1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software developed by the Computer Systems
8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
9 * BG 91-66 and contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 __SCCSID("@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93");
39
40 /*
41 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
42 * users of this code, so we've factored it out into a separate module.
43 * Thus, we keep this grunge out of the other kvm applications (i.e.,
44 * most other applications are interested only in open/close/read/nlist).
45 */
46
47 #include <sys/param.h>
48 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
49 #include <sys/ucred.h>
50 #include <sys/queue.h>
51 #include <sys/_lock.h>
52 #include <sys/_mutex.h>
53 #include <sys/_task.h>
54 #include <sys/cpuset.h>
55 #include <sys/user.h>
56 #include <sys/proc.h>
57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */
58 #include <sys/jail.h>
59 #include <sys/exec.h>
60 #include <sys/stat.h>
61 #include <sys/sysent.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/file.h>
65 #include <sys/conf.h>
66 #define _WANT_KW_EXITCODE
67 #include <sys/wait.h>
68 #include <stdio.h>
69 #include <stdlib.h>
70 #include <stdbool.h>
71 #include <unistd.h>
72 #include <nlist.h>
73 #include <kvm.h>
74
75 #include <sys/sysctl.h>
76
77 #include <limits.h>
78 #include <memory.h>
79 #include <paths.h>
80
81 #include "kvm_private.h"
82
83 #define KREAD(kd, addr, obj) \
84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
85
86 static int ticks;
87 static int hz;
88 static uint64_t cpu_tick_frequency;
89
90 /*
91 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is
92 * read/initialized before this function is ever called.
93 */
94 static uint64_t
cputick2usec(uint64_t tick)95 cputick2usec(uint64_t tick)
96 {
97
98 if (cpu_tick_frequency == 0)
99 return (0);
100 if (tick > 18446744073709551) /* floor(2^64 / 1000) */
101 return (tick / (cpu_tick_frequency / 1000000));
102 else if (tick > 18446744073709) /* floor(2^64 / 1000000) */
103 return ((tick * 1000) / (cpu_tick_frequency / 1000));
104 else
105 return ((tick * 1000000) / cpu_tick_frequency);
106 }
107
108 /*
109 * Read proc's from memory file into buffer bp, which has space to hold
110 * at most maxcnt procs.
111 */
112 static int
kvm_proclist(kvm_t * kd,int what,int arg,struct proc * p,struct kinfo_proc * bp,int maxcnt)113 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
114 struct kinfo_proc *bp, int maxcnt)
115 {
116 int cnt = 0;
117 struct kinfo_proc kinfo_proc, *kp;
118 struct pgrp pgrp;
119 struct session sess;
120 struct cdev t_cdev;
121 struct tty tty;
122 struct vmspace vmspace;
123 struct sigacts sigacts;
124 #if 0
125 struct pstats pstats;
126 #endif
127 struct ucred ucred;
128 struct prison pr;
129 struct thread mtd;
130 struct proc proc;
131 struct proc pproc;
132 struct sysentvec sysent;
133 char svname[KI_EMULNAMELEN];
134 struct thread *td = NULL;
135 bool first_thread;
136
137 kp = &kinfo_proc;
138 kp->ki_structsize = sizeof(kinfo_proc);
139 /*
140 * Loop on the processes, then threads within the process if requested.
141 */
142 if (what == KERN_PROC_ALL)
143 what |= KERN_PROC_INC_THREAD;
144 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
145 memset(kp, 0, sizeof *kp);
146 if (KREAD(kd, (u_long)p, &proc)) {
147 _kvm_err(kd, kd->program, "can't read proc at %p", p);
148 return (-1);
149 }
150 if (proc.p_state == PRS_NEW)
151 continue;
152 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
153 kp->ki_ruid = ucred.cr_ruid;
154 kp->ki_svuid = ucred.cr_svuid;
155 kp->ki_rgid = ucred.cr_rgid;
156 kp->ki_svgid = ucred.cr_svgid;
157 kp->ki_cr_flags = ucred.cr_flags;
158 if (ucred.cr_ngroups > KI_NGROUPS) {
159 kp->ki_ngroups = KI_NGROUPS;
160 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
161 } else
162 kp->ki_ngroups = ucred.cr_ngroups;
163 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
164 kp->ki_ngroups * sizeof(gid_t));
165 kp->ki_uid = ucred.cr_uid;
166 if (ucred.cr_prison != NULL) {
167 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
168 _kvm_err(kd, kd->program,
169 "can't read prison at %p",
170 ucred.cr_prison);
171 return (-1);
172 }
173 kp->ki_jid = pr.pr_id;
174 }
175 }
176
177 switch(what & ~KERN_PROC_INC_THREAD) {
178
179 case KERN_PROC_GID:
180 if (kp->ki_groups[0] != (gid_t)arg)
181 continue;
182 break;
183
184 case KERN_PROC_PID:
185 if (proc.p_pid != (pid_t)arg)
186 continue;
187 break;
188
189 case KERN_PROC_RGID:
190 if (kp->ki_rgid != (gid_t)arg)
191 continue;
192 break;
193
194 case KERN_PROC_UID:
195 if (kp->ki_uid != (uid_t)arg)
196 continue;
197 break;
198
199 case KERN_PROC_RUID:
200 if (kp->ki_ruid != (uid_t)arg)
201 continue;
202 break;
203 }
204 /*
205 * We're going to add another proc to the set. If this
206 * will overflow the buffer, assume the reason is because
207 * nprocs (or the proc list) is corrupt and declare an error.
208 */
209 if (cnt >= maxcnt) {
210 _kvm_err(kd, kd->program, "nprocs corrupt");
211 return (-1);
212 }
213 /*
214 * gather kinfo_proc
215 */
216 kp->ki_paddr = p;
217 kp->ki_addr = 0; /* XXX uarea */
218 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
219 kp->ki_args = proc.p_args;
220 kp->ki_numthreads = proc.p_numthreads;
221 kp->ki_tracep = NULL; /* XXXKIB do not expose ktr_io_params */
222 kp->ki_textvp = proc.p_textvp;
223 kp->ki_fd = proc.p_fd;
224 kp->ki_pd = proc.p_pd;
225 kp->ki_vmspace = proc.p_vmspace;
226 if (proc.p_sigacts != NULL) {
227 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
228 _kvm_err(kd, kd->program,
229 "can't read sigacts at %p", proc.p_sigacts);
230 return (-1);
231 }
232 kp->ki_sigignore = sigacts.ps_sigignore;
233 kp->ki_sigcatch = sigacts.ps_sigcatch;
234 }
235 #if 0
236 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
237 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
238 _kvm_err(kd, kd->program,
239 "can't read stats at %x", proc.p_stats);
240 return (-1);
241 }
242 kp->ki_start = pstats.p_start;
243
244 /*
245 * XXX: The times here are probably zero and need
246 * to be calculated from the raw data in p_rux and
247 * p_crux.
248 */
249 kp->ki_rusage = pstats.p_ru;
250 kp->ki_childstime = pstats.p_cru.ru_stime;
251 kp->ki_childutime = pstats.p_cru.ru_utime;
252 /* Some callers want child-times in a single value */
253 timeradd(&kp->ki_childstime, &kp->ki_childutime,
254 &kp->ki_childtime);
255 }
256 #endif
257 if (proc.p_oppid)
258 kp->ki_ppid = proc.p_oppid;
259 else if (proc.p_pptr) {
260 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
261 _kvm_err(kd, kd->program,
262 "can't read pproc at %p", proc.p_pptr);
263 return (-1);
264 }
265 kp->ki_ppid = pproc.p_pid;
266 } else
267 kp->ki_ppid = 0;
268 if (proc.p_pgrp == NULL)
269 goto nopgrp;
270 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
271 _kvm_err(kd, kd->program, "can't read pgrp at %p",
272 proc.p_pgrp);
273 return (-1);
274 }
275 kp->ki_pgid = pgrp.pg_id;
276 kp->ki_jobc = -1; /* Or calculate? Arguably not. */
277 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
278 _kvm_err(kd, kd->program, "can't read session at %p",
279 pgrp.pg_session);
280 return (-1);
281 }
282 kp->ki_sid = sess.s_sid;
283 (void)memcpy(kp->ki_login, sess.s_login,
284 sizeof(kp->ki_login));
285 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
286 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
287 _kvm_err(kd, kd->program,
288 "can't read tty at %p", sess.s_ttyp);
289 return (-1);
290 }
291 if (tty.t_dev != NULL) {
292 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
293 _kvm_err(kd, kd->program,
294 "can't read cdev at %p",
295 tty.t_dev);
296 return (-1);
297 }
298 #if 0
299 kp->ki_tdev = t_cdev.si_udev;
300 #else
301 kp->ki_tdev = NODEV;
302 #endif
303 }
304 if (tty.t_pgrp != NULL) {
305 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
306 _kvm_err(kd, kd->program,
307 "can't read tpgrp at %p",
308 tty.t_pgrp);
309 return (-1);
310 }
311 kp->ki_tpgid = pgrp.pg_id;
312 } else
313 kp->ki_tpgid = -1;
314 if (tty.t_session != NULL) {
315 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
316 _kvm_err(kd, kd->program,
317 "can't read session at %p",
318 tty.t_session);
319 return (-1);
320 }
321 kp->ki_tsid = sess.s_sid;
322 }
323 } else {
324 nopgrp:
325 kp->ki_tdev = NODEV;
326 }
327
328 (void)kvm_read(kd, (u_long)proc.p_vmspace,
329 (char *)&vmspace, sizeof(vmspace));
330 kp->ki_size = vmspace.vm_map.size;
331 /*
332 * Approximate the kernel's method of calculating
333 * this field.
334 */
335 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
336 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap);
337 kp->ki_swrss = vmspace.vm_swrss;
338 kp->ki_tsize = vmspace.vm_tsize;
339 kp->ki_dsize = vmspace.vm_dsize;
340 kp->ki_ssize = vmspace.vm_ssize;
341
342 switch (what & ~KERN_PROC_INC_THREAD) {
343
344 case KERN_PROC_PGRP:
345 if (kp->ki_pgid != (pid_t)arg)
346 continue;
347 break;
348
349 case KERN_PROC_SESSION:
350 if (kp->ki_sid != (pid_t)arg)
351 continue;
352 break;
353
354 case KERN_PROC_TTY:
355 if ((proc.p_flag & P_CONTROLT) == 0 ||
356 kp->ki_tdev != (dev_t)arg)
357 continue;
358 break;
359 }
360 if (proc.p_comm[0] != 0)
361 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
362 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
363 sizeof(sysent));
364 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
365 sizeof(svname));
366 if (svname[0] != 0)
367 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
368 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime);
369 kp->ki_pid = proc.p_pid;
370 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig);
371 kp->ki_acflag = proc.p_acflag;
372 kp->ki_lock = proc.p_lock;
373 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
374
375 /* Per-thread items; iterate as appropriate. */
376 td = TAILQ_FIRST(&proc.p_threads);
377 for (first_thread = true; cnt < maxcnt && td != NULL &&
378 (first_thread || (what & KERN_PROC_INC_THREAD));
379 first_thread = false) {
380 if (proc.p_state != PRS_ZOMBIE) {
381 if (KREAD(kd, (u_long)td, &mtd)) {
382 _kvm_err(kd, kd->program,
383 "can't read thread at %p", td);
384 return (-1);
385 }
386 if (what & KERN_PROC_INC_THREAD)
387 td = TAILQ_NEXT(&mtd, td_plist);
388 } else
389 td = NULL;
390 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
391 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
392 kp->ki_wmesg, WMESGLEN);
393 else
394 memset(kp->ki_wmesg, 0, WMESGLEN);
395 if (proc.p_pgrp == NULL) {
396 kp->ki_kiflag = 0;
397 } else {
398 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
399 if (sess.s_leader == p)
400 kp->ki_kiflag |= KI_SLEADER;
401 }
402 if ((proc.p_state != PRS_ZOMBIE) &&
403 (mtd.td_blocked != 0)) {
404 kp->ki_kiflag |= KI_LOCKBLOCK;
405 if (mtd.td_lockname)
406 (void)kvm_read(kd,
407 (u_long)mtd.td_lockname,
408 kp->ki_lockname, LOCKNAMELEN);
409 else
410 memset(kp->ki_lockname, 0,
411 LOCKNAMELEN);
412 kp->ki_lockname[LOCKNAMELEN] = 0;
413 } else
414 kp->ki_kiflag &= ~KI_LOCKBLOCK;
415 kp->ki_siglist = proc.p_siglist;
416 if (proc.p_state != PRS_ZOMBIE) {
417 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
418 kp->ki_sigmask = mtd.td_sigmask;
419 kp->ki_swtime = (ticks - proc.p_swtick) / hz;
420 kp->ki_flag = proc.p_flag;
421 kp->ki_sflag = 0;
422 kp->ki_nice = proc.p_nice;
423 kp->ki_traceflag = proc.p_traceflag;
424 if (proc.p_state == PRS_NORMAL) {
425 if (TD_ON_RUNQ(&mtd) ||
426 TD_CAN_RUN(&mtd) ||
427 TD_IS_RUNNING(&mtd)) {
428 kp->ki_stat = SRUN;
429 } else if (mtd.td_state ==
430 TDS_INHIBITED) {
431 if (P_SHOULDSTOP(&proc)) {
432 kp->ki_stat = SSTOP;
433 } else if (
434 TD_IS_SLEEPING(&mtd)) {
435 kp->ki_stat = SSLEEP;
436 } else if (TD_ON_LOCK(&mtd)) {
437 kp->ki_stat = SLOCK;
438 } else {
439 kp->ki_stat = SWAIT;
440 }
441 }
442 } else {
443 kp->ki_stat = SIDL;
444 }
445 /* Stuff from the thread */
446 kp->ki_pri.pri_level = mtd.td_priority;
447 kp->ki_pri.pri_native = mtd.td_base_pri;
448 kp->ki_lastcpu = mtd.td_lastcpu;
449 kp->ki_wchan = mtd.td_wchan;
450 kp->ki_oncpu = mtd.td_oncpu;
451 if (mtd.td_name[0] != '\0')
452 strlcpy(kp->ki_tdname, mtd.td_name,
453 sizeof(kp->ki_tdname));
454 else
455 memset(kp->ki_tdname, 0,
456 sizeof(kp->ki_tdname));
457 kp->ki_pctcpu = 0;
458 kp->ki_rqindex = 0;
459
460 /*
461 * Note: legacy fields; wraps at NO_CPU_OLD
462 * or the old max CPU value as appropriate
463 */
464 if (mtd.td_lastcpu == NOCPU)
465 kp->ki_lastcpu_old = NOCPU_OLD;
466 else if (mtd.td_lastcpu > MAXCPU_OLD)
467 kp->ki_lastcpu_old = MAXCPU_OLD;
468 else
469 kp->ki_lastcpu_old = mtd.td_lastcpu;
470
471 if (mtd.td_oncpu == NOCPU)
472 kp->ki_oncpu_old = NOCPU_OLD;
473 else if (mtd.td_oncpu > MAXCPU_OLD)
474 kp->ki_oncpu_old = MAXCPU_OLD;
475 else
476 kp->ki_oncpu_old = mtd.td_oncpu;
477 kp->ki_tid = mtd.td_tid;
478 } else {
479 memset(&kp->ki_sigmask, 0,
480 sizeof(kp->ki_sigmask));
481 kp->ki_stat = SZOMB;
482 kp->ki_tid = 0;
483 }
484
485 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
486 ++bp;
487 ++cnt;
488 }
489 }
490 return (cnt);
491 }
492
493 /*
494 * Build proc info array by reading in proc list from a crash dump.
495 * Return number of procs read. maxcnt is the max we will read.
496 */
497 static int
kvm_deadprocs(kvm_t * kd,int what,int arg,u_long a_allproc,u_long a_zombproc,int maxcnt)498 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
499 u_long a_zombproc, int maxcnt)
500 {
501 struct kinfo_proc *bp = kd->procbase;
502 int acnt, zcnt = 0;
503 struct proc *p;
504
505 if (KREAD(kd, a_allproc, &p)) {
506 _kvm_err(kd, kd->program, "cannot read allproc");
507 return (-1);
508 }
509 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
510 if (acnt < 0)
511 return (acnt);
512
513 if (a_zombproc != 0) {
514 if (KREAD(kd, a_zombproc, &p)) {
515 _kvm_err(kd, kd->program, "cannot read zombproc");
516 return (-1);
517 }
518 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
519 if (zcnt < 0)
520 zcnt = 0;
521 }
522
523 return (acnt + zcnt);
524 }
525
526 struct kinfo_proc *
kvm_getprocs(kvm_t * kd,int op,int arg,int * cnt)527 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
528 {
529 int mib[4], st, nprocs;
530 size_t size, osize;
531 int temp_op;
532
533 if (kd->procbase != 0) {
534 free((void *)kd->procbase);
535 /*
536 * Clear this pointer in case this call fails. Otherwise,
537 * kvm_close() will free it again.
538 */
539 kd->procbase = 0;
540 }
541 if (ISALIVE(kd)) {
542 size = 0;
543 mib[0] = CTL_KERN;
544 mib[1] = KERN_PROC;
545 mib[2] = op;
546 mib[3] = arg;
547 temp_op = op & ~KERN_PROC_INC_THREAD;
548 st = sysctl(mib,
549 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
550 3 : 4, NULL, &size, NULL, 0);
551 if (st == -1) {
552 _kvm_syserr(kd, kd->program, "kvm_getprocs");
553 return (0);
554 }
555 /*
556 * We can't continue with a size of 0 because we pass
557 * it to realloc() (via _kvm_realloc()), and passing 0
558 * to realloc() results in undefined behavior.
559 */
560 if (size == 0) {
561 /*
562 * XXX: We should probably return an invalid,
563 * but non-NULL, pointer here so any client
564 * program trying to dereference it will
565 * crash. However, _kvm_freeprocs() calls
566 * free() on kd->procbase if it isn't NULL,
567 * and free()'ing a junk pointer isn't good.
568 * Then again, _kvm_freeprocs() isn't used
569 * anywhere . . .
570 */
571 kd->procbase = _kvm_malloc(kd, 1);
572 goto liveout;
573 }
574 do {
575 size += size / 10;
576 kd->procbase = (struct kinfo_proc *)
577 _kvm_realloc(kd, kd->procbase, size);
578 if (kd->procbase == NULL)
579 return (0);
580 osize = size;
581 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
582 temp_op == KERN_PROC_PROC ? 3 : 4,
583 kd->procbase, &size, NULL, 0);
584 } while (st == -1 && errno == ENOMEM && size == osize);
585 if (st == -1) {
586 _kvm_syserr(kd, kd->program, "kvm_getprocs");
587 return (0);
588 }
589 /*
590 * We have to check the size again because sysctl()
591 * may "round up" oldlenp if oldp is NULL; hence it
592 * might've told us that there was data to get when
593 * there really isn't any.
594 */
595 if (size > 0 &&
596 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
597 _kvm_err(kd, kd->program,
598 "kinfo_proc size mismatch (expected %zu, got %d)",
599 sizeof(struct kinfo_proc),
600 kd->procbase->ki_structsize);
601 return (0);
602 }
603 liveout:
604 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
605 } else {
606 struct nlist nl[6], *p;
607 struct nlist nlz[2];
608
609 nl[0].n_name = "_nprocs";
610 nl[1].n_name = "_allproc";
611 nl[2].n_name = "_ticks";
612 nl[3].n_name = "_hz";
613 nl[4].n_name = "_cpu_tick_frequency";
614 nl[5].n_name = 0;
615
616 nlz[0].n_name = "_zombproc";
617 nlz[1].n_name = 0;
618
619 if (!kd->arch->ka_native(kd)) {
620 _kvm_err(kd, kd->program,
621 "cannot read procs from non-native core");
622 return (0);
623 }
624
625 if (kvm_nlist(kd, nl) != 0) {
626 for (p = nl; p->n_type != 0; ++p)
627 ;
628 _kvm_err(kd, kd->program,
629 "%s: no such symbol", p->n_name);
630 return (0);
631 }
632 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */
633 if (KREAD(kd, nl[0].n_value, &nprocs)) {
634 _kvm_err(kd, kd->program, "can't read nprocs");
635 return (0);
636 }
637 /*
638 * If returning all threads, we don't know how many that
639 * might be. Presume that there are, on average, no more
640 * than 10 threads per process.
641 */
642 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD))
643 nprocs *= 10; /* XXX */
644 if (KREAD(kd, nl[2].n_value, &ticks)) {
645 _kvm_err(kd, kd->program, "can't read ticks");
646 return (0);
647 }
648 if (KREAD(kd, nl[3].n_value, &hz)) {
649 _kvm_err(kd, kd->program, "can't read hz");
650 return (0);
651 }
652 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) {
653 _kvm_err(kd, kd->program,
654 "can't read cpu_tick_frequency");
655 return (0);
656 }
657 size = nprocs * sizeof(struct kinfo_proc);
658 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
659 if (kd->procbase == NULL)
660 return (0);
661
662 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
663 nlz[0].n_value, nprocs);
664 if (nprocs <= 0) {
665 _kvm_freeprocs(kd);
666 nprocs = 0;
667 }
668 #ifdef notdef
669 else {
670 size = nprocs * sizeof(struct kinfo_proc);
671 kd->procbase = realloc(kd->procbase, size);
672 }
673 #endif
674 }
675 *cnt = nprocs;
676 return (kd->procbase);
677 }
678
679 void
_kvm_freeprocs(kvm_t * kd)680 _kvm_freeprocs(kvm_t *kd)
681 {
682
683 free(kd->procbase);
684 kd->procbase = NULL;
685 }
686
687 void *
_kvm_realloc(kvm_t * kd,void * p,size_t n)688 _kvm_realloc(kvm_t *kd, void *p, size_t n)
689 {
690 void *np;
691
692 np = reallocf(p, n);
693 if (np == NULL)
694 _kvm_err(kd, kd->program, "out of memory");
695 return (np);
696 }
697
698 /*
699 * Get the command args or environment.
700 */
701 static char **
kvm_argv(kvm_t * kd,const struct kinfo_proc * kp,int env,int nchr)702 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr)
703 {
704 int oid[4];
705 int i;
706 size_t bufsz;
707 static int buflen;
708 static char *buf, *p;
709 static char **bufp;
710 static int argc;
711 char **nbufp;
712
713 if (!ISALIVE(kd)) {
714 _kvm_err(kd, kd->program,
715 "cannot read user space from dead kernel");
716 return (NULL);
717 }
718
719 if (nchr == 0 || nchr > ARG_MAX)
720 nchr = ARG_MAX;
721 if (buflen == 0) {
722 buf = malloc(nchr);
723 if (buf == NULL) {
724 _kvm_err(kd, kd->program, "cannot allocate memory");
725 return (NULL);
726 }
727 argc = 32;
728 bufp = malloc(sizeof(char *) * argc);
729 if (bufp == NULL) {
730 free(buf);
731 buf = NULL;
732 _kvm_err(kd, kd->program, "cannot allocate memory");
733 return (NULL);
734 }
735 buflen = nchr;
736 } else if (nchr > buflen) {
737 p = realloc(buf, nchr);
738 if (p != NULL) {
739 buf = p;
740 buflen = nchr;
741 }
742 }
743 oid[0] = CTL_KERN;
744 oid[1] = KERN_PROC;
745 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
746 oid[3] = kp->ki_pid;
747 bufsz = buflen;
748 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) {
749 /*
750 * If the supplied buf is too short to hold the requested
751 * value the sysctl returns with ENOMEM. The buf is filled
752 * with the truncated value and the returned bufsz is equal
753 * to the requested len.
754 */
755 if (errno != ENOMEM || bufsz != (size_t)buflen)
756 return (NULL);
757 buf[bufsz - 1] = '\0';
758 errno = 0;
759 } else if (bufsz == 0)
760 return (NULL);
761 i = 0;
762 p = buf;
763 do {
764 bufp[i++] = p;
765 p += strlen(p) + 1;
766 if (i >= argc) {
767 argc += argc;
768 nbufp = realloc(bufp, sizeof(char *) * argc);
769 if (nbufp == NULL)
770 return (NULL);
771 bufp = nbufp;
772 }
773 } while (p < buf + bufsz);
774 bufp[i++] = 0;
775 return (bufp);
776 }
777
778 char **
kvm_getargv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)779 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
780 {
781 return (kvm_argv(kd, kp, 0, nchr));
782 }
783
784 char **
kvm_getenvv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)785 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
786 {
787 return (kvm_argv(kd, kp, 1, nchr));
788 }
789