1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches. This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/LoopSimplify.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <type_traits>
70 #include <vector>
71
72 namespace llvm {
73 class DataLayout;
74 class Value;
75 } // namespace llvm
76
77 using namespace llvm;
78
79 #define DEBUG_TYPE "loop-unroll"
80
81 // TODO: Should these be here or in LoopUnroll?
82 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85 "latch (completely or otherwise)");
86
87 static cl::opt<bool>
88 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89 cl::desc("Allow runtime unrolled loops to be unrolled "
90 "with epilog instead of prolog."));
91
92 static cl::opt<bool>
93 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94 cl::desc("Verify domtree after unrolling"),
95 #ifdef EXPENSIVE_CHECKS
96 cl::init(true)
97 #else
98 cl::init(false)
99 #endif
100 );
101
102 /// Check if unrolling created a situation where we need to insert phi nodes to
103 /// preserve LCSSA form.
104 /// \param Blocks is a vector of basic blocks representing unrolled loop.
105 /// \param L is the outer loop.
106 /// It's possible that some of the blocks are in L, and some are not. In this
107 /// case, if there is a use is outside L, and definition is inside L, we need to
108 /// insert a phi-node, otherwise LCSSA will be broken.
109 /// The function is just a helper function for llvm::UnrollLoop that returns
110 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,const std::vector<BasicBlock * > & Blocks,LoopInfo * LI)111 static bool needToInsertPhisForLCSSA(Loop *L,
112 const std::vector<BasicBlock *> &Blocks,
113 LoopInfo *LI) {
114 for (BasicBlock *BB : Blocks) {
115 if (LI->getLoopFor(BB) == L)
116 continue;
117 for (Instruction &I : *BB) {
118 for (Use &U : I.operands()) {
119 if (const auto *Def = dyn_cast<Instruction>(U)) {
120 Loop *DefLoop = LI->getLoopFor(Def->getParent());
121 if (!DefLoop)
122 continue;
123 if (DefLoop->contains(L))
124 return true;
125 }
126 }
127 }
128 }
129 return false;
130 }
131
132 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133 /// and adds a mapping from the original loop to the new loop to NewLoops.
134 /// Returns nullptr if no new loop was created and a pointer to the
135 /// original loop OriginalBB was part of otherwise.
addClonedBlockToLoopInfo(BasicBlock * OriginalBB,BasicBlock * ClonedBB,LoopInfo * LI,NewLoopsMap & NewLoops)136 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137 BasicBlock *ClonedBB, LoopInfo *LI,
138 NewLoopsMap &NewLoops) {
139 // Figure out which loop New is in.
140 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
142
143 Loop *&NewLoop = NewLoops[OldLoop];
144 if (!NewLoop) {
145 // Found a new sub-loop.
146 assert(OriginalBB == OldLoop->getHeader() &&
147 "Header should be first in RPO");
148
149 NewLoop = LI->AllocateLoop();
150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151
152 if (NewLoopParent)
153 NewLoopParent->addChildLoop(NewLoop);
154 else
155 LI->addTopLevelLoop(NewLoop);
156
157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158 return OldLoop;
159 } else {
160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161 return nullptr;
162 }
163 }
164
165 /// The function chooses which type of unroll (epilog or prolog) is more
166 /// profitabale.
167 /// Epilog unroll is more profitable when there is PHI that starts from
168 /// constant. In this case epilog will leave PHI start from constant,
169 /// but prolog will convert it to non-constant.
170 ///
171 /// loop:
172 /// PN = PHI [I, Latch], [CI, PreHeader]
173 /// I = foo(PN)
174 /// ...
175 ///
176 /// Epilog unroll case.
177 /// loop:
178 /// PN = PHI [I2, Latch], [CI, PreHeader]
179 /// I1 = foo(PN)
180 /// I2 = foo(I1)
181 /// ...
182 /// Prolog unroll case.
183 /// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184 /// loop:
185 /// PN = PHI [I2, Latch], [NewPN, PreHeader]
186 /// I1 = foo(PN)
187 /// I2 = foo(I1)
188 /// ...
189 ///
isEpilogProfitable(Loop * L)190 static bool isEpilogProfitable(Loop *L) {
191 BasicBlock *PreHeader = L->getLoopPreheader();
192 BasicBlock *Header = L->getHeader();
193 assert(PreHeader && Header);
194 for (const PHINode &PN : Header->phis()) {
195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196 return true;
197 }
198 return false;
199 }
200
201 /// Perform some cleanup and simplifications on loops after unrolling. It is
202 /// useful to simplify the IV's in the new loop, as well as do a quick
203 /// simplify/dce pass of the instructions.
simplifyLoopAfterUnroll(Loop * L,bool SimplifyIVs,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,const TargetTransformInfo * TTI)204 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205 ScalarEvolution *SE, DominatorTree *DT,
206 AssumptionCache *AC,
207 const TargetTransformInfo *TTI) {
208 // Simplify any new induction variables in the partially unrolled loop.
209 if (SE && SimplifyIVs) {
210 SmallVector<WeakTrackingVH, 16> DeadInsts;
211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212
213 // Aggressively clean up dead instructions that simplifyLoopIVs already
214 // identified. Any remaining should be cleaned up below.
215 while (!DeadInsts.empty()) {
216 Value *V = DeadInsts.pop_back_val();
217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218 RecursivelyDeleteTriviallyDeadInstructions(Inst);
219 }
220 }
221
222 // At this point, the code is well formed. Perform constprop, instsimplify,
223 // and dce.
224 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225 SmallVector<WeakTrackingVH, 16> DeadInsts;
226 for (BasicBlock *BB : L->getBlocks()) {
227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
228 Instruction *Inst = &*I++;
229 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
230 if (LI->replacementPreservesLCSSAForm(Inst, V))
231 Inst->replaceAllUsesWith(V);
232 if (isInstructionTriviallyDead(Inst))
233 DeadInsts.emplace_back(Inst);
234 }
235 // We can't do recursive deletion until we're done iterating, as we might
236 // have a phi which (potentially indirectly) uses instructions later in
237 // the block we're iterating through.
238 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
239 }
240 }
241
242 /// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
243 /// can only fail when the loop's latch block is not terminated by a conditional
244 /// branch instruction. However, if the trip count (and multiple) are not known,
245 /// loop unrolling will mostly produce more code that is no faster.
246 ///
247 /// If Runtime is true then UnrollLoop will try to insert a prologue or
248 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
249 /// will not runtime-unroll the loop if computing the run-time trip count will
250 /// be expensive and AllowExpensiveTripCount is false.
251 ///
252 /// The LoopInfo Analysis that is passed will be kept consistent.
253 ///
254 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
255 /// DominatorTree if they are non-null.
256 ///
257 /// If RemainderLoop is non-null, it will receive the remainder loop (if
258 /// required and not fully unrolled).
UnrollLoop(Loop * L,UnrollLoopOptions ULO,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,const TargetTransformInfo * TTI,OptimizationRemarkEmitter * ORE,bool PreserveLCSSA,Loop ** RemainderLoop)259 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
260 ScalarEvolution *SE, DominatorTree *DT,
261 AssumptionCache *AC,
262 const TargetTransformInfo *TTI,
263 OptimizationRemarkEmitter *ORE,
264 bool PreserveLCSSA, Loop **RemainderLoop) {
265 assert(DT && "DomTree is required");
266
267 if (!L->getLoopPreheader()) {
268 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
269 return LoopUnrollResult::Unmodified;
270 }
271
272 if (!L->getLoopLatch()) {
273 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
274 return LoopUnrollResult::Unmodified;
275 }
276
277 // Loops with indirectbr cannot be cloned.
278 if (!L->isSafeToClone()) {
279 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
280 return LoopUnrollResult::Unmodified;
281 }
282
283 if (L->getHeader()->hasAddressTaken()) {
284 // The loop-rotate pass can be helpful to avoid this in many cases.
285 LLVM_DEBUG(
286 dbgs() << " Won't unroll loop: address of header block is taken.\n");
287 return LoopUnrollResult::Unmodified;
288 }
289
290 assert(ULO.Count > 0);
291
292 // All these values should be taken only after peeling because they might have
293 // changed.
294 BasicBlock *Preheader = L->getLoopPreheader();
295 BasicBlock *Header = L->getHeader();
296 BasicBlock *LatchBlock = L->getLoopLatch();
297 SmallVector<BasicBlock *, 4> ExitBlocks;
298 L->getExitBlocks(ExitBlocks);
299 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
300
301 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
302 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
303
304 // Effectively "DCE" unrolled iterations that are beyond the max tripcount
305 // and will never be executed.
306 if (MaxTripCount && ULO.Count > MaxTripCount)
307 ULO.Count = MaxTripCount;
308
309 struct ExitInfo {
310 unsigned TripCount;
311 unsigned TripMultiple;
312 unsigned BreakoutTrip;
313 bool ExitOnTrue;
314 SmallVector<BasicBlock *> ExitingBlocks;
315 };
316 DenseMap<BasicBlock *, ExitInfo> ExitInfos;
317 SmallVector<BasicBlock *, 4> ExitingBlocks;
318 L->getExitingBlocks(ExitingBlocks);
319 for (auto *ExitingBlock : ExitingBlocks) {
320 // The folding code is not prepared to deal with non-branch instructions
321 // right now.
322 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
323 if (!BI)
324 continue;
325
326 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
327 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
328 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
329 if (Info.TripCount != 0) {
330 Info.BreakoutTrip = Info.TripCount % ULO.Count;
331 Info.TripMultiple = 0;
332 } else {
333 Info.BreakoutTrip = Info.TripMultiple =
334 (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple);
335 }
336 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
337 Info.ExitingBlocks.push_back(ExitingBlock);
338 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName()
339 << ": TripCount=" << Info.TripCount
340 << ", TripMultiple=" << Info.TripMultiple
341 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
342 }
343
344 // Are we eliminating the loop control altogether? Note that we can know
345 // we're eliminating the backedge without knowing exactly which iteration
346 // of the unrolled body exits.
347 const bool CompletelyUnroll = ULO.Count == MaxTripCount;
348
349 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
350
351 // There's no point in performing runtime unrolling if this unroll count
352 // results in a full unroll.
353 if (CompletelyUnroll)
354 ULO.Runtime = false;
355
356 // Go through all exits of L and see if there are any phi-nodes there. We just
357 // conservatively assume that they're inserted to preserve LCSSA form, which
358 // means that complete unrolling might break this form. We need to either fix
359 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
360 // now we just recompute LCSSA for the outer loop, but it should be possible
361 // to fix it in-place.
362 bool NeedToFixLCSSA =
363 PreserveLCSSA && CompletelyUnroll &&
364 any_of(ExitBlocks,
365 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
366
367 // The current loop unroll pass can unroll loops that have
368 // (1) single latch; and
369 // (2a) latch is unconditional; or
370 // (2b) latch is conditional and is an exiting block
371 // FIXME: The implementation can be extended to work with more complicated
372 // cases, e.g. loops with multiple latches.
373 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
374
375 // A conditional branch which exits the loop, which can be optimized to an
376 // unconditional branch in the unrolled loop in some cases.
377 bool LatchIsExiting = L->isLoopExiting(LatchBlock);
378 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
379 LLVM_DEBUG(
380 dbgs() << "Can't unroll; a conditional latch must exit the loop");
381 return LoopUnrollResult::Unmodified;
382 }
383
384 // Loops containing convergent instructions cannot use runtime unrolling,
385 // as the prologue/epilogue may add additional control-dependencies to
386 // convergent operations.
387 LLVM_DEBUG(
388 {
389 bool HasConvergent = false;
390 for (auto &BB : L->blocks())
391 for (auto &I : *BB)
392 if (auto *CB = dyn_cast<CallBase>(&I))
393 HasConvergent |= CB->isConvergent();
394 assert((!HasConvergent || !ULO.Runtime) &&
395 "Can't runtime unroll if loop contains a convergent operation.");
396 });
397
398 bool EpilogProfitability =
399 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
400 : isEpilogProfitable(L);
401
402 if (ULO.Runtime &&
403 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
404 EpilogProfitability, ULO.UnrollRemainder,
405 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
406 PreserveLCSSA, RemainderLoop)) {
407 if (ULO.Force)
408 ULO.Runtime = false;
409 else {
410 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
411 "generated when assuming runtime trip count\n");
412 return LoopUnrollResult::Unmodified;
413 }
414 }
415
416 using namespace ore;
417 // Report the unrolling decision.
418 if (CompletelyUnroll) {
419 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
420 << " with trip count " << ULO.Count << "!\n");
421 if (ORE)
422 ORE->emit([&]() {
423 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
424 L->getHeader())
425 << "completely unrolled loop with "
426 << NV("UnrollCount", ULO.Count) << " iterations";
427 });
428 } else {
429 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
430 << ULO.Count);
431 if (ULO.Runtime)
432 LLVM_DEBUG(dbgs() << " with run-time trip count");
433 LLVM_DEBUG(dbgs() << "!\n");
434
435 if (ORE)
436 ORE->emit([&]() {
437 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
438 L->getHeader());
439 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
440 if (ULO.Runtime)
441 Diag << " with run-time trip count";
442 return Diag;
443 });
444 }
445
446 // We are going to make changes to this loop. SCEV may be keeping cached info
447 // about it, in particular about backedge taken count. The changes we make
448 // are guaranteed to invalidate this information for our loop. It is tempting
449 // to only invalidate the loop being unrolled, but it is incorrect as long as
450 // all exiting branches from all inner loops have impact on the outer loops,
451 // and if something changes inside them then any of outer loops may also
452 // change. When we forget outermost loop, we also forget all contained loops
453 // and this is what we need here.
454 if (SE) {
455 if (ULO.ForgetAllSCEV)
456 SE->forgetAllLoops();
457 else
458 SE->forgetTopmostLoop(L);
459 }
460
461 if (!LatchIsExiting)
462 ++NumUnrolledNotLatch;
463
464 // For the first iteration of the loop, we should use the precloned values for
465 // PHI nodes. Insert associations now.
466 ValueToValueMapTy LastValueMap;
467 std::vector<PHINode*> OrigPHINode;
468 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
469 OrigPHINode.push_back(cast<PHINode>(I));
470 }
471
472 std::vector<BasicBlock *> Headers;
473 std::vector<BasicBlock *> Latches;
474 Headers.push_back(Header);
475 Latches.push_back(LatchBlock);
476
477 // The current on-the-fly SSA update requires blocks to be processed in
478 // reverse postorder so that LastValueMap contains the correct value at each
479 // exit.
480 LoopBlocksDFS DFS(L);
481 DFS.perform(LI);
482
483 // Stash the DFS iterators before adding blocks to the loop.
484 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
485 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
486
487 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
488
489 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
490 // might break loop-simplified form for these loops (as they, e.g., would
491 // share the same exit blocks). We'll keep track of loops for which we can
492 // break this so that later we can re-simplify them.
493 SmallSetVector<Loop *, 4> LoopsToSimplify;
494 for (Loop *SubLoop : *L)
495 LoopsToSimplify.insert(SubLoop);
496
497 // When a FSDiscriminator is enabled, we don't need to add the multiply
498 // factors to the discriminators.
499 if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator)
500 for (BasicBlock *BB : L->getBlocks())
501 for (Instruction &I : *BB)
502 if (!isa<DbgInfoIntrinsic>(&I))
503 if (const DILocation *DIL = I.getDebugLoc()) {
504 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
505 if (NewDIL)
506 I.setDebugLoc(NewDIL.getValue());
507 else
508 LLVM_DEBUG(dbgs()
509 << "Failed to create new discriminator: "
510 << DIL->getFilename() << " Line: " << DIL->getLine());
511 }
512
513 // Identify what noalias metadata is inside the loop: if it is inside the
514 // loop, the associated metadata must be cloned for each iteration.
515 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
516 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
517
518 for (unsigned It = 1; It != ULO.Count; ++It) {
519 SmallVector<BasicBlock *, 8> NewBlocks;
520 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
521 NewLoops[L] = L;
522
523 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
524 ValueToValueMapTy VMap;
525 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
526 Header->getParent()->getBasicBlockList().push_back(New);
527
528 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
529 "Header should not be in a sub-loop");
530 // Tell LI about New.
531 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
532 if (OldLoop)
533 LoopsToSimplify.insert(NewLoops[OldLoop]);
534
535 if (*BB == Header)
536 // Loop over all of the PHI nodes in the block, changing them to use
537 // the incoming values from the previous block.
538 for (PHINode *OrigPHI : OrigPHINode) {
539 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
540 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
541 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
542 if (It > 1 && L->contains(InValI))
543 InVal = LastValueMap[InValI];
544 VMap[OrigPHI] = InVal;
545 New->getInstList().erase(NewPHI);
546 }
547
548 // Update our running map of newest clones
549 LastValueMap[*BB] = New;
550 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
551 VI != VE; ++VI)
552 LastValueMap[VI->first] = VI->second;
553
554 // Add phi entries for newly created values to all exit blocks.
555 for (BasicBlock *Succ : successors(*BB)) {
556 if (L->contains(Succ))
557 continue;
558 for (PHINode &PHI : Succ->phis()) {
559 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
560 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
561 if (It != LastValueMap.end())
562 Incoming = It->second;
563 PHI.addIncoming(Incoming, New);
564 }
565 }
566 // Keep track of new headers and latches as we create them, so that
567 // we can insert the proper branches later.
568 if (*BB == Header)
569 Headers.push_back(New);
570 if (*BB == LatchBlock)
571 Latches.push_back(New);
572
573 // Keep track of the exiting block and its successor block contained in
574 // the loop for the current iteration.
575 auto ExitInfoIt = ExitInfos.find(*BB);
576 if (ExitInfoIt != ExitInfos.end())
577 ExitInfoIt->second.ExitingBlocks.push_back(New);
578
579 NewBlocks.push_back(New);
580 UnrolledLoopBlocks.push_back(New);
581
582 // Update DomTree: since we just copy the loop body, and each copy has a
583 // dedicated entry block (copy of the header block), this header's copy
584 // dominates all copied blocks. That means, dominance relations in the
585 // copied body are the same as in the original body.
586 if (*BB == Header)
587 DT->addNewBlock(New, Latches[It - 1]);
588 else {
589 auto BBDomNode = DT->getNode(*BB);
590 auto BBIDom = BBDomNode->getIDom();
591 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
592 DT->addNewBlock(
593 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
594 }
595 }
596
597 // Remap all instructions in the most recent iteration
598 remapInstructionsInBlocks(NewBlocks, LastValueMap);
599 for (BasicBlock *NewBlock : NewBlocks)
600 for (Instruction &I : *NewBlock)
601 if (auto *II = dyn_cast<AssumeInst>(&I))
602 AC->registerAssumption(II);
603
604 {
605 // Identify what other metadata depends on the cloned version. After
606 // cloning, replace the metadata with the corrected version for both
607 // memory instructions and noalias intrinsics.
608 std::string ext = (Twine("It") + Twine(It)).str();
609 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
610 Header->getContext(), ext);
611 }
612 }
613
614 // Loop over the PHI nodes in the original block, setting incoming values.
615 for (PHINode *PN : OrigPHINode) {
616 if (CompletelyUnroll) {
617 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
618 Header->getInstList().erase(PN);
619 } else if (ULO.Count > 1) {
620 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
621 // If this value was defined in the loop, take the value defined by the
622 // last iteration of the loop.
623 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
624 if (L->contains(InValI))
625 InVal = LastValueMap[InVal];
626 }
627 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
628 PN->addIncoming(InVal, Latches.back());
629 }
630 }
631
632 // Connect latches of the unrolled iterations to the headers of the next
633 // iteration. Currently they point to the header of the same iteration.
634 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
635 unsigned j = (i + 1) % e;
636 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
637 }
638
639 // Update dominators of blocks we might reach through exits.
640 // Immediate dominator of such block might change, because we add more
641 // routes which can lead to the exit: we can now reach it from the copied
642 // iterations too.
643 if (ULO.Count > 1) {
644 for (auto *BB : OriginalLoopBlocks) {
645 auto *BBDomNode = DT->getNode(BB);
646 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
647 for (auto *ChildDomNode : BBDomNode->children()) {
648 auto *ChildBB = ChildDomNode->getBlock();
649 if (!L->contains(ChildBB))
650 ChildrenToUpdate.push_back(ChildBB);
651 }
652 // The new idom of the block will be the nearest common dominator
653 // of all copies of the previous idom. This is equivalent to the
654 // nearest common dominator of the previous idom and the first latch,
655 // which dominates all copies of the previous idom.
656 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
657 for (auto *ChildBB : ChildrenToUpdate)
658 DT->changeImmediateDominator(ChildBB, NewIDom);
659 }
660 }
661
662 assert(!UnrollVerifyDomtree ||
663 DT->verify(DominatorTree::VerificationLevel::Fast));
664
665 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
666
667 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
668 auto *Term = cast<BranchInst>(Src->getTerminator());
669 const unsigned Idx = ExitOnTrue ^ WillExit;
670 BasicBlock *Dest = Term->getSuccessor(Idx);
671 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
672
673 // Remove predecessors from all non-Dest successors.
674 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
675
676 // Replace the conditional branch with an unconditional one.
677 BranchInst::Create(Dest, Term);
678 Term->eraseFromParent();
679
680 DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}});
681 };
682
683 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
684 bool IsLatch) -> Optional<bool> {
685 if (CompletelyUnroll) {
686 if (PreserveOnlyFirst) {
687 if (i == 0)
688 return None;
689 return j == 0;
690 }
691 // Complete (but possibly inexact) unrolling
692 if (j == 0)
693 return true;
694 if (Info.TripCount && j != Info.TripCount)
695 return false;
696 return None;
697 }
698
699 if (ULO.Runtime) {
700 // If runtime unrolling inserts a prologue, information about non-latch
701 // exits may be stale.
702 if (IsLatch && j != 0)
703 return false;
704 return None;
705 }
706
707 if (j != Info.BreakoutTrip &&
708 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
709 // If we know the trip count or a multiple of it, we can safely use an
710 // unconditional branch for some iterations.
711 return false;
712 }
713 return None;
714 };
715
716 // Fold branches for iterations where we know that they will exit or not
717 // exit.
718 for (const auto &Pair : ExitInfos) {
719 const ExitInfo &Info = Pair.second;
720 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
721 // The branch destination.
722 unsigned j = (i + 1) % e;
723 bool IsLatch = Pair.first == LatchBlock;
724 Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
725 if (!KnownWillExit)
726 continue;
727
728 // We don't fold known-exiting branches for non-latch exits here,
729 // because this ensures that both all loop blocks and all exit blocks
730 // remain reachable in the CFG.
731 // TODO: We could fold these branches, but it would require much more
732 // sophisticated updates to LoopInfo.
733 if (*KnownWillExit && !IsLatch)
734 continue;
735
736 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
737 }
738 }
739
740 // When completely unrolling, the last latch becomes unreachable.
741 if (!LatchIsExiting && CompletelyUnroll)
742 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU);
743
744 // Merge adjacent basic blocks, if possible.
745 for (BasicBlock *Latch : Latches) {
746 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
747 assert((Term ||
748 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
749 "Need a branch as terminator, except when fully unrolling with "
750 "unconditional latch");
751 if (Term && Term->isUnconditional()) {
752 BasicBlock *Dest = Term->getSuccessor(0);
753 BasicBlock *Fold = Dest->getUniquePredecessor();
754 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
755 // Dest has been folded into Fold. Update our worklists accordingly.
756 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
757 llvm::erase_value(UnrolledLoopBlocks, Dest);
758 }
759 }
760 }
761 // Apply updates to the DomTree.
762 DT = &DTU.getDomTree();
763
764 // At this point, the code is well formed. We now simplify the unrolled loop,
765 // doing constant propagation and dead code elimination as we go.
766 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
767 TTI);
768
769 NumCompletelyUnrolled += CompletelyUnroll;
770 ++NumUnrolled;
771
772 Loop *OuterL = L->getParentLoop();
773 // Update LoopInfo if the loop is completely removed.
774 if (CompletelyUnroll)
775 LI->erase(L);
776
777 // After complete unrolling most of the blocks should be contained in OuterL.
778 // However, some of them might happen to be out of OuterL (e.g. if they
779 // precede a loop exit). In this case we might need to insert PHI nodes in
780 // order to preserve LCSSA form.
781 // We don't need to check this if we already know that we need to fix LCSSA
782 // form.
783 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
784 // it should be possible to fix it in-place.
785 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
786 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
787
788 // Make sure that loop-simplify form is preserved. We want to simplify
789 // at least one layer outside of the loop that was unrolled so that any
790 // changes to the parent loop exposed by the unrolling are considered.
791 if (OuterL) {
792 // OuterL includes all loops for which we can break loop-simplify, so
793 // it's sufficient to simplify only it (it'll recursively simplify inner
794 // loops too).
795 if (NeedToFixLCSSA) {
796 // LCSSA must be performed on the outermost affected loop. The unrolled
797 // loop's last loop latch is guaranteed to be in the outermost loop
798 // after LoopInfo's been updated by LoopInfo::erase.
799 Loop *LatchLoop = LI->getLoopFor(Latches.back());
800 Loop *FixLCSSALoop = OuterL;
801 if (!FixLCSSALoop->contains(LatchLoop))
802 while (FixLCSSALoop->getParentLoop() != LatchLoop)
803 FixLCSSALoop = FixLCSSALoop->getParentLoop();
804
805 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
806 } else if (PreserveLCSSA) {
807 assert(OuterL->isLCSSAForm(*DT) &&
808 "Loops should be in LCSSA form after loop-unroll.");
809 }
810
811 // TODO: That potentially might be compile-time expensive. We should try
812 // to fix the loop-simplified form incrementally.
813 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
814 } else {
815 // Simplify loops for which we might've broken loop-simplify form.
816 for (Loop *SubLoop : LoopsToSimplify)
817 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
818 }
819
820 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
821 : LoopUnrollResult::PartiallyUnrolled;
822 }
823
824 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
825 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
826 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)827 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
828 // First operand should refer to the loop id itself.
829 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831
832 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
833 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
834 if (!MD)
835 continue;
836
837 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
838 if (!S)
839 continue;
840
841 if (Name.equals(S->getString()))
842 return MD;
843 }
844 return nullptr;
845 }
846