1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5 * Copyright 2003 Alexander Kabaev <[email protected]>.
6 * Copyright 2009-2013 Konstantin Belousov <[email protected]>.
7 * Copyright 2012 John Marino <[email protected]>.
8 * Copyright 2014-2017 The FreeBSD Foundation
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Konstantin Belousov
12 * under sponsorship from the FreeBSD Foundation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Dynamic linker for ELF.
37 *
38 * John Polstra <[email protected]>.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include <sys/param.h>
45 #include <sys/mount.h>
46 #include <sys/mman.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/uio.h>
50 #include <sys/utsname.h>
51 #include <sys/ktrace.h>
52
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_paths.h"
67 #include "rtld_tls.h"
68 #include "rtld_printf.h"
69 #include "rtld_malloc.h"
70 #include "rtld_utrace.h"
71 #include "notes.h"
72 #include "rtld_libc.h"
73
74 /* Types. */
75 typedef void (*func_ptr_type)(void);
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77
78
79 /* Variables that cannot be static: */
80 extern struct r_debug r_debug; /* For GDB */
81 extern int _thread_autoinit_dummy_decl;
82 extern void (*__cleanup)(void);
83
84 struct dlerror_save {
85 int seen;
86 char *msg;
87 };
88
89 /*
90 * Function declarations.
91 */
92 static const char *basename(const char *);
93 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
94 const Elf_Dyn **, const Elf_Dyn **);
95 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
96 const Elf_Dyn *);
97 static bool digest_dynamic(Obj_Entry *, int);
98 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
99 static void distribute_static_tls(Objlist *, RtldLockState *);
100 static Obj_Entry *dlcheck(void *);
101 static int dlclose_locked(void *, RtldLockState *);
102 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
103 int lo_flags, int mode, RtldLockState *lockstate);
104 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
105 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
106 static bool donelist_check(DoneList *, const Obj_Entry *);
107 static void dump_auxv(Elf_Auxinfo **aux_info);
108 static void errmsg_restore(struct dlerror_save *);
109 static struct dlerror_save *errmsg_save(void);
110 static void *fill_search_info(const char *, size_t, void *);
111 static char *find_library(const char *, const Obj_Entry *, int *);
112 static const char *gethints(bool);
113 static void hold_object(Obj_Entry *);
114 static void unhold_object(Obj_Entry *);
115 static void init_dag(Obj_Entry *);
116 static void init_marker(Obj_Entry *);
117 static void init_pagesizes(Elf_Auxinfo **aux_info);
118 static void init_rtld(caddr_t, Elf_Auxinfo **);
119 static void initlist_add_neededs(Needed_Entry *, Objlist *);
120 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
121 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
122 static void linkmap_add(Obj_Entry *);
123 static void linkmap_delete(Obj_Entry *);
124 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
125 static void unload_filtees(Obj_Entry *, RtldLockState *);
126 static int load_needed_objects(Obj_Entry *, int);
127 static int load_preload_objects(const char *, bool);
128 static int load_kpreload(const void *addr);
129 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
130 static void map_stacks_exec(RtldLockState *);
131 static int obj_disable_relro(Obj_Entry *);
132 static int obj_enforce_relro(Obj_Entry *);
133 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
134 static void objlist_call_init(Objlist *, RtldLockState *);
135 static void objlist_clear(Objlist *);
136 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
137 static void objlist_init(Objlist *);
138 static void objlist_push_head(Objlist *, Obj_Entry *);
139 static void objlist_push_tail(Objlist *, Obj_Entry *);
140 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
141 static void objlist_remove(Objlist *, Obj_Entry *);
142 static int open_binary_fd(const char *argv0, bool search_in_path,
143 const char **binpath_res);
144 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
145 const char **argv0, bool *dir_ignore);
146 static int parse_integer(const char *);
147 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
148 static void print_usage(const char *argv0);
149 static void release_object(Obj_Entry *);
150 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
151 Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
152 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
153 int flags, RtldLockState *lockstate);
154 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
155 RtldLockState *);
156 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
157 static int rtld_dirname(const char *, char *);
158 static int rtld_dirname_abs(const char *, char *);
159 static void *rtld_dlopen(const char *name, int fd, int mode);
160 static void rtld_exit(void);
161 static void rtld_nop_exit(void);
162 static char *search_library_path(const char *, const char *, const char *,
163 int *);
164 static char *search_library_pathfds(const char *, const char *, int *);
165 static const void **get_program_var_addr(const char *, RtldLockState *);
166 static void set_program_var(const char *, const void *);
167 static int symlook_default(SymLook *, const Obj_Entry *refobj);
168 static int symlook_global(SymLook *, DoneList *);
169 static void symlook_init_from_req(SymLook *, const SymLook *);
170 static int symlook_list(SymLook *, const Objlist *, DoneList *);
171 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
172 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
173 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
174 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
175 static void trace_loaded_objects(Obj_Entry *);
176 static void unlink_object(Obj_Entry *);
177 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
178 static void unref_dag(Obj_Entry *);
179 static void ref_dag(Obj_Entry *);
180 static char *origin_subst_one(Obj_Entry *, char *, const char *,
181 const char *, bool);
182 static char *origin_subst(Obj_Entry *, const char *);
183 static bool obj_resolve_origin(Obj_Entry *obj);
184 static void preinit_main(void);
185 static int rtld_verify_versions(const Objlist *);
186 static int rtld_verify_object_versions(Obj_Entry *);
187 static void object_add_name(Obj_Entry *, const char *);
188 static int object_match_name(const Obj_Entry *, const char *);
189 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
190 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
191 struct dl_phdr_info *phdr_info);
192 static uint32_t gnu_hash(const char *);
193 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
194 const unsigned long);
195
196 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
197 void _r_debug_postinit(struct link_map *) __noinline __exported;
198
199 int __sys_openat(int, const char *, int, ...);
200
201 /*
202 * Data declarations.
203 */
204 struct r_debug r_debug __exported; /* for GDB; */
205 static bool libmap_disable; /* Disable libmap */
206 static bool ld_loadfltr; /* Immediate filters processing */
207 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
208 static bool trust; /* False for setuid and setgid programs */
209 static bool dangerous_ld_env; /* True if environment variables have been
210 used to affect the libraries loaded */
211 bool ld_bind_not; /* Disable PLT update */
212 static const char *ld_bind_now; /* Environment variable for immediate binding */
213 static const char *ld_debug; /* Environment variable for debugging */
214 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
215 weak definition */
216 static const char *ld_library_path;/* Environment variable for search path */
217 static const char *ld_library_dirs;/* Environment variable for library descriptors */
218 static const char *ld_preload; /* Environment variable for libraries to
219 load first */
220 static const char *ld_preload_fds;/* Environment variable for libraries represented by
221 descriptors */
222 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
223 static const char *ld_tracing; /* Called from ldd to print libs */
224 static const char *ld_utrace; /* Use utrace() to log events. */
225 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
226 static Obj_Entry *obj_main; /* The main program shared object */
227 static Obj_Entry obj_rtld; /* The dynamic linker shared object */
228 static unsigned int obj_count; /* Number of objects in obj_list */
229 static unsigned int obj_loads; /* Number of loads of objects (gen count) */
230
231 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
232 STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main = /* Objects loaded at program startup */
234 STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini = /* Objects needing fini() calls */
236 STAILQ_HEAD_INITIALIZER(list_fini);
237
238 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
239
240 #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
241
242 extern Elf_Dyn _DYNAMIC;
243 #pragma weak _DYNAMIC
244
245 int dlclose(void *) __exported;
246 char *dlerror(void) __exported;
247 void *dlopen(const char *, int) __exported;
248 void *fdlopen(int, int) __exported;
249 void *dlsym(void *, const char *) __exported;
250 dlfunc_t dlfunc(void *, const char *) __exported;
251 void *dlvsym(void *, const char *, const char *) __exported;
252 int dladdr(const void *, Dl_info *) __exported;
253 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
254 void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
255 int dlinfo(void *, int , void *) __exported;
256 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
257 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
258 int _rtld_get_stack_prot(void) __exported;
259 int _rtld_is_dlopened(void *) __exported;
260 void _rtld_error(const char *, ...) __exported;
261
262 /* Only here to fix -Wmissing-prototypes warnings */
263 int __getosreldate(void);
264 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
265 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
266
267
268 int npagesizes;
269 static int osreldate;
270 size_t *pagesizes;
271
272 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
273 static int max_stack_flags;
274
275 /*
276 * Global declarations normally provided by crt1. The dynamic linker is
277 * not built with crt1, so we have to provide them ourselves.
278 */
279 char *__progname;
280 char **environ;
281
282 /*
283 * Used to pass argc, argv to init functions.
284 */
285 int main_argc;
286 char **main_argv;
287
288 /*
289 * Globals to control TLS allocation.
290 */
291 size_t tls_last_offset; /* Static TLS offset of last module */
292 size_t tls_last_size; /* Static TLS size of last module */
293 size_t tls_static_space; /* Static TLS space allocated */
294 static size_t tls_static_max_align;
295 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
296 int tls_max_index = 1; /* Largest module index allocated */
297
298 static bool ld_library_path_rpath = false;
299 bool ld_fast_sigblock = false;
300
301 /*
302 * Globals for path names, and such
303 */
304 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
305 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
306 const char *ld_path_rtld = _PATH_RTLD;
307 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
308 const char *ld_env_prefix = LD_;
309
310 static void (*rtld_exit_ptr)(void);
311
312 /*
313 * Fill in a DoneList with an allocation large enough to hold all of
314 * the currently-loaded objects. Keep this as a macro since it calls
315 * alloca and we want that to occur within the scope of the caller.
316 */
317 #define donelist_init(dlp) \
318 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
319 assert((dlp)->objs != NULL), \
320 (dlp)->num_alloc = obj_count, \
321 (dlp)->num_used = 0)
322
323 #define LD_UTRACE(e, h, mb, ms, r, n) do { \
324 if (ld_utrace != NULL) \
325 ld_utrace_log(e, h, mb, ms, r, n); \
326 } while (0)
327
328 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)329 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
330 int refcnt, const char *name)
331 {
332 struct utrace_rtld ut;
333 static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
334
335 memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
336 ut.event = event;
337 ut.handle = handle;
338 ut.mapbase = mapbase;
339 ut.mapsize = mapsize;
340 ut.refcnt = refcnt;
341 bzero(ut.name, sizeof(ut.name));
342 if (name)
343 strlcpy(ut.name, name, sizeof(ut.name));
344 utrace(&ut, sizeof(ut));
345 }
346
347 enum {
348 LD_BIND_NOW = 0,
349 LD_PRELOAD,
350 LD_LIBMAP,
351 LD_LIBRARY_PATH,
352 LD_LIBRARY_PATH_FDS,
353 LD_LIBMAP_DISABLE,
354 LD_BIND_NOT,
355 LD_DEBUG,
356 LD_ELF_HINTS_PATH,
357 LD_LOADFLTR,
358 LD_LIBRARY_PATH_RPATH,
359 LD_PRELOAD_FDS,
360 LD_DYNAMIC_WEAK,
361 LD_TRACE_LOADED_OBJECTS,
362 LD_UTRACE,
363 LD_DUMP_REL_PRE,
364 LD_DUMP_REL_POST,
365 LD_TRACE_LOADED_OBJECTS_PROGNAME,
366 LD_TRACE_LOADED_OBJECTS_FMT1,
367 LD_TRACE_LOADED_OBJECTS_FMT2,
368 LD_TRACE_LOADED_OBJECTS_ALL,
369 LD_SHOW_AUXV,
370 };
371
372 struct ld_env_var_desc {
373 const char * const n;
374 const char *val;
375 const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378 [LD_##var] = { .n = #var, .unsecure = unsec }
379
380 static struct ld_env_var_desc ld_env_vars[] = {
381 LD_ENV_DESC(BIND_NOW, false),
382 LD_ENV_DESC(PRELOAD, true),
383 LD_ENV_DESC(LIBMAP, true),
384 LD_ENV_DESC(LIBRARY_PATH, true),
385 LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 LD_ENV_DESC(LIBMAP_DISABLE, true),
387 LD_ENV_DESC(BIND_NOT, true),
388 LD_ENV_DESC(DEBUG, true),
389 LD_ENV_DESC(ELF_HINTS_PATH, true),
390 LD_ENV_DESC(LOADFLTR, true),
391 LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 LD_ENV_DESC(PRELOAD_FDS, true),
393 LD_ENV_DESC(DYNAMIC_WEAK, true),
394 LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 LD_ENV_DESC(UTRACE, false),
396 LD_ENV_DESC(DUMP_REL_PRE, false),
397 LD_ENV_DESC(DUMP_REL_POST, false),
398 LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 LD_ENV_DESC(SHOW_AUXV, false),
403 };
404
405 static const char *
ld_get_env_var(int idx)406 ld_get_env_var(int idx)
407 {
408 return (ld_env_vars[idx].val);
409 }
410
411 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)412 rtld_get_env_val(char **env, const char *name, size_t name_len)
413 {
414 char **m, *n, *v;
415
416 for (m = env; *m != NULL; m++) {
417 n = *m;
418 v = strchr(n, '=');
419 if (v == NULL) {
420 /* corrupt environment? */
421 continue;
422 }
423 if (v - n == (ptrdiff_t)name_len &&
424 strncmp(name, n, name_len) == 0)
425 return (v + 1);
426 }
427 return (NULL);
428 }
429
430 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)431 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
432 {
433 struct ld_env_var_desc *lvd;
434 size_t prefix_len, nlen;
435 char **m, *n, *v;
436 int i;
437
438 prefix_len = strlen(env_prefix);
439 for (m = env; *m != NULL; m++) {
440 n = *m;
441 if (strncmp(env_prefix, n, prefix_len) != 0) {
442 /* Not a rtld environment variable. */
443 continue;
444 }
445 n += prefix_len;
446 v = strchr(n, '=');
447 if (v == NULL) {
448 /* corrupt environment? */
449 continue;
450 }
451 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
452 lvd = &ld_env_vars[i];
453 if (lvd->val != NULL) {
454 /* Saw higher-priority variable name already. */
455 continue;
456 }
457 nlen = strlen(lvd->n);
458 if (v - n == (ptrdiff_t)nlen &&
459 strncmp(lvd->n, n, nlen) == 0) {
460 lvd->val = v + 1;
461 break;
462 }
463 }
464 }
465 }
466
467 static void
rtld_init_env_vars(char ** env)468 rtld_init_env_vars(char **env)
469 {
470 rtld_init_env_vars_for_prefix(env, ld_env_prefix);
471 }
472
473 static void
set_ld_elf_hints_path(void)474 set_ld_elf_hints_path(void)
475 {
476 if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
477 ld_elf_hints_path = ld_elf_hints_default;
478 }
479
480 /*
481 * Main entry point for dynamic linking. The first argument is the
482 * stack pointer. The stack is expected to be laid out as described
483 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
484 * Specifically, the stack pointer points to a word containing
485 * ARGC. Following that in the stack is a null-terminated sequence
486 * of pointers to argument strings. Then comes a null-terminated
487 * sequence of pointers to environment strings. Finally, there is a
488 * sequence of "auxiliary vector" entries.
489 *
490 * The second argument points to a place to store the dynamic linker's
491 * exit procedure pointer and the third to a place to store the main
492 * program's object.
493 *
494 * The return value is the main program's entry point.
495 */
496 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)497 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
498 {
499 Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
500 Objlist_Entry *entry;
501 Obj_Entry *last_interposer, *obj, *preload_tail;
502 const Elf_Phdr *phdr;
503 Objlist initlist;
504 RtldLockState lockstate;
505 struct stat st;
506 Elf_Addr *argcp;
507 char **argv, **env, **envp, *kexecpath;
508 const char *argv0, *binpath, *library_path_rpath;
509 struct ld_env_var_desc *lvd;
510 caddr_t imgentry;
511 char buf[MAXPATHLEN];
512 int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
513 size_t sz;
514 #ifdef __powerpc__
515 int old_auxv_format = 1;
516 #endif
517 bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
518
519 /*
520 * On entry, the dynamic linker itself has not been relocated yet.
521 * Be very careful not to reference any global data until after
522 * init_rtld has returned. It is OK to reference file-scope statics
523 * and string constants, and to call static and global functions.
524 */
525
526 /* Find the auxiliary vector on the stack. */
527 argcp = sp;
528 argc = *sp++;
529 argv = (char **) sp;
530 sp += argc + 1; /* Skip over arguments and NULL terminator */
531 env = (char **) sp;
532 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
533 ;
534 aux = (Elf_Auxinfo *) sp;
535
536 /* Digest the auxiliary vector. */
537 for (i = 0; i < AT_COUNT; i++)
538 aux_info[i] = NULL;
539 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
540 if (auxp->a_type < AT_COUNT)
541 aux_info[auxp->a_type] = auxp;
542 #ifdef __powerpc__
543 if (auxp->a_type == 23) /* AT_STACKPROT */
544 old_auxv_format = 0;
545 #endif
546 }
547
548 #ifdef __powerpc__
549 if (old_auxv_format) {
550 /* Remap from old-style auxv numbers. */
551 aux_info[23] = aux_info[21]; /* AT_STACKPROT */
552 aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
553 aux_info[19] = aux_info[17]; /* AT_NCPUS */
554 aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
555 aux_info[15] = aux_info[13]; /* AT_EXECPATH */
556 aux_info[13] = NULL; /* AT_GID */
557
558 aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
559 aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
560 aux_info[16] = aux_info[14]; /* AT_CANARY */
561 aux_info[14] = NULL; /* AT_EGID */
562 }
563 #endif
564
565 /* Initialize and relocate ourselves. */
566 assert(aux_info[AT_BASE] != NULL);
567 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
568
569 dlerror_dflt_init();
570
571 __progname = obj_rtld.path;
572 argv0 = argv[0] != NULL ? argv[0] : "(null)";
573 environ = env;
574 main_argc = argc;
575 main_argv = argv;
576
577 if (aux_info[AT_BSDFLAGS] != NULL &&
578 (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
579 ld_fast_sigblock = true;
580
581 trust = !issetugid();
582 direct_exec = false;
583
584 md_abi_variant_hook(aux_info);
585 rtld_init_env_vars(env);
586
587 fd = -1;
588 if (aux_info[AT_EXECFD] != NULL) {
589 fd = aux_info[AT_EXECFD]->a_un.a_val;
590 } else {
591 assert(aux_info[AT_PHDR] != NULL);
592 phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
593 if (phdr == obj_rtld.phdr) {
594 if (!trust) {
595 _rtld_error("Tainted process refusing to run binary %s",
596 argv0);
597 rtld_die();
598 }
599 direct_exec = true;
600
601 dbg("opening main program in direct exec mode");
602 if (argc >= 2) {
603 rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
604 &argv0, &dir_ignore);
605 explicit_fd = (fd != -1);
606 binpath = NULL;
607 if (!explicit_fd)
608 fd = open_binary_fd(argv0, search_in_path, &binpath);
609 if (fstat(fd, &st) == -1) {
610 _rtld_error("Failed to fstat FD %d (%s): %s", fd,
611 explicit_fd ? "user-provided descriptor" : argv0,
612 rtld_strerror(errno));
613 rtld_die();
614 }
615
616 /*
617 * Rough emulation of the permission checks done by
618 * execve(2), only Unix DACs are checked, ACLs are
619 * ignored. Preserve the semantic of disabling owner
620 * to execute if owner x bit is cleared, even if
621 * others x bit is enabled.
622 * mmap(2) does not allow to mmap with PROT_EXEC if
623 * binary' file comes from noexec mount. We cannot
624 * set a text reference on the binary.
625 */
626 dir_enable = false;
627 if (st.st_uid == geteuid()) {
628 if ((st.st_mode & S_IXUSR) != 0)
629 dir_enable = true;
630 } else if (st.st_gid == getegid()) {
631 if ((st.st_mode & S_IXGRP) != 0)
632 dir_enable = true;
633 } else if ((st.st_mode & S_IXOTH) != 0) {
634 dir_enable = true;
635 }
636 if (!dir_enable && !dir_ignore) {
637 _rtld_error("No execute permission for binary %s",
638 argv0);
639 rtld_die();
640 }
641
642 /*
643 * For direct exec mode, argv[0] is the interpreter
644 * name, we must remove it and shift arguments left
645 * before invoking binary main. Since stack layout
646 * places environment pointers and aux vectors right
647 * after the terminating NULL, we must shift
648 * environment and aux as well.
649 */
650 main_argc = argc - rtld_argc;
651 for (i = 0; i <= main_argc; i++)
652 argv[i] = argv[i + rtld_argc];
653 *argcp -= rtld_argc;
654 environ = env = envp = argv + main_argc + 1;
655 dbg("move env from %p to %p", envp + rtld_argc, envp);
656 do {
657 *envp = *(envp + rtld_argc);
658 } while (*envp++ != NULL);
659 aux = auxp = (Elf_Auxinfo *)envp;
660 auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
661 dbg("move aux from %p to %p", auxpf, aux);
662 /* XXXKIB insert place for AT_EXECPATH if not present */
663 for (;; auxp++, auxpf++) {
664 *auxp = *auxpf;
665 if (auxp->a_type == AT_NULL)
666 break;
667 }
668 /* Since the auxiliary vector has moved, redigest it. */
669 for (i = 0; i < AT_COUNT; i++)
670 aux_info[i] = NULL;
671 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
672 if (auxp->a_type < AT_COUNT)
673 aux_info[auxp->a_type] = auxp;
674 }
675
676 /* Point AT_EXECPATH auxv and aux_info to the binary path. */
677 if (binpath == NULL) {
678 aux_info[AT_EXECPATH] = NULL;
679 } else {
680 if (aux_info[AT_EXECPATH] == NULL) {
681 aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
682 aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
683 }
684 aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
685 binpath);
686 }
687 } else {
688 _rtld_error("No binary");
689 rtld_die();
690 }
691 }
692 }
693
694 ld_bind_now = ld_get_env_var(LD_BIND_NOW);
695
696 /*
697 * If the process is tainted, then we un-set the dangerous environment
698 * variables. The process will be marked as tainted until setuid(2)
699 * is called. If any child process calls setuid(2) we do not want any
700 * future processes to honor the potentially un-safe variables.
701 */
702 if (!trust) {
703 for (i = 0; i < (int)nitems(ld_env_vars); i++) {
704 lvd = &ld_env_vars[i];
705 if (lvd->unsecure)
706 lvd->val = NULL;
707 }
708 }
709
710 ld_debug = ld_get_env_var(LD_DEBUG);
711 if (ld_bind_now == NULL)
712 ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
713 ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
714 libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
715 libmap_override = ld_get_env_var(LD_LIBMAP);
716 ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
717 ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
718 ld_preload = ld_get_env_var(LD_PRELOAD);
719 ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
720 ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
721 ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
722 library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
723 if (library_path_rpath != NULL) {
724 if (library_path_rpath[0] == 'y' ||
725 library_path_rpath[0] == 'Y' ||
726 library_path_rpath[0] == '1')
727 ld_library_path_rpath = true;
728 else
729 ld_library_path_rpath = false;
730 }
731 dangerous_ld_env = libmap_disable || libmap_override != NULL ||
732 ld_library_path != NULL || ld_preload != NULL ||
733 ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
734 ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
735 ld_utrace = ld_get_env_var(LD_UTRACE);
736
737 set_ld_elf_hints_path();
738 if (ld_debug != NULL && *ld_debug != '\0')
739 debug = 1;
740 dbg("%s is initialized, base address = %p", __progname,
741 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
742 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
743 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
744
745 dbg("initializing thread locks");
746 lockdflt_init();
747
748 /*
749 * Load the main program, or process its program header if it is
750 * already loaded.
751 */
752 if (fd != -1) { /* Load the main program. */
753 dbg("loading main program");
754 obj_main = map_object(fd, argv0, NULL);
755 close(fd);
756 if (obj_main == NULL)
757 rtld_die();
758 max_stack_flags = obj_main->stack_flags;
759 } else { /* Main program already loaded. */
760 dbg("processing main program's program header");
761 assert(aux_info[AT_PHDR] != NULL);
762 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
763 assert(aux_info[AT_PHNUM] != NULL);
764 phnum = aux_info[AT_PHNUM]->a_un.a_val;
765 assert(aux_info[AT_PHENT] != NULL);
766 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
767 assert(aux_info[AT_ENTRY] != NULL);
768 imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
769 if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
770 rtld_die();
771 }
772
773 if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
774 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
775 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
776 if (kexecpath[0] == '/')
777 obj_main->path = kexecpath;
778 else if (getcwd(buf, sizeof(buf)) == NULL ||
779 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
780 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
781 obj_main->path = xstrdup(argv0);
782 else
783 obj_main->path = xstrdup(buf);
784 } else {
785 dbg("No AT_EXECPATH or direct exec");
786 obj_main->path = xstrdup(argv0);
787 }
788 dbg("obj_main path %s", obj_main->path);
789 obj_main->mainprog = true;
790
791 if (aux_info[AT_STACKPROT] != NULL &&
792 aux_info[AT_STACKPROT]->a_un.a_val != 0)
793 stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
794
795 #ifndef COMPAT_32BIT
796 /*
797 * Get the actual dynamic linker pathname from the executable if
798 * possible. (It should always be possible.) That ensures that
799 * gdb will find the right dynamic linker even if a non-standard
800 * one is being used.
801 */
802 if (obj_main->interp != NULL &&
803 strcmp(obj_main->interp, obj_rtld.path) != 0) {
804 free(obj_rtld.path);
805 obj_rtld.path = xstrdup(obj_main->interp);
806 __progname = obj_rtld.path;
807 }
808 #endif
809
810 if (!digest_dynamic(obj_main, 0))
811 rtld_die();
812 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
813 obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
814 obj_main->dynsymcount);
815
816 linkmap_add(obj_main);
817 linkmap_add(&obj_rtld);
818
819 /* Link the main program into the list of objects. */
820 TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
821 obj_count++;
822 obj_loads++;
823
824 /* Initialize a fake symbol for resolving undefined weak references. */
825 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
826 sym_zero.st_shndx = SHN_UNDEF;
827 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
828
829 if (!libmap_disable)
830 libmap_disable = (bool)lm_init(libmap_override);
831
832 if (aux_info[AT_KPRELOAD] != NULL &&
833 aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
834 dbg("loading kernel vdso");
835 if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
836 rtld_die();
837 }
838
839 dbg("loading LD_PRELOAD_FDS libraries");
840 if (load_preload_objects(ld_preload_fds, true) == -1)
841 rtld_die();
842
843 dbg("loading LD_PRELOAD libraries");
844 if (load_preload_objects(ld_preload, false) == -1)
845 rtld_die();
846 preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
847
848 dbg("loading needed objects");
849 if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
850 0) == -1)
851 rtld_die();
852
853 /* Make a list of all objects loaded at startup. */
854 last_interposer = obj_main;
855 TAILQ_FOREACH(obj, &obj_list, next) {
856 if (obj->marker)
857 continue;
858 if (obj->z_interpose && obj != obj_main) {
859 objlist_put_after(&list_main, last_interposer, obj);
860 last_interposer = obj;
861 } else {
862 objlist_push_tail(&list_main, obj);
863 }
864 obj->refcount++;
865 }
866
867 dbg("checking for required versions");
868 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
869 rtld_die();
870
871 if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
872 dump_auxv(aux_info);
873
874 if (ld_tracing) { /* We're done */
875 trace_loaded_objects(obj_main);
876 exit(0);
877 }
878
879 if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
880 dump_relocations(obj_main);
881 exit (0);
882 }
883
884 /*
885 * Processing tls relocations requires having the tls offsets
886 * initialized. Prepare offsets before starting initial
887 * relocation processing.
888 */
889 dbg("initializing initial thread local storage offsets");
890 STAILQ_FOREACH(entry, &list_main, link) {
891 /*
892 * Allocate all the initial objects out of the static TLS
893 * block even if they didn't ask for it.
894 */
895 allocate_tls_offset(entry->obj);
896 }
897
898 if (relocate_objects(obj_main,
899 ld_bind_now != NULL && *ld_bind_now != '\0',
900 &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
901 rtld_die();
902
903 dbg("doing copy relocations");
904 if (do_copy_relocations(obj_main) == -1)
905 rtld_die();
906
907 if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
908 dump_relocations(obj_main);
909 exit (0);
910 }
911
912 ifunc_init(aux);
913
914 /*
915 * Setup TLS for main thread. This must be done after the
916 * relocations are processed, since tls initialization section
917 * might be the subject for relocations.
918 */
919 dbg("initializing initial thread local storage");
920 allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
921
922 dbg("initializing key program variables");
923 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
924 set_program_var("environ", env);
925 set_program_var("__elf_aux_vector", aux);
926
927 /* Make a list of init functions to call. */
928 objlist_init(&initlist);
929 initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
930 preload_tail, &initlist);
931
932 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
933
934 map_stacks_exec(NULL);
935
936 if (!obj_main->crt_no_init) {
937 /*
938 * Make sure we don't call the main program's init and fini
939 * functions for binaries linked with old crt1 which calls
940 * _init itself.
941 */
942 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
943 obj_main->preinit_array = obj_main->init_array =
944 obj_main->fini_array = (Elf_Addr)NULL;
945 }
946
947 if (direct_exec) {
948 /* Set osrel for direct-execed binary */
949 mib[0] = CTL_KERN;
950 mib[1] = KERN_PROC;
951 mib[2] = KERN_PROC_OSREL;
952 mib[3] = getpid();
953 osrel = obj_main->osrel;
954 sz = sizeof(old_osrel);
955 dbg("setting osrel to %d", osrel);
956 (void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
957 }
958
959 wlock_acquire(rtld_bind_lock, &lockstate);
960
961 dbg("resolving ifuncs");
962 if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
963 *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
964 rtld_die();
965
966 rtld_exit_ptr = rtld_exit;
967 if (obj_main->crt_no_init)
968 preinit_main();
969 objlist_call_init(&initlist, &lockstate);
970 _r_debug_postinit(&obj_main->linkmap);
971 objlist_clear(&initlist);
972 dbg("loading filtees");
973 TAILQ_FOREACH(obj, &obj_list, next) {
974 if (obj->marker)
975 continue;
976 if (ld_loadfltr || obj->z_loadfltr)
977 load_filtees(obj, 0, &lockstate);
978 }
979
980 dbg("enforcing main obj relro");
981 if (obj_enforce_relro(obj_main) == -1)
982 rtld_die();
983
984 lock_release(rtld_bind_lock, &lockstate);
985
986 dbg("transferring control to program entry point = %p", obj_main->entry);
987
988 /* Return the exit procedure and the program entry point. */
989 *exit_proc = rtld_exit_ptr;
990 *objp = obj_main;
991 return ((func_ptr_type)obj_main->entry);
992 }
993
994 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)995 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
996 {
997 void *ptr;
998 Elf_Addr target;
999
1000 ptr = (void *)make_function_pointer(def, obj);
1001 target = call_ifunc_resolver(ptr);
1002 return ((void *)target);
1003 }
1004
1005 /*
1006 * NB: MIPS uses a private version of this function (_mips_rtld_bind).
1007 * Changes to this function should be applied there as well.
1008 */
1009 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1010 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1011 {
1012 const Elf_Rel *rel;
1013 const Elf_Sym *def;
1014 const Obj_Entry *defobj;
1015 Elf_Addr *where;
1016 Elf_Addr target;
1017 RtldLockState lockstate;
1018
1019 rlock_acquire(rtld_bind_lock, &lockstate);
1020 if (sigsetjmp(lockstate.env, 0) != 0)
1021 lock_upgrade(rtld_bind_lock, &lockstate);
1022 if (obj->pltrel)
1023 rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1024 else
1025 rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1026
1027 where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1028 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1029 NULL, &lockstate);
1030 if (def == NULL)
1031 rtld_die();
1032 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1033 target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1034 else
1035 target = (Elf_Addr)(defobj->relocbase + def->st_value);
1036
1037 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1038 defobj->strtab + def->st_name,
1039 obj->path == NULL ? NULL : basename(obj->path),
1040 (void *)target,
1041 defobj->path == NULL ? NULL : basename(defobj->path));
1042
1043 /*
1044 * Write the new contents for the jmpslot. Note that depending on
1045 * architecture, the value which we need to return back to the
1046 * lazy binding trampoline may or may not be the target
1047 * address. The value returned from reloc_jmpslot() is the value
1048 * that the trampoline needs.
1049 */
1050 target = reloc_jmpslot(where, target, defobj, obj, rel);
1051 lock_release(rtld_bind_lock, &lockstate);
1052 return (target);
1053 }
1054
1055 /*
1056 * Error reporting function. Use it like printf. If formats the message
1057 * into a buffer, and sets things up so that the next call to dlerror()
1058 * will return the message.
1059 */
1060 void
_rtld_error(const char * fmt,...)1061 _rtld_error(const char *fmt, ...)
1062 {
1063 va_list ap;
1064
1065 va_start(ap, fmt);
1066 rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1067 fmt, ap);
1068 va_end(ap);
1069 *lockinfo.dlerror_seen() = 0;
1070 LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1071 }
1072
1073 /*
1074 * Return a dynamically-allocated copy of the current error message, if any.
1075 */
1076 static struct dlerror_save *
errmsg_save(void)1077 errmsg_save(void)
1078 {
1079 struct dlerror_save *res;
1080
1081 res = xmalloc(sizeof(*res));
1082 res->seen = *lockinfo.dlerror_seen();
1083 if (res->seen == 0)
1084 res->msg = xstrdup(lockinfo.dlerror_loc());
1085 return (res);
1086 }
1087
1088 /*
1089 * Restore the current error message from a copy which was previously saved
1090 * by errmsg_save(). The copy is freed.
1091 */
1092 static void
errmsg_restore(struct dlerror_save * saved_msg)1093 errmsg_restore(struct dlerror_save *saved_msg)
1094 {
1095 if (saved_msg == NULL || saved_msg->seen == 1) {
1096 *lockinfo.dlerror_seen() = 1;
1097 } else {
1098 *lockinfo.dlerror_seen() = 0;
1099 strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1100 lockinfo.dlerror_loc_sz);
1101 free(saved_msg->msg);
1102 }
1103 free(saved_msg);
1104 }
1105
1106 static const char *
basename(const char * name)1107 basename(const char *name)
1108 {
1109 const char *p;
1110
1111 p = strrchr(name, '/');
1112 return (p != NULL ? p + 1 : name);
1113 }
1114
1115 static struct utsname uts;
1116
1117 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1118 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1119 const char *subst, bool may_free)
1120 {
1121 char *p, *p1, *res, *resp;
1122 int subst_len, kw_len, subst_count, old_len, new_len;
1123
1124 kw_len = strlen(kw);
1125
1126 /*
1127 * First, count the number of the keyword occurrences, to
1128 * preallocate the final string.
1129 */
1130 for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1131 p1 = strstr(p, kw);
1132 if (p1 == NULL)
1133 break;
1134 }
1135
1136 /*
1137 * If the keyword is not found, just return.
1138 *
1139 * Return non-substituted string if resolution failed. We
1140 * cannot do anything more reasonable, the failure mode of the
1141 * caller is unresolved library anyway.
1142 */
1143 if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1144 return (may_free ? real : xstrdup(real));
1145 if (obj != NULL)
1146 subst = obj->origin_path;
1147
1148 /*
1149 * There is indeed something to substitute. Calculate the
1150 * length of the resulting string, and allocate it.
1151 */
1152 subst_len = strlen(subst);
1153 old_len = strlen(real);
1154 new_len = old_len + (subst_len - kw_len) * subst_count;
1155 res = xmalloc(new_len + 1);
1156
1157 /*
1158 * Now, execute the substitution loop.
1159 */
1160 for (p = real, resp = res, *resp = '\0';;) {
1161 p1 = strstr(p, kw);
1162 if (p1 != NULL) {
1163 /* Copy the prefix before keyword. */
1164 memcpy(resp, p, p1 - p);
1165 resp += p1 - p;
1166 /* Keyword replacement. */
1167 memcpy(resp, subst, subst_len);
1168 resp += subst_len;
1169 *resp = '\0';
1170 p = p1 + kw_len;
1171 } else
1172 break;
1173 }
1174
1175 /* Copy to the end of string and finish. */
1176 strcat(resp, p);
1177 if (may_free)
1178 free(real);
1179 return (res);
1180 }
1181
1182 static const struct {
1183 const char *kw;
1184 bool pass_obj;
1185 const char *subst;
1186 } tokens[] = {
1187 { .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1188 { .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1189 { .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1190 { .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1191 { .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1192 { .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1193 { .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1194 { .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1195 };
1196
1197 static char *
origin_subst(Obj_Entry * obj,const char * real)1198 origin_subst(Obj_Entry *obj, const char *real)
1199 {
1200 char *res;
1201 int i;
1202
1203 if (obj == NULL || !trust)
1204 return (xstrdup(real));
1205 if (uts.sysname[0] == '\0') {
1206 if (uname(&uts) != 0) {
1207 _rtld_error("utsname failed: %d", errno);
1208 return (NULL);
1209 }
1210 }
1211
1212 /* __DECONST is safe here since without may_free real is unchanged */
1213 res = __DECONST(char *, real);
1214 for (i = 0; i < (int)nitems(tokens); i++) {
1215 res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1216 res, tokens[i].kw, tokens[i].subst, i == 0);
1217 }
1218 return (res);
1219 }
1220
1221 void
rtld_die(void)1222 rtld_die(void)
1223 {
1224 const char *msg = dlerror();
1225
1226 if (msg == NULL)
1227 msg = "Fatal error";
1228 rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1229 rtld_fdputstr(STDERR_FILENO, msg);
1230 rtld_fdputchar(STDERR_FILENO, '\n');
1231 _exit(1);
1232 }
1233
1234 /*
1235 * Process a shared object's DYNAMIC section, and save the important
1236 * information in its Obj_Entry structure.
1237 */
1238 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1239 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1240 const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1241 {
1242 const Elf_Dyn *dynp;
1243 Needed_Entry **needed_tail = &obj->needed;
1244 Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1245 Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1246 const Elf_Hashelt *hashtab;
1247 const Elf32_Word *hashval;
1248 Elf32_Word bkt, nmaskwords;
1249 int bloom_size32;
1250 int plttype = DT_REL;
1251
1252 *dyn_rpath = NULL;
1253 *dyn_soname = NULL;
1254 *dyn_runpath = NULL;
1255
1256 obj->bind_now = false;
1257 dynp = obj->dynamic;
1258 if (dynp == NULL)
1259 return;
1260 for (; dynp->d_tag != DT_NULL; dynp++) {
1261 switch (dynp->d_tag) {
1262
1263 case DT_REL:
1264 obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1265 break;
1266
1267 case DT_RELSZ:
1268 obj->relsize = dynp->d_un.d_val;
1269 break;
1270
1271 case DT_RELENT:
1272 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1273 break;
1274
1275 case DT_JMPREL:
1276 obj->pltrel = (const Elf_Rel *)
1277 (obj->relocbase + dynp->d_un.d_ptr);
1278 break;
1279
1280 case DT_PLTRELSZ:
1281 obj->pltrelsize = dynp->d_un.d_val;
1282 break;
1283
1284 case DT_RELA:
1285 obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1286 break;
1287
1288 case DT_RELASZ:
1289 obj->relasize = dynp->d_un.d_val;
1290 break;
1291
1292 case DT_RELAENT:
1293 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1294 break;
1295
1296 case DT_RELR:
1297 obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1298 break;
1299
1300 case DT_RELRSZ:
1301 obj->relrsize = dynp->d_un.d_val;
1302 break;
1303
1304 case DT_RELRENT:
1305 assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1306 break;
1307
1308 case DT_PLTREL:
1309 plttype = dynp->d_un.d_val;
1310 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1311 break;
1312
1313 case DT_SYMTAB:
1314 obj->symtab = (const Elf_Sym *)
1315 (obj->relocbase + dynp->d_un.d_ptr);
1316 break;
1317
1318 case DT_SYMENT:
1319 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1320 break;
1321
1322 case DT_STRTAB:
1323 obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1324 break;
1325
1326 case DT_STRSZ:
1327 obj->strsize = dynp->d_un.d_val;
1328 break;
1329
1330 case DT_VERNEED:
1331 obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1332 dynp->d_un.d_val);
1333 break;
1334
1335 case DT_VERNEEDNUM:
1336 obj->verneednum = dynp->d_un.d_val;
1337 break;
1338
1339 case DT_VERDEF:
1340 obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1341 dynp->d_un.d_val);
1342 break;
1343
1344 case DT_VERDEFNUM:
1345 obj->verdefnum = dynp->d_un.d_val;
1346 break;
1347
1348 case DT_VERSYM:
1349 obj->versyms = (const Elf_Versym *)(obj->relocbase +
1350 dynp->d_un.d_val);
1351 break;
1352
1353 case DT_HASH:
1354 {
1355 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1356 dynp->d_un.d_ptr);
1357 obj->nbuckets = hashtab[0];
1358 obj->nchains = hashtab[1];
1359 obj->buckets = hashtab + 2;
1360 obj->chains = obj->buckets + obj->nbuckets;
1361 obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1362 obj->buckets != NULL;
1363 }
1364 break;
1365
1366 case DT_GNU_HASH:
1367 {
1368 hashtab = (const Elf_Hashelt *)(obj->relocbase +
1369 dynp->d_un.d_ptr);
1370 obj->nbuckets_gnu = hashtab[0];
1371 obj->symndx_gnu = hashtab[1];
1372 nmaskwords = hashtab[2];
1373 bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1374 obj->maskwords_bm_gnu = nmaskwords - 1;
1375 obj->shift2_gnu = hashtab[3];
1376 obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1377 obj->buckets_gnu = hashtab + 4 + bloom_size32;
1378 obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1379 obj->symndx_gnu;
1380 /* Number of bitmask words is required to be power of 2 */
1381 obj->valid_hash_gnu = powerof2(nmaskwords) &&
1382 obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1383 }
1384 break;
1385
1386 case DT_NEEDED:
1387 if (!obj->rtld) {
1388 Needed_Entry *nep = NEW(Needed_Entry);
1389 nep->name = dynp->d_un.d_val;
1390 nep->obj = NULL;
1391 nep->next = NULL;
1392
1393 *needed_tail = nep;
1394 needed_tail = &nep->next;
1395 }
1396 break;
1397
1398 case DT_FILTER:
1399 if (!obj->rtld) {
1400 Needed_Entry *nep = NEW(Needed_Entry);
1401 nep->name = dynp->d_un.d_val;
1402 nep->obj = NULL;
1403 nep->next = NULL;
1404
1405 *needed_filtees_tail = nep;
1406 needed_filtees_tail = &nep->next;
1407
1408 if (obj->linkmap.l_refname == NULL)
1409 obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1410 }
1411 break;
1412
1413 case DT_AUXILIARY:
1414 if (!obj->rtld) {
1415 Needed_Entry *nep = NEW(Needed_Entry);
1416 nep->name = dynp->d_un.d_val;
1417 nep->obj = NULL;
1418 nep->next = NULL;
1419
1420 *needed_aux_filtees_tail = nep;
1421 needed_aux_filtees_tail = &nep->next;
1422 }
1423 break;
1424
1425 case DT_PLTGOT:
1426 obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1427 break;
1428
1429 case DT_TEXTREL:
1430 obj->textrel = true;
1431 break;
1432
1433 case DT_SYMBOLIC:
1434 obj->symbolic = true;
1435 break;
1436
1437 case DT_RPATH:
1438 /*
1439 * We have to wait until later to process this, because we
1440 * might not have gotten the address of the string table yet.
1441 */
1442 *dyn_rpath = dynp;
1443 break;
1444
1445 case DT_SONAME:
1446 *dyn_soname = dynp;
1447 break;
1448
1449 case DT_RUNPATH:
1450 *dyn_runpath = dynp;
1451 break;
1452
1453 case DT_INIT:
1454 obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1455 break;
1456
1457 case DT_PREINIT_ARRAY:
1458 obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1459 break;
1460
1461 case DT_PREINIT_ARRAYSZ:
1462 obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1463 break;
1464
1465 case DT_INIT_ARRAY:
1466 obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1467 break;
1468
1469 case DT_INIT_ARRAYSZ:
1470 obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1471 break;
1472
1473 case DT_FINI:
1474 obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1475 break;
1476
1477 case DT_FINI_ARRAY:
1478 obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1479 break;
1480
1481 case DT_FINI_ARRAYSZ:
1482 obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1483 break;
1484
1485 /*
1486 * Don't process DT_DEBUG on MIPS as the dynamic section
1487 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1488 */
1489
1490 #ifndef __mips__
1491 case DT_DEBUG:
1492 if (!early)
1493 dbg("Filling in DT_DEBUG entry");
1494 (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1495 break;
1496 #endif
1497
1498 case DT_FLAGS:
1499 if (dynp->d_un.d_val & DF_ORIGIN)
1500 obj->z_origin = true;
1501 if (dynp->d_un.d_val & DF_SYMBOLIC)
1502 obj->symbolic = true;
1503 if (dynp->d_un.d_val & DF_TEXTREL)
1504 obj->textrel = true;
1505 if (dynp->d_un.d_val & DF_BIND_NOW)
1506 obj->bind_now = true;
1507 if (dynp->d_un.d_val & DF_STATIC_TLS)
1508 obj->static_tls = true;
1509 break;
1510 #ifdef __mips__
1511 case DT_MIPS_LOCAL_GOTNO:
1512 obj->local_gotno = dynp->d_un.d_val;
1513 break;
1514
1515 case DT_MIPS_SYMTABNO:
1516 obj->symtabno = dynp->d_un.d_val;
1517 break;
1518
1519 case DT_MIPS_GOTSYM:
1520 obj->gotsym = dynp->d_un.d_val;
1521 break;
1522
1523 case DT_MIPS_RLD_MAP:
1524 *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1525 break;
1526
1527 case DT_MIPS_RLD_MAP_REL:
1528 // The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map
1529 // section relative to the address of the tag itself.
1530 *((Elf_Addr *)(__DECONST(char*, dynp) + dynp->d_un.d_val)) =
1531 (Elf_Addr) &r_debug;
1532 break;
1533
1534 case DT_MIPS_PLTGOT:
1535 obj->mips_pltgot = (Elf_Addr *)(obj->relocbase +
1536 dynp->d_un.d_ptr);
1537 break;
1538
1539 #endif
1540
1541 #ifdef __powerpc__
1542 #ifdef __powerpc64__
1543 case DT_PPC64_GLINK:
1544 obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1545 break;
1546 #else
1547 case DT_PPC_GOT:
1548 obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1549 break;
1550 #endif
1551 #endif
1552
1553 case DT_FLAGS_1:
1554 if (dynp->d_un.d_val & DF_1_NOOPEN)
1555 obj->z_noopen = true;
1556 if (dynp->d_un.d_val & DF_1_ORIGIN)
1557 obj->z_origin = true;
1558 if (dynp->d_un.d_val & DF_1_GLOBAL)
1559 obj->z_global = true;
1560 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1561 obj->bind_now = true;
1562 if (dynp->d_un.d_val & DF_1_NODELETE)
1563 obj->z_nodelete = true;
1564 if (dynp->d_un.d_val & DF_1_LOADFLTR)
1565 obj->z_loadfltr = true;
1566 if (dynp->d_un.d_val & DF_1_INTERPOSE)
1567 obj->z_interpose = true;
1568 if (dynp->d_un.d_val & DF_1_NODEFLIB)
1569 obj->z_nodeflib = true;
1570 if (dynp->d_un.d_val & DF_1_PIE)
1571 obj->z_pie = true;
1572 break;
1573
1574 default:
1575 if (!early) {
1576 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1577 (long)dynp->d_tag);
1578 }
1579 break;
1580 }
1581 }
1582
1583 obj->traced = false;
1584
1585 if (plttype == DT_RELA) {
1586 obj->pltrela = (const Elf_Rela *) obj->pltrel;
1587 obj->pltrel = NULL;
1588 obj->pltrelasize = obj->pltrelsize;
1589 obj->pltrelsize = 0;
1590 }
1591
1592 /* Determine size of dynsym table (equal to nchains of sysv hash) */
1593 if (obj->valid_hash_sysv)
1594 obj->dynsymcount = obj->nchains;
1595 else if (obj->valid_hash_gnu) {
1596 obj->dynsymcount = 0;
1597 for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1598 if (obj->buckets_gnu[bkt] == 0)
1599 continue;
1600 hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1601 do
1602 obj->dynsymcount++;
1603 while ((*hashval++ & 1u) == 0);
1604 }
1605 obj->dynsymcount += obj->symndx_gnu;
1606 }
1607
1608 if (obj->linkmap.l_refname != NULL)
1609 obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1610 linkmap.l_refname;
1611 }
1612
1613 static bool
obj_resolve_origin(Obj_Entry * obj)1614 obj_resolve_origin(Obj_Entry *obj)
1615 {
1616
1617 if (obj->origin_path != NULL)
1618 return (true);
1619 obj->origin_path = xmalloc(PATH_MAX);
1620 return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1621 }
1622
1623 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1624 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1625 const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1626 {
1627
1628 if (obj->z_origin && !obj_resolve_origin(obj))
1629 return (false);
1630
1631 if (dyn_runpath != NULL) {
1632 obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1633 obj->runpath = origin_subst(obj, obj->runpath);
1634 } else if (dyn_rpath != NULL) {
1635 obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1636 obj->rpath = origin_subst(obj, obj->rpath);
1637 }
1638 if (dyn_soname != NULL)
1639 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1640 return (true);
1641 }
1642
1643 static bool
digest_dynamic(Obj_Entry * obj,int early)1644 digest_dynamic(Obj_Entry *obj, int early)
1645 {
1646 const Elf_Dyn *dyn_rpath;
1647 const Elf_Dyn *dyn_soname;
1648 const Elf_Dyn *dyn_runpath;
1649
1650 digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1651 return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1652 }
1653
1654 /*
1655 * Process a shared object's program header. This is used only for the
1656 * main program, when the kernel has already loaded the main program
1657 * into memory before calling the dynamic linker. It creates and
1658 * returns an Obj_Entry structure.
1659 */
1660 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1661 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1662 {
1663 Obj_Entry *obj;
1664 const Elf_Phdr *phlimit = phdr + phnum;
1665 const Elf_Phdr *ph;
1666 Elf_Addr note_start, note_end;
1667 int nsegs = 0;
1668
1669 obj = obj_new();
1670 for (ph = phdr; ph < phlimit; ph++) {
1671 if (ph->p_type != PT_PHDR)
1672 continue;
1673
1674 obj->phdr = phdr;
1675 obj->phsize = ph->p_memsz;
1676 obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1677 break;
1678 }
1679
1680 obj->stack_flags = PF_X | PF_R | PF_W;
1681
1682 for (ph = phdr; ph < phlimit; ph++) {
1683 switch (ph->p_type) {
1684
1685 case PT_INTERP:
1686 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1687 break;
1688
1689 case PT_LOAD:
1690 if (nsegs == 0) { /* First load segment */
1691 obj->vaddrbase = trunc_page(ph->p_vaddr);
1692 obj->mapbase = obj->vaddrbase + obj->relocbase;
1693 } else { /* Last load segment */
1694 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1695 obj->vaddrbase;
1696 }
1697 nsegs++;
1698 break;
1699
1700 case PT_DYNAMIC:
1701 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1702 break;
1703
1704 case PT_TLS:
1705 obj->tlsindex = 1;
1706 obj->tlssize = ph->p_memsz;
1707 obj->tlsalign = ph->p_align;
1708 obj->tlsinitsize = ph->p_filesz;
1709 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1710 obj->tlspoffset = ph->p_offset;
1711 break;
1712
1713 case PT_GNU_STACK:
1714 obj->stack_flags = ph->p_flags;
1715 break;
1716
1717 case PT_GNU_RELRO:
1718 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1719 obj->relro_size = trunc_page(ph->p_vaddr + ph->p_memsz) -
1720 trunc_page(ph->p_vaddr);
1721 break;
1722
1723 case PT_NOTE:
1724 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1725 note_end = note_start + ph->p_filesz;
1726 digest_notes(obj, note_start, note_end);
1727 break;
1728 }
1729 }
1730 if (nsegs < 1) {
1731 _rtld_error("%s: too few PT_LOAD segments", path);
1732 return (NULL);
1733 }
1734
1735 obj->entry = entry;
1736 return (obj);
1737 }
1738
1739 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1740 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1741 {
1742 const Elf_Note *note;
1743 const char *note_name;
1744 uintptr_t p;
1745
1746 for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1747 note = (const Elf_Note *)((const char *)(note + 1) +
1748 roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1749 roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1750 if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1751 note->n_descsz != sizeof(int32_t))
1752 continue;
1753 if (note->n_type != NT_FREEBSD_ABI_TAG &&
1754 note->n_type != NT_FREEBSD_FEATURE_CTL &&
1755 note->n_type != NT_FREEBSD_NOINIT_TAG)
1756 continue;
1757 note_name = (const char *)(note + 1);
1758 if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1759 sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1760 continue;
1761 switch (note->n_type) {
1762 case NT_FREEBSD_ABI_TAG:
1763 /* FreeBSD osrel note */
1764 p = (uintptr_t)(note + 1);
1765 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1766 obj->osrel = *(const int32_t *)(p);
1767 dbg("note osrel %d", obj->osrel);
1768 break;
1769 case NT_FREEBSD_FEATURE_CTL:
1770 /* FreeBSD ABI feature control note */
1771 p = (uintptr_t)(note + 1);
1772 p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1773 obj->fctl0 = *(const uint32_t *)(p);
1774 dbg("note fctl0 %#x", obj->fctl0);
1775 break;
1776 case NT_FREEBSD_NOINIT_TAG:
1777 /* FreeBSD 'crt does not call init' note */
1778 obj->crt_no_init = true;
1779 dbg("note crt_no_init");
1780 break;
1781 }
1782 }
1783 }
1784
1785 static Obj_Entry *
dlcheck(void * handle)1786 dlcheck(void *handle)
1787 {
1788 Obj_Entry *obj;
1789
1790 TAILQ_FOREACH(obj, &obj_list, next) {
1791 if (obj == (Obj_Entry *) handle)
1792 break;
1793 }
1794
1795 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1796 _rtld_error("Invalid shared object handle %p", handle);
1797 return (NULL);
1798 }
1799 return (obj);
1800 }
1801
1802 /*
1803 * If the given object is already in the donelist, return true. Otherwise
1804 * add the object to the list and return false.
1805 */
1806 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1807 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1808 {
1809 unsigned int i;
1810
1811 for (i = 0; i < dlp->num_used; i++)
1812 if (dlp->objs[i] == obj)
1813 return (true);
1814 /*
1815 * Our donelist allocation should always be sufficient. But if
1816 * our threads locking isn't working properly, more shared objects
1817 * could have been loaded since we allocated the list. That should
1818 * never happen, but we'll handle it properly just in case it does.
1819 */
1820 if (dlp->num_used < dlp->num_alloc)
1821 dlp->objs[dlp->num_used++] = obj;
1822 return (false);
1823 }
1824
1825 /*
1826 * Hash function for symbol table lookup. Don't even think about changing
1827 * this. It is specified by the System V ABI.
1828 */
1829 unsigned long
elf_hash(const char * name)1830 elf_hash(const char *name)
1831 {
1832 const unsigned char *p = (const unsigned char *) name;
1833 unsigned long h = 0;
1834 unsigned long g;
1835
1836 while (*p != '\0') {
1837 h = (h << 4) + *p++;
1838 if ((g = h & 0xf0000000) != 0)
1839 h ^= g >> 24;
1840 h &= ~g;
1841 }
1842 return (h);
1843 }
1844
1845 /*
1846 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1847 * unsigned in case it's implemented with a wider type.
1848 */
1849 static uint32_t
gnu_hash(const char * s)1850 gnu_hash(const char *s)
1851 {
1852 uint32_t h;
1853 unsigned char c;
1854
1855 h = 5381;
1856 for (c = *s; c != '\0'; c = *++s)
1857 h = h * 33 + c;
1858 return (h & 0xffffffff);
1859 }
1860
1861
1862 /*
1863 * Find the library with the given name, and return its full pathname.
1864 * The returned string is dynamically allocated. Generates an error
1865 * message and returns NULL if the library cannot be found.
1866 *
1867 * If the second argument is non-NULL, then it refers to an already-
1868 * loaded shared object, whose library search path will be searched.
1869 *
1870 * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1871 * descriptor (which is close-on-exec) will be passed out via the third
1872 * argument.
1873 *
1874 * The search order is:
1875 * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1876 * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1877 * LD_LIBRARY_PATH
1878 * DT_RUNPATH in the referencing file
1879 * ldconfig hints (if -z nodefaultlib, filter out default library directories
1880 * from list)
1881 * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1882 *
1883 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1884 */
1885 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1886 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1887 {
1888 char *pathname, *refobj_path;
1889 const char *name;
1890 bool nodeflib, objgiven;
1891
1892 objgiven = refobj != NULL;
1893
1894 if (libmap_disable || !objgiven ||
1895 (name = lm_find(refobj->path, xname)) == NULL)
1896 name = xname;
1897
1898 if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1899 if (name[0] != '/' && !trust) {
1900 _rtld_error("Absolute pathname required "
1901 "for shared object \"%s\"", name);
1902 return (NULL);
1903 }
1904 return (origin_subst(__DECONST(Obj_Entry *, refobj),
1905 __DECONST(char *, name)));
1906 }
1907
1908 dbg(" Searching for \"%s\"", name);
1909 refobj_path = objgiven ? refobj->path : NULL;
1910
1911 /*
1912 * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall
1913 * back to pre-conforming behaviour if user requested so with
1914 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1915 * nodeflib.
1916 */
1917 if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1918 pathname = search_library_path(name, ld_library_path,
1919 refobj_path, fdp);
1920 if (pathname != NULL)
1921 return (pathname);
1922 if (refobj != NULL) {
1923 pathname = search_library_path(name, refobj->rpath,
1924 refobj_path, fdp);
1925 if (pathname != NULL)
1926 return (pathname);
1927 }
1928 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1929 if (pathname != NULL)
1930 return (pathname);
1931 pathname = search_library_path(name, gethints(false),
1932 refobj_path, fdp);
1933 if (pathname != NULL)
1934 return (pathname);
1935 pathname = search_library_path(name, ld_standard_library_path,
1936 refobj_path, fdp);
1937 if (pathname != NULL)
1938 return (pathname);
1939 } else {
1940 nodeflib = objgiven ? refobj->z_nodeflib : false;
1941 if (objgiven) {
1942 pathname = search_library_path(name, refobj->rpath,
1943 refobj->path, fdp);
1944 if (pathname != NULL)
1945 return (pathname);
1946 }
1947 if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1948 pathname = search_library_path(name, obj_main->rpath,
1949 refobj_path, fdp);
1950 if (pathname != NULL)
1951 return (pathname);
1952 }
1953 pathname = search_library_path(name, ld_library_path,
1954 refobj_path, fdp);
1955 if (pathname != NULL)
1956 return (pathname);
1957 if (objgiven) {
1958 pathname = search_library_path(name, refobj->runpath,
1959 refobj_path, fdp);
1960 if (pathname != NULL)
1961 return (pathname);
1962 }
1963 pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1964 if (pathname != NULL)
1965 return (pathname);
1966 pathname = search_library_path(name, gethints(nodeflib),
1967 refobj_path, fdp);
1968 if (pathname != NULL)
1969 return (pathname);
1970 if (objgiven && !nodeflib) {
1971 pathname = search_library_path(name,
1972 ld_standard_library_path, refobj_path, fdp);
1973 if (pathname != NULL)
1974 return (pathname);
1975 }
1976 }
1977
1978 if (objgiven && refobj->path != NULL) {
1979 _rtld_error("Shared object \"%s\" not found, "
1980 "required by \"%s\"", name, basename(refobj->path));
1981 } else {
1982 _rtld_error("Shared object \"%s\" not found", name);
1983 }
1984 return (NULL);
1985 }
1986
1987 /*
1988 * Given a symbol number in a referencing object, find the corresponding
1989 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1990 * no definition was found. Returns a pointer to the Obj_Entry of the
1991 * defining object via the reference parameter DEFOBJ_OUT.
1992 */
1993 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1994 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1995 const Obj_Entry **defobj_out, int flags, SymCache *cache,
1996 RtldLockState *lockstate)
1997 {
1998 const Elf_Sym *ref;
1999 const Elf_Sym *def;
2000 const Obj_Entry *defobj;
2001 const Ver_Entry *ve;
2002 SymLook req;
2003 const char *name;
2004 int res;
2005
2006 /*
2007 * If we have already found this symbol, get the information from
2008 * the cache.
2009 */
2010 if (symnum >= refobj->dynsymcount)
2011 return (NULL); /* Bad object */
2012 if (cache != NULL && cache[symnum].sym != NULL) {
2013 *defobj_out = cache[symnum].obj;
2014 return (cache[symnum].sym);
2015 }
2016
2017 ref = refobj->symtab + symnum;
2018 name = refobj->strtab + ref->st_name;
2019 def = NULL;
2020 defobj = NULL;
2021 ve = NULL;
2022
2023 /*
2024 * We don't have to do a full scale lookup if the symbol is local.
2025 * We know it will bind to the instance in this load module; to
2026 * which we already have a pointer (ie ref). By not doing a lookup,
2027 * we not only improve performance, but it also avoids unresolvable
2028 * symbols when local symbols are not in the hash table. This has
2029 * been seen with the ia64 toolchain.
2030 */
2031 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2032 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2033 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2034 symnum);
2035 }
2036 symlook_init(&req, name);
2037 req.flags = flags;
2038 ve = req.ventry = fetch_ventry(refobj, symnum);
2039 req.lockstate = lockstate;
2040 res = symlook_default(&req, refobj);
2041 if (res == 0) {
2042 def = req.sym_out;
2043 defobj = req.defobj_out;
2044 }
2045 } else {
2046 def = ref;
2047 defobj = refobj;
2048 }
2049
2050 /*
2051 * If we found no definition and the reference is weak, treat the
2052 * symbol as having the value zero.
2053 */
2054 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2055 def = &sym_zero;
2056 defobj = obj_main;
2057 }
2058
2059 if (def != NULL) {
2060 *defobj_out = defobj;
2061 /* Record the information in the cache to avoid subsequent lookups. */
2062 if (cache != NULL) {
2063 cache[symnum].sym = def;
2064 cache[symnum].obj = defobj;
2065 }
2066 } else {
2067 if (refobj != &obj_rtld)
2068 _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2069 ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2070 }
2071 return (def);
2072 }
2073
2074 /*
2075 * Return the search path from the ldconfig hints file, reading it if
2076 * necessary. If nostdlib is true, then the default search paths are
2077 * not added to result.
2078 *
2079 * Returns NULL if there are problems with the hints file,
2080 * or if the search path there is empty.
2081 */
2082 static const char *
gethints(bool nostdlib)2083 gethints(bool nostdlib)
2084 {
2085 static char *filtered_path;
2086 static const char *hints;
2087 static struct elfhints_hdr hdr;
2088 struct fill_search_info_args sargs, hargs;
2089 struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2090 struct dl_serpath *SLPpath, *hintpath;
2091 char *p;
2092 struct stat hint_stat;
2093 unsigned int SLPndx, hintndx, fndx, fcount;
2094 int fd;
2095 size_t flen;
2096 uint32_t dl;
2097 bool skip;
2098
2099 /* First call, read the hints file */
2100 if (hints == NULL) {
2101 /* Keep from trying again in case the hints file is bad. */
2102 hints = "";
2103
2104 if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
2105 return (NULL);
2106
2107 /*
2108 * Check of hdr.dirlistlen value against type limit
2109 * intends to pacify static analyzers. Further
2110 * paranoia leads to checks that dirlist is fully
2111 * contained in the file range.
2112 */
2113 if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
2114 hdr.magic != ELFHINTS_MAGIC ||
2115 hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
2116 fstat(fd, &hint_stat) == -1) {
2117 cleanup1:
2118 close(fd);
2119 hdr.dirlistlen = 0;
2120 return (NULL);
2121 }
2122 dl = hdr.strtab;
2123 if (dl + hdr.dirlist < dl)
2124 goto cleanup1;
2125 dl += hdr.dirlist;
2126 if (dl + hdr.dirlistlen < dl)
2127 goto cleanup1;
2128 dl += hdr.dirlistlen;
2129 if (dl > hint_stat.st_size)
2130 goto cleanup1;
2131 p = xmalloc(hdr.dirlistlen + 1);
2132 if (pread(fd, p, hdr.dirlistlen + 1,
2133 hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
2134 p[hdr.dirlistlen] != '\0') {
2135 free(p);
2136 goto cleanup1;
2137 }
2138 hints = p;
2139 close(fd);
2140 }
2141
2142 /*
2143 * If caller agreed to receive list which includes the default
2144 * paths, we are done. Otherwise, if we still did not
2145 * calculated filtered result, do it now.
2146 */
2147 if (!nostdlib)
2148 return (hints[0] != '\0' ? hints : NULL);
2149 if (filtered_path != NULL)
2150 goto filt_ret;
2151
2152 /*
2153 * Obtain the list of all configured search paths, and the
2154 * list of the default paths.
2155 *
2156 * First estimate the size of the results.
2157 */
2158 smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2159 smeta.dls_cnt = 0;
2160 hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2161 hmeta.dls_cnt = 0;
2162
2163 sargs.request = RTLD_DI_SERINFOSIZE;
2164 sargs.serinfo = &smeta;
2165 hargs.request = RTLD_DI_SERINFOSIZE;
2166 hargs.serinfo = &hmeta;
2167
2168 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2169 &sargs);
2170 path_enumerate(hints, fill_search_info, NULL, &hargs);
2171
2172 SLPinfo = xmalloc(smeta.dls_size);
2173 hintinfo = xmalloc(hmeta.dls_size);
2174
2175 /*
2176 * Next fetch both sets of paths.
2177 */
2178 sargs.request = RTLD_DI_SERINFO;
2179 sargs.serinfo = SLPinfo;
2180 sargs.serpath = &SLPinfo->dls_serpath[0];
2181 sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2182
2183 hargs.request = RTLD_DI_SERINFO;
2184 hargs.serinfo = hintinfo;
2185 hargs.serpath = &hintinfo->dls_serpath[0];
2186 hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2187
2188 path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2189 &sargs);
2190 path_enumerate(hints, fill_search_info, NULL, &hargs);
2191
2192 /*
2193 * Now calculate the difference between two sets, by excluding
2194 * standard paths from the full set.
2195 */
2196 fndx = 0;
2197 fcount = 0;
2198 filtered_path = xmalloc(hdr.dirlistlen + 1);
2199 hintpath = &hintinfo->dls_serpath[0];
2200 for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2201 skip = false;
2202 SLPpath = &SLPinfo->dls_serpath[0];
2203 /*
2204 * Check each standard path against current.
2205 */
2206 for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2207 /* matched, skip the path */
2208 if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2209 skip = true;
2210 break;
2211 }
2212 }
2213 if (skip)
2214 continue;
2215 /*
2216 * Not matched against any standard path, add the path
2217 * to result. Separate consequtive paths with ':'.
2218 */
2219 if (fcount > 0) {
2220 filtered_path[fndx] = ':';
2221 fndx++;
2222 }
2223 fcount++;
2224 flen = strlen(hintpath->dls_name);
2225 strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2226 fndx += flen;
2227 }
2228 filtered_path[fndx] = '\0';
2229
2230 free(SLPinfo);
2231 free(hintinfo);
2232
2233 filt_ret:
2234 return (filtered_path[0] != '\0' ? filtered_path : NULL);
2235 }
2236
2237 static void
init_dag(Obj_Entry * root)2238 init_dag(Obj_Entry *root)
2239 {
2240 const Needed_Entry *needed;
2241 const Objlist_Entry *elm;
2242 DoneList donelist;
2243
2244 if (root->dag_inited)
2245 return;
2246 donelist_init(&donelist);
2247
2248 /* Root object belongs to own DAG. */
2249 objlist_push_tail(&root->dldags, root);
2250 objlist_push_tail(&root->dagmembers, root);
2251 donelist_check(&donelist, root);
2252
2253 /*
2254 * Add dependencies of root object to DAG in breadth order
2255 * by exploiting the fact that each new object get added
2256 * to the tail of the dagmembers list.
2257 */
2258 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2259 for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2260 if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2261 continue;
2262 objlist_push_tail(&needed->obj->dldags, root);
2263 objlist_push_tail(&root->dagmembers, needed->obj);
2264 }
2265 }
2266 root->dag_inited = true;
2267 }
2268
2269 static void
init_marker(Obj_Entry * marker)2270 init_marker(Obj_Entry *marker)
2271 {
2272
2273 bzero(marker, sizeof(*marker));
2274 marker->marker = true;
2275 }
2276
2277 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2278 globallist_curr(const Obj_Entry *obj)
2279 {
2280
2281 for (;;) {
2282 if (obj == NULL)
2283 return (NULL);
2284 if (!obj->marker)
2285 return (__DECONST(Obj_Entry *, obj));
2286 obj = TAILQ_PREV(obj, obj_entry_q, next);
2287 }
2288 }
2289
2290 Obj_Entry *
globallist_next(const Obj_Entry * obj)2291 globallist_next(const Obj_Entry *obj)
2292 {
2293
2294 for (;;) {
2295 obj = TAILQ_NEXT(obj, next);
2296 if (obj == NULL)
2297 return (NULL);
2298 if (!obj->marker)
2299 return (__DECONST(Obj_Entry *, obj));
2300 }
2301 }
2302
2303 /* Prevent the object from being unmapped while the bind lock is dropped. */
2304 static void
hold_object(Obj_Entry * obj)2305 hold_object(Obj_Entry *obj)
2306 {
2307
2308 obj->holdcount++;
2309 }
2310
2311 static void
unhold_object(Obj_Entry * obj)2312 unhold_object(Obj_Entry *obj)
2313 {
2314
2315 assert(obj->holdcount > 0);
2316 if (--obj->holdcount == 0 && obj->unholdfree)
2317 release_object(obj);
2318 }
2319
2320 static void
process_z(Obj_Entry * root)2321 process_z(Obj_Entry *root)
2322 {
2323 const Objlist_Entry *elm;
2324 Obj_Entry *obj;
2325
2326 /*
2327 * Walk over object DAG and process every dependent object
2328 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2329 * to grow their own DAG.
2330 *
2331 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2332 * symlook_global() to work.
2333 *
2334 * For DF_1_NODELETE, the DAG should have its reference upped.
2335 */
2336 STAILQ_FOREACH(elm, &root->dagmembers, link) {
2337 obj = elm->obj;
2338 if (obj == NULL)
2339 continue;
2340 if (obj->z_nodelete && !obj->ref_nodel) {
2341 dbg("obj %s -z nodelete", obj->path);
2342 init_dag(obj);
2343 ref_dag(obj);
2344 obj->ref_nodel = true;
2345 }
2346 if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2347 dbg("obj %s -z global", obj->path);
2348 objlist_push_tail(&list_global, obj);
2349 init_dag(obj);
2350 }
2351 }
2352 }
2353
2354 static void
parse_rtld_phdr(Obj_Entry * obj)2355 parse_rtld_phdr(Obj_Entry *obj)
2356 {
2357 const Elf_Phdr *ph;
2358 Elf_Addr note_start, note_end;
2359
2360 obj->stack_flags = PF_X | PF_R | PF_W;
2361 for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
2362 obj->phsize; ph++) {
2363 switch (ph->p_type) {
2364 case PT_GNU_STACK:
2365 obj->stack_flags = ph->p_flags;
2366 break;
2367 case PT_GNU_RELRO:
2368 obj->relro_page = obj->relocbase +
2369 trunc_page(ph->p_vaddr);
2370 obj->relro_size = round_page(ph->p_memsz);
2371 break;
2372 case PT_NOTE:
2373 note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2374 note_end = note_start + ph->p_filesz;
2375 digest_notes(obj, note_start, note_end);
2376 break;
2377 }
2378 }
2379 }
2380
2381 /*
2382 * Initialize the dynamic linker. The argument is the address at which
2383 * the dynamic linker has been mapped into memory. The primary task of
2384 * this function is to relocate the dynamic linker.
2385 */
2386 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2387 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2388 {
2389 Obj_Entry objtmp; /* Temporary rtld object */
2390 const Elf_Ehdr *ehdr;
2391 const Elf_Dyn *dyn_rpath;
2392 const Elf_Dyn *dyn_soname;
2393 const Elf_Dyn *dyn_runpath;
2394
2395 #ifdef RTLD_INIT_PAGESIZES_EARLY
2396 /* The page size is required by the dynamic memory allocator. */
2397 init_pagesizes(aux_info);
2398 #endif
2399
2400 /*
2401 * Conjure up an Obj_Entry structure for the dynamic linker.
2402 *
2403 * The "path" member can't be initialized yet because string constants
2404 * cannot yet be accessed. Below we will set it correctly.
2405 */
2406 memset(&objtmp, 0, sizeof(objtmp));
2407 objtmp.path = NULL;
2408 objtmp.rtld = true;
2409 objtmp.mapbase = mapbase;
2410 #ifdef PIC
2411 objtmp.relocbase = mapbase;
2412 #endif
2413
2414 objtmp.dynamic = rtld_dynamic(&objtmp);
2415 digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2416 assert(objtmp.needed == NULL);
2417 #if !defined(__mips__)
2418 /* MIPS has a bogus DT_TEXTREL. */
2419 assert(!objtmp.textrel);
2420 #endif
2421 /*
2422 * Temporarily put the dynamic linker entry into the object list, so
2423 * that symbols can be found.
2424 */
2425 relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2426
2427 ehdr = (Elf_Ehdr *)mapbase;
2428 objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2429 objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2430
2431 /* Initialize the object list. */
2432 TAILQ_INIT(&obj_list);
2433
2434 /* Now that non-local variables can be accesses, copy out obj_rtld. */
2435 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2436
2437 #ifndef RTLD_INIT_PAGESIZES_EARLY
2438 /* The page size is required by the dynamic memory allocator. */
2439 init_pagesizes(aux_info);
2440 #endif
2441
2442 if (aux_info[AT_OSRELDATE] != NULL)
2443 osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2444
2445 digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2446
2447 /* Replace the path with a dynamically allocated copy. */
2448 obj_rtld.path = xstrdup(ld_path_rtld);
2449
2450 parse_rtld_phdr(&obj_rtld);
2451 if (obj_enforce_relro(&obj_rtld) == -1)
2452 rtld_die();
2453
2454 r_debug.r_version = R_DEBUG_VERSION;
2455 r_debug.r_brk = r_debug_state;
2456 r_debug.r_state = RT_CONSISTENT;
2457 r_debug.r_ldbase = obj_rtld.relocbase;
2458 }
2459
2460 /*
2461 * Retrieve the array of supported page sizes. The kernel provides the page
2462 * sizes in increasing order.
2463 */
2464 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2465 init_pagesizes(Elf_Auxinfo **aux_info)
2466 {
2467 static size_t psa[MAXPAGESIZES];
2468 int mib[2];
2469 size_t len, size;
2470
2471 if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2472 NULL) {
2473 size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2474 pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2475 } else {
2476 len = 2;
2477 if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2478 size = sizeof(psa);
2479 else {
2480 /* As a fallback, retrieve the base page size. */
2481 size = sizeof(psa[0]);
2482 if (aux_info[AT_PAGESZ] != NULL) {
2483 psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2484 goto psa_filled;
2485 } else {
2486 mib[0] = CTL_HW;
2487 mib[1] = HW_PAGESIZE;
2488 len = 2;
2489 }
2490 }
2491 if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2492 _rtld_error("sysctl for hw.pagesize(s) failed");
2493 rtld_die();
2494 }
2495 psa_filled:
2496 pagesizes = psa;
2497 }
2498 npagesizes = size / sizeof(pagesizes[0]);
2499 /* Discard any invalid entries at the end of the array. */
2500 while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2501 npagesizes--;
2502 }
2503
2504 /*
2505 * Add the init functions from a needed object list (and its recursive
2506 * needed objects) to "list". This is not used directly; it is a helper
2507 * function for initlist_add_objects(). The write lock must be held
2508 * when this function is called.
2509 */
2510 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2511 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2512 {
2513 /* Recursively process the successor needed objects. */
2514 if (needed->next != NULL)
2515 initlist_add_neededs(needed->next, list);
2516
2517 /* Process the current needed object. */
2518 if (needed->obj != NULL)
2519 initlist_add_objects(needed->obj, needed->obj, list);
2520 }
2521
2522 /*
2523 * Scan all of the DAGs rooted in the range of objects from "obj" to
2524 * "tail" and add their init functions to "list". This recurses over
2525 * the DAGs and ensure the proper init ordering such that each object's
2526 * needed libraries are initialized before the object itself. At the
2527 * same time, this function adds the objects to the global finalization
2528 * list "list_fini" in the opposite order. The write lock must be
2529 * held when this function is called.
2530 */
2531 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2532 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2533 {
2534 Obj_Entry *nobj;
2535
2536 if (obj->init_scanned || obj->init_done)
2537 return;
2538 obj->init_scanned = true;
2539
2540 /* Recursively process the successor objects. */
2541 nobj = globallist_next(obj);
2542 if (nobj != NULL && obj != tail)
2543 initlist_add_objects(nobj, tail, list);
2544
2545 /* Recursively process the needed objects. */
2546 if (obj->needed != NULL)
2547 initlist_add_neededs(obj->needed, list);
2548 if (obj->needed_filtees != NULL)
2549 initlist_add_neededs(obj->needed_filtees, list);
2550 if (obj->needed_aux_filtees != NULL)
2551 initlist_add_neededs(obj->needed_aux_filtees, list);
2552
2553 /* Add the object to the init list. */
2554 objlist_push_tail(list, obj);
2555
2556 /* Add the object to the global fini list in the reverse order. */
2557 if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2558 && !obj->on_fini_list) {
2559 objlist_push_head(&list_fini, obj);
2560 obj->on_fini_list = true;
2561 }
2562 }
2563
2564 #ifndef FPTR_TARGET
2565 #define FPTR_TARGET(f) ((Elf_Addr) (f))
2566 #endif
2567
2568 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2569 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2570 {
2571 Needed_Entry *needed, *needed1;
2572
2573 for (needed = n; needed != NULL; needed = needed->next) {
2574 if (needed->obj != NULL) {
2575 dlclose_locked(needed->obj, lockstate);
2576 needed->obj = NULL;
2577 }
2578 }
2579 for (needed = n; needed != NULL; needed = needed1) {
2580 needed1 = needed->next;
2581 free(needed);
2582 }
2583 }
2584
2585 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2586 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2587 {
2588
2589 free_needed_filtees(obj->needed_filtees, lockstate);
2590 obj->needed_filtees = NULL;
2591 free_needed_filtees(obj->needed_aux_filtees, lockstate);
2592 obj->needed_aux_filtees = NULL;
2593 obj->filtees_loaded = false;
2594 }
2595
2596 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2597 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2598 RtldLockState *lockstate)
2599 {
2600
2601 for (; needed != NULL; needed = needed->next) {
2602 needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2603 flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2604 RTLD_LOCAL, lockstate);
2605 }
2606 }
2607
2608 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2609 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2610 {
2611
2612 lock_restart_for_upgrade(lockstate);
2613 if (!obj->filtees_loaded) {
2614 load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2615 load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2616 obj->filtees_loaded = true;
2617 }
2618 }
2619
2620 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2621 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2622 {
2623 Obj_Entry *obj1;
2624
2625 for (; needed != NULL; needed = needed->next) {
2626 obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2627 flags & ~RTLD_LO_NOLOAD);
2628 if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2629 return (-1);
2630 }
2631 return (0);
2632 }
2633
2634 /*
2635 * Given a shared object, traverse its list of needed objects, and load
2636 * each of them. Returns 0 on success. Generates an error message and
2637 * returns -1 on failure.
2638 */
2639 static int
load_needed_objects(Obj_Entry * first,int flags)2640 load_needed_objects(Obj_Entry *first, int flags)
2641 {
2642 Obj_Entry *obj;
2643
2644 for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2645 if (obj->marker)
2646 continue;
2647 if (process_needed(obj, obj->needed, flags) == -1)
2648 return (-1);
2649 }
2650 return (0);
2651 }
2652
2653 static int
load_preload_objects(const char * penv,bool isfd)2654 load_preload_objects(const char *penv, bool isfd)
2655 {
2656 Obj_Entry *obj;
2657 const char *name;
2658 size_t len;
2659 char savech, *p, *psave;
2660 int fd;
2661 static const char delim[] = " \t:;";
2662
2663 if (penv == NULL)
2664 return (0);
2665
2666 p = psave = xstrdup(penv);
2667 p += strspn(p, delim);
2668 while (*p != '\0') {
2669 len = strcspn(p, delim);
2670
2671 savech = p[len];
2672 p[len] = '\0';
2673 if (isfd) {
2674 name = NULL;
2675 fd = parse_integer(p);
2676 if (fd == -1) {
2677 free(psave);
2678 return (-1);
2679 }
2680 } else {
2681 name = p;
2682 fd = -1;
2683 }
2684
2685 obj = load_object(name, fd, NULL, 0);
2686 if (obj == NULL) {
2687 free(psave);
2688 return (-1); /* XXX - cleanup */
2689 }
2690 obj->z_interpose = true;
2691 p[len] = savech;
2692 p += len;
2693 p += strspn(p, delim);
2694 }
2695 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2696
2697 free(psave);
2698 return (0);
2699 }
2700
2701 static const char *
printable_path(const char * path)2702 printable_path(const char *path)
2703 {
2704
2705 return (path == NULL ? "<unknown>" : path);
2706 }
2707
2708 /*
2709 * Load a shared object into memory, if it is not already loaded. The
2710 * object may be specified by name or by user-supplied file descriptor
2711 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2712 * duplicate is.
2713 *
2714 * Returns a pointer to the Obj_Entry for the object. Returns NULL
2715 * on failure.
2716 */
2717 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2718 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2719 {
2720 Obj_Entry *obj;
2721 int fd;
2722 struct stat sb;
2723 char *path;
2724
2725 fd = -1;
2726 if (name != NULL) {
2727 TAILQ_FOREACH(obj, &obj_list, next) {
2728 if (obj->marker || obj->doomed)
2729 continue;
2730 if (object_match_name(obj, name))
2731 return (obj);
2732 }
2733
2734 path = find_library(name, refobj, &fd);
2735 if (path == NULL)
2736 return (NULL);
2737 } else
2738 path = NULL;
2739
2740 if (fd >= 0) {
2741 /*
2742 * search_library_pathfds() opens a fresh file descriptor for the
2743 * library, so there is no need to dup().
2744 */
2745 } else if (fd_u == -1) {
2746 /*
2747 * If we didn't find a match by pathname, or the name is not
2748 * supplied, open the file and check again by device and inode.
2749 * This avoids false mismatches caused by multiple links or ".."
2750 * in pathnames.
2751 *
2752 * To avoid a race, we open the file and use fstat() rather than
2753 * using stat().
2754 */
2755 if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2756 _rtld_error("Cannot open \"%s\"", path);
2757 free(path);
2758 return (NULL);
2759 }
2760 } else {
2761 fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2762 if (fd == -1) {
2763 _rtld_error("Cannot dup fd");
2764 free(path);
2765 return (NULL);
2766 }
2767 }
2768 if (fstat(fd, &sb) == -1) {
2769 _rtld_error("Cannot fstat \"%s\"", printable_path(path));
2770 close(fd);
2771 free(path);
2772 return (NULL);
2773 }
2774 TAILQ_FOREACH(obj, &obj_list, next) {
2775 if (obj->marker || obj->doomed)
2776 continue;
2777 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2778 break;
2779 }
2780 if (obj != NULL && name != NULL) {
2781 object_add_name(obj, name);
2782 free(path);
2783 close(fd);
2784 return (obj);
2785 }
2786 if (flags & RTLD_LO_NOLOAD) {
2787 free(path);
2788 close(fd);
2789 return (NULL);
2790 }
2791
2792 /* First use of this object, so we must map it in */
2793 obj = do_load_object(fd, name, path, &sb, flags);
2794 if (obj == NULL)
2795 free(path);
2796 close(fd);
2797
2798 return (obj);
2799 }
2800
2801 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2802 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2803 int flags)
2804 {
2805 Obj_Entry *obj;
2806 struct statfs fs;
2807
2808 /*
2809 * First, make sure that environment variables haven't been
2810 * used to circumvent the noexec flag on a filesystem.
2811 * We ignore fstatfs(2) failures, since fd might reference
2812 * not a file, e.g. shmfd.
2813 */
2814 if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2815 (fs.f_flags & MNT_NOEXEC) != 0) {
2816 _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2817 return (NULL);
2818 }
2819
2820 dbg("loading \"%s\"", printable_path(path));
2821 obj = map_object(fd, printable_path(path), sbp);
2822 if (obj == NULL)
2823 return (NULL);
2824
2825 /*
2826 * If DT_SONAME is present in the object, digest_dynamic2 already
2827 * added it to the object names.
2828 */
2829 if (name != NULL)
2830 object_add_name(obj, name);
2831 obj->path = path;
2832 if (!digest_dynamic(obj, 0))
2833 goto errp;
2834 dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2835 obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2836 if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2837 dbg("refusing to load PIE executable \"%s\"", obj->path);
2838 _rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2839 goto errp;
2840 }
2841 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2842 RTLD_LO_DLOPEN) {
2843 dbg("refusing to load non-loadable \"%s\"", obj->path);
2844 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
2845 goto errp;
2846 }
2847
2848 obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2849 TAILQ_INSERT_TAIL(&obj_list, obj, next);
2850 obj_count++;
2851 obj_loads++;
2852 linkmap_add(obj); /* for GDB & dlinfo() */
2853 max_stack_flags |= obj->stack_flags;
2854
2855 dbg(" %p .. %p: %s", obj->mapbase,
2856 obj->mapbase + obj->mapsize - 1, obj->path);
2857 if (obj->textrel)
2858 dbg(" WARNING: %s has impure text", obj->path);
2859 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2860 obj->path);
2861
2862 return (obj);
2863
2864 errp:
2865 munmap(obj->mapbase, obj->mapsize);
2866 obj_free(obj);
2867 return (NULL);
2868 }
2869
2870 static int
load_kpreload(const void * addr)2871 load_kpreload(const void *addr)
2872 {
2873 Obj_Entry *obj;
2874 const Elf_Ehdr *ehdr;
2875 const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2876 static const char kname[] = "[vdso]";
2877
2878 ehdr = addr;
2879 if (!check_elf_headers(ehdr, "kpreload"))
2880 return (-1);
2881 obj = obj_new();
2882 phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2883 obj->phdr = phdr;
2884 obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2885 phlimit = phdr + ehdr->e_phnum;
2886 seg0 = segn = NULL;
2887
2888 for (; phdr < phlimit; phdr++) {
2889 switch (phdr->p_type) {
2890 case PT_DYNAMIC:
2891 phdyn = phdr;
2892 break;
2893 case PT_GNU_STACK:
2894 /* Absense of PT_GNU_STACK implies stack_flags == 0. */
2895 obj->stack_flags = phdr->p_flags;
2896 break;
2897 case PT_LOAD:
2898 if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2899 seg0 = phdr;
2900 if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2901 phdr->p_vaddr + phdr->p_memsz)
2902 segn = phdr;
2903 break;
2904 }
2905 }
2906
2907 obj->mapbase = __DECONST(caddr_t, addr);
2908 obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2909 obj->vaddrbase = 0;
2910 obj->relocbase = obj->mapbase;
2911
2912 object_add_name(obj, kname);
2913 obj->path = xstrdup(kname);
2914 obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2915
2916 if (!digest_dynamic(obj, 0)) {
2917 obj_free(obj);
2918 return (-1);
2919 }
2920
2921 /*
2922 * We assume that kernel-preloaded object does not need
2923 * relocation. It is currently written into read-only page,
2924 * handling relocations would mean we need to allocate at
2925 * least one additional page per AS.
2926 */
2927 dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2928 obj->path, obj->mapbase, obj->phdr, seg0,
2929 obj->relocbase + seg0->p_vaddr, obj->dynamic);
2930
2931 TAILQ_INSERT_TAIL(&obj_list, obj, next);
2932 obj_count++;
2933 obj_loads++;
2934 linkmap_add(obj); /* for GDB & dlinfo() */
2935 max_stack_flags |= obj->stack_flags;
2936
2937 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2938 return (0);
2939 }
2940
2941 Obj_Entry *
obj_from_addr(const void * addr)2942 obj_from_addr(const void *addr)
2943 {
2944 Obj_Entry *obj;
2945
2946 TAILQ_FOREACH(obj, &obj_list, next) {
2947 if (obj->marker)
2948 continue;
2949 if (addr < (void *) obj->mapbase)
2950 continue;
2951 if (addr < (void *)(obj->mapbase + obj->mapsize))
2952 return obj;
2953 }
2954 return (NULL);
2955 }
2956
2957 static void
preinit_main(void)2958 preinit_main(void)
2959 {
2960 Elf_Addr *preinit_addr;
2961 int index;
2962
2963 preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2964 if (preinit_addr == NULL)
2965 return;
2966
2967 for (index = 0; index < obj_main->preinit_array_num; index++) {
2968 if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2969 dbg("calling preinit function for %s at %p", obj_main->path,
2970 (void *)preinit_addr[index]);
2971 LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2972 0, 0, obj_main->path);
2973 call_init_pointer(obj_main, preinit_addr[index]);
2974 }
2975 }
2976 }
2977
2978 /*
2979 * Call the finalization functions for each of the objects in "list"
2980 * belonging to the DAG of "root" and referenced once. If NULL "root"
2981 * is specified, every finalization function will be called regardless
2982 * of the reference count and the list elements won't be freed. All of
2983 * the objects are expected to have non-NULL fini functions.
2984 */
2985 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2986 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2987 {
2988 Objlist_Entry *elm;
2989 struct dlerror_save *saved_msg;
2990 Elf_Addr *fini_addr;
2991 int index;
2992
2993 assert(root == NULL || root->refcount == 1);
2994
2995 if (root != NULL)
2996 root->doomed = true;
2997
2998 /*
2999 * Preserve the current error message since a fini function might
3000 * call into the dynamic linker and overwrite it.
3001 */
3002 saved_msg = errmsg_save();
3003 do {
3004 STAILQ_FOREACH(elm, list, link) {
3005 if (root != NULL && (elm->obj->refcount != 1 ||
3006 objlist_find(&root->dagmembers, elm->obj) == NULL))
3007 continue;
3008 /* Remove object from fini list to prevent recursive invocation. */
3009 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3010 /* Ensure that new references cannot be acquired. */
3011 elm->obj->doomed = true;
3012
3013 hold_object(elm->obj);
3014 lock_release(rtld_bind_lock, lockstate);
3015 /*
3016 * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3017 * When this happens, DT_FINI_ARRAY is processed first.
3018 */
3019 fini_addr = (Elf_Addr *)elm->obj->fini_array;
3020 if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3021 for (index = elm->obj->fini_array_num - 1; index >= 0;
3022 index--) {
3023 if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3024 dbg("calling fini function for %s at %p",
3025 elm->obj->path, (void *)fini_addr[index]);
3026 LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3027 (void *)fini_addr[index], 0, 0, elm->obj->path);
3028 call_initfini_pointer(elm->obj, fini_addr[index]);
3029 }
3030 }
3031 }
3032 if (elm->obj->fini != (Elf_Addr)NULL) {
3033 dbg("calling fini function for %s at %p", elm->obj->path,
3034 (void *)elm->obj->fini);
3035 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3036 0, 0, elm->obj->path);
3037 call_initfini_pointer(elm->obj, elm->obj->fini);
3038 }
3039 wlock_acquire(rtld_bind_lock, lockstate);
3040 unhold_object(elm->obj);
3041 /* No need to free anything if process is going down. */
3042 if (root != NULL)
3043 free(elm);
3044 /*
3045 * We must restart the list traversal after every fini call
3046 * because a dlclose() call from the fini function or from
3047 * another thread might have modified the reference counts.
3048 */
3049 break;
3050 }
3051 } while (elm != NULL);
3052 errmsg_restore(saved_msg);
3053 }
3054
3055 /*
3056 * Call the initialization functions for each of the objects in
3057 * "list". All of the objects are expected to have non-NULL init
3058 * functions.
3059 */
3060 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3061 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3062 {
3063 Objlist_Entry *elm;
3064 Obj_Entry *obj;
3065 struct dlerror_save *saved_msg;
3066 Elf_Addr *init_addr;
3067 void (*reg)(void (*)(void));
3068 int index;
3069
3070 /*
3071 * Clean init_scanned flag so that objects can be rechecked and
3072 * possibly initialized earlier if any of vectors called below
3073 * cause the change by using dlopen.
3074 */
3075 TAILQ_FOREACH(obj, &obj_list, next) {
3076 if (obj->marker)
3077 continue;
3078 obj->init_scanned = false;
3079 }
3080
3081 /*
3082 * Preserve the current error message since an init function might
3083 * call into the dynamic linker and overwrite it.
3084 */
3085 saved_msg = errmsg_save();
3086 STAILQ_FOREACH(elm, list, link) {
3087 if (elm->obj->init_done) /* Initialized early. */
3088 continue;
3089 /*
3090 * Race: other thread might try to use this object before current
3091 * one completes the initialization. Not much can be done here
3092 * without better locking.
3093 */
3094 elm->obj->init_done = true;
3095 hold_object(elm->obj);
3096 reg = NULL;
3097 if (elm->obj == obj_main && obj_main->crt_no_init) {
3098 reg = (void (*)(void (*)(void)))get_program_var_addr(
3099 "__libc_atexit", lockstate);
3100 }
3101 lock_release(rtld_bind_lock, lockstate);
3102 if (reg != NULL) {
3103 reg(rtld_exit);
3104 rtld_exit_ptr = rtld_nop_exit;
3105 }
3106
3107 /*
3108 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3109 * When this happens, DT_INIT is processed first.
3110 */
3111 if (elm->obj->init != (Elf_Addr)NULL) {
3112 dbg("calling init function for %s at %p", elm->obj->path,
3113 (void *)elm->obj->init);
3114 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3115 0, 0, elm->obj->path);
3116 call_init_pointer(elm->obj, elm->obj->init);
3117 }
3118 init_addr = (Elf_Addr *)elm->obj->init_array;
3119 if (init_addr != NULL) {
3120 for (index = 0; index < elm->obj->init_array_num; index++) {
3121 if (init_addr[index] != 0 && init_addr[index] != 1) {
3122 dbg("calling init function for %s at %p", elm->obj->path,
3123 (void *)init_addr[index]);
3124 LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3125 (void *)init_addr[index], 0, 0, elm->obj->path);
3126 call_init_pointer(elm->obj, init_addr[index]);
3127 }
3128 }
3129 }
3130 wlock_acquire(rtld_bind_lock, lockstate);
3131 unhold_object(elm->obj);
3132 }
3133 errmsg_restore(saved_msg);
3134 }
3135
3136 static void
objlist_clear(Objlist * list)3137 objlist_clear(Objlist *list)
3138 {
3139 Objlist_Entry *elm;
3140
3141 while (!STAILQ_EMPTY(list)) {
3142 elm = STAILQ_FIRST(list);
3143 STAILQ_REMOVE_HEAD(list, link);
3144 free(elm);
3145 }
3146 }
3147
3148 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3149 objlist_find(Objlist *list, const Obj_Entry *obj)
3150 {
3151 Objlist_Entry *elm;
3152
3153 STAILQ_FOREACH(elm, list, link)
3154 if (elm->obj == obj)
3155 return elm;
3156 return (NULL);
3157 }
3158
3159 static void
objlist_init(Objlist * list)3160 objlist_init(Objlist *list)
3161 {
3162 STAILQ_INIT(list);
3163 }
3164
3165 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3166 objlist_push_head(Objlist *list, Obj_Entry *obj)
3167 {
3168 Objlist_Entry *elm;
3169
3170 elm = NEW(Objlist_Entry);
3171 elm->obj = obj;
3172 STAILQ_INSERT_HEAD(list, elm, link);
3173 }
3174
3175 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3176 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3177 {
3178 Objlist_Entry *elm;
3179
3180 elm = NEW(Objlist_Entry);
3181 elm->obj = obj;
3182 STAILQ_INSERT_TAIL(list, elm, link);
3183 }
3184
3185 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3186 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3187 {
3188 Objlist_Entry *elm, *listelm;
3189
3190 STAILQ_FOREACH(listelm, list, link) {
3191 if (listelm->obj == listobj)
3192 break;
3193 }
3194 elm = NEW(Objlist_Entry);
3195 elm->obj = obj;
3196 if (listelm != NULL)
3197 STAILQ_INSERT_AFTER(list, listelm, elm, link);
3198 else
3199 STAILQ_INSERT_TAIL(list, elm, link);
3200 }
3201
3202 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3203 objlist_remove(Objlist *list, Obj_Entry *obj)
3204 {
3205 Objlist_Entry *elm;
3206
3207 if ((elm = objlist_find(list, obj)) != NULL) {
3208 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3209 free(elm);
3210 }
3211 }
3212
3213 /*
3214 * Relocate dag rooted in the specified object.
3215 * Returns 0 on success, or -1 on failure.
3216 */
3217
3218 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3219 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3220 int flags, RtldLockState *lockstate)
3221 {
3222 Objlist_Entry *elm;
3223 int error;
3224
3225 error = 0;
3226 STAILQ_FOREACH(elm, &root->dagmembers, link) {
3227 error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3228 lockstate);
3229 if (error == -1)
3230 break;
3231 }
3232 return (error);
3233 }
3234
3235 /*
3236 * Prepare for, or clean after, relocating an object marked with
3237 * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only
3238 * segments are remapped read-write. After relocations are done, the
3239 * segment's permissions are returned back to the modes specified in
3240 * the phdrs. If any relocation happened, or always for wired
3241 * program, COW is triggered.
3242 */
3243 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3244 reloc_textrel_prot(Obj_Entry *obj, bool before)
3245 {
3246 const Elf_Phdr *ph;
3247 void *base;
3248 size_t l, sz;
3249 int prot;
3250
3251 for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3252 l--, ph++) {
3253 if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3254 continue;
3255 base = obj->relocbase + trunc_page(ph->p_vaddr);
3256 sz = round_page(ph->p_vaddr + ph->p_filesz) -
3257 trunc_page(ph->p_vaddr);
3258 prot = before ? (PROT_READ | PROT_WRITE) :
3259 convert_prot(ph->p_flags);
3260 if (mprotect(base, sz, prot) == -1) {
3261 _rtld_error("%s: Cannot write-%sable text segment: %s",
3262 obj->path, before ? "en" : "dis",
3263 rtld_strerror(errno));
3264 return (-1);
3265 }
3266 }
3267 return (0);
3268 }
3269
3270 /* Process RELR relative relocations. */
3271 static void
reloc_relr(Obj_Entry * obj)3272 reloc_relr(Obj_Entry *obj)
3273 {
3274 const Elf_Relr *relr, *relrlim;
3275 Elf_Addr *where;
3276
3277 relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3278 for (relr = obj->relr; relr < relrlim; relr++) {
3279 Elf_Relr entry = *relr;
3280
3281 if ((entry & 1) == 0) {
3282 where = (Elf_Addr *)(obj->relocbase + entry);
3283 *where++ += (Elf_Addr)obj->relocbase;
3284 } else {
3285 for (long i = 0; (entry >>= 1) != 0; i++)
3286 if ((entry & 1) != 0)
3287 where[i] += (Elf_Addr)obj->relocbase;
3288 where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3289 }
3290 }
3291 }
3292
3293 /*
3294 * Relocate single object.
3295 * Returns 0 on success, or -1 on failure.
3296 */
3297 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3298 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3299 int flags, RtldLockState *lockstate)
3300 {
3301
3302 if (obj->relocated)
3303 return (0);
3304 obj->relocated = true;
3305 if (obj != rtldobj)
3306 dbg("relocating \"%s\"", obj->path);
3307
3308 if (obj->symtab == NULL || obj->strtab == NULL ||
3309 !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3310 dbg("object %s has no run-time symbol table", obj->path);
3311
3312 /* There are relocations to the write-protected text segment. */
3313 if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3314 return (-1);
3315
3316 /* Process the non-PLT non-IFUNC relocations. */
3317 if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3318 return (-1);
3319 reloc_relr(obj);
3320
3321 /* Re-protected the text segment. */
3322 if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3323 return (-1);
3324
3325 /* Set the special PLT or GOT entries. */
3326 init_pltgot(obj);
3327
3328 /* Process the PLT relocations. */
3329 if (reloc_plt(obj, flags, lockstate) == -1)
3330 return (-1);
3331 /* Relocate the jump slots if we are doing immediate binding. */
3332 if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3333 lockstate) == -1)
3334 return (-1);
3335
3336 if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3337 return (-1);
3338
3339 /*
3340 * Set up the magic number and version in the Obj_Entry. These
3341 * were checked in the crt1.o from the original ElfKit, so we
3342 * set them for backward compatibility.
3343 */
3344 obj->magic = RTLD_MAGIC;
3345 obj->version = RTLD_VERSION;
3346
3347 return (0);
3348 }
3349
3350 /*
3351 * Relocate newly-loaded shared objects. The argument is a pointer to
3352 * the Obj_Entry for the first such object. All objects from the first
3353 * to the end of the list of objects are relocated. Returns 0 on success,
3354 * or -1 on failure.
3355 */
3356 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3357 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3358 int flags, RtldLockState *lockstate)
3359 {
3360 Obj_Entry *obj;
3361 int error;
3362
3363 for (error = 0, obj = first; obj != NULL;
3364 obj = TAILQ_NEXT(obj, next)) {
3365 if (obj->marker)
3366 continue;
3367 error = relocate_object(obj, bind_now, rtldobj, flags,
3368 lockstate);
3369 if (error == -1)
3370 break;
3371 }
3372 return (error);
3373 }
3374
3375 /*
3376 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3377 * referencing STT_GNU_IFUNC symbols is postponed till the other
3378 * relocations are done. The indirect functions specified as
3379 * ifunc are allowed to call other symbols, so we need to have
3380 * objects relocated before asking for resolution from indirects.
3381 *
3382 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3383 * instead of the usual lazy handling of PLT slots. It is
3384 * consistent with how GNU does it.
3385 */
3386 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3387 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3388 RtldLockState *lockstate)
3389 {
3390
3391 if (obj->ifuncs_resolved)
3392 return (0);
3393 obj->ifuncs_resolved = true;
3394 if (!obj->irelative && !obj->irelative_nonplt &&
3395 !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3396 !obj->non_plt_gnu_ifunc)
3397 return (0);
3398 if (obj_disable_relro(obj) == -1 ||
3399 (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3400 (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3401 lockstate) == -1) ||
3402 ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3403 reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3404 (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3405 flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3406 obj_enforce_relro(obj) == -1)
3407 return (-1);
3408 return (0);
3409 }
3410
3411 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3412 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3413 RtldLockState *lockstate)
3414 {
3415 Objlist_Entry *elm;
3416 Obj_Entry *obj;
3417
3418 STAILQ_FOREACH(elm, list, link) {
3419 obj = elm->obj;
3420 if (obj->marker)
3421 continue;
3422 if (resolve_object_ifunc(obj, bind_now, flags,
3423 lockstate) == -1)
3424 return (-1);
3425 }
3426 return (0);
3427 }
3428
3429 /*
3430 * Cleanup procedure. It will be called (by the atexit mechanism) just
3431 * before the process exits.
3432 */
3433 static void
rtld_exit(void)3434 rtld_exit(void)
3435 {
3436 RtldLockState lockstate;
3437
3438 wlock_acquire(rtld_bind_lock, &lockstate);
3439 dbg("rtld_exit()");
3440 objlist_call_fini(&list_fini, NULL, &lockstate);
3441 /* No need to remove the items from the list, since we are exiting. */
3442 if (!libmap_disable)
3443 lm_fini();
3444 lock_release(rtld_bind_lock, &lockstate);
3445 }
3446
3447 static void
rtld_nop_exit(void)3448 rtld_nop_exit(void)
3449 {
3450 }
3451
3452 /*
3453 * Iterate over a search path, translate each element, and invoke the
3454 * callback on the result.
3455 */
3456 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3457 path_enumerate(const char *path, path_enum_proc callback,
3458 const char *refobj_path, void *arg)
3459 {
3460 const char *trans;
3461 if (path == NULL)
3462 return (NULL);
3463
3464 path += strspn(path, ":;");
3465 while (*path != '\0') {
3466 size_t len;
3467 char *res;
3468
3469 len = strcspn(path, ":;");
3470 trans = lm_findn(refobj_path, path, len);
3471 if (trans)
3472 res = callback(trans, strlen(trans), arg);
3473 else
3474 res = callback(path, len, arg);
3475
3476 if (res != NULL)
3477 return (res);
3478
3479 path += len;
3480 path += strspn(path, ":;");
3481 }
3482
3483 return (NULL);
3484 }
3485
3486 struct try_library_args {
3487 const char *name;
3488 size_t namelen;
3489 char *buffer;
3490 size_t buflen;
3491 int fd;
3492 };
3493
3494 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3495 try_library_path(const char *dir, size_t dirlen, void *param)
3496 {
3497 struct try_library_args *arg;
3498 int fd;
3499
3500 arg = param;
3501 if (*dir == '/' || trust) {
3502 char *pathname;
3503
3504 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3505 return (NULL);
3506
3507 pathname = arg->buffer;
3508 strncpy(pathname, dir, dirlen);
3509 pathname[dirlen] = '/';
3510 strcpy(pathname + dirlen + 1, arg->name);
3511
3512 dbg(" Trying \"%s\"", pathname);
3513 fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3514 if (fd >= 0) {
3515 dbg(" Opened \"%s\", fd %d", pathname, fd);
3516 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3517 strcpy(pathname, arg->buffer);
3518 arg->fd = fd;
3519 return (pathname);
3520 } else {
3521 dbg(" Failed to open \"%s\": %s",
3522 pathname, rtld_strerror(errno));
3523 }
3524 }
3525 return (NULL);
3526 }
3527
3528 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3529 search_library_path(const char *name, const char *path,
3530 const char *refobj_path, int *fdp)
3531 {
3532 char *p;
3533 struct try_library_args arg;
3534
3535 if (path == NULL)
3536 return (NULL);
3537
3538 arg.name = name;
3539 arg.namelen = strlen(name);
3540 arg.buffer = xmalloc(PATH_MAX);
3541 arg.buflen = PATH_MAX;
3542 arg.fd = -1;
3543
3544 p = path_enumerate(path, try_library_path, refobj_path, &arg);
3545 *fdp = arg.fd;
3546
3547 free(arg.buffer);
3548
3549 return (p);
3550 }
3551
3552
3553 /*
3554 * Finds the library with the given name using the directory descriptors
3555 * listed in the LD_LIBRARY_PATH_FDS environment variable.
3556 *
3557 * Returns a freshly-opened close-on-exec file descriptor for the library,
3558 * or -1 if the library cannot be found.
3559 */
3560 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3561 search_library_pathfds(const char *name, const char *path, int *fdp)
3562 {
3563 char *envcopy, *fdstr, *found, *last_token;
3564 size_t len;
3565 int dirfd, fd;
3566
3567 dbg("%s('%s', '%s', fdp)", __func__, name, path);
3568
3569 /* Don't load from user-specified libdirs into setuid binaries. */
3570 if (!trust)
3571 return (NULL);
3572
3573 /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3574 if (path == NULL)
3575 return (NULL);
3576
3577 /* LD_LIBRARY_PATH_FDS only works with relative paths. */
3578 if (name[0] == '/') {
3579 dbg("Absolute path (%s) passed to %s", name, __func__);
3580 return (NULL);
3581 }
3582
3583 /*
3584 * Use strtok_r() to walk the FD:FD:FD list. This requires a local
3585 * copy of the path, as strtok_r rewrites separator tokens
3586 * with '\0'.
3587 */
3588 found = NULL;
3589 envcopy = xstrdup(path);
3590 for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3591 fdstr = strtok_r(NULL, ":", &last_token)) {
3592 dirfd = parse_integer(fdstr);
3593 if (dirfd < 0) {
3594 _rtld_error("failed to parse directory FD: '%s'",
3595 fdstr);
3596 break;
3597 }
3598 fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3599 if (fd >= 0) {
3600 *fdp = fd;
3601 len = strlen(fdstr) + strlen(name) + 3;
3602 found = xmalloc(len);
3603 if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3604 _rtld_error("error generating '%d/%s'",
3605 dirfd, name);
3606 rtld_die();
3607 }
3608 dbg("open('%s') => %d", found, fd);
3609 break;
3610 }
3611 }
3612 free(envcopy);
3613
3614 return (found);
3615 }
3616
3617
3618 int
dlclose(void * handle)3619 dlclose(void *handle)
3620 {
3621 RtldLockState lockstate;
3622 int error;
3623
3624 wlock_acquire(rtld_bind_lock, &lockstate);
3625 error = dlclose_locked(handle, &lockstate);
3626 lock_release(rtld_bind_lock, &lockstate);
3627 return (error);
3628 }
3629
3630 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3631 dlclose_locked(void *handle, RtldLockState *lockstate)
3632 {
3633 Obj_Entry *root;
3634
3635 root = dlcheck(handle);
3636 if (root == NULL)
3637 return (-1);
3638 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3639 root->path);
3640
3641 /* Unreference the object and its dependencies. */
3642 root->dl_refcount--;
3643
3644 if (root->refcount == 1) {
3645 /*
3646 * The object will be no longer referenced, so we must unload it.
3647 * First, call the fini functions.
3648 */
3649 objlist_call_fini(&list_fini, root, lockstate);
3650
3651 unref_dag(root);
3652
3653 /* Finish cleaning up the newly-unreferenced objects. */
3654 GDB_STATE(RT_DELETE,&root->linkmap);
3655 unload_object(root, lockstate);
3656 GDB_STATE(RT_CONSISTENT,NULL);
3657 } else
3658 unref_dag(root);
3659
3660 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3661 return (0);
3662 }
3663
3664 char *
dlerror(void)3665 dlerror(void)
3666 {
3667 if (*(lockinfo.dlerror_seen()) != 0)
3668 return (NULL);
3669 *lockinfo.dlerror_seen() = 1;
3670 return (lockinfo.dlerror_loc());
3671 }
3672
3673 /*
3674 * This function is deprecated and has no effect.
3675 */
3676 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3677 dllockinit(void *context,
3678 void *(*_lock_create)(void *context) __unused,
3679 void (*_rlock_acquire)(void *lock) __unused,
3680 void (*_wlock_acquire)(void *lock) __unused,
3681 void (*_lock_release)(void *lock) __unused,
3682 void (*_lock_destroy)(void *lock) __unused,
3683 void (*context_destroy)(void *context))
3684 {
3685 static void *cur_context;
3686 static void (*cur_context_destroy)(void *);
3687
3688 /* Just destroy the context from the previous call, if necessary. */
3689 if (cur_context_destroy != NULL)
3690 cur_context_destroy(cur_context);
3691 cur_context = context;
3692 cur_context_destroy = context_destroy;
3693 }
3694
3695 void *
dlopen(const char * name,int mode)3696 dlopen(const char *name, int mode)
3697 {
3698
3699 return (rtld_dlopen(name, -1, mode));
3700 }
3701
3702 void *
fdlopen(int fd,int mode)3703 fdlopen(int fd, int mode)
3704 {
3705
3706 return (rtld_dlopen(NULL, fd, mode));
3707 }
3708
3709 static void *
rtld_dlopen(const char * name,int fd,int mode)3710 rtld_dlopen(const char *name, int fd, int mode)
3711 {
3712 RtldLockState lockstate;
3713 int lo_flags;
3714
3715 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3716 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3717 if (ld_tracing != NULL) {
3718 rlock_acquire(rtld_bind_lock, &lockstate);
3719 if (sigsetjmp(lockstate.env, 0) != 0)
3720 lock_upgrade(rtld_bind_lock, &lockstate);
3721 environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3722 lock_release(rtld_bind_lock, &lockstate);
3723 }
3724 lo_flags = RTLD_LO_DLOPEN;
3725 if (mode & RTLD_NODELETE)
3726 lo_flags |= RTLD_LO_NODELETE;
3727 if (mode & RTLD_NOLOAD)
3728 lo_flags |= RTLD_LO_NOLOAD;
3729 if (mode & RTLD_DEEPBIND)
3730 lo_flags |= RTLD_LO_DEEPBIND;
3731 if (ld_tracing != NULL)
3732 lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3733
3734 return (dlopen_object(name, fd, obj_main, lo_flags,
3735 mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3736 }
3737
3738 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3739 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3740 {
3741
3742 obj->dl_refcount--;
3743 unref_dag(obj);
3744 if (obj->refcount == 0)
3745 unload_object(obj, lockstate);
3746 }
3747
3748 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3749 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3750 int mode, RtldLockState *lockstate)
3751 {
3752 Obj_Entry *old_obj_tail;
3753 Obj_Entry *obj;
3754 Objlist initlist;
3755 RtldLockState mlockstate;
3756 int result;
3757
3758 dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3759 name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3760 refobj->path, lo_flags, mode);
3761 objlist_init(&initlist);
3762
3763 if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3764 wlock_acquire(rtld_bind_lock, &mlockstate);
3765 lockstate = &mlockstate;
3766 }
3767 GDB_STATE(RT_ADD,NULL);
3768
3769 old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
3770 obj = NULL;
3771 if (name == NULL && fd == -1) {
3772 obj = obj_main;
3773 obj->refcount++;
3774 } else {
3775 obj = load_object(name, fd, refobj, lo_flags);
3776 }
3777
3778 if (obj) {
3779 obj->dl_refcount++;
3780 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3781 objlist_push_tail(&list_global, obj);
3782 if (globallist_next(old_obj_tail) != NULL) {
3783 /* We loaded something new. */
3784 assert(globallist_next(old_obj_tail) == obj);
3785 if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3786 obj->symbolic = true;
3787 result = 0;
3788 if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3789 obj->static_tls && !allocate_tls_offset(obj)) {
3790 _rtld_error("%s: No space available "
3791 "for static Thread Local Storage", obj->path);
3792 result = -1;
3793 }
3794 if (result != -1)
3795 result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3796 RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3797 init_dag(obj);
3798 ref_dag(obj);
3799 if (result != -1)
3800 result = rtld_verify_versions(&obj->dagmembers);
3801 if (result != -1 && ld_tracing)
3802 goto trace;
3803 if (result == -1 || relocate_object_dag(obj,
3804 (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3805 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3806 lockstate) == -1) {
3807 dlopen_cleanup(obj, lockstate);
3808 obj = NULL;
3809 } else if (lo_flags & RTLD_LO_EARLY) {
3810 /*
3811 * Do not call the init functions for early loaded
3812 * filtees. The image is still not initialized enough
3813 * for them to work.
3814 *
3815 * Our object is found by the global object list and
3816 * will be ordered among all init calls done right
3817 * before transferring control to main.
3818 */
3819 } else {
3820 /* Make list of init functions to call. */
3821 initlist_add_objects(obj, obj, &initlist);
3822 }
3823 /*
3824 * Process all no_delete or global objects here, given
3825 * them own DAGs to prevent their dependencies from being
3826 * unloaded. This has to be done after we have loaded all
3827 * of the dependencies, so that we do not miss any.
3828 */
3829 if (obj != NULL)
3830 process_z(obj);
3831 } else {
3832 /*
3833 * Bump the reference counts for objects on this DAG. If
3834 * this is the first dlopen() call for the object that was
3835 * already loaded as a dependency, initialize the dag
3836 * starting at it.
3837 */
3838 init_dag(obj);
3839 ref_dag(obj);
3840
3841 if ((lo_flags & RTLD_LO_TRACE) != 0)
3842 goto trace;
3843 }
3844 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3845 obj->z_nodelete) && !obj->ref_nodel) {
3846 dbg("obj %s nodelete", obj->path);
3847 ref_dag(obj);
3848 obj->z_nodelete = obj->ref_nodel = true;
3849 }
3850 }
3851
3852 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3853 name);
3854 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3855
3856 if ((lo_flags & RTLD_LO_EARLY) == 0) {
3857 map_stacks_exec(lockstate);
3858 if (obj != NULL)
3859 distribute_static_tls(&initlist, lockstate);
3860 }
3861
3862 if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3863 (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3864 lockstate) == -1) {
3865 objlist_clear(&initlist);
3866 dlopen_cleanup(obj, lockstate);
3867 if (lockstate == &mlockstate)
3868 lock_release(rtld_bind_lock, lockstate);
3869 return (NULL);
3870 }
3871
3872 if (!(lo_flags & RTLD_LO_EARLY)) {
3873 /* Call the init functions. */
3874 objlist_call_init(&initlist, lockstate);
3875 }
3876 objlist_clear(&initlist);
3877 if (lockstate == &mlockstate)
3878 lock_release(rtld_bind_lock, lockstate);
3879 return (obj);
3880 trace:
3881 trace_loaded_objects(obj);
3882 if (lockstate == &mlockstate)
3883 lock_release(rtld_bind_lock, lockstate);
3884 exit(0);
3885 }
3886
3887 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3888 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3889 int flags)
3890 {
3891 DoneList donelist;
3892 const Obj_Entry *obj, *defobj;
3893 const Elf_Sym *def;
3894 SymLook req;
3895 RtldLockState lockstate;
3896 tls_index ti;
3897 void *sym;
3898 int res;
3899
3900 def = NULL;
3901 defobj = NULL;
3902 symlook_init(&req, name);
3903 req.ventry = ve;
3904 req.flags = flags | SYMLOOK_IN_PLT;
3905 req.lockstate = &lockstate;
3906
3907 LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3908 rlock_acquire(rtld_bind_lock, &lockstate);
3909 if (sigsetjmp(lockstate.env, 0) != 0)
3910 lock_upgrade(rtld_bind_lock, &lockstate);
3911 if (handle == NULL || handle == RTLD_NEXT ||
3912 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3913
3914 if ((obj = obj_from_addr(retaddr)) == NULL) {
3915 _rtld_error("Cannot determine caller's shared object");
3916 lock_release(rtld_bind_lock, &lockstate);
3917 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3918 return (NULL);
3919 }
3920 if (handle == NULL) { /* Just the caller's shared object. */
3921 res = symlook_obj(&req, obj);
3922 if (res == 0) {
3923 def = req.sym_out;
3924 defobj = req.defobj_out;
3925 }
3926 } else if (handle == RTLD_NEXT || /* Objects after caller's */
3927 handle == RTLD_SELF) { /* ... caller included */
3928 if (handle == RTLD_NEXT)
3929 obj = globallist_next(obj);
3930 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3931 if (obj->marker)
3932 continue;
3933 res = symlook_obj(&req, obj);
3934 if (res == 0) {
3935 if (def == NULL || (ld_dynamic_weak &&
3936 ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3937 def = req.sym_out;
3938 defobj = req.defobj_out;
3939 if (!ld_dynamic_weak ||
3940 ELF_ST_BIND(def->st_info) != STB_WEAK)
3941 break;
3942 }
3943 }
3944 }
3945 /*
3946 * Search the dynamic linker itself, and possibly resolve the
3947 * symbol from there. This is how the application links to
3948 * dynamic linker services such as dlopen.
3949 * Note that we ignore ld_dynamic_weak == false case,
3950 * always overriding weak symbols by rtld definitions.
3951 */
3952 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3953 res = symlook_obj(&req, &obj_rtld);
3954 if (res == 0) {
3955 def = req.sym_out;
3956 defobj = req.defobj_out;
3957 }
3958 }
3959 } else {
3960 assert(handle == RTLD_DEFAULT);
3961 res = symlook_default(&req, obj);
3962 if (res == 0) {
3963 defobj = req.defobj_out;
3964 def = req.sym_out;
3965 }
3966 }
3967 } else {
3968 if ((obj = dlcheck(handle)) == NULL) {
3969 lock_release(rtld_bind_lock, &lockstate);
3970 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3971 return (NULL);
3972 }
3973
3974 donelist_init(&donelist);
3975 if (obj->mainprog) {
3976 /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3977 res = symlook_global(&req, &donelist);
3978 if (res == 0) {
3979 def = req.sym_out;
3980 defobj = req.defobj_out;
3981 }
3982 /*
3983 * Search the dynamic linker itself, and possibly resolve the
3984 * symbol from there. This is how the application links to
3985 * dynamic linker services such as dlopen.
3986 */
3987 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3988 res = symlook_obj(&req, &obj_rtld);
3989 if (res == 0) {
3990 def = req.sym_out;
3991 defobj = req.defobj_out;
3992 }
3993 }
3994 }
3995 else {
3996 /* Search the whole DAG rooted at the given object. */
3997 res = symlook_list(&req, &obj->dagmembers, &donelist);
3998 if (res == 0) {
3999 def = req.sym_out;
4000 defobj = req.defobj_out;
4001 }
4002 }
4003 }
4004
4005 if (def != NULL) {
4006 lock_release(rtld_bind_lock, &lockstate);
4007
4008 /*
4009 * The value required by the caller is derived from the value
4010 * of the symbol. this is simply the relocated value of the
4011 * symbol.
4012 */
4013 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4014 sym = make_function_pointer(def, defobj);
4015 else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4016 sym = rtld_resolve_ifunc(defobj, def);
4017 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4018 ti.ti_module = defobj->tlsindex;
4019 ti.ti_offset = def->st_value;
4020 sym = __tls_get_addr(&ti);
4021 } else
4022 sym = defobj->relocbase + def->st_value;
4023 LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4024 return (sym);
4025 }
4026
4027 _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4028 ve != NULL ? ve->name : "");
4029 lock_release(rtld_bind_lock, &lockstate);
4030 LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4031 return (NULL);
4032 }
4033
4034 void *
dlsym(void * handle,const char * name)4035 dlsym(void *handle, const char *name)
4036 {
4037 return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4038 SYMLOOK_DLSYM));
4039 }
4040
4041 dlfunc_t
dlfunc(void * handle,const char * name)4042 dlfunc(void *handle, const char *name)
4043 {
4044 union {
4045 void *d;
4046 dlfunc_t f;
4047 } rv;
4048
4049 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4050 SYMLOOK_DLSYM);
4051 return (rv.f);
4052 }
4053
4054 void *
dlvsym(void * handle,const char * name,const char * version)4055 dlvsym(void *handle, const char *name, const char *version)
4056 {
4057 Ver_Entry ventry;
4058
4059 ventry.name = version;
4060 ventry.file = NULL;
4061 ventry.hash = elf_hash(version);
4062 ventry.flags= 0;
4063 return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4064 SYMLOOK_DLSYM));
4065 }
4066
4067 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4068 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4069 {
4070 const Obj_Entry *obj;
4071 RtldLockState lockstate;
4072
4073 rlock_acquire(rtld_bind_lock, &lockstate);
4074 obj = obj_from_addr(addr);
4075 if (obj == NULL) {
4076 _rtld_error("No shared object contains address");
4077 lock_release(rtld_bind_lock, &lockstate);
4078 return (0);
4079 }
4080 rtld_fill_dl_phdr_info(obj, phdr_info);
4081 lock_release(rtld_bind_lock, &lockstate);
4082 return (1);
4083 }
4084
4085 int
dladdr(const void * addr,Dl_info * info)4086 dladdr(const void *addr, Dl_info *info)
4087 {
4088 const Obj_Entry *obj;
4089 const Elf_Sym *def;
4090 void *symbol_addr;
4091 unsigned long symoffset;
4092 RtldLockState lockstate;
4093
4094 rlock_acquire(rtld_bind_lock, &lockstate);
4095 obj = obj_from_addr(addr);
4096 if (obj == NULL) {
4097 _rtld_error("No shared object contains address");
4098 lock_release(rtld_bind_lock, &lockstate);
4099 return (0);
4100 }
4101 info->dli_fname = obj->path;
4102 info->dli_fbase = obj->mapbase;
4103 info->dli_saddr = (void *)0;
4104 info->dli_sname = NULL;
4105
4106 /*
4107 * Walk the symbol list looking for the symbol whose address is
4108 * closest to the address sent in.
4109 */
4110 for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4111 def = obj->symtab + symoffset;
4112
4113 /*
4114 * For skip the symbol if st_shndx is either SHN_UNDEF or
4115 * SHN_COMMON.
4116 */
4117 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4118 continue;
4119
4120 /*
4121 * If the symbol is greater than the specified address, or if it
4122 * is further away from addr than the current nearest symbol,
4123 * then reject it.
4124 */
4125 symbol_addr = obj->relocbase + def->st_value;
4126 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4127 continue;
4128
4129 /* Update our idea of the nearest symbol. */
4130 info->dli_sname = obj->strtab + def->st_name;
4131 info->dli_saddr = symbol_addr;
4132
4133 /* Exact match? */
4134 if (info->dli_saddr == addr)
4135 break;
4136 }
4137 lock_release(rtld_bind_lock, &lockstate);
4138 return (1);
4139 }
4140
4141 int
dlinfo(void * handle,int request,void * p)4142 dlinfo(void *handle, int request, void *p)
4143 {
4144 const Obj_Entry *obj;
4145 RtldLockState lockstate;
4146 int error;
4147
4148 rlock_acquire(rtld_bind_lock, &lockstate);
4149
4150 if (handle == NULL || handle == RTLD_SELF) {
4151 void *retaddr;
4152
4153 retaddr = __builtin_return_address(0); /* __GNUC__ only */
4154 if ((obj = obj_from_addr(retaddr)) == NULL)
4155 _rtld_error("Cannot determine caller's shared object");
4156 } else
4157 obj = dlcheck(handle);
4158
4159 if (obj == NULL) {
4160 lock_release(rtld_bind_lock, &lockstate);
4161 return (-1);
4162 }
4163
4164 error = 0;
4165 switch (request) {
4166 case RTLD_DI_LINKMAP:
4167 *((struct link_map const **)p) = &obj->linkmap;
4168 break;
4169 case RTLD_DI_ORIGIN:
4170 error = rtld_dirname(obj->path, p);
4171 break;
4172
4173 case RTLD_DI_SERINFOSIZE:
4174 case RTLD_DI_SERINFO:
4175 error = do_search_info(obj, request, (struct dl_serinfo *)p);
4176 break;
4177
4178 default:
4179 _rtld_error("Invalid request %d passed to dlinfo()", request);
4180 error = -1;
4181 }
4182
4183 lock_release(rtld_bind_lock, &lockstate);
4184
4185 return (error);
4186 }
4187
4188 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4189 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4190 {
4191 Elf_Addr **dtvp;
4192
4193 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4194 phdr_info->dlpi_name = obj->path;
4195 phdr_info->dlpi_phdr = obj->phdr;
4196 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4197 phdr_info->dlpi_tls_modid = obj->tlsindex;
4198 dtvp = _get_tp();
4199 phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4200 obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4201 phdr_info->dlpi_adds = obj_loads;
4202 phdr_info->dlpi_subs = obj_loads - obj_count;
4203 }
4204
4205 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4206 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4207 {
4208 struct dl_phdr_info phdr_info;
4209 Obj_Entry *obj, marker;
4210 RtldLockState bind_lockstate, phdr_lockstate;
4211 int error;
4212
4213 init_marker(&marker);
4214 error = 0;
4215
4216 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4217 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4218 for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4219 TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4220 rtld_fill_dl_phdr_info(obj, &phdr_info);
4221 hold_object(obj);
4222 lock_release(rtld_bind_lock, &bind_lockstate);
4223
4224 error = callback(&phdr_info, sizeof phdr_info, param);
4225
4226 wlock_acquire(rtld_bind_lock, &bind_lockstate);
4227 unhold_object(obj);
4228 obj = globallist_next(&marker);
4229 TAILQ_REMOVE(&obj_list, &marker, next);
4230 if (error != 0) {
4231 lock_release(rtld_bind_lock, &bind_lockstate);
4232 lock_release(rtld_phdr_lock, &phdr_lockstate);
4233 return (error);
4234 }
4235 }
4236
4237 if (error == 0) {
4238 rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4239 lock_release(rtld_bind_lock, &bind_lockstate);
4240 error = callback(&phdr_info, sizeof(phdr_info), param);
4241 }
4242 lock_release(rtld_phdr_lock, &phdr_lockstate);
4243 return (error);
4244 }
4245
4246 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4247 fill_search_info(const char *dir, size_t dirlen, void *param)
4248 {
4249 struct fill_search_info_args *arg;
4250
4251 arg = param;
4252
4253 if (arg->request == RTLD_DI_SERINFOSIZE) {
4254 arg->serinfo->dls_cnt ++;
4255 arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4256 } else {
4257 struct dl_serpath *s_entry;
4258
4259 s_entry = arg->serpath;
4260 s_entry->dls_name = arg->strspace;
4261 s_entry->dls_flags = arg->flags;
4262
4263 strncpy(arg->strspace, dir, dirlen);
4264 arg->strspace[dirlen] = '\0';
4265
4266 arg->strspace += dirlen + 1;
4267 arg->serpath++;
4268 }
4269
4270 return (NULL);
4271 }
4272
4273 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4274 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4275 {
4276 struct dl_serinfo _info;
4277 struct fill_search_info_args args;
4278
4279 args.request = RTLD_DI_SERINFOSIZE;
4280 args.serinfo = &_info;
4281
4282 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4283 _info.dls_cnt = 0;
4284
4285 path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4286 path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4287 path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4288 path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4289 if (!obj->z_nodeflib)
4290 path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4291
4292
4293 if (request == RTLD_DI_SERINFOSIZE) {
4294 info->dls_size = _info.dls_size;
4295 info->dls_cnt = _info.dls_cnt;
4296 return (0);
4297 }
4298
4299 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4300 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4301 return (-1);
4302 }
4303
4304 args.request = RTLD_DI_SERINFO;
4305 args.serinfo = info;
4306 args.serpath = &info->dls_serpath[0];
4307 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4308
4309 args.flags = LA_SER_RUNPATH;
4310 if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4311 return (-1);
4312
4313 args.flags = LA_SER_LIBPATH;
4314 if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4315 return (-1);
4316
4317 args.flags = LA_SER_RUNPATH;
4318 if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4319 return (-1);
4320
4321 args.flags = LA_SER_CONFIG;
4322 if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4323 != NULL)
4324 return (-1);
4325
4326 args.flags = LA_SER_DEFAULT;
4327 if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4328 fill_search_info, NULL, &args) != NULL)
4329 return (-1);
4330 return (0);
4331 }
4332
4333 static int
rtld_dirname(const char * path,char * bname)4334 rtld_dirname(const char *path, char *bname)
4335 {
4336 const char *endp;
4337
4338 /* Empty or NULL string gets treated as "." */
4339 if (path == NULL || *path == '\0') {
4340 bname[0] = '.';
4341 bname[1] = '\0';
4342 return (0);
4343 }
4344
4345 /* Strip trailing slashes */
4346 endp = path + strlen(path) - 1;
4347 while (endp > path && *endp == '/')
4348 endp--;
4349
4350 /* Find the start of the dir */
4351 while (endp > path && *endp != '/')
4352 endp--;
4353
4354 /* Either the dir is "/" or there are no slashes */
4355 if (endp == path) {
4356 bname[0] = *endp == '/' ? '/' : '.';
4357 bname[1] = '\0';
4358 return (0);
4359 } else {
4360 do {
4361 endp--;
4362 } while (endp > path && *endp == '/');
4363 }
4364
4365 if (endp - path + 2 > PATH_MAX)
4366 {
4367 _rtld_error("Filename is too long: %s", path);
4368 return(-1);
4369 }
4370
4371 strncpy(bname, path, endp - path + 1);
4372 bname[endp - path + 1] = '\0';
4373 return (0);
4374 }
4375
4376 static int
rtld_dirname_abs(const char * path,char * base)4377 rtld_dirname_abs(const char *path, char *base)
4378 {
4379 char *last;
4380
4381 if (realpath(path, base) == NULL) {
4382 _rtld_error("realpath \"%s\" failed (%s)", path,
4383 rtld_strerror(errno));
4384 return (-1);
4385 }
4386 dbg("%s -> %s", path, base);
4387 last = strrchr(base, '/');
4388 if (last == NULL) {
4389 _rtld_error("non-abs result from realpath \"%s\"", path);
4390 return (-1);
4391 }
4392 if (last != base)
4393 *last = '\0';
4394 return (0);
4395 }
4396
4397 static void
linkmap_add(Obj_Entry * obj)4398 linkmap_add(Obj_Entry *obj)
4399 {
4400 struct link_map *l, *prev;
4401
4402 l = &obj->linkmap;
4403 l->l_name = obj->path;
4404 l->l_base = obj->mapbase;
4405 l->l_ld = obj->dynamic;
4406 l->l_addr = obj->relocbase;
4407
4408 if (r_debug.r_map == NULL) {
4409 r_debug.r_map = l;
4410 return;
4411 }
4412
4413 /*
4414 * Scan to the end of the list, but not past the entry for the
4415 * dynamic linker, which we want to keep at the very end.
4416 */
4417 for (prev = r_debug.r_map;
4418 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4419 prev = prev->l_next)
4420 ;
4421
4422 /* Link in the new entry. */
4423 l->l_prev = prev;
4424 l->l_next = prev->l_next;
4425 if (l->l_next != NULL)
4426 l->l_next->l_prev = l;
4427 prev->l_next = l;
4428 }
4429
4430 static void
linkmap_delete(Obj_Entry * obj)4431 linkmap_delete(Obj_Entry *obj)
4432 {
4433 struct link_map *l;
4434
4435 l = &obj->linkmap;
4436 if (l->l_prev == NULL) {
4437 if ((r_debug.r_map = l->l_next) != NULL)
4438 l->l_next->l_prev = NULL;
4439 return;
4440 }
4441
4442 if ((l->l_prev->l_next = l->l_next) != NULL)
4443 l->l_next->l_prev = l->l_prev;
4444 }
4445
4446 /*
4447 * Function for the debugger to set a breakpoint on to gain control.
4448 *
4449 * The two parameters allow the debugger to easily find and determine
4450 * what the runtime loader is doing and to whom it is doing it.
4451 *
4452 * When the loadhook trap is hit (r_debug_state, set at program
4453 * initialization), the arguments can be found on the stack:
4454 *
4455 * +8 struct link_map *m
4456 * +4 struct r_debug *rd
4457 * +0 RetAddr
4458 */
4459 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4460 r_debug_state(struct r_debug* rd __unused, struct link_map *m __unused)
4461 {
4462 /*
4463 * The following is a hack to force the compiler to emit calls to
4464 * this function, even when optimizing. If the function is empty,
4465 * the compiler is not obliged to emit any code for calls to it,
4466 * even when marked __noinline. However, gdb depends on those
4467 * calls being made.
4468 */
4469 __compiler_membar();
4470 }
4471
4472 /*
4473 * A function called after init routines have completed. This can be used to
4474 * break before a program's entry routine is called, and can be used when
4475 * main is not available in the symbol table.
4476 */
4477 void
_r_debug_postinit(struct link_map * m __unused)4478 _r_debug_postinit(struct link_map *m __unused)
4479 {
4480
4481 /* See r_debug_state(). */
4482 __compiler_membar();
4483 }
4484
4485 static void
release_object(Obj_Entry * obj)4486 release_object(Obj_Entry *obj)
4487 {
4488
4489 if (obj->holdcount > 0) {
4490 obj->unholdfree = true;
4491 return;
4492 }
4493 munmap(obj->mapbase, obj->mapsize);
4494 linkmap_delete(obj);
4495 obj_free(obj);
4496 }
4497
4498 /*
4499 * Get address of the pointer variable in the main program.
4500 * Prefer non-weak symbol over the weak one.
4501 */
4502 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4503 get_program_var_addr(const char *name, RtldLockState *lockstate)
4504 {
4505 SymLook req;
4506 DoneList donelist;
4507
4508 symlook_init(&req, name);
4509 req.lockstate = lockstate;
4510 donelist_init(&donelist);
4511 if (symlook_global(&req, &donelist) != 0)
4512 return (NULL);
4513 if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4514 return ((const void **)make_function_pointer(req.sym_out,
4515 req.defobj_out));
4516 else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4517 return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4518 else
4519 return ((const void **)(req.defobj_out->relocbase +
4520 req.sym_out->st_value));
4521 }
4522
4523 /*
4524 * Set a pointer variable in the main program to the given value. This
4525 * is used to set key variables such as "environ" before any of the
4526 * init functions are called.
4527 */
4528 static void
set_program_var(const char * name,const void * value)4529 set_program_var(const char *name, const void *value)
4530 {
4531 const void **addr;
4532
4533 if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4534 dbg("\"%s\": *%p <-- %p", name, addr, value);
4535 *addr = value;
4536 }
4537 }
4538
4539 /*
4540 * Search the global objects, including dependencies and main object,
4541 * for the given symbol.
4542 */
4543 static int
symlook_global(SymLook * req,DoneList * donelist)4544 symlook_global(SymLook *req, DoneList *donelist)
4545 {
4546 SymLook req1;
4547 const Objlist_Entry *elm;
4548 int res;
4549
4550 symlook_init_from_req(&req1, req);
4551
4552 /* Search all objects loaded at program start up. */
4553 if (req->defobj_out == NULL || (ld_dynamic_weak &&
4554 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4555 res = symlook_list(&req1, &list_main, donelist);
4556 if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4557 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4558 req->sym_out = req1.sym_out;
4559 req->defobj_out = req1.defobj_out;
4560 assert(req->defobj_out != NULL);
4561 }
4562 }
4563
4564 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4565 STAILQ_FOREACH(elm, &list_global, link) {
4566 if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4567 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4568 break;
4569 res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4570 if (res == 0 && (req->defobj_out == NULL ||
4571 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4572 req->sym_out = req1.sym_out;
4573 req->defobj_out = req1.defobj_out;
4574 assert(req->defobj_out != NULL);
4575 }
4576 }
4577
4578 return (req->sym_out != NULL ? 0 : ESRCH);
4579 }
4580
4581 /*
4582 * Given a symbol name in a referencing object, find the corresponding
4583 * definition of the symbol. Returns a pointer to the symbol, or NULL if
4584 * no definition was found. Returns a pointer to the Obj_Entry of the
4585 * defining object via the reference parameter DEFOBJ_OUT.
4586 */
4587 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4588 symlook_default(SymLook *req, const Obj_Entry *refobj)
4589 {
4590 DoneList donelist;
4591 const Objlist_Entry *elm;
4592 SymLook req1;
4593 int res;
4594
4595 donelist_init(&donelist);
4596 symlook_init_from_req(&req1, req);
4597
4598 /*
4599 * Look first in the referencing object if linked symbolically,
4600 * and similarly handle protected symbols.
4601 */
4602 res = symlook_obj(&req1, refobj);
4603 if (res == 0 && (refobj->symbolic ||
4604 ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4605 req->sym_out = req1.sym_out;
4606 req->defobj_out = req1.defobj_out;
4607 assert(req->defobj_out != NULL);
4608 }
4609 if (refobj->symbolic || req->defobj_out != NULL)
4610 donelist_check(&donelist, refobj);
4611
4612 symlook_global(req, &donelist);
4613
4614 /* Search all dlopened DAGs containing the referencing object. */
4615 STAILQ_FOREACH(elm, &refobj->dldags, link) {
4616 if (req->sym_out != NULL && (!ld_dynamic_weak ||
4617 ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4618 break;
4619 res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4620 if (res == 0 && (req->sym_out == NULL ||
4621 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4622 req->sym_out = req1.sym_out;
4623 req->defobj_out = req1.defobj_out;
4624 assert(req->defobj_out != NULL);
4625 }
4626 }
4627
4628 /*
4629 * Search the dynamic linker itself, and possibly resolve the
4630 * symbol from there. This is how the application links to
4631 * dynamic linker services such as dlopen.
4632 */
4633 if (req->sym_out == NULL ||
4634 ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4635 res = symlook_obj(&req1, &obj_rtld);
4636 if (res == 0) {
4637 req->sym_out = req1.sym_out;
4638 req->defobj_out = req1.defobj_out;
4639 assert(req->defobj_out != NULL);
4640 }
4641 }
4642
4643 return (req->sym_out != NULL ? 0 : ESRCH);
4644 }
4645
4646 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4647 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4648 {
4649 const Elf_Sym *def;
4650 const Obj_Entry *defobj;
4651 const Objlist_Entry *elm;
4652 SymLook req1;
4653 int res;
4654
4655 def = NULL;
4656 defobj = NULL;
4657 STAILQ_FOREACH(elm, objlist, link) {
4658 if (donelist_check(dlp, elm->obj))
4659 continue;
4660 symlook_init_from_req(&req1, req);
4661 if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4662 if (def == NULL || (ld_dynamic_weak &&
4663 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4664 def = req1.sym_out;
4665 defobj = req1.defobj_out;
4666 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4667 break;
4668 }
4669 }
4670 }
4671 if (def != NULL) {
4672 req->sym_out = def;
4673 req->defobj_out = defobj;
4674 return (0);
4675 }
4676 return (ESRCH);
4677 }
4678
4679 /*
4680 * Search the chain of DAGS cointed to by the given Needed_Entry
4681 * for a symbol of the given name. Each DAG is scanned completely
4682 * before advancing to the next one. Returns a pointer to the symbol,
4683 * or NULL if no definition was found.
4684 */
4685 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4686 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4687 {
4688 const Elf_Sym *def;
4689 const Needed_Entry *n;
4690 const Obj_Entry *defobj;
4691 SymLook req1;
4692 int res;
4693
4694 def = NULL;
4695 defobj = NULL;
4696 symlook_init_from_req(&req1, req);
4697 for (n = needed; n != NULL; n = n->next) {
4698 if (n->obj == NULL ||
4699 (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4700 continue;
4701 if (def == NULL || (ld_dynamic_weak &&
4702 ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4703 def = req1.sym_out;
4704 defobj = req1.defobj_out;
4705 if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4706 break;
4707 }
4708 }
4709 if (def != NULL) {
4710 req->sym_out = def;
4711 req->defobj_out = defobj;
4712 return (0);
4713 }
4714 return (ESRCH);
4715 }
4716
4717 /*
4718 * Search the symbol table of a single shared object for a symbol of
4719 * the given name and version, if requested. Returns a pointer to the
4720 * symbol, or NULL if no definition was found. If the object is
4721 * filter, return filtered symbol from filtee.
4722 *
4723 * The symbol's hash value is passed in for efficiency reasons; that
4724 * eliminates many recomputations of the hash value.
4725 */
4726 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4727 symlook_obj(SymLook *req, const Obj_Entry *obj)
4728 {
4729 DoneList donelist;
4730 SymLook req1;
4731 int flags, res, mres;
4732
4733 /*
4734 * If there is at least one valid hash at this point, we prefer to
4735 * use the faster GNU version if available.
4736 */
4737 if (obj->valid_hash_gnu)
4738 mres = symlook_obj1_gnu(req, obj);
4739 else if (obj->valid_hash_sysv)
4740 mres = symlook_obj1_sysv(req, obj);
4741 else
4742 return (EINVAL);
4743
4744 if (mres == 0) {
4745 if (obj->needed_filtees != NULL) {
4746 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4747 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4748 donelist_init(&donelist);
4749 symlook_init_from_req(&req1, req);
4750 res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4751 if (res == 0) {
4752 req->sym_out = req1.sym_out;
4753 req->defobj_out = req1.defobj_out;
4754 }
4755 return (res);
4756 }
4757 if (obj->needed_aux_filtees != NULL) {
4758 flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4759 load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4760 donelist_init(&donelist);
4761 symlook_init_from_req(&req1, req);
4762 res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4763 if (res == 0) {
4764 req->sym_out = req1.sym_out;
4765 req->defobj_out = req1.defobj_out;
4766 return (res);
4767 }
4768 }
4769 }
4770 return (mres);
4771 }
4772
4773 /* Symbol match routine common to both hash functions */
4774 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4775 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4776 const unsigned long symnum)
4777 {
4778 Elf_Versym verndx;
4779 const Elf_Sym *symp;
4780 const char *strp;
4781
4782 symp = obj->symtab + symnum;
4783 strp = obj->strtab + symp->st_name;
4784
4785 switch (ELF_ST_TYPE(symp->st_info)) {
4786 case STT_FUNC:
4787 case STT_NOTYPE:
4788 case STT_OBJECT:
4789 case STT_COMMON:
4790 case STT_GNU_IFUNC:
4791 if (symp->st_value == 0)
4792 return (false);
4793 /* fallthrough */
4794 case STT_TLS:
4795 if (symp->st_shndx != SHN_UNDEF)
4796 break;
4797 #ifndef __mips__
4798 else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4799 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4800 break;
4801 #endif
4802 /* fallthrough */
4803 default:
4804 return (false);
4805 }
4806 if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4807 return (false);
4808
4809 if (req->ventry == NULL) {
4810 if (obj->versyms != NULL) {
4811 verndx = VER_NDX(obj->versyms[symnum]);
4812 if (verndx > obj->vernum) {
4813 _rtld_error(
4814 "%s: symbol %s references wrong version %d",
4815 obj->path, obj->strtab + symnum, verndx);
4816 return (false);
4817 }
4818 /*
4819 * If we are not called from dlsym (i.e. this
4820 * is a normal relocation from unversioned
4821 * binary), accept the symbol immediately if
4822 * it happens to have first version after this
4823 * shared object became versioned. Otherwise,
4824 * if symbol is versioned and not hidden,
4825 * remember it. If it is the only symbol with
4826 * this name exported by the shared object, it
4827 * will be returned as a match by the calling
4828 * function. If symbol is global (verndx < 2)
4829 * accept it unconditionally.
4830 */
4831 if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4832 verndx == VER_NDX_GIVEN) {
4833 result->sym_out = symp;
4834 return (true);
4835 }
4836 else if (verndx >= VER_NDX_GIVEN) {
4837 if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4838 == 0) {
4839 if (result->vsymp == NULL)
4840 result->vsymp = symp;
4841 result->vcount++;
4842 }
4843 return (false);
4844 }
4845 }
4846 result->sym_out = symp;
4847 return (true);
4848 }
4849 if (obj->versyms == NULL) {
4850 if (object_match_name(obj, req->ventry->name)) {
4851 _rtld_error("%s: object %s should provide version %s "
4852 "for symbol %s", obj_rtld.path, obj->path,
4853 req->ventry->name, obj->strtab + symnum);
4854 return (false);
4855 }
4856 } else {
4857 verndx = VER_NDX(obj->versyms[symnum]);
4858 if (verndx > obj->vernum) {
4859 _rtld_error("%s: symbol %s references wrong version %d",
4860 obj->path, obj->strtab + symnum, verndx);
4861 return (false);
4862 }
4863 if (obj->vertab[verndx].hash != req->ventry->hash ||
4864 strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4865 /*
4866 * Version does not match. Look if this is a
4867 * global symbol and if it is not hidden. If
4868 * global symbol (verndx < 2) is available,
4869 * use it. Do not return symbol if we are
4870 * called by dlvsym, because dlvsym looks for
4871 * a specific version and default one is not
4872 * what dlvsym wants.
4873 */
4874 if ((req->flags & SYMLOOK_DLSYM) ||
4875 (verndx >= VER_NDX_GIVEN) ||
4876 (obj->versyms[symnum] & VER_NDX_HIDDEN))
4877 return (false);
4878 }
4879 }
4880 result->sym_out = symp;
4881 return (true);
4882 }
4883
4884 /*
4885 * Search for symbol using SysV hash function.
4886 * obj->buckets is known not to be NULL at this point; the test for this was
4887 * performed with the obj->valid_hash_sysv assignment.
4888 */
4889 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4890 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4891 {
4892 unsigned long symnum;
4893 Sym_Match_Result matchres;
4894
4895 matchres.sym_out = NULL;
4896 matchres.vsymp = NULL;
4897 matchres.vcount = 0;
4898
4899 for (symnum = obj->buckets[req->hash % obj->nbuckets];
4900 symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4901 if (symnum >= obj->nchains)
4902 return (ESRCH); /* Bad object */
4903
4904 if (matched_symbol(req, obj, &matchres, symnum)) {
4905 req->sym_out = matchres.sym_out;
4906 req->defobj_out = obj;
4907 return (0);
4908 }
4909 }
4910 if (matchres.vcount == 1) {
4911 req->sym_out = matchres.vsymp;
4912 req->defobj_out = obj;
4913 return (0);
4914 }
4915 return (ESRCH);
4916 }
4917
4918 /* Search for symbol using GNU hash function */
4919 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4920 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4921 {
4922 Elf_Addr bloom_word;
4923 const Elf32_Word *hashval;
4924 Elf32_Word bucket;
4925 Sym_Match_Result matchres;
4926 unsigned int h1, h2;
4927 unsigned long symnum;
4928
4929 matchres.sym_out = NULL;
4930 matchres.vsymp = NULL;
4931 matchres.vcount = 0;
4932
4933 /* Pick right bitmask word from Bloom filter array */
4934 bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4935 obj->maskwords_bm_gnu];
4936
4937 /* Calculate modulus word size of gnu hash and its derivative */
4938 h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4939 h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4940
4941 /* Filter out the "definitely not in set" queries */
4942 if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4943 return (ESRCH);
4944
4945 /* Locate hash chain and corresponding value element*/
4946 bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4947 if (bucket == 0)
4948 return (ESRCH);
4949 hashval = &obj->chain_zero_gnu[bucket];
4950 do {
4951 if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4952 symnum = hashval - obj->chain_zero_gnu;
4953 if (matched_symbol(req, obj, &matchres, symnum)) {
4954 req->sym_out = matchres.sym_out;
4955 req->defobj_out = obj;
4956 return (0);
4957 }
4958 }
4959 } while ((*hashval++ & 1) == 0);
4960 if (matchres.vcount == 1) {
4961 req->sym_out = matchres.vsymp;
4962 req->defobj_out = obj;
4963 return (0);
4964 }
4965 return (ESRCH);
4966 }
4967
4968 static void
trace_loaded_objects(Obj_Entry * obj)4969 trace_loaded_objects(Obj_Entry *obj)
4970 {
4971 const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4972 int c;
4973
4974 if ((main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME)) ==
4975 NULL)
4976 main_local = "";
4977
4978 if ((fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1)) == NULL)
4979 fmt1 = "\t%o => %p (%x)\n";
4980
4981 if ((fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2)) == NULL)
4982 fmt2 = "\t%o (%x)\n";
4983
4984 list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL);
4985
4986 for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4987 Needed_Entry *needed;
4988 const char *name, *path;
4989 bool is_lib;
4990
4991 if (obj->marker)
4992 continue;
4993 if (list_containers && obj->needed != NULL)
4994 rtld_printf("%s:\n", obj->path);
4995 for (needed = obj->needed; needed; needed = needed->next) {
4996 if (needed->obj != NULL) {
4997 if (needed->obj->traced && !list_containers)
4998 continue;
4999 needed->obj->traced = true;
5000 path = needed->obj->path;
5001 } else
5002 path = "not found";
5003
5004 name = obj->strtab + needed->name;
5005 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
5006
5007 fmt = is_lib ? fmt1 : fmt2;
5008 while ((c = *fmt++) != '\0') {
5009 switch (c) {
5010 default:
5011 rtld_putchar(c);
5012 continue;
5013 case '\\':
5014 switch (c = *fmt) {
5015 case '\0':
5016 continue;
5017 case 'n':
5018 rtld_putchar('\n');
5019 break;
5020 case 't':
5021 rtld_putchar('\t');
5022 break;
5023 }
5024 break;
5025 case '%':
5026 switch (c = *fmt) {
5027 case '\0':
5028 continue;
5029 case '%':
5030 default:
5031 rtld_putchar(c);
5032 break;
5033 case 'A':
5034 rtld_putstr(main_local);
5035 break;
5036 case 'a':
5037 rtld_putstr(obj_main->path);
5038 break;
5039 case 'o':
5040 rtld_putstr(name);
5041 break;
5042 #if 0
5043 case 'm':
5044 rtld_printf("%d", sodp->sod_major);
5045 break;
5046 case 'n':
5047 rtld_printf("%d", sodp->sod_minor);
5048 break;
5049 #endif
5050 case 'p':
5051 rtld_putstr(path);
5052 break;
5053 case 'x':
5054 rtld_printf("%p", needed->obj ? needed->obj->mapbase :
5055 0);
5056 break;
5057 }
5058 break;
5059 }
5060 ++fmt;
5061 }
5062 }
5063 }
5064 }
5065
5066 /*
5067 * Unload a dlopened object and its dependencies from memory and from
5068 * our data structures. It is assumed that the DAG rooted in the
5069 * object has already been unreferenced, and that the object has a
5070 * reference count of 0.
5071 */
5072 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5073 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5074 {
5075 Obj_Entry marker, *obj, *next;
5076
5077 assert(root->refcount == 0);
5078
5079 /*
5080 * Pass over the DAG removing unreferenced objects from
5081 * appropriate lists.
5082 */
5083 unlink_object(root);
5084
5085 /* Unmap all objects that are no longer referenced. */
5086 for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5087 next = TAILQ_NEXT(obj, next);
5088 if (obj->marker || obj->refcount != 0)
5089 continue;
5090 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5091 obj->mapsize, 0, obj->path);
5092 dbg("unloading \"%s\"", obj->path);
5093 /*
5094 * Unlink the object now to prevent new references from
5095 * being acquired while the bind lock is dropped in
5096 * recursive dlclose() invocations.
5097 */
5098 TAILQ_REMOVE(&obj_list, obj, next);
5099 obj_count--;
5100
5101 if (obj->filtees_loaded) {
5102 if (next != NULL) {
5103 init_marker(&marker);
5104 TAILQ_INSERT_BEFORE(next, &marker, next);
5105 unload_filtees(obj, lockstate);
5106 next = TAILQ_NEXT(&marker, next);
5107 TAILQ_REMOVE(&obj_list, &marker, next);
5108 } else
5109 unload_filtees(obj, lockstate);
5110 }
5111 release_object(obj);
5112 }
5113 }
5114
5115 static void
unlink_object(Obj_Entry * root)5116 unlink_object(Obj_Entry *root)
5117 {
5118 Objlist_Entry *elm;
5119
5120 if (root->refcount == 0) {
5121 /* Remove the object from the RTLD_GLOBAL list. */
5122 objlist_remove(&list_global, root);
5123
5124 /* Remove the object from all objects' DAG lists. */
5125 STAILQ_FOREACH(elm, &root->dagmembers, link) {
5126 objlist_remove(&elm->obj->dldags, root);
5127 if (elm->obj != root)
5128 unlink_object(elm->obj);
5129 }
5130 }
5131 }
5132
5133 static void
ref_dag(Obj_Entry * root)5134 ref_dag(Obj_Entry *root)
5135 {
5136 Objlist_Entry *elm;
5137
5138 assert(root->dag_inited);
5139 STAILQ_FOREACH(elm, &root->dagmembers, link)
5140 elm->obj->refcount++;
5141 }
5142
5143 static void
unref_dag(Obj_Entry * root)5144 unref_dag(Obj_Entry *root)
5145 {
5146 Objlist_Entry *elm;
5147
5148 assert(root->dag_inited);
5149 STAILQ_FOREACH(elm, &root->dagmembers, link)
5150 elm->obj->refcount--;
5151 }
5152
5153 /*
5154 * Common code for MD __tls_get_addr().
5155 */
5156 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5157 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5158 {
5159 Elf_Addr *newdtv, *dtv;
5160 RtldLockState lockstate;
5161 int to_copy;
5162
5163 dtv = *dtvp;
5164 /* Check dtv generation in case new modules have arrived */
5165 if (dtv[0] != tls_dtv_generation) {
5166 if (!locked)
5167 wlock_acquire(rtld_bind_lock, &lockstate);
5168 newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5169 to_copy = dtv[1];
5170 if (to_copy > tls_max_index)
5171 to_copy = tls_max_index;
5172 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5173 newdtv[0] = tls_dtv_generation;
5174 newdtv[1] = tls_max_index;
5175 free(dtv);
5176 if (!locked)
5177 lock_release(rtld_bind_lock, &lockstate);
5178 dtv = *dtvp = newdtv;
5179 }
5180
5181 /* Dynamically allocate module TLS if necessary */
5182 if (dtv[index + 1] == 0) {
5183 /* Signal safe, wlock will block out signals. */
5184 if (!locked)
5185 wlock_acquire(rtld_bind_lock, &lockstate);
5186 if (!dtv[index + 1])
5187 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5188 if (!locked)
5189 lock_release(rtld_bind_lock, &lockstate);
5190 }
5191 return ((void *)(dtv[index + 1] + offset));
5192 }
5193
5194 void *
tls_get_addr_common(Elf_Addr ** dtvp,int index,size_t offset)5195 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
5196 {
5197 Elf_Addr *dtv;
5198
5199 dtv = *dtvp;
5200 /* Check dtv generation in case new modules have arrived */
5201 if (__predict_true(dtv[0] == tls_dtv_generation &&
5202 dtv[index + 1] != 0))
5203 return ((void *)(dtv[index + 1] + offset));
5204 return (tls_get_addr_slow(dtvp, index, offset, false));
5205 }
5206
5207 #ifdef TLS_VARIANT_I
5208
5209 /*
5210 * Return pointer to allocated TLS block
5211 */
5212 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5213 get_tls_block_ptr(void *tcb, size_t tcbsize)
5214 {
5215 size_t extra_size, post_size, pre_size, tls_block_size;
5216 size_t tls_init_align;
5217
5218 tls_init_align = MAX(obj_main->tlsalign, 1);
5219
5220 /* Compute fragments sizes. */
5221 extra_size = tcbsize - TLS_TCB_SIZE;
5222 post_size = calculate_tls_post_size(tls_init_align);
5223 tls_block_size = tcbsize + post_size;
5224 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5225
5226 return ((char *)tcb - pre_size - extra_size);
5227 }
5228
5229 /*
5230 * Allocate Static TLS using the Variant I method.
5231 *
5232 * For details on the layout, see lib/libc/gen/tls.c.
5233 *
5234 * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5235 * it is based on tls_last_offset, and TLS offsets here are really TCB
5236 * offsets, whereas libc's tls_static_space is just the executable's static
5237 * TLS segment.
5238 */
5239 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5240 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5241 {
5242 Obj_Entry *obj;
5243 char *tls_block;
5244 Elf_Addr *dtv, **tcb;
5245 Elf_Addr addr;
5246 Elf_Addr i;
5247 size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5248 size_t tls_init_align, tls_init_offset;
5249
5250 if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5251 return (oldtcb);
5252
5253 assert(tcbsize >= TLS_TCB_SIZE);
5254 maxalign = MAX(tcbalign, tls_static_max_align);
5255 tls_init_align = MAX(obj_main->tlsalign, 1);
5256
5257 /* Compute fragmets sizes. */
5258 extra_size = tcbsize - TLS_TCB_SIZE;
5259 post_size = calculate_tls_post_size(tls_init_align);
5260 tls_block_size = tcbsize + post_size;
5261 pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5262 tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5263
5264 /* Allocate whole TLS block */
5265 tls_block = malloc_aligned(tls_block_size, maxalign, 0);
5266 tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5267
5268 if (oldtcb != NULL) {
5269 memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5270 tls_static_space);
5271 free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
5272
5273 /* Adjust the DTV. */
5274 dtv = tcb[0];
5275 for (i = 0; i < dtv[1]; i++) {
5276 if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5277 dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5278 dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5279 }
5280 }
5281 } else {
5282 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5283 tcb[0] = dtv;
5284 dtv[0] = tls_dtv_generation;
5285 dtv[1] = tls_max_index;
5286
5287 for (obj = globallist_curr(objs); obj != NULL;
5288 obj = globallist_next(obj)) {
5289 if (obj->tlsoffset == 0)
5290 continue;
5291 tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5292 addr = (Elf_Addr)tcb + obj->tlsoffset;
5293 if (tls_init_offset > 0)
5294 memset((void *)addr, 0, tls_init_offset);
5295 if (obj->tlsinitsize > 0) {
5296 memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5297 obj->tlsinitsize);
5298 }
5299 if (obj->tlssize > obj->tlsinitsize) {
5300 memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5301 0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5302 }
5303 dtv[obj->tlsindex + 1] = addr;
5304 }
5305 }
5306
5307 return (tcb);
5308 }
5309
5310 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5311 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5312 {
5313 Elf_Addr *dtv;
5314 Elf_Addr tlsstart, tlsend;
5315 size_t post_size;
5316 size_t dtvsize, i, tls_init_align;
5317
5318 assert(tcbsize >= TLS_TCB_SIZE);
5319 tls_init_align = MAX(obj_main->tlsalign, 1);
5320
5321 /* Compute fragments sizes. */
5322 post_size = calculate_tls_post_size(tls_init_align);
5323
5324 tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5325 tlsend = (Elf_Addr)tcb + tls_static_space;
5326
5327 dtv = *(Elf_Addr **)tcb;
5328 dtvsize = dtv[1];
5329 for (i = 0; i < dtvsize; i++) {
5330 if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5331 free((void*)dtv[i+2]);
5332 }
5333 }
5334 free(dtv);
5335 free_aligned(get_tls_block_ptr(tcb, tcbsize));
5336 }
5337
5338 #endif /* TLS_VARIANT_I */
5339
5340 #ifdef TLS_VARIANT_II
5341
5342 /*
5343 * Allocate Static TLS using the Variant II method.
5344 */
5345 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5346 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5347 {
5348 Obj_Entry *obj;
5349 size_t size, ralign;
5350 char *tls;
5351 Elf_Addr *dtv, *olddtv;
5352 Elf_Addr segbase, oldsegbase, addr;
5353 size_t i;
5354
5355 ralign = tcbalign;
5356 if (tls_static_max_align > ralign)
5357 ralign = tls_static_max_align;
5358 size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5359
5360 assert(tcbsize >= 2*sizeof(Elf_Addr));
5361 tls = malloc_aligned(size, ralign, 0 /* XXX */);
5362 dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5363
5364 segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5365 ((Elf_Addr *)segbase)[0] = segbase;
5366 ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5367
5368 dtv[0] = tls_dtv_generation;
5369 dtv[1] = tls_max_index;
5370
5371 if (oldtls) {
5372 /*
5373 * Copy the static TLS block over whole.
5374 */
5375 oldsegbase = (Elf_Addr) oldtls;
5376 memcpy((void *)(segbase - tls_static_space),
5377 (const void *)(oldsegbase - tls_static_space),
5378 tls_static_space);
5379
5380 /*
5381 * If any dynamic TLS blocks have been created tls_get_addr(),
5382 * move them over.
5383 */
5384 olddtv = ((Elf_Addr **)oldsegbase)[1];
5385 for (i = 0; i < olddtv[1]; i++) {
5386 if (olddtv[i + 2] < oldsegbase - size ||
5387 olddtv[i + 2] > oldsegbase) {
5388 dtv[i + 2] = olddtv[i + 2];
5389 olddtv[i + 2] = 0;
5390 }
5391 }
5392
5393 /*
5394 * We assume that this block was the one we created with
5395 * allocate_initial_tls().
5396 */
5397 free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5398 } else {
5399 for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5400 if (obj->marker || obj->tlsoffset == 0)
5401 continue;
5402 addr = segbase - obj->tlsoffset;
5403 memset((void *)(addr + obj->tlsinitsize),
5404 0, obj->tlssize - obj->tlsinitsize);
5405 if (obj->tlsinit) {
5406 memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5407 obj->static_tls_copied = true;
5408 }
5409 dtv[obj->tlsindex + 1] = addr;
5410 }
5411 }
5412
5413 return ((void *)segbase);
5414 }
5415
5416 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5417 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign)
5418 {
5419 Elf_Addr* dtv;
5420 size_t size, ralign;
5421 int dtvsize, i;
5422 Elf_Addr tlsstart, tlsend;
5423
5424 /*
5425 * Figure out the size of the initial TLS block so that we can
5426 * find stuff which ___tls_get_addr() allocated dynamically.
5427 */
5428 ralign = tcbalign;
5429 if (tls_static_max_align > ralign)
5430 ralign = tls_static_max_align;
5431 size = roundup(tls_static_space, ralign);
5432
5433 dtv = ((Elf_Addr **)tls)[1];
5434 dtvsize = dtv[1];
5435 tlsend = (Elf_Addr)tls;
5436 tlsstart = tlsend - size;
5437 for (i = 0; i < dtvsize; i++) {
5438 if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5439 dtv[i + 2] > tlsend)) {
5440 free_aligned((void *)dtv[i + 2]);
5441 }
5442 }
5443
5444 free_aligned((void *)tlsstart);
5445 free((void *)dtv);
5446 }
5447
5448 #endif /* TLS_VARIANT_II */
5449
5450 /*
5451 * Allocate TLS block for module with given index.
5452 */
5453 void *
allocate_module_tls(int index)5454 allocate_module_tls(int index)
5455 {
5456 Obj_Entry *obj;
5457 char *p;
5458
5459 TAILQ_FOREACH(obj, &obj_list, next) {
5460 if (obj->marker)
5461 continue;
5462 if (obj->tlsindex == index)
5463 break;
5464 }
5465 if (obj == NULL) {
5466 _rtld_error("Can't find module with TLS index %d", index);
5467 rtld_die();
5468 }
5469
5470 p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5471 memcpy(p, obj->tlsinit, obj->tlsinitsize);
5472 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5473 return (p);
5474 }
5475
5476 bool
allocate_tls_offset(Obj_Entry * obj)5477 allocate_tls_offset(Obj_Entry *obj)
5478 {
5479 size_t off;
5480
5481 if (obj->tls_done)
5482 return (true);
5483
5484 if (obj->tlssize == 0) {
5485 obj->tls_done = true;
5486 return (true);
5487 }
5488
5489 if (tls_last_offset == 0)
5490 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5491 obj->tlspoffset);
5492 else
5493 off = calculate_tls_offset(tls_last_offset, tls_last_size,
5494 obj->tlssize, obj->tlsalign, obj->tlspoffset);
5495
5496 obj->tlsoffset = off;
5497 #ifdef TLS_VARIANT_I
5498 off += obj->tlssize;
5499 #endif
5500
5501 /*
5502 * If we have already fixed the size of the static TLS block, we
5503 * must stay within that size. When allocating the static TLS, we
5504 * leave a small amount of space spare to be used for dynamically
5505 * loading modules which use static TLS.
5506 */
5507 if (tls_static_space != 0) {
5508 if (off > tls_static_space)
5509 return (false);
5510 } else if (obj->tlsalign > tls_static_max_align) {
5511 tls_static_max_align = obj->tlsalign;
5512 }
5513
5514 tls_last_offset = off;
5515 tls_last_size = obj->tlssize;
5516 obj->tls_done = true;
5517
5518 return (true);
5519 }
5520
5521 void
free_tls_offset(Obj_Entry * obj)5522 free_tls_offset(Obj_Entry *obj)
5523 {
5524
5525 /*
5526 * If we were the last thing to allocate out of the static TLS
5527 * block, we give our space back to the 'allocator'. This is a
5528 * simplistic workaround to allow libGL.so.1 to be loaded and
5529 * unloaded multiple times.
5530 */
5531 size_t off = obj->tlsoffset;
5532 #ifdef TLS_VARIANT_I
5533 off += obj->tlssize;
5534 #endif
5535 if (off == tls_last_offset) {
5536 tls_last_offset -= obj->tlssize;
5537 tls_last_size = 0;
5538 }
5539 }
5540
5541 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5542 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5543 {
5544 void *ret;
5545 RtldLockState lockstate;
5546
5547 wlock_acquire(rtld_bind_lock, &lockstate);
5548 ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5549 tcbsize, tcbalign);
5550 lock_release(rtld_bind_lock, &lockstate);
5551 return (ret);
5552 }
5553
5554 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5555 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5556 {
5557 RtldLockState lockstate;
5558
5559 wlock_acquire(rtld_bind_lock, &lockstate);
5560 free_tls(tcb, tcbsize, tcbalign);
5561 lock_release(rtld_bind_lock, &lockstate);
5562 }
5563
5564 static void
object_add_name(Obj_Entry * obj,const char * name)5565 object_add_name(Obj_Entry *obj, const char *name)
5566 {
5567 Name_Entry *entry;
5568 size_t len;
5569
5570 len = strlen(name);
5571 entry = malloc(sizeof(Name_Entry) + len);
5572
5573 if (entry != NULL) {
5574 strcpy(entry->name, name);
5575 STAILQ_INSERT_TAIL(&obj->names, entry, link);
5576 }
5577 }
5578
5579 static int
object_match_name(const Obj_Entry * obj,const char * name)5580 object_match_name(const Obj_Entry *obj, const char *name)
5581 {
5582 Name_Entry *entry;
5583
5584 STAILQ_FOREACH(entry, &obj->names, link) {
5585 if (strcmp(name, entry->name) == 0)
5586 return (1);
5587 }
5588 return (0);
5589 }
5590
5591 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5592 locate_dependency(const Obj_Entry *obj, const char *name)
5593 {
5594 const Objlist_Entry *entry;
5595 const Needed_Entry *needed;
5596
5597 STAILQ_FOREACH(entry, &list_main, link) {
5598 if (object_match_name(entry->obj, name))
5599 return (entry->obj);
5600 }
5601
5602 for (needed = obj->needed; needed != NULL; needed = needed->next) {
5603 if (strcmp(obj->strtab + needed->name, name) == 0 ||
5604 (needed->obj != NULL && object_match_name(needed->obj, name))) {
5605 /*
5606 * If there is DT_NEEDED for the name we are looking for,
5607 * we are all set. Note that object might not be found if
5608 * dependency was not loaded yet, so the function can
5609 * return NULL here. This is expected and handled
5610 * properly by the caller.
5611 */
5612 return (needed->obj);
5613 }
5614 }
5615 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5616 obj->path, name);
5617 rtld_die();
5618 }
5619
5620 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5621 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5622 const Elf_Vernaux *vna)
5623 {
5624 const Elf_Verdef *vd;
5625 const char *vername;
5626
5627 vername = refobj->strtab + vna->vna_name;
5628 vd = depobj->verdef;
5629 if (vd == NULL) {
5630 _rtld_error("%s: version %s required by %s not defined",
5631 depobj->path, vername, refobj->path);
5632 return (-1);
5633 }
5634 for (;;) {
5635 if (vd->vd_version != VER_DEF_CURRENT) {
5636 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5637 depobj->path, vd->vd_version);
5638 return (-1);
5639 }
5640 if (vna->vna_hash == vd->vd_hash) {
5641 const Elf_Verdaux *aux = (const Elf_Verdaux *)
5642 ((const char *)vd + vd->vd_aux);
5643 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5644 return (0);
5645 }
5646 if (vd->vd_next == 0)
5647 break;
5648 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5649 }
5650 if (vna->vna_flags & VER_FLG_WEAK)
5651 return (0);
5652 _rtld_error("%s: version %s required by %s not found",
5653 depobj->path, vername, refobj->path);
5654 return (-1);
5655 }
5656
5657 static int
rtld_verify_object_versions(Obj_Entry * obj)5658 rtld_verify_object_versions(Obj_Entry *obj)
5659 {
5660 const Elf_Verneed *vn;
5661 const Elf_Verdef *vd;
5662 const Elf_Verdaux *vda;
5663 const Elf_Vernaux *vna;
5664 const Obj_Entry *depobj;
5665 int maxvernum, vernum;
5666
5667 if (obj->ver_checked)
5668 return (0);
5669 obj->ver_checked = true;
5670
5671 maxvernum = 0;
5672 /*
5673 * Walk over defined and required version records and figure out
5674 * max index used by any of them. Do very basic sanity checking
5675 * while there.
5676 */
5677 vn = obj->verneed;
5678 while (vn != NULL) {
5679 if (vn->vn_version != VER_NEED_CURRENT) {
5680 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5681 obj->path, vn->vn_version);
5682 return (-1);
5683 }
5684 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5685 for (;;) {
5686 vernum = VER_NEED_IDX(vna->vna_other);
5687 if (vernum > maxvernum)
5688 maxvernum = vernum;
5689 if (vna->vna_next == 0)
5690 break;
5691 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5692 }
5693 if (vn->vn_next == 0)
5694 break;
5695 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5696 }
5697
5698 vd = obj->verdef;
5699 while (vd != NULL) {
5700 if (vd->vd_version != VER_DEF_CURRENT) {
5701 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5702 obj->path, vd->vd_version);
5703 return (-1);
5704 }
5705 vernum = VER_DEF_IDX(vd->vd_ndx);
5706 if (vernum > maxvernum)
5707 maxvernum = vernum;
5708 if (vd->vd_next == 0)
5709 break;
5710 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5711 }
5712
5713 if (maxvernum == 0)
5714 return (0);
5715
5716 /*
5717 * Store version information in array indexable by version index.
5718 * Verify that object version requirements are satisfied along the
5719 * way.
5720 */
5721 obj->vernum = maxvernum + 1;
5722 obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5723
5724 vd = obj->verdef;
5725 while (vd != NULL) {
5726 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5727 vernum = VER_DEF_IDX(vd->vd_ndx);
5728 assert(vernum <= maxvernum);
5729 vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5730 obj->vertab[vernum].hash = vd->vd_hash;
5731 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5732 obj->vertab[vernum].file = NULL;
5733 obj->vertab[vernum].flags = 0;
5734 }
5735 if (vd->vd_next == 0)
5736 break;
5737 vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5738 }
5739
5740 vn = obj->verneed;
5741 while (vn != NULL) {
5742 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5743 if (depobj == NULL)
5744 return (-1);
5745 vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5746 for (;;) {
5747 if (check_object_provided_version(obj, depobj, vna))
5748 return (-1);
5749 vernum = VER_NEED_IDX(vna->vna_other);
5750 assert(vernum <= maxvernum);
5751 obj->vertab[vernum].hash = vna->vna_hash;
5752 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5753 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5754 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5755 VER_INFO_HIDDEN : 0;
5756 if (vna->vna_next == 0)
5757 break;
5758 vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5759 }
5760 if (vn->vn_next == 0)
5761 break;
5762 vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5763 }
5764 return (0);
5765 }
5766
5767 static int
rtld_verify_versions(const Objlist * objlist)5768 rtld_verify_versions(const Objlist *objlist)
5769 {
5770 Objlist_Entry *entry;
5771 int rc;
5772
5773 rc = 0;
5774 STAILQ_FOREACH(entry, objlist, link) {
5775 /*
5776 * Skip dummy objects or objects that have their version requirements
5777 * already checked.
5778 */
5779 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5780 continue;
5781 if (rtld_verify_object_versions(entry->obj) == -1) {
5782 rc = -1;
5783 if (ld_tracing == NULL)
5784 break;
5785 }
5786 }
5787 if (rc == 0 || ld_tracing != NULL)
5788 rc = rtld_verify_object_versions(&obj_rtld);
5789 return (rc);
5790 }
5791
5792 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5793 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5794 {
5795 Elf_Versym vernum;
5796
5797 if (obj->vertab) {
5798 vernum = VER_NDX(obj->versyms[symnum]);
5799 if (vernum >= obj->vernum) {
5800 _rtld_error("%s: symbol %s has wrong verneed value %d",
5801 obj->path, obj->strtab + symnum, vernum);
5802 } else if (obj->vertab[vernum].hash != 0) {
5803 return (&obj->vertab[vernum]);
5804 }
5805 }
5806 return (NULL);
5807 }
5808
5809 int
_rtld_get_stack_prot(void)5810 _rtld_get_stack_prot(void)
5811 {
5812
5813 return (stack_prot);
5814 }
5815
5816 int
_rtld_is_dlopened(void * arg)5817 _rtld_is_dlopened(void *arg)
5818 {
5819 Obj_Entry *obj;
5820 RtldLockState lockstate;
5821 int res;
5822
5823 rlock_acquire(rtld_bind_lock, &lockstate);
5824 obj = dlcheck(arg);
5825 if (obj == NULL)
5826 obj = obj_from_addr(arg);
5827 if (obj == NULL) {
5828 _rtld_error("No shared object contains address");
5829 lock_release(rtld_bind_lock, &lockstate);
5830 return (-1);
5831 }
5832 res = obj->dlopened ? 1 : 0;
5833 lock_release(rtld_bind_lock, &lockstate);
5834 return (res);
5835 }
5836
5837 static int
obj_remap_relro(Obj_Entry * obj,int prot)5838 obj_remap_relro(Obj_Entry *obj, int prot)
5839 {
5840
5841 if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5842 prot) == -1) {
5843 _rtld_error("%s: Cannot set relro protection to %#x: %s",
5844 obj->path, prot, rtld_strerror(errno));
5845 return (-1);
5846 }
5847 return (0);
5848 }
5849
5850 static int
obj_disable_relro(Obj_Entry * obj)5851 obj_disable_relro(Obj_Entry *obj)
5852 {
5853
5854 return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5855 }
5856
5857 static int
obj_enforce_relro(Obj_Entry * obj)5858 obj_enforce_relro(Obj_Entry *obj)
5859 {
5860
5861 return (obj_remap_relro(obj, PROT_READ));
5862 }
5863
5864 static void
map_stacks_exec(RtldLockState * lockstate)5865 map_stacks_exec(RtldLockState *lockstate)
5866 {
5867 void (*thr_map_stacks_exec)(void);
5868
5869 if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5870 return;
5871 thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5872 get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5873 if (thr_map_stacks_exec != NULL) {
5874 stack_prot |= PROT_EXEC;
5875 thr_map_stacks_exec();
5876 }
5877 }
5878
5879 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5880 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5881 {
5882 Objlist_Entry *elm;
5883 Obj_Entry *obj;
5884 void (*distrib)(size_t, void *, size_t, size_t);
5885
5886 distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5887 get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5888 if (distrib == NULL)
5889 return;
5890 STAILQ_FOREACH(elm, list, link) {
5891 obj = elm->obj;
5892 if (obj->marker || !obj->tls_done || obj->static_tls_copied)
5893 continue;
5894 distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5895 obj->tlssize);
5896 obj->static_tls_copied = true;
5897 }
5898 }
5899
5900 void
symlook_init(SymLook * dst,const char * name)5901 symlook_init(SymLook *dst, const char *name)
5902 {
5903
5904 bzero(dst, sizeof(*dst));
5905 dst->name = name;
5906 dst->hash = elf_hash(name);
5907 dst->hash_gnu = gnu_hash(name);
5908 }
5909
5910 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5911 symlook_init_from_req(SymLook *dst, const SymLook *src)
5912 {
5913
5914 dst->name = src->name;
5915 dst->hash = src->hash;
5916 dst->hash_gnu = src->hash_gnu;
5917 dst->ventry = src->ventry;
5918 dst->flags = src->flags;
5919 dst->defobj_out = NULL;
5920 dst->sym_out = NULL;
5921 dst->lockstate = src->lockstate;
5922 }
5923
5924 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)5925 open_binary_fd(const char *argv0, bool search_in_path,
5926 const char **binpath_res)
5927 {
5928 char *binpath, *pathenv, *pe, *res1;
5929 const char *res;
5930 int fd;
5931
5932 binpath = NULL;
5933 res = NULL;
5934 if (search_in_path && strchr(argv0, '/') == NULL) {
5935 binpath = xmalloc(PATH_MAX);
5936 pathenv = getenv("PATH");
5937 if (pathenv == NULL) {
5938 _rtld_error("-p and no PATH environment variable");
5939 rtld_die();
5940 }
5941 pathenv = strdup(pathenv);
5942 if (pathenv == NULL) {
5943 _rtld_error("Cannot allocate memory");
5944 rtld_die();
5945 }
5946 fd = -1;
5947 errno = ENOENT;
5948 while ((pe = strsep(&pathenv, ":")) != NULL) {
5949 if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
5950 continue;
5951 if (binpath[0] != '\0' &&
5952 strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
5953 continue;
5954 if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
5955 continue;
5956 fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
5957 if (fd != -1 || errno != ENOENT) {
5958 res = binpath;
5959 break;
5960 }
5961 }
5962 free(pathenv);
5963 } else {
5964 fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
5965 res = argv0;
5966 }
5967
5968 if (fd == -1) {
5969 _rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
5970 rtld_die();
5971 }
5972 if (res != NULL && res[0] != '/') {
5973 res1 = xmalloc(PATH_MAX);
5974 if (realpath(res, res1) != NULL) {
5975 if (res != argv0)
5976 free(__DECONST(char *, res));
5977 res = res1;
5978 } else {
5979 free(res1);
5980 }
5981 }
5982 *binpath_res = res;
5983 return (fd);
5984 }
5985
5986 /*
5987 * Parse a set of command-line arguments.
5988 */
5989 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)5990 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
5991 const char **argv0, bool *dir_ignore)
5992 {
5993 const char *arg;
5994 char machine[64];
5995 size_t sz;
5996 int arglen, fd, i, j, mib[2];
5997 char opt;
5998 bool seen_b, seen_f;
5999
6000 dbg("Parsing command-line arguments");
6001 *use_pathp = false;
6002 *fdp = -1;
6003 *dir_ignore = false;
6004 seen_b = seen_f = false;
6005
6006 for (i = 1; i < argc; i++ ) {
6007 arg = argv[i];
6008 dbg("argv[%d]: '%s'", i, arg);
6009
6010 /*
6011 * rtld arguments end with an explicit "--" or with the first
6012 * non-prefixed argument.
6013 */
6014 if (strcmp(arg, "--") == 0) {
6015 i++;
6016 break;
6017 }
6018 if (arg[0] != '-')
6019 break;
6020
6021 /*
6022 * All other arguments are single-character options that can
6023 * be combined, so we need to search through `arg` for them.
6024 */
6025 arglen = strlen(arg);
6026 for (j = 1; j < arglen; j++) {
6027 opt = arg[j];
6028 if (opt == 'h') {
6029 print_usage(argv[0]);
6030 _exit(0);
6031 } else if (opt == 'b') {
6032 if (seen_f) {
6033 _rtld_error("Both -b and -f specified");
6034 rtld_die();
6035 }
6036 i++;
6037 *argv0 = argv[i];
6038 seen_b = true;
6039 break;
6040 } else if (opt == 'd') {
6041 *dir_ignore = true;
6042 break;
6043 } else if (opt == 'f') {
6044 if (seen_b) {
6045 _rtld_error("Both -b and -f specified");
6046 rtld_die();
6047 }
6048
6049 /*
6050 * -f XX can be used to specify a
6051 * descriptor for the binary named at
6052 * the command line (i.e., the later
6053 * argument will specify the process
6054 * name but the descriptor is what
6055 * will actually be executed).
6056 *
6057 * -f must be the last option in, e.g., -abcf.
6058 */
6059 if (j != arglen - 1) {
6060 _rtld_error("Invalid options: %s", arg);
6061 rtld_die();
6062 }
6063 i++;
6064 fd = parse_integer(argv[i]);
6065 if (fd == -1) {
6066 _rtld_error(
6067 "Invalid file descriptor: '%s'",
6068 argv[i]);
6069 rtld_die();
6070 }
6071 *fdp = fd;
6072 seen_f = true;
6073 break;
6074 } else if (opt == 'p') {
6075 *use_pathp = true;
6076 } else if (opt == 'u') {
6077 trust = false;
6078 } else if (opt == 'v') {
6079 machine[0] = '\0';
6080 mib[0] = CTL_HW;
6081 mib[1] = HW_MACHINE;
6082 sz = sizeof(machine);
6083 sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6084 ld_elf_hints_path = ld_get_env_var(
6085 LD_ELF_HINTS_PATH);
6086 set_ld_elf_hints_path();
6087 rtld_printf(
6088 "FreeBSD ld-elf.so.1 %s\n"
6089 "FreeBSD_version %d\n"
6090 "Default lib path %s\n"
6091 "Hints lib path %s\n"
6092 "Env prefix %s\n"
6093 "Default hint file %s\n"
6094 "Hint file %s\n"
6095 "libmap file %s\n",
6096 machine,
6097 __FreeBSD_version, ld_standard_library_path,
6098 gethints(false),
6099 ld_env_prefix, ld_elf_hints_default,
6100 ld_elf_hints_path,
6101 ld_path_libmap_conf);
6102 _exit(0);
6103 } else {
6104 _rtld_error("Invalid argument: '%s'", arg);
6105 print_usage(argv[0]);
6106 rtld_die();
6107 }
6108 }
6109 }
6110
6111 if (!seen_b)
6112 *argv0 = argv[i];
6113 return (i);
6114 }
6115
6116 /*
6117 * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6118 */
6119 static int
parse_integer(const char * str)6120 parse_integer(const char *str)
6121 {
6122 static const int RADIX = 10; /* XXXJA: possibly support hex? */
6123 const char *orig;
6124 int n;
6125 char c;
6126
6127 orig = str;
6128 n = 0;
6129 for (c = *str; c != '\0'; c = *++str) {
6130 if (c < '0' || c > '9')
6131 return (-1);
6132
6133 n *= RADIX;
6134 n += c - '0';
6135 }
6136
6137 /* Make sure we actually parsed something. */
6138 if (str == orig)
6139 return (-1);
6140 return (n);
6141 }
6142
6143 static void
print_usage(const char * argv0)6144 print_usage(const char *argv0)
6145 {
6146
6147 rtld_printf(
6148 "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6149 "\n"
6150 "Options:\n"
6151 " -h Display this help message\n"
6152 " -b <exe> Execute <exe> instead of <binary>, arg0 is <binary>\n"
6153 " -d Ignore lack of exec permissions for the binary\n"
6154 " -f <FD> Execute <FD> instead of searching for <binary>\n"
6155 " -p Search in PATH for named binary\n"
6156 " -u Ignore LD_ environment variables\n"
6157 " -v Display identification information\n"
6158 " -- End of RTLD options\n"
6159 " <binary> Name of process to execute\n"
6160 " <args> Arguments to the executed process\n", argv0);
6161 }
6162
6163 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6164 static const struct auxfmt {
6165 const char *name;
6166 const char *fmt;
6167 } auxfmts[] = {
6168 AUXFMT(AT_NULL, NULL),
6169 AUXFMT(AT_IGNORE, NULL),
6170 AUXFMT(AT_EXECFD, "%ld"),
6171 AUXFMT(AT_PHDR, "%p"),
6172 AUXFMT(AT_PHENT, "%lu"),
6173 AUXFMT(AT_PHNUM, "%lu"),
6174 AUXFMT(AT_PAGESZ, "%lu"),
6175 AUXFMT(AT_BASE, "%#lx"),
6176 AUXFMT(AT_FLAGS, "%#lx"),
6177 AUXFMT(AT_ENTRY, "%p"),
6178 AUXFMT(AT_NOTELF, NULL),
6179 AUXFMT(AT_UID, "%ld"),
6180 AUXFMT(AT_EUID, "%ld"),
6181 AUXFMT(AT_GID, "%ld"),
6182 AUXFMT(AT_EGID, "%ld"),
6183 AUXFMT(AT_EXECPATH, "%s"),
6184 AUXFMT(AT_CANARY, "%p"),
6185 AUXFMT(AT_CANARYLEN, "%lu"),
6186 AUXFMT(AT_OSRELDATE, "%lu"),
6187 AUXFMT(AT_NCPUS, "%lu"),
6188 AUXFMT(AT_PAGESIZES, "%p"),
6189 AUXFMT(AT_PAGESIZESLEN, "%lu"),
6190 AUXFMT(AT_TIMEKEEP, "%p"),
6191 AUXFMT(AT_STACKPROT, "%#lx"),
6192 AUXFMT(AT_EHDRFLAGS, "%#lx"),
6193 AUXFMT(AT_HWCAP, "%#lx"),
6194 AUXFMT(AT_HWCAP2, "%#lx"),
6195 AUXFMT(AT_BSDFLAGS, "%#lx"),
6196 AUXFMT(AT_ARGC, "%lu"),
6197 AUXFMT(AT_ARGV, "%p"),
6198 AUXFMT(AT_ENVC, "%p"),
6199 AUXFMT(AT_ENVV, "%p"),
6200 AUXFMT(AT_PS_STRINGS, "%p"),
6201 AUXFMT(AT_FXRNG, "%p"),
6202 AUXFMT(AT_KPRELOAD, "%p"),
6203 };
6204
6205 static bool
is_ptr_fmt(const char * fmt)6206 is_ptr_fmt(const char *fmt)
6207 {
6208 char last;
6209
6210 last = fmt[strlen(fmt) - 1];
6211 return (last == 'p' || last == 's');
6212 }
6213
6214 static void
dump_auxv(Elf_Auxinfo ** aux_info)6215 dump_auxv(Elf_Auxinfo **aux_info)
6216 {
6217 Elf_Auxinfo *auxp;
6218 const struct auxfmt *fmt;
6219 int i;
6220
6221 for (i = 0; i < AT_COUNT; i++) {
6222 auxp = aux_info[i];
6223 if (auxp == NULL)
6224 continue;
6225 fmt = &auxfmts[i];
6226 if (fmt->fmt == NULL)
6227 continue;
6228 rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6229 if (is_ptr_fmt(fmt->fmt)) {
6230 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6231 auxp->a_un.a_ptr);
6232 } else {
6233 rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6234 auxp->a_un.a_val);
6235 }
6236 rtld_fdprintf(STDOUT_FILENO, "\n");
6237 }
6238 }
6239
6240 /*
6241 * Overrides for libc_pic-provided functions.
6242 */
6243
6244 int
__getosreldate(void)6245 __getosreldate(void)
6246 {
6247 size_t len;
6248 int oid[2];
6249 int error, osrel;
6250
6251 if (osreldate != 0)
6252 return (osreldate);
6253
6254 oid[0] = CTL_KERN;
6255 oid[1] = KERN_OSRELDATE;
6256 osrel = 0;
6257 len = sizeof(osrel);
6258 error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6259 if (error == 0 && osrel > 0 && len == sizeof(osrel))
6260 osreldate = osrel;
6261 return (osreldate);
6262 }
6263 const char *
rtld_strerror(int errnum)6264 rtld_strerror(int errnum)
6265 {
6266
6267 if (errnum < 0 || errnum >= sys_nerr)
6268 return ("Unknown error");
6269 return (sys_errlist[errnum]);
6270 }
6271
6272 char *
getenv(const char * name)6273 getenv(const char *name)
6274 {
6275 return (__DECONST(char *, rtld_get_env_val(environ, name,
6276 strlen(name))));
6277 }
6278
6279 /* malloc */
6280 void *
malloc(size_t nbytes)6281 malloc(size_t nbytes)
6282 {
6283
6284 return (__crt_malloc(nbytes));
6285 }
6286
6287 void *
calloc(size_t num,size_t size)6288 calloc(size_t num, size_t size)
6289 {
6290
6291 return (__crt_calloc(num, size));
6292 }
6293
6294 void
free(void * cp)6295 free(void *cp)
6296 {
6297
6298 __crt_free(cp);
6299 }
6300
6301 void *
realloc(void * cp,size_t nbytes)6302 realloc(void *cp, size_t nbytes)
6303 {
6304
6305 return (__crt_realloc(cp, nbytes));
6306 }
6307
6308 extern int _rtld_version__FreeBSD_version __exported;
6309 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6310
6311 extern char _rtld_version_laddr_offset __exported;
6312 char _rtld_version_laddr_offset;
6313
6314 extern char _rtld_version_dlpi_tls_data __exported;
6315 char _rtld_version_dlpi_tls_data;
6316