1 /*
2 ** $Id: lvm.c $
3 ** Lua virtual machine
4 ** See Copyright Notice in lua.h
5 */
6
7 #define lvm_c
8 #define LUA_CORE
9
10 #include "lprefix.h"
11
12 #include <float.h>
13 #include <limits.h>
14 #include <math.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18
19 #include "lua.h"
20
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lfunc.h"
24 #include "lgc.h"
25 #include "lobject.h"
26 #include "lopcodes.h"
27 #include "lstate.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "ltm.h"
31 #include "lvm.h"
32
33
34 /*
35 ** By default, use jump tables in the main interpreter loop on gcc
36 ** and compatible compilers.
37 */
38 #if !defined(LUA_USE_JUMPTABLE)
39 #if defined(__GNUC__)
40 #define LUA_USE_JUMPTABLE 1
41 #else
42 #define LUA_USE_JUMPTABLE 0
43 #endif
44 #endif
45
46
47
48 /* limit for table tag-method chains (to avoid infinite loops) */
49 #define MAXTAGLOOP 2000
50
51
52 /*
53 ** 'l_intfitsf' checks whether a given integer is in the range that
54 ** can be converted to a float without rounding. Used in comparisons.
55 */
56 #if !defined(l_intfitsf) && LUA_FLOAT_TYPE != LUA_FLOAT_INT64
57
58 /* number of bits in the mantissa of a float */
59 #define NBM (l_floatatt(MANT_DIG))
60
61 /*
62 ** Check whether some integers may not fit in a float, testing whether
63 ** (maxinteger >> NBM) > 0. (That implies (1 << NBM) <= maxinteger.)
64 ** (The shifts are done in parts, to avoid shifting by more than the size
65 ** of an integer. In a worst case, NBM == 113 for long double and
66 ** sizeof(long) == 32.)
67 */
68 #if ((((LUA_MAXINTEGER >> (NBM / 4)) >> (NBM / 4)) >> (NBM / 4)) \
69 >> (NBM - (3 * (NBM / 4)))) > 0
70
71 /* limit for integers that fit in a float */
72 #define MAXINTFITSF ((lua_Unsigned)1 << NBM)
73
74 /* check whether 'i' is in the interval [-MAXINTFITSF, MAXINTFITSF] */
75 #define l_intfitsf(i) ((MAXINTFITSF + l_castS2U(i)) <= (2 * MAXINTFITSF))
76
77 #else /* all integers fit in a float precisely */
78
79 #define l_intfitsf(i) 1
80
81 #endif
82
83 #endif /* !defined(l_intfitsf) && LUA_FLOAT_TYPE != LUA_FLOAT_INT64 */
84
85 #ifndef l_intfitsf
86 #define l_intfitsf(i) 1
87 #endif
88
89
90 /*
91 ** Try to convert a value from string to a number value.
92 ** If the value is not a string or is a string not representing
93 ** a valid numeral (or if coercions from strings to numbers
94 ** are disabled via macro 'cvt2num'), do not modify 'result'
95 ** and return 0.
96 */
l_strton(const TValue * obj,TValue * result)97 static int l_strton (const TValue *obj, TValue *result) {
98 lua_assert(obj != result);
99 if (!cvt2num(obj)) /* is object not a string? */
100 return 0;
101 else
102 return (luaO_str2num(svalue(obj), result) == vslen(obj) + 1);
103 }
104
105
106 /*
107 ** Try to convert a value to a float. The float case is already handled
108 ** by the macro 'tonumber'.
109 */
luaV_tonumber_(const TValue * obj,lua_Number * n)110 int luaV_tonumber_ (const TValue *obj, lua_Number *n) {
111 TValue v;
112 if (ttisinteger(obj)) {
113 *n = cast_num(ivalue(obj));
114 return 1;
115 }
116 else if (l_strton(obj, &v)) { /* string coercible to number? */
117 *n = nvalue(&v); /* convert result of 'luaO_str2num' to a float */
118 return 1;
119 }
120 else
121 return 0; /* conversion failed */
122 }
123
124
125 /*
126 ** try to convert a float to an integer, rounding according to 'mode'.
127 */
luaV_flttointeger(lua_Number n,lua_Integer * p,F2Imod mode)128 int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode) {
129 lua_Number f = l_floor(n);
130 if (n != f) { /* not an integral value? */
131 if (mode == F2Ieq) return 0; /* fails if mode demands integral value */
132 else if (mode == F2Iceil) /* needs ceil? */
133 f += 1; /* convert floor to ceil (remember: n != f) */
134 }
135 return lua_numbertointeger(f, p);
136 }
137
138
139 /*
140 ** try to convert a value to an integer, rounding according to 'mode',
141 ** without string coercion.
142 ** ("Fast track" handled by macro 'tointegerns'.)
143 */
luaV_tointegerns(const TValue * obj,lua_Integer * p,F2Imod mode)144 int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode) {
145 if (ttisfloat(obj))
146 return luaV_flttointeger(fltvalue(obj), p, mode);
147 else if (ttisinteger(obj)) {
148 *p = ivalue(obj);
149 return 1;
150 }
151 else
152 return 0;
153 }
154
155
156 /*
157 ** try to convert a value to an integer.
158 */
luaV_tointeger(const TValue * obj,lua_Integer * p,F2Imod mode)159 int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode) {
160 TValue v;
161 if (l_strton(obj, &v)) /* does 'obj' point to a numerical string? */
162 obj = &v; /* change it to point to its corresponding number */
163 return luaV_tointegerns(obj, p, mode);
164 }
165
166
167 /*
168 ** Try to convert a 'for' limit to an integer, preserving the semantics
169 ** of the loop. Return true if the loop must not run; otherwise, '*p'
170 ** gets the integer limit.
171 ** (The following explanation assumes a positive step; it is valid for
172 ** negative steps mutatis mutandis.)
173 ** If the limit is an integer or can be converted to an integer,
174 ** rounding down, that is the limit.
175 ** Otherwise, check whether the limit can be converted to a float. If
176 ** the float is too large, clip it to LUA_MAXINTEGER. If the float
177 ** is too negative, the loop should not run, because any initial
178 ** integer value is greater than such limit; so, the function returns
179 ** true to signal that. (For this latter case, no integer limit would be
180 ** correct; even a limit of LUA_MININTEGER would run the loop once for
181 ** an initial value equal to LUA_MININTEGER.)
182 */
forlimit(lua_State * L,lua_Integer init,const TValue * lim,lua_Integer * p,lua_Integer step)183 static int forlimit (lua_State *L, lua_Integer init, const TValue *lim,
184 lua_Integer *p, lua_Integer step) {
185 if (!luaV_tointeger(lim, p, (step < 0 ? F2Iceil : F2Ifloor))) {
186 /* not coercible to in integer */
187 lua_Number flim; /* try to convert to float */
188 if (!tonumber(lim, &flim)) /* cannot convert to float? */
189 luaG_forerror(L, lim, "limit");
190 /* else 'flim' is a float out of integer bounds */
191 if (luai_numlt(0, flim)) { /* if it is positive, it is too large */
192 if (step < 0) return 1; /* initial value must be less than it */
193 *p = LUA_MAXINTEGER; /* truncate */
194 }
195 else { /* it is less than min integer */
196 if (step > 0) return 1; /* initial value must be greater than it */
197 *p = LUA_MININTEGER; /* truncate */
198 }
199 }
200 return (step > 0 ? init > *p : init < *p); /* not to run? */
201 }
202
203
204 /*
205 ** Prepare a numerical for loop (opcode OP_FORPREP).
206 ** Return true to skip the loop. Otherwise,
207 ** after preparation, stack will be as follows:
208 ** ra : internal index (safe copy of the control variable)
209 ** ra + 1 : loop counter (integer loops) or limit (float loops)
210 ** ra + 2 : step
211 ** ra + 3 : control variable
212 */
forprep(lua_State * L,StkId ra)213 static int forprep (lua_State *L, StkId ra) {
214 TValue *pinit = s2v(ra);
215 TValue *plimit = s2v(ra + 1);
216 TValue *pstep = s2v(ra + 2);
217 if (ttisinteger(pinit) && ttisinteger(pstep)) { /* integer loop? */
218 lua_Integer init = ivalue(pinit);
219 lua_Integer step = ivalue(pstep);
220 lua_Integer limit;
221 if (step == 0)
222 luaG_runerror(L, "'for' step is zero");
223 setivalue(s2v(ra + 3), init); /* control variable */
224 if (forlimit(L, init, plimit, &limit, step))
225 return 1; /* skip the loop */
226 else { /* prepare loop counter */
227 lua_Unsigned count;
228 if (step > 0) { /* ascending loop? */
229 count = l_castS2U(limit) - l_castS2U(init);
230 if (step != 1) /* avoid division in the too common case */
231 count /= l_castS2U(step);
232 }
233 else { /* step < 0; descending loop */
234 count = l_castS2U(init) - l_castS2U(limit);
235 /* 'step+1' avoids negating 'mininteger' */
236 count /= l_castS2U(-(step + 1)) + 1u;
237 }
238 /* store the counter in place of the limit (which won't be
239 needed anymore) */
240 setivalue(plimit, l_castU2S(count));
241 }
242 }
243 else { /* try making all values floats */
244 lua_Number init; lua_Number limit; lua_Number step;
245 if (unlikely(!tonumber(plimit, &limit)))
246 luaG_forerror(L, plimit, "limit");
247 if (unlikely(!tonumber(pstep, &step)))
248 luaG_forerror(L, pstep, "step");
249 if (unlikely(!tonumber(pinit, &init)))
250 luaG_forerror(L, pinit, "initial value");
251 if (step == 0)
252 luaG_runerror(L, "'for' step is zero");
253 if (luai_numlt(0, step) ? luai_numlt(limit, init)
254 : luai_numlt(init, limit))
255 return 1; /* skip the loop */
256 else {
257 /* make sure internal values are all floats */
258 setfltvalue(plimit, limit);
259 setfltvalue(pstep, step);
260 setfltvalue(s2v(ra), init); /* internal index */
261 setfltvalue(s2v(ra + 3), init); /* control variable */
262 }
263 }
264 return 0;
265 }
266
267
268 /*
269 ** Execute a step of a float numerical for loop, returning
270 ** true iff the loop must continue. (The integer case is
271 ** written online with opcode OP_FORLOOP, for performance.)
272 */
floatforloop(StkId ra)273 static int floatforloop (StkId ra) {
274 lua_Number step = fltvalue(s2v(ra + 2));
275 lua_Number limit = fltvalue(s2v(ra + 1));
276 lua_Number idx = fltvalue(s2v(ra)); /* internal index */
277 idx = luai_numadd(L, idx, step); /* increment index */
278 if (luai_numlt(0, step) ? luai_numle(idx, limit)
279 : luai_numle(limit, idx)) {
280 chgfltvalue(s2v(ra), idx); /* update internal index */
281 setfltvalue(s2v(ra + 3), idx); /* and control variable */
282 return 1; /* jump back */
283 }
284 else
285 return 0; /* finish the loop */
286 }
287
288
289 /*
290 ** Finish the table access 'val = t[key]'.
291 ** if 'slot' is NULL, 't' is not a table; otherwise, 'slot' points to
292 ** t[k] entry (which must be empty).
293 */
luaV_finishget(lua_State * L,const TValue * t,TValue * key,StkId val,const TValue * slot)294 void luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val,
295 const TValue *slot) {
296 int loop; /* counter to avoid infinite loops */
297 const TValue *tm; /* metamethod */
298 for (loop = 0; loop < MAXTAGLOOP; loop++) {
299 if (slot == NULL) { /* 't' is not a table? */
300 lua_assert(!ttistable(t));
301 tm = luaT_gettmbyobj(L, t, TM_INDEX);
302 if (unlikely(notm(tm)))
303 luaG_typeerror(L, t, "index"); /* no metamethod */
304 /* else will try the metamethod */
305 }
306 else { /* 't' is a table */
307 lua_assert(isempty(slot));
308 tm = fasttm(L, hvalue(t)->metatable, TM_INDEX); /* table's metamethod */
309 if (tm == NULL) { /* no metamethod? */
310 setnilvalue(s2v(val)); /* result is nil */
311 return;
312 }
313 /* else will try the metamethod */
314 }
315 if (ttisfunction(tm)) { /* is metamethod a function? */
316 luaT_callTMres(L, tm, t, key, val); /* call it */
317 return;
318 }
319 t = tm; /* else try to access 'tm[key]' */
320 if (luaV_fastget(L, t, key, slot, luaH_get)) { /* fast track? */
321 setobj2s(L, val, slot); /* done */
322 return;
323 }
324 /* else repeat (tail call 'luaV_finishget') */
325 }
326 luaG_runerror(L, "'__index' chain too long; possible loop");
327 }
328
329
330 /*
331 ** Finish a table assignment 't[key] = val'.
332 ** If 'slot' is NULL, 't' is not a table. Otherwise, 'slot' points
333 ** to the entry 't[key]', or to a value with an absent key if there
334 ** is no such entry. (The value at 'slot' must be empty, otherwise
335 ** 'luaV_fastget' would have done the job.)
336 */
luaV_finishset(lua_State * L,const TValue * t,TValue * key,TValue * val,const TValue * slot)337 void luaV_finishset (lua_State *L, const TValue *t, TValue *key,
338 TValue *val, const TValue *slot) {
339 int loop; /* counter to avoid infinite loops */
340 for (loop = 0; loop < MAXTAGLOOP; loop++) {
341 const TValue *tm; /* '__newindex' metamethod */
342 if (slot != NULL) { /* is 't' a table? */
343 Table *h = hvalue(t); /* save 't' table */
344 lua_assert(isempty(slot)); /* slot must be empty */
345 tm = fasttm(L, h->metatable, TM_NEWINDEX); /* get metamethod */
346 if (tm == NULL) { /* no metamethod? */
347 if (isabstkey(slot)) /* no previous entry? */
348 slot = luaH_newkey(L, h, key); /* create one */
349 /* no metamethod and (now) there is an entry with given key */
350 setobj2t(L, cast(TValue *, slot), val); /* set its new value */
351 invalidateTMcache(h);
352 luaC_barrierback(L, obj2gco(h), val);
353 return;
354 }
355 /* else will try the metamethod */
356 }
357 else { /* not a table; check metamethod */
358 tm = luaT_gettmbyobj(L, t, TM_NEWINDEX);
359 if (unlikely(notm(tm)))
360 luaG_typeerror(L, t, "index");
361 }
362 /* try the metamethod */
363 if (ttisfunction(tm)) {
364 luaT_callTM(L, tm, t, key, val);
365 return;
366 }
367 t = tm; /* else repeat assignment over 'tm' */
368 if (luaV_fastget(L, t, key, slot, luaH_get)) {
369 luaV_finishfastset(L, t, slot, val);
370 return; /* done */
371 }
372 /* else 'return luaV_finishset(L, t, key, val, slot)' (loop) */
373 }
374 luaG_runerror(L, "'__newindex' chain too long; possible loop");
375 }
376
377
378 /*
379 ** Compare two strings 'ls' x 'rs', returning an integer less-equal-
380 ** -greater than zero if 'ls' is less-equal-greater than 'rs'.
381 ** The code is a little tricky because it allows '\0' in the strings
382 ** and it uses 'strcoll' (to respect locales) for each segments
383 ** of the strings.
384 */
l_strcmp(const TString * ls,const TString * rs)385 static int l_strcmp (const TString *ls, const TString *rs) {
386 const char *l = getstr(ls);
387 size_t ll = tsslen(ls);
388 const char *r = getstr(rs);
389 size_t lr = tsslen(rs);
390 for (;;) { /* for each segment */
391 int temp = strcoll(l, r);
392 if (temp != 0) /* not equal? */
393 return temp; /* done */
394 else { /* strings are equal up to a '\0' */
395 size_t len = strlen(l); /* index of first '\0' in both strings */
396 if (len == lr) /* 'rs' is finished? */
397 return (len == ll) ? 0 : 1; /* check 'ls' */
398 else if (len == ll) /* 'ls' is finished? */
399 return -1; /* 'ls' is less than 'rs' ('rs' is not finished) */
400 /* both strings longer than 'len'; go on comparing after the '\0' */
401 len++;
402 l += len; ll -= len; r += len; lr -= len;
403 }
404 }
405 }
406
407
408 /*
409 ** Check whether integer 'i' is less than float 'f'. If 'i' has an
410 ** exact representation as a float ('l_intfitsf'), compare numbers as
411 ** floats. Otherwise, use the equivalence 'i < f <=> i < ceil(f)'.
412 ** If 'ceil(f)' is out of integer range, either 'f' is greater than
413 ** all integers or less than all integers.
414 ** (The test with 'l_intfitsf' is only for performance; the else
415 ** case is correct for all values, but it is slow due to the conversion
416 ** from float to int.)
417 ** When 'f' is NaN, comparisons must result in false.
418 */
LTintfloat(lua_Integer i,lua_Number f)419 static int LTintfloat (lua_Integer i, lua_Number f) {
420 if (l_intfitsf(i))
421 return luai_numlt(cast_num(i), f); /* compare them as floats */
422 else { /* i < f <=> i < ceil(f) */
423 lua_Integer fi;
424 if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
425 return i < fi; /* compare them as integers */
426 else /* 'f' is either greater or less than all integers */
427 return f > 0; /* greater? */
428 }
429 }
430
431
432 /*
433 ** Check whether integer 'i' is less than or equal to float 'f'.
434 ** See comments on previous function.
435 */
LEintfloat(lua_Integer i,lua_Number f)436 static int LEintfloat (lua_Integer i, lua_Number f) {
437 if (l_intfitsf(i))
438 return luai_numle(cast_num(i), f); /* compare them as floats */
439 else { /* i <= f <=> i <= floor(f) */
440 lua_Integer fi;
441 if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
442 return i <= fi; /* compare them as integers */
443 else /* 'f' is either greater or less than all integers */
444 return f > 0; /* greater? */
445 }
446 }
447
448
449 /*
450 ** Check whether float 'f' is less than integer 'i'.
451 ** See comments on previous function.
452 */
LTfloatint(lua_Number f,lua_Integer i)453 static int LTfloatint (lua_Number f, lua_Integer i) {
454 if (l_intfitsf(i))
455 return luai_numlt(f, cast_num(i)); /* compare them as floats */
456 else { /* f < i <=> floor(f) < i */
457 lua_Integer fi;
458 if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
459 return fi < i; /* compare them as integers */
460 else /* 'f' is either greater or less than all integers */
461 return f < 0; /* less? */
462 }
463 }
464
465
466 /*
467 ** Check whether float 'f' is less than or equal to integer 'i'.
468 ** See comments on previous function.
469 */
LEfloatint(lua_Number f,lua_Integer i)470 static int LEfloatint (lua_Number f, lua_Integer i) {
471 if (l_intfitsf(i))
472 return luai_numle(f, cast_num(i)); /* compare them as floats */
473 else { /* f <= i <=> ceil(f) <= i */
474 lua_Integer fi;
475 if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
476 return fi <= i; /* compare them as integers */
477 else /* 'f' is either greater or less than all integers */
478 return f < 0; /* less? */
479 }
480 }
481
482
483 /*
484 ** Return 'l < r', for numbers.
485 */
LTnum(const TValue * l,const TValue * r)486 static int LTnum (const TValue *l, const TValue *r) {
487 lua_assert(ttisnumber(l) && ttisnumber(r));
488 if (ttisinteger(l)) {
489 lua_Integer li = ivalue(l);
490 if (ttisinteger(r))
491 return li < ivalue(r); /* both are integers */
492 else /* 'l' is int and 'r' is float */
493 return LTintfloat(li, fltvalue(r)); /* l < r ? */
494 }
495 else {
496 lua_Number lf = fltvalue(l); /* 'l' must be float */
497 if (ttisfloat(r))
498 return luai_numlt(lf, fltvalue(r)); /* both are float */
499 else /* 'l' is float and 'r' is int */
500 return LTfloatint(lf, ivalue(r));
501 }
502 }
503
504
505 /*
506 ** Return 'l <= r', for numbers.
507 */
LEnum(const TValue * l,const TValue * r)508 static int LEnum (const TValue *l, const TValue *r) {
509 lua_assert(ttisnumber(l) && ttisnumber(r));
510 if (ttisinteger(l)) {
511 lua_Integer li = ivalue(l);
512 if (ttisinteger(r))
513 return li <= ivalue(r); /* both are integers */
514 else /* 'l' is int and 'r' is float */
515 return LEintfloat(li, fltvalue(r)); /* l <= r ? */
516 }
517 else {
518 lua_Number lf = fltvalue(l); /* 'l' must be float */
519 if (ttisfloat(r))
520 return luai_numle(lf, fltvalue(r)); /* both are float */
521 else /* 'l' is float and 'r' is int */
522 return LEfloatint(lf, ivalue(r));
523 }
524 }
525
526
527 /*
528 ** return 'l < r' for non-numbers.
529 */
lessthanothers(lua_State * L,const TValue * l,const TValue * r)530 static int lessthanothers (lua_State *L, const TValue *l, const TValue *r) {
531 lua_assert(!ttisnumber(l) || !ttisnumber(r));
532 if (ttisstring(l) && ttisstring(r)) /* both are strings? */
533 return l_strcmp(tsvalue(l), tsvalue(r)) < 0;
534 else
535 return luaT_callorderTM(L, l, r, TM_LT);
536 }
537
538
539 /*
540 ** Main operation less than; return 'l < r'.
541 */
luaV_lessthan(lua_State * L,const TValue * l,const TValue * r)542 int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r) {
543 if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
544 return LTnum(l, r);
545 else return lessthanothers(L, l, r);
546 }
547
548
549 /*
550 ** return 'l <= r' for non-numbers.
551 */
lessequalothers(lua_State * L,const TValue * l,const TValue * r)552 static int lessequalothers (lua_State *L, const TValue *l, const TValue *r) {
553 lua_assert(!ttisnumber(l) || !ttisnumber(r));
554 if (ttisstring(l) && ttisstring(r)) /* both are strings? */
555 return l_strcmp(tsvalue(l), tsvalue(r)) <= 0;
556 else
557 return luaT_callorderTM(L, l, r, TM_LE);
558 }
559
560
561 /*
562 ** Main operation less than or equal to; return 'l <= r'.
563 */
luaV_lessequal(lua_State * L,const TValue * l,const TValue * r)564 int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r) {
565 if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
566 return LEnum(l, r);
567 else return lessequalothers(L, l, r);
568 }
569
570
571 /*
572 ** Main operation for equality of Lua values; return 't1 == t2'.
573 ** L == NULL means raw equality (no metamethods)
574 */
luaV_equalobj(lua_State * L,const TValue * t1,const TValue * t2)575 int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2) {
576 const TValue *tm;
577 if (ttypetag(t1) != ttypetag(t2)) { /* not the same variant? */
578 if (ttype(t1) != ttype(t2) || ttype(t1) != LUA_TNUMBER)
579 return 0; /* only numbers can be equal with different variants */
580 else { /* two numbers with different variants */
581 lua_Integer i1, i2; /* compare them as integers */
582 return (tointegerns(t1, &i1) && tointegerns(t2, &i2) && i1 == i2);
583 }
584 }
585 /* values have same type and same variant */
586 switch (ttypetag(t1)) {
587 case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1;
588 case LUA_VNUMINT: return (ivalue(t1) == ivalue(t2));
589 case LUA_VNUMFLT: return luai_numeq(fltvalue(t1), fltvalue(t2));
590 case LUA_VLIGHTUSERDATA: return pvalue(t1) == pvalue(t2);
591 case LUA_VLCF: return fvalue(t1) == fvalue(t2);
592 case LUA_VSHRSTR: return eqshrstr(tsvalue(t1), tsvalue(t2));
593 case LUA_VLNGSTR: return luaS_eqlngstr(tsvalue(t1), tsvalue(t2));
594 case LUA_VUSERDATA: {
595 if (uvalue(t1) == uvalue(t2)) return 1;
596 else if (L == NULL) return 0;
597 tm = fasttm(L, uvalue(t1)->metatable, TM_EQ);
598 if (tm == NULL)
599 tm = fasttm(L, uvalue(t2)->metatable, TM_EQ);
600 break; /* will try TM */
601 }
602 case LUA_VTABLE: {
603 if (hvalue(t1) == hvalue(t2)) return 1;
604 else if (L == NULL) return 0;
605 tm = fasttm(L, hvalue(t1)->metatable, TM_EQ);
606 if (tm == NULL)
607 tm = fasttm(L, hvalue(t2)->metatable, TM_EQ);
608 break; /* will try TM */
609 }
610 default:
611 return gcvalue(t1) == gcvalue(t2);
612 }
613 if (tm == NULL) /* no TM? */
614 return 0; /* objects are different */
615 else {
616 luaT_callTMres(L, tm, t1, t2, L->top); /* call TM */
617 return !l_isfalse(s2v(L->top));
618 }
619 }
620
621
622 /* macro used by 'luaV_concat' to ensure that element at 'o' is a string */
623 #define tostring(L,o) \
624 (ttisstring(o) || (cvt2str(o) && (luaO_tostring(L, o), 1)))
625
626 #define isemptystr(o) (ttisshrstring(o) && tsvalue(o)->shrlen == 0)
627
628 /* copy strings in stack from top - n up to top - 1 to buffer */
copy2buff(StkId top,int n,char * buff)629 static void copy2buff (StkId top, int n, char *buff) {
630 size_t tl = 0; /* size already copied */
631 do {
632 size_t l = vslen(s2v(top - n)); /* length of string being copied */
633 memcpy(buff + tl, svalue(s2v(top - n)), l * sizeof(char));
634 tl += l;
635 } while (--n > 0);
636 }
637
638
639 /*
640 ** Main operation for concatenation: concat 'total' values in the stack,
641 ** from 'L->top - total' up to 'L->top - 1'.
642 */
luaV_concat(lua_State * L,int total)643 void luaV_concat (lua_State *L, int total) {
644 if (total == 1)
645 return; /* "all" values already concatenated */
646 do {
647 StkId top = L->top;
648 int n = 2; /* number of elements handled in this pass (at least 2) */
649 if (!(ttisstring(s2v(top - 2)) || cvt2str(s2v(top - 2))) ||
650 !tostring(L, s2v(top - 1)))
651 luaT_tryconcatTM(L);
652 else if (isemptystr(s2v(top - 1))) /* second operand is empty? */
653 cast_void(tostring(L, s2v(top - 2))); /* result is first operand */
654 else if (isemptystr(s2v(top - 2))) { /* first operand is empty string? */
655 setobjs2s(L, top - 2, top - 1); /* result is second op. */
656 }
657 else {
658 /* at least two non-empty string values; get as many as possible */
659 size_t tl = vslen(s2v(top - 1));
660 TString *ts;
661 /* collect total length and number of strings */
662 for (n = 1; n < total && tostring(L, s2v(top - n - 1)); n++) {
663 size_t l = vslen(s2v(top - n - 1));
664 if (unlikely(l >= (MAX_SIZE/sizeof(char)) - tl))
665 luaG_runerror(L, "string length overflow");
666 tl += l;
667 }
668 if (tl <= LUAI_MAXSHORTLEN) { /* is result a short string? */
669 char buff[LUAI_MAXSHORTLEN];
670 copy2buff(top, n, buff); /* copy strings to buffer */
671 ts = luaS_newlstr(L, buff, tl);
672 }
673 else { /* long string; copy strings directly to final result */
674 ts = luaS_createlngstrobj(L, tl);
675 copy2buff(top, n, getstr(ts));
676 }
677 setsvalue2s(L, top - n, ts); /* create result */
678 }
679 total -= n-1; /* got 'n' strings to create 1 new */
680 L->top -= n-1; /* popped 'n' strings and pushed one */
681 } while (total > 1); /* repeat until only 1 result left */
682 }
683
684
685 /*
686 ** Main operation 'ra = #rb'.
687 */
luaV_objlen(lua_State * L,StkId ra,const TValue * rb)688 void luaV_objlen (lua_State *L, StkId ra, const TValue *rb) {
689 const TValue *tm;
690 switch (ttypetag(rb)) {
691 case LUA_VTABLE: {
692 Table *h = hvalue(rb);
693 tm = fasttm(L, h->metatable, TM_LEN);
694 if (tm) break; /* metamethod? break switch to call it */
695 setivalue(s2v(ra), luaH_getn(h)); /* else primitive len */
696 return;
697 }
698 case LUA_VSHRSTR: {
699 setivalue(s2v(ra), tsvalue(rb)->shrlen);
700 return;
701 }
702 case LUA_VLNGSTR: {
703 setivalue(s2v(ra), tsvalue(rb)->u.lnglen);
704 return;
705 }
706 default: { /* try metamethod */
707 tm = luaT_gettmbyobj(L, rb, TM_LEN);
708 if (unlikely(notm(tm))) /* no metamethod? */
709 luaG_typeerror(L, rb, "get length of");
710 break;
711 }
712 }
713 luaT_callTMres(L, tm, rb, rb, ra);
714 }
715
716
717 /*
718 ** Integer division; return 'm // n', that is, floor(m/n).
719 ** C division truncates its result (rounds towards zero).
720 ** 'floor(q) == trunc(q)' when 'q >= 0' or when 'q' is integer,
721 ** otherwise 'floor(q) == trunc(q) - 1'.
722 */
luaV_idiv(lua_State * L,lua_Integer m,lua_Integer n)723 lua_Integer luaV_idiv (lua_State *L, lua_Integer m, lua_Integer n) {
724 if (unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
725 if (n == 0)
726 luaG_runerror(L, "attempt to divide by zero");
727 return intop(-, 0, m); /* n==-1; avoid overflow with 0x80000...//-1 */
728 }
729 else {
730 lua_Integer q = m / n; /* perform C division */
731 if ((m ^ n) < 0 && m % n != 0) /* 'm/n' would be negative non-integer? */
732 q -= 1; /* correct result for different rounding */
733 return q;
734 }
735 }
736
737
738 /*
739 ** Integer modulus; return 'm % n'. (Assume that C '%' with
740 ** negative operands follows C99 behavior. See previous comment
741 ** about luaV_idiv.)
742 */
luaV_mod(lua_State * L,lua_Integer m,lua_Integer n)743 lua_Integer luaV_mod (lua_State *L, lua_Integer m, lua_Integer n) {
744 if (unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
745 if (n == 0)
746 luaG_runerror(L, "attempt to perform 'n%%0'");
747 return 0; /* m % -1 == 0; avoid overflow with 0x80000...%-1 */
748 }
749 else {
750 lua_Integer r = m % n;
751 if (r != 0 && (r ^ n) < 0) /* 'm/n' would be non-integer negative? */
752 r += n; /* correct result for different rounding */
753 return r;
754 }
755 }
756
757
758 /*
759 ** Float modulus
760 */
luaV_modf(lua_State * L,lua_Number m,lua_Number n)761 lua_Number luaV_modf (lua_State *L, lua_Number m, lua_Number n) {
762 lua_Number r;
763 luai_nummod(L, m, n, r);
764 return r;
765 }
766
767
768 /* number of bits in an integer */
769 #define NBITS cast_int(sizeof(lua_Integer) * CHAR_BIT)
770
771 /*
772 ** Shift left operation. (Shift right just negates 'y'.)
773 */
774 #define luaV_shiftr(x,y) luaV_shiftl(x,-(y))
775
luaV_shiftl(lua_Integer x,lua_Integer y)776 lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y) {
777 if (y < 0) { /* shift right? */
778 if (y <= -NBITS) return 0;
779 else return intop(>>, x, -y);
780 }
781 else { /* shift left */
782 if (y >= NBITS) return 0;
783 else return intop(<<, x, y);
784 }
785 }
786
787
788 /*
789 ** create a new Lua closure, push it in the stack, and initialize
790 ** its upvalues.
791 */
pushclosure(lua_State * L,Proto * p,UpVal ** encup,StkId base,StkId ra)792 static void pushclosure (lua_State *L, Proto *p, UpVal **encup, StkId base,
793 StkId ra) {
794 int nup = p->sizeupvalues;
795 Upvaldesc *uv = p->upvalues;
796 int i;
797 LClosure *ncl = luaF_newLclosure(L, nup);
798 ncl->p = p;
799 setclLvalue2s(L, ra, ncl); /* anchor new closure in stack */
800 for (i = 0; i < nup; i++) { /* fill in its upvalues */
801 if (uv[i].instack) /* upvalue refers to local variable? */
802 ncl->upvals[i] = luaF_findupval(L, base + uv[i].idx);
803 else /* get upvalue from enclosing function */
804 ncl->upvals[i] = encup[uv[i].idx];
805 luaC_objbarrier(L, ncl, ncl->upvals[i]);
806 }
807 }
808
809
810 /*
811 ** finish execution of an opcode interrupted by a yield
812 */
luaV_finishOp(lua_State * L)813 void luaV_finishOp (lua_State *L) {
814 CallInfo *ci = L->ci;
815 StkId base = ci->func + 1;
816 Instruction inst = *(ci->u.l.savedpc - 1); /* interrupted instruction */
817 OpCode op = GET_OPCODE(inst);
818 switch (op) { /* finish its execution */
819 case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: {
820 setobjs2s(L, base + GETARG_A(*(ci->u.l.savedpc - 2)), --L->top);
821 break;
822 }
823 case OP_UNM: case OP_BNOT: case OP_LEN:
824 case OP_GETTABUP: case OP_GETTABLE: case OP_GETI:
825 case OP_GETFIELD: case OP_SELF: {
826 setobjs2s(L, base + GETARG_A(inst), --L->top);
827 break;
828 }
829 case OP_LT: case OP_LE:
830 case OP_LTI: case OP_LEI:
831 case OP_GTI: case OP_GEI:
832 case OP_EQ: { /* note that 'OP_EQI'/'OP_EQK' cannot yield */
833 int res = !l_isfalse(s2v(L->top - 1));
834 L->top--;
835 #if defined(LUA_COMPAT_LT_LE)
836 if (ci->callstatus & CIST_LEQ) { /* "<=" using "<" instead? */
837 ci->callstatus ^= CIST_LEQ; /* clear mark */
838 res = !res; /* negate result */
839 }
840 #endif
841 lua_assert(GET_OPCODE(*ci->u.l.savedpc) == OP_JMP);
842 if (res != GETARG_k(inst)) /* condition failed? */
843 ci->u.l.savedpc++; /* skip jump instruction */
844 break;
845 }
846 case OP_CONCAT: {
847 StkId top = L->top - 1; /* top when 'luaT_tryconcatTM' was called */
848 int a = GETARG_A(inst); /* first element to concatenate */
849 int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */
850 setobjs2s(L, top - 2, top); /* put TM result in proper position */
851 L->top = top - 1; /* top is one after last element (at top-2) */
852 luaV_concat(L, total); /* concat them (may yield again) */
853 break;
854 }
855 default: {
856 /* only these other opcodes can yield */
857 lua_assert(op == OP_TFORCALL || op == OP_CALL ||
858 op == OP_TAILCALL || op == OP_SETTABUP || op == OP_SETTABLE ||
859 op == OP_SETI || op == OP_SETFIELD);
860 break;
861 }
862 }
863 }
864
865
866
867
868 /*
869 ** {==================================================================
870 ** Macros for arithmetic/bitwise/comparison opcodes in 'luaV_execute'
871 ** ===================================================================
872 */
873
874 #define l_addi(L,a,b) intop(+, a, b)
875 #define l_subi(L,a,b) intop(-, a, b)
876 #define l_muli(L,a,b) intop(*, a, b)
877 #define l_band(a,b) intop(&, a, b)
878 #define l_bor(a,b) intop(|, a, b)
879 #define l_bxor(a,b) intop(^, a, b)
880
881 #define l_lti(a,b) (a < b)
882 #define l_lei(a,b) (a <= b)
883 #define l_gti(a,b) (a > b)
884 #define l_gei(a,b) (a >= b)
885
886
887 /*
888 ** Arithmetic operations with immediate operands. 'iop' is the integer
889 ** operation, 'fop' is the float operation.
890 */
891 #define op_arithI(L,iop,fop) { \
892 TValue *v1 = vRB(i); \
893 int imm = GETARG_sC(i); \
894 if (ttisinteger(v1)) { \
895 lua_Integer iv1 = ivalue(v1); \
896 pc++; setivalue(s2v(ra), iop(L, iv1, imm)); \
897 } \
898 else if (ttisfloat(v1)) { \
899 lua_Number nb = fltvalue(v1); \
900 lua_Number fimm = cast_num(imm); \
901 pc++; setfltvalue(s2v(ra), fop(L, nb, fimm)); \
902 }}
903
904
905 /*
906 ** Auxiliary function for arithmetic operations over floats and others
907 ** with two register operands.
908 */
909 #define op_arithf_aux(L,v1,v2,fop) { \
910 lua_Number n1; lua_Number n2; \
911 if (tonumberns(v1, n1) && tonumberns(v2, n2)) { \
912 pc++; setfltvalue(s2v(ra), fop(L, n1, n2)); \
913 }}
914
915
916 /*
917 ** Arithmetic operations over floats and others with register operands.
918 */
919 #define op_arithf(L,fop) { \
920 TValue *v1 = vRB(i); \
921 TValue *v2 = vRC(i); \
922 op_arithf_aux(L, v1, v2, fop); }
923
924
925 /*
926 ** Arithmetic operations with K operands for floats.
927 */
928 #define op_arithfK(L,fop) { \
929 TValue *v1 = vRB(i); \
930 TValue *v2 = KC(i); \
931 op_arithf_aux(L, v1, v2, fop); }
932
933
934 /*
935 ** Arithmetic operations over integers and floats.
936 */
937 #define op_arith_aux(L,v1,v2,iop,fop) { \
938 if (ttisinteger(v1) && ttisinteger(v2)) { \
939 lua_Integer i1 = ivalue(v1); lua_Integer i2 = ivalue(v2); \
940 pc++; setivalue(s2v(ra), iop(L, i1, i2)); \
941 } \
942 else op_arithf_aux(L, v1, v2, fop); }
943
944
945 /*
946 ** Arithmetic operations with register operands.
947 */
948 #define op_arith(L,iop,fop) { \
949 TValue *v1 = vRB(i); \
950 TValue *v2 = vRC(i); \
951 op_arith_aux(L, v1, v2, iop, fop); }
952
953
954 /*
955 ** Arithmetic operations with K operands.
956 */
957 #define op_arithK(L,iop,fop) { \
958 TValue *v1 = vRB(i); \
959 TValue *v2 = KC(i); \
960 op_arith_aux(L, v1, v2, iop, fop); }
961
962
963 /*
964 ** Bitwise operations with constant operand.
965 */
966 #define op_bitwiseK(L,op) { \
967 TValue *v1 = vRB(i); \
968 TValue *v2 = KC(i); \
969 lua_Integer i1; \
970 lua_Integer i2 = ivalue(v2); \
971 if (tointegerns(v1, &i1)) { \
972 pc++; setivalue(s2v(ra), op(i1, i2)); \
973 }}
974
975
976 /*
977 ** Bitwise operations with register operands.
978 */
979 #define op_bitwise(L,op) { \
980 TValue *v1 = vRB(i); \
981 TValue *v2 = vRC(i); \
982 lua_Integer i1; lua_Integer i2; \
983 if (tointegerns(v1, &i1) && tointegerns(v2, &i2)) { \
984 pc++; setivalue(s2v(ra), op(i1, i2)); \
985 }}
986
987
988 /*
989 ** Order operations with register operands. 'opn' actually works
990 ** for all numbers, but the fast track improves performance for
991 ** integers.
992 */
993 #define op_order(L,opi,opn,other) { \
994 int cond; \
995 TValue *rb = vRB(i); \
996 if (ttisinteger(s2v(ra)) && ttisinteger(rb)) { \
997 lua_Integer ia = ivalue(s2v(ra)); \
998 lua_Integer ib = ivalue(rb); \
999 cond = opi(ia, ib); \
1000 } \
1001 else if (ttisnumber(s2v(ra)) && ttisnumber(rb)) \
1002 cond = opn(s2v(ra), rb); \
1003 else \
1004 Protect(cond = other(L, s2v(ra), rb)); \
1005 docondjump(); }
1006
1007
1008 /*
1009 ** Order operations with immediate operand. (Immediate operand is
1010 ** always small enough to have an exact representation as a float.)
1011 */
1012 #define op_orderI(L,opi,opf,inv,tm) { \
1013 int cond; \
1014 int im = GETARG_sB(i); \
1015 if (ttisinteger(s2v(ra))) \
1016 cond = opi(ivalue(s2v(ra)), im); \
1017 else if (ttisfloat(s2v(ra))) { \
1018 lua_Number fa = fltvalue(s2v(ra)); \
1019 lua_Number fim = cast_num(im); \
1020 cond = opf(fa, fim); \
1021 } \
1022 else { \
1023 int isf = GETARG_C(i); \
1024 Protect(cond = luaT_callorderiTM(L, s2v(ra), im, inv, isf, tm)); \
1025 } \
1026 docondjump(); }
1027
1028 /* }================================================================== */
1029
1030
1031 /*
1032 ** {==================================================================
1033 ** Function 'luaV_execute': main interpreter loop
1034 ** ===================================================================
1035 */
1036
1037 /*
1038 ** some macros for common tasks in 'luaV_execute'
1039 */
1040
1041
1042 #define RA(i) (base+GETARG_A(i))
1043 #define RB(i) (base+GETARG_B(i))
1044 #define vRB(i) s2v(RB(i))
1045 #define KB(i) (k+GETARG_B(i))
1046 #define RC(i) (base+GETARG_C(i))
1047 #define vRC(i) s2v(RC(i))
1048 #define KC(i) (k+GETARG_C(i))
1049 #define RKC(i) ((TESTARG_k(i)) ? k + GETARG_C(i) : s2v(base + GETARG_C(i)))
1050
1051
1052
1053 #define updatetrap(ci) (trap = ci->u.l.trap)
1054
1055 #define updatebase(ci) (base = ci->func + 1)
1056
1057
1058 #define updatestack(ci) { if (trap) { updatebase(ci); ra = RA(i); } }
1059
1060
1061 /*
1062 ** Execute a jump instruction. The 'updatetrap' allows signals to stop
1063 ** tight loops. (Without it, the local copy of 'trap' could never change.)
1064 */
1065 #define dojump(ci,i,e) { pc += GETARG_sJ(i) + e; updatetrap(ci); }
1066
1067
1068 /* for test instructions, execute the jump instruction that follows it */
1069 #define donextjump(ci) { Instruction ni = *pc; dojump(ci, ni, 1); }
1070
1071 /*
1072 ** do a conditional jump: skip next instruction if 'cond' is not what
1073 ** was expected (parameter 'k'), else do next instruction, which must
1074 ** be a jump.
1075 */
1076 #define docondjump() if (cond != GETARG_k(i)) pc++; else donextjump(ci);
1077
1078
1079 /*
1080 ** Correct global 'pc'.
1081 */
1082 #define savepc(L) (ci->u.l.savedpc = pc)
1083
1084
1085 /*
1086 ** Whenever code can raise errors, the global 'pc' and the global
1087 ** 'top' must be correct to report occasional errors.
1088 */
1089 #define savestate(L,ci) (savepc(L), L->top = ci->top)
1090
1091
1092 /*
1093 ** Protect code that, in general, can raise errors, reallocate the
1094 ** stack, and change the hooks.
1095 */
1096 #define Protect(exp) (savestate(L,ci), (exp), updatetrap(ci))
1097
1098 /* special version that does not change the top */
1099 #define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci))
1100
1101 /*
1102 ** Protect code that can only raise errors. (That is, it cannnot change
1103 ** the stack or hooks.)
1104 */
1105 #define halfProtect(exp) (savestate(L,ci), (exp))
1106
1107 /* 'c' is the limit of live values in the stack */
1108 #define checkGC(L,c) \
1109 { luaC_condGC(L, (savepc(L), L->top = (c)), \
1110 updatetrap(ci)); \
1111 luai_threadyield(L); }
1112
1113
1114 /* fetch an instruction and prepare its execution */
1115 #define vmfetch() { \
1116 if (trap) { /* stack reallocation or hooks? */ \
1117 trap = luaG_traceexec(L, pc); /* handle hooks */ \
1118 updatebase(ci); /* correct stack */ \
1119 } \
1120 i = *(pc++); \
1121 ra = RA(i); /* WARNING: any stack reallocation invalidates 'ra' */ \
1122 }
1123
1124 #define vmdispatch(o) switch(o)
1125 #define vmcase(l) case l:
1126 #define vmbreak break
1127
1128
luaV_execute(lua_State * L,CallInfo * ci)1129 void luaV_execute (lua_State *L, CallInfo *ci) {
1130 LClosure *cl;
1131 TValue *k;
1132 StkId base;
1133 const Instruction *pc;
1134 int trap;
1135 #if LUA_USE_JUMPTABLE
1136 #include "ljumptab.h"
1137 #endif
1138 startfunc:
1139 trap = L->hookmask;
1140 returning: /* trap already set */
1141 cl = clLvalue(s2v(ci->func));
1142 k = cl->p->k;
1143 pc = ci->u.l.savedpc;
1144 if (trap) {
1145 if (pc == cl->p->code) { /* first instruction (not resuming)? */
1146 if (cl->p->is_vararg)
1147 trap = 0; /* hooks will start after VARARGPREP instruction */
1148 else /* check 'call' hook */
1149 luaD_hookcall(L, ci);
1150 }
1151 ci->u.l.trap = 1; /* assume trap is on, for now */
1152 }
1153 base = ci->func + 1;
1154 /* main loop of interpreter */
1155 for (;;) {
1156 Instruction i; /* instruction being executed */
1157 StkId ra; /* instruction's A register */
1158 vmfetch();
1159 lua_assert(base == ci->func + 1);
1160 lua_assert(base <= L->top && L->top < L->stack_last);
1161 /* invalidate top for instructions not expecting it */
1162 lua_assert(isIT(i) || (cast_void(L->top = base), 1));
1163 vmdispatch (GET_OPCODE(i)) {
1164 vmcase(OP_MOVE) {
1165 setobjs2s(L, ra, RB(i));
1166 vmbreak;
1167 }
1168 vmcase(OP_LOADI) {
1169 lua_Integer b = GETARG_sBx(i);
1170 setivalue(s2v(ra), b);
1171 vmbreak;
1172 }
1173 vmcase(OP_LOADF) {
1174 int b = GETARG_sBx(i);
1175 setfltvalue(s2v(ra), cast_num(b));
1176 vmbreak;
1177 }
1178 vmcase(OP_LOADK) {
1179 TValue *rb = k + GETARG_Bx(i);
1180 setobj2s(L, ra, rb);
1181 vmbreak;
1182 }
1183 vmcase(OP_LOADKX) {
1184 TValue *rb;
1185 rb = k + GETARG_Ax(*pc); pc++;
1186 setobj2s(L, ra, rb);
1187 vmbreak;
1188 }
1189 vmcase(OP_LOADFALSE) {
1190 setbfvalue(s2v(ra));
1191 vmbreak;
1192 }
1193 vmcase(OP_LFALSESKIP) {
1194 setbfvalue(s2v(ra));
1195 pc++; /* skip next instruction */
1196 vmbreak;
1197 }
1198 vmcase(OP_LOADTRUE) {
1199 setbtvalue(s2v(ra));
1200 vmbreak;
1201 }
1202 vmcase(OP_LOADNIL) {
1203 int b = GETARG_B(i);
1204 do {
1205 setnilvalue(s2v(ra++));
1206 } while (b--);
1207 vmbreak;
1208 }
1209 vmcase(OP_GETUPVAL) {
1210 int b = GETARG_B(i);
1211 setobj2s(L, ra, cl->upvals[b]->v);
1212 vmbreak;
1213 }
1214 vmcase(OP_SETUPVAL) {
1215 UpVal *uv = cl->upvals[GETARG_B(i)];
1216 setobj(L, uv->v, s2v(ra));
1217 luaC_barrier(L, uv, s2v(ra));
1218 vmbreak;
1219 }
1220 vmcase(OP_GETTABUP) {
1221 const TValue *slot;
1222 TValue *upval = cl->upvals[GETARG_B(i)]->v;
1223 TValue *rc = KC(i);
1224 TString *key = tsvalue(rc); /* key must be a string */
1225 if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) {
1226 setobj2s(L, ra, slot);
1227 }
1228 else
1229 Protect(luaV_finishget(L, upval, rc, ra, slot));
1230 vmbreak;
1231 }
1232 vmcase(OP_GETTABLE) {
1233 const TValue *slot;
1234 TValue *rb = vRB(i);
1235 TValue *rc = vRC(i);
1236 lua_Unsigned n;
1237 if (ttisinteger(rc) /* fast track for integers? */
1238 ? (cast_void(n = ivalue(rc)), luaV_fastgeti(L, rb, n, slot))
1239 : luaV_fastget(L, rb, rc, slot, luaH_get)) {
1240 setobj2s(L, ra, slot);
1241 }
1242 else
1243 Protect(luaV_finishget(L, rb, rc, ra, slot));
1244 vmbreak;
1245 }
1246 vmcase(OP_GETI) {
1247 const TValue *slot;
1248 TValue *rb = vRB(i);
1249 int c = GETARG_C(i);
1250 if (luaV_fastgeti(L, rb, c, slot)) {
1251 setobj2s(L, ra, slot);
1252 }
1253 else {
1254 TValue key;
1255 setivalue(&key, c);
1256 Protect(luaV_finishget(L, rb, &key, ra, slot));
1257 }
1258 vmbreak;
1259 }
1260 vmcase(OP_GETFIELD) {
1261 const TValue *slot;
1262 TValue *rb = vRB(i);
1263 TValue *rc = KC(i);
1264 TString *key = tsvalue(rc); /* key must be a string */
1265 if (luaV_fastget(L, rb, key, slot, luaH_getshortstr)) {
1266 setobj2s(L, ra, slot);
1267 }
1268 else
1269 Protect(luaV_finishget(L, rb, rc, ra, slot));
1270 vmbreak;
1271 }
1272 vmcase(OP_SETTABUP) {
1273 const TValue *slot;
1274 TValue *upval = cl->upvals[GETARG_A(i)]->v;
1275 TValue *rb = KB(i);
1276 TValue *rc = RKC(i);
1277 TString *key = tsvalue(rb); /* key must be a string */
1278 if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) {
1279 luaV_finishfastset(L, upval, slot, rc);
1280 }
1281 else
1282 Protect(luaV_finishset(L, upval, rb, rc, slot));
1283 vmbreak;
1284 }
1285 vmcase(OP_SETTABLE) {
1286 const TValue *slot;
1287 TValue *rb = vRB(i); /* key (table is in 'ra') */
1288 TValue *rc = RKC(i); /* value */
1289 lua_Unsigned n;
1290 if (ttisinteger(rb) /* fast track for integers? */
1291 ? (cast_void(n = ivalue(rb)), luaV_fastgeti(L, s2v(ra), n, slot))
1292 : luaV_fastget(L, s2v(ra), rb, slot, luaH_get)) {
1293 luaV_finishfastset(L, s2v(ra), slot, rc);
1294 }
1295 else
1296 Protect(luaV_finishset(L, s2v(ra), rb, rc, slot));
1297 vmbreak;
1298 }
1299 vmcase(OP_SETI) {
1300 const TValue *slot;
1301 int c = GETARG_B(i);
1302 TValue *rc = RKC(i);
1303 if (luaV_fastgeti(L, s2v(ra), c, slot)) {
1304 luaV_finishfastset(L, s2v(ra), slot, rc);
1305 }
1306 else {
1307 TValue key;
1308 setivalue(&key, c);
1309 Protect(luaV_finishset(L, s2v(ra), &key, rc, slot));
1310 }
1311 vmbreak;
1312 }
1313 vmcase(OP_SETFIELD) {
1314 const TValue *slot;
1315 TValue *rb = KB(i);
1316 TValue *rc = RKC(i);
1317 TString *key = tsvalue(rb); /* key must be a string */
1318 if (luaV_fastget(L, s2v(ra), key, slot, luaH_getshortstr)) {
1319 luaV_finishfastset(L, s2v(ra), slot, rc);
1320 }
1321 else
1322 Protect(luaV_finishset(L, s2v(ra), rb, rc, slot));
1323 vmbreak;
1324 }
1325 vmcase(OP_NEWTABLE) {
1326 int b = GETARG_B(i); /* log2(hash size) + 1 */
1327 int c = GETARG_C(i); /* array size */
1328 Table *t;
1329 if (b > 0)
1330 b = 1 << (b - 1); /* size is 2^(b - 1) */
1331 lua_assert((!TESTARG_k(i)) == (GETARG_Ax(*pc) == 0));
1332 if (TESTARG_k(i)) /* non-zero extra argument? */
1333 c += GETARG_Ax(*pc) * (MAXARG_C + 1); /* add it to size */
1334 pc++; /* skip extra argument */
1335 L->top = ra + 1; /* correct top in case of emergency GC */
1336 t = luaH_new(L); /* memory allocation */
1337 sethvalue2s(L, ra, t);
1338 if (b != 0 || c != 0)
1339 luaH_resize(L, t, c, b); /* idem */
1340 checkGC(L, ra + 1);
1341 vmbreak;
1342 }
1343 vmcase(OP_SELF) {
1344 const TValue *slot;
1345 TValue *rb = vRB(i);
1346 TValue *rc = RKC(i);
1347 TString *key = tsvalue(rc); /* key must be a string */
1348 setobj2s(L, ra + 1, rb);
1349 if (luaV_fastget(L, rb, key, slot, luaH_getstr)) {
1350 setobj2s(L, ra, slot);
1351 }
1352 else
1353 Protect(luaV_finishget(L, rb, rc, ra, slot));
1354 vmbreak;
1355 }
1356 vmcase(OP_ADDI) {
1357 op_arithI(L, l_addi, luai_numadd);
1358 vmbreak;
1359 }
1360 vmcase(OP_ADDK) {
1361 op_arithK(L, l_addi, luai_numadd);
1362 vmbreak;
1363 }
1364 vmcase(OP_SUBK) {
1365 op_arithK(L, l_subi, luai_numsub);
1366 vmbreak;
1367 }
1368 vmcase(OP_MULK) {
1369 op_arithK(L, l_muli, luai_nummul);
1370 vmbreak;
1371 }
1372 vmcase(OP_MODK) {
1373 op_arithK(L, luaV_mod, luaV_modf);
1374 vmbreak;
1375 }
1376 vmcase(OP_POWK) {
1377 op_arithfK(L, luai_numpow);
1378 vmbreak;
1379 }
1380 vmcase(OP_DIVK) {
1381 op_arithfK(L, luai_numdiv);
1382 vmbreak;
1383 }
1384 vmcase(OP_IDIVK) {
1385 op_arithK(L, luaV_idiv, luai_numidiv);
1386 vmbreak;
1387 }
1388 vmcase(OP_BANDK) {
1389 op_bitwiseK(L, l_band);
1390 vmbreak;
1391 }
1392 vmcase(OP_BORK) {
1393 op_bitwiseK(L, l_bor);
1394 vmbreak;
1395 }
1396 vmcase(OP_BXORK) {
1397 op_bitwiseK(L, l_bxor);
1398 vmbreak;
1399 }
1400 vmcase(OP_SHRI) {
1401 TValue *rb = vRB(i);
1402 int ic = GETARG_sC(i);
1403 lua_Integer ib;
1404 if (tointegerns(rb, &ib)) {
1405 pc++; setivalue(s2v(ra), luaV_shiftl(ib, -ic));
1406 }
1407 vmbreak;
1408 }
1409 vmcase(OP_SHLI) {
1410 TValue *rb = vRB(i);
1411 int ic = GETARG_sC(i);
1412 lua_Integer ib;
1413 if (tointegerns(rb, &ib)) {
1414 pc++; setivalue(s2v(ra), luaV_shiftl(ic, ib));
1415 }
1416 vmbreak;
1417 }
1418 vmcase(OP_ADD) {
1419 op_arith(L, l_addi, luai_numadd);
1420 vmbreak;
1421 }
1422 vmcase(OP_SUB) {
1423 op_arith(L, l_subi, luai_numsub);
1424 vmbreak;
1425 }
1426 vmcase(OP_MUL) {
1427 op_arith(L, l_muli, luai_nummul);
1428 vmbreak;
1429 }
1430 vmcase(OP_MOD) {
1431 op_arith(L, luaV_mod, luaV_modf);
1432 vmbreak;
1433 }
1434 vmcase(OP_POW) {
1435 op_arithf(L, luai_numpow);
1436 vmbreak;
1437 }
1438 vmcase(OP_DIV) { /* float division (always with floats) */
1439 op_arithf(L, luai_numdiv);
1440 vmbreak;
1441 }
1442 vmcase(OP_IDIV) { /* floor division */
1443 op_arith(L, luaV_idiv, luai_numidiv);
1444 vmbreak;
1445 }
1446 vmcase(OP_BAND) {
1447 op_bitwise(L, l_band);
1448 vmbreak;
1449 }
1450 vmcase(OP_BOR) {
1451 op_bitwise(L, l_bor);
1452 vmbreak;
1453 }
1454 vmcase(OP_BXOR) {
1455 op_bitwise(L, l_bxor);
1456 vmbreak;
1457 }
1458 vmcase(OP_SHR) {
1459 op_bitwise(L, luaV_shiftr);
1460 vmbreak;
1461 }
1462 vmcase(OP_SHL) {
1463 op_bitwise(L, luaV_shiftl);
1464 vmbreak;
1465 }
1466 vmcase(OP_MMBIN) {
1467 Instruction pi = *(pc - 2); /* original arith. expression */
1468 TValue *rb = vRB(i);
1469 TMS tm = (TMS)GETARG_C(i);
1470 StkId result = RA(pi);
1471 lua_assert(OP_ADD <= GET_OPCODE(pi) && GET_OPCODE(pi) <= OP_SHR);
1472 Protect(luaT_trybinTM(L, s2v(ra), rb, result, tm));
1473 vmbreak;
1474 }
1475 vmcase(OP_MMBINI) {
1476 Instruction pi = *(pc - 2); /* original arith. expression */
1477 int imm = GETARG_sB(i);
1478 TMS tm = (TMS)GETARG_C(i);
1479 int flip = GETARG_k(i);
1480 StkId result = RA(pi);
1481 Protect(luaT_trybiniTM(L, s2v(ra), imm, flip, result, tm));
1482 vmbreak;
1483 }
1484 vmcase(OP_MMBINK) {
1485 Instruction pi = *(pc - 2); /* original arith. expression */
1486 TValue *imm = KB(i);
1487 TMS tm = (TMS)GETARG_C(i);
1488 int flip = GETARG_k(i);
1489 StkId result = RA(pi);
1490 Protect(luaT_trybinassocTM(L, s2v(ra), imm, flip, result, tm));
1491 vmbreak;
1492 }
1493 vmcase(OP_UNM) {
1494 TValue *rb = vRB(i);
1495 lua_Number nb;
1496 if (ttisinteger(rb)) {
1497 lua_Integer ib = ivalue(rb);
1498 setivalue(s2v(ra), intop(-, 0, ib));
1499 }
1500 else if (tonumberns(rb, nb)) {
1501 setfltvalue(s2v(ra), luai_numunm(L, nb));
1502 }
1503 else
1504 Protect(luaT_trybinTM(L, rb, rb, ra, TM_UNM));
1505 vmbreak;
1506 }
1507 vmcase(OP_BNOT) {
1508 TValue *rb = vRB(i);
1509 lua_Integer ib;
1510 if (tointegerns(rb, &ib)) {
1511 setivalue(s2v(ra), intop(^, ~l_castS2U(0), ib));
1512 }
1513 else
1514 Protect(luaT_trybinTM(L, rb, rb, ra, TM_BNOT));
1515 vmbreak;
1516 }
1517 vmcase(OP_NOT) {
1518 TValue *rb = vRB(i);
1519 if (l_isfalse(rb))
1520 setbtvalue(s2v(ra));
1521 else
1522 setbfvalue(s2v(ra));
1523 vmbreak;
1524 }
1525 vmcase(OP_LEN) {
1526 Protect(luaV_objlen(L, ra, vRB(i)));
1527 vmbreak;
1528 }
1529 vmcase(OP_CONCAT) {
1530 int n = GETARG_B(i); /* number of elements to concatenate */
1531 L->top = ra + n; /* mark the end of concat operands */
1532 ProtectNT(luaV_concat(L, n));
1533 checkGC(L, L->top); /* 'luaV_concat' ensures correct top */
1534 vmbreak;
1535 }
1536 vmcase(OP_CLOSE) {
1537 Protect(luaF_close(L, ra, LUA_OK));
1538 vmbreak;
1539 }
1540 vmcase(OP_TBC) {
1541 /* create new to-be-closed upvalue */
1542 halfProtect(luaF_newtbcupval(L, ra));
1543 vmbreak;
1544 }
1545 vmcase(OP_JMP) {
1546 dojump(ci, i, 0);
1547 vmbreak;
1548 }
1549 vmcase(OP_EQ) {
1550 int cond;
1551 TValue *rb = vRB(i);
1552 Protect(cond = luaV_equalobj(L, s2v(ra), rb));
1553 docondjump();
1554 vmbreak;
1555 }
1556 vmcase(OP_LT) {
1557 op_order(L, l_lti, LTnum, lessthanothers);
1558 vmbreak;
1559 }
1560 vmcase(OP_LE) {
1561 op_order(L, l_lei, LEnum, lessequalothers);
1562 vmbreak;
1563 }
1564 vmcase(OP_EQK) {
1565 TValue *rb = KB(i);
1566 /* basic types do not use '__eq'; we can use raw equality */
1567 int cond = luaV_rawequalobj(s2v(ra), rb);
1568 docondjump();
1569 vmbreak;
1570 }
1571 vmcase(OP_EQI) {
1572 int cond;
1573 int im = GETARG_sB(i);
1574 if (ttisinteger(s2v(ra)))
1575 cond = (ivalue(s2v(ra)) == im);
1576 else if (ttisfloat(s2v(ra)))
1577 cond = luai_numeq(fltvalue(s2v(ra)), cast_num(im));
1578 else
1579 cond = 0; /* other types cannot be equal to a number */
1580 docondjump();
1581 vmbreak;
1582 }
1583 vmcase(OP_LTI) {
1584 op_orderI(L, l_lti, luai_numlt, 0, TM_LT);
1585 vmbreak;
1586 }
1587 vmcase(OP_LEI) {
1588 op_orderI(L, l_lei, luai_numle, 0, TM_LE);
1589 vmbreak;
1590 }
1591 vmcase(OP_GTI) {
1592 op_orderI(L, l_gti, luai_numgt, 1, TM_LT);
1593 vmbreak;
1594 }
1595 vmcase(OP_GEI) {
1596 op_orderI(L, l_gei, luai_numge, 1, TM_LE);
1597 vmbreak;
1598 }
1599 vmcase(OP_TEST) {
1600 int cond = !l_isfalse(s2v(ra));
1601 docondjump();
1602 vmbreak;
1603 }
1604 vmcase(OP_TESTSET) {
1605 TValue *rb = vRB(i);
1606 if (l_isfalse(rb) == GETARG_k(i))
1607 pc++;
1608 else {
1609 setobj2s(L, ra, rb);
1610 donextjump(ci);
1611 }
1612 vmbreak;
1613 }
1614 vmcase(OP_CALL) {
1615 CallInfo *newci;
1616 int b = GETARG_B(i);
1617 int nresults = GETARG_C(i) - 1;
1618 if (b != 0) /* fixed number of arguments? */
1619 L->top = ra + b; /* top signals number of arguments */
1620 /* else previous instruction set top */
1621 savepc(L); /* in case of errors */
1622 if ((newci = luaD_precall(L, ra, nresults)) == NULL)
1623 updatetrap(ci); /* C call; nothing else to be done */
1624 else { /* Lua call: run function in this same C frame */
1625 ci = newci;
1626 ci->callstatus = 0; /* call re-uses 'luaV_execute' */
1627 goto startfunc;
1628 }
1629 vmbreak;
1630 }
1631 vmcase(OP_TAILCALL) {
1632 int b = GETARG_B(i); /* number of arguments + 1 (function) */
1633 int nparams1 = GETARG_C(i);
1634 /* delta is virtual 'func' - real 'func' (vararg functions) */
1635 int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0;
1636 if (b != 0)
1637 L->top = ra + b;
1638 else /* previous instruction set top */
1639 b = cast_int(L->top - ra);
1640 savepc(ci); /* several calls here can raise errors */
1641 if (TESTARG_k(i)) {
1642 /* close upvalues from current call; the compiler ensures
1643 that there are no to-be-closed variables here, so this
1644 call cannot change the stack */
1645 luaF_close(L, base, NOCLOSINGMETH);
1646 lua_assert(base == ci->func + 1);
1647 }
1648 while (!ttisfunction(s2v(ra))) { /* not a function? */
1649 luaD_tryfuncTM(L, ra); /* try '__call' metamethod */
1650 b++; /* there is now one extra argument */
1651 checkstackGCp(L, 1, ra);
1652 }
1653 if (!ttisLclosure(s2v(ra))) { /* C function? */
1654 luaD_precall(L, ra, LUA_MULTRET); /* call it */
1655 updatetrap(ci);
1656 updatestack(ci); /* stack may have been relocated */
1657 ci->func -= delta; /* restore 'func' (if vararg) */
1658 luaD_poscall(L, ci, cast_int(L->top - ra)); /* finish caller */
1659 updatetrap(ci); /* 'luaD_poscall' can change hooks */
1660 goto ret; /* caller returns after the tail call */
1661 }
1662 ci->func -= delta; /* restore 'func' (if vararg) */
1663 luaD_pretailcall(L, ci, ra, b); /* prepare call frame */
1664 goto startfunc; /* execute the callee */
1665 }
1666 vmcase(OP_RETURN) {
1667 int n = GETARG_B(i) - 1; /* number of results */
1668 int nparams1 = GETARG_C(i);
1669 if (n < 0) /* not fixed? */
1670 n = cast_int(L->top - ra); /* get what is available */
1671 savepc(ci);
1672 if (TESTARG_k(i)) { /* may there be open upvalues? */
1673 if (L->top < ci->top)
1674 L->top = ci->top;
1675 luaF_close(L, base, LUA_OK);
1676 updatetrap(ci);
1677 updatestack(ci);
1678 }
1679 if (nparams1) /* vararg function? */
1680 ci->func -= ci->u.l.nextraargs + nparams1;
1681 L->top = ra + n; /* set call for 'luaD_poscall' */
1682 luaD_poscall(L, ci, n);
1683 updatetrap(ci); /* 'luaD_poscall' can change hooks */
1684 goto ret;
1685 }
1686 vmcase(OP_RETURN0) {
1687 if (L->hookmask) {
1688 L->top = ra;
1689 savepc(ci);
1690 luaD_poscall(L, ci, 0); /* no hurry... */
1691 trap = 1;
1692 }
1693 else { /* do the 'poscall' here */
1694 int nres = ci->nresults;
1695 L->ci = ci->previous; /* back to caller */
1696 L->top = base - 1;
1697 while (nres-- > 0)
1698 setnilvalue(s2v(L->top++)); /* all results are nil */
1699 }
1700 goto ret;
1701 }
1702 vmcase(OP_RETURN1) {
1703 if (L->hookmask) {
1704 L->top = ra + 1;
1705 savepc(ci);
1706 luaD_poscall(L, ci, 1); /* no hurry... */
1707 trap = 1;
1708 }
1709 else { /* do the 'poscall' here */
1710 int nres = ci->nresults;
1711 L->ci = ci->previous; /* back to caller */
1712 if (nres == 0)
1713 L->top = base - 1; /* asked for no results */
1714 else {
1715 setobjs2s(L, base - 1, ra); /* at least this result */
1716 L->top = base;
1717 while (--nres > 0) /* complete missing results */
1718 setnilvalue(s2v(L->top++));
1719 }
1720 }
1721 ret: /* return from a Lua function */
1722 if (ci->callstatus & CIST_FRESH)
1723 return; /* end this frame */
1724 else {
1725 ci = ci->previous;
1726 goto returning; /* continue running caller in this frame */
1727 }
1728 }
1729 vmcase(OP_FORLOOP) {
1730 if (ttisinteger(s2v(ra + 2))) { /* integer loop? */
1731 lua_Unsigned count = l_castS2U(ivalue(s2v(ra + 1)));
1732 if (count > 0) { /* still more iterations? */
1733 lua_Integer step = ivalue(s2v(ra + 2));
1734 lua_Integer idx = ivalue(s2v(ra)); /* internal index */
1735 chgivalue(s2v(ra + 1), count - 1); /* update counter */
1736 idx = intop(+, idx, step); /* add step to index */
1737 chgivalue(s2v(ra), idx); /* update internal index */
1738 setivalue(s2v(ra + 3), idx); /* and control variable */
1739 pc -= GETARG_Bx(i); /* jump back */
1740 }
1741 }
1742 else if (floatforloop(ra)) /* float loop */
1743 pc -= GETARG_Bx(i); /* jump back */
1744 updatetrap(ci); /* allows a signal to break the loop */
1745 vmbreak;
1746 }
1747 vmcase(OP_FORPREP) {
1748 savestate(L, ci); /* in case of errors */
1749 if (forprep(L, ra))
1750 pc += GETARG_Bx(i) + 1; /* skip the loop */
1751 vmbreak;
1752 }
1753 vmcase(OP_TFORPREP) {
1754 /* create to-be-closed upvalue (if needed) */
1755 halfProtect(luaF_newtbcupval(L, ra + 3));
1756 pc += GETARG_Bx(i);
1757 i = *(pc++); /* go to next instruction */
1758 lua_assert(GET_OPCODE(i) == OP_TFORCALL && ra == RA(i));
1759 goto l_tforcall;
1760 }
1761 vmcase(OP_TFORCALL) {
1762 l_tforcall:
1763 /* 'ra' has the iterator function, 'ra + 1' has the state,
1764 'ra + 2' has the control variable, and 'ra + 3' has the
1765 to-be-closed variable. The call will use the stack after
1766 these values (starting at 'ra + 4')
1767 */
1768 /* push function, state, and control variable */
1769 memcpy(ra + 4, ra, 3 * sizeof(*ra));
1770 L->top = ra + 4 + 3;
1771 ProtectNT(luaD_call(L, ra + 4, GETARG_C(i))); /* do the call */
1772 updatestack(ci); /* stack may have changed */
1773 i = *(pc++); /* go to next instruction */
1774 lua_assert(GET_OPCODE(i) == OP_TFORLOOP && ra == RA(i));
1775 goto l_tforloop;
1776 }
1777 vmcase(OP_TFORLOOP) {
1778 l_tforloop:
1779 if (!ttisnil(s2v(ra + 4))) { /* continue loop? */
1780 setobjs2s(L, ra + 2, ra + 4); /* save control variable */
1781 pc -= GETARG_Bx(i); /* jump back */
1782 }
1783 vmbreak;
1784 }
1785 vmcase(OP_SETLIST) {
1786 int n = GETARG_B(i);
1787 unsigned int last = GETARG_C(i);
1788 Table *h = hvalue(s2v(ra));
1789 if (n == 0)
1790 n = cast_int(L->top - ra) - 1; /* get up to the top */
1791 else
1792 L->top = ci->top; /* correct top in case of emergency GC */
1793 last += n;
1794 if (TESTARG_k(i)) {
1795 last += GETARG_Ax(*pc) * (MAXARG_C + 1);
1796 pc++;
1797 }
1798 if (last > luaH_realasize(h)) /* needs more space? */
1799 luaH_resizearray(L, h, last); /* preallocate it at once */
1800 for (; n > 0; n--) {
1801 TValue *val = s2v(ra + n);
1802 setobj2t(L, &h->array[last - 1], val);
1803 last--;
1804 luaC_barrierback(L, obj2gco(h), val);
1805 }
1806 vmbreak;
1807 }
1808 vmcase(OP_CLOSURE) {
1809 Proto *p = cl->p->p[GETARG_Bx(i)];
1810 halfProtect(pushclosure(L, p, cl->upvals, base, ra));
1811 checkGC(L, ra + 1);
1812 vmbreak;
1813 }
1814 vmcase(OP_VARARG) {
1815 int n = GETARG_C(i) - 1; /* required results */
1816 Protect(luaT_getvarargs(L, ci, ra, n));
1817 vmbreak;
1818 }
1819 vmcase(OP_VARARGPREP) {
1820 ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p));
1821 if (trap) {
1822 luaD_hookcall(L, ci);
1823 L->oldpc = 1; /* next opcode will be seen as a "new" line */
1824 }
1825 updatebase(ci); /* function has new base after adjustment */
1826 vmbreak;
1827 }
1828 vmcase(OP_EXTRAARG) {
1829 lua_assert(0);
1830 vmbreak;
1831 }
1832 }
1833 }
1834 }
1835
1836 /* }================================================================== */
1837