
1143 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1144 		return (may_free ? real : xstrdup(real));
1145 	if (obj != NULL)
1146 		subst = obj->origin_path;
1147 
1148 	/*
1149 	 * There is indeed something to substitute.  Calculate the
1150 	 * length of the resulting string, and allocate it.
1151 	 */
1152 	subst_len = strlen(subst);
1153 	old_len = strlen(real);
1154 	new_len = old_len + (subst_len - kw_len) * subst_count;
1155 	res = xmalloc(new_len + 1);
1156 
1157 	/*
1158 	 * Now, execute the substitution loop.
1159 	 */
1160 	for (p = real, resp = res, *resp = '\0';;) {
1161 		p1 = strstr(p, kw);
1162 		if (p1 != NULL) {
1163 			/* Copy the prefix before keyword. */
1164 			memcpy(resp, p, p1 - p);
1165 			resp += p1 - p;
1166 			/* Keyword replacement. */
1167 			memcpy(resp, subst, subst_len);
1168 			resp += subst_len;
1169 			*resp = '\0';
1170 			p = p1 + kw_len;
1171 		} else
1172 			break;
1173 	}
1174 
1175 	/* Copy to the end of string and finish. */
1176 	strcat(resp, p);
1177 	if (may_free)
1178 		free(real);
1179 	return (res);
1180 }
1181 
1182 static const struct {
1183 	const char *kw;
1184 	bool pass_obj;
1185 	const char *subst;
1186 } tokens[] = {
1187 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1188 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1189 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1190 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1191 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1192 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1193 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1194 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1195 };
1196 
1197 static char *
origin_subst(Obj_Entry * obj,const char * real)1198 origin_subst(Obj_Entry *obj, const char *real)
1199 {
1200 	char *res;
1201 	int i;
1202 
1203 	if (obj == NULL || !trust)
1204 		return (xstrdup(real));
1205 	if (uts.sysname[0] == '\0') {
1206 		if (uname(&uts) != 0) {
1207 			_rtld_error("utsname failed: %d", errno);
1208 			return (NULL);
1209 		}
1210 	}
1211 
1212 	/* __DECONST is safe here since without may_free real is unchanged */
1213 	res = __DECONST(char *, real);
1214 	for (i = 0; i < (int)nitems(tokens); i++) {
1215 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1216 		    res, tokens[i].kw, tokens[i].subst, i == 0);
1217 	}
1218 	return (res);
1219 }
1220 
1221 void
rtld_die(void)1222 rtld_die(void)
1223 {
1224     const char *msg = dlerror();
1225 
1226     if (msg == NULL)
1227 	msg = "Fatal error";
1228     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1229     rtld_fdputstr(STDERR_FILENO, msg);
1230     rtld_fdputchar(STDERR_FILENO, '\n');
1231     _exit(1);
1232 }
1233 
1234 /*
1235  * Process a shared object's DYNAMIC section, and save the important
1236  * information in its Obj_Entry structure.
1237  */
1238 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1239 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1240     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1241 {
1242     const Elf_Dyn *dynp;
1243     Needed_Entry **needed_tail = &obj->needed;
1244     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1245     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1246     const Elf_Hashelt *hashtab;
1247     const Elf32_Word *hashval;
1248     Elf32_Word bkt, nmaskwords;
1249     int bloom_size32;
1250     int plttype = DT_REL;
1251 
1252     *dyn_rpath = NULL;
1253     *dyn_soname = NULL;
1254     *dyn_runpath = NULL;
1255 
1256     obj->bind_now = false;
1257     dynp = obj->dynamic;
1258     if (dynp == NULL)
1259 	return;
1260     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1261 	switch (dynp->d_tag) {
1262 
1263 	case DT_REL:
1264 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1265 	    break;
1266 
1267 	case DT_RELSZ:
1268 	    obj->relsize = dynp->d_un.d_val;
1269 	    break;
1270 
1271 	case DT_RELENT:
1272 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1273 	    break;
1274 
1275 	case DT_JMPREL:
1276 	    obj->pltrel = (const Elf_Rel *)
1277 	      (obj->relocbase + dynp->d_un.d_ptr);
1278 	    break;
1279 
1280 	case DT_PLTRELSZ:
1281 	    obj->pltrelsize = dynp->d_un.d_val;
1282 	    break;
1283 
1284 	case DT_RELA:
1285 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1286 	    break;
1287 
1288 	case DT_RELASZ:
1289 	    obj->relasize = dynp->d_un.d_val;
1290 	    break;
1291 
1292 	case DT_RELAENT:
1293 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1294 	    break;
1295 
1296 	case DT_RELR:
1297 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1298 	    break;
1299 
1300 	case DT_RELRSZ:
1301 	    obj->relrsize = dynp->d_un.d_val;
1302 	    break;
1303 
1304 	case DT_RELRENT:
1305 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1306 	    break;
1307 
1308 	case DT_PLTREL:
1309 	    plttype = dynp->d_un.d_val;
1310 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1311 	    break;
1312 
1313 	case DT_SYMTAB:
1314 	    obj->symtab = (const Elf_Sym *)
1315 	      (obj->relocbase + dynp->d_un.d_ptr);
1316 	    break;
1317 
1318 	case DT_SYMENT:
1319 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1320 	    break;
1321 
1322 	case DT_STRTAB:
1323 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1324 	    break;
1325 
1326 	case DT_STRSZ:
1327 	    obj->strsize = dynp->d_un.d_val;
1328 	    break;
1329 
1330 	case DT_VERNEED:
1331 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1332 		dynp->d_un.d_val);
1333 	    break;
1334 
1335 	case DT_VERNEEDNUM:
1336 	    obj->verneednum = dynp->d_un.d_val;
1337 	    break;
1338 
1339 	case DT_VERDEF:
1340 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1341 		dynp->d_un.d_val);
1342 	    break;
1343 
1344 	case DT_VERDEFNUM:
1345 	    obj->verdefnum = dynp->d_un.d_val;
1346 	    break;
1347 
1348 	case DT_VERSYM:
1349 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1350 		dynp->d_un.d_val);
1351 	    break;
1352 
1353 	case DT_HASH:
1354 	    {
1355 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1356 		    dynp->d_un.d_ptr);
1357 		obj->nbuckets = hashtab[0];
1358 		obj->nchains = hashtab[1];
1359 		obj->buckets = hashtab + 2;
1360 		obj->chains = obj->buckets + obj->nbuckets;
1361 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1362 		  obj->buckets != NULL;
1363 	    }
1364 	    break;
1365 
1366 	case DT_GNU_HASH:
1367 	    {
1368 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1369 		    dynp->d_un.d_ptr);
1370 		obj->nbuckets_gnu = hashtab[0];
1371 		obj->symndx_gnu = hashtab[1];
1372 		nmaskwords = hashtab[2];
1373 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1374 		obj->maskwords_bm_gnu = nmaskwords - 1;
1375 		obj->shift2_gnu = hashtab[3];
1376 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1377 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1378 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1379 		  obj->symndx_gnu;
1380 		/* Number of bitmask words is required to be power of 2 */
1381 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1382 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1383 	    }
1384 	    break;
1385 
1386 	case DT_NEEDED:
1387 	    if (!obj->rtld) {
1388 		Needed_Entry *nep = NEW(Needed_Entry);
1389 		nep->name = dynp->d_un.d_val;
1390 		nep->obj = NULL;
1391 		nep->next = NULL;
1392 
1393 		*needed_tail = nep;
1394 		needed_tail = &nep->next;
1395 	    }
1396 	    break;
1397 
1398 	case DT_FILTER:
1399 	    if (!obj->rtld) {
1400 		Needed_Entry *nep = NEW(Needed_Entry);
1401 		nep->name = dynp->d_un.d_val;
1402 		nep->obj = NULL;
1403 		nep->next = NULL;
1404 
1405 		*needed_filtees_tail = nep;
1406 		needed_filtees_tail = &nep->next;
1407 
1408 		if (obj->linkmap.l_refname == NULL)
1409 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1410 	    }
1411 	    break;
1412 
1413 	case DT_AUXILIARY:
1414 	    if (!obj->rtld) {
1415 		Needed_Entry *nep = NEW(Needed_Entry);
1416 		nep->name = dynp->d_un.d_val;
1417 		nep->obj = NULL;
1418 		nep->next = NULL;
1419 
1420 		*needed_aux_filtees_tail = nep;
1421 		needed_aux_filtees_tail = &nep->next;
1422 	    }
1423 	    break;
1424 
1425 	case DT_PLTGOT:
1426 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1427 	    break;
1428 
1429 	case DT_TEXTREL:
1430 	    obj->textrel = true;
1431 	    break;
1432 
1433 	case DT_SYMBOLIC:
1434 	    obj->symbolic = true;
1435 	    break;
1436 
1437 	case DT_RPATH:
1438 	    /*
1439 	     * We have to wait until later to process this, because we
1440 	     * might not have gotten the address of the string table yet.
1441 	     */
1442 	    *dyn_rpath = dynp;
1443 	    break;
1444 
1445 	case DT_SONAME:
1446 	    *dyn_soname = dynp;
1447 	    break;
1448 
1449 	case DT_RUNPATH:
1450 	    *dyn_runpath = dynp;
1451 	    break;
1452 
1453 	case DT_INIT:
1454 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1455 	    break;
1456 
1457 	case DT_PREINIT_ARRAY:
1458 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1459 	    break;
1460 
1461 	case DT_PREINIT_ARRAYSZ:
1462 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1463 	    break;
1464 
1465 	case DT_INIT_ARRAY:
1466 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1467 	    break;
1468 
1469 	case DT_INIT_ARRAYSZ:
1470 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1471 	    break;
1472 
1473 	case DT_FINI:
1474 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1475 	    break;
1476 
1477 	case DT_FINI_ARRAY:
1478 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1479 	    break;
1480 
1481 	case DT_FINI_ARRAYSZ:
1482 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1483 	    break;
1484 
1485 	/*
1486 	 * Don't process DT_DEBUG on MIPS as the dynamic section
1487 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1488 	 */
1489 
1490 #ifndef __mips__
1491 	case DT_DEBUG:
1492 	    if (!early)
1493 		dbg("Filling in DT_DEBUG entry");
1494 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1495 	    break;
1496 #endif
1497 
1498 	case DT_FLAGS:
1499 		if (dynp->d_un.d_val & DF_ORIGIN)
1500 		    obj->z_origin = true;
1501 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1502 		    obj->symbolic = true;
1503 		if (dynp->d_un.d_val & DF_TEXTREL)
1504 		    obj->textrel = true;
1505 		if (dynp->d_un.d_val & DF_BIND_NOW)
1506 		    obj->bind_now = true;
1507 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1508 		    obj->static_tls = true;
1509 	    break;
1510 #ifdef __mips__
1511 	case DT_MIPS_LOCAL_GOTNO:
1512 		obj->local_gotno = dynp->d_un.d_val;
1513 		break;
1514 
1515 	case DT_MIPS_SYMTABNO:
1516 		obj->symtabno = dynp->d_un.d_val;
1517 		break;
1518 
1519 	case DT_MIPS_GOTSYM:
1520 		obj->gotsym = dynp->d_un.d_val;
1521 		break;
1522 
1523 	case DT_MIPS_RLD_MAP:
1524 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1525 		break;
1526 
1527 	case DT_MIPS_RLD_MAP_REL:
1528 		// The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1529 		// section relative to the address of the tag itself.
1530 		*((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1531 		    (Elf_Addr) &r_debug;
1532 		break;
1533 
1534 	case DT_MIPS_PLTGOT:
1535 		obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1536 		    dynp->d_un.d_ptr);
1537 		break;
1538 
1539 #endif
1540 
1541 #ifdef __powerpc__
1542 #ifdef __powerpc64__
1543 	case DT_PPC64_GLINK:
1544 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1545 		break;
1546 #else
1547 	case DT_PPC_GOT:
1548 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1549 		break;
1550 #endif
1551 #endif
1552 
1553 	case DT_FLAGS_1:
1554 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1555 		    obj->z_noopen = true;
1556 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1557 		    obj->z_origin = true;
1558 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1559 		    obj->z_global = true;
1560 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1561 		    obj->bind_now = true;
1562 		if (dynp->d_un.d_val & DF_1_NODELETE)
1563 		    obj->z_nodelete = true;
1564 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1565 		    obj->z_loadfltr = true;
1566 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1567 		    obj->z_interpose = true;
1568 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1569 		    obj->z_nodeflib = true;
1570 		if (dynp->d_un.d_val & DF_1_PIE)
1571 		    obj->z_pie = true;
1572 	    break;
1573 
1574 	default:
1575 	    if (!early) {
1576 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1577 		    (long)dynp->d_tag);
1578 	    }
1579 	    break;
1580 	}
1581     }
1582 
1583     obj->traced = false;
1584 
1585     if (plttype == DT_RELA) {
1586 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1587 	obj->pltrel = NULL;
1588 	obj->pltrelasize = obj->pltrelsize;
1589 	obj->pltrelsize = 0;
1590     }
1591 
1592     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1593     if (obj->valid_hash_sysv)
1594 	obj->dynsymcount = obj->nchains;
1595     else if (obj->valid_hash_gnu) {
1596 	obj->dynsymcount = 0;
1597 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1598 	    if (obj->buckets_gnu[bkt] == 0)
1599 		continue;
1600 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1601 	    do
1602 		obj->dynsymcount++;
1603 	    while ((*hashval++ & 1u) == 0);
1604 	}
1605 	obj->dynsymcount += obj->symndx_gnu;
1606     }
1607 
1608     if (obj->linkmap.l_refname != NULL)
1609 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1610 	  linkmap.l_refname;
1611 }
1612 
1613 static bool
obj_resolve_origin(Obj_Entry * obj)1614 obj_resolve_origin(Obj_Entry *obj)
1615 {
1616 
1617 	if (obj->origin_path != NULL)
1618 		return (true);
1619 	obj->origin_path = xmalloc(PATH_MAX);
1620 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1621 }
1622 
1623 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1624 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1625     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1626 {
1627 
1628 	if (obj->z_origin && !obj_resolve_origin(obj))
1629 		return (false);
1630 
1631 	if (dyn_runpath != NULL) {
1632 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1633 		obj->runpath = origin_subst(obj, obj->runpath);
1634 	} else if (dyn_rpath != NULL) {
1635 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1636 		obj->rpath = origin_subst(obj, obj->rpath);
1637 	}
1638 	if (dyn_soname != NULL)
1639 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1640 	return (true);
1641 }
1642 
1643 static bool
digest_dynamic(Obj_Entry * obj,int early)1644 digest_dynamic(Obj_Entry *obj, int early)
1645 {
1646 	const Elf_Dyn *dyn_rpath;
1647 	const Elf_Dyn *dyn_soname;
1648 	const Elf_Dyn *dyn_runpath;
1649 
1650 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1651 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1652 }
1653 
1654 /*
1655  * Process a shared object's program header.  This is used only for the
1656  * main program, when the kernel has already loaded the main program
1657  * into memory before calling the dynamic linker.  It creates and
1658  * returns an Obj_Entry structure.
1659  */
1660 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1661 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1662 {
1663     Obj_Entry *obj;
1664     const Elf_Phdr *phlimit = phdr + phnum;
1665     const Elf_Phdr *ph;
1666     Elf_Addr note_start, note_end;
1667     int nsegs = 0;
1668 
1669     obj = obj_new();
1670     for (ph = phdr;  ph < phlimit;  ph++) {
1671 	if (ph->p_type != PT_PHDR)
1672 	    continue;
1673 
1674 	obj->phdr = phdr;
1675 	obj->phsize = ph->p_memsz;
1676 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1677 	break;
1678     }
1679 
1680     obj->stack_flags = PF_X | PF_R | PF_W;
1681 
1682     for (ph = phdr;  ph < phlimit;  ph++) {
1683 	switch (ph->p_type) {
1684 
1685 	case PT_INTERP:
1686 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1687 	    break;
1688 
1689 	case PT_LOAD:
1690 	    if (nsegs == 0) {	/* First load segment */
1691 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1692 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1693 	    } else {		/* Last load segment */
1694 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1695 		  obj->vaddrbase;
1696 	    }
1697 	    nsegs++;
1698 	    break;
1699 
1700 	case PT_DYNAMIC:
1701 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1702 	    break;
1703 
1704 	case PT_TLS:
1705 	    obj->tlsindex = 1;
1706 	    obj->tlssize = ph->p_memsz;
1707 	    obj->tlsalign = ph->p_align;
1708 	    obj->tlsinitsize = ph->p_filesz;
1709 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1710 	    obj->tlspoffset = ph->p_offset;
1711 	    break;
1712 
1713 	case PT_GNU_STACK:
1714 	    obj->stack_flags = ph->p_flags;
1715 	    break;
1716 
1717 	case PT_GNU_RELRO:
1718 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1719 	    obj->relro_size = trunc_page(ph->p_vaddr + ph->p_memsz) -
1720 	      trunc_page(ph->p_vaddr);
1721 	    break;
1722 
1723 	case PT_NOTE:
1724 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1725 	    note_end = note_start + ph->p_filesz;
1726 	    digest_notes(obj, note_start, note_end);
1727 	    break;
1728 	}
1729     }
1730     if (nsegs < 1) {
1731 	_rtld_error("%s: too few PT_LOAD segments", path);
1732 	return (NULL);
1733     }
1734 
1735     obj->entry = entry;
1736     return (obj);
1737 }
1738 
1739 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1740 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1741 {
1742 	const Elf_Note *note;
1743 	const char *note_name;
1744 	uintptr_t p;
1745 
1746 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1747 	    note = (const Elf_Note *)((const char *)(note + 1) +
1748 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1749 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1750 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1751 		    note->n_descsz != sizeof(int32_t))
1752 			continue;
1753 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1754 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1755 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1756 			continue;
1757 		note_name = (const char *)(note + 1);
1758 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1759 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1760 			continue;
1761 		switch (note->n_type) {
1762 		case NT_FREEBSD_ABI_TAG:
1763 			/* FreeBSD osrel note */
1764 			p = (uintptr_t)(note + 1);
1765 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1766 			obj->osrel = *(const int32_t *)(p);
1767 			dbg("note osrel %d", obj->osrel);
1768 			break;
1769 		case NT_FREEBSD_FEATURE_CTL:
1770 			/* FreeBSD ABI feature control note */
1771 			p = (uintptr_t)(note + 1);
1772 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1773 			obj->fctl0 = *(const uint32_t *)(p);
1774 			dbg("note fctl0 %#x", obj->fctl0);
1775 			break;
1776 		case NT_FREEBSD_NOINIT_TAG:
1777 			/* FreeBSD 'crt does not call init' note */
1778 			obj->crt_no_init = true;
1779 			dbg("note crt_no_init");
1780 			break;
1781 		}
1782 	}
1783 }
1784 
1785 static Obj_Entry *
dlcheck(void * handle)1786 dlcheck(void *handle)
1787 {
1788     Obj_Entry *obj;
1789 
1790     TAILQ_FOREACH(obj, &obj_list, next) {
1791 	if (obj == (Obj_Entry *) handle)
1792 	    break;
1793     }
1794 
1795     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1796 	_rtld_error("Invalid shared object handle %p", handle);
1797 	return (NULL);
1798     }
1799     return (obj);
1800 }
1801 
1802 /*
1803  * If the given object is already in the donelist, return true.  Otherwise
1804  * add the object to the list and return false.
1805  */
1806 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1807 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1808 {
1809     unsigned int i;
1810 
1811     for (i = 0;  i < dlp->num_used;  i++)
1812 	if (dlp->objs[i] == obj)
1813 	    return (true);
1814     /*
1815      * Our donelist allocation should always be sufficient.  But if
1816      * our threads locking isn't working properly, more shared objects
1817      * could have been loaded since we allocated the list.  That should
1818      * never happen, but we'll handle it properly just in case it does.
1819      */
1820     if (dlp->num_used < dlp->num_alloc)
1821 	dlp->objs[dlp->num_used++] = obj;
1822     return (false);
1823 }
1824 
1825 /*
1826  * Hash function for symbol table lookup.  Don't even think about changing
1827  * this.  It is specified by the System V ABI.
1828  */
1829 unsigned long
elf_hash(const char * name)1830 elf_hash(const char *name)
1831 {
1832     const unsigned char *p = (const unsigned char *) name;
1833     unsigned long h = 0;
1834     unsigned long g;
1835 
1836     while (*p != '\0') {
1837 	h = (h << 4) + *p++;
1838 	if ((g = h & 0xf0000000) != 0)
1839 	    h ^= g >> 24;
1840 	h &= ~g;
1841     }
1842     return (h);
1843 }
1844 
1845 /*
1846  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1847  * unsigned in case it's implemented with a wider type.
1848  */
1849 static uint32_t
gnu_hash(const char * s)1850 gnu_hash(const char *s)
1851 {
1852 	uint32_t h;
1853 	unsigned char c;
1854 
1855 	h = 5381;
1856 	for (c = *s; c != '\0'; c = *++s)
1857 		h = h * 33 + c;
1858 	return (h & 0xffffffff);
1859 }
1860 
1861 
1862 /*
1863  * Find the library with the given name, and return its full pathname.
1864  * The returned string is dynamically allocated.  Generates an error
1865  * message and returns NULL if the library cannot be found.
1866  *
1867  * If the second argument is non-NULL, then it refers to an already-
1868  * loaded shared object, whose library search path will be searched.
1869  *
1870  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1871  * descriptor (which is close-on-exec) will be passed out via the third
1872  * argument.
1873  *
1874  * The search order is:
1875  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1876  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1877  *   LD_LIBRARY_PATH
1878  *   DT_RUNPATH in the referencing file
1879  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1880  *	 from list)
1881  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1882  *
1883  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1884  */
1885 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1886 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1887 {
1888 	char *pathname, *refobj_path;
1889 	const char *name;
1890 	bool nodeflib, objgiven;
1891 
1892 	objgiven = refobj != NULL;
1893 
1894 	if (libmap_disable || !objgiven ||
1895 	    (name = lm_find(refobj->path, xname)) == NULL)
1896 		name = xname;
1897 
1898 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1899 		if (name[0] != '/' && !trust) {
1900 			_rtld_error("Absolute pathname required "
1901 			    "for shared object \"%s\"", name);
1902 			return (NULL);
1903 		}
1904 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1905 		    __DECONST(char *, name)));
1906 	}
1907 
1908 	dbg(" Searching for \"%s\"", name);
1909 	refobj_path = objgiven ? refobj->path : NULL;
1910 
1911 	/*
1912 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1913 	 * back to pre-conforming behaviour if user requested so with
1914 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1915 	 * nodeflib.
1916 	 */
1917 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1918 		pathname = search_library_path(name, ld_library_path,
1919 		    refobj_path, fdp);
1920 		if (pathname != NULL)
1921 			return (pathname);
1922 		if (refobj != NULL) {
1923 			pathname = search_library_path(name, refobj->rpath,
1924 			    refobj_path, fdp);
1925 			if (pathname != NULL)
1926 				return (pathname);
1927 		}
1928 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1929 		if (pathname != NULL)
1930 			return (pathname);
1931 		pathname = search_library_path(name, gethints(false),
1932 		    refobj_path, fdp);
1933 		if (pathname != NULL)
1934 			return (pathname);
1935 		pathname = search_library_path(name, ld_standard_library_path,
1936 		    refobj_path, fdp);
1937 		if (pathname != NULL)
1938 			return (pathname);
1939 	} else {
1940 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1941 		if (objgiven) {
1942 			pathname = search_library_path(name, refobj->rpath,
1943 			    refobj->path, fdp);
1944 			if (pathname != NULL)
1945 				return (pathname);
1946 		}
1947 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1948 			pathname = search_library_path(name, obj_main->rpath,
1949 			    refobj_path, fdp);
1950 			if (pathname != NULL)
1951 				return (pathname);
1952 		}
1953 		pathname = search_library_path(name, ld_library_path,
1954 		    refobj_path, fdp);
1955 		if (pathname != NULL)
1956 			return (pathname);
1957 		if (objgiven) {
1958 			pathname = search_library_path(name, refobj->runpath,
1959 			    refobj_path, fdp);
1960 			if (pathname != NULL)
1961 				return (pathname);
1962 		}
1963 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1964 		if (pathname != NULL)
1965 			return (pathname);
1966 		pathname = search_library_path(name, gethints(nodeflib),
1967 		    refobj_path, fdp);
1968 		if (pathname != NULL)
1969 			return (pathname);
1970 		if (objgiven && !nodeflib) {
1971 			pathname = search_library_path(name,
1972 			    ld_standard_library_path, refobj_path, fdp);
1973 			if (pathname != NULL)
1974 				return (pathname);
1975 		}
1976 	}
1977 
1978 	if (objgiven && refobj->path != NULL) {
1979 		_rtld_error("Shared object \"%s\" not found, "
1980 		    "required by \"%s\"", name, basename(refobj->path));
1981 	} else {
1982 		_rtld_error("Shared object \"%s\" not found", name);
1983 	}
1984 	return (NULL);
1985 }
1986 
1987 /*
1988  * Given a symbol number in a referencing object, find the corresponding
1989  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1990  * no definition was found.  Returns a pointer to the Obj_Entry of the
1991  * defining object via the reference parameter DEFOBJ_OUT.
1992  */
1993 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1994 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1995     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1996     RtldLockState *lockstate)
1997 {
1998     const Elf_Sym *ref;
1999     const Elf_Sym *def;
2000     const Obj_Entry *defobj;
2001     const Ver_Entry *ve;
2002     SymLook req;
2003     const char *name;
2004     int res;
2005 
2006     /*
2007      * If we have already found this symbol, get the information from
2008      * the cache.
2009      */
2010     if (symnum >= refobj->dynsymcount)
2011 	return (NULL);	/* Bad object */
2012     if (cache != NULL && cache[symnum].sym != NULL) {
2013 	*defobj_out = cache[symnum].obj;
2014 	return (cache[symnum].sym);
2015     }
2016 
2017     ref = refobj->symtab + symnum;
2018     name = refobj->strtab + ref->st_name;
2019     def = NULL;
2020     defobj = NULL;
2021     ve = NULL;
2022 
2023     /*
2024      * We don't have to do a full scale lookup if the symbol is local.
2025      * We know it will bind to the instance in this load module; to
2026      * which we already have a pointer (ie ref). By not doing a lookup,
2027      * we not only improve performance, but it also avoids unresolvable
2028      * symbols when local symbols are not in the hash table. This has
2029      * been seen with the ia64 toolchain.
2030      */
2031     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2032 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2033 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2034 		symnum);
2035 	}
2036 	symlook_init(&req, name);
2037 	req.flags = flags;
2038 	ve = req.ventry = fetch_ventry(refobj, symnum);
2039 	req.lockstate = lockstate;
2040 	res = symlook_default(&req, refobj);
2041 	if (res == 0) {
2042 	    def = req.sym_out;
2043 	    defobj = req.defobj_out;
2044 	}
2045     } else {
2046 	def = ref;
2047 	defobj = refobj;
2048     }
2049 
2050     /*
2051      * If we found no definition and the reference is weak, treat the
2052      * symbol as having the value zero.
2053      */
2054     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2055 	def = &sym_zero;
2056 	defobj = obj_main;
2057     }
2058 
2059     if (def != NULL) {
2060 	*defobj_out = defobj;
2061 	/* Record the information in the cache to avoid subsequent lookups. */
2062 	if (cache != NULL) {
2063 	    cache[symnum].sym = def;
2064 	    cache[symnum].obj = defobj;
2065 	}
2066     } else {
2067 	if (refobj != &obj_rtld)
2068 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2069 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2070     }
2071     return (def);
2072 }
2073 
2074 /*
2075  * Return the search path from the ldconfig hints file, reading it if
2076  * necessary.  If nostdlib is true, then the default search paths are
2077  * not added to result.
2078  *
2079  * Returns NULL if there are problems with the hints file,
2080  * or if the search path there is empty.
2081  */
2082 static const char *
gethints(bool nostdlib)2083 gethints(bool nostdlib)
2084 {
2085 	static char *filtered_path;
2086 	static const char *hints;
2087 	static struct elfhints_hdr hdr;
2088 	struct fill_search_info_args sargs, hargs;
2089 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2090 	struct dl_serpath *SLPpath, *hintpath;
2091 	char *p;
2092 	struct stat hint_stat;
2093 	unsigned int SLPndx, hintndx, fndx, fcount;
2094 	int fd;
2095 	size_t flen;
2096 	uint32_t dl;
2097 	bool skip;
2098 
2099 	/* First call, read the hints file */
2100 	if (hints == NULL) {
2101 		/* Keep from trying again in case the hints file is bad. */
2102 		hints = "";
2103 
2104 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2105 			return (NULL);
2106 
2107 		/*
2108 		 * Check of hdr.dirlistlen value against type limit
2109 		 * intends to pacify static analyzers.  Further
2110 		 * paranoia leads to checks that dirlist is fully
2111 		 * contained in the file range.
2112 		 */
2113 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2114 		    hdr.magic != ELFHINTS_MAGIC ||
2115 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2116 		    fstat(fd, &hint_stat) == -1) {
2117 cleanup1:
2118 			close(fd);
2119 			hdr.dirlistlen = 0;
2120 			return (NULL);
2121 		}
2122 		dl = hdr.strtab;
2123 		if (dl + hdr.dirlist < dl)
2124 			goto cleanup1;
2125 		dl += hdr.dirlist;
2126 		if (dl + hdr.dirlistlen < dl)
2127 			goto cleanup1;
2128 		dl += hdr.dirlistlen;
2129 		if (dl > hint_stat.st_size)
2130 			goto cleanup1;
2131 		p = xmalloc(hdr.dirlistlen + 1);
2132 		if (pread(fd, p, hdr.dirlistlen + 1,
2133 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2134 		    p[hdr.dirlistlen] != '\0') {
2135 			free(p);
2136 			goto cleanup1;
2137 		}
2138 		hints = p;
2139 		close(fd);
2140 	}
2141 
2142 	/*
2143 	 * If caller agreed to receive list which includes the default
2144 	 * paths, we are done. Otherwise, if we still did not
2145 	 * calculated filtered result, do it now.
2146 	 */
2147 	if (!nostdlib)
2148 		return (hints[0] != '\0' ? hints : NULL);
2149 	if (filtered_path != NULL)
2150 		goto filt_ret;
2151 
2152 	/*
2153 	 * Obtain the list of all configured search paths, and the
2154 	 * list of the default paths.
2155 	 *
2156 	 * First estimate the size of the results.
2157 	 */
2158 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2159 	smeta.dls_cnt = 0;
2160 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2161 	hmeta.dls_cnt = 0;
2162 
2163 	sargs.request = RTLD_DI_SERINFOSIZE;
2164 	sargs.serinfo = &smeta;
2165 	hargs.request = RTLD_DI_SERINFOSIZE;
2166 	hargs.serinfo = &hmeta;
2167 
2168 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2169 	    &sargs);
2170 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2171 
2172 	SLPinfo = xmalloc(smeta.dls_size);
2173 	hintinfo = xmalloc(hmeta.dls_size);
2174 
2175 	/*
2176 	 * Next fetch both sets of paths.
2177 	 */
2178 	sargs.request = RTLD_DI_SERINFO;
2179 	sargs.serinfo = SLPinfo;
2180 	sargs.serpath = &SLPinfo->dls_serpath[0];
2181 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2182 
2183 	hargs.request = RTLD_DI_SERINFO;
2184 	hargs.serinfo = hintinfo;
2185 	hargs.serpath = &hintinfo->dls_serpath[0];
2186 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2187 
2188 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2189 	    &sargs);
2190 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2191 
2192 	/*
2193 	 * Now calculate the difference between two sets, by excluding
2194 	 * standard paths from the full set.
2195 	 */
2196 	fndx = 0;
2197 	fcount = 0;
2198 	filtered_path = xmalloc(hdr.dirlistlen + 1);
2199 	hintpath = &hintinfo->dls_serpath[0];
2200 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2201 		skip = false;
2202 		SLPpath = &SLPinfo->dls_serpath[0];
2203 		/*
2204 		 * Check each standard path against current.
2205 		 */
2206 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2207 			/* matched, skip the path */
2208 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2209 				skip = true;
2210 				break;
2211 			}
2212 		}
2213 		if (skip)
2214 			continue;
2215 		/*
2216 		 * Not matched against any standard path, add the path
2217 		 * to result. Separate consequtive paths with ':'.
2218 		 */
2219 		if (fcount > 0) {
2220 			filtered_path[fndx] = ':';
2221 			fndx++;
2222 		}
2223 		fcount++;
2224 		flen = strlen(hintpath->dls_name);
2225 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2226 		fndx += flen;
2227 	}
2228 	filtered_path[fndx] = '\0';
2229 
2230 	free(SLPinfo);
2231 	free(hintinfo);
2232 
2233 filt_ret:
2234 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2235 }
2236 
2237 static void
init_dag(Obj_Entry * root)2238 init_dag(Obj_Entry *root)
2239 {
2240     const Needed_Entry *needed;
2241     const Objlist_Entry *elm;
2242     DoneList donelist;
2243 
2244     if (root->dag_inited)
2245 	return;
2246     donelist_init(&donelist);
2247 
2248     /* Root object belongs to own DAG. */
2249     objlist_push_tail(&root->dldags, root);
2250     objlist_push_tail(&root->dagmembers, root);
2251     donelist_check(&donelist, root);
2252 
2253     /*
2254      * Add dependencies of root object to DAG in breadth order
2255      * by exploiting the fact that each new object get added
2256      * to the tail of the dagmembers list.
2257      */
2258     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2259 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2260 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2261 		continue;
2262 	    objlist_push_tail(&needed->obj->dldags, root);
2263 	    objlist_push_tail(&root->dagmembers, needed->obj);
2264 	}
2265     }
2266     root->dag_inited = true;
2267 }
2268 
2269 static void
init_marker(Obj_Entry * marker)2270 init_marker(Obj_Entry *marker)
2271 {
2272 
2273 	bzero(marker, sizeof(*marker));
2274 	marker->marker = true;
2275 }
2276 
2277 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2278 globallist_curr(const Obj_Entry *obj)
2279 {
2280 
2281 	for (;;) {
2282 		if (obj == NULL)
2283 			return (NULL);
2284 		if (!obj->marker)
2285 			return (__DECONST(Obj_Entry *, obj));
2286 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2287 	}
2288 }
2289 
2290 Obj_Entry *
globallist_next(const Obj_Entry * obj)2291 globallist_next(const Obj_Entry *obj)
2292 {
2293 
2294 	for (;;) {
2295 		obj = TAILQ_NEXT(obj, next);
2296 		if (obj == NULL)
2297 			return (NULL);
2298 		if (!obj->marker)
2299 			return (__DECONST(Obj_Entry *, obj));
2300 	}
2301 }
2302 
2303 /* Prevent the object from being unmapped while the bind lock is dropped. */
2304 static void
hold_object(Obj_Entry * obj)2305 hold_object(Obj_Entry *obj)
2306 {
2307 
2308 	obj->holdcount++;
2309 }
2310 
2311 static void
unhold_object(Obj_Entry * obj)2312 unhold_object(Obj_Entry *obj)
2313 {
2314 
2315 	assert(obj->holdcount > 0);
2316 	if (--obj->holdcount == 0 && obj->unholdfree)
2317 		release_object(obj);
2318 }
2319 
2320 static void
process_z(Obj_Entry * root)2321 process_z(Obj_Entry *root)
2322 {
2323 	const Objlist_Entry *elm;
2324 	Obj_Entry *obj;
2325 
2326 	/*
2327 	 * Walk over object DAG and process every dependent object
2328 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2329 	 * to grow their own DAG.
2330 	 *
2331 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2332 	 * symlook_global() to work.
2333 	 *
2334 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2335 	 */
2336 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2337 		obj = elm->obj;
2338 		if (obj == NULL)
2339 			continue;
2340 		if (obj->z_nodelete && !obj->ref_nodel) {
2341 			dbg("obj %s -z nodelete", obj->path);
2342 			init_dag(obj);
2343 			ref_dag(obj);
2344 			obj->ref_nodel = true;
2345 		}
2346 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2347 			dbg("obj %s -z global", obj->path);
2348 			objlist_push_tail(&list_global, obj);
2349 			init_dag(obj);
2350 		}
2351 	}
2352 }
2353 
2354 static void
parse_rtld_phdr(Obj_Entry * obj)2355 parse_rtld_phdr(Obj_Entry *obj)
2356 {
2357 	const Elf_Phdr *ph;
2358 	Elf_Addr note_start, note_end;
2359 
2360 	obj->stack_flags = PF_X | PF_R | PF_W;
2361 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2362 	    obj->phsize; ph++) {
2363 		switch (ph->p_type) {
2364 		case PT_GNU_STACK:
2365 			obj->stack_flags = ph->p_flags;
2366 			break;
2367 		case PT_GNU_RELRO:
2368 			obj->relro_page = obj->relocbase +
2369 			    trunc_page(ph->p_vaddr);
2370 			obj->relro_size = round_page(ph->p_memsz);
2371 			break;
2372 		case PT_NOTE:
2373 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2374 			note_end = note_start + ph->p_filesz;
2375 			digest_notes(obj, note_start, note_end);
2376 			break;
2377 		}
2378 	}
2379 }
2380 
2381 /*
2382  * Initialize the dynamic linker.  The argument is the address at which
2383  * the dynamic linker has been mapped into memory.  The primary task of
2384  * this function is to relocate the dynamic linker.
2385  */
2386 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2387 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2388 {
2389     Obj_Entry objtmp;	/* Temporary rtld object */
2390     const Elf_Ehdr *ehdr;
2391     const Elf_Dyn *dyn_rpath;
2392     const Elf_Dyn *dyn_soname;
2393     const Elf_Dyn *dyn_runpath;
2394 
2395 #ifdef RTLD_INIT_PAGESIZES_EARLY
2396     /* The page size is required by the dynamic memory allocator. */
2397     init_pagesizes(aux_info);
2398 #endif
2399 
2400     /*
2401      * Conjure up an Obj_Entry structure for the dynamic linker.
2402      *
2403      * The "path" member can't be initialized yet because string constants
2404      * cannot yet be accessed. Below we will set it correctly.
2405      */
2406     memset(&objtmp, 0, sizeof(objtmp));
2407     objtmp.path = NULL;
2408     objtmp.rtld = true;
2409     objtmp.mapbase = mapbase;
2410 #ifdef PIC
2411     objtmp.relocbase = mapbase;
2412 #endif
2413 
2414     objtmp.dynamic = rtld_dynamic(&objtmp);
2415     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2416     assert(objtmp.needed == NULL);
2417 #if !defined(__mips__)
2418     /* MIPS has a bogus DT_TEXTREL. */
2419     assert(!objtmp.textrel);
2420 #endif
2421     /*
2422      * Temporarily put the dynamic linker entry into the object list, so
2423      * that symbols can be found.
2424      */
2425     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2426 
2427     ehdr = (Elf_Ehdr *)mapbase;
2428     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2429     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2430 
2431     /* Initialize the object list. */
2432     TAILQ_INIT(&obj_list);
2433 
2434     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2435     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2436 
2437 #ifndef RTLD_INIT_PAGESIZES_EARLY
2438     /* The page size is required by the dynamic memory allocator. */
2439     init_pagesizes(aux_info);
2440 #endif
2441 
2442     if (aux_info[AT_OSRELDATE] != NULL)
2443 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2444 
2445     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2446 
2447     /* Replace the path with a dynamically allocated copy. */
2448     obj_rtld.path = xstrdup(ld_path_rtld);
2449 
2450     parse_rtld_phdr(&obj_rtld);
2451     if (obj_enforce_relro(&obj_rtld) == -1)
2452 	rtld_die();
2453 
2454     r_debug.r_version = R_DEBUG_VERSION;
2455     r_debug.r_brk = r_debug_state;
2456     r_debug.r_state = RT_CONSISTENT;
2457     r_debug.r_ldbase = obj_rtld.relocbase;
2458 }
2459 
2460 /*
2461  * Retrieve the array of supported page sizes.  The kernel provides the page
2462  * sizes in increasing order.
2463  */
2464 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2465 init_pagesizes(Elf_Auxinfo **aux_info)
2466 {
2467 	static size_t psa[MAXPAGESIZES];
2468 	int mib[2];
2469 	size_t len, size;
2470 
2471 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2472 	    NULL) {
2473 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2474 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2475 	} else {
2476 		len = 2;
2477 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2478 			size = sizeof(psa);
2479 		else {
2480 			/* As a fallback, retrieve the base page size. */
2481 			size = sizeof(psa[0]);
2482 			if (aux_info[AT_PAGESZ] != NULL) {
2483 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2484 				goto psa_filled;
2485 			} else {
2486 				mib[0] = CTL_HW;
2487 				mib[1] = HW_PAGESIZE;
2488 				len = 2;
2489 			}
2490 		}
2491 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2492 			_rtld_error("sysctl for hw.pagesize(s) failed");
2493 			rtld_die();
2494 		}
2495 psa_filled:
2496 		pagesizes = psa;
2497 	}
2498 	npagesizes = size / sizeof(pagesizes[0]);
2499 	/* Discard any invalid entries at the end of the array. */
2500 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2501 		npagesizes--;
2502 }
2503 
2504 /*
2505  * Add the init functions from a needed object list (and its recursive
2506  * needed objects) to "list".  This is not used directly; it is a helper
2507  * function for initlist_add_objects().  The write lock must be held
2508  * when this function is called.
2509  */
2510 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2511 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2512 {
2513     /* Recursively process the successor needed objects. */
2514     if (needed->next != NULL)
2515 	initlist_add_neededs(needed->next, list);
2516 
2517     /* Process the current needed object. */
2518     if (needed->obj != NULL)
2519 	initlist_add_objects(needed->obj, needed->obj, list);
2520 }
2521 
2522 /*
2523  * Scan all of the DAGs rooted in the range of objects from "obj" to
2524  * "tail" and add their init functions to "list".  This recurses over
2525  * the DAGs and ensure the proper init ordering such that each object's
2526  * needed libraries are initialized before the object itself.  At the
2527  * same time, this function adds the objects to the global finalization
2528  * list "list_fini" in the opposite order.  The write lock must be
2529  * held when this function is called.
2530  */
2531 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2532 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2533 {
2534     Obj_Entry *nobj;
2535 
2536     if (obj->init_scanned || obj->init_done)
2537 	return;
2538     obj->init_scanned = true;
2539 
2540     /* Recursively process the successor objects. */
2541     nobj = globallist_next(obj);
2542     if (nobj != NULL && obj != tail)
2543 	initlist_add_objects(nobj, tail, list);
2544 
2545     /* Recursively process the needed objects. */
2546     if (obj->needed != NULL)
2547 	initlist_add_neededs(obj->needed, list);
2548     if (obj->needed_filtees != NULL)
2549 	initlist_add_neededs(obj->needed_filtees, list);
2550     if (obj->needed_aux_filtees != NULL)
2551 	initlist_add_neededs(obj->needed_aux_filtees, list);
2552 
2553     /* Add the object to the init list. */
2554     objlist_push_tail(list, obj);
2555 
2556     /* Add the object to the global fini list in the reverse order. */
2557     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2558       && !obj->on_fini_list) {
2559 	objlist_push_head(&list_fini, obj);
2560 	obj->on_fini_list = true;
2561     }
2562 }
2563 
2564 #ifndef FPTR_TARGET
2565 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2566 #endif
2567 
2568 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2569 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2570 {
2571     Needed_Entry *needed, *needed1;
2572 
2573     for (needed = n; needed != NULL; needed = needed->next) {
2574 	if (needed->obj != NULL) {
2575 	    dlclose_locked(needed->obj, lockstate);
2576 	    needed->obj = NULL;
2577 	}
2578     }
2579     for (needed = n; needed != NULL; needed = needed1) {
2580 	needed1 = needed->next;
2581 	free(needed);
2582     }
2583 }
2584 
2585 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2586 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2587 {
2588 
2589 	free_needed_filtees(obj->needed_filtees, lockstate);
2590 	obj->needed_filtees = NULL;
2591 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2592 	obj->needed_aux_filtees = NULL;
2593 	obj->filtees_loaded = false;
2594 }
2595 
2596 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2597 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2598     RtldLockState *lockstate)
2599 {
2600 
2601     for (; needed != NULL; needed = needed->next) {
2602 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2603 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2604 	  RTLD_LOCAL, lockstate);
2605     }
2606 }
2607 
2608 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2609 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2610 {
2611 
2612     lock_restart_for_upgrade(lockstate);
2613     if (!obj->filtees_loaded) {
2614 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2615 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2616 	obj->filtees_loaded = true;
2617     }
2618 }
2619 
2620 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2621 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2622 {
2623     Obj_Entry *obj1;
2624 
2625     for (; needed != NULL; needed = needed->next) {
2626 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2627 	  flags & ~RTLD_LO_NOLOAD);
2628 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2629 	    return (-1);
2630     }
2631     return (0);
2632 }
2633 
2634 /*
2635  * Given a shared object, traverse its list of needed objects, and load
2636  * each of them.  Returns 0 on success.  Generates an error message and
2637  * returns -1 on failure.
2638  */
2639 static int
load_needed_objects(Obj_Entry * first,int flags)2640 load_needed_objects(Obj_Entry *first, int flags)
2641 {
2642     Obj_Entry *obj;
2643 
2644     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2645 	if (obj->marker)
2646 	    continue;
2647 	if (process_needed(obj, obj->needed, flags) == -1)
2648 	    return (-1);
2649     }
2650     return (0);
2651 }
2652 
2653 static int
load_preload_objects(const char * penv,bool isfd)2654 load_preload_objects(const char *penv, bool isfd)
2655 {
2656 	Obj_Entry *obj;
2657 	const char *name;
2658 	size_t len;
2659 	char savech, *p, *psave;
2660 	int fd;
2661 	static const char delim[] = " \t:;";
2662 
2663 	if (penv == NULL)
2664 		return (0);
2665 
2666 	p = psave = xstrdup(penv);
2667 	p += strspn(p, delim);
2668 	while (*p != '\0') {
2669 		len = strcspn(p, delim);
2670 
2671 		savech = p[len];
2672 		p[len] = '\0';
2673 		if (isfd) {
2674 			name = NULL;
2675 			fd = parse_integer(p);
2676 			if (fd == -1) {
2677 				free(psave);
2678 				return (-1);
2679 			}
2680 		} else {
2681 			name = p;
2682 			fd = -1;
2683 		}
2684 
2685 		obj = load_object(name, fd, NULL, 0);
2686 		if (obj == NULL) {
2687 			free(psave);
2688 			return (-1);	/* XXX - cleanup */
2689 		}
2690 		obj->z_interpose = true;
2691 		p[len] = savech;
2692 		p += len;
2693 		p += strspn(p, delim);
2694 	}
2695 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2696 
2697 	free(psave);
2698 	return (0);
2699 }
2700 
2701 static const char *
printable_path(const char * path)2702 printable_path(const char *path)
2703 {
2704 
2705 	return (path == NULL ? "<unknown>" : path);
2706 }
2707 
2708 /*
2709  * Load a shared object into memory, if it is not already loaded.  The
2710  * object may be specified by name or by user-supplied file descriptor
2711  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2712  * duplicate is.
2713  *
2714  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2715  * on failure.
2716  */
2717 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2718 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2719 {
2720     Obj_Entry *obj;
2721     int fd;
2722     struct stat sb;
2723     char *path;
2724 
2725     fd = -1;
2726     if (name != NULL) {
2727 	TAILQ_FOREACH(obj, &obj_list, next) {
2728 	    if (obj->marker || obj->doomed)
2729 		continue;
2730 	    if (object_match_name(obj, name))
2731 		return (obj);
2732 	}
2733 
2734 	path = find_library(name, refobj, &fd);
2735 	if (path == NULL)
2736 	    return (NULL);
2737     } else
2738 	path = NULL;
2739 
2740     if (fd >= 0) {
2741 	/*
2742 	 * search_library_pathfds() opens a fresh file descriptor for the
2743 	 * library, so there is no need to dup().
2744 	 */
2745     } else if (fd_u == -1) {
2746 	/*
2747 	 * If we didn't find a match by pathname, or the name is not
2748 	 * supplied, open the file and check again by device and inode.
2749 	 * This avoids false mismatches caused by multiple links or ".."
2750 	 * in pathnames.
2751 	 *
2752 	 * To avoid a race, we open the file and use fstat() rather than
2753 	 * using stat().
2754 	 */
2755 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2756 	    _rtld_error("Cannot open \"%s\"", path);
2757 	    free(path);
2758 	    return (NULL);
2759 	}
2760     } else {
2761 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2762 	if (fd == -1) {
2763 	    _rtld_error("Cannot dup fd");
2764 	    free(path);
2765 	    return (NULL);
2766 	}
2767     }
2768     if (fstat(fd, &sb) == -1) {
2769 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2770 	close(fd);
2771 	free(path);
2772 	return (NULL);
2773     }
2774     TAILQ_FOREACH(obj, &obj_list, next) {
2775 	if (obj->marker || obj->doomed)
2776 	    continue;
2777 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2778 	    break;
2779     }
2780     if (obj != NULL && name != NULL) {
2781 	object_add_name(obj, name);
2782 	free(path);
2783 	close(fd);
2784 	return (obj);
2785     }
2786     if (flags & RTLD_LO_NOLOAD) {
2787 	free(path);
2788 	close(fd);
2789 	return (NULL);
2790     }
2791 
2792     /* First use of this object, so we must map it in */
2793     obj = do_load_object(fd, name, path, &sb, flags);
2794     if (obj == NULL)
2795 	free(path);
2796     close(fd);
2797 
2798     return (obj);
2799 }
2800 
2801 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2802 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2803   int flags)
2804 {
2805     Obj_Entry *obj;
2806     struct statfs fs;
2807 
2808     /*
2809      * First, make sure that environment variables haven't been
2810      * used to circumvent the noexec flag on a filesystem.
2811      * We ignore fstatfs(2) failures, since fd might reference
2812      * not a file, e.g. shmfd.
2813      */
2814     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2815 	(fs.f_flags & MNT_NOEXEC) != 0) {
2816 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2817 	    return (NULL);
2818     }
2819 
2820     dbg("loading \"%s\"", printable_path(path));
2821     obj = map_object(fd, printable_path(path), sbp);
2822     if (obj == NULL)
2823         return (NULL);
2824 
2825     /*
2826      * If DT_SONAME is present in the object, digest_dynamic2 already
2827      * added it to the object names.
2828      */
2829     if (name != NULL)
2830 	object_add_name(obj, name);
2831     obj->path = path;
2832     if (!digest_dynamic(obj, 0))
2833 	goto errp;
2834     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2835 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2836     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2837 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2838 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2839 	goto errp;
2840     }
2841     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2842       RTLD_LO_DLOPEN) {
2843 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2844 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2845 	goto errp;
2846     }
2847 
2848     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2849     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2850     obj_count++;
2851     obj_loads++;
2852     linkmap_add(obj);	/* for GDB & dlinfo() */
2853     max_stack_flags |= obj->stack_flags;
2854 
2855     dbg("  %p .. %p: %s", obj->mapbase,
2856          obj->mapbase + obj->mapsize - 1, obj->path);
2857     if (obj->textrel)
2858 	dbg("  WARNING: %s has impure text", obj->path);
2859     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2860 	obj->path);
2861 
2862     return (obj);
2863 
2864 errp:
2865     munmap(obj->mapbase, obj->mapsize);
2866     obj_free(obj);
2867     return (NULL);
2868 }
2869 
2870 static int
load_kpreload(const void * addr)2871 load_kpreload(const void *addr)
2872 {
2873 	Obj_Entry *obj;
2874 	const Elf_Ehdr *ehdr;
2875 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2876 	static const char kname[] = "[vdso]";
2877 
2878 	ehdr = addr;
2879 	if (!check_elf_headers(ehdr, "kpreload"))
2880 		return (-1);
2881 	obj = obj_new();
2882 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2883 	obj->phdr = phdr;
2884 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2885 	phlimit = phdr + ehdr->e_phnum;
2886 	seg0 = segn = NULL;
2887 
2888 	for (; phdr < phlimit; phdr++) {
2889 		switch (phdr->p_type) {
2890 		case PT_DYNAMIC:
2891 			phdyn = phdr;
2892 			break;
2893 		case PT_GNU_STACK:
2894 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2895 			obj->stack_flags = phdr->p_flags;
2896 			break;
2897 		case PT_LOAD:
2898 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2899 				seg0 = phdr;
2900 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2901 			    phdr->p_vaddr + phdr->p_memsz)
2902 				segn = phdr;
2903 			break;
2904 		}
2905 	}
2906 
2907 	obj->mapbase = __DECONST(caddr_t, addr);
2908 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2909 	obj->vaddrbase = 0;
2910 	obj->relocbase = obj->mapbase;
2911 
2912 	object_add_name(obj, kname);
2913 	obj->path = xstrdup(kname);
2914 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2915 
2916 	if (!digest_dynamic(obj, 0)) {
2917 		obj_free(obj);
2918 		return (-1);
2919 	}
2920 
2921 	/*
2922 	 * We assume that kernel-preloaded object does not need
2923 	 * relocation.  It is currently written into read-only page,
2924 	 * handling relocations would mean we need to allocate at
2925 	 * least one additional page per AS.
2926 	 */
2927 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2928 	    obj->path, obj->mapbase, obj->phdr, seg0,
2929 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2930 
2931 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2932 	obj_count++;
2933 	obj_loads++;
2934 	linkmap_add(obj);	/* for GDB & dlinfo() */
2935 	max_stack_flags |= obj->stack_flags;
2936 
2937 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2938 	return (0);
2939 }
2940 
2941 Obj_Entry *
obj_from_addr(const void * addr)2942 obj_from_addr(const void *addr)
2943 {
2944     Obj_Entry *obj;
2945 
2946     TAILQ_FOREACH(obj, &obj_list, next) {
2947 	if (obj->marker)
2948 	    continue;
2949 	if (addr < (void *) obj->mapbase)
2950 	    continue;
2951 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2952 	    return obj;
2953     }
2954     return (NULL);
2955 }
2956 
2957 static void
preinit_main(void)2958 preinit_main(void)
2959 {
2960     Elf_Addr *preinit_addr;
2961     int index;
2962 
2963     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2964     if (preinit_addr == NULL)
2965 	return;
2966 
2967     for (index = 0; index < obj_main->preinit_array_num; index++) {
2968 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2969 	    dbg("calling preinit function for %s at %p", obj_main->path,
2970 	      (void *)preinit_addr[index]);
2971 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2972 	      0, 0, obj_main->path);
2973 	    call_init_pointer(obj_main, preinit_addr[index]);
2974 	}
2975     }
2976 }
2977 
2978 /*
2979  * Call the finalization functions for each of the objects in "list"
2980  * belonging to the DAG of "root" and referenced once. If NULL "root"
2981  * is specified, every finalization function will be called regardless
2982  * of the reference count and the list elements won't be freed. All of
2983  * the objects are expected to have non-NULL fini functions.
2984  */
2985 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2986 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2987 {
2988     Objlist_Entry *elm;
2989     struct dlerror_save *saved_msg;
2990     Elf_Addr *fini_addr;
2991     int index;
2992 
2993     assert(root == NULL || root->refcount == 1);
2994 
2995     if (root != NULL)
2996 	root->doomed = true;
2997 
2998     /*
2999      * Preserve the current error message since a fini function might
3000      * call into the dynamic linker and overwrite it.
3001      */
3002     saved_msg = errmsg_save();
3003     do {
3004 	STAILQ_FOREACH(elm, list, link) {
3005 	    if (root != NULL && (elm->obj->refcount != 1 ||
3006 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
3007 		continue;
3008 	    /* Remove object from fini list to prevent recursive invocation. */
3009 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3010 	    /* Ensure that new references cannot be acquired. */
3011 	    elm->obj->doomed = true;
3012 
3013 	    hold_object(elm->obj);
3014 	    lock_release(rtld_bind_lock, lockstate);
3015 	    /*
3016 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3017 	     * When this happens, DT_FINI_ARRAY is processed first.
3018 	     */
3019 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3020 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3021 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3022 		  index--) {
3023 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3024 			dbg("calling fini function for %s at %p",
3025 			    elm->obj->path, (void *)fini_addr[index]);
3026 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3027 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3028 			call_initfini_pointer(elm->obj, fini_addr[index]);
3029 		    }
3030 		}
3031 	    }
3032 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3033 		dbg("calling fini function for %s at %p", elm->obj->path,
3034 		    (void *)elm->obj->fini);
3035 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3036 		    0, 0, elm->obj->path);
3037 		call_initfini_pointer(elm->obj, elm->obj->fini);
3038 	    }
3039 	    wlock_acquire(rtld_bind_lock, lockstate);
3040 	    unhold_object(elm->obj);
3041 	    /* No need to free anything if process is going down. */
3042 	    if (root != NULL)
3043 	    	free(elm);
3044 	    /*
3045 	     * We must restart the list traversal after every fini call
3046 	     * because a dlclose() call from the fini function or from
3047 	     * another thread might have modified the reference counts.
3048 	     */
3049 	    break;
3050 	}
3051     } while (elm != NULL);
3052     errmsg_restore(saved_msg);
3053 }
3054 
3055 /*
3056  * Call the initialization functions for each of the objects in
3057  * "list".  All of the objects are expected to have non-NULL init
3058  * functions.
3059  */
3060 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3061 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3062 {
3063     Objlist_Entry *elm;
3064     Obj_Entry *obj;
3065     struct dlerror_save *saved_msg;
3066     Elf_Addr *init_addr;
3067     void (*reg)(void (*)(void));
3068     int index;
3069 
3070     /*
3071      * Clean init_scanned flag so that objects can be rechecked and
3072      * possibly initialized earlier if any of vectors called below
3073      * cause the change by using dlopen.
3074      */
3075     TAILQ_FOREACH(obj, &obj_list, next) {
3076 	if (obj->marker)
3077 	    continue;
3078 	obj->init_scanned = false;
3079     }
3080 
3081     /*
3082      * Preserve the current error message since an init function might
3083      * call into the dynamic linker and overwrite it.
3084      */
3085     saved_msg = errmsg_save();
3086     STAILQ_FOREACH(elm, list, link) {
3087 	if (elm->obj->init_done) /* Initialized early. */
3088 	    continue;
3089 	/*
3090 	 * Race: other thread might try to use this object before current
3091 	 * one completes the initialization. Not much can be done here
3092 	 * without better locking.
3093 	 */
3094 	elm->obj->init_done = true;
3095 	hold_object(elm->obj);
3096 	reg = NULL;
3097 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3098 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3099 		    "__libc_atexit", lockstate);
3100 	}
3101 	lock_release(rtld_bind_lock, lockstate);
3102 	if (reg != NULL) {
3103 		reg(rtld_exit);
3104 		rtld_exit_ptr = rtld_nop_exit;
3105 	}
3106 
3107         /*
3108          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3109          * When this happens, DT_INIT is processed first.
3110          */
3111 	if (elm->obj->init != (Elf_Addr)NULL) {
3112 	    dbg("calling init function for %s at %p", elm->obj->path,
3113 	        (void *)elm->obj->init);
3114 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3115 	        0, 0, elm->obj->path);
3116 	    call_init_pointer(elm->obj, elm->obj->init);
3117 	}
3118 	init_addr = (Elf_Addr *)elm->obj->init_array;
3119 	if (init_addr != NULL) {
3120 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3121 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3122 		    dbg("calling init function for %s at %p", elm->obj->path,
3123 			(void *)init_addr[index]);
3124 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3125 			(void *)init_addr[index], 0, 0, elm->obj->path);
3126 		    call_init_pointer(elm->obj, init_addr[index]);
3127 		}
3128 	    }
3129 	}
3130 	wlock_acquire(rtld_bind_lock, lockstate);
3131 	unhold_object(elm->obj);
3132     }
3133     errmsg_restore(saved_msg);
3134 }
3135 
3136 static void
objlist_clear(Objlist * list)3137 objlist_clear(Objlist *list)
3138 {
3139     Objlist_Entry *elm;
3140 
3141     while (!STAILQ_EMPTY(list)) {
3142 	elm = STAILQ_FIRST(list);
3143 	STAILQ_REMOVE_HEAD(list, link);
3144 	free(elm);
3145     }
3146 }
3147 
3148 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3149 objlist_find(Objlist *list, const Obj_Entry *obj)
3150 {
3151     Objlist_Entry *elm;
3152 
3153     STAILQ_FOREACH(elm, list, link)
3154 	if (elm->obj == obj)
3155 	    return elm;
3156     return (NULL);
3157 }
3158 
3159 static void
objlist_init(Objlist * list)3160 objlist_init(Objlist *list)
3161 {
3162     STAILQ_INIT(list);
3163 }
3164 
3165 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3166 objlist_push_head(Objlist *list, Obj_Entry *obj)
3167 {
3168     Objlist_Entry *elm;
3169 
3170     elm = NEW(Objlist_Entry);
3171     elm->obj = obj;
3172     STAILQ_INSERT_HEAD(list, elm, link);
3173 }
3174 
3175 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3176 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3177 {
3178     Objlist_Entry *elm;
3179 
3180     elm = NEW(Objlist_Entry);
3181     elm->obj = obj;
3182     STAILQ_INSERT_TAIL(list, elm, link);
3183 }
3184 
3185 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3186 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3187 {
3188 	Objlist_Entry *elm, *listelm;
3189 
3190 	STAILQ_FOREACH(listelm, list, link) {
3191 		if (listelm->obj == listobj)
3192 			break;
3193 	}
3194 	elm = NEW(Objlist_Entry);
3195 	elm->obj = obj;
3196 	if (listelm != NULL)
3197 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3198 	else
3199 		STAILQ_INSERT_TAIL(list, elm, link);
3200 }
3201 
3202 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3203 objlist_remove(Objlist *list, Obj_Entry *obj)
3204 {
3205     Objlist_Entry *elm;
3206 
3207     if ((elm = objlist_find(list, obj)) != NULL) {
3208 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3209 	free(elm);
3210     }
3211 }
3212 
3213 /*
3214  * Relocate dag rooted in the specified object.
3215  * Returns 0 on success, or -1 on failure.
3216  */
3217 
3218 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3219 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3220     int flags, RtldLockState *lockstate)
3221 {
3222 	Objlist_Entry *elm;
3223 	int error;
3224 
3225 	error = 0;
3226 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3227 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3228 		    lockstate);
3229 		if (error == -1)
3230 			break;
3231 	}
3232 	return (error);
3233 }
3234 
3235 /*
3236  * Prepare for, or clean after, relocating an object marked with
3237  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3238  * segments are remapped read-write.  After relocations are done, the
3239  * segment's permissions are returned back to the modes specified in
3240  * the phdrs.  If any relocation happened, or always for wired
3241  * program, COW is triggered.
3242  */
3243 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3244 reloc_textrel_prot(Obj_Entry *obj, bool before)
3245 {
3246 	const Elf_Phdr *ph;
3247 	void *base;
3248 	size_t l, sz;
3249 	int prot;
3250 
3251 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3252 	    l--, ph++) {
3253 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3254 			continue;
3255 		base = obj->relocbase + trunc_page(ph->p_vaddr);
3256 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
3257 		    trunc_page(ph->p_vaddr);
3258 		prot = before ? (PROT_READ | PROT_WRITE) :
3259 		    convert_prot(ph->p_flags);
3260 		if (mprotect(base, sz, prot) == -1) {
3261 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3262 			    obj->path, before ? "en" : "dis",
3263 			    rtld_strerror(errno));
3264 			return (-1);
3265 		}
3266 	}
3267 	return (0);
3268 }
3269 
3270 /* Process RELR relative relocations. */
3271 static void
reloc_relr(Obj_Entry * obj)3272 reloc_relr(Obj_Entry *obj)
3273 {
3274 	const Elf_Relr *relr, *relrlim;
3275 	Elf_Addr *where;
3276 
3277 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3278 	for (relr = obj->relr; relr < relrlim; relr++) {
3279 	    Elf_Relr entry = *relr;
3280 
3281 	    if ((entry & 1) == 0) {
3282 		where = (Elf_Addr *)(obj->relocbase + entry);
3283 		*where++ += (Elf_Addr)obj->relocbase;
3284 	    } else {
3285 		for (long i = 0; (entry >>= 1) != 0; i++)
3286 		    if ((entry & 1) != 0)
3287 			where[i] += (Elf_Addr)obj->relocbase;
3288 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3289 	    }
3290 	}
3291 }
3292 
3293 /*
3294  * Relocate single object.
3295  * Returns 0 on success, or -1 on failure.
3296  */
3297 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3298 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3299     int flags, RtldLockState *lockstate)
3300 {
3301 
3302 	if (obj->relocated)
3303 		return (0);
3304 	obj->relocated = true;
3305 	if (obj != rtldobj)
3306 		dbg("relocating \"%s\"", obj->path);
3307 
3308 	if (obj->symtab == NULL || obj->strtab == NULL ||
3309 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3310 		dbg("object %s has no run-time symbol table", obj->path);
3311 
3312 	/* There are relocations to the write-protected text segment. */
3313 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3314 		return (-1);
3315 
3316 	/* Process the non-PLT non-IFUNC relocations. */
3317 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3318 		return (-1);
3319 	reloc_relr(obj);
3320 
3321 	/* Re-protected the text segment. */
3322 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3323 		return (-1);
3324 
3325 	/* Set the special PLT or GOT entries. */
3326 	init_pltgot(obj);
3327 
3328 	/* Process the PLT relocations. */
3329 	if (reloc_plt(obj, flags, lockstate) == -1)
3330 		return (-1);
3331 	/* Relocate the jump slots if we are doing immediate binding. */
3332 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3333 	    lockstate) == -1)
3334 		return (-1);
3335 
3336 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3337 		return (-1);
3338 
3339 	/*
3340 	 * Set up the magic number and version in the Obj_Entry.  These
3341 	 * were checked in the crt1.o from the original ElfKit, so we
3342 	 * set them for backward compatibility.
3343 	 */
3344 	obj->magic = RTLD_MAGIC;
3345 	obj->version = RTLD_VERSION;
3346 
3347 	return (0);
3348 }
3349 
3350 /*
3351  * Relocate newly-loaded shared objects.  The argument is a pointer to
3352  * the Obj_Entry for the first such object.  All objects from the first
3353  * to the end of the list of objects are relocated.  Returns 0 on success,
3354  * or -1 on failure.
3355  */
3356 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3357 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3358     int flags, RtldLockState *lockstate)
3359 {
3360 	Obj_Entry *obj;
3361 	int error;
3362 
3363 	for (error = 0, obj = first;  obj != NULL;
3364 	    obj = TAILQ_NEXT(obj, next)) {
3365 		if (obj->marker)
3366 			continue;
3367 		error = relocate_object(obj, bind_now, rtldobj, flags,
3368 		    lockstate);
3369 		if (error == -1)
3370 			break;
3371 	}
3372 	return (error);
3373 }
3374 
3375 /*
3376  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3377  * referencing STT_GNU_IFUNC symbols is postponed till the other
3378  * relocations are done.  The indirect functions specified as
3379  * ifunc are allowed to call other symbols, so we need to have
3380  * objects relocated before asking for resolution from indirects.
3381  *
3382  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3383  * instead of the usual lazy handling of PLT slots.  It is
3384  * consistent with how GNU does it.
3385  */
3386 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3387 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3388     RtldLockState *lockstate)
3389 {
3390 
3391 	if (obj->ifuncs_resolved)
3392 		return (0);
3393 	obj->ifuncs_resolved = true;
3394 	if (!obj->irelative && !obj->irelative_nonplt &&
3395 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3396 	    !obj->non_plt_gnu_ifunc)
3397 		return (0);
3398 	if (obj_disable_relro(obj) == -1 ||
3399 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3400 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3401 	    lockstate) == -1) ||
3402 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3403 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3404 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3405 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3406 	    obj_enforce_relro(obj) == -1)
3407 		return (-1);
3408 	return (0);
3409 }
3410 
3411 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3412 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3413     RtldLockState *lockstate)
3414 {
3415 	Objlist_Entry *elm;
3416 	Obj_Entry *obj;
3417 
3418 	STAILQ_FOREACH(elm, list, link) {
3419 		obj = elm->obj;
3420 		if (obj->marker)
3421 			continue;
3422 		if (resolve_object_ifunc(obj, bind_now, flags,
3423 		    lockstate) == -1)
3424 			return (-1);
3425 	}
3426 	return (0);
3427 }
3428 
3429 /*
3430  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3431  * before the process exits.
3432  */
3433 static void
rtld_exit(void)3434 rtld_exit(void)
3435 {
3436     RtldLockState lockstate;
3437 
3438     wlock_acquire(rtld_bind_lock, &lockstate);
3439     dbg("rtld_exit()");
3440     objlist_call_fini(&list_fini, NULL, &lockstate);
3441     /* No need to remove the items from the list, since we are exiting. */
3442     if (!libmap_disable)
3443         lm_fini();
3444     lock_release(rtld_bind_lock, &lockstate);
3445 }
3446 
3447 static void
rtld_nop_exit(void)3448 rtld_nop_exit(void)
3449 {
3450 }
3451 
3452 /*
3453  * Iterate over a search path, translate each element, and invoke the
3454  * callback on the result.
3455  */
3456 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3457 path_enumerate(const char *path, path_enum_proc callback,
3458     const char *refobj_path, void *arg)
3459 {
3460     const char *trans;
3461     if (path == NULL)
3462 	return (NULL);
3463 
3464     path += strspn(path, ":;");
3465     while (*path != '\0') {
3466 	size_t len;
3467 	char  *res;
3468 
3469 	len = strcspn(path, ":;");
3470 	trans = lm_findn(refobj_path, path, len);
3471 	if (trans)
3472 	    res = callback(trans, strlen(trans), arg);
3473 	else
3474 	    res = callback(path, len, arg);
3475 
3476 	if (res != NULL)
3477 	    return (res);
3478 
3479 	path += len;
3480 	path += strspn(path, ":;");
3481     }
3482 
3483     return (NULL);
3484 }
3485 
3486 struct try_library_args {
3487     const char	*name;
3488     size_t	 namelen;
3489     char	*buffer;
3490     size_t	 buflen;
3491     int		 fd;
3492 };
3493 
3494 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3495 try_library_path(const char *dir, size_t dirlen, void *param)
3496 {
3497     struct try_library_args *arg;
3498     int fd;
3499 
3500     arg = param;
3501     if (*dir == '/' || trust) {
3502 	char *pathname;
3503 
3504 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3505 		return (NULL);
3506 
3507 	pathname = arg->buffer;
3508 	strncpy(pathname, dir, dirlen);
3509 	pathname[dirlen] = '/';
3510 	strcpy(pathname + dirlen + 1, arg->name);
3511 
3512 	dbg("  Trying \"%s\"", pathname);
3513 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3514 	if (fd >= 0) {
3515 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3516 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3517 	    strcpy(pathname, arg->buffer);
3518 	    arg->fd = fd;
3519 	    return (pathname);
3520 	} else {
3521 	    dbg("  Failed to open \"%s\": %s",
3522 		pathname, rtld_strerror(errno));
3523 	}
3524     }
3525     return (NULL);
3526 }
3527 
3528 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3529 search_library_path(const char *name, const char *path,
3530     const char *refobj_path, int *fdp)
3531 {
3532     char *p;
3533     struct try_library_args arg;
3534 
3535     if (path == NULL)
3536 	return (NULL);
3537 
3538     arg.name = name;
3539     arg.namelen = strlen(name);
3540     arg.buffer = xmalloc(PATH_MAX);
3541     arg.buflen = PATH_MAX;
3542     arg.fd = -1;
3543 
3544     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3545     *fdp = arg.fd;
3546 
3547     free(arg.buffer);
3548 
3549     return (p);
3550 }
3551 
3552 
3553 /*
3554  * Finds the library with the given name using the directory descriptors
3555  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3556  *
3557  * Returns a freshly-opened close-on-exec file descriptor for the library,
3558  * or -1 if the library cannot be found.
3559  */
3560 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3561 search_library_pathfds(const char *name, const char *path, int *fdp)
3562 {
3563 	char *envcopy, *fdstr, *found, *last_token;
3564 	size_t len;
3565 	int dirfd, fd;
3566 
3567 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3568 
3569 	/* Don't load from user-specified libdirs into setuid binaries. */
3570 	if (!trust)
3571 		return (NULL);
3572 
3573 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3574 	if (path == NULL)
3575 		return (NULL);
3576 
3577 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3578 	if (name[0] == '/') {
3579 		dbg("Absolute path (%s) passed to %s", name, __func__);
3580 		return (NULL);
3581 	}
3582 
3583 	/*
3584 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3585 	 * copy of the path, as strtok_r rewrites separator tokens
3586 	 * with '\0'.
3587 	 */
3588 	found = NULL;
3589 	envcopy = xstrdup(path);
3590 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3591 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3592 		dirfd = parse_integer(fdstr);
3593 		if (dirfd < 0) {
3594 			_rtld_error("failed to parse directory FD: '%s'",
3595 				fdstr);
3596 			break;
3597 		}
3598 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3599 		if (fd >= 0) {
3600 			*fdp = fd;
3601 			len = strlen(fdstr) + strlen(name) + 3;
3602 			found = xmalloc(len);
3603 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3604 				_rtld_error("error generating '%d/%s'",
3605 				    dirfd, name);
3606 				rtld_die();
3607 			}
3608 			dbg("open('%s') => %d", found, fd);
3609 			break;
3610 		}
3611 	}
3612 	free(envcopy);
3613 
3614 	return (found);
3615 }
3616 
3617 
3618 int
dlclose(void * handle)3619 dlclose(void *handle)
3620 {
3621 	RtldLockState lockstate;
3622 	int error;
3623 
3624 	wlock_acquire(rtld_bind_lock, &lockstate);
3625 	error = dlclose_locked(handle, &lockstate);
3626 	lock_release(rtld_bind_lock, &lockstate);
3627 	return (error);
3628 }
3629 
3630 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3631 dlclose_locked(void *handle, RtldLockState *lockstate)
3632 {
3633     Obj_Entry *root;
3634 
3635     root = dlcheck(handle);
3636     if (root == NULL)
3637 	return (-1);
3638     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3639 	root->path);
3640 
3641     /* Unreference the object and its dependencies. */
3642     root->dl_refcount--;
3643 
3644     if (root->refcount == 1) {
3645 	/*
3646 	 * The object will be no longer referenced, so we must unload it.
3647 	 * First, call the fini functions.
3648 	 */
3649 	objlist_call_fini(&list_fini, root, lockstate);
3650 
3651 	unref_dag(root);
3652 
3653 	/* Finish cleaning up the newly-unreferenced objects. */
3654 	GDB_STATE(RT_DELETE,&root->linkmap);
3655 	unload_object(root, lockstate);
3656 	GDB_STATE(RT_CONSISTENT,NULL);
3657     } else
3658 	unref_dag(root);
3659 
3660     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3661     return (0);
3662 }
3663 
3664 char *
dlerror(void)3665 dlerror(void)
3666 {
3667 	if (*(lockinfo.dlerror_seen()) != 0)
3668 		return (NULL);
3669 	*lockinfo.dlerror_seen() = 1;
3670 	return (lockinfo.dlerror_loc());
3671 }
3672 
3673 /*
3674  * This function is deprecated and has no effect.
3675  */
3676 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3677 dllockinit(void *context,
3678     void *(*_lock_create)(void *context) __unused,
3679     void (*_rlock_acquire)(void *lock) __unused,
3680     void (*_wlock_acquire)(void *lock)  __unused,
3681     void (*_lock_release)(void *lock) __unused,
3682     void (*_lock_destroy)(void *lock) __unused,
3683     void (*context_destroy)(void *context))
3684 {
3685     static void *cur_context;
3686     static void (*cur_context_destroy)(void *);
3687 
3688     /* Just destroy the context from the previous call, if necessary. */
3689     if (cur_context_destroy != NULL)
3690 	cur_context_destroy(cur_context);
3691     cur_context = context;
3692     cur_context_destroy = context_destroy;
3693 }
3694 
3695 void *
dlopen(const char * name,int mode)3696 dlopen(const char *name, int mode)
3697 {
3698 
3699 	return (rtld_dlopen(name, -1, mode));
3700 }
3701 
3702 void *
fdlopen(int fd,int mode)3703 fdlopen(int fd, int mode)
3704 {
3705 
3706 	return (rtld_dlopen(NULL, fd, mode));
3707 }
3708 
3709 static void *
rtld_dlopen(const char * name,int fd,int mode)3710 rtld_dlopen(const char *name, int fd, int mode)
3711 {
3712     RtldLockState lockstate;
3713     int lo_flags;
3714 
3715     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3716     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3717     if (ld_tracing != NULL) {
3718 	rlock_acquire(rtld_bind_lock, &lockstate);
3719 	if (sigsetjmp(lockstate.env, 0) != 0)
3720 	    lock_upgrade(rtld_bind_lock, &lockstate);
3721 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3722 	lock_release(rtld_bind_lock, &lockstate);
3723     }
3724     lo_flags = RTLD_LO_DLOPEN;
3725     if (mode & RTLD_NODELETE)
3726 	    lo_flags |= RTLD_LO_NODELETE;
3727     if (mode & RTLD_NOLOAD)
3728 	    lo_flags |= RTLD_LO_NOLOAD;
3729     if (mode & RTLD_DEEPBIND)
3730 	    lo_flags |= RTLD_LO_DEEPBIND;
3731     if (ld_tracing != NULL)
3732 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3733 
3734     return (dlopen_object(name, fd, obj_main, lo_flags,
3735       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3736 }
3737 
3738 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3739 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3740 {
3741 
3742 	obj->dl_refcount--;
3743 	unref_dag(obj);
3744 	if (obj->refcount == 0)
3745 		unload_object(obj, lockstate);
3746 }
3747 
3748 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3749 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3750     int mode, RtldLockState *lockstate)
3751 {
3752     Obj_Entry *old_obj_tail;
3753     Obj_Entry *obj;
3754     Objlist initlist;
3755     RtldLockState mlockstate;
3756     int result;
3757 
3758     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3759       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3760       refobj->path, lo_flags, mode);
3761     objlist_init(&initlist);
3762 
3763     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3764 	wlock_acquire(rtld_bind_lock, &mlockstate);
3765 	lockstate = &mlockstate;
3766     }
3767     GDB_STATE(RT_ADD,NULL);
3768 
3769     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3770     obj = NULL;
3771     if (name == NULL && fd == -1) {
3772 	obj = obj_main;
3773 	obj->refcount++;
3774     } else {
3775 	obj = load_object(name, fd, refobj, lo_flags);
3776     }
3777 
3778     if (obj) {
3779 	obj->dl_refcount++;
3780 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3781 	    objlist_push_tail(&list_global, obj);
3782 	if (globallist_next(old_obj_tail) != NULL) {
3783 	    /* We loaded something new. */
3784 	    assert(globallist_next(old_obj_tail) == obj);
3785 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3786 		obj->symbolic = true;
3787 	    result = 0;
3788 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3789 	      obj->static_tls && !allocate_tls_offset(obj)) {
3790 		_rtld_error("%s: No space available "
3791 		  "for static Thread Local Storage", obj->path);
3792 		result = -1;
3793 	    }
3794 	    if (result != -1)
3795 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3796 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3797 	    init_dag(obj);
3798 	    ref_dag(obj);
3799 	    if (result != -1)
3800 		result = rtld_verify_versions(&obj->dagmembers);
3801 	    if (result != -1 && ld_tracing)
3802 		goto trace;
3803 	    if (result == -1 || relocate_object_dag(obj,
3804 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3805 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3806 	      lockstate) == -1) {
3807 		dlopen_cleanup(obj, lockstate);
3808 		obj = NULL;
3809 	    } else if (lo_flags & RTLD_LO_EARLY) {
3810 		/*
3811 		 * Do not call the init functions for early loaded
3812 		 * filtees.  The image is still not initialized enough
3813 		 * for them to work.
3814 		 *
3815 		 * Our object is found by the global object list and
3816 		 * will be ordered among all init calls done right
3817 		 * before transferring control to main.
3818 		 */
3819 	    } else {
3820 		/* Make list of init functions to call. */
3821 		initlist_add_objects(obj, obj, &initlist);
3822 	    }
3823 	    /*
3824 	     * Process all no_delete or global objects here, given
3825 	     * them own DAGs to prevent their dependencies from being
3826 	     * unloaded.  This has to be done after we have loaded all
3827 	     * of the dependencies, so that we do not miss any.
3828 	     */
3829 	    if (obj != NULL)
3830 		process_z(obj);
3831 	} else {
3832 	    /*
3833 	     * Bump the reference counts for objects on this DAG.  If
3834 	     * this is the first dlopen() call for the object that was
3835 	     * already loaded as a dependency, initialize the dag
3836 	     * starting at it.
3837 	     */
3838 	    init_dag(obj);
3839 	    ref_dag(obj);
3840 
3841 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3842 		goto trace;
3843 	}
3844 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3845 	  obj->z_nodelete) && !obj->ref_nodel) {
3846 	    dbg("obj %s nodelete", obj->path);
3847 	    ref_dag(obj);
3848 	    obj->z_nodelete = obj->ref_nodel = true;
3849 	}
3850     }
3851 
3852     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3853 	name);
3854     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3855 
3856     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3857 	map_stacks_exec(lockstate);
3858 	if (obj != NULL)
3859 	    distribute_static_tls(&initlist, lockstate);
3860     }
3861 
3862     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3863       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3864       lockstate) == -1) {
3865 	objlist_clear(&initlist);
3866 	dlopen_cleanup(obj, lockstate);
3867 	if (lockstate == &mlockstate)
3868 	    lock_release(rtld_bind_lock, lockstate);
3869 	return (NULL);
3870     }
3871 
3872     if (!(lo_flags & RTLD_LO_EARLY)) {
3873 	/* Call the init functions. */
3874 	objlist_call_init(&initlist, lockstate);
3875     }
3876     objlist_clear(&initlist);
3877     if (lockstate == &mlockstate)
3878 	lock_release(rtld_bind_lock, lockstate);
3879     return (obj);
3880 trace:
3881     trace_loaded_objects(obj);
3882     if (lockstate == &mlockstate)
3883 	lock_release(rtld_bind_lock, lockstate);
3884     exit(0);
3885 }
3886 
3887 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3888 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3889     int flags)
3890 {
3891     DoneList donelist;
3892     const Obj_Entry *obj, *defobj;
3893     const Elf_Sym *def;
3894     SymLook req;
3895     RtldLockState lockstate;
3896     tls_index ti;
3897     void *sym;
3898     int res;
3899 
3900     def = NULL;
3901     defobj = NULL;
3902     symlook_init(&req, name);
3903     req.ventry = ve;
3904     req.flags = flags | SYMLOOK_IN_PLT;
3905     req.lockstate = &lockstate;
3906 
3907     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3908     rlock_acquire(rtld_bind_lock, &lockstate);
3909     if (sigsetjmp(lockstate.env, 0) != 0)
3910 	    lock_upgrade(rtld_bind_lock, &lockstate);
3911     if (handle == NULL || handle == RTLD_NEXT ||
3912 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3913 
3914 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3915 	    _rtld_error("Cannot determine caller's shared object");
3916 	    lock_release(rtld_bind_lock, &lockstate);
3917 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3918 	    return (NULL);
3919 	}
3920 	if (handle == NULL) {	/* Just the caller's shared object. */
3921 	    res = symlook_obj(&req, obj);
3922 	    if (res == 0) {
3923 		def = req.sym_out;
3924 		defobj = req.defobj_out;
3925 	    }
3926 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3927 		   handle == RTLD_SELF) { /* ... caller included */
3928 	    if (handle == RTLD_NEXT)
3929 		obj = globallist_next(obj);
3930 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3931 		if (obj->marker)
3932 		    continue;
3933 		res = symlook_obj(&req, obj);
3934 		if (res == 0) {
3935 		    if (def == NULL || (ld_dynamic_weak &&
3936                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3937 			def = req.sym_out;
3938 			defobj = req.defobj_out;
3939 			if (!ld_dynamic_weak ||
3940 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3941 			    break;
3942 		    }
3943 		}
3944 	    }
3945 	    /*
3946 	     * Search the dynamic linker itself, and possibly resolve the
3947 	     * symbol from there.  This is how the application links to
3948 	     * dynamic linker services such as dlopen.
3949 	     * Note that we ignore ld_dynamic_weak == false case,
3950 	     * always overriding weak symbols by rtld definitions.
3951 	     */
3952 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3953 		res = symlook_obj(&req, &obj_rtld);
3954 		if (res == 0) {
3955 		    def = req.sym_out;
3956 		    defobj = req.defobj_out;
3957 		}
3958 	    }
3959 	} else {
3960 	    assert(handle == RTLD_DEFAULT);
3961 	    res = symlook_default(&req, obj);
3962 	    if (res == 0) {
3963 		defobj = req.defobj_out;
3964 		def = req.sym_out;
3965 	    }
3966 	}
3967     } else {
3968 	if ((obj = dlcheck(handle)) == NULL) {
3969 	    lock_release(rtld_bind_lock, &lockstate);
3970 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3971 	    return (NULL);
3972 	}
3973 
3974 	donelist_init(&donelist);
3975 	if (obj->mainprog) {
3976             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3977 	    res = symlook_global(&req, &donelist);
3978 	    if (res == 0) {
3979 		def = req.sym_out;
3980 		defobj = req.defobj_out;
3981 	    }
3982 	    /*
3983 	     * Search the dynamic linker itself, and possibly resolve the
3984 	     * symbol from there.  This is how the application links to
3985 	     * dynamic linker services such as dlopen.
3986 	     */
3987 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3988 		res = symlook_obj(&req, &obj_rtld);
3989 		if (res == 0) {
3990 		    def = req.sym_out;
3991 		    defobj = req.defobj_out;
3992 		}
3993 	    }
3994 	}
3995 	else {
3996 	    /* Search the whole DAG rooted at the given object. */
3997 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3998 	    if (res == 0) {
3999 		def = req.sym_out;
4000 		defobj = req.defobj_out;
4001 	    }
4002 	}
4003     }
4004 
4005     if (def != NULL) {
4006 	lock_release(rtld_bind_lock, &lockstate);
4007 
4008 	/*
4009 	 * The value required by the caller is derived from the value
4010 	 * of the symbol. this is simply the relocated value of the
4011 	 * symbol.
4012 	 */
4013 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4014 	    sym = make_function_pointer(def, defobj);
4015 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4016 	    sym = rtld_resolve_ifunc(defobj, def);
4017 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4018 	    ti.ti_module = defobj->tlsindex;
4019 	    ti.ti_offset = def->st_value;
4020 	    sym = __tls_get_addr(&ti);
4021 	} else
4022 	    sym = defobj->relocbase + def->st_value;
4023 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4024 	return (sym);
4025     }
4026 
4027     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4028       ve != NULL ? ve->name : "");
4029     lock_release(rtld_bind_lock, &lockstate);
4030     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4031     return (NULL);
4032 }
4033 
4034 void *
dlsym(void * handle,const char * name)4035 dlsym(void *handle, const char *name)
4036 {
4037 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4038 	    SYMLOOK_DLSYM));
4039 }
4040 
4041 dlfunc_t
dlfunc(void * handle,const char * name)4042 dlfunc(void *handle, const char *name)
4043 {
4044 	union {
4045 		void *d;
4046 		dlfunc_t f;
4047 	} rv;
4048 
4049 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4050 	    SYMLOOK_DLSYM);
4051 	return (rv.f);
4052 }
4053 
4054 void *
dlvsym(void * handle,const char * name,const char * version)4055 dlvsym(void *handle, const char *name, const char *version)
4056 {
4057 	Ver_Entry ventry;
4058 
4059 	ventry.name = version;
4060 	ventry.file = NULL;
4061 	ventry.hash = elf_hash(version);
4062 	ventry.flags= 0;
4063 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4064 	    SYMLOOK_DLSYM));
4065 }
4066 
4067 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4068 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4069 {
4070     const Obj_Entry *obj;
4071     RtldLockState lockstate;
4072 
4073     rlock_acquire(rtld_bind_lock, &lockstate);
4074     obj = obj_from_addr(addr);
4075     if (obj == NULL) {
4076         _rtld_error("No shared object contains address");
4077 	lock_release(rtld_bind_lock, &lockstate);
4078         return (0);
4079     }
4080     rtld_fill_dl_phdr_info(obj, phdr_info);
4081     lock_release(rtld_bind_lock, &lockstate);
4082     return (1);
4083 }
4084 
4085 int
dladdr(const void * addr,Dl_info * info)4086 dladdr(const void *addr, Dl_info *info)
4087 {
4088     const Obj_Entry *obj;
4089     const Elf_Sym *def;
4090     void *symbol_addr;
4091     unsigned long symoffset;
4092     RtldLockState lockstate;
4093 
4094     rlock_acquire(rtld_bind_lock, &lockstate);
4095     obj = obj_from_addr(addr);
4096     if (obj == NULL) {
4097         _rtld_error("No shared object contains address");
4098 	lock_release(rtld_bind_lock, &lockstate);
4099         return (0);
4100     }
4101     info->dli_fname = obj->path;
4102     info->dli_fbase = obj->mapbase;
4103     info->dli_saddr = (void *)0;
4104     info->dli_sname = NULL;
4105 
4106     /*
4107      * Walk the symbol list looking for the symbol whose address is
4108      * closest to the address sent in.
4109      */
4110     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4111         def = obj->symtab + symoffset;
4112 
4113         /*
4114          * For skip the symbol if st_shndx is either SHN_UNDEF or
4115          * SHN_COMMON.
4116          */
4117         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4118             continue;
4119 
4120         /*
4121          * If the symbol is greater than the specified address, or if it
4122          * is further away from addr than the current nearest symbol,
4123          * then reject it.
4124          */
4125         symbol_addr = obj->relocbase + def->st_value;
4126         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4127             continue;
4128 
4129         /* Update our idea of the nearest symbol. */
4130         info->dli_sname = obj->strtab + def->st_name;
4131         info->dli_saddr = symbol_addr;
4132 
4133         /* Exact match? */
4134         if (info->dli_saddr == addr)
4135             break;
4136     }
4137     lock_release(rtld_bind_lock, &lockstate);
4138     return (1);
4139 }
4140 
4141 int
dlinfo(void * handle,int request,void * p)4142 dlinfo(void *handle, int request, void *p)
4143 {
4144     const Obj_Entry *obj;
4145     RtldLockState lockstate;
4146     int error;
4147 
4148     rlock_acquire(rtld_bind_lock, &lockstate);
4149 
4150     if (handle == NULL || handle == RTLD_SELF) {
4151 	void *retaddr;
4152 
4153 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4154 	if ((obj = obj_from_addr(retaddr)) == NULL)
4155 	    _rtld_error("Cannot determine caller's shared object");
4156     } else
4157 	obj = dlcheck(handle);
4158 
4159     if (obj == NULL) {
4160 	lock_release(rtld_bind_lock, &lockstate);
4161 	return (-1);
4162     }
4163 
4164     error = 0;
4165     switch (request) {
4166     case RTLD_DI_LINKMAP:
4167 	*((struct link_map const **)p) = &obj->linkmap;
4168 	break;
4169     case RTLD_DI_ORIGIN:
4170 	error = rtld_dirname(obj->path, p);
4171 	break;
4172 
4173     case RTLD_DI_SERINFOSIZE:
4174     case RTLD_DI_SERINFO:
4175 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4176 	break;
4177 
4178     default:
4179 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4180 	error = -1;
4181     }
4182 
4183     lock_release(rtld_bind_lock, &lockstate);
4184 
4185     return (error);
4186 }
4187 
4188 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4189 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4190 {
4191 	Elf_Addr **dtvp;
4192 
4193 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4194 	phdr_info->dlpi_name = obj->path;
4195 	phdr_info->dlpi_phdr = obj->phdr;
4196 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4197 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4198 	dtvp = _get_tp();
4199 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4200 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4201 	phdr_info->dlpi_adds = obj_loads;
4202 	phdr_info->dlpi_subs = obj_loads - obj_count;
4203 }
4204 
4205 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4206 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4207 {
4208 	struct dl_phdr_info phdr_info;
4209 	Obj_Entry *obj, marker;
4210 	RtldLockState bind_lockstate, phdr_lockstate;
4211 	int error;
4212 
4213 	init_marker(&marker);
4214 	error = 0;
4215 
4216 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4217 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4218 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4219 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4220 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4221 		hold_object(obj);
4222 		lock_release(rtld_bind_lock, &bind_lockstate);
4223 
4224 		error = callback(&phdr_info, sizeof phdr_info, param);
4225 
4226 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4227 		unhold_object(obj);
4228 		obj = globallist_next(&marker);
4229 		TAILQ_REMOVE(&obj_list, &marker, next);
4230 		if (error != 0) {
4231 			lock_release(rtld_bind_lock, &bind_lockstate);
4232 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4233 			return (error);
4234 		}
4235 	}
4236 
4237 	if (error == 0) {
4238 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4239 		lock_release(rtld_bind_lock, &bind_lockstate);
4240 		error = callback(&phdr_info, sizeof(phdr_info), param);
4241 	}
4242 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4243 	return (error);
4244 }
4245 
4246 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4247 fill_search_info(const char *dir, size_t dirlen, void *param)
4248 {
4249     struct fill_search_info_args *arg;
4250 
4251     arg = param;
4252 
4253     if (arg->request == RTLD_DI_SERINFOSIZE) {
4254 	arg->serinfo->dls_cnt ++;
4255 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4256     } else {
4257 	struct dl_serpath *s_entry;
4258 
4259 	s_entry = arg->serpath;
4260 	s_entry->dls_name  = arg->strspace;
4261 	s_entry->dls_flags = arg->flags;
4262 
4263 	strncpy(arg->strspace, dir, dirlen);
4264 	arg->strspace[dirlen] = '\0';
4265 
4266 	arg->strspace += dirlen + 1;
4267 	arg->serpath++;
4268     }
4269 
4270     return (NULL);
4271 }
4272 
4273 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4274 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4275 {
4276     struct dl_serinfo _info;
4277     struct fill_search_info_args args;
4278 
4279     args.request = RTLD_DI_SERINFOSIZE;
4280     args.serinfo = &_info;
4281 
4282     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4283     _info.dls_cnt  = 0;
4284 
4285     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4286     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4287     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4288     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4289     if (!obj->z_nodeflib)
4290       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4291 
4292 
4293     if (request == RTLD_DI_SERINFOSIZE) {
4294 	info->dls_size = _info.dls_size;
4295 	info->dls_cnt = _info.dls_cnt;
4296 	return (0);
4297     }
4298 
4299     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4300 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4301 	return (-1);
4302     }
4303 
4304     args.request  = RTLD_DI_SERINFO;
4305     args.serinfo  = info;
4306     args.serpath  = &info->dls_serpath[0];
4307     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4308 
4309     args.flags = LA_SER_RUNPATH;
4310     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4311 	return (-1);
4312 
4313     args.flags = LA_SER_LIBPATH;
4314     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4315 	return (-1);
4316 
4317     args.flags = LA_SER_RUNPATH;
4318     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4319 	return (-1);
4320 
4321     args.flags = LA_SER_CONFIG;
4322     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4323       != NULL)
4324 	return (-1);
4325 
4326     args.flags = LA_SER_DEFAULT;
4327     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4328       fill_search_info, NULL, &args) != NULL)
4329 	return (-1);
4330     return (0);
4331 }
4332 
4333 static int
rtld_dirname(const char * path,char * bname)4334 rtld_dirname(const char *path, char *bname)
4335 {
4336     const char *endp;
4337 
4338     /* Empty or NULL string gets treated as "." */
4339     if (path == NULL || *path == '\0') {
4340 	bname[0] = '.';
4341 	bname[1] = '\0';
4342 	return (0);
4343     }
4344 
4345     /* Strip trailing slashes */
4346     endp = path + strlen(path) - 1;
4347     while (endp > path && *endp == '/')
4348 	endp--;
4349 
4350     /* Find the start of the dir */
4351     while (endp > path && *endp != '/')
4352 	endp--;
4353 
4354     /* Either the dir is "/" or there are no slashes */
4355     if (endp == path) {
4356 	bname[0] = *endp == '/' ? '/' : '.';
4357 	bname[1] = '\0';
4358 	return (0);
4359     } else {
4360 	do {
4361 	    endp--;
4362 	} while (endp > path && *endp == '/');
4363     }
4364 
4365     if (endp - path + 2 > PATH_MAX)
4366     {
4367 	_rtld_error("Filename is too long: %s", path);
4368 	return(-1);
4369     }
4370 
4371     strncpy(bname, path, endp - path + 1);
4372     bname[endp - path + 1] = '\0';
4373     return (0);
4374 }
4375 
4376 static int
rtld_dirname_abs(const char * path,char * base)4377 rtld_dirname_abs(const char *path, char *base)
4378 {
4379 	char *last;
4380 
4381 	if (realpath(path, base) == NULL) {
4382 		_rtld_error("realpath \"%s\" failed (%s)", path,
4383 		    rtld_strerror(errno));
4384 		return (-1);
4385 	}
4386 	dbg("%s -> %s", path, base);
4387 	last = strrchr(base, '/');
4388 	if (last == NULL) {
4389 		_rtld_error("non-abs result from realpath \"%s\"", path);
4390 		return (-1);
4391 	}
4392 	if (last != base)
4393 		*last = '\0';
4394 	return (0);
4395 }
4396 
4397 static void
linkmap_add(Obj_Entry * obj)4398 linkmap_add(Obj_Entry *obj)
4399 {
4400 	struct link_map *l, *prev;
4401 
4402 	l = &obj->linkmap;
4403 	l->l_name = obj->path;
4404 	l->l_base = obj->mapbase;
4405 	l->l_ld = obj->dynamic;
4406 	l->l_addr = obj->relocbase;
4407 
4408 	if (r_debug.r_map == NULL) {
4409 		r_debug.r_map = l;
4410 		return;
4411 	}
4412 
4413 	/*
4414 	 * Scan to the end of the list, but not past the entry for the
4415 	 * dynamic linker, which we want to keep at the very end.
4416 	 */
4417 	for (prev = r_debug.r_map;
4418 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4419 	     prev = prev->l_next)
4420 		;
4421 
4422 	/* Link in the new entry. */
4423 	l->l_prev = prev;
4424 	l->l_next = prev->l_next;
4425 	if (l->l_next != NULL)
4426 		l->l_next->l_prev = l;
4427 	prev->l_next = l;
4428 }
4429 
4430 static void
linkmap_delete(Obj_Entry * obj)4431 linkmap_delete(Obj_Entry *obj)
4432 {
4433 	struct link_map *l;
4434 
4435 	l = &obj->linkmap;
4436 	if (l->l_prev == NULL) {
4437 		if ((r_debug.r_map = l->l_next) != NULL)
4438 			l->l_next->l_prev = NULL;
4439 		return;
4440 	}
4441 
4442 	if ((l->l_prev->l_next = l->l_next) != NULL)
4443 		l->l_next->l_prev = l->l_prev;
4444 }
4445 
4446 /*
4447  * Function for the debugger to set a breakpoint on to gain control.
4448  *
4449  * The two parameters allow the debugger to easily find and determine
4450  * what the runtime loader is doing and to whom it is doing it.
4451  *
4452  * When the loadhook trap is hit (r_debug_state, set at program
4453  * initialization), the arguments can be found on the stack:
4454  *
4455  *  +8   struct link_map *m
4456  *  +4   struct r_debug  *rd
4457  *  +0   RetAddr
4458  */
4459 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4460 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4461 {
4462     /*
4463      * The following is a hack to force the compiler to emit calls to
4464      * this function, even when optimizing.  If the function is empty,
4465      * the compiler is not obliged to emit any code for calls to it,
4466      * even when marked __noinline.  However, gdb depends on those
4467      * calls being made.
4468      */
4469     __compiler_membar();
4470 }
4471 
4472 /*
4473  * A function called after init routines have completed. This can be used to
4474  * break before a program's entry routine is called, and can be used when
4475  * main is not available in the symbol table.
4476  */
4477 void
_r_debug_postinit(struct link_map * m __unused)4478 _r_debug_postinit(struct link_map *m __unused)
4479 {
4480 
4481 	/* See r_debug_state(). */
4482 	__compiler_membar();
4483 }
4484 
4485 static void
release_object(Obj_Entry * obj)4486 release_object(Obj_Entry *obj)
4487 {
4488 
4489 	if (obj->holdcount > 0) {
4490 		obj->unholdfree = true;
4491 		return;
4492 	}
4493 	munmap(obj->mapbase, obj->mapsize);
4494 	linkmap_delete(obj);
4495 	obj_free(obj);
4496 }
4497 
4498 /*
4499  * Get address of the pointer variable in the main program.
4500  * Prefer non-weak symbol over the weak one.
4501  */
4502 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4503 get_program_var_addr(const char *name, RtldLockState *lockstate)
4504 {
4505     SymLook req;
4506     DoneList donelist;
4507 
4508     symlook_init(&req, name);
4509     req.lockstate = lockstate;
4510     donelist_init(&donelist);
4511     if (symlook_global(&req, &donelist) != 0)
4512 	return (NULL);
4513     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4514 	return ((const void **)make_function_pointer(req.sym_out,
4515 	  req.defobj_out));
4516     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4517 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4518     else
4519 	return ((const void **)(req.defobj_out->relocbase +
4520 	  req.sym_out->st_value));
4521 }
4522 
4523 /*
4524  * Set a pointer variable in the main program to the given value.  This
4525  * is used to set key variables such as "environ" before any of the
4526  * init functions are called.
4527  */
4528 static void
set_program_var(const char * name,const void * value)4529 set_program_var(const char *name, const void *value)
4530 {
4531     const void **addr;
4532 
4533     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4534 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4535 	*addr = value;
4536     }
4537 }
4538 
4539 /*
4540  * Search the global objects, including dependencies and main object,
4541  * for the given symbol.
4542  */
4543 static int
symlook_global(SymLook * req,DoneList * donelist)4544 symlook_global(SymLook *req, DoneList *donelist)
4545 {
4546     SymLook req1;
4547     const Objlist_Entry *elm;
4548     int res;
4549 
4550     symlook_init_from_req(&req1, req);
4551 
4552     /* Search all objects loaded at program start up. */
4553     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4554       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4555 	res = symlook_list(&req1, &list_main, donelist);
4556 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4557 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4558 	    req->sym_out = req1.sym_out;
4559 	    req->defobj_out = req1.defobj_out;
4560 	    assert(req->defobj_out != NULL);
4561 	}
4562     }
4563 
4564     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4565     STAILQ_FOREACH(elm, &list_global, link) {
4566 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4567           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4568 	    break;
4569 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4570 	if (res == 0 && (req->defobj_out == NULL ||
4571 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4572 	    req->sym_out = req1.sym_out;
4573 	    req->defobj_out = req1.defobj_out;
4574 	    assert(req->defobj_out != NULL);
4575 	}
4576     }
4577 
4578     return (req->sym_out != NULL ? 0 : ESRCH);
4579 }
4580 
4581 /*
4582  * Given a symbol name in a referencing object, find the corresponding
4583  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4584  * no definition was found.  Returns a pointer to the Obj_Entry of the
4585  * defining object via the reference parameter DEFOBJ_OUT.
4586  */
4587 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4588 symlook_default(SymLook *req, const Obj_Entry *refobj)
4589 {
4590     DoneList donelist;
4591     const Objlist_Entry *elm;
4592     SymLook req1;
4593     int res;
4594 
4595     donelist_init(&donelist);
4596     symlook_init_from_req(&req1, req);
4597 
4598     /*
4599      * Look first in the referencing object if linked symbolically,
4600      * and similarly handle protected symbols.
4601      */
4602     res = symlook_obj(&req1, refobj);
4603     if (res == 0 && (refobj->symbolic ||
4604       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4605 	req->sym_out = req1.sym_out;
4606 	req->defobj_out = req1.defobj_out;
4607 	assert(req->defobj_out != NULL);
4608     }
4609     if (refobj->symbolic || req->defobj_out != NULL)
4610 	donelist_check(&donelist, refobj);
4611 
4612     symlook_global(req, &donelist);
4613 
4614     /* Search all dlopened DAGs containing the referencing object. */
4615     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4616 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4617           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4618 	    break;
4619 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4620 	if (res == 0 && (req->sym_out == NULL ||
4621 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4622 	    req->sym_out = req1.sym_out;
4623 	    req->defobj_out = req1.defobj_out;
4624 	    assert(req->defobj_out != NULL);
4625 	}
4626     }
4627 
4628     /*
4629      * Search the dynamic linker itself, and possibly resolve the
4630      * symbol from there.  This is how the application links to
4631      * dynamic linker services such as dlopen.
4632      */
4633     if (req->sym_out == NULL ||
4634       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4635 	res = symlook_obj(&req1, &obj_rtld);
4636 	if (res == 0) {
4637 	    req->sym_out = req1.sym_out;
4638 	    req->defobj_out = req1.defobj_out;
4639 	    assert(req->defobj_out != NULL);
4640 	}
4641     }
4642 
4643     return (req->sym_out != NULL ? 0 : ESRCH);
4644 }
4645 
4646 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4647 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4648 {
4649     const Elf_Sym *def;
4650     const Obj_Entry *defobj;
4651     const Objlist_Entry *elm;
4652     SymLook req1;
4653     int res;
4654 
4655     def = NULL;
4656     defobj = NULL;
4657     STAILQ_FOREACH(elm, objlist, link) {
4658 	if (donelist_check(dlp, elm->obj))
4659 	    continue;
4660 	symlook_init_from_req(&req1, req);
4661 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4662 	    if (def == NULL || (ld_dynamic_weak &&
4663               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4664 		def = req1.sym_out;
4665 		defobj = req1.defobj_out;
4666 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4667 		    break;
4668 	    }
4669 	}
4670     }
4671     if (def != NULL) {
4672 	req->sym_out = def;
4673 	req->defobj_out = defobj;
4674 	return (0);
4675     }
4676     return (ESRCH);
4677 }
4678 
4679 /*
4680  * Search the chain of DAGS cointed to by the given Needed_Entry
4681  * for a symbol of the given name.  Each DAG is scanned completely
4682  * before advancing to the next one.  Returns a pointer to the symbol,
4683  * or NULL if no definition was found.
4684  */
4685 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4686 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4687 {
4688     const Elf_Sym *def;
4689     const Needed_Entry *n;
4690     const Obj_Entry *defobj;
4691     SymLook req1;
4692     int res;
4693 
4694     def = NULL;
4695     defobj = NULL;
4696     symlook_init_from_req(&req1, req);
4697     for (n = needed; n != NULL; n = n->next) {
4698 	if (n->obj == NULL ||
4699 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4700 	    continue;
4701 	if (def == NULL || (ld_dynamic_weak &&
4702           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4703 	    def = req1.sym_out;
4704 	    defobj = req1.defobj_out;
4705 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4706 		break;
4707 	}
4708     }
4709     if (def != NULL) {
4710 	req->sym_out = def;
4711 	req->defobj_out = defobj;
4712 	return (0);
4713     }
4714     return (ESRCH);
4715 }
4716 
4717 /*
4718  * Search the symbol table of a single shared object for a symbol of
4719  * the given name and version, if requested.  Returns a pointer to the
4720  * symbol, or NULL if no definition was found.  If the object is
4721  * filter, return filtered symbol from filtee.
4722  *
4723  * The symbol's hash value is passed in for efficiency reasons; that
4724  * eliminates many recomputations of the hash value.
4725  */
4726 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4727 symlook_obj(SymLook *req, const Obj_Entry *obj)
4728 {
4729     DoneList donelist;
4730     SymLook req1;
4731     int flags, res, mres;
4732 
4733     /*
4734      * If there is at least one valid hash at this point, we prefer to
4735      * use the faster GNU version if available.
4736      */
4737     if (obj->valid_hash_gnu)
4738 	mres = symlook_obj1_gnu(req, obj);
4739     else if (obj->valid_hash_sysv)
4740 	mres = symlook_obj1_sysv(req, obj);
4741     else
4742 	return (EINVAL);
4743 
4744     if (mres == 0) {
4745 	if (obj->needed_filtees != NULL) {
4746 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4747 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4748 	    donelist_init(&donelist);
4749 	    symlook_init_from_req(&req1, req);
4750 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4751 	    if (res == 0) {
4752 		req->sym_out = req1.sym_out;
4753 		req->defobj_out = req1.defobj_out;
4754 	    }
4755 	    return (res);
4756 	}
4757 	if (obj->needed_aux_filtees != NULL) {
4758 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4759 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4760 	    donelist_init(&donelist);
4761 	    symlook_init_from_req(&req1, req);
4762 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4763 	    if (res == 0) {
4764 		req->sym_out = req1.sym_out;
4765 		req->defobj_out = req1.defobj_out;
4766 		return (res);
4767 	    }
4768 	}
4769     }
4770     return (mres);
4771 }
4772 
4773 /* Symbol match routine common to both hash functions */
4774 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4775 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4776     const unsigned long symnum)
4777 {
4778 	Elf_Versym verndx;
4779 	const Elf_Sym *symp;
4780 	const char *strp;
4781 
4782 	symp = obj->symtab + symnum;
4783 	strp = obj->strtab + symp->st_name;
4784 
4785 	switch (ELF_ST_TYPE(symp->st_info)) {
4786 	case STT_FUNC:
4787 	case STT_NOTYPE:
4788 	case STT_OBJECT:
4789 	case STT_COMMON:
4790 	case STT_GNU_IFUNC:
4791 		if (symp->st_value == 0)
4792 			return (false);
4793 		/* fallthrough */
4794 	case STT_TLS:
4795 		if (symp->st_shndx != SHN_UNDEF)
4796 			break;
4797 #ifndef __mips__
4798 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4799 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4800 			break;
4801 #endif
4802 		/* fallthrough */
4803 	default:
4804 		return (false);
4805 	}
4806 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4807 		return (false);
4808 
4809 	if (req->ventry == NULL) {
4810 		if (obj->versyms != NULL) {
4811 			verndx = VER_NDX(obj->versyms[symnum]);
4812 			if (verndx > obj->vernum) {
4813 				_rtld_error(
4814 				    "%s: symbol %s references wrong version %d",
4815 				    obj->path, obj->strtab + symnum, verndx);
4816 				return (false);
4817 			}
4818 			/*
4819 			 * If we are not called from dlsym (i.e. this
4820 			 * is a normal relocation from unversioned
4821 			 * binary), accept the symbol immediately if
4822 			 * it happens to have first version after this
4823 			 * shared object became versioned.  Otherwise,
4824 			 * if symbol is versioned and not hidden,
4825 			 * remember it. If it is the only symbol with
4826 			 * this name exported by the shared object, it
4827 			 * will be returned as a match by the calling
4828 			 * function. If symbol is global (verndx < 2)
4829 			 * accept it unconditionally.
4830 			 */
4831 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4832 			    verndx == VER_NDX_GIVEN) {
4833 				result->sym_out = symp;
4834 				return (true);
4835 			}
4836 			else if (verndx >= VER_NDX_GIVEN) {
4837 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4838 				    == 0) {
4839 					if (result->vsymp == NULL)
4840 						result->vsymp = symp;
4841 					result->vcount++;
4842 				}
4843 				return (false);
4844 			}
4845 		}
4846 		result->sym_out = symp;
4847 		return (true);
4848 	}
4849 	if (obj->versyms == NULL) {
4850 		if (object_match_name(obj, req->ventry->name)) {
4851 			_rtld_error("%s: object %s should provide version %s "
4852 			    "for symbol %s", obj_rtld.path, obj->path,
4853 			    req->ventry->name, obj->strtab + symnum);
4854 			return (false);
4855 		}
4856 	} else {
4857 		verndx = VER_NDX(obj->versyms[symnum]);
4858 		if (verndx > obj->vernum) {
4859 			_rtld_error("%s: symbol %s references wrong version %d",
4860 			    obj->path, obj->strtab + symnum, verndx);
4861 			return (false);
4862 		}
4863 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4864 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4865 			/*
4866 			 * Version does not match. Look if this is a
4867 			 * global symbol and if it is not hidden. If
4868 			 * global symbol (verndx < 2) is available,
4869 			 * use it. Do not return symbol if we are
4870 			 * called by dlvsym, because dlvsym looks for
4871 			 * a specific version and default one is not
4872 			 * what dlvsym wants.
4873 			 */
4874 			if ((req->flags & SYMLOOK_DLSYM) ||
4875 			    (verndx >= VER_NDX_GIVEN) ||
4876 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4877 				return (false);
4878 		}
4879 	}
4880 	result->sym_out = symp;
4881 	return (true);
4882 }
4883 
4884 /*
4885  * Search for symbol using SysV hash function.
4886  * obj->buckets is known not to be NULL at this point; the test for this was
4887  * performed with the obj->valid_hash_sysv assignment.
4888  */
4889 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4890 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4891 {
4892 	unsigned long symnum;
4893 	Sym_Match_Result matchres;
4894 
4895 	matchres.sym_out = NULL;
4896 	matchres.vsymp = NULL;
4897 	matchres.vcount = 0;
4898 
4899 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4900 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4901 		if (symnum >= obj->nchains)
4902 			return (ESRCH);	/* Bad object */
4903 
4904 		if (matched_symbol(req, obj, &matchres, symnum)) {
4905 			req->sym_out = matchres.sym_out;
4906 			req->defobj_out = obj;
4907 			return (0);
4908 		}
4909 	}
4910 	if (matchres.vcount == 1) {
4911 		req->sym_out = matchres.vsymp;
4912 		req->defobj_out = obj;
4913 		return (0);
4914 	}
4915 	return (ESRCH);
4916 }
4917 
4918 /* Search for symbol using GNU hash function */
4919 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4920 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4921 {
4922 	Elf_Addr bloom_word;
4923 	const Elf32_Word *hashval;
4924 	Elf32_Word bucket;
4925 	Sym_Match_Result matchres;
4926 	unsigned int h1, h2;
4927 	unsigned long symnum;
4928 
4929 	matchres.sym_out = NULL;
4930 	matchres.vsymp = NULL;
4931 	matchres.vcount = 0;
4932 
4933 	/* Pick right bitmask word from Bloom filter array */
4934 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4935 	    obj->maskwords_bm_gnu];
4936 
4937 	/* Calculate modulus word size of gnu hash and its derivative */
4938 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4939 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4940 
4941 	/* Filter out the "definitely not in set" queries */
4942 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4943 		return (ESRCH);
4944 
4945 	/* Locate hash chain and corresponding value element*/
4946 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4947 	if (bucket == 0)
4948 		return (ESRCH);
4949 	hashval = &obj->chain_zero_gnu[bucket];
4950 	do {
4951 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4952 			symnum = hashval - obj->chain_zero_gnu;
4953 			if (matched_symbol(req, obj, &matchres, symnum)) {
4954 				req->sym_out = matchres.sym_out;
4955 				req->defobj_out = obj;
4956 				return (0);
4957 			}
4958 		}
4959 	} while ((*hashval++ & 1) == 0);
4960 	if (matchres.vcount == 1) {
4961 		req->sym_out = matchres.vsymp;
4962 		req->defobj_out = obj;
4963 		return (0);
4964 	}
4965 	return (ESRCH);
4966 }
4967 
4968 static void
trace_loaded_objects(Obj_Entry * obj)4969 trace_loaded_objects(Obj_Entry *obj)
4970 {
4971     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4972     int c;
4973 
4974     if ((main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME)) ==
4975       NULL)
4976 	main_local = "";
4977 
4978     if ((fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1)) == NULL)
4979 	fmt1 = "\t%o => %p (%x)\n";
4980 
4981     if ((fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2)) == NULL)
4982 	fmt2 = "\t%o (%x)\n";
4983 
4984     list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL);
4985 
4986     for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4987 	Needed_Entry *needed;
4988 	const char *name, *path;
4989 	bool is_lib;
4990 
4991 	if (obj->marker)
4992 	    continue;
4993 	if (list_containers && obj->needed != NULL)
4994 	    rtld_printf("%s:\n", obj->path);
4995 	for (needed = obj->needed; needed; needed = needed->next) {
4996 	    if (needed->obj != NULL) {
4997 		if (needed->obj->traced && !list_containers)
4998 		    continue;
4999 		needed->obj->traced = true;
5000 		path = needed->obj->path;
5001 	    } else
5002 		path = "not found";
5003 
5004 	    name = obj->strtab + needed->name;
5005 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
5006 
5007 	    fmt = is_lib ? fmt1 : fmt2;
5008 	    while ((c = *fmt++) != '\0') {
5009 		switch (c) {
5010 		default:
5011 		    rtld_putchar(c);
5012 		    continue;
5013 		case '\\':
5014 		    switch (c = *fmt) {
5015 		    case '\0':
5016 			continue;
5017 		    case 'n':
5018 			rtld_putchar('\n');
5019 			break;
5020 		    case 't':
5021 			rtld_putchar('\t');
5022 			break;
5023 		    }
5024 		    break;
5025 		case '%':
5026 		    switch (c = *fmt) {
5027 		    case '\0':
5028 			continue;
5029 		    case '%':
5030 		    default:
5031 			rtld_putchar(c);
5032 			break;
5033 		    case 'A':
5034 			rtld_putstr(main_local);
5035 			break;
5036 		    case 'a':
5037 			rtld_putstr(obj_main->path);
5038 			break;
5039 		    case 'o':
5040 			rtld_putstr(name);
5041 			break;
5042 #if 0
5043 		    case 'm':
5044 			rtld_printf("%d", sodp->sod_major);
5045 			break;
5046 		    case 'n':
5047 			rtld_printf("%d", sodp->sod_minor);
5048 			break;
5049 #endif
5050 		    case 'p':
5051 			rtld_putstr(path);
5052 			break;
5053 		    case 'x':
5054 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
5055 			  0);
5056 			break;
5057 		    }
5058 		    break;
5059 		}
5060 		++fmt;
5061 	    }
5062 	}
5063     }
5064 }
5065 
5066 /*
5067  * Unload a dlopened object and its dependencies from memory and from
5068  * our data structures.  It is assumed that the DAG rooted in the
5069  * object has already been unreferenced, and that the object has a
5070  * reference count of 0.
5071  */
5072 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5073 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5074 {
5075 	Obj_Entry marker, *obj, *next;
5076 
5077 	assert(root->refcount == 0);
5078 
5079 	/*
5080 	 * Pass over the DAG removing unreferenced objects from
5081 	 * appropriate lists.
5082 	 */
5083 	unlink_object(root);
5084 
5085 	/* Unmap all objects that are no longer referenced. */
5086 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5087 		next = TAILQ_NEXT(obj, next);
5088 		if (obj->marker || obj->refcount != 0)
5089 			continue;
5090 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5091 		    obj->mapsize, 0, obj->path);
5092 		dbg("unloading \"%s\"", obj->path);
5093 		/*
5094 		 * Unlink the object now to prevent new references from
5095 		 * being acquired while the bind lock is dropped in
5096 		 * recursive dlclose() invocations.
5097 		 */
5098 		TAILQ_REMOVE(&obj_list, obj, next);
5099 		obj_count--;
5100 
5101 		if (obj->filtees_loaded) {
5102 			if (next != NULL) {
5103 				init_marker(&marker);
5104 				TAILQ_INSERT_BEFORE(next, &marker, next);
5105 				unload_filtees(obj, lockstate);
5106 				next = TAILQ_NEXT(&marker, next);
5107 				TAILQ_REMOVE(&obj_list, &marker, next);
5108 			} else
5109 				unload_filtees(obj, lockstate);
5110 		}
5111 		release_object(obj);
5112 	}
5113 }
5114 
5115 static void
unlink_object(Obj_Entry * root)5116 unlink_object(Obj_Entry *root)
5117 {
5118     Objlist_Entry *elm;
5119 
5120     if (root->refcount == 0) {
5121 	/* Remove the object from the RTLD_GLOBAL list. */
5122 	objlist_remove(&list_global, root);
5123 
5124     	/* Remove the object from all objects' DAG lists. */
5125     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5126 	    objlist_remove(&elm->obj->dldags, root);
5127 	    if (elm->obj != root)
5128 		unlink_object(elm->obj);
5129 	}
5130     }
5131 }
5132 
5133 static void
ref_dag(Obj_Entry * root)5134 ref_dag(Obj_Entry *root)
5135 {
5136     Objlist_Entry *elm;
5137 
5138     assert(root->dag_inited);
5139     STAILQ_FOREACH(elm, &root->dagmembers, link)
5140 	elm->obj->refcount++;
5141 }
5142 
5143 static void
unref_dag(Obj_Entry * root)5144 unref_dag(Obj_Entry *root)
5145 {
5146     Objlist_Entry *elm;
5147 
5148     assert(root->dag_inited);
5149     STAILQ_FOREACH(elm, &root->dagmembers, link)
5150 	elm->obj->refcount--;
5151 }
5152 
5153 /*
5154  * Common code for MD __tls_get_addr().
5155  */
5156 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5157 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5158 {
5159 	Elf_Addr *newdtv, *dtv;
5160 	RtldLockState lockstate;
5161 	int to_copy;
5162 
5163 	dtv = *dtvp;
5164 	/* Check dtv generation in case new modules have arrived */
5165 	if (dtv[0] != tls_dtv_generation) {
5166 		if (!locked)
5167 			wlock_acquire(rtld_bind_lock, &lockstate);
5168 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5169 		to_copy = dtv[1];
5170 		if (to_copy > tls_max_index)
5171 			to_copy = tls_max_index;
5172 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5173 		newdtv[0] = tls_dtv_generation;
5174 		newdtv[1] = tls_max_index;
5175 		free(dtv);
5176 		if (!locked)
5177 			lock_release(rtld_bind_lock, &lockstate);
5178 		dtv = *dtvp = newdtv;
5179 	}
5180 
5181 	/* Dynamically allocate module TLS if necessary */
5182 	if (dtv[index + 1] == 0) {
5183 		/* Signal safe, wlock will block out signals. */
5184 		if (!locked)
5185 			wlock_acquire(rtld_bind_lock, &lockstate);
5186 		if (!dtv[index + 1])
5187 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5188 		if (!locked)
5189 			lock_release(rtld_bind_lock, &lockstate);
5190 	}
5191 	return ((void *)(dtv[index + 1] + offset));
5192 }
5193 
5194 void *
tls_get_addr_common(Elf_Addr ** dtvp,int index,size_t offset)5195 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
5196 {
5197 	Elf_Addr *dtv;
5198 
5199 	dtv = *dtvp;
5200 	/* Check dtv generation in case new modules have arrived */
5201 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5202 	    dtv[index + 1] != 0))
5203 		return ((void *)(dtv[index + 1] + offset));
5204 	return (tls_get_addr_slow(dtvp, index, offset, false));
5205 }
5206 
5207 #ifdef TLS_VARIANT_I
5208 
5209 /*
5210  * Return pointer to allocated TLS block
5211  */
5212 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5213 get_tls_block_ptr(void *tcb, size_t tcbsize)
5214 {
5215     size_t extra_size, post_size, pre_size, tls_block_size;
5216     size_t tls_init_align;
5217 
5218     tls_init_align = MAX(obj_main->tlsalign, 1);
5219 
5220     /* Compute fragments sizes. */
5221     extra_size = tcbsize - TLS_TCB_SIZE;
5222     post_size = calculate_tls_post_size(tls_init_align);
5223     tls_block_size = tcbsize + post_size;
5224     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5225 
5226     return ((char *)tcb - pre_size - extra_size);
5227 }
5228 
5229 /*
5230  * Allocate Static TLS using the Variant I method.
5231  *
5232  * For details on the layout, see lib/libc/gen/tls.c.
5233  *
5234  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5235  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5236  *     offsets, whereas libc's tls_static_space is just the executable's static
5237  *     TLS segment.
5238  */
5239 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5240 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5241 {
5242     Obj_Entry *obj;
5243     char *tls_block;
5244     Elf_Addr *dtv, **tcb;
5245     Elf_Addr addr;
5246     Elf_Addr i;
5247     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5248     size_t tls_init_align, tls_init_offset;
5249 
5250     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5251 	return (oldtcb);
5252 
5253     assert(tcbsize >= TLS_TCB_SIZE);
5254     maxalign = MAX(tcbalign, tls_static_max_align);
5255     tls_init_align = MAX(obj_main->tlsalign, 1);
5256 
5257     /* Compute fragmets sizes. */
5258     extra_size = tcbsize - TLS_TCB_SIZE;
5259     post_size = calculate_tls_post_size(tls_init_align);
5260     tls_block_size = tcbsize + post_size;
5261     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5262     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5263 
5264     /* Allocate whole TLS block */
5265     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5266     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5267 
5268     if (oldtcb != NULL) {
5269 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5270 	    tls_static_space);
5271 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5272 
5273 	/* Adjust the DTV. */
5274 	dtv = tcb[0];
5275 	for (i = 0; i < dtv[1]; i++) {
5276 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5277 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5278 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5279 	    }
5280 	}
5281     } else {
5282 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5283 	tcb[0] = dtv;
5284 	dtv[0] = tls_dtv_generation;
5285 	dtv[1] = tls_max_index;
5286 
5287 	for (obj = globallist_curr(objs); obj != NULL;
5288 	  obj = globallist_next(obj)) {
5289 	    if (obj->tlsoffset == 0)
5290 		continue;
5291 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5292 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5293 	    if (tls_init_offset > 0)
5294 		memset((void *)addr, 0, tls_init_offset);
5295 	    if (obj->tlsinitsize > 0) {
5296 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5297 		    obj->tlsinitsize);
5298 	    }
5299 	    if (obj->tlssize > obj->tlsinitsize) {
5300 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5301 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5302 	    }
5303 	    dtv[obj->tlsindex + 1] = addr;
5304 	}
5305     }
5306 
5307     return (tcb);
5308 }
5309 
5310 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5311 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5312 {
5313     Elf_Addr *dtv;
5314     Elf_Addr tlsstart, tlsend;
5315     size_t post_size;
5316     size_t dtvsize, i, tls_init_align;
5317 
5318     assert(tcbsize >= TLS_TCB_SIZE);
5319     tls_init_align = MAX(obj_main->tlsalign, 1);
5320 
5321     /* Compute fragments sizes. */
5322     post_size = calculate_tls_post_size(tls_init_align);
5323 
5324     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5325     tlsend = (Elf_Addr)tcb + tls_static_space;
5326 
5327     dtv = *(Elf_Addr **)tcb;
5328     dtvsize = dtv[1];
5329     for (i = 0; i < dtvsize; i++) {
5330 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5331 	    free((void*)dtv[i+2]);
5332 	}
5333     }
5334     free(dtv);
5335     free_aligned(get_tls_block_ptr(tcb, tcbsize));
5336 }
5337 
5338 #endif	/* TLS_VARIANT_I */
5339 
5340 #ifdef TLS_VARIANT_II
5341 
5342 /*
5343  * Allocate Static TLS using the Variant II method.
5344  */
5345 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5346 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5347 {
5348     Obj_Entry *obj;
5349     size_t size, ralign;
5350     char *tls;
5351     Elf_Addr *dtv, *olddtv;
5352     Elf_Addr segbase, oldsegbase, addr;
5353     size_t i;
5354 
5355     ralign = tcbalign;
5356     if (tls_static_max_align > ralign)
5357 	    ralign = tls_static_max_align;
5358     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5359 
5360     assert(tcbsize >= 2*sizeof(Elf_Addr));
5361     tls = malloc_aligned(size, ralign, 0 /* XXX */);
5362     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5363 
5364     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5365     ((Elf_Addr *)segbase)[0] = segbase;
5366     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5367 
5368     dtv[0] = tls_dtv_generation;
5369     dtv[1] = tls_max_index;
5370 
5371     if (oldtls) {
5372 	/*
5373 	 * Copy the static TLS block over whole.
5374 	 */
5375 	oldsegbase = (Elf_Addr) oldtls;
5376 	memcpy((void *)(segbase - tls_static_space),
5377 	   (const void *)(oldsegbase - tls_static_space),
5378 	   tls_static_space);
5379 
5380 	/*
5381 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5382 	 * move them over.
5383 	 */
5384 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5385 	for (i = 0; i < olddtv[1]; i++) {
5386 	    if (olddtv[i + 2] < oldsegbase - size ||
5387 		olddtv[i + 2] > oldsegbase) {
5388 		    dtv[i + 2] = olddtv[i + 2];
5389 		    olddtv[i + 2] = 0;
5390 	    }
5391 	}
5392 
5393 	/*
5394 	 * We assume that this block was the one we created with
5395 	 * allocate_initial_tls().
5396 	 */
5397 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5398     } else {
5399 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5400 		if (obj->marker || obj->tlsoffset == 0)
5401 			continue;
5402 		addr = segbase - obj->tlsoffset;
5403 		memset((void *)(addr + obj->tlsinitsize),
5404 		    0, obj->tlssize - obj->tlsinitsize);
5405 		if (obj->tlsinit) {
5406 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5407 			obj->static_tls_copied = true;
5408 		}
5409 		dtv[obj->tlsindex + 1] = addr;
5410 	}
5411     }
5412 
5413     return ((void *)segbase);
5414 }
5415 
5416 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5417 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5418 {
5419     Elf_Addr* dtv;
5420     size_t size, ralign;
5421     int dtvsize, i;
5422     Elf_Addr tlsstart, tlsend;
5423 
5424     /*
5425      * Figure out the size of the initial TLS block so that we can
5426      * find stuff which ___tls_get_addr() allocated dynamically.
5427      */
5428     ralign = tcbalign;
5429     if (tls_static_max_align > ralign)
5430 	    ralign = tls_static_max_align;
5431     size = roundup(tls_static_space, ralign);
5432 
5433     dtv = ((Elf_Addr **)tls)[1];
5434     dtvsize = dtv[1];
5435     tlsend = (Elf_Addr)tls;
5436     tlsstart = tlsend - size;
5437     for (i = 0; i < dtvsize; i++) {
5438 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5439 	        dtv[i + 2] > tlsend)) {
5440 		    free_aligned((void *)dtv[i + 2]);
5441 	}
5442     }
5443 
5444     free_aligned((void *)tlsstart);
5445     free((void *)dtv);
5446 }
5447 
5448 #endif	/* TLS_VARIANT_II */
5449 
5450 /*
5451  * Allocate TLS block for module with given index.
5452  */
5453 void *
allocate_module_tls(int index)5454 allocate_module_tls(int index)
5455 {
5456 	Obj_Entry *obj;
5457 	char *p;
5458 
5459 	TAILQ_FOREACH(obj, &obj_list, next) {
5460 		if (obj->marker)
5461 			continue;
5462 		if (obj->tlsindex == index)
5463 			break;
5464 	}
5465 	if (obj == NULL) {
5466 		_rtld_error("Can't find module with TLS index %d", index);
5467 		rtld_die();
5468 	}
5469 
5470 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5471 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5472 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5473 	return (p);
5474 }
5475 
5476 bool
allocate_tls_offset(Obj_Entry * obj)5477 allocate_tls_offset(Obj_Entry *obj)
5478 {
5479     size_t off;
5480 
5481     if (obj->tls_done)
5482 	return (true);
5483 
5484     if (obj->tlssize == 0) {
5485 	obj->tls_done = true;
5486 	return (true);
5487     }
5488 
5489     if (tls_last_offset == 0)
5490 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5491 	  obj->tlspoffset);
5492     else
5493 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5494 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5495 
5496     obj->tlsoffset = off;
5497 #ifdef TLS_VARIANT_I
5498     off += obj->tlssize;
5499 #endif
5500 
5501     /*
5502      * If we have already fixed the size of the static TLS block, we
5503      * must stay within that size. When allocating the static TLS, we
5504      * leave a small amount of space spare to be used for dynamically
5505      * loading modules which use static TLS.
5506      */
5507     if (tls_static_space != 0) {
5508 	if (off > tls_static_space)
5509 	    return (false);
5510     } else if (obj->tlsalign > tls_static_max_align) {
5511 	    tls_static_max_align = obj->tlsalign;
5512     }
5513 
5514     tls_last_offset = off;
5515     tls_last_size = obj->tlssize;
5516     obj->tls_done = true;
5517 
5518     return (true);
5519 }
5520 
5521 void
free_tls_offset(Obj_Entry * obj)5522 free_tls_offset(Obj_Entry *obj)
5523 {
5524 
5525     /*
5526      * If we were the last thing to allocate out of the static TLS
5527      * block, we give our space back to the 'allocator'. This is a
5528      * simplistic workaround to allow libGL.so.1 to be loaded and
5529      * unloaded multiple times.
5530      */
5531     size_t off = obj->tlsoffset;
5532 #ifdef TLS_VARIANT_I
5533     off += obj->tlssize;
5534 #endif
5535     if (off == tls_last_offset) {
5536 	tls_last_offset -= obj->tlssize;
5537 	tls_last_size = 0;
5538     }
5539 }
5540 
5541 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5542 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5543 {
5544     void *ret;
5545     RtldLockState lockstate;
5546 
5547     wlock_acquire(rtld_bind_lock, &lockstate);
5548     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5549       tcbsize, tcbalign);
5550     lock_release(rtld_bind_lock, &lockstate);
5551     return (ret);
5552 }
5553 
5554 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5555 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5556 {
5557     RtldLockState lockstate;
5558 
5559     wlock_acquire(rtld_bind_lock, &lockstate);
5560     free_tls(tcb, tcbsize, tcbalign);
5561     lock_release(rtld_bind_lock, &lockstate);
5562 }
5563 
5564 static void
object_add_name(Obj_Entry * obj,const char * name)5565 object_add_name(Obj_Entry *obj, const char *name)
5566 {
5567     Name_Entry *entry;
5568     size_t len;
5569 
5570     len = strlen(name);
5571     entry = malloc(sizeof(Name_Entry) + len);
5572 
5573     if (entry != NULL) {
5574 	strcpy(entry->name, name);
5575 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5576     }
5577 }
5578 
5579 static int
object_match_name(const Obj_Entry * obj,const char * name)5580 object_match_name(const Obj_Entry *obj, const char *name)
5581 {
5582     Name_Entry *entry;
5583 
5584     STAILQ_FOREACH(entry, &obj->names, link) {
5585 	if (strcmp(name, entry->name) == 0)
5586 	    return (1);
5587     }
5588     return (0);
5589 }
5590 
5591 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5592 locate_dependency(const Obj_Entry *obj, const char *name)
5593 {
5594     const Objlist_Entry *entry;
5595     const Needed_Entry *needed;
5596 
5597     STAILQ_FOREACH(entry, &list_main, link) {
5598 	if (object_match_name(entry->obj, name))
5599 	    return (entry->obj);
5600     }
5601 
5602     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5603 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5604 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5605 	    /*
5606 	     * If there is DT_NEEDED for the name we are looking for,
5607 	     * we are all set.  Note that object might not be found if
5608 	     * dependency was not loaded yet, so the function can
5609 	     * return NULL here.  This is expected and handled
5610 	     * properly by the caller.
5611 	     */
5612 	    return (needed->obj);
5613 	}
5614     }
5615     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5616 	obj->path, name);
5617     rtld_die();
5618 }
5619 
5620 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5621 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5622     const Elf_Vernaux *vna)
5623 {
5624     const Elf_Verdef *vd;
5625     const char *vername;
5626 
5627     vername = refobj->strtab + vna->vna_name;
5628     vd = depobj->verdef;
5629     if (vd == NULL) {
5630 	_rtld_error("%s: version %s required by %s not defined",
5631 	    depobj->path, vername, refobj->path);
5632 	return (-1);
5633     }
5634     for (;;) {
5635 	if (vd->vd_version != VER_DEF_CURRENT) {
5636 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5637 		depobj->path, vd->vd_version);
5638 	    return (-1);
5639 	}
5640 	if (vna->vna_hash == vd->vd_hash) {
5641 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5642 		((const char *)vd + vd->vd_aux);
5643 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5644 		return (0);
5645 	}
5646 	if (vd->vd_next == 0)
5647 	    break;
5648 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5649     }
5650     if (vna->vna_flags & VER_FLG_WEAK)
5651 	return (0);
5652     _rtld_error("%s: version %s required by %s not found",
5653 	depobj->path, vername, refobj->path);
5654     return (-1);
5655 }
5656 
5657 static int
rtld_verify_object_versions(Obj_Entry * obj)5658 rtld_verify_object_versions(Obj_Entry *obj)
5659 {
5660     const Elf_Verneed *vn;
5661     const Elf_Verdef  *vd;
5662     const Elf_Verdaux *vda;
5663     const Elf_Vernaux *vna;
5664     const Obj_Entry *depobj;
5665     int maxvernum, vernum;
5666 
5667     if (obj->ver_checked)
5668 	return (0);
5669     obj->ver_checked = true;
5670 
5671     maxvernum = 0;
5672     /*
5673      * Walk over defined and required version records and figure out
5674      * max index used by any of them. Do very basic sanity checking
5675      * while there.
5676      */
5677     vn = obj->verneed;
5678     while (vn != NULL) {
5679 	if (vn->vn_version != VER_NEED_CURRENT) {
5680 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5681 		obj->path, vn->vn_version);
5682 	    return (-1);
5683 	}
5684 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5685 	for (;;) {
5686 	    vernum = VER_NEED_IDX(vna->vna_other);
5687 	    if (vernum > maxvernum)
5688 		maxvernum = vernum;
5689 	    if (vna->vna_next == 0)
5690 		 break;
5691 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5692 	}
5693 	if (vn->vn_next == 0)
5694 	    break;
5695 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5696     }
5697 
5698     vd = obj->verdef;
5699     while (vd != NULL) {
5700 	if (vd->vd_version != VER_DEF_CURRENT) {
5701 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5702 		obj->path, vd->vd_version);
5703 	    return (-1);
5704 	}
5705 	vernum = VER_DEF_IDX(vd->vd_ndx);
5706 	if (vernum > maxvernum)
5707 		maxvernum = vernum;
5708 	if (vd->vd_next == 0)
5709 	    break;
5710 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5711     }
5712 
5713     if (maxvernum == 0)
5714 	return (0);
5715 
5716     /*
5717      * Store version information in array indexable by version index.
5718      * Verify that object version requirements are satisfied along the
5719      * way.
5720      */
5721     obj->vernum = maxvernum + 1;
5722     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5723 
5724     vd = obj->verdef;
5725     while (vd != NULL) {
5726 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5727 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5728 	    assert(vernum <= maxvernum);
5729 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5730 	    obj->vertab[vernum].hash = vd->vd_hash;
5731 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5732 	    obj->vertab[vernum].file = NULL;
5733 	    obj->vertab[vernum].flags = 0;
5734 	}
5735 	if (vd->vd_next == 0)
5736 	    break;
5737 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5738     }
5739 
5740     vn = obj->verneed;
5741     while (vn != NULL) {
5742 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5743 	if (depobj == NULL)
5744 	    return (-1);
5745 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5746 	for (;;) {
5747 	    if (check_object_provided_version(obj, depobj, vna))
5748 		return (-1);
5749 	    vernum = VER_NEED_IDX(vna->vna_other);
5750 	    assert(vernum <= maxvernum);
5751 	    obj->vertab[vernum].hash = vna->vna_hash;
5752 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5753 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5754 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5755 		VER_INFO_HIDDEN : 0;
5756 	    if (vna->vna_next == 0)
5757 		 break;
5758 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5759 	}
5760 	if (vn->vn_next == 0)
5761 	    break;
5762 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5763     }
5764     return (0);
5765 }
5766 
5767 static int
rtld_verify_versions(const Objlist * objlist)5768 rtld_verify_versions(const Objlist *objlist)
5769 {
5770     Objlist_Entry *entry;
5771     int rc;
5772 
5773     rc = 0;
5774     STAILQ_FOREACH(entry, objlist, link) {
5775 	/*
5776 	 * Skip dummy objects or objects that have their version requirements
5777 	 * already checked.
5778 	 */
5779 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5780 	    continue;
5781 	if (rtld_verify_object_versions(entry->obj) == -1) {
5782 	    rc = -1;
5783 	    if (ld_tracing == NULL)
5784 		break;
5785 	}
5786     }
5787     if (rc == 0 || ld_tracing != NULL)
5788     	rc = rtld_verify_object_versions(&obj_rtld);
5789     return (rc);
5790 }
5791 
5792 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5793 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5794 {
5795     Elf_Versym vernum;
5796 
5797     if (obj->vertab) {
5798 	vernum = VER_NDX(obj->versyms[symnum]);
5799 	if (vernum >= obj->vernum) {
5800 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5801 		obj->path, obj->strtab + symnum, vernum);
5802 	} else if (obj->vertab[vernum].hash != 0) {
5803 	    return (&obj->vertab[vernum]);
5804 	}
5805     }
5806     return (NULL);
5807 }
5808 
5809 int
_rtld_get_stack_prot(void)5810 _rtld_get_stack_prot(void)
5811 {
5812 
5813 	return (stack_prot);
5814 }
5815 
5816 int
_rtld_is_dlopened(void * arg)5817 _rtld_is_dlopened(void *arg)
5818 {
5819 	Obj_Entry *obj;
5820 	RtldLockState lockstate;
5821 	int res;
5822 
5823 	rlock_acquire(rtld_bind_lock, &lockstate);
5824 	obj = dlcheck(arg);
5825 	if (obj == NULL)
5826 		obj = obj_from_addr(arg);
5827 	if (obj == NULL) {
5828 		_rtld_error("No shared object contains address");
5829 		lock_release(rtld_bind_lock, &lockstate);
5830 		return (-1);
5831 	}
5832 	res = obj->dlopened ? 1 : 0;
5833 	lock_release(rtld_bind_lock, &lockstate);
5834 	return (res);
5835 }
5836 
5837 static int
obj_remap_relro(Obj_Entry * obj,int prot)5838 obj_remap_relro(Obj_Entry *obj, int prot)
5839 {
5840 
5841 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5842 	    prot) == -1) {
5843 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5844 		    obj->path, prot, rtld_strerror(errno));
5845 		return (-1);
5846 	}
5847 	return (0);
5848 }
5849 
5850 static int
obj_disable_relro(Obj_Entry * obj)5851 obj_disable_relro(Obj_Entry *obj)
5852 {
5853 
5854 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5855 }
5856 
5857 static int
obj_enforce_relro(Obj_Entry * obj)5858 obj_enforce_relro(Obj_Entry *obj)
5859 {
5860 
5861 	return (obj_remap_relro(obj, PROT_READ));
5862 }
5863 
5864 static void
map_stacks_exec(RtldLockState * lockstate)5865 map_stacks_exec(RtldLockState *lockstate)
5866 {
5867 	void (*thr_map_stacks_exec)(void);
5868 
5869 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5870 		return;
5871 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5872 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5873 	if (thr_map_stacks_exec != NULL) {
5874 		stack_prot |= PROT_EXEC;
5875 		thr_map_stacks_exec();
5876 	}
5877 }
5878 
5879 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5880 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5881 {
5882 	Objlist_Entry *elm;
5883 	Obj_Entry *obj;
5884 	void (*distrib)(size_t, void *, size_t, size_t);
5885 
5886 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5887 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5888 	if (distrib == NULL)
5889 		return;
5890 	STAILQ_FOREACH(elm, list, link) {
5891 		obj = elm->obj;
5892 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5893 			continue;
5894 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5895 		    obj->tlssize);
5896 		obj->static_tls_copied = true;
5897 	}
5898 }
5899 
5900 void
symlook_init(SymLook * dst,const char * name)5901 symlook_init(SymLook *dst, const char *name)
5902 {
5903 
5904 	bzero(dst, sizeof(*dst));
5905 	dst->name = name;
5906 	dst->hash = elf_hash(name);
5907 	dst->hash_gnu = gnu_hash(name);
5908 }
5909 
5910 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5911 symlook_init_from_req(SymLook *dst, const SymLook *src)
5912 {
5913 
5914 	dst->name = src->name;
5915 	dst->hash = src->hash;
5916 	dst->hash_gnu = src->hash_gnu;
5917 	dst->ventry = src->ventry;
5918 	dst->flags = src->flags;
5919 	dst->defobj_out = NULL;
5920 	dst->sym_out = NULL;
5921 	dst->lockstate = src->lockstate;
5922 }
5923 
5924 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)5925 open_binary_fd(const char *argv0, bool search_in_path,
5926     const char **binpath_res)
5927 {
5928 	char *binpath, *pathenv, *pe, *res1;
5929 	const char *res;
5930 	int fd;
5931 
5932 	binpath = NULL;
5933 	res = NULL;
5934 	if (search_in_path && strchr(argv0, '/') == NULL) {
5935 		binpath = xmalloc(PATH_MAX);
5936 		pathenv = getenv("PATH");
5937 		if (pathenv == NULL) {
5938 			_rtld_error("-p and no PATH environment variable");
5939 			rtld_die();
5940 		}
5941 		pathenv = strdup(pathenv);
5942 		if (pathenv == NULL) {
5943 			_rtld_error("Cannot allocate memory");
5944 			rtld_die();
5945 		}
5946 		fd = -1;
5947 		errno = ENOENT;
5948 		while ((pe = strsep(&pathenv, ":")) != NULL) {
5949 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5950 				continue;
5951 			if (binpath[0] != '\0' &&
5952 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5953 				continue;
5954 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5955 				continue;
5956 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5957 			if (fd != -1 || errno != ENOENT) {
5958 				res = binpath;
5959 				break;
5960 			}
5961 		}
5962 		free(pathenv);
5963 	} else {
5964 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5965 		res = argv0;
5966 	}
5967 
5968 	if (fd == -1) {
5969 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5970 		rtld_die();
5971 	}
5972 	if (res != NULL && res[0] != '/') {
5973 		res1 = xmalloc(PATH_MAX);
5974 		if (realpath(res, res1) != NULL) {
5975 			if (res != argv0)
5976 				free(__DECONST(char *, res));
5977 			res = res1;
5978 		} else {
5979 			free(res1);
5980 		}
5981 	}
5982 	*binpath_res = res;
5983 	return (fd);
5984 }
5985 
5986 /*
5987  * Parse a set of command-line arguments.
5988  */
5989 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)5990 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5991     const char **argv0, bool *dir_ignore)
5992 {
5993 	const char *arg;
5994 	char machine[64];
5995 	size_t sz;
5996 	int arglen, fd, i, j, mib[2];
5997 	char opt;
5998 	bool seen_b, seen_f;
5999 
6000 	dbg("Parsing command-line arguments");
6001 	*use_pathp = false;
6002 	*fdp = -1;
6003 	*dir_ignore = false;
6004 	seen_b = seen_f = false;
6005 
6006 	for (i = 1; i < argc; i++ ) {
6007 		arg = argv[i];
6008 		dbg("argv[%d]: '%s'", i, arg);
6009 
6010 		/*
6011 		 * rtld arguments end with an explicit "--" or with the first
6012 		 * non-prefixed argument.
6013 		 */
6014 		if (strcmp(arg, "--") == 0) {
6015 			i++;
6016 			break;
6017 		}
6018 		if (arg[0] != '-')
6019 			break;
6020 
6021 		/*
6022 		 * All other arguments are single-character options that can
6023 		 * be combined, so we need to search through `arg` for them.
6024 		 */
6025 		arglen = strlen(arg);
6026 		for (j = 1; j < arglen; j++) {
6027 			opt = arg[j];
6028 			if (opt == 'h') {
6029 				print_usage(argv[0]);
6030 				_exit(0);
6031 			} else if (opt == 'b') {
6032 				if (seen_f) {
6033 					_rtld_error("Both -b and -f specified");
6034 					rtld_die();
6035 				}
6036 				i++;
6037 				*argv0 = argv[i];
6038 				seen_b = true;
6039 				break;
6040 			} else if (opt == 'd') {
6041 				*dir_ignore = true;
6042 				break;
6043 			} else if (opt == 'f') {
6044 				if (seen_b) {
6045 					_rtld_error("Both -b and -f specified");
6046 					rtld_die();
6047 				}
6048 
6049 				/*
6050 				 * -f XX can be used to specify a
6051 				 * descriptor for the binary named at
6052 				 * the command line (i.e., the later
6053 				 * argument will specify the process
6054 				 * name but the descriptor is what
6055 				 * will actually be executed).
6056 				 *
6057 				 * -f must be the last option in, e.g., -abcf.
6058 				 */
6059 				if (j != arglen - 1) {
6060 					_rtld_error("Invalid options: %s", arg);
6061 					rtld_die();
6062 				}
6063 				i++;
6064 				fd = parse_integer(argv[i]);
6065 				if (fd == -1) {
6066 					_rtld_error(
6067 					    "Invalid file descriptor: '%s'",
6068 					    argv[i]);
6069 					rtld_die();
6070 				}
6071 				*fdp = fd;
6072 				seen_f = true;
6073 				break;
6074 			} else if (opt == 'p') {
6075 				*use_pathp = true;
6076 			} else if (opt == 'u') {
6077 				trust = false;
6078 			} else if (opt == 'v') {
6079 				machine[0] = '\0';
6080 				mib[0] = CTL_HW;
6081 				mib[1] = HW_MACHINE;
6082 				sz = sizeof(machine);
6083 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6084 				ld_elf_hints_path = ld_get_env_var(
6085 				    LD_ELF_HINTS_PATH);
6086 				set_ld_elf_hints_path();
6087 				rtld_printf(
6088 				    "FreeBSD ld-elf.so.1 %s\n"
6089 				    "FreeBSD_version %d\n"
6090 				    "Default lib path %s\n"
6091 				    "Hints lib path %s\n"
6092 				    "Env prefix %s\n"
6093 				    "Default hint file %s\n"
6094 				    "Hint file %s\n"
6095 				    "libmap file %s\n",
6096 				    machine,
6097 				    __FreeBSD_version, ld_standard_library_path,
6098 				    gethints(false),
6099 				    ld_env_prefix, ld_elf_hints_default,
6100 				    ld_elf_hints_path,
6101 				    ld_path_libmap_conf);
6102 				_exit(0);
6103 			} else {
6104 				_rtld_error("Invalid argument: '%s'", arg);
6105 				print_usage(argv[0]);
6106 				rtld_die();
6107 			}
6108 		}
6109 	}
6110 
6111 	if (!seen_b)
6112 		*argv0 = argv[i];
6113 	return (i);
6114 }
6115 
6116 /*
6117  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6118  */
6119 static int
parse_integer(const char * str)6120 parse_integer(const char *str)
6121 {
6122 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6123 	const char *orig;
6124 	int n;
6125 	char c;
6126 
6127 	orig = str;
6128 	n = 0;
6129 	for (c = *str; c != '\0'; c = *++str) {
6130 		if (c < '0' || c > '9')
6131 			return (-1);
6132 
6133 		n *= RADIX;
6134 		n += c - '0';
6135 	}
6136 
6137 	/* Make sure we actually parsed something. */
6138 	if (str == orig)
6139 		return (-1);
6140 	return (n);
6141 }
6142 
6143 static void
print_usage(const char * argv0)6144 print_usage(const char *argv0)
6145 {
6146 
6147 	rtld_printf(
6148 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6149 	    "\n"
6150 	    "Options:\n"
6151 	    "  -h        Display this help message\n"
6152 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6153 	    "  -d        Ignore lack of exec permissions for the binary\n"
6154 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6155 	    "  -p        Search in PATH for named binary\n"
6156 	    "  -u        Ignore LD_ environment variables\n"
6157 	    "  -v        Display identification information\n"
6158 	    "  --        End of RTLD options\n"
6159 	    "  <binary>  Name of process to execute\n"
6160 	    "  <args>    Arguments to the executed process\n", argv0);
6161 }
6162 
6163 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6164 static const struct auxfmt {
6165 	const char *name;
6166 	const char *fmt;
6167 } auxfmts[] = {
6168 	AUXFMT(AT_NULL, NULL),
6169 	AUXFMT(AT_IGNORE, NULL),
6170 	AUXFMT(AT_EXECFD, "%ld"),
6171 	AUXFMT(AT_PHDR, "%p"),
6172 	AUXFMT(AT_PHENT, "%lu"),
6173 	AUXFMT(AT_PHNUM, "%lu"),
6174 	AUXFMT(AT_PAGESZ, "%lu"),
6175 	AUXFMT(AT_BASE, "%#lx"),
6176 	AUXFMT(AT_FLAGS, "%#lx"),
6177 	AUXFMT(AT_ENTRY, "%p"),
6178 	AUXFMT(AT_NOTELF, NULL),
6179 	AUXFMT(AT_UID, "%ld"),
6180 	AUXFMT(AT_EUID, "%ld"),
6181 	AUXFMT(AT_GID, "%ld"),
6182 	AUXFMT(AT_EGID, "%ld"),
6183 	AUXFMT(AT_EXECPATH, "%s"),
6184 	AUXFMT(AT_CANARY, "%p"),
6185 	AUXFMT(AT_CANARYLEN, "%lu"),
6186 	AUXFMT(AT_OSRELDATE, "%lu"),
6187 	AUXFMT(AT_NCPUS, "%lu"),
6188 	AUXFMT(AT_PAGESIZES, "%p"),
6189 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6190 	AUXFMT(AT_TIMEKEEP, "%p"),
6191 	AUXFMT(AT_STACKPROT, "%#lx"),
6192 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6193 	AUXFMT(AT_HWCAP, "%#lx"),
6194 	AUXFMT(AT_HWCAP2, "%#lx"),
6195 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6196 	AUXFMT(AT_ARGC, "%lu"),
6197 	AUXFMT(AT_ARGV, "%p"),
6198 	AUXFMT(AT_ENVC, "%p"),
6199 	AUXFMT(AT_ENVV, "%p"),
6200 	AUXFMT(AT_PS_STRINGS, "%p"),
6201 	AUXFMT(AT_FXRNG, "%p"),
6202 	AUXFMT(AT_KPRELOAD, "%p"),
6203 };
6204 
6205 static bool
is_ptr_fmt(const char * fmt)6206 is_ptr_fmt(const char *fmt)
6207 {
6208 	char last;
6209 
6210 	last = fmt[strlen(fmt) - 1];
6211 	return (last == 'p' || last == 's');
6212 }
6213 
6214 static void
dump_auxv(Elf_Auxinfo ** aux_info)6215 dump_auxv(Elf_Auxinfo **aux_info)
6216 {
6217 	Elf_Auxinfo *auxp;
6218 	const struct auxfmt *fmt;
6219 	int i;
6220 
6221 	for (i = 0; i < AT_COUNT; i++) {
6222 		auxp = aux_info[i];
6223 		if (auxp == NULL)
6224 			continue;
6225 		fmt = &auxfmts[i];
6226 		if (fmt->fmt == NULL)
6227 			continue;
6228 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6229 		if (is_ptr_fmt(fmt->fmt)) {
6230 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6231 			    auxp->a_un.a_ptr);
6232 		} else {
6233 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6234 			    auxp->a_un.a_val);
6235 		}
6236 		rtld_fdprintf(STDOUT_FILENO, "\n");
6237 	}
6238 }
6239 
6240 /*
6241  * Overrides for libc_pic-provided functions.
6242  */
6243 
6244 int
__getosreldate(void)6245 __getosreldate(void)
6246 {
6247 	size_t len;
6248 	int oid[2];
6249 	int error, osrel;
6250 
6251 	if (osreldate != 0)
6252 		return (osreldate);
6253 
6254 	oid[0] = CTL_KERN;
6255 	oid[1] = KERN_OSRELDATE;
6256 	osrel = 0;
6257 	len = sizeof(osrel);
6258 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6259 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6260 		osreldate = osrel;
6261 	return (osreldate);
6262 }
6263 const char *
rtld_strerror(int errnum)6264 rtld_strerror(int errnum)
6265 {
6266 
6267 	if (errnum < 0 || errnum >= sys_nerr)
6268 		return ("Unknown error");
6269 	return (sys_errlist[errnum]);
6270 }
6271 
6272 char *
getenv(const char * name)6273 getenv(const char *name)
6274 {
6275 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6276 	    strlen(name))));
6277 }
6278 
6279 /* malloc */
6280 void *
malloc(size_t nbytes)6281 malloc(size_t nbytes)
6282 {
6283 
6284 	return (__crt_malloc(nbytes));
6285 }
6286 
6287 void *
calloc(size_t num,size_t size)6288 calloc(size_t num, size_t size)
6289 {
6290 
6291 	return (__crt_calloc(num, size));
6292 }
6293 
6294 void
free(void * cp)6295 free(void *cp)
6296 {
6297 
6298 	__crt_free(cp);
6299 }
6300 
6301 void *
realloc(void * cp,size_t nbytes)6302 realloc(void *cp, size_t nbytes)
6303 {
6304 
6305 	return (__crt_realloc(cp, nbytes));
6306 }
6307 
6308 extern int _rtld_version__FreeBSD_version __exported;
6309 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6310 
6311 extern char _rtld_version_laddr_offset __exported;
6312 char _rtld_version_laddr_offset;
6313 
6314 extern char _rtld_version_dlpi_tls_data __exported;
6315 char _rtld_version_dlpi_tls_data;
6316