1 //===- Object.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Object.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::objcopy::elf;
35 using namespace llvm::object;
36 
writePhdr(const Segment & Seg)37 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
38   uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
39                Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
40   Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
41   Phdr.p_type = Seg.Type;
42   Phdr.p_flags = Seg.Flags;
43   Phdr.p_offset = Seg.Offset;
44   Phdr.p_vaddr = Seg.VAddr;
45   Phdr.p_paddr = Seg.PAddr;
46   Phdr.p_filesz = Seg.FileSize;
47   Phdr.p_memsz = Seg.MemSize;
48   Phdr.p_align = Seg.Align;
49 }
50 
removeSectionReferences(bool,function_ref<bool (const SectionBase *)>)51 Error SectionBase::removeSectionReferences(
52     bool, function_ref<bool(const SectionBase *)>) {
53   return Error::success();
54 }
55 
removeSymbols(function_ref<bool (const Symbol &)>)56 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
57   return Error::success();
58 }
59 
initialize(SectionTableRef)60 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
finalize()61 void SectionBase::finalize() {}
markSymbols()62 void SectionBase::markSymbols() {}
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > &)63 void SectionBase::replaceSectionReferences(
64     const DenseMap<SectionBase *, SectionBase *> &) {}
onRemove()65 void SectionBase::onRemove() {}
66 
writeShdr(const SectionBase & Sec)67 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
68   uint8_t *B =
69       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
70   Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
71   Shdr.sh_name = Sec.NameIndex;
72   Shdr.sh_type = Sec.Type;
73   Shdr.sh_flags = Sec.Flags;
74   Shdr.sh_addr = Sec.Addr;
75   Shdr.sh_offset = Sec.Offset;
76   Shdr.sh_size = Sec.Size;
77   Shdr.sh_link = Sec.Link;
78   Shdr.sh_info = Sec.Info;
79   Shdr.sh_addralign = Sec.Align;
80   Shdr.sh_entsize = Sec.EntrySize;
81 }
82 
visit(Section &)83 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
84   return Error::success();
85 }
86 
visit(OwnedDataSection &)87 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
88   return Error::success();
89 }
90 
visit(StringTableSection &)91 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
92   return Error::success();
93 }
94 
95 template <class ELFT>
visit(DynamicRelocationSection &)96 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
97   return Error::success();
98 }
99 
100 template <class ELFT>
visit(SymbolTableSection & Sec)101 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
102   Sec.EntrySize = sizeof(Elf_Sym);
103   Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
104   // Align to the largest field in Elf_Sym.
105   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
106   return Error::success();
107 }
108 
109 template <class ELFT>
visit(RelocationSection & Sec)110 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
111   Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
112   Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
113   // Align to the largest field in Elf_Rel(a).
114   Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
115   return Error::success();
116 }
117 
118 template <class ELFT>
visit(GnuDebugLinkSection &)119 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
120   return Error::success();
121 }
122 
visit(GroupSection & Sec)123 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
124   Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
125   return Error::success();
126 }
127 
128 template <class ELFT>
visit(SectionIndexSection &)129 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
130   return Error::success();
131 }
132 
visit(CompressedSection &)133 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
134   return Error::success();
135 }
136 
137 template <class ELFT>
visit(DecompressedSection &)138 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
139   return Error::success();
140 }
141 
visit(const SectionIndexSection & Sec)142 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
143   return createStringError(errc::operation_not_permitted,
144                            "cannot write symbol section index table '" +
145                                Sec.Name + "' ");
146 }
147 
visit(const SymbolTableSection & Sec)148 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
149   return createStringError(errc::operation_not_permitted,
150                            "cannot write symbol table '" + Sec.Name +
151                                "' out to binary");
152 }
153 
visit(const RelocationSection & Sec)154 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
155   return createStringError(errc::operation_not_permitted,
156                            "cannot write relocation section '" + Sec.Name +
157                                "' out to binary");
158 }
159 
visit(const GnuDebugLinkSection & Sec)160 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
161   return createStringError(errc::operation_not_permitted,
162                            "cannot write '" + Sec.Name + "' out to binary");
163 }
164 
visit(const GroupSection & Sec)165 Error BinarySectionWriter::visit(const GroupSection &Sec) {
166   return createStringError(errc::operation_not_permitted,
167                            "cannot write '" + Sec.Name + "' out to binary");
168 }
169 
visit(const Section & Sec)170 Error SectionWriter::visit(const Section &Sec) {
171   if (Sec.Type != SHT_NOBITS)
172     llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
173 
174   return Error::success();
175 }
176 
addressOverflows32bit(uint64_t Addr)177 static bool addressOverflows32bit(uint64_t Addr) {
178   // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
179   return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
180 }
181 
checkedGetHex(StringRef S)182 template <class T> static T checkedGetHex(StringRef S) {
183   T Value;
184   bool Fail = S.getAsInteger(16, Value);
185   assert(!Fail);
186   (void)Fail;
187   return Value;
188 }
189 
190 // Fills exactly Len bytes of buffer with hexadecimal characters
191 // representing value 'X'
192 template <class T, class Iterator>
toHexStr(T X,Iterator It,size_t Len)193 static Iterator toHexStr(T X, Iterator It, size_t Len) {
194   // Fill range with '0'
195   std::fill(It, It + Len, '0');
196 
197   for (long I = Len - 1; I >= 0; --I) {
198     unsigned char Mod = static_cast<unsigned char>(X) & 15;
199     *(It + I) = hexdigit(Mod, false);
200     X >>= 4;
201   }
202   assert(X == 0);
203   return It + Len;
204 }
205 
getChecksum(StringRef S)206 uint8_t IHexRecord::getChecksum(StringRef S) {
207   assert((S.size() & 1) == 0);
208   uint8_t Checksum = 0;
209   while (!S.empty()) {
210     Checksum += checkedGetHex<uint8_t>(S.take_front(2));
211     S = S.drop_front(2);
212   }
213   return -Checksum;
214 }
215 
getLine(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)216 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
217                                  ArrayRef<uint8_t> Data) {
218   IHexLineData Line(getLineLength(Data.size()));
219   assert(Line.size());
220   auto Iter = Line.begin();
221   *Iter++ = ':';
222   Iter = toHexStr(Data.size(), Iter, 2);
223   Iter = toHexStr(Addr, Iter, 4);
224   Iter = toHexStr(Type, Iter, 2);
225   for (uint8_t X : Data)
226     Iter = toHexStr(X, Iter, 2);
227   StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
228   Iter = toHexStr(getChecksum(S), Iter, 2);
229   *Iter++ = '\r';
230   *Iter++ = '\n';
231   assert(Iter == Line.end());
232   return Line;
233 }
234 
checkRecord(const IHexRecord & R)235 static Error checkRecord(const IHexRecord &R) {
236   switch (R.Type) {
237   case IHexRecord::Data:
238     if (R.HexData.size() == 0)
239       return createStringError(
240           errc::invalid_argument,
241           "zero data length is not allowed for data records");
242     break;
243   case IHexRecord::EndOfFile:
244     break;
245   case IHexRecord::SegmentAddr:
246     // 20-bit segment address. Data length must be 2 bytes
247     // (4 bytes in hex)
248     if (R.HexData.size() != 4)
249       return createStringError(
250           errc::invalid_argument,
251           "segment address data should be 2 bytes in size");
252     break;
253   case IHexRecord::StartAddr80x86:
254   case IHexRecord::StartAddr:
255     if (R.HexData.size() != 8)
256       return createStringError(errc::invalid_argument,
257                                "start address data should be 4 bytes in size");
258     // According to Intel HEX specification '03' record
259     // only specifies the code address within the 20-bit
260     // segmented address space of the 8086/80186. This
261     // means 12 high order bits should be zeroes.
262     if (R.Type == IHexRecord::StartAddr80x86 &&
263         R.HexData.take_front(3) != "000")
264       return createStringError(errc::invalid_argument,
265                                "start address exceeds 20 bit for 80x86");
266     break;
267   case IHexRecord::ExtendedAddr:
268     // 16-31 bits of linear base address
269     if (R.HexData.size() != 4)
270       return createStringError(
271           errc::invalid_argument,
272           "extended address data should be 2 bytes in size");
273     break;
274   default:
275     // Unknown record type
276     return createStringError(errc::invalid_argument, "unknown record type: %u",
277                              static_cast<unsigned>(R.Type));
278   }
279   return Error::success();
280 }
281 
282 // Checks that IHEX line contains valid characters.
283 // This allows converting hexadecimal data to integers
284 // without extra verification.
checkChars(StringRef Line)285 static Error checkChars(StringRef Line) {
286   assert(!Line.empty());
287   if (Line[0] != ':')
288     return createStringError(errc::invalid_argument,
289                              "missing ':' in the beginning of line.");
290 
291   for (size_t Pos = 1; Pos < Line.size(); ++Pos)
292     if (hexDigitValue(Line[Pos]) == -1U)
293       return createStringError(errc::invalid_argument,
294                                "invalid character at position %zu.", Pos + 1);
295   return Error::success();
296 }
297 
parse(StringRef Line)298 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
299   assert(!Line.empty());
300 
301   // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
302   if (Line.size() < 11)
303     return createStringError(errc::invalid_argument,
304                              "line is too short: %zu chars.", Line.size());
305 
306   if (Error E = checkChars(Line))
307     return std::move(E);
308 
309   IHexRecord Rec;
310   size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
311   if (Line.size() != getLength(DataLen))
312     return createStringError(errc::invalid_argument,
313                              "invalid line length %zu (should be %zu)",
314                              Line.size(), getLength(DataLen));
315 
316   Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
317   Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
318   Rec.HexData = Line.substr(9, DataLen * 2);
319 
320   if (getChecksum(Line.drop_front(1)) != 0)
321     return createStringError(errc::invalid_argument, "incorrect checksum.");
322   if (Error E = checkRecord(Rec))
323     return std::move(E);
324   return Rec;
325 }
326 
sectionPhysicalAddr(const SectionBase * Sec)327 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
328   Segment *Seg = Sec->ParentSegment;
329   if (Seg && Seg->Type != ELF::PT_LOAD)
330     Seg = nullptr;
331   return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
332              : Sec->Addr;
333 }
334 
writeSection(const SectionBase * Sec,ArrayRef<uint8_t> Data)335 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
336                                          ArrayRef<uint8_t> Data) {
337   assert(Data.size() == Sec->Size);
338   const uint32_t ChunkSize = 16;
339   uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
340   while (!Data.empty()) {
341     uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
342     if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
343       if (Addr > 0xFFFFFU) {
344         // Write extended address record, zeroing segment address
345         // if needed.
346         if (SegmentAddr != 0)
347           SegmentAddr = writeSegmentAddr(0U);
348         BaseAddr = writeBaseAddr(Addr);
349       } else {
350         // We can still remain 16-bit
351         SegmentAddr = writeSegmentAddr(Addr);
352       }
353     }
354     uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
355     assert(SegOffset <= 0xFFFFU);
356     DataSize = std::min(DataSize, 0x10000U - SegOffset);
357     writeData(0, SegOffset, Data.take_front(DataSize));
358     Addr += DataSize;
359     Data = Data.drop_front(DataSize);
360   }
361 }
362 
writeSegmentAddr(uint64_t Addr)363 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
364   assert(Addr <= 0xFFFFFU);
365   uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
366   writeData(2, 0, Data);
367   return Addr & 0xF0000U;
368 }
369 
writeBaseAddr(uint64_t Addr)370 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
371   assert(Addr <= 0xFFFFFFFFU);
372   uint64_t Base = Addr & 0xFFFF0000U;
373   uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
374                     static_cast<uint8_t>((Base >> 16) & 0xFF)};
375   writeData(4, 0, Data);
376   return Base;
377 }
378 
writeData(uint8_t,uint16_t,ArrayRef<uint8_t> Data)379 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
380                                       ArrayRef<uint8_t> Data) {
381   Offset += IHexRecord::getLineLength(Data.size());
382 }
383 
visit(const Section & Sec)384 Error IHexSectionWriterBase::visit(const Section &Sec) {
385   writeSection(&Sec, Sec.Contents);
386   return Error::success();
387 }
388 
visit(const OwnedDataSection & Sec)389 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
390   writeSection(&Sec, Sec.Data);
391   return Error::success();
392 }
393 
visit(const StringTableSection & Sec)394 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
395   // Check that sizer has already done its work
396   assert(Sec.Size == Sec.StrTabBuilder.getSize());
397   // We are free to pass an invalid pointer to writeSection as long
398   // as we don't actually write any data. The real writer class has
399   // to override this method .
400   writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
401   return Error::success();
402 }
403 
visit(const DynamicRelocationSection & Sec)404 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
405   writeSection(&Sec, Sec.Contents);
406   return Error::success();
407 }
408 
writeData(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)409 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
410                                   ArrayRef<uint8_t> Data) {
411   IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
412   memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
413   Offset += HexData.size();
414 }
415 
visit(const StringTableSection & Sec)416 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
417   assert(Sec.Size == Sec.StrTabBuilder.getSize());
418   std::vector<uint8_t> Data(Sec.Size);
419   Sec.StrTabBuilder.write(Data.data());
420   writeSection(&Sec, Data);
421   return Error::success();
422 }
423 
accept(SectionVisitor & Visitor) const424 Error Section::accept(SectionVisitor &Visitor) const {
425   return Visitor.visit(*this);
426 }
427 
accept(MutableSectionVisitor & Visitor)428 Error Section::accept(MutableSectionVisitor &Visitor) {
429   return Visitor.visit(*this);
430 }
431 
visit(const OwnedDataSection & Sec)432 Error SectionWriter::visit(const OwnedDataSection &Sec) {
433   llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
434   return Error::success();
435 }
436 
437 static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
438 
isDataGnuCompressed(ArrayRef<uint8_t> Data)439 static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
440   return Data.size() > ZlibGnuMagic.size() &&
441          std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
442 }
443 
444 template <class ELFT>
445 static std::tuple<uint64_t, uint64_t>
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data)446 getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
447   const bool IsGnuDebug = isDataGnuCompressed(Data);
448   const uint64_t DecompressedSize =
449       IsGnuDebug
450           ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
451           : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
452   const uint64_t DecompressedAlign =
453       IsGnuDebug ? 1
454                  : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
455                        ->ch_addralign;
456 
457   return std::make_tuple(DecompressedSize, DecompressedAlign);
458 }
459 
460 template <class ELFT>
visit(const DecompressedSection & Sec)461 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
462   const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
463                                 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
464                                 : sizeof(Elf_Chdr_Impl<ELFT>);
465 
466   StringRef CompressedContent(
467       reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
468       Sec.OriginalData.size() - DataOffset);
469 
470   SmallVector<char, 128> DecompressedContent;
471   if (Error Err = zlib::uncompress(CompressedContent, DecompressedContent,
472                                    static_cast<size_t>(Sec.Size)))
473     return createStringError(errc::invalid_argument,
474                              "'" + Sec.Name + "': " + toString(std::move(Err)));
475 
476   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
477   std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
478 
479   return Error::success();
480 }
481 
visit(const DecompressedSection & Sec)482 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
483   return createStringError(errc::operation_not_permitted,
484                            "cannot write compressed section '" + Sec.Name +
485                                "' ");
486 }
487 
accept(SectionVisitor & Visitor) const488 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
489   return Visitor.visit(*this);
490 }
491 
accept(MutableSectionVisitor & Visitor)492 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
493   return Visitor.visit(*this);
494 }
495 
accept(SectionVisitor & Visitor) const496 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
497   return Visitor.visit(*this);
498 }
499 
accept(MutableSectionVisitor & Visitor)500 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
501   return Visitor.visit(*this);
502 }
503 
appendHexData(StringRef HexData)504 void OwnedDataSection::appendHexData(StringRef HexData) {
505   assert((HexData.size() & 1) == 0);
506   while (!HexData.empty()) {
507     Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
508     HexData = HexData.drop_front(2);
509   }
510   Size = Data.size();
511 }
512 
visit(const CompressedSection & Sec)513 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
514   return createStringError(errc::operation_not_permitted,
515                            "cannot write compressed section '" + Sec.Name +
516                                "' ");
517 }
518 
519 template <class ELFT>
visit(const CompressedSection & Sec)520 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
521   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
522   if (Sec.CompressionType == DebugCompressionType::None) {
523     std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
524     return Error::success();
525   }
526 
527   if (Sec.CompressionType == DebugCompressionType::GNU) {
528     const char *Magic = "ZLIB";
529     memcpy(Buf, Magic, strlen(Magic));
530     Buf += strlen(Magic);
531     const uint64_t DecompressedSize =
532         support::endian::read64be(&Sec.DecompressedSize);
533     memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
534     Buf += sizeof(DecompressedSize);
535   } else {
536     Elf_Chdr_Impl<ELFT> Chdr;
537     Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
538     Chdr.ch_size = Sec.DecompressedSize;
539     Chdr.ch_addralign = Sec.DecompressedAlign;
540     memcpy(Buf, &Chdr, sizeof(Chdr));
541     Buf += sizeof(Chdr);
542   }
543 
544   std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
545   return Error::success();
546 }
547 
548 Expected<CompressedSection>
create(const SectionBase & Sec,DebugCompressionType CompressionType)549 CompressedSection::create(const SectionBase &Sec,
550                           DebugCompressionType CompressionType) {
551   Error Err = Error::success();
552   CompressedSection Section(Sec, CompressionType, Err);
553 
554   if (Err)
555     return std::move(Err);
556 
557   return Section;
558 }
559 Expected<CompressedSection>
create(ArrayRef<uint8_t> CompressedData,uint64_t DecompressedSize,uint64_t DecompressedAlign)560 CompressedSection::create(ArrayRef<uint8_t> CompressedData,
561                           uint64_t DecompressedSize,
562                           uint64_t DecompressedAlign) {
563   return CompressedSection(CompressedData, DecompressedSize, DecompressedAlign);
564 }
565 
CompressedSection(const SectionBase & Sec,DebugCompressionType CompressionType,Error & OutErr)566 CompressedSection::CompressedSection(const SectionBase &Sec,
567                                      DebugCompressionType CompressionType,
568                                      Error &OutErr)
569     : SectionBase(Sec), CompressionType(CompressionType),
570       DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
571   ErrorAsOutParameter EAO(&OutErr);
572 
573   if (Error Err = zlib::compress(
574           StringRef(reinterpret_cast<const char *>(OriginalData.data()),
575                     OriginalData.size()),
576           CompressedData)) {
577     OutErr = createStringError(llvm::errc::invalid_argument,
578                                "'" + Name + "': " + toString(std::move(Err)));
579     return;
580   }
581 
582   size_t ChdrSize;
583   if (CompressionType == DebugCompressionType::GNU) {
584     Name = ".z" + Sec.Name.substr(1);
585     ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
586   } else {
587     Flags |= ELF::SHF_COMPRESSED;
588     ChdrSize =
589         std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
590                           sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
591                  std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
592                           sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
593   }
594   Size = ChdrSize + CompressedData.size();
595   Align = 8;
596 }
597 
CompressedSection(ArrayRef<uint8_t> CompressedData,uint64_t DecompressedSize,uint64_t DecompressedAlign)598 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
599                                      uint64_t DecompressedSize,
600                                      uint64_t DecompressedAlign)
601     : CompressionType(DebugCompressionType::None),
602       DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
603   OriginalData = CompressedData;
604 }
605 
accept(SectionVisitor & Visitor) const606 Error CompressedSection::accept(SectionVisitor &Visitor) const {
607   return Visitor.visit(*this);
608 }
609 
accept(MutableSectionVisitor & Visitor)610 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
611   return Visitor.visit(*this);
612 }
613 
addString(StringRef Name)614 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
615 
findIndex(StringRef Name) const616 uint32_t StringTableSection::findIndex(StringRef Name) const {
617   return StrTabBuilder.getOffset(Name);
618 }
619 
prepareForLayout()620 void StringTableSection::prepareForLayout() {
621   StrTabBuilder.finalize();
622   Size = StrTabBuilder.getSize();
623 }
624 
visit(const StringTableSection & Sec)625 Error SectionWriter::visit(const StringTableSection &Sec) {
626   Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
627                           Sec.Offset);
628   return Error::success();
629 }
630 
accept(SectionVisitor & Visitor) const631 Error StringTableSection::accept(SectionVisitor &Visitor) const {
632   return Visitor.visit(*this);
633 }
634 
accept(MutableSectionVisitor & Visitor)635 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
636   return Visitor.visit(*this);
637 }
638 
639 template <class ELFT>
visit(const SectionIndexSection & Sec)640 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
641   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
642   llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
643   return Error::success();
644 }
645 
initialize(SectionTableRef SecTable)646 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
647   Size = 0;
648   Expected<SymbolTableSection *> Sec =
649       SecTable.getSectionOfType<SymbolTableSection>(
650           Link,
651           "Link field value " + Twine(Link) + " in section " + Name +
652               " is invalid",
653           "Link field value " + Twine(Link) + " in section " + Name +
654               " is not a symbol table");
655   if (!Sec)
656     return Sec.takeError();
657 
658   setSymTab(*Sec);
659   Symbols->setShndxTable(this);
660   return Error::success();
661 }
662 
finalize()663 void SectionIndexSection::finalize() { Link = Symbols->Index; }
664 
accept(SectionVisitor & Visitor) const665 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
666   return Visitor.visit(*this);
667 }
668 
accept(MutableSectionVisitor & Visitor)669 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
670   return Visitor.visit(*this);
671 }
672 
isValidReservedSectionIndex(uint16_t Index,uint16_t Machine)673 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
674   switch (Index) {
675   case SHN_ABS:
676   case SHN_COMMON:
677     return true;
678   }
679 
680   if (Machine == EM_AMDGPU) {
681     return Index == SHN_AMDGPU_LDS;
682   }
683 
684   if (Machine == EM_HEXAGON) {
685     switch (Index) {
686     case SHN_HEXAGON_SCOMMON:
687     case SHN_HEXAGON_SCOMMON_1:
688     case SHN_HEXAGON_SCOMMON_2:
689     case SHN_HEXAGON_SCOMMON_4:
690     case SHN_HEXAGON_SCOMMON_8:
691       return true;
692     }
693   }
694   return false;
695 }
696 
697 // Large indexes force us to clarify exactly what this function should do. This
698 // function should return the value that will appear in st_shndx when written
699 // out.
getShndx() const700 uint16_t Symbol::getShndx() const {
701   if (DefinedIn != nullptr) {
702     if (DefinedIn->Index >= SHN_LORESERVE)
703       return SHN_XINDEX;
704     return DefinedIn->Index;
705   }
706 
707   if (ShndxType == SYMBOL_SIMPLE_INDEX) {
708     // This means that we don't have a defined section but we do need to
709     // output a legitimate section index.
710     return SHN_UNDEF;
711   }
712 
713   assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
714          (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
715          (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
716   return static_cast<uint16_t>(ShndxType);
717 }
718 
isCommon() const719 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
720 
assignIndices()721 void SymbolTableSection::assignIndices() {
722   uint32_t Index = 0;
723   for (auto &Sym : Symbols)
724     Sym->Index = Index++;
725 }
726 
addSymbol(Twine Name,uint8_t Bind,uint8_t Type,SectionBase * DefinedIn,uint64_t Value,uint8_t Visibility,uint16_t Shndx,uint64_t SymbolSize)727 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
728                                    SectionBase *DefinedIn, uint64_t Value,
729                                    uint8_t Visibility, uint16_t Shndx,
730                                    uint64_t SymbolSize) {
731   Symbol Sym;
732   Sym.Name = Name.str();
733   Sym.Binding = Bind;
734   Sym.Type = Type;
735   Sym.DefinedIn = DefinedIn;
736   if (DefinedIn != nullptr)
737     DefinedIn->HasSymbol = true;
738   if (DefinedIn == nullptr) {
739     if (Shndx >= SHN_LORESERVE)
740       Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
741     else
742       Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
743   }
744   Sym.Value = Value;
745   Sym.Visibility = Visibility;
746   Sym.Size = SymbolSize;
747   Sym.Index = Symbols.size();
748   Symbols.emplace_back(std::make_unique<Symbol>(Sym));
749   Size += this->EntrySize;
750 }
751 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)752 Error SymbolTableSection::removeSectionReferences(
753     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
754   if (ToRemove(SectionIndexTable))
755     SectionIndexTable = nullptr;
756   if (ToRemove(SymbolNames)) {
757     if (!AllowBrokenLinks)
758       return createStringError(
759           llvm::errc::invalid_argument,
760           "string table '%s' cannot be removed because it is "
761           "referenced by the symbol table '%s'",
762           SymbolNames->Name.data(), this->Name.data());
763     SymbolNames = nullptr;
764   }
765   return removeSymbols(
766       [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
767 }
768 
updateSymbols(function_ref<void (Symbol &)> Callable)769 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
770   std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
771                 [Callable](SymPtr &Sym) { Callable(*Sym); });
772   std::stable_partition(
773       std::begin(Symbols), std::end(Symbols),
774       [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
775   assignIndices();
776 }
777 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)778 Error SymbolTableSection::removeSymbols(
779     function_ref<bool(const Symbol &)> ToRemove) {
780   Symbols.erase(
781       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
782                      [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
783       std::end(Symbols));
784   Size = Symbols.size() * EntrySize;
785   assignIndices();
786   return Error::success();
787 }
788 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)789 void SymbolTableSection::replaceSectionReferences(
790     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
791   for (std::unique_ptr<Symbol> &Sym : Symbols)
792     if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
793       Sym->DefinedIn = To;
794 }
795 
initialize(SectionTableRef SecTable)796 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
797   Size = 0;
798   Expected<StringTableSection *> Sec =
799       SecTable.getSectionOfType<StringTableSection>(
800           Link,
801           "Symbol table has link index of " + Twine(Link) +
802               " which is not a valid index",
803           "Symbol table has link index of " + Twine(Link) +
804               " which is not a string table");
805   if (!Sec)
806     return Sec.takeError();
807 
808   setStrTab(*Sec);
809   return Error::success();
810 }
811 
finalize()812 void SymbolTableSection::finalize() {
813   uint32_t MaxLocalIndex = 0;
814   for (std::unique_ptr<Symbol> &Sym : Symbols) {
815     Sym->NameIndex =
816         SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
817     if (Sym->Binding == STB_LOCAL)
818       MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
819   }
820   // Now we need to set the Link and Info fields.
821   Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
822   Info = MaxLocalIndex + 1;
823 }
824 
prepareForLayout()825 void SymbolTableSection::prepareForLayout() {
826   // Reserve proper amount of space in section index table, so we can
827   // layout sections correctly. We will fill the table with correct
828   // indexes later in fillShdnxTable.
829   if (SectionIndexTable)
830     SectionIndexTable->reserve(Symbols.size());
831 
832   // Add all of our strings to SymbolNames so that SymbolNames has the right
833   // size before layout is decided.
834   // If the symbol names section has been removed, don't try to add strings to
835   // the table.
836   if (SymbolNames != nullptr)
837     for (std::unique_ptr<Symbol> &Sym : Symbols)
838       SymbolNames->addString(Sym->Name);
839 }
840 
fillShndxTable()841 void SymbolTableSection::fillShndxTable() {
842   if (SectionIndexTable == nullptr)
843     return;
844   // Fill section index table with real section indexes. This function must
845   // be called after assignOffsets.
846   for (const std::unique_ptr<Symbol> &Sym : Symbols) {
847     if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
848       SectionIndexTable->addIndex(Sym->DefinedIn->Index);
849     else
850       SectionIndexTable->addIndex(SHN_UNDEF);
851   }
852 }
853 
854 Expected<const Symbol *>
getSymbolByIndex(uint32_t Index) const855 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
856   if (Symbols.size() <= Index)
857     return createStringError(errc::invalid_argument,
858                              "invalid symbol index: " + Twine(Index));
859   return Symbols[Index].get();
860 }
861 
getSymbolByIndex(uint32_t Index)862 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
863   Expected<const Symbol *> Sym =
864       static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
865   if (!Sym)
866     return Sym.takeError();
867 
868   return const_cast<Symbol *>(*Sym);
869 }
870 
871 template <class ELFT>
visit(const SymbolTableSection & Sec)872 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
873   Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
874   // Loop though symbols setting each entry of the symbol table.
875   for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
876     Sym->st_name = Symbol->NameIndex;
877     Sym->st_value = Symbol->Value;
878     Sym->st_size = Symbol->Size;
879     Sym->st_other = Symbol->Visibility;
880     Sym->setBinding(Symbol->Binding);
881     Sym->setType(Symbol->Type);
882     Sym->st_shndx = Symbol->getShndx();
883     ++Sym;
884   }
885   return Error::success();
886 }
887 
accept(SectionVisitor & Visitor) const888 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
889   return Visitor.visit(*this);
890 }
891 
accept(MutableSectionVisitor & Visitor)892 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
893   return Visitor.visit(*this);
894 }
895 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)896 Error RelocationSection::removeSectionReferences(
897     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
898   if (ToRemove(Symbols)) {
899     if (!AllowBrokenLinks)
900       return createStringError(
901           llvm::errc::invalid_argument,
902           "symbol table '%s' cannot be removed because it is "
903           "referenced by the relocation section '%s'",
904           Symbols->Name.data(), this->Name.data());
905     Symbols = nullptr;
906   }
907 
908   for (const Relocation &R : Relocations) {
909     if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
910         !ToRemove(R.RelocSymbol->DefinedIn))
911       continue;
912     return createStringError(llvm::errc::invalid_argument,
913                              "section '%s' cannot be removed: (%s+0x%" PRIx64
914                              ") has relocation against symbol '%s'",
915                              R.RelocSymbol->DefinedIn->Name.data(),
916                              SecToApplyRel->Name.data(), R.Offset,
917                              R.RelocSymbol->Name.c_str());
918   }
919 
920   return Error::success();
921 }
922 
923 template <class SymTabType>
initialize(SectionTableRef SecTable)924 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
925     SectionTableRef SecTable) {
926   if (Link != SHN_UNDEF) {
927     Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
928         Link,
929         "Link field value " + Twine(Link) + " in section " + Name +
930             " is invalid",
931         "Link field value " + Twine(Link) + " in section " + Name +
932             " is not a symbol table");
933     if (!Sec)
934       return Sec.takeError();
935 
936     setSymTab(*Sec);
937   }
938 
939   if (Info != SHN_UNDEF) {
940     Expected<SectionBase *> Sec =
941         SecTable.getSection(Info, "Info field value " + Twine(Info) +
942                                       " in section " + Name + " is invalid");
943     if (!Sec)
944       return Sec.takeError();
945 
946     setSection(*Sec);
947   } else
948     setSection(nullptr);
949 
950   return Error::success();
951 }
952 
953 template <class SymTabType>
finalize()954 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
955   this->Link = Symbols ? Symbols->Index : 0;
956 
957   if (SecToApplyRel != nullptr)
958     this->Info = SecToApplyRel->Index;
959 }
960 
961 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,false> &,uint64_t)962 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
963 
964 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,true> & Rela,uint64_t Addend)965 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
966   Rela.r_addend = Addend;
967 }
968 
969 template <class RelRange, class T>
writeRel(const RelRange & Relocations,T * Buf)970 static void writeRel(const RelRange &Relocations, T *Buf) {
971   for (const auto &Reloc : Relocations) {
972     Buf->r_offset = Reloc.Offset;
973     setAddend(*Buf, Reloc.Addend);
974     Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
975                           Reloc.Type, false);
976     ++Buf;
977   }
978 }
979 
980 template <class ELFT>
visit(const RelocationSection & Sec)981 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
982   uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
983   if (Sec.Type == SHT_REL)
984     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
985   else
986     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
987   return Error::success();
988 }
989 
accept(SectionVisitor & Visitor) const990 Error RelocationSection::accept(SectionVisitor &Visitor) const {
991   return Visitor.visit(*this);
992 }
993 
accept(MutableSectionVisitor & Visitor)994 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
995   return Visitor.visit(*this);
996 }
997 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)998 Error RelocationSection::removeSymbols(
999     function_ref<bool(const Symbol &)> ToRemove) {
1000   for (const Relocation &Reloc : Relocations)
1001     if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
1002       return createStringError(
1003           llvm::errc::invalid_argument,
1004           "not stripping symbol '%s' because it is named in a relocation",
1005           Reloc.RelocSymbol->Name.data());
1006   return Error::success();
1007 }
1008 
markSymbols()1009 void RelocationSection::markSymbols() {
1010   for (const Relocation &Reloc : Relocations)
1011     if (Reloc.RelocSymbol)
1012       Reloc.RelocSymbol->Referenced = true;
1013 }
1014 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1015 void RelocationSection::replaceSectionReferences(
1016     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1017   // Update the target section if it was replaced.
1018   if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1019     SecToApplyRel = To;
1020 }
1021 
visit(const DynamicRelocationSection & Sec)1022 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
1023   llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1024   return Error::success();
1025 }
1026 
accept(SectionVisitor & Visitor) const1027 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
1028   return Visitor.visit(*this);
1029 }
1030 
accept(MutableSectionVisitor & Visitor)1031 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
1032   return Visitor.visit(*this);
1033 }
1034 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1035 Error DynamicRelocationSection::removeSectionReferences(
1036     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1037   if (ToRemove(Symbols)) {
1038     if (!AllowBrokenLinks)
1039       return createStringError(
1040           llvm::errc::invalid_argument,
1041           "symbol table '%s' cannot be removed because it is "
1042           "referenced by the relocation section '%s'",
1043           Symbols->Name.data(), this->Name.data());
1044     Symbols = nullptr;
1045   }
1046 
1047   // SecToApplyRel contains a section referenced by sh_info field. It keeps
1048   // a section to which the relocation section applies. When we remove any
1049   // sections we also remove their relocation sections. Since we do that much
1050   // earlier, this assert should never be triggered.
1051   assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1052   return Error::success();
1053 }
1054 
removeSectionReferences(bool AllowBrokenDependency,function_ref<bool (const SectionBase *)> ToRemove)1055 Error Section::removeSectionReferences(
1056     bool AllowBrokenDependency,
1057     function_ref<bool(const SectionBase *)> ToRemove) {
1058   if (ToRemove(LinkSection)) {
1059     if (!AllowBrokenDependency)
1060       return createStringError(llvm::errc::invalid_argument,
1061                                "section '%s' cannot be removed because it is "
1062                                "referenced by the section '%s'",
1063                                LinkSection->Name.data(), this->Name.data());
1064     LinkSection = nullptr;
1065   }
1066   return Error::success();
1067 }
1068 
finalize()1069 void GroupSection::finalize() {
1070   this->Info = Sym ? Sym->Index : 0;
1071   this->Link = SymTab ? SymTab->Index : 0;
1072   // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1073   // status is not part of the equation. If Sym is localized, the intention is
1074   // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1075   // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1076   if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1077     this->FlagWord &= ~GRP_COMDAT;
1078 }
1079 
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1080 Error GroupSection::removeSectionReferences(
1081     bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1082   if (ToRemove(SymTab)) {
1083     if (!AllowBrokenLinks)
1084       return createStringError(
1085           llvm::errc::invalid_argument,
1086           "section '.symtab' cannot be removed because it is "
1087           "referenced by the group section '%s'",
1088           this->Name.data());
1089     SymTab = nullptr;
1090     Sym = nullptr;
1091   }
1092   llvm::erase_if(GroupMembers, ToRemove);
1093   return Error::success();
1094 }
1095 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)1096 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1097   if (ToRemove(*Sym))
1098     return createStringError(llvm::errc::invalid_argument,
1099                              "symbol '%s' cannot be removed because it is "
1100                              "referenced by the section '%s[%d]'",
1101                              Sym->Name.data(), this->Name.data(), this->Index);
1102   return Error::success();
1103 }
1104 
markSymbols()1105 void GroupSection::markSymbols() {
1106   if (Sym)
1107     Sym->Referenced = true;
1108 }
1109 
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1110 void GroupSection::replaceSectionReferences(
1111     const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1112   for (SectionBase *&Sec : GroupMembers)
1113     if (SectionBase *To = FromTo.lookup(Sec))
1114       Sec = To;
1115 }
1116 
onRemove()1117 void GroupSection::onRemove() {
1118   // As the header section of the group is removed, drop the Group flag in its
1119   // former members.
1120   for (SectionBase *Sec : GroupMembers)
1121     Sec->Flags &= ~SHF_GROUP;
1122 }
1123 
initialize(SectionTableRef SecTable)1124 Error Section::initialize(SectionTableRef SecTable) {
1125   if (Link == ELF::SHN_UNDEF)
1126     return Error::success();
1127 
1128   Expected<SectionBase *> Sec =
1129       SecTable.getSection(Link, "Link field value " + Twine(Link) +
1130                                     " in section " + Name + " is invalid");
1131   if (!Sec)
1132     return Sec.takeError();
1133 
1134   LinkSection = *Sec;
1135 
1136   if (LinkSection->Type == ELF::SHT_SYMTAB)
1137     LinkSection = nullptr;
1138 
1139   return Error::success();
1140 }
1141 
finalize()1142 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1143 
init(StringRef File)1144 void GnuDebugLinkSection::init(StringRef File) {
1145   FileName = sys::path::filename(File);
1146   // The format for the .gnu_debuglink starts with the file name and is
1147   // followed by a null terminator and then the CRC32 of the file. The CRC32
1148   // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1149   // byte, and then finally push the size to alignment and add 4.
1150   Size = alignTo(FileName.size() + 1, 4) + 4;
1151   // The CRC32 will only be aligned if we align the whole section.
1152   Align = 4;
1153   Type = OriginalType = ELF::SHT_PROGBITS;
1154   Name = ".gnu_debuglink";
1155   // For sections not found in segments, OriginalOffset is only used to
1156   // establish the order that sections should go in. By using the maximum
1157   // possible offset we cause this section to wind up at the end.
1158   OriginalOffset = std::numeric_limits<uint64_t>::max();
1159 }
1160 
GnuDebugLinkSection(StringRef File,uint32_t PrecomputedCRC)1161 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1162                                          uint32_t PrecomputedCRC)
1163     : FileName(File), CRC32(PrecomputedCRC) {
1164   init(File);
1165 }
1166 
1167 template <class ELFT>
visit(const GnuDebugLinkSection & Sec)1168 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1169   unsigned char *Buf =
1170       reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1171   Elf_Word *CRC =
1172       reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1173   *CRC = Sec.CRC32;
1174   llvm::copy(Sec.FileName, Buf);
1175   return Error::success();
1176 }
1177 
accept(SectionVisitor & Visitor) const1178 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1179   return Visitor.visit(*this);
1180 }
1181 
accept(MutableSectionVisitor & Visitor)1182 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1183   return Visitor.visit(*this);
1184 }
1185 
1186 template <class ELFT>
visit(const GroupSection & Sec)1187 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1188   ELF::Elf32_Word *Buf =
1189       reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1190   support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
1191   for (SectionBase *S : Sec.GroupMembers)
1192     support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1193   return Error::success();
1194 }
1195 
accept(SectionVisitor & Visitor) const1196 Error GroupSection::accept(SectionVisitor &Visitor) const {
1197   return Visitor.visit(*this);
1198 }
1199 
accept(MutableSectionVisitor & Visitor)1200 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1201   return Visitor.visit(*this);
1202 }
1203 
1204 // Returns true IFF a section is wholly inside the range of a segment
sectionWithinSegment(const SectionBase & Sec,const Segment & Seg)1205 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1206   // If a section is empty it should be treated like it has a size of 1. This is
1207   // to clarify the case when an empty section lies on a boundary between two
1208   // segments and ensures that the section "belongs" to the second segment and
1209   // not the first.
1210   uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1211 
1212   // Ignore just added sections.
1213   if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1214     return false;
1215 
1216   if (Sec.Type == SHT_NOBITS) {
1217     if (!(Sec.Flags & SHF_ALLOC))
1218       return false;
1219 
1220     bool SectionIsTLS = Sec.Flags & SHF_TLS;
1221     bool SegmentIsTLS = Seg.Type == PT_TLS;
1222     if (SectionIsTLS != SegmentIsTLS)
1223       return false;
1224 
1225     return Seg.VAddr <= Sec.Addr &&
1226            Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1227   }
1228 
1229   return Seg.Offset <= Sec.OriginalOffset &&
1230          Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1231 }
1232 
1233 // Returns true IFF a segment's original offset is inside of another segment's
1234 // range.
segmentOverlapsSegment(const Segment & Child,const Segment & Parent)1235 static bool segmentOverlapsSegment(const Segment &Child,
1236                                    const Segment &Parent) {
1237 
1238   return Parent.OriginalOffset <= Child.OriginalOffset &&
1239          Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1240 }
1241 
compareSegmentsByOffset(const Segment * A,const Segment * B)1242 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1243   // Any segment without a parent segment should come before a segment
1244   // that has a parent segment.
1245   if (A->OriginalOffset < B->OriginalOffset)
1246     return true;
1247   if (A->OriginalOffset > B->OriginalOffset)
1248     return false;
1249   return A->Index < B->Index;
1250 }
1251 
initFileHeader()1252 void BasicELFBuilder::initFileHeader() {
1253   Obj->Flags = 0x0;
1254   Obj->Type = ET_REL;
1255   Obj->OSABI = ELFOSABI_NONE;
1256   Obj->ABIVersion = 0;
1257   Obj->Entry = 0x0;
1258   Obj->Machine = EM_NONE;
1259   Obj->Version = 1;
1260 }
1261 
initHeaderSegment()1262 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1263 
addStrTab()1264 StringTableSection *BasicELFBuilder::addStrTab() {
1265   auto &StrTab = Obj->addSection<StringTableSection>();
1266   StrTab.Name = ".strtab";
1267 
1268   Obj->SectionNames = &StrTab;
1269   return &StrTab;
1270 }
1271 
addSymTab(StringTableSection * StrTab)1272 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1273   auto &SymTab = Obj->addSection<SymbolTableSection>();
1274 
1275   SymTab.Name = ".symtab";
1276   SymTab.Link = StrTab->Index;
1277 
1278   // The symbol table always needs a null symbol
1279   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1280 
1281   Obj->SymbolTable = &SymTab;
1282   return &SymTab;
1283 }
1284 
initSections()1285 Error BasicELFBuilder::initSections() {
1286   for (SectionBase &Sec : Obj->sections())
1287     if (Error Err = Sec.initialize(Obj->sections()))
1288       return Err;
1289 
1290   return Error::success();
1291 }
1292 
addData(SymbolTableSection * SymTab)1293 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1294   auto Data = ArrayRef<uint8_t>(
1295       reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1296       MemBuf->getBufferSize());
1297   auto &DataSection = Obj->addSection<Section>(Data);
1298   DataSection.Name = ".data";
1299   DataSection.Type = ELF::SHT_PROGBITS;
1300   DataSection.Size = Data.size();
1301   DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1302 
1303   std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1304   std::replace_if(
1305       std::begin(SanitizedFilename), std::end(SanitizedFilename),
1306       [](char C) { return !isAlnum(C); }, '_');
1307   Twine Prefix = Twine("_binary_") + SanitizedFilename;
1308 
1309   SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1310                     /*Value=*/0, NewSymbolVisibility, 0, 0);
1311   SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1312                     /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1313   SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1314                     /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1315                     0);
1316 }
1317 
build()1318 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1319   initFileHeader();
1320   initHeaderSegment();
1321 
1322   SymbolTableSection *SymTab = addSymTab(addStrTab());
1323   if (Error Err = initSections())
1324     return std::move(Err);
1325   addData(SymTab);
1326 
1327   return std::move(Obj);
1328 }
1329 
1330 // Adds sections from IHEX data file. Data should have been
1331 // fully validated by this time.
addDataSections()1332 void IHexELFBuilder::addDataSections() {
1333   OwnedDataSection *Section = nullptr;
1334   uint64_t SegmentAddr = 0, BaseAddr = 0;
1335   uint32_t SecNo = 1;
1336 
1337   for (const IHexRecord &R : Records) {
1338     uint64_t RecAddr;
1339     switch (R.Type) {
1340     case IHexRecord::Data:
1341       // Ignore empty data records
1342       if (R.HexData.empty())
1343         continue;
1344       RecAddr = R.Addr + SegmentAddr + BaseAddr;
1345       if (!Section || Section->Addr + Section->Size != RecAddr)
1346         // OriginalOffset field is only used to sort section properly, so
1347         // instead of keeping track of real offset in IHEX file, we use
1348         // section number.
1349         Section = &Obj->addSection<OwnedDataSection>(
1350             ".sec" + std::to_string(SecNo++), RecAddr,
1351             ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
1352       Section->appendHexData(R.HexData);
1353       break;
1354     case IHexRecord::EndOfFile:
1355       break;
1356     case IHexRecord::SegmentAddr:
1357       // 20-bit segment address.
1358       SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1359       break;
1360     case IHexRecord::StartAddr80x86:
1361     case IHexRecord::StartAddr:
1362       Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1363       assert(Obj->Entry <= 0xFFFFFU);
1364       break;
1365     case IHexRecord::ExtendedAddr:
1366       // 16-31 bits of linear base address
1367       BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1368       break;
1369     default:
1370       llvm_unreachable("unknown record type");
1371     }
1372   }
1373 }
1374 
build()1375 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1376   initFileHeader();
1377   initHeaderSegment();
1378   StringTableSection *StrTab = addStrTab();
1379   addSymTab(StrTab);
1380   if (Error Err = initSections())
1381     return std::move(Err);
1382   addDataSections();
1383 
1384   return std::move(Obj);
1385 }
1386 
setParentSegment(Segment & Child)1387 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1388   for (Segment &Parent : Obj.segments()) {
1389     // Every segment will overlap with itself but we don't want a segment to
1390     // be its own parent so we avoid that situation.
1391     if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1392       // We want a canonical "most parental" segment but this requires
1393       // inspecting the ParentSegment.
1394       if (compareSegmentsByOffset(&Parent, &Child))
1395         if (Child.ParentSegment == nullptr ||
1396             compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1397           Child.ParentSegment = &Parent;
1398         }
1399     }
1400   }
1401 }
1402 
findEhdrOffset()1403 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1404   if (!ExtractPartition)
1405     return Error::success();
1406 
1407   for (const SectionBase &Sec : Obj.sections()) {
1408     if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1409       EhdrOffset = Sec.Offset;
1410       return Error::success();
1411     }
1412   }
1413   return createStringError(errc::invalid_argument,
1414                            "could not find partition named '" +
1415                                *ExtractPartition + "'");
1416 }
1417 
1418 template <class ELFT>
readProgramHeaders(const ELFFile<ELFT> & HeadersFile)1419 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1420   uint32_t Index = 0;
1421 
1422   Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1423       HeadersFile.program_headers();
1424   if (!Headers)
1425     return Headers.takeError();
1426 
1427   for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1428     if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1429       return createStringError(
1430           errc::invalid_argument,
1431           "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1432               " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1433               " goes past the end of the file");
1434 
1435     ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1436                            (size_t)Phdr.p_filesz};
1437     Segment &Seg = Obj.addSegment(Data);
1438     Seg.Type = Phdr.p_type;
1439     Seg.Flags = Phdr.p_flags;
1440     Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1441     Seg.Offset = Phdr.p_offset + EhdrOffset;
1442     Seg.VAddr = Phdr.p_vaddr;
1443     Seg.PAddr = Phdr.p_paddr;
1444     Seg.FileSize = Phdr.p_filesz;
1445     Seg.MemSize = Phdr.p_memsz;
1446     Seg.Align = Phdr.p_align;
1447     Seg.Index = Index++;
1448     for (SectionBase &Sec : Obj.sections())
1449       if (sectionWithinSegment(Sec, Seg)) {
1450         Seg.addSection(&Sec);
1451         if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1452           Sec.ParentSegment = &Seg;
1453       }
1454   }
1455 
1456   auto &ElfHdr = Obj.ElfHdrSegment;
1457   ElfHdr.Index = Index++;
1458   ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1459 
1460   const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1461   auto &PrHdr = Obj.ProgramHdrSegment;
1462   PrHdr.Type = PT_PHDR;
1463   PrHdr.Flags = 0;
1464   // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1465   // Whereas this works automatically for ElfHdr, here OriginalOffset is
1466   // always non-zero and to ensure the equation we assign the same value to
1467   // VAddr as well.
1468   PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1469   PrHdr.PAddr = 0;
1470   PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1471   // The spec requires us to naturally align all the fields.
1472   PrHdr.Align = sizeof(Elf_Addr);
1473   PrHdr.Index = Index++;
1474 
1475   // Now we do an O(n^2) loop through the segments in order to match up
1476   // segments.
1477   for (Segment &Child : Obj.segments())
1478     setParentSegment(Child);
1479   setParentSegment(ElfHdr);
1480   setParentSegment(PrHdr);
1481 
1482   return Error::success();
1483 }
1484 
1485 template <class ELFT>
initGroupSection(GroupSection * GroupSec)1486 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1487   if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1488     return createStringError(errc::invalid_argument,
1489                              "invalid alignment " + Twine(GroupSec->Align) +
1490                                  " of group section '" + GroupSec->Name + "'");
1491   SectionTableRef SecTable = Obj.sections();
1492   if (GroupSec->Link != SHN_UNDEF) {
1493     auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1494         GroupSec->Link,
1495         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1496             GroupSec->Name + "' is invalid",
1497         "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1498             GroupSec->Name + "' is not a symbol table");
1499     if (!SymTab)
1500       return SymTab.takeError();
1501 
1502     Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1503     if (!Sym)
1504       return createStringError(errc::invalid_argument,
1505                                "info field value '" + Twine(GroupSec->Info) +
1506                                    "' in section '" + GroupSec->Name +
1507                                    "' is not a valid symbol index");
1508     GroupSec->setSymTab(*SymTab);
1509     GroupSec->setSymbol(*Sym);
1510   }
1511   if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1512       GroupSec->Contents.empty())
1513     return createStringError(errc::invalid_argument,
1514                              "the content of the section " + GroupSec->Name +
1515                                  " is malformed");
1516   const ELF::Elf32_Word *Word =
1517       reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1518   const ELF::Elf32_Word *End =
1519       Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1520   GroupSec->setFlagWord(
1521       support::endian::read32<ELFT::TargetEndianness>(Word++));
1522   for (; Word != End; ++Word) {
1523     uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1524     Expected<SectionBase *> Sec = SecTable.getSection(
1525         Index, "group member index " + Twine(Index) + " in section '" +
1526                    GroupSec->Name + "' is invalid");
1527     if (!Sec)
1528       return Sec.takeError();
1529 
1530     GroupSec->addMember(*Sec);
1531   }
1532 
1533   return Error::success();
1534 }
1535 
1536 template <class ELFT>
initSymbolTable(SymbolTableSection * SymTab)1537 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1538   Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1539   if (!Shdr)
1540     return Shdr.takeError();
1541 
1542   Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1543   if (!StrTabData)
1544     return StrTabData.takeError();
1545 
1546   ArrayRef<Elf_Word> ShndxData;
1547 
1548   Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1549       ElfFile.symbols(*Shdr);
1550   if (!Symbols)
1551     return Symbols.takeError();
1552 
1553   for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1554     SectionBase *DefSection = nullptr;
1555 
1556     Expected<StringRef> Name = Sym.getName(*StrTabData);
1557     if (!Name)
1558       return Name.takeError();
1559 
1560     if (Sym.st_shndx == SHN_XINDEX) {
1561       if (SymTab->getShndxTable() == nullptr)
1562         return createStringError(errc::invalid_argument,
1563                                  "symbol '" + *Name +
1564                                      "' has index SHN_XINDEX but no "
1565                                      "SHT_SYMTAB_SHNDX section exists");
1566       if (ShndxData.data() == nullptr) {
1567         Expected<const Elf_Shdr *> ShndxSec =
1568             ElfFile.getSection(SymTab->getShndxTable()->Index);
1569         if (!ShndxSec)
1570           return ShndxSec.takeError();
1571 
1572         Expected<ArrayRef<Elf_Word>> Data =
1573             ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1574         if (!Data)
1575           return Data.takeError();
1576 
1577         ShndxData = *Data;
1578         if (ShndxData.size() != Symbols->size())
1579           return createStringError(
1580               errc::invalid_argument,
1581               "symbol section index table does not have the same number of "
1582               "entries as the symbol table");
1583       }
1584       Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1585       Expected<SectionBase *> Sec = Obj.sections().getSection(
1586           Index,
1587           "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1588       if (!Sec)
1589         return Sec.takeError();
1590 
1591       DefSection = *Sec;
1592     } else if (Sym.st_shndx >= SHN_LORESERVE) {
1593       if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1594         return createStringError(
1595             errc::invalid_argument,
1596             "symbol '" + *Name +
1597                 "' has unsupported value greater than or equal "
1598                 "to SHN_LORESERVE: " +
1599                 Twine(Sym.st_shndx));
1600       }
1601     } else if (Sym.st_shndx != SHN_UNDEF) {
1602       Expected<SectionBase *> Sec = Obj.sections().getSection(
1603           Sym.st_shndx, "symbol '" + *Name +
1604                             "' is defined has invalid section index " +
1605                             Twine(Sym.st_shndx));
1606       if (!Sec)
1607         return Sec.takeError();
1608 
1609       DefSection = *Sec;
1610     }
1611 
1612     SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1613                       Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1614   }
1615 
1616   return Error::success();
1617 }
1618 
1619 template <class ELFT>
getAddend(uint64_t &,const Elf_Rel_Impl<ELFT,false> &)1620 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1621 
1622 template <class ELFT>
getAddend(uint64_t & ToSet,const Elf_Rel_Impl<ELFT,true> & Rela)1623 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1624   ToSet = Rela.r_addend;
1625 }
1626 
1627 template <class T>
initRelocations(RelocationSection * Relocs,SymbolTableSection * SymbolTable,T RelRange)1628 static Error initRelocations(RelocationSection *Relocs,
1629                              SymbolTableSection *SymbolTable, T RelRange) {
1630   for (const auto &Rel : RelRange) {
1631     Relocation ToAdd;
1632     ToAdd.Offset = Rel.r_offset;
1633     getAddend(ToAdd.Addend, Rel);
1634     ToAdd.Type = Rel.getType(false);
1635 
1636     if (uint32_t Sym = Rel.getSymbol(false)) {
1637       if (!SymbolTable)
1638         return createStringError(
1639             errc::invalid_argument,
1640             "'" + Relocs->Name + "': relocation references symbol with index " +
1641                 Twine(Sym) + ", but there is no symbol table");
1642       Expected<Symbol *> SymByIndex = SymbolTable->getSymbolByIndex(Sym);
1643       if (!SymByIndex)
1644         return SymByIndex.takeError();
1645 
1646       ToAdd.RelocSymbol = *SymByIndex;
1647     }
1648 
1649     Relocs->addRelocation(ToAdd);
1650   }
1651 
1652   return Error::success();
1653 }
1654 
getSection(uint32_t Index,Twine ErrMsg)1655 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1656                                                     Twine ErrMsg) {
1657   if (Index == SHN_UNDEF || Index > Sections.size())
1658     return createStringError(errc::invalid_argument, ErrMsg);
1659   return Sections[Index - 1].get();
1660 }
1661 
1662 template <class T>
getSectionOfType(uint32_t Index,Twine IndexErrMsg,Twine TypeErrMsg)1663 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1664                                                 Twine IndexErrMsg,
1665                                                 Twine TypeErrMsg) {
1666   Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1667   if (!BaseSec)
1668     return BaseSec.takeError();
1669 
1670   if (T *Sec = dyn_cast<T>(*BaseSec))
1671     return Sec;
1672 
1673   return createStringError(errc::invalid_argument, TypeErrMsg);
1674 }
1675 
1676 template <class ELFT>
makeSection(const Elf_Shdr & Shdr)1677 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1678   switch (Shdr.sh_type) {
1679   case SHT_REL:
1680   case SHT_RELA:
1681     if (Shdr.sh_flags & SHF_ALLOC) {
1682       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1683         return Obj.addSection<DynamicRelocationSection>(*Data);
1684       else
1685         return Data.takeError();
1686     }
1687     return Obj.addSection<RelocationSection>();
1688   case SHT_STRTAB:
1689     // If a string table is allocated we don't want to mess with it. That would
1690     // mean altering the memory image. There are no special link types or
1691     // anything so we can just use a Section.
1692     if (Shdr.sh_flags & SHF_ALLOC) {
1693       if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1694         return Obj.addSection<Section>(*Data);
1695       else
1696         return Data.takeError();
1697     }
1698     return Obj.addSection<StringTableSection>();
1699   case SHT_HASH:
1700   case SHT_GNU_HASH:
1701     // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1702     // Because of this we don't need to mess with the hash tables either.
1703     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1704       return Obj.addSection<Section>(*Data);
1705     else
1706       return Data.takeError();
1707   case SHT_GROUP:
1708     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1709       return Obj.addSection<GroupSection>(*Data);
1710     else
1711       return Data.takeError();
1712   case SHT_DYNSYM:
1713     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1714       return Obj.addSection<DynamicSymbolTableSection>(*Data);
1715     else
1716       return Data.takeError();
1717   case SHT_DYNAMIC:
1718     if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1719       return Obj.addSection<DynamicSection>(*Data);
1720     else
1721       return Data.takeError();
1722   case SHT_SYMTAB: {
1723     auto &SymTab = Obj.addSection<SymbolTableSection>();
1724     Obj.SymbolTable = &SymTab;
1725     return SymTab;
1726   }
1727   case SHT_SYMTAB_SHNDX: {
1728     auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1729     Obj.SectionIndexTable = &ShndxSection;
1730     return ShndxSection;
1731   }
1732   case SHT_NOBITS:
1733     return Obj.addSection<Section>(ArrayRef<uint8_t>());
1734   default: {
1735     Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1736     if (!Data)
1737       return Data.takeError();
1738 
1739     Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1740     if (!Name)
1741       return Name.takeError();
1742 
1743     if (Name->startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1744       uint64_t DecompressedSize, DecompressedAlign;
1745       std::tie(DecompressedSize, DecompressedAlign) =
1746           getDecompressedSizeAndAlignment<ELFT>(*Data);
1747       Expected<CompressedSection> NewSection =
1748           CompressedSection::create(*Data, DecompressedSize, DecompressedAlign);
1749       if (!NewSection)
1750         return NewSection.takeError();
1751 
1752       return Obj.addSection<CompressedSection>(std::move(*NewSection));
1753     }
1754 
1755     return Obj.addSection<Section>(*Data);
1756   }
1757   }
1758 }
1759 
readSectionHeaders()1760 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1761   uint32_t Index = 0;
1762   Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1763       ElfFile.sections();
1764   if (!Sections)
1765     return Sections.takeError();
1766 
1767   for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1768     if (Index == 0) {
1769       ++Index;
1770       continue;
1771     }
1772     Expected<SectionBase &> Sec = makeSection(Shdr);
1773     if (!Sec)
1774       return Sec.takeError();
1775 
1776     Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1777     if (!SecName)
1778       return SecName.takeError();
1779     Sec->Name = SecName->str();
1780     Sec->Type = Sec->OriginalType = Shdr.sh_type;
1781     Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1782     Sec->Addr = Shdr.sh_addr;
1783     Sec->Offset = Shdr.sh_offset;
1784     Sec->OriginalOffset = Shdr.sh_offset;
1785     Sec->Size = Shdr.sh_size;
1786     Sec->Link = Shdr.sh_link;
1787     Sec->Info = Shdr.sh_info;
1788     Sec->Align = Shdr.sh_addralign;
1789     Sec->EntrySize = Shdr.sh_entsize;
1790     Sec->Index = Index++;
1791     Sec->OriginalIndex = Sec->Index;
1792     Sec->OriginalData =
1793         ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1794                           (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1795   }
1796 
1797   return Error::success();
1798 }
1799 
readSections(bool EnsureSymtab)1800 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1801   uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1802   if (ShstrIndex == SHN_XINDEX) {
1803     Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1804     if (!Sec)
1805       return Sec.takeError();
1806 
1807     ShstrIndex = (*Sec)->sh_link;
1808   }
1809 
1810   if (ShstrIndex == SHN_UNDEF)
1811     Obj.HadShdrs = false;
1812   else {
1813     Expected<StringTableSection *> Sec =
1814         Obj.sections().template getSectionOfType<StringTableSection>(
1815             ShstrIndex,
1816             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1817                 " is invalid",
1818             "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1819                 " does not reference a string table");
1820     if (!Sec)
1821       return Sec.takeError();
1822 
1823     Obj.SectionNames = *Sec;
1824   }
1825 
1826   // If a section index table exists we'll need to initialize it before we
1827   // initialize the symbol table because the symbol table might need to
1828   // reference it.
1829   if (Obj.SectionIndexTable)
1830     if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1831       return Err;
1832 
1833   // Now that all of the sections have been added we can fill out some extra
1834   // details about symbol tables. We need the symbol table filled out before
1835   // any relocations.
1836   if (Obj.SymbolTable) {
1837     if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1838       return Err;
1839     if (Error Err = initSymbolTable(Obj.SymbolTable))
1840       return Err;
1841   } else if (EnsureSymtab) {
1842     if (Error Err = Obj.addNewSymbolTable())
1843       return Err;
1844   }
1845 
1846   // Now that all sections and symbols have been added we can add
1847   // relocations that reference symbols and set the link and info fields for
1848   // relocation sections.
1849   for (SectionBase &Sec : Obj.sections()) {
1850     if (&Sec == Obj.SymbolTable)
1851       continue;
1852     if (Error Err = Sec.initialize(Obj.sections()))
1853       return Err;
1854     if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1855       Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1856           ElfFile.sections();
1857       if (!Sections)
1858         return Sections.takeError();
1859 
1860       const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1861           Sections->begin() + RelSec->Index;
1862       if (RelSec->Type == SHT_REL) {
1863         Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1864             ElfFile.rels(*Shdr);
1865         if (!Rels)
1866           return Rels.takeError();
1867 
1868         if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Rels))
1869           return Err;
1870       } else {
1871         Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1872             ElfFile.relas(*Shdr);
1873         if (!Relas)
1874           return Relas.takeError();
1875 
1876         if (Error Err = initRelocations(RelSec, Obj.SymbolTable, *Relas))
1877           return Err;
1878       }
1879     } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1880       if (Error Err = initGroupSection(GroupSec))
1881         return Err;
1882     }
1883   }
1884 
1885   return Error::success();
1886 }
1887 
build(bool EnsureSymtab)1888 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1889   if (Error E = readSectionHeaders())
1890     return E;
1891   if (Error E = findEhdrOffset())
1892     return E;
1893 
1894   // The ELFFile whose ELF headers and program headers are copied into the
1895   // output file. Normally the same as ElfFile, but if we're extracting a
1896   // loadable partition it will point to the partition's headers.
1897   Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1898       {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1899   if (!HeadersFile)
1900     return HeadersFile.takeError();
1901 
1902   const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1903   Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1904   Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1905   Obj.Type = Ehdr.e_type;
1906   Obj.Machine = Ehdr.e_machine;
1907   Obj.Version = Ehdr.e_version;
1908   Obj.Entry = Ehdr.e_entry;
1909   Obj.Flags = Ehdr.e_flags;
1910 
1911   if (Error E = readSections(EnsureSymtab))
1912     return E;
1913   return readProgramHeaders(*HeadersFile);
1914 }
1915 
~Writer()1916 Writer::~Writer() {}
1917 
~Reader()1918 Reader::~Reader() {}
1919 
1920 Expected<std::unique_ptr<Object>>
create(bool) const1921 BinaryReader::create(bool /*EnsureSymtab*/) const {
1922   return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1923 }
1924 
parse() const1925 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1926   SmallVector<StringRef, 16> Lines;
1927   std::vector<IHexRecord> Records;
1928   bool HasSections = false;
1929 
1930   MemBuf->getBuffer().split(Lines, '\n');
1931   Records.reserve(Lines.size());
1932   for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1933     StringRef Line = Lines[LineNo - 1].trim();
1934     if (Line.empty())
1935       continue;
1936 
1937     Expected<IHexRecord> R = IHexRecord::parse(Line);
1938     if (!R)
1939       return parseError(LineNo, R.takeError());
1940     if (R->Type == IHexRecord::EndOfFile)
1941       break;
1942     HasSections |= (R->Type == IHexRecord::Data);
1943     Records.push_back(*R);
1944   }
1945   if (!HasSections)
1946     return parseError(-1U, "no sections");
1947 
1948   return std::move(Records);
1949 }
1950 
1951 Expected<std::unique_ptr<Object>>
create(bool) const1952 IHexReader::create(bool /*EnsureSymtab*/) const {
1953   Expected<std::vector<IHexRecord>> Records = parse();
1954   if (!Records)
1955     return Records.takeError();
1956 
1957   return IHexELFBuilder(*Records).build();
1958 }
1959 
create(bool EnsureSymtab) const1960 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1961   auto Obj = std::make_unique<Object>();
1962   if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1963     ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1964     if (Error Err = Builder.build(EnsureSymtab))
1965       return std::move(Err);
1966     return std::move(Obj);
1967   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1968     ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1969     if (Error Err = Builder.build(EnsureSymtab))
1970       return std::move(Err);
1971     return std::move(Obj);
1972   } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1973     ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1974     if (Error Err = Builder.build(EnsureSymtab))
1975       return std::move(Err);
1976     return std::move(Obj);
1977   } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1978     ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1979     if (Error Err = Builder.build(EnsureSymtab))
1980       return std::move(Err);
1981     return std::move(Obj);
1982   }
1983   return createStringError(errc::invalid_argument, "invalid file type");
1984 }
1985 
writeEhdr()1986 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1987   Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1988   std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1989   Ehdr.e_ident[EI_MAG0] = 0x7f;
1990   Ehdr.e_ident[EI_MAG1] = 'E';
1991   Ehdr.e_ident[EI_MAG2] = 'L';
1992   Ehdr.e_ident[EI_MAG3] = 'F';
1993   Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1994   Ehdr.e_ident[EI_DATA] =
1995       ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1996   Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1997   Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1998   Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1999 
2000   Ehdr.e_type = Obj.Type;
2001   Ehdr.e_machine = Obj.Machine;
2002   Ehdr.e_version = Obj.Version;
2003   Ehdr.e_entry = Obj.Entry;
2004   // We have to use the fully-qualified name llvm::size
2005   // since some compilers complain on ambiguous resolution.
2006   Ehdr.e_phnum = llvm::size(Obj.segments());
2007   Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2008   Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2009   Ehdr.e_flags = Obj.Flags;
2010   Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2011   if (WriteSectionHeaders && Obj.sections().size() != 0) {
2012     Ehdr.e_shentsize = sizeof(Elf_Shdr);
2013     Ehdr.e_shoff = Obj.SHOff;
2014     // """
2015     // If the number of sections is greater than or equal to
2016     // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2017     // number of section header table entries is contained in the sh_size field
2018     // of the section header at index 0.
2019     // """
2020     auto Shnum = Obj.sections().size() + 1;
2021     if (Shnum >= SHN_LORESERVE)
2022       Ehdr.e_shnum = 0;
2023     else
2024       Ehdr.e_shnum = Shnum;
2025     // """
2026     // If the section name string table section index is greater than or equal
2027     // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2028     // and the actual index of the section name string table section is
2029     // contained in the sh_link field of the section header at index 0.
2030     // """
2031     if (Obj.SectionNames->Index >= SHN_LORESERVE)
2032       Ehdr.e_shstrndx = SHN_XINDEX;
2033     else
2034       Ehdr.e_shstrndx = Obj.SectionNames->Index;
2035   } else {
2036     Ehdr.e_shentsize = 0;
2037     Ehdr.e_shoff = 0;
2038     Ehdr.e_shnum = 0;
2039     Ehdr.e_shstrndx = 0;
2040   }
2041 }
2042 
writePhdrs()2043 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2044   for (auto &Seg : Obj.segments())
2045     writePhdr(Seg);
2046 }
2047 
writeShdrs()2048 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2049   // This reference serves to write the dummy section header at the begining
2050   // of the file. It is not used for anything else
2051   Elf_Shdr &Shdr =
2052       *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2053   Shdr.sh_name = 0;
2054   Shdr.sh_type = SHT_NULL;
2055   Shdr.sh_flags = 0;
2056   Shdr.sh_addr = 0;
2057   Shdr.sh_offset = 0;
2058   // See writeEhdr for why we do this.
2059   uint64_t Shnum = Obj.sections().size() + 1;
2060   if (Shnum >= SHN_LORESERVE)
2061     Shdr.sh_size = Shnum;
2062   else
2063     Shdr.sh_size = 0;
2064   // See writeEhdr for why we do this.
2065   if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2066     Shdr.sh_link = Obj.SectionNames->Index;
2067   else
2068     Shdr.sh_link = 0;
2069   Shdr.sh_info = 0;
2070   Shdr.sh_addralign = 0;
2071   Shdr.sh_entsize = 0;
2072 
2073   for (SectionBase &Sec : Obj.sections())
2074     writeShdr(Sec);
2075 }
2076 
writeSectionData()2077 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2078   for (SectionBase &Sec : Obj.sections())
2079     // Segments are responsible for writing their contents, so only write the
2080     // section data if the section is not in a segment. Note that this renders
2081     // sections in segments effectively immutable.
2082     if (Sec.ParentSegment == nullptr)
2083       if (Error Err = Sec.accept(*SecWriter))
2084         return Err;
2085 
2086   return Error::success();
2087 }
2088 
writeSegmentData()2089 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2090   for (Segment &Seg : Obj.segments()) {
2091     size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2092     std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2093                 Size);
2094   }
2095 
2096   // Iterate over removed sections and overwrite their old data with zeroes.
2097   for (auto &Sec : Obj.removedSections()) {
2098     Segment *Parent = Sec.ParentSegment;
2099     if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2100       continue;
2101     uint64_t Offset =
2102         Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2103     std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2104   }
2105 }
2106 
2107 template <class ELFT>
ELFWriter(Object & Obj,raw_ostream & Buf,bool WSH,bool OnlyKeepDebug)2108 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2109                            bool OnlyKeepDebug)
2110     : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2111       OnlyKeepDebug(OnlyKeepDebug) {}
2112 
removeSections(bool AllowBrokenLinks,std::function<bool (const SectionBase &)> ToRemove)2113 Error Object::removeSections(
2114     bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2115 
2116   auto Iter = std::stable_partition(
2117       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2118         if (ToRemove(*Sec))
2119           return false;
2120         if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2121           if (auto ToRelSec = RelSec->getSection())
2122             return !ToRemove(*ToRelSec);
2123         }
2124         return true;
2125       });
2126   if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2127     SymbolTable = nullptr;
2128   if (SectionNames != nullptr && ToRemove(*SectionNames))
2129     SectionNames = nullptr;
2130   if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2131     SectionIndexTable = nullptr;
2132   // Now make sure there are no remaining references to the sections that will
2133   // be removed. Sometimes it is impossible to remove a reference so we emit
2134   // an error here instead.
2135   std::unordered_set<const SectionBase *> RemoveSections;
2136   RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2137   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2138     for (auto &Segment : Segments)
2139       Segment->removeSection(RemoveSec.get());
2140     RemoveSec->onRemove();
2141     RemoveSections.insert(RemoveSec.get());
2142   }
2143 
2144   // For each section that remains alive, we want to remove the dead references.
2145   // This either might update the content of the section (e.g. remove symbols
2146   // from symbol table that belongs to removed section) or trigger an error if
2147   // a live section critically depends on a section being removed somehow
2148   // (e.g. the removed section is referenced by a relocation).
2149   for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2150     if (Error E = KeepSec->removeSectionReferences(
2151             AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2152               return RemoveSections.find(Sec) != RemoveSections.end();
2153             }))
2154       return E;
2155   }
2156 
2157   // Transfer removed sections into the Object RemovedSections container for use
2158   // later.
2159   std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2160   // Now finally get rid of them all together.
2161   Sections.erase(Iter, std::end(Sections));
2162   return Error::success();
2163 }
2164 
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)2165 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2166   if (SymbolTable)
2167     for (const SecPtr &Sec : Sections)
2168       if (Error E = Sec->removeSymbols(ToRemove))
2169         return E;
2170   return Error::success();
2171 }
2172 
addNewSymbolTable()2173 Error Object::addNewSymbolTable() {
2174   assert(!SymbolTable && "Object must not has a SymbolTable.");
2175 
2176   // Reuse an existing SHT_STRTAB section if it exists.
2177   StringTableSection *StrTab = nullptr;
2178   for (SectionBase &Sec : sections()) {
2179     if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2180       StrTab = static_cast<StringTableSection *>(&Sec);
2181 
2182       // Prefer a string table that is not the section header string table, if
2183       // such a table exists.
2184       if (SectionNames != &Sec)
2185         break;
2186     }
2187   }
2188   if (!StrTab)
2189     StrTab = &addSection<StringTableSection>();
2190 
2191   SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2192   SymTab.Name = ".symtab";
2193   SymTab.Link = StrTab->Index;
2194   if (Error Err = SymTab.initialize(sections()))
2195     return Err;
2196   SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2197 
2198   SymbolTable = &SymTab;
2199 
2200   return Error::success();
2201 }
2202 
sortSections()2203 void Object::sortSections() {
2204   // Use stable_sort to maintain the original ordering as closely as possible.
2205   llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
2206     // Put SHT_GROUP sections first, since group section headers must come
2207     // before the sections they contain. This also matches what GNU objcopy
2208     // does.
2209     if (A->Type != B->Type &&
2210         (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
2211       return A->Type == ELF::SHT_GROUP;
2212     // For all other sections, sort by offset order.
2213     return A->OriginalOffset < B->OriginalOffset;
2214   });
2215 }
2216 
2217 // Orders segments such that if x = y->ParentSegment then y comes before x.
orderSegments(std::vector<Segment * > & Segments)2218 static void orderSegments(std::vector<Segment *> &Segments) {
2219   llvm::stable_sort(Segments, compareSegmentsByOffset);
2220 }
2221 
2222 // This function finds a consistent layout for a list of segments starting from
2223 // an Offset. It assumes that Segments have been sorted by orderSegments and
2224 // returns an Offset one past the end of the last segment.
layoutSegments(std::vector<Segment * > & Segments,uint64_t Offset)2225 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2226                                uint64_t Offset) {
2227   assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2228   // The only way a segment should move is if a section was between two
2229   // segments and that section was removed. If that section isn't in a segment
2230   // then it's acceptable, but not ideal, to simply move it to after the
2231   // segments. So we can simply layout segments one after the other accounting
2232   // for alignment.
2233   for (Segment *Seg : Segments) {
2234     // We assume that segments have been ordered by OriginalOffset and Index
2235     // such that a parent segment will always come before a child segment in
2236     // OrderedSegments. This means that the Offset of the ParentSegment should
2237     // already be set and we can set our offset relative to it.
2238     if (Seg->ParentSegment != nullptr) {
2239       Segment *Parent = Seg->ParentSegment;
2240       Seg->Offset =
2241           Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2242     } else {
2243       Seg->Offset =
2244           alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2245     }
2246     Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2247   }
2248   return Offset;
2249 }
2250 
2251 // This function finds a consistent layout for a list of sections. It assumes
2252 // that the ->ParentSegment of each section has already been laid out. The
2253 // supplied starting Offset is used for the starting offset of any section that
2254 // does not have a ParentSegment. It returns either the offset given if all
2255 // sections had a ParentSegment or an offset one past the last section if there
2256 // was a section that didn't have a ParentSegment.
2257 template <class Range>
layoutSections(Range Sections,uint64_t Offset)2258 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2259   // Now the offset of every segment has been set we can assign the offsets
2260   // of each section. For sections that are covered by a segment we should use
2261   // the segment's original offset and the section's original offset to compute
2262   // the offset from the start of the segment. Using the offset from the start
2263   // of the segment we can assign a new offset to the section. For sections not
2264   // covered by segments we can just bump Offset to the next valid location.
2265   uint32_t Index = 1;
2266   for (auto &Sec : Sections) {
2267     Sec.Index = Index++;
2268     if (Sec.ParentSegment != nullptr) {
2269       auto Segment = *Sec.ParentSegment;
2270       Sec.Offset =
2271           Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2272     } else {
2273       Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
2274       Sec.Offset = Offset;
2275       if (Sec.Type != SHT_NOBITS)
2276         Offset += Sec.Size;
2277     }
2278   }
2279   return Offset;
2280 }
2281 
2282 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2283 // occupy no space in the file.
layoutSectionsForOnlyKeepDebug(Object & Obj,uint64_t Off)2284 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2285   uint32_t Index = 1;
2286   for (auto &Sec : Obj.sections()) {
2287     Sec.Index = Index++;
2288 
2289     auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
2290                          ? Sec.ParentSegment->firstSection()
2291                          : nullptr;
2292 
2293     // The first section in a PT_LOAD has to have congruent offset and address
2294     // modulo the alignment, which usually equals the maximum page size.
2295     if (FirstSec && FirstSec == &Sec)
2296       Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);
2297 
2298     // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2299     // rule must be followed if it is the first section in a PT_LOAD. Do not
2300     // advance Off.
2301     if (Sec.Type == SHT_NOBITS) {
2302       Sec.Offset = Off;
2303       continue;
2304     }
2305 
2306     if (!FirstSec) {
2307       // FirstSec being nullptr generally means that Sec does not have the
2308       // SHF_ALLOC flag.
2309       Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
2310     } else if (FirstSec != &Sec) {
2311       // The offset is relative to the first section in the PT_LOAD segment. Use
2312       // sh_offset for non-SHF_ALLOC sections.
2313       Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2314     }
2315     Sec.Offset = Off;
2316     Off += Sec.Size;
2317   }
2318   return Off;
2319 }
2320 
2321 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2322 // have been updated.
layoutSegmentsForOnlyKeepDebug(std::vector<Segment * > & Segments,uint64_t HdrEnd)2323 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2324                                                uint64_t HdrEnd) {
2325   uint64_t MaxOffset = 0;
2326   for (Segment *Seg : Segments) {
2327     if (Seg->Type == PT_PHDR)
2328       continue;
2329 
2330     // The segment offset is generally the offset of the first section.
2331     //
2332     // For a segment containing no section (see sectionWithinSegment), if it has
2333     // a parent segment, copy the parent segment's offset field. This works for
2334     // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2335     // debugging anyway.
2336     const SectionBase *FirstSec = Seg->firstSection();
2337     uint64_t Offset =
2338         FirstSec ? FirstSec->Offset
2339                  : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2340     uint64_t FileSize = 0;
2341     for (const SectionBase *Sec : Seg->Sections) {
2342       uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2343       if (Sec->Offset + Size > Offset)
2344         FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2345     }
2346 
2347     // If the segment includes EHDR and program headers, don't make it smaller
2348     // than the headers.
2349     if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2350       FileSize += Offset - Seg->Offset;
2351       Offset = Seg->Offset;
2352       FileSize = std::max(FileSize, HdrEnd - Offset);
2353     }
2354 
2355     Seg->Offset = Offset;
2356     Seg->FileSize = FileSize;
2357     MaxOffset = std::max(MaxOffset, Offset + FileSize);
2358   }
2359   return MaxOffset;
2360 }
2361 
initEhdrSegment()2362 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2363   Segment &ElfHdr = Obj.ElfHdrSegment;
2364   ElfHdr.Type = PT_PHDR;
2365   ElfHdr.Flags = 0;
2366   ElfHdr.VAddr = 0;
2367   ElfHdr.PAddr = 0;
2368   ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2369   ElfHdr.Align = 0;
2370 }
2371 
assignOffsets()2372 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2373   // We need a temporary list of segments that has a special order to it
2374   // so that we know that anytime ->ParentSegment is set that segment has
2375   // already had its offset properly set.
2376   std::vector<Segment *> OrderedSegments;
2377   for (Segment &Segment : Obj.segments())
2378     OrderedSegments.push_back(&Segment);
2379   OrderedSegments.push_back(&Obj.ElfHdrSegment);
2380   OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2381   orderSegments(OrderedSegments);
2382 
2383   uint64_t Offset;
2384   if (OnlyKeepDebug) {
2385     // For --only-keep-debug, the sections that did not preserve contents were
2386     // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2387     // then rewrite p_offset/p_filesz of program headers.
2388     uint64_t HdrEnd =
2389         sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2390     Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2391     Offset = std::max(Offset,
2392                       layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2393   } else {
2394     // Offset is used as the start offset of the first segment to be laid out.
2395     // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2396     // we start at offset 0.
2397     Offset = layoutSegments(OrderedSegments, 0);
2398     Offset = layoutSections(Obj.sections(), Offset);
2399   }
2400   // If we need to write the section header table out then we need to align the
2401   // Offset so that SHOffset is valid.
2402   if (WriteSectionHeaders)
2403     Offset = alignTo(Offset, sizeof(Elf_Addr));
2404   Obj.SHOff = Offset;
2405 }
2406 
totalSize() const2407 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2408   // We already have the section header offset so we can calculate the total
2409   // size by just adding up the size of each section header.
2410   if (!WriteSectionHeaders)
2411     return Obj.SHOff;
2412   size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2413   return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2414 }
2415 
write()2416 template <class ELFT> Error ELFWriter<ELFT>::write() {
2417   // Segment data must be written first, so that the ELF header and program
2418   // header tables can overwrite it, if covered by a segment.
2419   writeSegmentData();
2420   writeEhdr();
2421   writePhdrs();
2422   if (Error E = writeSectionData())
2423     return E;
2424   if (WriteSectionHeaders)
2425     writeShdrs();
2426 
2427   // TODO: Implement direct writing to the output stream (without intermediate
2428   // memory buffer Buf).
2429   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2430   return Error::success();
2431 }
2432 
removeUnneededSections(Object & Obj)2433 static Error removeUnneededSections(Object &Obj) {
2434   // We can remove an empty symbol table from non-relocatable objects.
2435   // Relocatable objects typically have relocation sections whose
2436   // sh_link field points to .symtab, so we can't remove .symtab
2437   // even if it is empty.
2438   if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2439       !Obj.SymbolTable->empty())
2440     return Error::success();
2441 
2442   // .strtab can be used for section names. In such a case we shouldn't
2443   // remove it.
2444   auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2445                      ? nullptr
2446                      : Obj.SymbolTable->getStrTab();
2447   return Obj.removeSections(false, [&](const SectionBase &Sec) {
2448     return &Sec == Obj.SymbolTable || &Sec == StrTab;
2449   });
2450 }
2451 
finalize()2452 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2453   // It could happen that SectionNames has been removed and yet the user wants
2454   // a section header table output. We need to throw an error if a user tries
2455   // to do that.
2456   if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2457     return createStringError(llvm::errc::invalid_argument,
2458                              "cannot write section header table because "
2459                              "section header string table was removed");
2460 
2461   if (Error E = removeUnneededSections(Obj))
2462     return E;
2463   Obj.sortSections();
2464 
2465   // We need to assign indexes before we perform layout because we need to know
2466   // if we need large indexes or not. We can assign indexes first and check as
2467   // we go to see if we will actully need large indexes.
2468   bool NeedsLargeIndexes = false;
2469   if (Obj.sections().size() >= SHN_LORESERVE) {
2470     SectionTableRef Sections = Obj.sections();
2471     // Sections doesn't include the null section header, so account for this
2472     // when skipping the first N sections.
2473     NeedsLargeIndexes =
2474         any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2475                [](const SectionBase &Sec) { return Sec.HasSymbol; });
2476     // TODO: handle case where only one section needs the large index table but
2477     // only needs it because the large index table hasn't been removed yet.
2478   }
2479 
2480   if (NeedsLargeIndexes) {
2481     // This means we definitely need to have a section index table but if we
2482     // already have one then we should use it instead of making a new one.
2483     if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2484       // Addition of a section to the end does not invalidate the indexes of
2485       // other sections and assigns the correct index to the new section.
2486       auto &Shndx = Obj.addSection<SectionIndexSection>();
2487       Obj.SymbolTable->setShndxTable(&Shndx);
2488       Shndx.setSymTab(Obj.SymbolTable);
2489     }
2490   } else {
2491     // Since we don't need SectionIndexTable we should remove it and all
2492     // references to it.
2493     if (Obj.SectionIndexTable != nullptr) {
2494       // We do not support sections referring to the section index table.
2495       if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2496                                        [this](const SectionBase &Sec) {
2497                                          return &Sec == Obj.SectionIndexTable;
2498                                        }))
2499         return E;
2500     }
2501   }
2502 
2503   // Make sure we add the names of all the sections. Importantly this must be
2504   // done after we decide to add or remove SectionIndexes.
2505   if (Obj.SectionNames != nullptr)
2506     for (const SectionBase &Sec : Obj.sections())
2507       Obj.SectionNames->addString(Sec.Name);
2508 
2509   initEhdrSegment();
2510 
2511   // Before we can prepare for layout the indexes need to be finalized.
2512   // Also, the output arch may not be the same as the input arch, so fix up
2513   // size-related fields before doing layout calculations.
2514   uint64_t Index = 0;
2515   auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2516   for (SectionBase &Sec : Obj.sections()) {
2517     Sec.Index = Index++;
2518     if (Error Err = Sec.accept(*SecSizer))
2519       return Err;
2520   }
2521 
2522   // The symbol table does not update all other sections on update. For
2523   // instance, symbol names are not added as new symbols are added. This means
2524   // that some sections, like .strtab, don't yet have their final size.
2525   if (Obj.SymbolTable != nullptr)
2526     Obj.SymbolTable->prepareForLayout();
2527 
2528   // Now that all strings are added we want to finalize string table builders,
2529   // because that affects section sizes which in turn affects section offsets.
2530   for (SectionBase &Sec : Obj.sections())
2531     if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2532       StrTab->prepareForLayout();
2533 
2534   assignOffsets();
2535 
2536   // layoutSections could have modified section indexes, so we need
2537   // to fill the index table after assignOffsets.
2538   if (Obj.SymbolTable != nullptr)
2539     Obj.SymbolTable->fillShndxTable();
2540 
2541   // Finally now that all offsets and indexes have been set we can finalize any
2542   // remaining issues.
2543   uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2544   for (SectionBase &Sec : Obj.sections()) {
2545     Sec.HeaderOffset = Offset;
2546     Offset += sizeof(Elf_Shdr);
2547     if (WriteSectionHeaders)
2548       Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2549     Sec.finalize();
2550   }
2551 
2552   size_t TotalSize = totalSize();
2553   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2554   if (!Buf)
2555     return createStringError(errc::not_enough_memory,
2556                              "failed to allocate memory buffer of " +
2557                                  Twine::utohexstr(TotalSize) + " bytes");
2558 
2559   SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2560   return Error::success();
2561 }
2562 
write()2563 Error BinaryWriter::write() {
2564   for (const SectionBase &Sec : Obj.allocSections())
2565     if (Error Err = Sec.accept(*SecWriter))
2566       return Err;
2567 
2568   // TODO: Implement direct writing to the output stream (without intermediate
2569   // memory buffer Buf).
2570   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2571   return Error::success();
2572 }
2573 
finalize()2574 Error BinaryWriter::finalize() {
2575   // Compute the section LMA based on its sh_offset and the containing segment's
2576   // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2577   // sections as MinAddr. In the output, the contents between address 0 and
2578   // MinAddr will be skipped.
2579   uint64_t MinAddr = UINT64_MAX;
2580   for (SectionBase &Sec : Obj.allocSections()) {
2581     if (Sec.ParentSegment != nullptr)
2582       Sec.Addr =
2583           Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2584     if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2585       MinAddr = std::min(MinAddr, Sec.Addr);
2586   }
2587 
2588   // Now that every section has been laid out we just need to compute the total
2589   // file size. This might not be the same as the offset returned by
2590   // layoutSections, because we want to truncate the last segment to the end of
2591   // its last non-empty section, to match GNU objcopy's behaviour.
2592   TotalSize = 0;
2593   for (SectionBase &Sec : Obj.allocSections())
2594     if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2595       Sec.Offset = Sec.Addr - MinAddr;
2596       TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2597     }
2598 
2599   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2600   if (!Buf)
2601     return createStringError(errc::not_enough_memory,
2602                              "failed to allocate memory buffer of " +
2603                                  Twine::utohexstr(TotalSize) + " bytes");
2604   SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2605   return Error::success();
2606 }
2607 
operator ()(const SectionBase * Lhs,const SectionBase * Rhs) const2608 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2609                                             const SectionBase *Rhs) const {
2610   return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2611          (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2612 }
2613 
writeEntryPointRecord(uint8_t * Buf)2614 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2615   IHexLineData HexData;
2616   uint8_t Data[4] = {};
2617   // We don't write entry point record if entry is zero.
2618   if (Obj.Entry == 0)
2619     return 0;
2620 
2621   if (Obj.Entry <= 0xFFFFFU) {
2622     Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2623     support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2624                            support::big);
2625     HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2626   } else {
2627     support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2628                            support::big);
2629     HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2630   }
2631   memcpy(Buf, HexData.data(), HexData.size());
2632   return HexData.size();
2633 }
2634 
writeEndOfFileRecord(uint8_t * Buf)2635 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2636   IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2637   memcpy(Buf, HexData.data(), HexData.size());
2638   return HexData.size();
2639 }
2640 
write()2641 Error IHexWriter::write() {
2642   IHexSectionWriter Writer(*Buf);
2643   // Write sections.
2644   for (const SectionBase *Sec : Sections)
2645     if (Error Err = Sec->accept(Writer))
2646       return Err;
2647 
2648   uint64_t Offset = Writer.getBufferOffset();
2649   // Write entry point address.
2650   Offset += writeEntryPointRecord(
2651       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2652   // Write EOF.
2653   Offset += writeEndOfFileRecord(
2654       reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2655   assert(Offset == TotalSize);
2656 
2657   // TODO: Implement direct writing to the output stream (without intermediate
2658   // memory buffer Buf).
2659   Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2660   return Error::success();
2661 }
2662 
checkSection(const SectionBase & Sec)2663 Error IHexWriter::checkSection(const SectionBase &Sec) {
2664   uint64_t Addr = sectionPhysicalAddr(&Sec);
2665   if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2666     return createStringError(
2667         errc::invalid_argument,
2668         "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2669         Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2670   return Error::success();
2671 }
2672 
finalize()2673 Error IHexWriter::finalize() {
2674   // We can't write 64-bit addresses.
2675   if (addressOverflows32bit(Obj.Entry))
2676     return createStringError(errc::invalid_argument,
2677                              "Entry point address 0x%llx overflows 32 bits",
2678                              Obj.Entry);
2679 
2680   for (const SectionBase &Sec : Obj.sections())
2681     if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
2682         Sec.Size > 0) {
2683       if (Error E = checkSection(Sec))
2684         return E;
2685       Sections.insert(&Sec);
2686     }
2687 
2688   std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2689       WritableMemoryBuffer::getNewMemBuffer(0);
2690   if (!EmptyBuffer)
2691     return createStringError(errc::not_enough_memory,
2692                              "failed to allocate memory buffer of 0 bytes");
2693 
2694   IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2695   for (const SectionBase *Sec : Sections)
2696     if (Error Err = Sec->accept(LengthCalc))
2697       return Err;
2698 
2699   // We need space to write section records + StartAddress record
2700   // (if start adress is not zero) + EndOfFile record.
2701   TotalSize = LengthCalc.getBufferOffset() +
2702               (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2703               IHexRecord::getLineLength(0);
2704 
2705   Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2706   if (!Buf)
2707     return createStringError(errc::not_enough_memory,
2708                              "failed to allocate memory buffer of " +
2709                                  Twine::utohexstr(TotalSize) + " bytes");
2710 
2711   return Error::success();
2712 }
2713 
2714 namespace llvm {
2715 namespace objcopy {
2716 namespace elf {
2717 
2718 template class ELFBuilder<ELF64LE>;
2719 template class ELFBuilder<ELF64BE>;
2720 template class ELFBuilder<ELF32LE>;
2721 template class ELFBuilder<ELF32BE>;
2722 
2723 template class ELFWriter<ELF64LE>;
2724 template class ELFWriter<ELF64BE>;
2725 template class ELFWriter<ELF32LE>;
2726 template class ELFWriter<ELF32BE>;
2727 
2728 } // end namespace elf
2729 } // end namespace objcopy
2730 } // end namespace llvm
2731