1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1997, 1998 Kenneth D. Merry.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/types.h>
35 #include <sys/sysctl.h>
36 #include <sys/errno.h>
37 #include <sys/resource.h>
38 #include <sys/queue.h>
39
40 #include <ctype.h>
41 #include <err.h>
42 #include <fcntl.h>
43 #include <limits.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <stdarg.h>
48 #include <kvm.h>
49 #include <nlist.h>
50
51 #include "devstat.h"
52
53 int
54 compute_stats(struct devstat *current, struct devstat *previous,
55 long double etime, u_int64_t *total_bytes,
56 u_int64_t *total_transfers, u_int64_t *total_blocks,
57 long double *kb_per_transfer, long double *transfers_per_second,
58 long double *mb_per_second, long double *blocks_per_second,
59 long double *ms_per_transaction);
60
61 typedef enum {
62 DEVSTAT_ARG_NOTYPE,
63 DEVSTAT_ARG_UINT64,
64 DEVSTAT_ARG_LD,
65 DEVSTAT_ARG_SKIP
66 } devstat_arg_type;
67
68 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
69
70 /*
71 * Table to match descriptive strings with device types. These are in
72 * order from most common to least common to speed search time.
73 */
74 struct devstat_match_table match_table[] = {
75 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE},
76 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE},
77 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF},
78 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF},
79 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF},
80 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE},
81 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
82 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS},
83 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE},
84 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
85 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE},
86 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE},
87 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE},
88 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE},
89 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
90 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE},
91 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
92 {NULL, 0, 0}
93 };
94
95 struct devstat_args {
96 devstat_metric metric;
97 devstat_arg_type argtype;
98 } devstat_arg_list[] = {
99 { DSM_NONE, DEVSTAT_ARG_NOTYPE },
100 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
101 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
102 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
103 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
104 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
105 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
106 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
107 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
108 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
109 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
110 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
111 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
112 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
113 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
114 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
115 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
116 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
117 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
118 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
119 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
120 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
121 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
122 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
123 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
124 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
125 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
126 { DSM_SKIP, DEVSTAT_ARG_SKIP },
127 { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
128 { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
129 { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
130 { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
131 { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132 { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
133 { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
134 { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
135 { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
136 { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
137 { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
138 { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
139 { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
140 { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
141 { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
142 { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
143 { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
144 };
145
146 static const char *namelist[] = {
147 #define X_NUMDEVS 0
148 "_devstat_num_devs",
149 #define X_GENERATION 1
150 "_devstat_generation",
151 #define X_VERSION 2
152 "_devstat_version",
153 #define X_DEVICE_STATQ 3
154 "_device_statq",
155 #define X_TIME_UPTIME 4
156 "_time_uptime",
157 #define X_END 5
158 };
159
160 /*
161 * Local function declarations.
162 */
163 static int compare_select(const void *arg1, const void *arg2);
164 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
165 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
166 static char *get_devstat_kvm(kvm_t *kd);
167
168 #define KREADNL(kd, var, val) \
169 readkmem_nl(kd, namelist[var], &val, sizeof(val))
170
171 int
devstat_getnumdevs(kvm_t * kd)172 devstat_getnumdevs(kvm_t *kd)
173 {
174 size_t numdevsize;
175 int numdevs;
176
177 numdevsize = sizeof(int);
178
179 /*
180 * Find out how many devices we have in the system.
181 */
182 if (kd == NULL) {
183 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
184 &numdevsize, NULL, 0) == -1) {
185 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
186 "%s: error getting number of devices\n"
187 "%s: %s", __func__, __func__,
188 strerror(errno));
189 return(-1);
190 } else
191 return(numdevs);
192 } else {
193
194 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
195 return(-1);
196 else
197 return(numdevs);
198 }
199 }
200
201 /*
202 * This is an easy way to get the generation number, but the generation is
203 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
204 * Because this generation sysctl is separate from the statistics sysctl,
205 * the device list and the generation could change between the time that
206 * this function is called and the device list is retrieved.
207 */
208 long
devstat_getgeneration(kvm_t * kd)209 devstat_getgeneration(kvm_t *kd)
210 {
211 size_t gensize;
212 long generation;
213
214 gensize = sizeof(long);
215
216 /*
217 * Get the current generation number.
218 */
219 if (kd == NULL) {
220 if (sysctlbyname("kern.devstat.generation", &generation,
221 &gensize, NULL, 0) == -1) {
222 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
223 "%s: error getting devstat generation\n%s: %s",
224 __func__, __func__, strerror(errno));
225 return(-1);
226 } else
227 return(generation);
228 } else {
229 if (KREADNL(kd, X_GENERATION, generation) == -1)
230 return(-1);
231 else
232 return(generation);
233 }
234 }
235
236 /*
237 * Get the current devstat version. The return value of this function
238 * should be compared with DEVSTAT_VERSION, which is defined in
239 * sys/devicestat.h. This will enable userland programs to determine
240 * whether they are out of sync with the kernel.
241 */
242 int
devstat_getversion(kvm_t * kd)243 devstat_getversion(kvm_t *kd)
244 {
245 size_t versize;
246 int version;
247
248 versize = sizeof(int);
249
250 /*
251 * Get the current devstat version.
252 */
253 if (kd == NULL) {
254 if (sysctlbyname("kern.devstat.version", &version, &versize,
255 NULL, 0) == -1) {
256 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
257 "%s: error getting devstat version\n%s: %s",
258 __func__, __func__, strerror(errno));
259 return(-1);
260 } else
261 return(version);
262 } else {
263 if (KREADNL(kd, X_VERSION, version) == -1)
264 return(-1);
265 else
266 return(version);
267 }
268 }
269
270 /*
271 * Check the devstat version we know about against the devstat version the
272 * kernel knows about. If they don't match, print an error into the
273 * devstat error buffer, and return -1. If they match, return 0.
274 */
275 int
devstat_checkversion(kvm_t * kd)276 devstat_checkversion(kvm_t *kd)
277 {
278 int buflen, res, retval = 0, version;
279
280 version = devstat_getversion(kd);
281
282 if (version != DEVSTAT_VERSION) {
283 /*
284 * If getversion() returns an error (i.e. -1), then it
285 * has printed an error message in the buffer. Therefore,
286 * we need to add a \n to the end of that message before we
287 * print our own message in the buffer.
288 */
289 if (version == -1)
290 buflen = strlen(devstat_errbuf);
291 else
292 buflen = 0;
293
294 res = snprintf(devstat_errbuf + buflen,
295 DEVSTAT_ERRBUF_SIZE - buflen,
296 "%s%s: userland devstat version %d is not "
297 "the same as the kernel\n%s: devstat "
298 "version %d\n", version == -1 ? "\n" : "",
299 __func__, DEVSTAT_VERSION, __func__, version);
300
301 if (res < 0)
302 devstat_errbuf[buflen] = '\0';
303
304 buflen = strlen(devstat_errbuf);
305 if (version < DEVSTAT_VERSION)
306 res = snprintf(devstat_errbuf + buflen,
307 DEVSTAT_ERRBUF_SIZE - buflen,
308 "%s: libdevstat newer than kernel\n",
309 __func__);
310 else
311 res = snprintf(devstat_errbuf + buflen,
312 DEVSTAT_ERRBUF_SIZE - buflen,
313 "%s: kernel newer than libdevstat\n",
314 __func__);
315
316 if (res < 0)
317 devstat_errbuf[buflen] = '\0';
318
319 retval = -1;
320 }
321
322 return(retval);
323 }
324
325 /*
326 * Get the current list of devices and statistics, and the current
327 * generation number.
328 *
329 * Return values:
330 * -1 -- error
331 * 0 -- device list is unchanged
332 * 1 -- device list has changed
333 */
334 int
devstat_getdevs(kvm_t * kd,struct statinfo * stats)335 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
336 {
337 int error;
338 size_t dssize;
339 long oldgeneration;
340 int retval = 0;
341 struct devinfo *dinfo;
342 struct timespec ts;
343
344 dinfo = stats->dinfo;
345
346 if (dinfo == NULL) {
347 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
348 "%s: stats->dinfo was NULL", __func__);
349 return(-1);
350 }
351
352 oldgeneration = dinfo->generation;
353
354 if (kd == NULL) {
355 clock_gettime(CLOCK_MONOTONIC, &ts);
356 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
357
358 /* If this is our first time through, mem_ptr will be null. */
359 if (dinfo->mem_ptr == NULL) {
360 /*
361 * Get the number of devices. If it's negative, it's an
362 * error. Don't bother setting the error string, since
363 * getnumdevs() has already done that for us.
364 */
365 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
366 return(-1);
367
368 /*
369 * The kern.devstat.all sysctl returns the current
370 * generation number, as well as all the devices.
371 * So we need four bytes more.
372 */
373 dssize = (dinfo->numdevs * sizeof(struct devstat)) +
374 sizeof(long);
375 dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
376 if (dinfo->mem_ptr == NULL) {
377 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
378 "%s: Cannot allocate memory for mem_ptr element",
379 __func__);
380 return(-1);
381 }
382 } else
383 dssize = (dinfo->numdevs * sizeof(struct devstat)) +
384 sizeof(long);
385
386 /*
387 * Request all of the devices. We only really allow for one
388 * ENOMEM failure. It would, of course, be possible to just go
389 * in a loop and keep reallocing the device structure until we
390 * don't get ENOMEM back. I'm not sure it's worth it, though.
391 * If devices are being added to the system that quickly, maybe
392 * the user can just wait until all devices are added.
393 */
394 for (;;) {
395 error = sysctlbyname("kern.devstat.all",
396 dinfo->mem_ptr,
397 &dssize, NULL, 0);
398 if (error != -1 || errno != EBUSY)
399 break;
400 }
401 if (error == -1) {
402 /*
403 * If we get ENOMEM back, that means that there are
404 * more devices now, so we need to allocate more
405 * space for the device array.
406 */
407 if (errno == ENOMEM) {
408 /*
409 * No need to set the error string here,
410 * devstat_getnumdevs() will do that if it fails.
411 */
412 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
413 return(-1);
414
415 dssize = (dinfo->numdevs *
416 sizeof(struct devstat)) + sizeof(long);
417 dinfo->mem_ptr = (u_int8_t *)
418 realloc(dinfo->mem_ptr, dssize);
419 if ((error = sysctlbyname("kern.devstat.all",
420 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
421 snprintf(devstat_errbuf,
422 sizeof(devstat_errbuf),
423 "%s: error getting device "
424 "stats\n%s: %s", __func__,
425 __func__, strerror(errno));
426 return(-1);
427 }
428 } else {
429 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
430 "%s: error getting device stats\n"
431 "%s: %s", __func__, __func__,
432 strerror(errno));
433 return(-1);
434 }
435 }
436
437 } else {
438 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
439 return(-1);
440 else
441 stats->snap_time = ts.tv_sec;
442
443 /*
444 * This is of course non-atomic, but since we are working
445 * on a core dump, the generation is unlikely to change
446 */
447 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
448 return(-1);
449 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
450 return(-1);
451 }
452 /*
453 * The sysctl spits out the generation as the first four bytes,
454 * then all of the device statistics structures.
455 */
456 dinfo->generation = *(long *)dinfo->mem_ptr;
457
458 /*
459 * If the generation has changed, and if the current number of
460 * devices is not the same as the number of devices recorded in the
461 * devinfo structure, it is likely that the device list has shrunk.
462 * The reason that it is likely that the device list has shrunk in
463 * this case is that if the device list has grown, the sysctl above
464 * will return an ENOMEM error, and we will reset the number of
465 * devices and reallocate the device array. If the second sysctl
466 * fails, we will return an error and therefore never get to this
467 * point. If the device list has shrunk, the sysctl will not
468 * return an error since we have more space allocated than is
469 * necessary. So, in the shrinkage case, we catch it here and
470 * reallocate the array so that we don't use any more space than is
471 * necessary.
472 */
473 if (oldgeneration != dinfo->generation) {
474 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
475 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
476 return(-1);
477 dssize = (dinfo->numdevs * sizeof(struct devstat)) +
478 sizeof(long);
479 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
480 dssize);
481 }
482 retval = 1;
483 }
484
485 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
486
487 return(retval);
488 }
489
490 /*
491 * selectdevs():
492 *
493 * Devices are selected/deselected based upon the following criteria:
494 * - devices specified by the user on the command line
495 * - devices matching any device type expressions given on the command line
496 * - devices with the highest I/O, if 'top' mode is enabled
497 * - the first n unselected devices in the device list, if maxshowdevs
498 * devices haven't already been selected and if the user has not
499 * specified any devices on the command line and if we're in "add" mode.
500 *
501 * Input parameters:
502 * - device selection list (dev_select)
503 * - current number of devices selected (num_selected)
504 * - total number of devices in the selection list (num_selections)
505 * - devstat generation as of the last time selectdevs() was called
506 * (select_generation)
507 * - current devstat generation (current_generation)
508 * - current list of devices and statistics (devices)
509 * - number of devices in the current device list (numdevs)
510 * - compiled version of the command line device type arguments (matches)
511 * - This is optional. If the number of devices is 0, this will be ignored.
512 * - The matching code pays attention to the current selection mode. So
513 * if you pass in a matching expression, it will be evaluated based
514 * upon the selection mode that is passed in. See below for details.
515 * - number of device type matching expressions (num_matches)
516 * - Set to 0 to disable the matching code.
517 * - list of devices specified on the command line by the user (dev_selections)
518 * - number of devices selected on the command line by the user
519 * (num_dev_selections)
520 * - Our selection mode. There are four different selection modes:
521 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly
522 * selected by the user or devices matching a pattern given by the
523 * user will be selected in addition to devices that are already
524 * selected. Additional devices will be selected, up to maxshowdevs
525 * number of devices.
526 * - only mode. (DS_SELECT_ONLY) Only devices matching devices
527 * explicitly given by the user or devices matching a pattern
528 * given by the user will be selected. No other devices will be
529 * selected.
530 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and
531 * only. Basically, this will not de-select any devices that are
532 * current selected, as only mode would, but it will also not
533 * gratuitously select up to maxshowdevs devices as add mode would.
534 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices
535 * explicitly selected by the user or devices matching a pattern
536 * given by the user will be de-selected.
537 * - maximum number of devices we can select (maxshowdevs)
538 * - flag indicating whether or not we're in 'top' mode (perf_select)
539 *
540 * Output data:
541 * - the device selection list may be modified and passed back out
542 * - the number of devices selected and the total number of items in the
543 * device selection list may be changed
544 * - the selection generation may be changed to match the current generation
545 *
546 * Return values:
547 * -1 -- error
548 * 0 -- selected devices are unchanged
549 * 1 -- selected devices changed
550 */
551 int
devstat_selectdevs(struct device_selection ** dev_select,int * num_selected,int * num_selections,long * select_generation,long current_generation,struct devstat * devices,int numdevs,struct devstat_match * matches,int num_matches,char ** dev_selections,int num_dev_selections,devstat_select_mode select_mode,int maxshowdevs,int perf_select)552 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
553 int *num_selections, long *select_generation,
554 long current_generation, struct devstat *devices,
555 int numdevs, struct devstat_match *matches, int num_matches,
556 char **dev_selections, int num_dev_selections,
557 devstat_select_mode select_mode, int maxshowdevs,
558 int perf_select)
559 {
560 int i, j, k;
561 int init_selections = 0, init_selected_var = 0;
562 struct device_selection *old_dev_select = NULL;
563 int old_num_selections = 0, old_num_selected;
564 int selection_number = 0;
565 int changed = 0, found = 0;
566
567 if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
568 return(-1);
569
570 /*
571 * We always want to make sure that we have as many dev_select
572 * entries as there are devices.
573 */
574 /*
575 * In this case, we haven't selected devices before.
576 */
577 if (*dev_select == NULL) {
578 *dev_select = (struct device_selection *)malloc(numdevs *
579 sizeof(struct device_selection));
580 *select_generation = current_generation;
581 init_selections = 1;
582 changed = 1;
583 /*
584 * In this case, we have selected devices before, but the device
585 * list has changed since we last selected devices, so we need to
586 * either enlarge or reduce the size of the device selection list.
587 * But delay the resizing until after copying the data to old_dev_select
588 * as to not lose any data in the case of reducing the size.
589 */
590 } else if (*num_selections != numdevs) {
591 *select_generation = current_generation;
592 init_selections = 1;
593 /*
594 * In this case, we've selected devices before, and the selection
595 * list is the same size as it was the last time, but the device
596 * list has changed.
597 */
598 } else if (*select_generation < current_generation) {
599 *select_generation = current_generation;
600 init_selections = 1;
601 }
602
603 if (*dev_select == NULL) {
604 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
605 "%s: Cannot (re)allocate memory for dev_select argument",
606 __func__);
607 return(-1);
608 }
609
610 /*
611 * If we're in "only" mode, we want to clear out the selected
612 * variable since we're going to select exactly what the user wants
613 * this time through.
614 */
615 if (select_mode == DS_SELECT_ONLY)
616 init_selected_var = 1;
617
618 /*
619 * In all cases, we want to back up the number of selected devices.
620 * It is a quick and accurate way to determine whether the selected
621 * devices have changed.
622 */
623 old_num_selected = *num_selected;
624
625 /*
626 * We want to make a backup of the current selection list if
627 * the list of devices has changed, or if we're in performance
628 * selection mode. In both cases, we don't want to make a backup
629 * if we already know for sure that the list will be different.
630 * This is certainly the case if this is our first time through the
631 * selection code.
632 */
633 if (((init_selected_var != 0) || (init_selections != 0)
634 || (perf_select != 0)) && (changed == 0)){
635 old_dev_select = (struct device_selection *)malloc(
636 *num_selections * sizeof(struct device_selection));
637 if (old_dev_select == NULL) {
638 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
639 "%s: Cannot allocate memory for selection list backup",
640 __func__);
641 return(-1);
642 }
643 old_num_selections = *num_selections;
644 bcopy(*dev_select, old_dev_select,
645 sizeof(struct device_selection) * *num_selections);
646 }
647
648 if (!changed && *num_selections != numdevs) {
649 *dev_select = (struct device_selection *)reallocf(*dev_select,
650 numdevs * sizeof(struct device_selection));
651 }
652
653 if (init_selections != 0) {
654 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
655
656 for (i = 0; i < numdevs; i++) {
657 (*dev_select)[i].device_number =
658 devices[i].device_number;
659 strncpy((*dev_select)[i].device_name,
660 devices[i].device_name,
661 DEVSTAT_NAME_LEN);
662 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
663 (*dev_select)[i].unit_number = devices[i].unit_number;
664 (*dev_select)[i].position = i;
665 }
666 *num_selections = numdevs;
667 } else if (init_selected_var != 0) {
668 for (i = 0; i < numdevs; i++)
669 (*dev_select)[i].selected = 0;
670 }
671
672 /* we haven't gotten around to selecting anything yet.. */
673 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
674 || (init_selected_var != 0))
675 *num_selected = 0;
676
677 /*
678 * Look through any devices the user specified on the command line
679 * and see if they match known devices. If so, select them.
680 */
681 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
682 char tmpstr[80];
683
684 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
685 (*dev_select)[i].device_name,
686 (*dev_select)[i].unit_number);
687 for (j = 0; j < num_dev_selections; j++) {
688 if (strcmp(tmpstr, dev_selections[j]) == 0) {
689 /*
690 * Here we do different things based on the
691 * mode we're in. If we're in add or
692 * addonly mode, we only select this device
693 * if it hasn't already been selected.
694 * Otherwise, we would be unnecessarily
695 * changing the selection order and
696 * incrementing the selection count. If
697 * we're in only mode, we unconditionally
698 * select this device, since in only mode
699 * any previous selections are erased and
700 * manually specified devices are the first
701 * ones to be selected. If we're in remove
702 * mode, we de-select the specified device and
703 * decrement the selection count.
704 */
705 switch(select_mode) {
706 case DS_SELECT_ADD:
707 case DS_SELECT_ADDONLY:
708 if ((*dev_select)[i].selected)
709 break;
710 /* FALLTHROUGH */
711 case DS_SELECT_ONLY:
712 (*dev_select)[i].selected =
713 ++selection_number;
714 (*num_selected)++;
715 break;
716 case DS_SELECT_REMOVE:
717 (*dev_select)[i].selected = 0;
718 (*num_selected)--;
719 /*
720 * This isn't passed back out, we
721 * just use it to keep track of
722 * how many devices we've removed.
723 */
724 num_dev_selections--;
725 break;
726 }
727 break;
728 }
729 }
730 }
731
732 /*
733 * Go through the user's device type expressions and select devices
734 * accordingly. We only do this if the number of devices already
735 * selected is less than the maximum number we can show.
736 */
737 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
738 /* We should probably indicate some error here */
739 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
740 || (matches[i].num_match_categories <= 0))
741 continue;
742
743 for (j = 0; j < numdevs; j++) {
744 int num_match_categories;
745
746 num_match_categories = matches[i].num_match_categories;
747
748 /*
749 * Determine whether or not the current device
750 * matches the given matching expression. This if
751 * statement consists of three components:
752 * - the device type check
753 * - the device interface check
754 * - the passthrough check
755 * If a the matching test is successful, it
756 * decrements the number of matching categories,
757 * and if we've reached the last element that
758 * needed to be matched, the if statement succeeds.
759 *
760 */
761 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
762 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
763 (matches[i].device_type & DEVSTAT_TYPE_MASK))
764 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
765 || (((matches[i].match_fields &
766 DEVSTAT_MATCH_PASS) == 0)
767 && ((devices[j].device_type &
768 DEVSTAT_TYPE_PASS) == 0)))
769 && (--num_match_categories == 0))
770 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
771 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
772 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
773 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
774 || (((matches[i].match_fields &
775 DEVSTAT_MATCH_PASS) == 0)
776 && ((devices[j].device_type &
777 DEVSTAT_TYPE_PASS) == 0)))
778 && (--num_match_categories == 0))
779 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
780 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
781 && (--num_match_categories == 0))) {
782
783 /*
784 * This is probably a non-optimal solution
785 * to the problem that the devices in the
786 * device list will not be in the same
787 * order as the devices in the selection
788 * array.
789 */
790 for (k = 0; k < numdevs; k++) {
791 if ((*dev_select)[k].position == j) {
792 found = 1;
793 break;
794 }
795 }
796
797 /*
798 * There shouldn't be a case where a device
799 * in the device list is not in the
800 * selection list...but it could happen.
801 */
802 if (found != 1) {
803 fprintf(stderr, "selectdevs: couldn't"
804 " find %s%d in selection "
805 "list\n",
806 devices[j].device_name,
807 devices[j].unit_number);
808 break;
809 }
810
811 /*
812 * We do different things based upon the
813 * mode we're in. If we're in add or only
814 * mode, we go ahead and select this device
815 * if it hasn't already been selected. If
816 * it has already been selected, we leave
817 * it alone so we don't mess up the
818 * selection ordering. Manually specified
819 * devices have already been selected, and
820 * they have higher priority than pattern
821 * matched devices. If we're in remove
822 * mode, we de-select the given device and
823 * decrement the selected count.
824 */
825 switch(select_mode) {
826 case DS_SELECT_ADD:
827 case DS_SELECT_ADDONLY:
828 case DS_SELECT_ONLY:
829 if ((*dev_select)[k].selected != 0)
830 break;
831 (*dev_select)[k].selected =
832 ++selection_number;
833 (*num_selected)++;
834 break;
835 case DS_SELECT_REMOVE:
836 (*dev_select)[k].selected = 0;
837 (*num_selected)--;
838 break;
839 }
840 }
841 }
842 }
843
844 /*
845 * Here we implement "top" mode. Devices are sorted in the
846 * selection array based on two criteria: whether or not they are
847 * selected (not selection number, just the fact that they are
848 * selected!) and the number of bytes in the "bytes" field of the
849 * selection structure. The bytes field generally must be kept up
850 * by the user. In the future, it may be maintained by library
851 * functions, but for now the user has to do the work.
852 *
853 * At first glance, it may seem wrong that we don't go through and
854 * select every device in the case where the user hasn't specified
855 * any devices or patterns. In fact, though, it won't make any
856 * difference in the device sorting. In that particular case (i.e.
857 * when we're in "add" or "only" mode, and the user hasn't
858 * specified anything) the first time through no devices will be
859 * selected, so the only criterion used to sort them will be their
860 * performance. The second time through, and every time thereafter,
861 * all devices will be selected, so again selection won't matter.
862 */
863 if (perf_select != 0) {
864
865 /* Sort the device array by throughput */
866 qsort(*dev_select, *num_selections,
867 sizeof(struct device_selection),
868 compare_select);
869
870 if (*num_selected == 0) {
871 /*
872 * Here we select every device in the array, if it
873 * isn't already selected. Because the 'selected'
874 * variable in the selection array entries contains
875 * the selection order, the devstats routine can show
876 * the devices that were selected first.
877 */
878 for (i = 0; i < *num_selections; i++) {
879 if ((*dev_select)[i].selected == 0) {
880 (*dev_select)[i].selected =
881 ++selection_number;
882 (*num_selected)++;
883 }
884 }
885 } else {
886 selection_number = 0;
887 for (i = 0; i < *num_selections; i++) {
888 if ((*dev_select)[i].selected != 0) {
889 (*dev_select)[i].selected =
890 ++selection_number;
891 }
892 }
893 }
894 }
895
896 /*
897 * If we're in the "add" selection mode and if we haven't already
898 * selected maxshowdevs number of devices, go through the array and
899 * select any unselected devices. If we're in "only" mode, we
900 * obviously don't want to select anything other than what the user
901 * specifies. If we're in "remove" mode, it probably isn't a good
902 * idea to go through and select any more devices, since we might
903 * end up selecting something that the user wants removed. Through
904 * more complicated logic, we could actually figure this out, but
905 * that would probably require combining this loop with the various
906 * selections loops above.
907 */
908 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
909 for (i = 0; i < *num_selections; i++)
910 if ((*dev_select)[i].selected == 0) {
911 (*dev_select)[i].selected = ++selection_number;
912 (*num_selected)++;
913 }
914 }
915
916 /*
917 * Look at the number of devices that have been selected. If it
918 * has changed, set the changed variable. Otherwise, if we've
919 * made a backup of the selection list, compare it to the current
920 * selection list to see if the selected devices have changed.
921 */
922 if ((changed == 0) && (old_num_selected != *num_selected))
923 changed = 1;
924 else if ((changed == 0) && (old_dev_select != NULL)) {
925 /*
926 * Now we go through the selection list and we look at
927 * it three different ways.
928 */
929 for (i = 0; (i < *num_selections) && (changed == 0) &&
930 (i < old_num_selections); i++) {
931 /*
932 * If the device at index i in both the new and old
933 * selection arrays has the same device number and
934 * selection status, it hasn't changed. We
935 * continue on to the next index.
936 */
937 if (((*dev_select)[i].device_number ==
938 old_dev_select[i].device_number)
939 && ((*dev_select)[i].selected ==
940 old_dev_select[i].selected))
941 continue;
942
943 /*
944 * Now, if we're still going through the if
945 * statement, the above test wasn't true. So we
946 * check here to see if the device at index i in
947 * the current array is the same as the device at
948 * index i in the old array. If it is, that means
949 * that its selection number has changed. Set
950 * changed to 1 and exit the loop.
951 */
952 else if ((*dev_select)[i].device_number ==
953 old_dev_select[i].device_number) {
954 changed = 1;
955 break;
956 }
957 /*
958 * If we get here, then the device at index i in
959 * the current array isn't the same device as the
960 * device at index i in the old array.
961 */
962 else {
963 found = 0;
964
965 /*
966 * Search through the old selection array
967 * looking for a device with the same
968 * device number as the device at index i
969 * in the current array. If the selection
970 * status is the same, then we mark it as
971 * found. If the selection status isn't
972 * the same, we break out of the loop.
973 * Since found isn't set, changed will be
974 * set to 1 below.
975 */
976 for (j = 0; j < old_num_selections; j++) {
977 if (((*dev_select)[i].device_number ==
978 old_dev_select[j].device_number)
979 && ((*dev_select)[i].selected ==
980 old_dev_select[j].selected)){
981 found = 1;
982 break;
983 }
984 else if ((*dev_select)[i].device_number
985 == old_dev_select[j].device_number)
986 break;
987 }
988 if (found == 0)
989 changed = 1;
990 }
991 }
992 }
993 if (old_dev_select != NULL)
994 free(old_dev_select);
995
996 return(changed);
997 }
998
999 /*
1000 * Comparison routine for qsort() above. Note that the comparison here is
1001 * backwards -- generally, it should return a value to indicate whether
1002 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason
1003 * it returns the opposite is so that the selection array will be sorted in
1004 * order of decreasing performance. We sort on two parameters. The first
1005 * sort key is whether or not one or the other of the devices in question
1006 * has been selected. If one of them has, and the other one has not, the
1007 * selected device is automatically more important than the unselected
1008 * device. If neither device is selected, we judge the devices based upon
1009 * performance.
1010 */
1011 static int
compare_select(const void * arg1,const void * arg2)1012 compare_select(const void *arg1, const void *arg2)
1013 {
1014 if ((((const struct device_selection *)arg1)->selected)
1015 && (((const struct device_selection *)arg2)->selected == 0))
1016 return(-1);
1017 else if ((((const struct device_selection *)arg1)->selected == 0)
1018 && (((const struct device_selection *)arg2)->selected))
1019 return(1);
1020 else if (((const struct device_selection *)arg2)->bytes <
1021 ((const struct device_selection *)arg1)->bytes)
1022 return(-1);
1023 else if (((const struct device_selection *)arg2)->bytes >
1024 ((const struct device_selection *)arg1)->bytes)
1025 return(1);
1026 else
1027 return(0);
1028 }
1029
1030 /*
1031 * Take a string with the general format "arg1,arg2,arg3", and build a
1032 * device matching expression from it.
1033 */
1034 int
devstat_buildmatch(char * match_str,struct devstat_match ** matches,int * num_matches)1035 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1036 int *num_matches)
1037 {
1038 char *tstr[5];
1039 char **tempstr;
1040 int num_args;
1041 int i, j;
1042
1043 /* We can't do much without a string to parse */
1044 if (match_str == NULL) {
1045 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1046 "%s: no match expression", __func__);
1047 return(-1);
1048 }
1049
1050 /*
1051 * Break the (comma delimited) input string out into separate strings.
1052 */
1053 for (tempstr = tstr, num_args = 0;
1054 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1055 if (**tempstr != '\0') {
1056 num_args++;
1057 if (++tempstr >= &tstr[5])
1058 break;
1059 }
1060
1061 /* The user gave us too many type arguments */
1062 if (num_args > 3) {
1063 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1064 "%s: too many type arguments", __func__);
1065 return(-1);
1066 }
1067
1068 if (*num_matches == 0)
1069 *matches = NULL;
1070
1071 *matches = (struct devstat_match *)reallocf(*matches,
1072 sizeof(struct devstat_match) * (*num_matches + 1));
1073
1074 if (*matches == NULL) {
1075 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1076 "%s: Cannot allocate memory for matches list", __func__);
1077 return(-1);
1078 }
1079
1080 /* Make sure the current entry is clear */
1081 bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1082
1083 /*
1084 * Step through the arguments the user gave us and build a device
1085 * matching expression from them.
1086 */
1087 for (i = 0; i < num_args; i++) {
1088 char *tempstr2, *tempstr3;
1089
1090 /*
1091 * Get rid of leading white space.
1092 */
1093 tempstr2 = tstr[i];
1094 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1095 tempstr2++;
1096
1097 /*
1098 * Get rid of trailing white space.
1099 */
1100 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1101
1102 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1103 && (isspace(*tempstr3))) {
1104 *tempstr3 = '\0';
1105 tempstr3--;
1106 }
1107
1108 /*
1109 * Go through the match table comparing the user's
1110 * arguments to known device types, interfaces, etc.
1111 */
1112 for (j = 0; match_table[j].match_str != NULL; j++) {
1113 /*
1114 * We do case-insensitive matching, in case someone
1115 * wants to enter "SCSI" instead of "scsi" or
1116 * something like that. Only compare as many
1117 * characters as are in the string in the match
1118 * table. This should help if someone tries to use
1119 * a super-long match expression.
1120 */
1121 if (strncasecmp(tempstr2, match_table[j].match_str,
1122 strlen(match_table[j].match_str)) == 0) {
1123 /*
1124 * Make sure the user hasn't specified two
1125 * items of the same type, like "da" and
1126 * "cd". One device cannot be both.
1127 */
1128 if (((*matches)[*num_matches].match_fields &
1129 match_table[j].match_field) != 0) {
1130 snprintf(devstat_errbuf,
1131 sizeof(devstat_errbuf),
1132 "%s: cannot have more than "
1133 "one match item in a single "
1134 "category", __func__);
1135 return(-1);
1136 }
1137 /*
1138 * If we've gotten this far, we have a
1139 * winner. Set the appropriate fields in
1140 * the match entry.
1141 */
1142 (*matches)[*num_matches].match_fields |=
1143 match_table[j].match_field;
1144 (*matches)[*num_matches].device_type |=
1145 match_table[j].type;
1146 (*matches)[*num_matches].num_match_categories++;
1147 break;
1148 }
1149 }
1150 /*
1151 * We should have found a match in the above for loop. If
1152 * not, that means the user entered an invalid device type
1153 * or interface.
1154 */
1155 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1156 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1157 "%s: unknown match item \"%s\"", __func__,
1158 tstr[i]);
1159 return(-1);
1160 }
1161 }
1162
1163 (*num_matches)++;
1164
1165 return(0);
1166 }
1167
1168 /*
1169 * Compute a number of device statistics. Only one field is mandatory, and
1170 * that is "current". Everything else is optional. The caller passes in
1171 * pointers to variables to hold the various statistics he desires. If he
1172 * doesn't want a particular staistic, he should pass in a NULL pointer.
1173 * Return values:
1174 * 0 -- success
1175 * -1 -- failure
1176 */
1177 int
compute_stats(struct devstat * current,struct devstat * previous,long double etime,u_int64_t * total_bytes,u_int64_t * total_transfers,u_int64_t * total_blocks,long double * kb_per_transfer,long double * transfers_per_second,long double * mb_per_second,long double * blocks_per_second,long double * ms_per_transaction)1178 compute_stats(struct devstat *current, struct devstat *previous,
1179 long double etime, u_int64_t *total_bytes,
1180 u_int64_t *total_transfers, u_int64_t *total_blocks,
1181 long double *kb_per_transfer, long double *transfers_per_second,
1182 long double *mb_per_second, long double *blocks_per_second,
1183 long double *ms_per_transaction)
1184 {
1185 return(devstat_compute_statistics(current, previous, etime,
1186 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1187 total_bytes,
1188 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1189 total_transfers,
1190 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1191 total_blocks,
1192 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1193 kb_per_transfer,
1194 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1195 transfers_per_second,
1196 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1197 mb_per_second,
1198 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1199 blocks_per_second,
1200 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1201 ms_per_transaction,
1202 DSM_NONE));
1203 }
1204
1205
1206 /* This is 1/2^64 */
1207 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1208
1209 long double
devstat_compute_etime(struct bintime * cur_time,struct bintime * prev_time)1210 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1211 {
1212 long double etime;
1213
1214 etime = cur_time->sec;
1215 etime += cur_time->frac * BINTIME_SCALE;
1216 if (prev_time != NULL) {
1217 etime -= prev_time->sec;
1218 etime -= prev_time->frac * BINTIME_SCALE;
1219 }
1220 return(etime);
1221 }
1222
1223 #define DELTA(field, index) \
1224 (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1225
1226 #define DELTA_T(field) \
1227 devstat_compute_etime(¤t->field, \
1228 (previous ? &previous->field : NULL))
1229
1230 int
devstat_compute_statistics(struct devstat * current,struct devstat * previous,long double etime,...)1231 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1232 long double etime, ...)
1233 {
1234 u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1235 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1236 u_int64_t totaltransfersother, totalblocks, totalblocksread;
1237 u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1238 long double totalduration, totaldurationread, totaldurationwrite;
1239 long double totaldurationfree, totaldurationother;
1240 va_list ap;
1241 devstat_metric metric;
1242 u_int64_t *destu64;
1243 long double *destld;
1244 int retval;
1245
1246 retval = 0;
1247
1248 /*
1249 * current is the only mandatory field.
1250 */
1251 if (current == NULL) {
1252 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1253 "%s: current stats structure was NULL", __func__);
1254 return(-1);
1255 }
1256
1257 totalbytesread = DELTA(bytes, DEVSTAT_READ);
1258 totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1259 totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1260 totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1261
1262 totaltransfersread = DELTA(operations, DEVSTAT_READ);
1263 totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1264 totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1265 totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1266 totaltransfers = totaltransfersread + totaltransferswrite +
1267 totaltransfersother + totaltransfersfree;
1268
1269 totalblocks = totalbytes;
1270 totalblocksread = totalbytesread;
1271 totalblockswrite = totalbyteswrite;
1272 totalblocksfree = totalbytesfree;
1273
1274 if (current->block_size > 0) {
1275 totalblocks /= current->block_size;
1276 totalblocksread /= current->block_size;
1277 totalblockswrite /= current->block_size;
1278 totalblocksfree /= current->block_size;
1279 } else {
1280 totalblocks /= 512;
1281 totalblocksread /= 512;
1282 totalblockswrite /= 512;
1283 totalblocksfree /= 512;
1284 }
1285
1286 totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1287 totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1288 totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1289 totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1290 totalduration = totaldurationread + totaldurationwrite +
1291 totaldurationfree + totaldurationother;
1292
1293 va_start(ap, etime);
1294
1295 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1296
1297 if (metric == DSM_NONE)
1298 break;
1299
1300 if (metric >= DSM_MAX) {
1301 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1302 "%s: metric %d is out of range", __func__,
1303 metric);
1304 retval = -1;
1305 goto bailout;
1306 }
1307
1308 switch (devstat_arg_list[metric].argtype) {
1309 case DEVSTAT_ARG_UINT64:
1310 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1311 break;
1312 case DEVSTAT_ARG_LD:
1313 destld = (long double *)va_arg(ap, long double *);
1314 break;
1315 case DEVSTAT_ARG_SKIP:
1316 destld = (long double *)va_arg(ap, long double *);
1317 break;
1318 default:
1319 retval = -1;
1320 goto bailout;
1321 break; /* NOTREACHED */
1322 }
1323
1324 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1325 continue;
1326
1327 switch (metric) {
1328 case DSM_TOTAL_BYTES:
1329 *destu64 = totalbytes;
1330 break;
1331 case DSM_TOTAL_BYTES_READ:
1332 *destu64 = totalbytesread;
1333 break;
1334 case DSM_TOTAL_BYTES_WRITE:
1335 *destu64 = totalbyteswrite;
1336 break;
1337 case DSM_TOTAL_BYTES_FREE:
1338 *destu64 = totalbytesfree;
1339 break;
1340 case DSM_TOTAL_TRANSFERS:
1341 *destu64 = totaltransfers;
1342 break;
1343 case DSM_TOTAL_TRANSFERS_READ:
1344 *destu64 = totaltransfersread;
1345 break;
1346 case DSM_TOTAL_TRANSFERS_WRITE:
1347 *destu64 = totaltransferswrite;
1348 break;
1349 case DSM_TOTAL_TRANSFERS_FREE:
1350 *destu64 = totaltransfersfree;
1351 break;
1352 case DSM_TOTAL_TRANSFERS_OTHER:
1353 *destu64 = totaltransfersother;
1354 break;
1355 case DSM_TOTAL_BLOCKS:
1356 *destu64 = totalblocks;
1357 break;
1358 case DSM_TOTAL_BLOCKS_READ:
1359 *destu64 = totalblocksread;
1360 break;
1361 case DSM_TOTAL_BLOCKS_WRITE:
1362 *destu64 = totalblockswrite;
1363 break;
1364 case DSM_TOTAL_BLOCKS_FREE:
1365 *destu64 = totalblocksfree;
1366 break;
1367 case DSM_KB_PER_TRANSFER:
1368 *destld = totalbytes;
1369 *destld /= 1024;
1370 if (totaltransfers > 0)
1371 *destld /= totaltransfers;
1372 else
1373 *destld = 0.0;
1374 break;
1375 case DSM_KB_PER_TRANSFER_READ:
1376 *destld = totalbytesread;
1377 *destld /= 1024;
1378 if (totaltransfersread > 0)
1379 *destld /= totaltransfersread;
1380 else
1381 *destld = 0.0;
1382 break;
1383 case DSM_KB_PER_TRANSFER_WRITE:
1384 *destld = totalbyteswrite;
1385 *destld /= 1024;
1386 if (totaltransferswrite > 0)
1387 *destld /= totaltransferswrite;
1388 else
1389 *destld = 0.0;
1390 break;
1391 case DSM_KB_PER_TRANSFER_FREE:
1392 *destld = totalbytesfree;
1393 *destld /= 1024;
1394 if (totaltransfersfree > 0)
1395 *destld /= totaltransfersfree;
1396 else
1397 *destld = 0.0;
1398 break;
1399 case DSM_TRANSFERS_PER_SECOND:
1400 if (etime > 0.0) {
1401 *destld = totaltransfers;
1402 *destld /= etime;
1403 } else
1404 *destld = 0.0;
1405 break;
1406 case DSM_TRANSFERS_PER_SECOND_READ:
1407 if (etime > 0.0) {
1408 *destld = totaltransfersread;
1409 *destld /= etime;
1410 } else
1411 *destld = 0.0;
1412 break;
1413 case DSM_TRANSFERS_PER_SECOND_WRITE:
1414 if (etime > 0.0) {
1415 *destld = totaltransferswrite;
1416 *destld /= etime;
1417 } else
1418 *destld = 0.0;
1419 break;
1420 case DSM_TRANSFERS_PER_SECOND_FREE:
1421 if (etime > 0.0) {
1422 *destld = totaltransfersfree;
1423 *destld /= etime;
1424 } else
1425 *destld = 0.0;
1426 break;
1427 case DSM_TRANSFERS_PER_SECOND_OTHER:
1428 if (etime > 0.0) {
1429 *destld = totaltransfersother;
1430 *destld /= etime;
1431 } else
1432 *destld = 0.0;
1433 break;
1434 case DSM_MB_PER_SECOND:
1435 *destld = totalbytes;
1436 *destld /= 1024 * 1024;
1437 if (etime > 0.0)
1438 *destld /= etime;
1439 else
1440 *destld = 0.0;
1441 break;
1442 case DSM_MB_PER_SECOND_READ:
1443 *destld = totalbytesread;
1444 *destld /= 1024 * 1024;
1445 if (etime > 0.0)
1446 *destld /= etime;
1447 else
1448 *destld = 0.0;
1449 break;
1450 case DSM_MB_PER_SECOND_WRITE:
1451 *destld = totalbyteswrite;
1452 *destld /= 1024 * 1024;
1453 if (etime > 0.0)
1454 *destld /= etime;
1455 else
1456 *destld = 0.0;
1457 break;
1458 case DSM_MB_PER_SECOND_FREE:
1459 *destld = totalbytesfree;
1460 *destld /= 1024 * 1024;
1461 if (etime > 0.0)
1462 *destld /= etime;
1463 else
1464 *destld = 0.0;
1465 break;
1466 case DSM_BLOCKS_PER_SECOND:
1467 *destld = totalblocks;
1468 if (etime > 0.0)
1469 *destld /= etime;
1470 else
1471 *destld = 0.0;
1472 break;
1473 case DSM_BLOCKS_PER_SECOND_READ:
1474 *destld = totalblocksread;
1475 if (etime > 0.0)
1476 *destld /= etime;
1477 else
1478 *destld = 0.0;
1479 break;
1480 case DSM_BLOCKS_PER_SECOND_WRITE:
1481 *destld = totalblockswrite;
1482 if (etime > 0.0)
1483 *destld /= etime;
1484 else
1485 *destld = 0.0;
1486 break;
1487 case DSM_BLOCKS_PER_SECOND_FREE:
1488 *destld = totalblocksfree;
1489 if (etime > 0.0)
1490 *destld /= etime;
1491 else
1492 *destld = 0.0;
1493 break;
1494 /*
1495 * Some devstat callers update the duration and some don't.
1496 * So this will only be accurate if they provide the
1497 * duration.
1498 */
1499 case DSM_MS_PER_TRANSACTION:
1500 if (totaltransfers > 0) {
1501 *destld = totalduration;
1502 *destld /= totaltransfers;
1503 *destld *= 1000;
1504 } else
1505 *destld = 0.0;
1506 break;
1507 case DSM_MS_PER_TRANSACTION_READ:
1508 if (totaltransfersread > 0) {
1509 *destld = totaldurationread;
1510 *destld /= totaltransfersread;
1511 *destld *= 1000;
1512 } else
1513 *destld = 0.0;
1514 break;
1515 case DSM_MS_PER_TRANSACTION_WRITE:
1516 if (totaltransferswrite > 0) {
1517 *destld = totaldurationwrite;
1518 *destld /= totaltransferswrite;
1519 *destld *= 1000;
1520 } else
1521 *destld = 0.0;
1522 break;
1523 case DSM_MS_PER_TRANSACTION_FREE:
1524 if (totaltransfersfree > 0) {
1525 *destld = totaldurationfree;
1526 *destld /= totaltransfersfree;
1527 *destld *= 1000;
1528 } else
1529 *destld = 0.0;
1530 break;
1531 case DSM_MS_PER_TRANSACTION_OTHER:
1532 if (totaltransfersother > 0) {
1533 *destld = totaldurationother;
1534 *destld /= totaltransfersother;
1535 *destld *= 1000;
1536 } else
1537 *destld = 0.0;
1538 break;
1539 case DSM_BUSY_PCT:
1540 *destld = DELTA_T(busy_time);
1541 if (*destld < 0)
1542 *destld = 0;
1543 *destld /= etime;
1544 *destld *= 100;
1545 if (*destld < 0)
1546 *destld = 0;
1547 break;
1548 case DSM_QUEUE_LENGTH:
1549 *destu64 = current->start_count - current->end_count;
1550 break;
1551 case DSM_TOTAL_DURATION:
1552 *destld = totalduration;
1553 break;
1554 case DSM_TOTAL_DURATION_READ:
1555 *destld = totaldurationread;
1556 break;
1557 case DSM_TOTAL_DURATION_WRITE:
1558 *destld = totaldurationwrite;
1559 break;
1560 case DSM_TOTAL_DURATION_FREE:
1561 *destld = totaldurationfree;
1562 break;
1563 case DSM_TOTAL_DURATION_OTHER:
1564 *destld = totaldurationother;
1565 break;
1566 case DSM_TOTAL_BUSY_TIME:
1567 *destld = DELTA_T(busy_time);
1568 break;
1569 /*
1570 * XXX: comment out the default block to see if any case's are missing.
1571 */
1572 #if 1
1573 default:
1574 /*
1575 * This shouldn't happen, since we should have
1576 * caught any out of range metrics at the top of
1577 * the loop.
1578 */
1579 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1580 "%s: unknown metric %d", __func__, metric);
1581 retval = -1;
1582 goto bailout;
1583 break; /* NOTREACHED */
1584 #endif
1585 }
1586 }
1587
1588 bailout:
1589
1590 va_end(ap);
1591 return(retval);
1592 }
1593
1594 static int
readkmem(kvm_t * kd,unsigned long addr,void * buf,size_t nbytes)1595 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1596 {
1597
1598 if (kvm_read(kd, addr, buf, nbytes) == -1) {
1599 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1600 "%s: error reading value (kvm_read): %s", __func__,
1601 kvm_geterr(kd));
1602 return(-1);
1603 }
1604 return(0);
1605 }
1606
1607 static int
readkmem_nl(kvm_t * kd,const char * name,void * buf,size_t nbytes)1608 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1609 {
1610 struct nlist nl[2];
1611
1612 nl[0].n_name = (char *)name;
1613 nl[1].n_name = NULL;
1614
1615 if (kvm_nlist(kd, nl) == -1) {
1616 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1617 "%s: error getting name list (kvm_nlist): %s",
1618 __func__, kvm_geterr(kd));
1619 return(-1);
1620 }
1621 return(readkmem(kd, nl[0].n_value, buf, nbytes));
1622 }
1623
1624 /*
1625 * This duplicates the functionality of the kernel sysctl handler for poking
1626 * through crash dumps.
1627 */
1628 static char *
get_devstat_kvm(kvm_t * kd)1629 get_devstat_kvm(kvm_t *kd)
1630 {
1631 int i, wp;
1632 long gen;
1633 struct devstat *nds;
1634 struct devstat ds;
1635 struct devstatlist dhead;
1636 int num_devs;
1637 char *rv = NULL;
1638
1639 if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1640 return(NULL);
1641 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1642 return(NULL);
1643
1644 nds = STAILQ_FIRST(&dhead);
1645
1646 if ((rv = malloc(sizeof(gen))) == NULL) {
1647 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1648 "%s: out of memory (initial malloc failed)",
1649 __func__);
1650 return(NULL);
1651 }
1652 gen = devstat_getgeneration(kd);
1653 memcpy(rv, &gen, sizeof(gen));
1654 wp = sizeof(gen);
1655 /*
1656 * Now push out all the devices.
1657 */
1658 for (i = 0; (nds != NULL) && (i < num_devs);
1659 nds = STAILQ_NEXT(nds, dev_links), i++) {
1660 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1661 free(rv);
1662 return(NULL);
1663 }
1664 nds = &ds;
1665 rv = (char *)reallocf(rv, sizeof(gen) +
1666 sizeof(ds) * (i + 1));
1667 if (rv == NULL) {
1668 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1669 "%s: out of memory (malloc failed)",
1670 __func__);
1671 return(NULL);
1672 }
1673 memcpy(rv + wp, &ds, sizeof(ds));
1674 wp += sizeof(ds);
1675 }
1676 return(rv);
1677 }
1678