1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 #include <sys/cdefs.h>
7 #ifndef lint
8 #ifndef NOID
9 static char elsieid[] __unused = "@(#)localtime.c 8.14";
10 #endif /* !defined NOID */
11 #endif /* !defined lint */
12 __FBSDID("$FreeBSD$");
13
14 /*
15 ** Leap second handling from Bradley White.
16 ** POSIX-style TZ environment variable handling from Guy Harris.
17 */
18
19 /*LINTLIBRARY*/
20
21 #include "namespace.h"
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <errno.h>
25 #include <fcntl.h>
26 #include <pthread.h>
27 #include "private.h"
28 #include "un-namespace.h"
29
30 #include "tzfile.h"
31 #include "float.h" /* for FLT_MAX and DBL_MAX */
32
33 #ifndef TZ_ABBR_MAX_LEN
34 #define TZ_ABBR_MAX_LEN 16
35 #endif /* !defined TZ_ABBR_MAX_LEN */
36
37 #ifndef TZ_ABBR_CHAR_SET
38 #define TZ_ABBR_CHAR_SET \
39 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
40 #endif /* !defined TZ_ABBR_CHAR_SET */
41
42 #ifndef TZ_ABBR_ERR_CHAR
43 #define TZ_ABBR_ERR_CHAR '_'
44 #endif /* !defined TZ_ABBR_ERR_CHAR */
45
46 #include "libc_private.h"
47
48 #define _MUTEX_LOCK(x) if (__isthreaded) _pthread_mutex_lock(x)
49 #define _MUTEX_UNLOCK(x) if (__isthreaded) _pthread_mutex_unlock(x)
50
51 #define _RWLOCK_RDLOCK(x) \
52 do { \
53 if (__isthreaded) _pthread_rwlock_rdlock(x); \
54 } while (0)
55
56 #define _RWLOCK_WRLOCK(x) \
57 do { \
58 if (__isthreaded) _pthread_rwlock_wrlock(x); \
59 } while (0)
60
61 #define _RWLOCK_UNLOCK(x) \
62 do { \
63 if (__isthreaded) _pthread_rwlock_unlock(x); \
64 } while (0)
65
66 /*
67 ** SunOS 4.1.1 headers lack O_BINARY.
68 */
69
70 #ifdef O_BINARY
71 #define OPEN_MODE (O_RDONLY | O_BINARY)
72 #endif /* defined O_BINARY */
73 #ifndef O_BINARY
74 #define OPEN_MODE O_RDONLY
75 #endif /* !defined O_BINARY */
76
77 #ifndef WILDABBR
78 /*
79 ** Someone might make incorrect use of a time zone abbreviation:
80 ** 1. They might reference tzname[0] before calling tzset (explicitly
81 ** or implicitly).
82 ** 2. They might reference tzname[1] before calling tzset (explicitly
83 ** or implicitly).
84 ** 3. They might reference tzname[1] after setting to a time zone
85 ** in which Daylight Saving Time is never observed.
86 ** 4. They might reference tzname[0] after setting to a time zone
87 ** in which Standard Time is never observed.
88 ** 5. They might reference tm.TM_ZONE after calling offtime.
89 ** What's best to do in the above cases is open to debate;
90 ** for now, we just set things up so that in any of the five cases
91 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
92 ** string "tzname[0] used before set", and similarly for the other cases.
93 ** And another: initialize tzname[0] to "ERA", with an explanation in the
94 ** manual page of what this "time zone abbreviation" means (doing this so
95 ** that tzname[0] has the "normal" length of three characters).
96 */
97 #define WILDABBR " "
98 #endif /* !defined WILDABBR */
99
100 static char wildabbr[] = WILDABBR;
101
102 /*
103 * In June 2004 it was decided UTC was a more appropriate default time
104 * zone than GMT.
105 */
106
107 static const char gmt[] = "UTC";
108
109 /*
110 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
111 ** We default to US rules as of 1999-08-17.
112 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
113 ** implementation dependent; for historical reasons, US rules are a
114 ** common default.
115 */
116 #ifndef TZDEFRULESTRING
117 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
118 #endif /* !defined TZDEFDST */
119
120 struct ttinfo { /* time type information */
121 long tt_gmtoff; /* UTC offset in seconds */
122 int tt_isdst; /* used to set tm_isdst */
123 int tt_abbrind; /* abbreviation list index */
124 int tt_ttisstd; /* TRUE if transition is std time */
125 int tt_ttisgmt; /* TRUE if transition is UTC */
126 };
127
128 struct lsinfo { /* leap second information */
129 time_t ls_trans; /* transition time */
130 long ls_corr; /* correction to apply */
131 };
132
133 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
134
135 #ifdef TZNAME_MAX
136 #define MY_TZNAME_MAX TZNAME_MAX
137 #endif /* defined TZNAME_MAX */
138 #ifndef TZNAME_MAX
139 #define MY_TZNAME_MAX 255
140 #endif /* !defined TZNAME_MAX */
141
142 struct state {
143 int leapcnt;
144 int timecnt;
145 int typecnt;
146 int charcnt;
147 int goback;
148 int goahead;
149 time_t ats[TZ_MAX_TIMES];
150 unsigned char types[TZ_MAX_TIMES];
151 struct ttinfo ttis[TZ_MAX_TYPES];
152 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
153 (2 * (MY_TZNAME_MAX + 1)))];
154 struct lsinfo lsis[TZ_MAX_LEAPS];
155 };
156
157 struct rule {
158 int r_type; /* type of rule--see below */
159 int r_day; /* day number of rule */
160 int r_week; /* week number of rule */
161 int r_mon; /* month number of rule */
162 long r_time; /* transition time of rule */
163 };
164
165 #define JULIAN_DAY 0 /* Jn - Julian day */
166 #define DAY_OF_YEAR 1 /* n - day of year */
167 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
168
169 /*
170 ** Prototypes for static functions.
171 */
172
173 static long detzcode(const char * codep);
174 static time_t detzcode64(const char * codep);
175 static int differ_by_repeat(time_t t1, time_t t0);
176 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
177 static const char * getqzname(const char * strp, const int delim)
178 ATTRIBUTE_PURE;
179 static const char * getnum(const char * strp, int * nump, int min,
180 int max);
181 static const char * getsecs(const char * strp, long * secsp);
182 static const char * getoffset(const char * strp, long * offsetp);
183 static const char * getrule(const char * strp, struct rule * rulep);
184 static void gmtload(struct state * sp);
185 static struct tm * gmtsub(const time_t * timep, long offset,
186 struct tm * tmp);
187 static struct tm * localsub(const time_t * timep, long offset,
188 struct tm * tmp);
189 static int increment_overflow(int * number, int delta);
190 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
191 static int long_increment_overflow(long * number, int delta);
192 static int long_normalize_overflow(long * tensptr,
193 int * unitsptr, int base);
194 static int normalize_overflow(int * tensptr, int * unitsptr,
195 int base);
196 static void settzname(void);
197 static time_t time1(struct tm * tmp,
198 struct tm * (*funcp)(const time_t *,
199 long, struct tm *),
200 long offset);
201 static time_t time2(struct tm *tmp,
202 struct tm * (*funcp)(const time_t *,
203 long, struct tm*),
204 long offset, int * okayp);
205 static time_t time2sub(struct tm *tmp,
206 struct tm * (*funcp)(const time_t *,
207 long, struct tm*),
208 long offset, int * okayp, int do_norm_secs);
209 static struct tm * timesub(const time_t * timep, long offset,
210 const struct state * sp, struct tm * tmp);
211 static int tmcomp(const struct tm * atmp,
212 const struct tm * btmp);
213 static time_t transtime(time_t janfirst, int year,
214 const struct rule * rulep, long offset)
215 ATTRIBUTE_PURE;
216 static int typesequiv(const struct state * sp, int a, int b);
217 static int tzload(const char * name, struct state * sp,
218 int doextend);
219 static int tzparse(const char * name, struct state * sp,
220 int lastditch);
221
222 #ifdef ALL_STATE
223 static struct state * lclptr;
224 static struct state * gmtptr;
225 #endif /* defined ALL_STATE */
226
227 #ifndef ALL_STATE
228 static struct state lclmem;
229 static struct state gmtmem;
230 #define lclptr (&lclmem)
231 #define gmtptr (&gmtmem)
232 #endif /* State Farm */
233
234 #ifndef TZ_STRLEN_MAX
235 #define TZ_STRLEN_MAX 255
236 #endif /* !defined TZ_STRLEN_MAX */
237
238 static char lcl_TZname[TZ_STRLEN_MAX + 1];
239 static int lcl_is_set;
240 static pthread_once_t gmt_once = PTHREAD_ONCE_INIT;
241 static pthread_rwlock_t lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
242 static pthread_once_t gmtime_once = PTHREAD_ONCE_INIT;
243 static pthread_key_t gmtime_key;
244 static int gmtime_key_error;
245 static pthread_once_t localtime_once = PTHREAD_ONCE_INIT;
246 static pthread_key_t localtime_key;
247 static int localtime_key_error;
248
249 char * tzname[2] = {
250 wildabbr,
251 wildabbr
252 };
253
254 /*
255 ** Section 4.12.3 of X3.159-1989 requires that
256 ** Except for the strftime function, these functions [asctime,
257 ** ctime, gmtime, localtime] return values in one of two static
258 ** objects: a broken-down time structure and an array of char.
259 ** Thanks to Paul Eggert for noting this.
260 */
261
262 static struct tm tm;
263
264 #ifdef USG_COMPAT
265 time_t timezone = 0;
266 int daylight = 0;
267 #endif /* defined USG_COMPAT */
268
269 #ifdef ALTZONE
270 time_t altzone = 0;
271 #endif /* defined ALTZONE */
272
273 static long
detzcode(const char * const codep)274 detzcode(const char *const codep)
275 {
276 long result;
277 int i;
278
279 result = (codep[0] & 0x80) ? ~0L : 0;
280 for (i = 0; i < 4; ++i)
281 result = (result << 8) | (codep[i] & 0xff);
282 return result;
283 }
284
285 static time_t
detzcode64(const char * const codep)286 detzcode64(const char *const codep)
287 {
288 register time_t result;
289 register int i;
290
291 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0;
292 for (i = 0; i < 8; ++i)
293 result = result * 256 + (codep[i] & 0xff);
294 return result;
295 }
296
297 static void
settzname(void)298 settzname(void)
299 {
300 struct state * sp = lclptr;
301 int i;
302
303 tzname[0] = wildabbr;
304 tzname[1] = wildabbr;
305 #ifdef USG_COMPAT
306 daylight = 0;
307 timezone = 0;
308 #endif /* defined USG_COMPAT */
309 #ifdef ALTZONE
310 altzone = 0;
311 #endif /* defined ALTZONE */
312 #ifdef ALL_STATE
313 if (sp == NULL) {
314 tzname[0] = tzname[1] = gmt;
315 return;
316 }
317 #endif /* defined ALL_STATE */
318 /*
319 ** And to get the latest zone names into tzname. . .
320 */
321 for (i = 0; i < sp->typecnt; ++i) {
322 const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
323
324 tzname[ttisp->tt_isdst] =
325 &sp->chars[ttisp->tt_abbrind];
326 #ifdef USG_COMPAT
327 if (ttisp->tt_isdst)
328 daylight = 1;
329 if (!ttisp->tt_isdst)
330 timezone = -(ttisp->tt_gmtoff);
331 #endif /* defined USG_COMPAT */
332 #ifdef ALTZONE
333 if (ttisp->tt_isdst)
334 altzone = -(ttisp->tt_gmtoff);
335 #endif /* defined ALTZONE */
336 }
337 /*
338 ** Finally, scrub the abbreviations.
339 ** First, replace bogus characters.
340 */
341 for (i = 0; i < sp->charcnt; ++i)
342 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
343 sp->chars[i] = TZ_ABBR_ERR_CHAR;
344 /*
345 ** Second, truncate long abbreviations.
346 */
347 for (i = 0; i < sp->typecnt; ++i) {
348 register const struct ttinfo * const ttisp = &sp->ttis[i];
349 register char * cp = &sp->chars[ttisp->tt_abbrind];
350
351 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
352 strcmp(cp, GRANDPARENTED) != 0)
353 *(cp + TZ_ABBR_MAX_LEN) = '\0';
354 }
355 }
356
357 static int
differ_by_repeat(const time_t t1,const time_t t0)358 differ_by_repeat(const time_t t1, const time_t t0)
359 {
360 int_fast64_t _t0 = t0;
361 int_fast64_t _t1 = t1;
362
363 if (TYPE_INTEGRAL(time_t) &&
364 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
365 return 0;
366 //turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
367 return _t1 - _t0 == SECSPERREPEAT;
368 }
369
370 static int
tzload(name,sp,doextend)371 tzload(name, sp, doextend)
372 const char * name;
373 struct state * const sp;
374 register const int doextend;
375 {
376 const char * p;
377 int i;
378 int fid;
379 int stored;
380 int nread;
381 int res;
382 union {
383 struct tzhead tzhead;
384 char buf[2 * sizeof(struct tzhead) +
385 2 * sizeof *sp +
386 4 * TZ_MAX_TIMES];
387 } *u;
388
389 u = NULL;
390 res = -1;
391 sp->goback = sp->goahead = FALSE;
392
393 if (name != NULL && issetugid() != 0)
394 if ((name[0] == ':' && name[1] == '/') ||
395 name[0] == '/' || strchr(name, '.'))
396 name = NULL;
397 if (name == NULL && (name = TZDEFAULT) == NULL)
398 return -1;
399 {
400 struct stat stab;
401 /*
402 ** Section 4.9.1 of the C standard says that
403 ** "FILENAME_MAX expands to an integral constant expression
404 ** that is the size needed for an array of char large enough
405 ** to hold the longest file name string that the implementation
406 ** guarantees can be opened."
407 */
408 char *fullname;
409
410 fullname = malloc(FILENAME_MAX + 1);
411 if (fullname == NULL)
412 goto out;
413
414 if (name[0] == ':')
415 ++name;
416 if (name[0] != '/') {
417 if ((p = TZDIR) == NULL) {
418 free(fullname);
419 return -1;
420 }
421 if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
422 free(fullname);
423 return -1;
424 }
425 (void) strcpy(fullname, p);
426 (void) strcat(fullname, "/");
427 (void) strcat(fullname, name);
428 name = fullname;
429 }
430 if ((fid = _open(name, OPEN_MODE)) == -1) {
431 free(fullname);
432 return -1;
433 }
434 if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
435 free(fullname);
436 _close(fid);
437 return -1;
438 }
439 free(fullname);
440 }
441 u = malloc(sizeof(*u));
442 if (u == NULL)
443 goto out;
444 nread = _read(fid, u->buf, sizeof u->buf);
445 if (_close(fid) < 0 || nread <= 0)
446 goto out;
447 for (stored = 4; stored <= 8; stored *= 2) {
448 int ttisstdcnt;
449 int ttisgmtcnt;
450
451 ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
452 ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
453 sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
454 sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
455 sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
456 sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
457 p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
458 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
459 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
460 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
461 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
462 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
463 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
464 goto out;
465 if (nread - (p - u->buf) <
466 sp->timecnt * stored + /* ats */
467 sp->timecnt + /* types */
468 sp->typecnt * 6 + /* ttinfos */
469 sp->charcnt + /* chars */
470 sp->leapcnt * (stored + 4) + /* lsinfos */
471 ttisstdcnt + /* ttisstds */
472 ttisgmtcnt) /* ttisgmts */
473 goto out;
474 for (i = 0; i < sp->timecnt; ++i) {
475 sp->ats[i] = (stored == 4) ?
476 detzcode(p) : detzcode64(p);
477 p += stored;
478 }
479 for (i = 0; i < sp->timecnt; ++i) {
480 sp->types[i] = (unsigned char) *p++;
481 if (sp->types[i] >= sp->typecnt)
482 goto out;
483 }
484 for (i = 0; i < sp->typecnt; ++i) {
485 struct ttinfo * ttisp;
486
487 ttisp = &sp->ttis[i];
488 ttisp->tt_gmtoff = detzcode(p);
489 p += 4;
490 ttisp->tt_isdst = (unsigned char) *p++;
491 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
492 goto out;
493 ttisp->tt_abbrind = (unsigned char) *p++;
494 if (ttisp->tt_abbrind < 0 ||
495 ttisp->tt_abbrind > sp->charcnt)
496 goto out;
497 }
498 for (i = 0; i < sp->charcnt; ++i)
499 sp->chars[i] = *p++;
500 sp->chars[i] = '\0'; /* ensure '\0' at end */
501 for (i = 0; i < sp->leapcnt; ++i) {
502 struct lsinfo * lsisp;
503
504 lsisp = &sp->lsis[i];
505 lsisp->ls_trans = (stored == 4) ?
506 detzcode(p) : detzcode64(p);
507 p += stored;
508 lsisp->ls_corr = detzcode(p);
509 p += 4;
510 }
511 for (i = 0; i < sp->typecnt; ++i) {
512 struct ttinfo * ttisp;
513
514 ttisp = &sp->ttis[i];
515 if (ttisstdcnt == 0)
516 ttisp->tt_ttisstd = FALSE;
517 else {
518 ttisp->tt_ttisstd = *p++;
519 if (ttisp->tt_ttisstd != TRUE &&
520 ttisp->tt_ttisstd != FALSE)
521 goto out;
522 }
523 }
524 for (i = 0; i < sp->typecnt; ++i) {
525 struct ttinfo * ttisp;
526
527 ttisp = &sp->ttis[i];
528 if (ttisgmtcnt == 0)
529 ttisp->tt_ttisgmt = FALSE;
530 else {
531 ttisp->tt_ttisgmt = *p++;
532 if (ttisp->tt_ttisgmt != TRUE &&
533 ttisp->tt_ttisgmt != FALSE)
534 goto out;
535 }
536 }
537 /*
538 ** Out-of-sort ats should mean we're running on a
539 ** signed time_t system but using a data file with
540 ** unsigned values (or vice versa).
541 */
542 for (i = 0; i < sp->timecnt - 2; ++i)
543 if (sp->ats[i] > sp->ats[i + 1]) {
544 ++i;
545 if (TYPE_SIGNED(time_t)) {
546 /*
547 ** Ignore the end (easy).
548 */
549 sp->timecnt = i;
550 } else {
551 /*
552 ** Ignore the beginning (harder).
553 */
554 register int j;
555
556 for (j = 0; j + i < sp->timecnt; ++j) {
557 sp->ats[j] = sp->ats[j + i];
558 sp->types[j] = sp->types[j + i];
559 }
560 sp->timecnt = j;
561 }
562 break;
563 }
564 /*
565 ** If this is an old file, we're done.
566 */
567 if (u->tzhead.tzh_version[0] == '\0')
568 break;
569 nread -= p - u->buf;
570 for (i = 0; i < nread; ++i)
571 u->buf[i] = p[i];
572 /*
573 ** If this is a narrow integer time_t system, we're done.
574 */
575 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
576 break;
577 }
578 if (doextend && nread > 2 &&
579 u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
580 sp->typecnt + 2 <= TZ_MAX_TYPES) {
581 struct state *ts;
582 register int result;
583
584 ts = malloc(sizeof(*ts));
585 if (ts == NULL)
586 goto out;
587 u->buf[nread - 1] = '\0';
588 result = tzparse(&u->buf[1], ts, FALSE);
589 if (result == 0 && ts->typecnt == 2 &&
590 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
591 for (i = 0; i < 2; ++i)
592 ts->ttis[i].tt_abbrind +=
593 sp->charcnt;
594 for (i = 0; i < ts->charcnt; ++i)
595 sp->chars[sp->charcnt++] =
596 ts->chars[i];
597 i = 0;
598 while (i < ts->timecnt &&
599 ts->ats[i] <=
600 sp->ats[sp->timecnt - 1])
601 ++i;
602 while (i < ts->timecnt &&
603 sp->timecnt < TZ_MAX_TIMES) {
604 sp->ats[sp->timecnt] =
605 ts->ats[i];
606 sp->types[sp->timecnt] =
607 sp->typecnt +
608 ts->types[i];
609 ++sp->timecnt;
610 ++i;
611 }
612 sp->ttis[sp->typecnt++] = ts->ttis[0];
613 sp->ttis[sp->typecnt++] = ts->ttis[1];
614 }
615 free(ts);
616 }
617 if (sp->timecnt > 1) {
618 for (i = 1; i < sp->timecnt; ++i)
619 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
620 differ_by_repeat(sp->ats[i], sp->ats[0])) {
621 sp->goback = TRUE;
622 break;
623 }
624 for (i = sp->timecnt - 2; i >= 0; --i)
625 if (typesequiv(sp, sp->types[sp->timecnt - 1],
626 sp->types[i]) &&
627 differ_by_repeat(sp->ats[sp->timecnt - 1],
628 sp->ats[i])) {
629 sp->goahead = TRUE;
630 break;
631 }
632 }
633 res = 0;
634 out:
635 free(u);
636 return (res);
637 }
638
639 static int
typesequiv(sp,a,b)640 typesequiv(sp, a, b)
641 const struct state * const sp;
642 const int a;
643 const int b;
644 {
645 register int result;
646
647 if (sp == NULL ||
648 a < 0 || a >= sp->typecnt ||
649 b < 0 || b >= sp->typecnt)
650 result = FALSE;
651 else {
652 register const struct ttinfo * ap = &sp->ttis[a];
653 register const struct ttinfo * bp = &sp->ttis[b];
654 result = ap->tt_gmtoff == bp->tt_gmtoff &&
655 ap->tt_isdst == bp->tt_isdst &&
656 ap->tt_ttisstd == bp->tt_ttisstd &&
657 ap->tt_ttisgmt == bp->tt_ttisgmt &&
658 strcmp(&sp->chars[ap->tt_abbrind],
659 &sp->chars[bp->tt_abbrind]) == 0;
660 }
661 return result;
662 }
663
664 static const int mon_lengths[2][MONSPERYEAR] = {
665 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
666 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
667 };
668
669 static const int year_lengths[2] = {
670 DAYSPERNYEAR, DAYSPERLYEAR
671 };
672
673 /*
674 ** Given a pointer into a time zone string, scan until a character that is not
675 ** a valid character in a zone name is found. Return a pointer to that
676 ** character.
677 */
678
679 static const char *
getzname(strp)680 getzname(strp)
681 const char * strp;
682 {
683 char c;
684
685 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
686 c != '+')
687 ++strp;
688 return strp;
689 }
690
691 /*
692 ** Given a pointer into an extended time zone string, scan until the ending
693 ** delimiter of the zone name is located. Return a pointer to the delimiter.
694 **
695 ** As with getzname above, the legal character set is actually quite
696 ** restricted, with other characters producing undefined results.
697 ** We don't do any checking here; checking is done later in common-case code.
698 */
699
700 static const char *
getqzname(register const char * strp,const int delim)701 getqzname(register const char *strp, const int delim)
702 {
703 register int c;
704
705 while ((c = *strp) != '\0' && c != delim)
706 ++strp;
707 return strp;
708 }
709
710 /*
711 ** Given a pointer into a time zone string, extract a number from that string.
712 ** Check that the number is within a specified range; if it is not, return
713 ** NULL.
714 ** Otherwise, return a pointer to the first character not part of the number.
715 */
716
717 static const char *
getnum(strp,nump,min,max)718 getnum(strp, nump, min, max)
719 const char * strp;
720 int * const nump;
721 const int min;
722 const int max;
723 {
724 char c;
725 int num;
726
727 if (strp == NULL || !is_digit(c = *strp))
728 return NULL;
729 num = 0;
730 do {
731 num = num * 10 + (c - '0');
732 if (num > max)
733 return NULL; /* illegal value */
734 c = *++strp;
735 } while (is_digit(c));
736 if (num < min)
737 return NULL; /* illegal value */
738 *nump = num;
739 return strp;
740 }
741
742 /*
743 ** Given a pointer into a time zone string, extract a number of seconds,
744 ** in hh[:mm[:ss]] form, from the string.
745 ** If any error occurs, return NULL.
746 ** Otherwise, return a pointer to the first character not part of the number
747 ** of seconds.
748 */
749
750 static const char *
getsecs(strp,secsp)751 getsecs(strp, secsp)
752 const char * strp;
753 long * const secsp;
754 {
755 int num;
756
757 /*
758 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
759 ** "M10.4.6/26", which does not conform to Posix,
760 ** but which specifies the equivalent of
761 ** ``02:00 on the first Sunday on or after 23 Oct''.
762 */
763 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
764 if (strp == NULL)
765 return NULL;
766 *secsp = num * (long) SECSPERHOUR;
767 if (*strp == ':') {
768 ++strp;
769 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
770 if (strp == NULL)
771 return NULL;
772 *secsp += num * SECSPERMIN;
773 if (*strp == ':') {
774 ++strp;
775 /* `SECSPERMIN' allows for leap seconds. */
776 strp = getnum(strp, &num, 0, SECSPERMIN);
777 if (strp == NULL)
778 return NULL;
779 *secsp += num;
780 }
781 }
782 return strp;
783 }
784
785 /*
786 ** Given a pointer into a time zone string, extract an offset, in
787 ** [+-]hh[:mm[:ss]] form, from the string.
788 ** If any error occurs, return NULL.
789 ** Otherwise, return a pointer to the first character not part of the time.
790 */
791
792 static const char *
getoffset(strp,offsetp)793 getoffset(strp, offsetp)
794 const char * strp;
795 long * const offsetp;
796 {
797 int neg = 0;
798
799 if (*strp == '-') {
800 neg = 1;
801 ++strp;
802 } else if (*strp == '+')
803 ++strp;
804 strp = getsecs(strp, offsetp);
805 if (strp == NULL)
806 return NULL; /* illegal time */
807 if (neg)
808 *offsetp = -*offsetp;
809 return strp;
810 }
811
812 /*
813 ** Given a pointer into a time zone string, extract a rule in the form
814 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
815 ** If a valid rule is not found, return NULL.
816 ** Otherwise, return a pointer to the first character not part of the rule.
817 */
818
819 static const char *
getrule(strp,rulep)820 getrule(strp, rulep)
821 const char * strp;
822 struct rule * const rulep;
823 {
824 if (*strp == 'J') {
825 /*
826 ** Julian day.
827 */
828 rulep->r_type = JULIAN_DAY;
829 ++strp;
830 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
831 } else if (*strp == 'M') {
832 /*
833 ** Month, week, day.
834 */
835 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
836 ++strp;
837 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
838 if (strp == NULL)
839 return NULL;
840 if (*strp++ != '.')
841 return NULL;
842 strp = getnum(strp, &rulep->r_week, 1, 5);
843 if (strp == NULL)
844 return NULL;
845 if (*strp++ != '.')
846 return NULL;
847 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
848 } else if (is_digit(*strp)) {
849 /*
850 ** Day of year.
851 */
852 rulep->r_type = DAY_OF_YEAR;
853 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
854 } else return NULL; /* invalid format */
855 if (strp == NULL)
856 return NULL;
857 if (*strp == '/') {
858 /*
859 ** Time specified.
860 */
861 ++strp;
862 strp = getsecs(strp, &rulep->r_time);
863 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
864 return strp;
865 }
866
867 /*
868 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
869 ** year, a rule, and the offset from UTC at the time that rule takes effect,
870 ** calculate the Epoch-relative time that rule takes effect.
871 */
872
873 static time_t
transtime(janfirst,year,rulep,offset)874 transtime(janfirst, year, rulep, offset)
875 const time_t janfirst;
876 const int year;
877 const struct rule * const rulep;
878 const long offset;
879 {
880 int leapyear;
881 time_t value;
882 int i;
883 int d, m1, yy0, yy1, yy2, dow;
884
885 INITIALIZE(value);
886 leapyear = isleap(year);
887 switch (rulep->r_type) {
888
889 case JULIAN_DAY:
890 /*
891 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
892 ** years.
893 ** In non-leap years, or if the day number is 59 or less, just
894 ** add SECSPERDAY times the day number-1 to the time of
895 ** January 1, midnight, to get the day.
896 */
897 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
898 if (leapyear && rulep->r_day >= 60)
899 value += SECSPERDAY;
900 break;
901
902 case DAY_OF_YEAR:
903 /*
904 ** n - day of year.
905 ** Just add SECSPERDAY times the day number to the time of
906 ** January 1, midnight, to get the day.
907 */
908 value = janfirst + rulep->r_day * SECSPERDAY;
909 break;
910
911 case MONTH_NTH_DAY_OF_WEEK:
912 /*
913 ** Mm.n.d - nth "dth day" of month m.
914 */
915 value = janfirst;
916 for (i = 0; i < rulep->r_mon - 1; ++i)
917 value += mon_lengths[leapyear][i] * SECSPERDAY;
918
919 /*
920 ** Use Zeller's Congruence to get day-of-week of first day of
921 ** month.
922 */
923 m1 = (rulep->r_mon + 9) % 12 + 1;
924 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
925 yy1 = yy0 / 100;
926 yy2 = yy0 % 100;
927 dow = ((26 * m1 - 2) / 10 +
928 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
929 if (dow < 0)
930 dow += DAYSPERWEEK;
931
932 /*
933 ** "dow" is the day-of-week of the first day of the month. Get
934 ** the day-of-month (zero-origin) of the first "dow" day of the
935 ** month.
936 */
937 d = rulep->r_day - dow;
938 if (d < 0)
939 d += DAYSPERWEEK;
940 for (i = 1; i < rulep->r_week; ++i) {
941 if (d + DAYSPERWEEK >=
942 mon_lengths[leapyear][rulep->r_mon - 1])
943 break;
944 d += DAYSPERWEEK;
945 }
946
947 /*
948 ** "d" is the day-of-month (zero-origin) of the day we want.
949 */
950 value += d * SECSPERDAY;
951 break;
952 }
953
954 /*
955 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
956 ** question. To get the Epoch-relative time of the specified local
957 ** time on that day, add the transition time and the current offset
958 ** from UTC.
959 */
960 return value + rulep->r_time + offset;
961 }
962
963 /*
964 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
965 ** appropriate.
966 */
967
968 static int
tzparse(name,sp,lastditch)969 tzparse(name, sp, lastditch)
970 const char * name;
971 struct state * const sp;
972 const int lastditch;
973 {
974 const char * stdname;
975 const char * dstname;
976 size_t stdlen;
977 size_t dstlen;
978 long stdoffset;
979 long dstoffset;
980 time_t * atp;
981 unsigned char * typep;
982 char * cp;
983 int load_result;
984
985 INITIALIZE(dstname);
986 stdname = name;
987 if (lastditch) {
988 stdlen = strlen(name); /* length of standard zone name */
989 name += stdlen;
990 if (stdlen >= sizeof sp->chars)
991 stdlen = (sizeof sp->chars) - 1;
992 stdoffset = 0;
993 } else {
994 if (*name == '<') {
995 name++;
996 stdname = name;
997 name = getqzname(name, '>');
998 if (*name != '>')
999 return (-1);
1000 stdlen = name - stdname;
1001 name++;
1002 } else {
1003 name = getzname(name);
1004 stdlen = name - stdname;
1005 }
1006 if (*name == '\0')
1007 return -1; /* was "stdoffset = 0;" */
1008 else {
1009 name = getoffset(name, &stdoffset);
1010 if (name == NULL)
1011 return -1;
1012 }
1013 }
1014 load_result = tzload(TZDEFRULES, sp, FALSE);
1015 if (load_result != 0)
1016 sp->leapcnt = 0; /* so, we're off a little */
1017 if (*name != '\0') {
1018 if (*name == '<') {
1019 dstname = ++name;
1020 name = getqzname(name, '>');
1021 if (*name != '>')
1022 return -1;
1023 dstlen = name - dstname;
1024 name++;
1025 } else {
1026 dstname = name;
1027 name = getzname(name);
1028 dstlen = name - dstname; /* length of DST zone name */
1029 }
1030 if (*name != '\0' && *name != ',' && *name != ';') {
1031 name = getoffset(name, &dstoffset);
1032 if (name == NULL)
1033 return -1;
1034 } else dstoffset = stdoffset - SECSPERHOUR;
1035 if (*name == '\0' && load_result != 0)
1036 name = TZDEFRULESTRING;
1037 if (*name == ',' || *name == ';') {
1038 struct rule start;
1039 struct rule end;
1040 int year;
1041 time_t janfirst;
1042 time_t starttime;
1043 time_t endtime;
1044
1045 ++name;
1046 if ((name = getrule(name, &start)) == NULL)
1047 return -1;
1048 if (*name++ != ',')
1049 return -1;
1050 if ((name = getrule(name, &end)) == NULL)
1051 return -1;
1052 if (*name != '\0')
1053 return -1;
1054 sp->typecnt = 2; /* standard time and DST */
1055 /*
1056 ** Two transitions per year, from EPOCH_YEAR forward.
1057 */
1058 sp->ttis[0].tt_gmtoff = -dstoffset;
1059 sp->ttis[0].tt_isdst = 1;
1060 sp->ttis[0].tt_abbrind = stdlen + 1;
1061 sp->ttis[1].tt_gmtoff = -stdoffset;
1062 sp->ttis[1].tt_isdst = 0;
1063 sp->ttis[1].tt_abbrind = 0;
1064 atp = sp->ats;
1065 typep = sp->types;
1066 janfirst = 0;
1067 sp->timecnt = 0;
1068 for (year = EPOCH_YEAR;
1069 sp->timecnt + 2 <= TZ_MAX_TIMES;
1070 ++year) {
1071 time_t newfirst;
1072
1073 starttime = transtime(janfirst, year, &start,
1074 stdoffset);
1075 endtime = transtime(janfirst, year, &end,
1076 dstoffset);
1077 if (starttime > endtime) {
1078 *atp++ = endtime;
1079 *typep++ = 1; /* DST ends */
1080 *atp++ = starttime;
1081 *typep++ = 0; /* DST begins */
1082 } else {
1083 *atp++ = starttime;
1084 *typep++ = 0; /* DST begins */
1085 *atp++ = endtime;
1086 *typep++ = 1; /* DST ends */
1087 }
1088 sp->timecnt += 2;
1089 newfirst = janfirst;
1090 newfirst += year_lengths[isleap(year)] *
1091 SECSPERDAY;
1092 if (newfirst <= janfirst)
1093 break;
1094 janfirst = newfirst;
1095 }
1096 } else {
1097 long theirstdoffset;
1098 long theirdstoffset;
1099 long theiroffset;
1100 int isdst;
1101 int i;
1102 int j;
1103
1104 if (*name != '\0')
1105 return -1;
1106 /*
1107 ** Initial values of theirstdoffset and theirdstoffset.
1108 */
1109 theirstdoffset = 0;
1110 for (i = 0; i < sp->timecnt; ++i) {
1111 j = sp->types[i];
1112 if (!sp->ttis[j].tt_isdst) {
1113 theirstdoffset =
1114 -sp->ttis[j].tt_gmtoff;
1115 break;
1116 }
1117 }
1118 theirdstoffset = 0;
1119 for (i = 0; i < sp->timecnt; ++i) {
1120 j = sp->types[i];
1121 if (sp->ttis[j].tt_isdst) {
1122 theirdstoffset =
1123 -sp->ttis[j].tt_gmtoff;
1124 break;
1125 }
1126 }
1127 /*
1128 ** Initially we're assumed to be in standard time.
1129 */
1130 isdst = FALSE;
1131 theiroffset = theirstdoffset;
1132 /*
1133 ** Now juggle transition times and types
1134 ** tracking offsets as you do.
1135 */
1136 for (i = 0; i < sp->timecnt; ++i) {
1137 j = sp->types[i];
1138 sp->types[i] = sp->ttis[j].tt_isdst;
1139 if (sp->ttis[j].tt_ttisgmt) {
1140 /* No adjustment to transition time */
1141 } else {
1142 /*
1143 ** If summer time is in effect, and the
1144 ** transition time was not specified as
1145 ** standard time, add the summer time
1146 ** offset to the transition time;
1147 ** otherwise, add the standard time
1148 ** offset to the transition time.
1149 */
1150 /*
1151 ** Transitions from DST to DDST
1152 ** will effectively disappear since
1153 ** POSIX provides for only one DST
1154 ** offset.
1155 */
1156 if (isdst && !sp->ttis[j].tt_ttisstd) {
1157 sp->ats[i] += dstoffset -
1158 theirdstoffset;
1159 } else {
1160 sp->ats[i] += stdoffset -
1161 theirstdoffset;
1162 }
1163 }
1164 theiroffset = -sp->ttis[j].tt_gmtoff;
1165 if (sp->ttis[j].tt_isdst)
1166 theirdstoffset = theiroffset;
1167 else theirstdoffset = theiroffset;
1168 }
1169 /*
1170 ** Finally, fill in ttis.
1171 ** ttisstd and ttisgmt need not be handled.
1172 */
1173 sp->ttis[0].tt_gmtoff = -stdoffset;
1174 sp->ttis[0].tt_isdst = FALSE;
1175 sp->ttis[0].tt_abbrind = 0;
1176 sp->ttis[1].tt_gmtoff = -dstoffset;
1177 sp->ttis[1].tt_isdst = TRUE;
1178 sp->ttis[1].tt_abbrind = stdlen + 1;
1179 sp->typecnt = 2;
1180 }
1181 } else {
1182 dstlen = 0;
1183 sp->typecnt = 1; /* only standard time */
1184 sp->timecnt = 0;
1185 sp->ttis[0].tt_gmtoff = -stdoffset;
1186 sp->ttis[0].tt_isdst = 0;
1187 sp->ttis[0].tt_abbrind = 0;
1188 }
1189 sp->charcnt = stdlen + 1;
1190 if (dstlen != 0)
1191 sp->charcnt += dstlen + 1;
1192 if ((size_t) sp->charcnt > sizeof sp->chars)
1193 return -1;
1194 cp = sp->chars;
1195 (void) strncpy(cp, stdname, stdlen);
1196 cp += stdlen;
1197 *cp++ = '\0';
1198 if (dstlen != 0) {
1199 (void) strncpy(cp, dstname, dstlen);
1200 *(cp + dstlen) = '\0';
1201 }
1202 return 0;
1203 }
1204
1205 static void
gmtload(struct state * const sp)1206 gmtload(struct state *const sp)
1207 {
1208 if (tzload(gmt, sp, TRUE) != 0)
1209 (void) tzparse(gmt, sp, TRUE);
1210 }
1211
1212 static void
tzsetwall_basic(int rdlocked)1213 tzsetwall_basic(int rdlocked)
1214 {
1215 if (!rdlocked)
1216 _RWLOCK_RDLOCK(&lcl_rwlock);
1217 if (lcl_is_set < 0) {
1218 if (!rdlocked)
1219 _RWLOCK_UNLOCK(&lcl_rwlock);
1220 return;
1221 }
1222 _RWLOCK_UNLOCK(&lcl_rwlock);
1223
1224 _RWLOCK_WRLOCK(&lcl_rwlock);
1225 lcl_is_set = -1;
1226
1227 #ifdef ALL_STATE
1228 if (lclptr == NULL) {
1229 lclptr = calloc(1, sizeof *lclptr);
1230 if (lclptr == NULL) {
1231 settzname(); /* all we can do */
1232 _RWLOCK_UNLOCK(&lcl_rwlock);
1233 if (rdlocked)
1234 _RWLOCK_RDLOCK(&lcl_rwlock);
1235 return;
1236 }
1237 }
1238 #endif /* defined ALL_STATE */
1239 if (tzload((char *) NULL, lclptr, TRUE) != 0)
1240 gmtload(lclptr);
1241 settzname();
1242 _RWLOCK_UNLOCK(&lcl_rwlock);
1243
1244 if (rdlocked)
1245 _RWLOCK_RDLOCK(&lcl_rwlock);
1246 }
1247
1248 void
tzsetwall(void)1249 tzsetwall(void)
1250 {
1251 tzsetwall_basic(0);
1252 }
1253
1254 static void
tzset_basic(int rdlocked)1255 tzset_basic(int rdlocked)
1256 {
1257 const char * name;
1258
1259 name = getenv("TZ");
1260 if (name == NULL) {
1261 tzsetwall_basic(rdlocked);
1262 return;
1263 }
1264
1265 if (!rdlocked)
1266 _RWLOCK_RDLOCK(&lcl_rwlock);
1267 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1268 if (!rdlocked)
1269 _RWLOCK_UNLOCK(&lcl_rwlock);
1270 return;
1271 }
1272 _RWLOCK_UNLOCK(&lcl_rwlock);
1273
1274 _RWLOCK_WRLOCK(&lcl_rwlock);
1275 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1276 if (lcl_is_set)
1277 (void) strcpy(lcl_TZname, name);
1278
1279 #ifdef ALL_STATE
1280 if (lclptr == NULL) {
1281 lclptr = (struct state *) calloc(1, sizeof *lclptr);
1282 if (lclptr == NULL) {
1283 settzname(); /* all we can do */
1284 _RWLOCK_UNLOCK(&lcl_rwlock);
1285 if (rdlocked)
1286 _RWLOCK_RDLOCK(&lcl_rwlock);
1287 return;
1288 }
1289 }
1290 #endif /* defined ALL_STATE */
1291 if (*name == '\0') {
1292 /*
1293 ** User wants it fast rather than right.
1294 */
1295 lclptr->leapcnt = 0; /* so, we're off a little */
1296 lclptr->timecnt = 0;
1297 lclptr->typecnt = 0;
1298 lclptr->ttis[0].tt_isdst = 0;
1299 lclptr->ttis[0].tt_gmtoff = 0;
1300 lclptr->ttis[0].tt_abbrind = 0;
1301 (void) strcpy(lclptr->chars, gmt);
1302 } else if (tzload(name, lclptr, TRUE) != 0)
1303 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1304 (void) gmtload(lclptr);
1305 settzname();
1306 _RWLOCK_UNLOCK(&lcl_rwlock);
1307
1308 if (rdlocked)
1309 _RWLOCK_RDLOCK(&lcl_rwlock);
1310 }
1311
1312 void
tzset(void)1313 tzset(void)
1314 {
1315 tzset_basic(0);
1316 }
1317
1318 /*
1319 ** The easy way to behave "as if no library function calls" localtime
1320 ** is to not call it--so we drop its guts into "localsub", which can be
1321 ** freely called. (And no, the PANS doesn't require the above behavior--
1322 ** but it *is* desirable.)
1323 **
1324 ** The unused offset argument is for the benefit of mktime variants.
1325 */
1326
1327 /*ARGSUSED*/
1328 static struct tm *
localsub(const time_t * const timep,const long offset,struct tm * const tmp)1329 localsub(const time_t *const timep, const long offset, struct tm *const tmp)
1330 {
1331 struct state * sp;
1332 const struct ttinfo * ttisp;
1333 int i;
1334 struct tm * result;
1335 const time_t t = *timep;
1336
1337 sp = lclptr;
1338 #ifdef ALL_STATE
1339 if (sp == NULL)
1340 return gmtsub(timep, offset, tmp);
1341 #endif /* defined ALL_STATE */
1342 if ((sp->goback && t < sp->ats[0]) ||
1343 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1344 time_t newt = t;
1345 register time_t seconds;
1346 register time_t tcycles;
1347 register int_fast64_t icycles;
1348
1349 if (t < sp->ats[0])
1350 seconds = sp->ats[0] - t;
1351 else seconds = t - sp->ats[sp->timecnt - 1];
1352 --seconds;
1353 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1354 ++tcycles;
1355 icycles = tcycles;
1356 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1357 return NULL;
1358 seconds = icycles;
1359 seconds *= YEARSPERREPEAT;
1360 seconds *= AVGSECSPERYEAR;
1361 if (t < sp->ats[0])
1362 newt += seconds;
1363 else newt -= seconds;
1364 if (newt < sp->ats[0] ||
1365 newt > sp->ats[sp->timecnt - 1])
1366 return NULL; /* "cannot happen" */
1367 result = localsub(&newt, offset, tmp);
1368 if (result == tmp) {
1369 register time_t newy;
1370
1371 newy = tmp->tm_year;
1372 if (t < sp->ats[0])
1373 newy -= icycles * YEARSPERREPEAT;
1374 else newy += icycles * YEARSPERREPEAT;
1375 tmp->tm_year = newy;
1376 if (tmp->tm_year != newy)
1377 return NULL;
1378 }
1379 return result;
1380 }
1381 if (sp->timecnt == 0 || t < sp->ats[0]) {
1382 i = 0;
1383 while (sp->ttis[i].tt_isdst)
1384 if (++i >= sp->typecnt) {
1385 i = 0;
1386 break;
1387 }
1388 } else {
1389 register int lo = 1;
1390 register int hi = sp->timecnt;
1391
1392 while (lo < hi) {
1393 register int mid = (lo + hi) >> 1;
1394
1395 if (t < sp->ats[mid])
1396 hi = mid;
1397 else lo = mid + 1;
1398 }
1399 i = (int) sp->types[lo - 1];
1400 }
1401 ttisp = &sp->ttis[i];
1402 /*
1403 ** To get (wrong) behavior that's compatible with System V Release 2.0
1404 ** you'd replace the statement below with
1405 ** t += ttisp->tt_gmtoff;
1406 ** timesub(&t, 0L, sp, tmp);
1407 */
1408 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1409 tmp->tm_isdst = ttisp->tt_isdst;
1410 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1411 #ifdef TM_ZONE
1412 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1413 #endif /* defined TM_ZONE */
1414 return result;
1415 }
1416
1417 static void
localtime_key_init(void)1418 localtime_key_init(void)
1419 {
1420
1421 localtime_key_error = _pthread_key_create(&localtime_key, free);
1422 }
1423
1424 struct tm *
localtime(const time_t * const timep)1425 localtime(const time_t *const timep)
1426 {
1427 struct tm *p_tm;
1428
1429 if (__isthreaded != 0) {
1430 _pthread_once(&localtime_once, localtime_key_init);
1431 if (localtime_key_error != 0) {
1432 errno = localtime_key_error;
1433 return(NULL);
1434 }
1435 p_tm = _pthread_getspecific(localtime_key);
1436 if (p_tm == NULL) {
1437 if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1438 == NULL)
1439 return(NULL);
1440 _pthread_setspecific(localtime_key, p_tm);
1441 }
1442 _RWLOCK_RDLOCK(&lcl_rwlock);
1443 tzset_basic(1);
1444 p_tm = localsub(timep, 0L, p_tm);
1445 _RWLOCK_UNLOCK(&lcl_rwlock);
1446 } else {
1447 tzset_basic(0);
1448 p_tm = localsub(timep, 0L, &tm);
1449 }
1450 return(p_tm);
1451 }
1452
1453 /*
1454 ** Re-entrant version of localtime.
1455 */
1456
1457 struct tm *
localtime_r(const time_t * const timep,struct tm * tmp)1458 localtime_r(const time_t *const timep, struct tm *tmp)
1459 {
1460 _RWLOCK_RDLOCK(&lcl_rwlock);
1461 tzset_basic(1);
1462 tmp = localsub(timep, 0L, tmp);
1463 _RWLOCK_UNLOCK(&lcl_rwlock);
1464 return tmp;
1465 }
1466
1467 static void
gmt_init(void)1468 gmt_init(void)
1469 {
1470
1471 #ifdef ALL_STATE
1472 gmtptr = (struct state *) calloc(1, sizeof *gmtptr);
1473 if (gmtptr != NULL)
1474 #endif /* defined ALL_STATE */
1475 gmtload(gmtptr);
1476 }
1477
1478 /*
1479 ** gmtsub is to gmtime as localsub is to localtime.
1480 */
1481
1482 static struct tm *
gmtsub(timep,offset,tmp)1483 gmtsub(timep, offset, tmp)
1484 const time_t * const timep;
1485 const long offset;
1486 struct tm * const tmp;
1487 {
1488 register struct tm * result;
1489
1490 _once(&gmt_once, gmt_init);
1491 result = timesub(timep, offset, gmtptr, tmp);
1492 #ifdef TM_ZONE
1493 /*
1494 ** Could get fancy here and deliver something such as
1495 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1496 ** but this is no time for a treasure hunt.
1497 */
1498 if (offset != 0)
1499 tmp->TM_ZONE = wildabbr;
1500 else {
1501 #ifdef ALL_STATE
1502 if (gmtptr == NULL)
1503 tmp->TM_ZONE = gmt;
1504 else tmp->TM_ZONE = gmtptr->chars;
1505 #endif /* defined ALL_STATE */
1506 #ifndef ALL_STATE
1507 tmp->TM_ZONE = gmtptr->chars;
1508 #endif /* State Farm */
1509 }
1510 #endif /* defined TM_ZONE */
1511 return result;
1512 }
1513
1514 static void
gmtime_key_init(void)1515 gmtime_key_init(void)
1516 {
1517
1518 gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1519 }
1520
1521 struct tm *
gmtime(const time_t * const timep)1522 gmtime(const time_t *const timep)
1523 {
1524 struct tm *p_tm;
1525
1526 if (__isthreaded != 0) {
1527 _pthread_once(&gmtime_once, gmtime_key_init);
1528 if (gmtime_key_error != 0) {
1529 errno = gmtime_key_error;
1530 return(NULL);
1531 }
1532 /*
1533 * Changed to follow POSIX.1 threads standard, which
1534 * is what BSD currently has.
1535 */
1536 if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1537 if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1538 == NULL) {
1539 return(NULL);
1540 }
1541 _pthread_setspecific(gmtime_key, p_tm);
1542 }
1543 gmtsub(timep, 0L, p_tm);
1544 return(p_tm);
1545 }
1546 else {
1547 gmtsub(timep, 0L, &tm);
1548 return(&tm);
1549 }
1550 }
1551
1552 /*
1553 * Re-entrant version of gmtime.
1554 */
1555
1556 struct tm *
gmtime_r(const time_t * const timep,struct tm * tmp)1557 gmtime_r(const time_t *const timep, struct tm *tmp)
1558 {
1559 return gmtsub(timep, 0L, tmp);
1560 }
1561
1562 #ifdef STD_INSPIRED
1563
1564 struct tm *
offtime(const time_t * const timep,const long offset)1565 offtime(const time_t *const timep, const long offset)
1566 {
1567 return gmtsub(timep, offset, &tm);
1568 }
1569
1570 #endif /* defined STD_INSPIRED */
1571
1572 /*
1573 ** Return the number of leap years through the end of the given year
1574 ** where, to make the math easy, the answer for year zero is defined as zero.
1575 */
1576
1577 static int
leaps_thru_end_of(y)1578 leaps_thru_end_of(y)
1579 register const int y;
1580 {
1581 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1582 -(leaps_thru_end_of(-(y + 1)) + 1);
1583 }
1584
1585 static struct tm *
timesub(timep,offset,sp,tmp)1586 timesub(timep, offset, sp, tmp)
1587 const time_t * const timep;
1588 const long offset;
1589 const struct state * const sp;
1590 struct tm * const tmp;
1591 {
1592 const struct lsinfo * lp;
1593 time_t tdays;
1594 int idays; /* unsigned would be so 2003 */
1595 long rem;
1596 int y;
1597 const int * ip;
1598 long corr;
1599 int hit;
1600 int i;
1601
1602 corr = 0;
1603 hit = 0;
1604 #ifdef ALL_STATE
1605 i = (sp == NULL) ? 0 : sp->leapcnt;
1606 #endif /* defined ALL_STATE */
1607 #ifndef ALL_STATE
1608 i = sp->leapcnt;
1609 #endif /* State Farm */
1610 while (--i >= 0) {
1611 lp = &sp->lsis[i];
1612 if (*timep >= lp->ls_trans) {
1613 if (*timep == lp->ls_trans) {
1614 hit = ((i == 0 && lp->ls_corr > 0) ||
1615 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1616 if (hit)
1617 while (i > 0 &&
1618 sp->lsis[i].ls_trans ==
1619 sp->lsis[i - 1].ls_trans + 1 &&
1620 sp->lsis[i].ls_corr ==
1621 sp->lsis[i - 1].ls_corr + 1) {
1622 ++hit;
1623 --i;
1624 }
1625 }
1626 corr = lp->ls_corr;
1627 break;
1628 }
1629 }
1630 y = EPOCH_YEAR;
1631 tdays = *timep / SECSPERDAY;
1632 rem = *timep - tdays * SECSPERDAY;
1633 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1634 int newy;
1635 register time_t tdelta;
1636 register int idelta;
1637 register int leapdays;
1638
1639 tdelta = tdays / DAYSPERLYEAR;
1640 idelta = tdelta;
1641 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1642 return NULL;
1643 if (idelta == 0)
1644 idelta = (tdays < 0) ? -1 : 1;
1645 newy = y;
1646 if (increment_overflow(&newy, idelta))
1647 return NULL;
1648 leapdays = leaps_thru_end_of(newy - 1) -
1649 leaps_thru_end_of(y - 1);
1650 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1651 tdays -= leapdays;
1652 y = newy;
1653 }
1654 {
1655 register long seconds;
1656
1657 seconds = tdays * SECSPERDAY + 0.5;
1658 tdays = seconds / SECSPERDAY;
1659 rem += seconds - tdays * SECSPERDAY;
1660 }
1661 /*
1662 ** Given the range, we can now fearlessly cast...
1663 */
1664 idays = tdays;
1665 rem += offset - corr;
1666 while (rem < 0) {
1667 rem += SECSPERDAY;
1668 --idays;
1669 }
1670 while (rem >= SECSPERDAY) {
1671 rem -= SECSPERDAY;
1672 ++idays;
1673 }
1674 while (idays < 0) {
1675 if (increment_overflow(&y, -1))
1676 return NULL;
1677 idays += year_lengths[isleap(y)];
1678 }
1679 while (idays >= year_lengths[isleap(y)]) {
1680 idays -= year_lengths[isleap(y)];
1681 if (increment_overflow(&y, 1))
1682 return NULL;
1683 }
1684 tmp->tm_year = y;
1685 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1686 return NULL;
1687 tmp->tm_yday = idays;
1688 /*
1689 ** The "extra" mods below avoid overflow problems.
1690 */
1691 tmp->tm_wday = EPOCH_WDAY +
1692 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1693 (DAYSPERNYEAR % DAYSPERWEEK) +
1694 leaps_thru_end_of(y - 1) -
1695 leaps_thru_end_of(EPOCH_YEAR - 1) +
1696 idays;
1697 tmp->tm_wday %= DAYSPERWEEK;
1698 if (tmp->tm_wday < 0)
1699 tmp->tm_wday += DAYSPERWEEK;
1700 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1701 rem %= SECSPERHOUR;
1702 tmp->tm_min = (int) (rem / SECSPERMIN);
1703 /*
1704 ** A positive leap second requires a special
1705 ** representation. This uses "... ??:59:60" et seq.
1706 */
1707 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1708 ip = mon_lengths[isleap(y)];
1709 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1710 idays -= ip[tmp->tm_mon];
1711 tmp->tm_mday = (int) (idays + 1);
1712 tmp->tm_isdst = 0;
1713 #ifdef TM_GMTOFF
1714 tmp->TM_GMTOFF = offset;
1715 #endif /* defined TM_GMTOFF */
1716 return tmp;
1717 }
1718
1719 char *
ctime(const time_t * const timep)1720 ctime(const time_t *const timep)
1721 {
1722 /*
1723 ** Section 4.12.3.2 of X3.159-1989 requires that
1724 ** The ctime function converts the calendar time pointed to by timer
1725 ** to local time in the form of a string. It is equivalent to
1726 ** asctime(localtime(timer))
1727 */
1728 return asctime(localtime(timep));
1729 }
1730
1731 char *
ctime_r(const time_t * const timep,char * buf)1732 ctime_r(const time_t *const timep, char *buf)
1733 {
1734 struct tm mytm;
1735
1736 return asctime_r(localtime_r(timep, &mytm), buf);
1737 }
1738
1739 /*
1740 ** Adapted from code provided by Robert Elz, who writes:
1741 ** The "best" way to do mktime I think is based on an idea of Bob
1742 ** Kridle's (so its said...) from a long time ago.
1743 ** It does a binary search of the time_t space. Since time_t's are
1744 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1745 ** would still be very reasonable).
1746 */
1747
1748 #ifndef WRONG
1749 #define WRONG (-1)
1750 #endif /* !defined WRONG */
1751
1752 /*
1753 ** Simplified normalize logic courtesy Paul Eggert.
1754 */
1755
1756 static int
increment_overflow(number,delta)1757 increment_overflow(number, delta)
1758 int * number;
1759 int delta;
1760 {
1761 int number0;
1762
1763 number0 = *number;
1764 *number += delta;
1765 return (*number < number0) != (delta < 0);
1766 }
1767
1768 static int
long_increment_overflow(number,delta)1769 long_increment_overflow(number, delta)
1770 long * number;
1771 int delta;
1772 {
1773 long number0;
1774
1775 number0 = *number;
1776 *number += delta;
1777 return (*number < number0) != (delta < 0);
1778 }
1779
1780 static int
normalize_overflow(int * const tensptr,int * const unitsptr,const int base)1781 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1782 {
1783 int tensdelta;
1784
1785 tensdelta = (*unitsptr >= 0) ?
1786 (*unitsptr / base) :
1787 (-1 - (-1 - *unitsptr) / base);
1788 *unitsptr -= tensdelta * base;
1789 return increment_overflow(tensptr, tensdelta);
1790 }
1791
1792 static int
long_normalize_overflow(long * const tensptr,int * const unitsptr,const int base)1793 long_normalize_overflow(long *const tensptr, int *const unitsptr, const int base)
1794 {
1795 register int tensdelta;
1796
1797 tensdelta = (*unitsptr >= 0) ?
1798 (*unitsptr / base) :
1799 (-1 - (-1 - *unitsptr) / base);
1800 *unitsptr -= tensdelta * base;
1801 return long_increment_overflow(tensptr, tensdelta);
1802 }
1803
1804 static int
tmcomp(atmp,btmp)1805 tmcomp(atmp, btmp)
1806 const struct tm * const atmp;
1807 const struct tm * const btmp;
1808 {
1809 int result;
1810
1811 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1812 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1813 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1814 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1815 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1816 result = atmp->tm_sec - btmp->tm_sec;
1817 return result;
1818 }
1819
1820 static time_t
time2sub(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,long,struct tm *),const long offset,int * const okayp,const int do_norm_secs)1821 time2sub(struct tm *const tmp,
1822 struct tm *(*const funcp)(const time_t *, long, struct tm *),
1823 const long offset,
1824 int *const okayp,
1825 const int do_norm_secs)
1826 {
1827 const struct state * sp;
1828 int dir;
1829 int i, j;
1830 int saved_seconds;
1831 long li;
1832 time_t lo;
1833 time_t hi;
1834 long y;
1835 time_t newt;
1836 time_t t;
1837 struct tm yourtm, mytm;
1838
1839 *okayp = FALSE;
1840 yourtm = *tmp;
1841 if (do_norm_secs) {
1842 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1843 SECSPERMIN))
1844 return WRONG;
1845 }
1846 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1847 return WRONG;
1848 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1849 return WRONG;
1850 y = yourtm.tm_year;
1851 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1852 return WRONG;
1853 /*
1854 ** Turn y into an actual year number for now.
1855 ** It is converted back to an offset from TM_YEAR_BASE later.
1856 */
1857 if (long_increment_overflow(&y, TM_YEAR_BASE))
1858 return WRONG;
1859 while (yourtm.tm_mday <= 0) {
1860 if (long_increment_overflow(&y, -1))
1861 return WRONG;
1862 li = y + (1 < yourtm.tm_mon);
1863 yourtm.tm_mday += year_lengths[isleap(li)];
1864 }
1865 while (yourtm.tm_mday > DAYSPERLYEAR) {
1866 li = y + (1 < yourtm.tm_mon);
1867 yourtm.tm_mday -= year_lengths[isleap(li)];
1868 if (long_increment_overflow(&y, 1))
1869 return WRONG;
1870 }
1871 for ( ; ; ) {
1872 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1873 if (yourtm.tm_mday <= i)
1874 break;
1875 yourtm.tm_mday -= i;
1876 if (++yourtm.tm_mon >= MONSPERYEAR) {
1877 yourtm.tm_mon = 0;
1878 if (long_increment_overflow(&y, 1))
1879 return WRONG;
1880 }
1881 }
1882 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1883 return WRONG;
1884 yourtm.tm_year = y;
1885 if (yourtm.tm_year != y)
1886 return WRONG;
1887 /* Don't go below 1900 for POLA */
1888 if (yourtm.tm_year < 0)
1889 return WRONG;
1890 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1891 saved_seconds = 0;
1892 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1893 /*
1894 ** We can't set tm_sec to 0, because that might push the
1895 ** time below the minimum representable time.
1896 ** Set tm_sec to 59 instead.
1897 ** This assumes that the minimum representable time is
1898 ** not in the same minute that a leap second was deleted from,
1899 ** which is a safer assumption than using 58 would be.
1900 */
1901 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1902 return WRONG;
1903 saved_seconds = yourtm.tm_sec;
1904 yourtm.tm_sec = SECSPERMIN - 1;
1905 } else {
1906 saved_seconds = yourtm.tm_sec;
1907 yourtm.tm_sec = 0;
1908 }
1909 /*
1910 ** Do a binary search (this works whatever time_t's type is).
1911 */
1912 if (!TYPE_SIGNED(time_t)) {
1913 lo = 0;
1914 hi = lo - 1;
1915 } else if (!TYPE_INTEGRAL(time_t)) {
1916 if (sizeof(time_t) > sizeof(float))
1917 hi = (time_t) DBL_MAX;
1918 else hi = (time_t) FLT_MAX;
1919 lo = -hi;
1920 } else {
1921 lo = 1;
1922 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1923 lo *= 2;
1924 hi = -(lo + 1);
1925 }
1926 for ( ; ; ) {
1927 t = lo / 2 + hi / 2;
1928 if (t < lo)
1929 t = lo;
1930 else if (t > hi)
1931 t = hi;
1932 if ((*funcp)(&t, offset, &mytm) == NULL) {
1933 /*
1934 ** Assume that t is too extreme to be represented in
1935 ** a struct tm; arrange things so that it is less
1936 ** extreme on the next pass.
1937 */
1938 dir = (t > 0) ? 1 : -1;
1939 } else dir = tmcomp(&mytm, &yourtm);
1940 if (dir != 0) {
1941 if (t == lo) {
1942 ++t;
1943 if (t <= lo)
1944 return WRONG;
1945 ++lo;
1946 } else if (t == hi) {
1947 --t;
1948 if (t >= hi)
1949 return WRONG;
1950 --hi;
1951 }
1952 if (lo > hi)
1953 return WRONG;
1954 if (dir > 0)
1955 hi = t;
1956 else lo = t;
1957 continue;
1958 }
1959 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1960 break;
1961 /*
1962 ** Right time, wrong type.
1963 ** Hunt for right time, right type.
1964 ** It's okay to guess wrong since the guess
1965 ** gets checked.
1966 */
1967 sp = (const struct state *)
1968 ((funcp == localsub) ? lclptr : gmtptr);
1969 #ifdef ALL_STATE
1970 if (sp == NULL)
1971 return WRONG;
1972 #endif /* defined ALL_STATE */
1973 for (i = sp->typecnt - 1; i >= 0; --i) {
1974 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1975 continue;
1976 for (j = sp->typecnt - 1; j >= 0; --j) {
1977 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1978 continue;
1979 newt = t + sp->ttis[j].tt_gmtoff -
1980 sp->ttis[i].tt_gmtoff;
1981 if ((*funcp)(&newt, offset, &mytm) == NULL)
1982 continue;
1983 if (tmcomp(&mytm, &yourtm) != 0)
1984 continue;
1985 if (mytm.tm_isdst != yourtm.tm_isdst)
1986 continue;
1987 /*
1988 ** We have a match.
1989 */
1990 t = newt;
1991 goto label;
1992 }
1993 }
1994 return WRONG;
1995 }
1996 label:
1997 newt = t + saved_seconds;
1998 if ((newt < t) != (saved_seconds < 0))
1999 return WRONG;
2000 t = newt;
2001 if ((*funcp)(&t, offset, tmp))
2002 *okayp = TRUE;
2003 return t;
2004 }
2005
2006 static time_t
time2(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,long,struct tm *),const long offset,int * const okayp)2007 time2(struct tm * const tmp,
2008 struct tm * (*const funcp)(const time_t *, long, struct tm *),
2009 const long offset,
2010 int *const okayp)
2011 {
2012 time_t t;
2013
2014 /*
2015 ** First try without normalization of seconds
2016 ** (in case tm_sec contains a value associated with a leap second).
2017 ** If that fails, try with normalization of seconds.
2018 */
2019 t = time2sub(tmp, funcp, offset, okayp, FALSE);
2020 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2021 }
2022
2023 static time_t
time1(tmp,funcp,offset)2024 time1(tmp, funcp, offset)
2025 struct tm * const tmp;
2026 struct tm * (* const funcp)(const time_t *, long, struct tm *);
2027 const long offset;
2028 {
2029 time_t t;
2030 const struct state * sp;
2031 int samei, otheri;
2032 int sameind, otherind;
2033 int i;
2034 int nseen;
2035 int seen[TZ_MAX_TYPES];
2036 int types[TZ_MAX_TYPES];
2037 int okay;
2038
2039 if (tmp == NULL) {
2040 errno = EINVAL;
2041 return WRONG;
2042 }
2043
2044 if (tmp->tm_isdst > 1)
2045 tmp->tm_isdst = 1;
2046 t = time2(tmp, funcp, offset, &okay);
2047 #ifdef PCTS
2048 /*
2049 ** PCTS code courtesy Grant Sullivan.
2050 */
2051 if (okay)
2052 return t;
2053 if (tmp->tm_isdst < 0)
2054 tmp->tm_isdst = 0; /* reset to std and try again */
2055 #endif /* defined PCTS */
2056 #ifndef PCTS
2057 if (okay || tmp->tm_isdst < 0)
2058 return t;
2059 #endif /* !defined PCTS */
2060 /*
2061 ** We're supposed to assume that somebody took a time of one type
2062 ** and did some math on it that yielded a "struct tm" that's bad.
2063 ** We try to divine the type they started from and adjust to the
2064 ** type they need.
2065 */
2066 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2067 #ifdef ALL_STATE
2068 if (sp == NULL)
2069 return WRONG;
2070 #endif /* defined ALL_STATE */
2071 for (i = 0; i < sp->typecnt; ++i)
2072 seen[i] = FALSE;
2073 nseen = 0;
2074 for (i = sp->timecnt - 1; i >= 0; --i)
2075 if (!seen[sp->types[i]]) {
2076 seen[sp->types[i]] = TRUE;
2077 types[nseen++] = sp->types[i];
2078 }
2079 for (sameind = 0; sameind < nseen; ++sameind) {
2080 samei = types[sameind];
2081 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2082 continue;
2083 for (otherind = 0; otherind < nseen; ++otherind) {
2084 otheri = types[otherind];
2085 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2086 continue;
2087 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2088 sp->ttis[samei].tt_gmtoff;
2089 tmp->tm_isdst = !tmp->tm_isdst;
2090 t = time2(tmp, funcp, offset, &okay);
2091 if (okay)
2092 return t;
2093 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2094 sp->ttis[samei].tt_gmtoff;
2095 tmp->tm_isdst = !tmp->tm_isdst;
2096 }
2097 }
2098 return WRONG;
2099 }
2100
2101 time_t
mktime(struct tm * const tmp)2102 mktime(struct tm *const tmp)
2103 {
2104 time_t mktime_return_value;
2105 _RWLOCK_RDLOCK(&lcl_rwlock);
2106 tzset_basic(1);
2107 mktime_return_value = time1(tmp, localsub, 0L);
2108 _RWLOCK_UNLOCK(&lcl_rwlock);
2109 return(mktime_return_value);
2110 }
2111
2112 #ifdef STD_INSPIRED
2113
2114 time_t
timelocal(struct tm * const tmp)2115 timelocal(struct tm *const tmp)
2116 {
2117 if (tmp != NULL)
2118 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2119 return mktime(tmp);
2120 }
2121
2122 time_t
timegm(struct tm * const tmp)2123 timegm(struct tm *const tmp)
2124 {
2125 if (tmp != NULL)
2126 tmp->tm_isdst = 0;
2127 return time1(tmp, gmtsub, 0L);
2128 }
2129
2130 time_t
timeoff(struct tm * const tmp,const long offset)2131 timeoff(struct tm *const tmp, const long offset)
2132 {
2133 if (tmp != NULL)
2134 tmp->tm_isdst = 0;
2135 return time1(tmp, gmtsub, offset);
2136 }
2137
2138 #endif /* defined STD_INSPIRED */
2139
2140 #ifdef CMUCS
2141
2142 /*
2143 ** The following is supplied for compatibility with
2144 ** previous versions of the CMUCS runtime library.
2145 */
2146
2147 long
gtime(struct tm * const tmp)2148 gtime(struct tm *const tmp)
2149 {
2150 const time_t t = mktime(tmp);
2151
2152 if (t == WRONG)
2153 return -1;
2154 return t;
2155 }
2156
2157 #endif /* defined CMUCS */
2158
2159 /*
2160 ** XXX--is the below the right way to conditionalize??
2161 */
2162
2163 #ifdef STD_INSPIRED
2164
2165 /*
2166 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2167 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2168 ** is not the case if we are accounting for leap seconds.
2169 ** So, we provide the following conversion routines for use
2170 ** when exchanging timestamps with POSIX conforming systems.
2171 */
2172
2173 static long
leapcorr(time_t * timep)2174 leapcorr(time_t *timep)
2175 {
2176 struct state * sp;
2177 struct lsinfo * lp;
2178 int i;
2179
2180 sp = lclptr;
2181 i = sp->leapcnt;
2182 while (--i >= 0) {
2183 lp = &sp->lsis[i];
2184 if (*timep >= lp->ls_trans)
2185 return lp->ls_corr;
2186 }
2187 return 0;
2188 }
2189
2190 time_t
time2posix(time_t t)2191 time2posix(time_t t)
2192 {
2193 tzset();
2194 return t - leapcorr(&t);
2195 }
2196
2197 time_t
posix2time(time_t t)2198 posix2time(time_t t)
2199 {
2200 time_t x;
2201 time_t y;
2202
2203 tzset();
2204 /*
2205 ** For a positive leap second hit, the result
2206 ** is not unique. For a negative leap second
2207 ** hit, the corresponding time doesn't exist,
2208 ** so we return an adjacent second.
2209 */
2210 x = t + leapcorr(&t);
2211 y = x - leapcorr(&x);
2212 if (y < t) {
2213 do {
2214 x++;
2215 y = x - leapcorr(&x);
2216 } while (y < t);
2217 if (t != y)
2218 return x - 1;
2219 } else if (y > t) {
2220 do {
2221 --x;
2222 y = x - leapcorr(&x);
2223 } while (y > t);
2224 if (t != y)
2225 return x + 1;
2226 }
2227 return x;
2228 }
2229
2230 #endif /* defined STD_INSPIRED */
2231