1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
79
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82 cl::Hidden,
83 cl::desc("Convert noalias attributes to metadata during inlining."));
84
85 static cl::opt<bool>
86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87 cl::ZeroOrMore, cl::init(true),
88 cl::desc("Use the llvm.experimental.noalias.scope.decl "
89 "intrinsic during inlining."));
90
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96 cl::init(false), cl::Hidden,
97 cl::desc("Convert align attributes to assumptions during inlining."));
98
99 static cl::opt<bool> UpdateReturnAttributes(
100 "update-return-attrs", cl::init(true), cl::Hidden,
101 cl::desc("Update return attributes on calls within inlined body"));
102
103 static cl::opt<unsigned> InlinerAttributeWindow(
104 "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105 cl::desc("the maximum number of instructions analyzed for may throw during "
106 "attribute inference in inlined body"),
107 cl::init(4));
108
109 namespace {
110
111 /// A class for recording information about inlining a landing pad.
112 class LandingPadInliningInfo {
113 /// Destination of the invoke's unwind.
114 BasicBlock *OuterResumeDest;
115
116 /// Destination for the callee's resume.
117 BasicBlock *InnerResumeDest = nullptr;
118
119 /// LandingPadInst associated with the invoke.
120 LandingPadInst *CallerLPad = nullptr;
121
122 /// PHI for EH values from landingpad insts.
123 PHINode *InnerEHValuesPHI = nullptr;
124
125 SmallVector<Value*, 8> UnwindDestPHIValues;
126
127 public:
LandingPadInliningInfo(InvokeInst * II)128 LandingPadInliningInfo(InvokeInst *II)
129 : OuterResumeDest(II->getUnwindDest()) {
130 // If there are PHI nodes in the unwind destination block, we need to keep
131 // track of which values came into them from the invoke before removing
132 // the edge from this block.
133 BasicBlock *InvokeBB = II->getParent();
134 BasicBlock::iterator I = OuterResumeDest->begin();
135 for (; isa<PHINode>(I); ++I) {
136 // Save the value to use for this edge.
137 PHINode *PHI = cast<PHINode>(I);
138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
139 }
140
141 CallerLPad = cast<LandingPadInst>(I);
142 }
143
144 /// The outer unwind destination is the target of
145 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const146 BasicBlock *getOuterResumeDest() const {
147 return OuterResumeDest;
148 }
149
150 BasicBlock *getInnerResumeDest();
151
getLandingPadInst() const152 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
153
154 /// Forward the 'resume' instruction to the caller's landing pad block.
155 /// When the landing pad block has only one predecessor, this is
156 /// a simple branch. When there is more than one predecessor, we need to
157 /// split the landing pad block after the landingpad instruction and jump
158 /// to there.
159 void forwardResume(ResumeInst *RI,
160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
161
162 /// Add incoming-PHI values to the unwind destination block for the given
163 /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const164 void addIncomingPHIValuesFor(BasicBlock *BB) const {
165 addIncomingPHIValuesForInto(BB, OuterResumeDest);
166 }
167
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169 BasicBlock::iterator I = dest->begin();
170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171 PHINode *phi = cast<PHINode>(I);
172 phi->addIncoming(UnwindDestPHIValues[i], src);
173 }
174 }
175 };
176
177 } // end anonymous namespace
178
179 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181 if (InnerResumeDest) return InnerResumeDest;
182
183 // Split the landing pad.
184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185 InnerResumeDest =
186 OuterResumeDest->splitBasicBlock(SplitPoint,
187 OuterResumeDest->getName() + ".body");
188
189 // The number of incoming edges we expect to the inner landing pad.
190 const unsigned PHICapacity = 2;
191
192 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193 Instruction *InsertPoint = &InnerResumeDest->front();
194 BasicBlock::iterator I = OuterResumeDest->begin();
195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196 PHINode *OuterPHI = cast<PHINode>(I);
197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198 OuterPHI->getName() + ".lpad-body",
199 InsertPoint);
200 OuterPHI->replaceAllUsesWith(InnerPHI);
201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
202 }
203
204 // Create a PHI for the exception values.
205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206 "eh.lpad-body", InsertPoint);
207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
209
210 // All done.
211 return InnerResumeDest;
212 }
213
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)218 void LandingPadInliningInfo::forwardResume(
219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220 BasicBlock *Dest = getInnerResumeDest();
221 BasicBlock *Src = RI->getParent();
222
223 BranchInst::Create(Dest, Src);
224
225 // Update the PHIs in the destination. They were inserted in an order which
226 // makes this work.
227 addIncomingPHIValuesForInto(Src, Dest);
228
229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230 RI->eraseFromParent();
231 }
232
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)234 static Value *getParentPad(Value *EHPad) {
235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236 return FPI->getParentPad();
237 return cast<CatchSwitchInst>(EHPad)->getParentPad();
238 }
239
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
241
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245 UnwindDestMemoTy &MemoMap) {
246 SmallVector<Instruction *, 8> Worklist(1, EHPad);
247
248 while (!Worklist.empty()) {
249 Instruction *CurrentPad = Worklist.pop_back_val();
250 // We only put pads on the worklist that aren't in the MemoMap. When
251 // we find an unwind dest for a pad we may update its ancestors, but
252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253 // so they should never get updated while queued on the worklist.
254 assert(!MemoMap.count(CurrentPad));
255 Value *UnwindDestToken = nullptr;
256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257 if (CatchSwitch->hasUnwindDest()) {
258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259 } else {
260 // Catchswitch doesn't have a 'nounwind' variant, and one might be
261 // annotated as "unwinds to caller" when really it's nounwind (see
262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263 // parent's unwind dest from this. We can check its catchpads'
264 // descendants, since they might include a cleanuppad with an
265 // "unwinds to caller" cleanupret, which can be trusted.
266 for (auto HI = CatchSwitch->handler_begin(),
267 HE = CatchSwitch->handler_end();
268 HI != HE && !UnwindDestToken; ++HI) {
269 BasicBlock *HandlerBlock = *HI;
270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271 for (User *Child : CatchPad->users()) {
272 // Intentionally ignore invokes here -- since the catchswitch is
273 // marked "unwind to caller", it would be a verifier error if it
274 // contained an invoke which unwinds out of it, so any invoke we'd
275 // encounter must unwind to some child of the catch.
276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277 continue;
278
279 Instruction *ChildPad = cast<Instruction>(Child);
280 auto Memo = MemoMap.find(ChildPad);
281 if (Memo == MemoMap.end()) {
282 // Haven't figured out this child pad yet; queue it.
283 Worklist.push_back(ChildPad);
284 continue;
285 }
286 // We've already checked this child, but might have found that
287 // it offers no proof either way.
288 Value *ChildUnwindDestToken = Memo->second;
289 if (!ChildUnwindDestToken)
290 continue;
291 // We already know the child's unwind dest, which can either
292 // be ConstantTokenNone to indicate unwind to caller, or can
293 // be another child of the catchpad. Only the former indicates
294 // the unwind dest of the catchswitch.
295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296 UnwindDestToken = ChildUnwindDestToken;
297 break;
298 }
299 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
300 }
301 }
302 }
303 } else {
304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305 for (User *U : CleanupPad->users()) {
306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309 else
310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311 break;
312 }
313 Value *ChildUnwindDestToken;
314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317 Instruction *ChildPad = cast<Instruction>(U);
318 auto Memo = MemoMap.find(ChildPad);
319 if (Memo == MemoMap.end()) {
320 // Haven't resolved this child yet; queue it and keep searching.
321 Worklist.push_back(ChildPad);
322 continue;
323 }
324 // We've checked this child, but still need to ignore it if it
325 // had no proof either way.
326 ChildUnwindDestToken = Memo->second;
327 if (!ChildUnwindDestToken)
328 continue;
329 } else {
330 // Not a relevant user of the cleanuppad
331 continue;
332 }
333 // In a well-formed program, the child/invoke must either unwind to
334 // an(other) child of the cleanup, or exit the cleanup. In the
335 // first case, continue searching.
336 if (isa<Instruction>(ChildUnwindDestToken) &&
337 getParentPad(ChildUnwindDestToken) == CleanupPad)
338 continue;
339 UnwindDestToken = ChildUnwindDestToken;
340 break;
341 }
342 }
343 // If we haven't found an unwind dest for CurrentPad, we may have queued its
344 // children, so move on to the next in the worklist.
345 if (!UnwindDestToken)
346 continue;
347
348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
349 // any ancestors of CurrentPad up to but not including UnwindDestToken's
350 // parent pad. Record this in the memo map, and check to see if the
351 // original EHPad being queried is one of the ones exited.
352 Value *UnwindParent;
353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354 UnwindParent = getParentPad(UnwindPad);
355 else
356 UnwindParent = nullptr;
357 bool ExitedOriginalPad = false;
358 for (Instruction *ExitedPad = CurrentPad;
359 ExitedPad && ExitedPad != UnwindParent;
360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361 // Skip over catchpads since they just follow their catchswitches.
362 if (isa<CatchPadInst>(ExitedPad))
363 continue;
364 MemoMap[ExitedPad] = UnwindDestToken;
365 ExitedOriginalPad |= (ExitedPad == EHPad);
366 }
367
368 if (ExitedOriginalPad)
369 return UnwindDestToken;
370
371 // Continue the search.
372 }
373
374 // No definitive information is contained within this funclet.
375 return nullptr;
376 }
377
378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
379 /// return that pad instruction. If it unwinds to caller, return
380 /// ConstantTokenNone. If it does not have a definitive unwind destination,
381 /// return nullptr.
382 ///
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke. Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer. Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees. The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)395 static Value *getUnwindDestToken(Instruction *EHPad,
396 UnwindDestMemoTy &MemoMap) {
397 // Catchpads unwind to the same place as their catchswitch;
398 // redirct any queries on catchpads so the code below can
399 // deal with just catchswitches and cleanuppads.
400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401 EHPad = CPI->getCatchSwitch();
402
403 // Check if we've already determined the unwind dest for this pad.
404 auto Memo = MemoMap.find(EHPad);
405 if (Memo != MemoMap.end())
406 return Memo->second;
407
408 // Search EHPad and, if necessary, its descendants.
409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411 if (UnwindDestToken)
412 return UnwindDestToken;
413
414 // No information is available for this EHPad from itself or any of its
415 // descendants. An unwind all the way out to a pad in the caller would
416 // need also to agree with the unwind dest of the parent funclet, so
417 // search up the chain to try to find a funclet with information. Put
418 // null entries in the memo map to avoid re-processing as we go up.
419 MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421 SmallPtrSet<Instruction *, 4> TempMemos;
422 TempMemos.insert(EHPad);
423 #endif
424 Instruction *LastUselessPad = EHPad;
425 Value *AncestorToken;
426 for (AncestorToken = getParentPad(EHPad);
427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428 AncestorToken = getParentPad(AncestorToken)) {
429 // Skip over catchpads since they just follow their catchswitches.
430 if (isa<CatchPadInst>(AncestorPad))
431 continue;
432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434 // call to getUnwindDestToken, that would mean that AncestorPad had no
435 // information in itself, its descendants, or its ancestors. If that
436 // were the case, then we should also have recorded the lack of information
437 // for the descendant that we're coming from. So assert that we don't
438 // find a null entry in the MemoMap for AncestorPad.
439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440 auto AncestorMemo = MemoMap.find(AncestorPad);
441 if (AncestorMemo == MemoMap.end()) {
442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443 } else {
444 UnwindDestToken = AncestorMemo->second;
445 }
446 if (UnwindDestToken)
447 break;
448 LastUselessPad = AncestorPad;
449 MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451 TempMemos.insert(LastUselessPad);
452 #endif
453 }
454
455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456 // returned nullptr (and likewise for EHPad and any of its ancestors up to
457 // LastUselessPad), so LastUselessPad has no information from below. Since
458 // getUnwindDestTokenHelper must investigate all downward paths through
459 // no-information nodes to prove that a node has no information like this,
460 // and since any time it finds information it records it in the MemoMap for
461 // not just the immediately-containing funclet but also any ancestors also
462 // exited, it must be the case that, walking downward from LastUselessPad,
463 // visiting just those nodes which have not been mapped to an unwind dest
464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465 // they are just used to keep getUnwindDestTokenHelper from repeating work),
466 // any node visited must have been exhaustively searched with no information
467 // for it found.
468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469 while (!Worklist.empty()) {
470 Instruction *UselessPad = Worklist.pop_back_val();
471 auto Memo = MemoMap.find(UselessPad);
472 if (Memo != MemoMap.end() && Memo->second) {
473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474 // that it is a funclet that does have information about unwinding to
475 // a particular destination; its parent was a useless pad.
476 // Since its parent has no information, the unwind edge must not escape
477 // the parent, and must target a sibling of this pad. This local unwind
478 // gives us no information about EHPad. Leave it and the subtree rooted
479 // at it alone.
480 assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481 continue;
482 }
483 // We know we don't have information for UselesPad. If it has an entry in
484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485 // added on this invocation of getUnwindDestToken; if a previous invocation
486 // recorded nullptr, it would have had to prove that the ancestors of
487 // UselessPad, which include LastUselessPad, had no information, and that
488 // in turn would have required proving that the descendants of
489 // LastUselesPad, which include EHPad, have no information about
490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491 // the MemoMap on that invocation, which isn't the case if we got here.
492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494 // information that we'd be contradicting by making a map entry for it
495 // (which is something that getUnwindDestTokenHelper must have proved for
496 // us to get here). Just assert on is direct users here; the checks in
497 // this downward walk at its descendants will verify that they don't have
498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499 // unwind edges or unwind to a sibling).
500 MemoMap[UselessPad] = UnwindDestToken;
501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504 auto *CatchPad = HandlerBlock->getFirstNonPHI();
505 for (User *U : CatchPad->users()) {
506 assert(
507 (!isa<InvokeInst>(U) ||
508 (getParentPad(
509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510 CatchPad)) &&
511 "Expected useless pad");
512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513 Worklist.push_back(cast<Instruction>(U));
514 }
515 }
516 } else {
517 assert(isa<CleanupPadInst>(UselessPad));
518 for (User *U : UselessPad->users()) {
519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520 assert((!isa<InvokeInst>(U) ||
521 (getParentPad(
522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523 UselessPad)) &&
524 "Expected useless pad");
525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526 Worklist.push_back(cast<Instruction>(U));
527 }
528 }
529 }
530
531 return UnwindDestToken;
532 }
533
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540 BasicBlock *BB, BasicBlock *UnwindEdge,
541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
543 Instruction *I = &*BBI++;
544
545 // We only need to check for function calls: inlined invoke
546 // instructions require no special handling.
547 CallInst *CI = dyn_cast<CallInst>(I);
548
549 if (!CI || CI->doesNotThrow())
550 continue;
551
552 if (CI->isInlineAsm()) {
553 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
554 if (!IA->canThrow()) {
555 continue;
556 }
557 }
558
559 // We do not need to (and in fact, cannot) convert possibly throwing calls
560 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
561 // invokes. The caller's "segment" of the deoptimization continuation
562 // attached to the newly inlined @llvm.experimental_deoptimize
563 // (resp. @llvm.experimental.guard) call should contain the exception
564 // handling logic, if any.
565 if (auto *F = CI->getCalledFunction())
566 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
567 F->getIntrinsicID() == Intrinsic::experimental_guard)
568 continue;
569
570 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
571 // This call is nested inside a funclet. If that funclet has an unwind
572 // destination within the inlinee, then unwinding out of this call would
573 // be UB. Rewriting this call to an invoke which targets the inlined
574 // invoke's unwind dest would give the call's parent funclet multiple
575 // unwind destinations, which is something that subsequent EH table
576 // generation can't handle and that the veirifer rejects. So when we
577 // see such a call, leave it as a call.
578 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
579 Value *UnwindDestToken =
580 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
581 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
582 continue;
583 #ifndef NDEBUG
584 Instruction *MemoKey;
585 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
586 MemoKey = CatchPad->getCatchSwitch();
587 else
588 MemoKey = FuncletPad;
589 assert(FuncletUnwindMap->count(MemoKey) &&
590 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
591 "must get memoized to avoid confusing later searches");
592 #endif // NDEBUG
593 }
594
595 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
596 return BB;
597 }
598 return nullptr;
599 }
600
601 /// If we inlined an invoke site, we need to convert calls
602 /// in the body of the inlined function into invokes.
603 ///
604 /// II is the invoke instruction being inlined. FirstNewBlock is the first
605 /// block of the inlined code (the last block is the end of the function),
606 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)607 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
608 ClonedCodeInfo &InlinedCodeInfo) {
609 BasicBlock *InvokeDest = II->getUnwindDest();
610
611 Function *Caller = FirstNewBlock->getParent();
612
613 // The inlined code is currently at the end of the function, scan from the
614 // start of the inlined code to its end, checking for stuff we need to
615 // rewrite.
616 LandingPadInliningInfo Invoke(II);
617
618 // Get all of the inlined landing pad instructions.
619 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
620 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
621 I != E; ++I)
622 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
623 InlinedLPads.insert(II->getLandingPadInst());
624
625 // Append the clauses from the outer landing pad instruction into the inlined
626 // landing pad instructions.
627 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
628 for (LandingPadInst *InlinedLPad : InlinedLPads) {
629 unsigned OuterNum = OuterLPad->getNumClauses();
630 InlinedLPad->reserveClauses(OuterNum);
631 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
632 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
633 if (OuterLPad->isCleanup())
634 InlinedLPad->setCleanup(true);
635 }
636
637 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
638 BB != E; ++BB) {
639 if (InlinedCodeInfo.ContainsCalls)
640 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
641 &*BB, Invoke.getOuterResumeDest()))
642 // Update any PHI nodes in the exceptional block to indicate that there
643 // is now a new entry in them.
644 Invoke.addIncomingPHIValuesFor(NewBB);
645
646 // Forward any resumes that are remaining here.
647 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
648 Invoke.forwardResume(RI, InlinedLPads);
649 }
650
651 // Now that everything is happy, we have one final detail. The PHI nodes in
652 // the exception destination block still have entries due to the original
653 // invoke instruction. Eliminate these entries (which might even delete the
654 // PHI node) now.
655 InvokeDest->removePredecessor(II->getParent());
656 }
657
658 /// If we inlined an invoke site, we need to convert calls
659 /// in the body of the inlined function into invokes.
660 ///
661 /// II is the invoke instruction being inlined. FirstNewBlock is the first
662 /// block of the inlined code (the last block is the end of the function),
663 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)664 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
665 ClonedCodeInfo &InlinedCodeInfo) {
666 BasicBlock *UnwindDest = II->getUnwindDest();
667 Function *Caller = FirstNewBlock->getParent();
668
669 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
670
671 // If there are PHI nodes in the unwind destination block, we need to keep
672 // track of which values came into them from the invoke before removing the
673 // edge from this block.
674 SmallVector<Value *, 8> UnwindDestPHIValues;
675 BasicBlock *InvokeBB = II->getParent();
676 for (Instruction &I : *UnwindDest) {
677 // Save the value to use for this edge.
678 PHINode *PHI = dyn_cast<PHINode>(&I);
679 if (!PHI)
680 break;
681 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
682 }
683
684 // Add incoming-PHI values to the unwind destination block for the given basic
685 // block, using the values for the original invoke's source block.
686 auto UpdatePHINodes = [&](BasicBlock *Src) {
687 BasicBlock::iterator I = UnwindDest->begin();
688 for (Value *V : UnwindDestPHIValues) {
689 PHINode *PHI = cast<PHINode>(I);
690 PHI->addIncoming(V, Src);
691 ++I;
692 }
693 };
694
695 // This connects all the instructions which 'unwind to caller' to the invoke
696 // destination.
697 UnwindDestMemoTy FuncletUnwindMap;
698 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
699 BB != E; ++BB) {
700 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
701 if (CRI->unwindsToCaller()) {
702 auto *CleanupPad = CRI->getCleanupPad();
703 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
704 CRI->eraseFromParent();
705 UpdatePHINodes(&*BB);
706 // Finding a cleanupret with an unwind destination would confuse
707 // subsequent calls to getUnwindDestToken, so map the cleanuppad
708 // to short-circuit any such calls and recognize this as an "unwind
709 // to caller" cleanup.
710 assert(!FuncletUnwindMap.count(CleanupPad) ||
711 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
712 FuncletUnwindMap[CleanupPad] =
713 ConstantTokenNone::get(Caller->getContext());
714 }
715 }
716
717 Instruction *I = BB->getFirstNonPHI();
718 if (!I->isEHPad())
719 continue;
720
721 Instruction *Replacement = nullptr;
722 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
723 if (CatchSwitch->unwindsToCaller()) {
724 Value *UnwindDestToken;
725 if (auto *ParentPad =
726 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
727 // This catchswitch is nested inside another funclet. If that
728 // funclet has an unwind destination within the inlinee, then
729 // unwinding out of this catchswitch would be UB. Rewriting this
730 // catchswitch to unwind to the inlined invoke's unwind dest would
731 // give the parent funclet multiple unwind destinations, which is
732 // something that subsequent EH table generation can't handle and
733 // that the veirifer rejects. So when we see such a call, leave it
734 // as "unwind to caller".
735 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
736 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
737 continue;
738 } else {
739 // This catchswitch has no parent to inherit constraints from, and
740 // none of its descendants can have an unwind edge that exits it and
741 // targets another funclet in the inlinee. It may or may not have a
742 // descendant that definitively has an unwind to caller. In either
743 // case, we'll have to assume that any unwinds out of it may need to
744 // be routed to the caller, so treat it as though it has a definitive
745 // unwind to caller.
746 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
747 }
748 auto *NewCatchSwitch = CatchSwitchInst::Create(
749 CatchSwitch->getParentPad(), UnwindDest,
750 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
751 CatchSwitch);
752 for (BasicBlock *PadBB : CatchSwitch->handlers())
753 NewCatchSwitch->addHandler(PadBB);
754 // Propagate info for the old catchswitch over to the new one in
755 // the unwind map. This also serves to short-circuit any subsequent
756 // checks for the unwind dest of this catchswitch, which would get
757 // confused if they found the outer handler in the callee.
758 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
759 Replacement = NewCatchSwitch;
760 }
761 } else if (!isa<FuncletPadInst>(I)) {
762 llvm_unreachable("unexpected EHPad!");
763 }
764
765 if (Replacement) {
766 Replacement->takeName(I);
767 I->replaceAllUsesWith(Replacement);
768 I->eraseFromParent();
769 UpdatePHINodes(&*BB);
770 }
771 }
772
773 if (InlinedCodeInfo.ContainsCalls)
774 for (Function::iterator BB = FirstNewBlock->getIterator(),
775 E = Caller->end();
776 BB != E; ++BB)
777 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
778 &*BB, UnwindDest, &FuncletUnwindMap))
779 // Update any PHI nodes in the exceptional block to indicate that there
780 // is now a new entry in them.
781 UpdatePHINodes(NewBB);
782
783 // Now that everything is happy, we have one final detail. The PHI nodes in
784 // the exception destination block still have entries due to the original
785 // invoke instruction. Eliminate these entries (which might even delete the
786 // PHI node) now.
787 UnwindDest->removePredecessor(InvokeBB);
788 }
789
790 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
791 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
792 /// be propagated to all memory-accessing cloned instructions.
PropagateCallSiteMetadata(CallBase & CB,Function::iterator FStart,Function::iterator FEnd)793 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
794 Function::iterator FEnd) {
795 MDNode *MemParallelLoopAccess =
796 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
797 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
798 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
799 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
800 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
801 return;
802
803 for (BasicBlock &BB : make_range(FStart, FEnd)) {
804 for (Instruction &I : BB) {
805 // This metadata is only relevant for instructions that access memory.
806 if (!I.mayReadOrWriteMemory())
807 continue;
808
809 if (MemParallelLoopAccess) {
810 // TODO: This probably should not overwrite MemParalleLoopAccess.
811 MemParallelLoopAccess = MDNode::concatenate(
812 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
813 MemParallelLoopAccess);
814 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
815 MemParallelLoopAccess);
816 }
817
818 if (AccessGroup)
819 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
820 I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
821
822 if (AliasScope)
823 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
824 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
825
826 if (NoAlias)
827 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
828 I.getMetadata(LLVMContext::MD_noalias), NoAlias));
829 }
830 }
831 }
832
833 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
834 /// using scoped alias metadata is inlined, the aliasing relationships may not
835 /// hold between the two version. It is necessary to create a deep clone of the
836 /// metadata, putting the two versions in separate scope domains.
837 class ScopedAliasMetadataDeepCloner {
838 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
839 SetVector<const MDNode *> MD;
840 MetadataMap MDMap;
841 void addRecursiveMetadataUses();
842
843 public:
844 ScopedAliasMetadataDeepCloner(const Function *F);
845
846 /// Create a new clone of the scoped alias metadata, which will be used by
847 /// subsequent remap() calls.
848 void clone();
849
850 /// Remap instructions in the given range from the original to the cloned
851 /// metadata.
852 void remap(Function::iterator FStart, Function::iterator FEnd);
853 };
854
ScopedAliasMetadataDeepCloner(const Function * F)855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
856 const Function *F) {
857 for (const BasicBlock &BB : *F) {
858 for (const Instruction &I : BB) {
859 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
860 MD.insert(M);
861 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
862 MD.insert(M);
863
864 // We also need to clone the metadata in noalias intrinsics.
865 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
866 MD.insert(Decl->getScopeList());
867 }
868 }
869 addRecursiveMetadataUses();
870 }
871
addRecursiveMetadataUses()872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
873 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
874 while (!Queue.empty()) {
875 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
876 for (const Metadata *Op : M->operands())
877 if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
878 if (MD.insert(OpMD))
879 Queue.push_back(OpMD);
880 }
881 }
882
clone()883 void ScopedAliasMetadataDeepCloner::clone() {
884 assert(MDMap.empty() && "clone() already called ?");
885
886 SmallVector<TempMDTuple, 16> DummyNodes;
887 for (const MDNode *I : MD) {
888 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
889 MDMap[I].reset(DummyNodes.back().get());
890 }
891
892 // Create new metadata nodes to replace the dummy nodes, replacing old
893 // metadata references with either a dummy node or an already-created new
894 // node.
895 SmallVector<Metadata *, 4> NewOps;
896 for (const MDNode *I : MD) {
897 for (const Metadata *Op : I->operands()) {
898 if (const MDNode *M = dyn_cast<MDNode>(Op))
899 NewOps.push_back(MDMap[M]);
900 else
901 NewOps.push_back(const_cast<Metadata *>(Op));
902 }
903
904 MDNode *NewM = MDNode::get(I->getContext(), NewOps);
905 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
906 assert(TempM->isTemporary() && "Expected temporary node");
907
908 TempM->replaceAllUsesWith(NewM);
909 NewOps.clear();
910 }
911 }
912
remap(Function::iterator FStart,Function::iterator FEnd)913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
914 Function::iterator FEnd) {
915 if (MDMap.empty())
916 return; // Nothing to do.
917
918 for (BasicBlock &BB : make_range(FStart, FEnd)) {
919 for (Instruction &I : BB) {
920 // TODO: The null checks for the MDMap.lookup() results should no longer
921 // be necessary.
922 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
923 if (MDNode *MNew = MDMap.lookup(M))
924 I.setMetadata(LLVMContext::MD_alias_scope, MNew);
925
926 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
927 if (MDNode *MNew = MDMap.lookup(M))
928 I.setMetadata(LLVMContext::MD_noalias, MNew);
929
930 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
931 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
932 Decl->setScopeList(MNew);
933 }
934 }
935 }
936
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallBase & CB,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR,ClonedCodeInfo & InlinedFunctionInfo)941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942 const DataLayout &DL, AAResults *CalleeAAR,
943 ClonedCodeInfo &InlinedFunctionInfo) {
944 if (!EnableNoAliasConversion)
945 return;
946
947 const Function *CalledFunc = CB.getCalledFunction();
948 SmallVector<const Argument *, 4> NoAliasArgs;
949
950 for (const Argument &Arg : CalledFunc->args())
951 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
952 NoAliasArgs.push_back(&Arg);
953
954 if (NoAliasArgs.empty())
955 return;
956
957 // To do a good job, if a noalias variable is captured, we need to know if
958 // the capture point dominates the particular use we're considering.
959 DominatorTree DT;
960 DT.recalculate(const_cast<Function&>(*CalledFunc));
961
962 // noalias indicates that pointer values based on the argument do not alias
963 // pointer values which are not based on it. So we add a new "scope" for each
964 // noalias function argument. Accesses using pointers based on that argument
965 // become part of that alias scope, accesses using pointers not based on that
966 // argument are tagged as noalias with that scope.
967
968 DenseMap<const Argument *, MDNode *> NewScopes;
969 MDBuilder MDB(CalledFunc->getContext());
970
971 // Create a new scope domain for this function.
972 MDNode *NewDomain =
973 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
974 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
975 const Argument *A = NoAliasArgs[i];
976
977 std::string Name = std::string(CalledFunc->getName());
978 if (A->hasName()) {
979 Name += ": %";
980 Name += A->getName();
981 } else {
982 Name += ": argument ";
983 Name += utostr(i);
984 }
985
986 // Note: We always create a new anonymous root here. This is true regardless
987 // of the linkage of the callee because the aliasing "scope" is not just a
988 // property of the callee, but also all control dependencies in the caller.
989 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
990 NewScopes.insert(std::make_pair(A, NewScope));
991
992 if (UseNoAliasIntrinsic) {
993 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
994 // argument.
995 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
996 auto *NoAliasDecl =
997 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
998 // Ignore the result for now. The result will be used when the
999 // llvm.noalias intrinsic is introduced.
1000 (void)NoAliasDecl;
1001 }
1002 }
1003
1004 // Iterate over all new instructions in the map; for all memory-access
1005 // instructions, add the alias scope metadata.
1006 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1007 VMI != VMIE; ++VMI) {
1008 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1009 if (!VMI->second)
1010 continue;
1011
1012 Instruction *NI = dyn_cast<Instruction>(VMI->second);
1013 if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1014 continue;
1015
1016 bool IsArgMemOnlyCall = false, IsFuncCall = false;
1017 SmallVector<const Value *, 2> PtrArgs;
1018
1019 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1020 PtrArgs.push_back(LI->getPointerOperand());
1021 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1022 PtrArgs.push_back(SI->getPointerOperand());
1023 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1024 PtrArgs.push_back(VAAI->getPointerOperand());
1025 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1026 PtrArgs.push_back(CXI->getPointerOperand());
1027 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1028 PtrArgs.push_back(RMWI->getPointerOperand());
1029 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1030 // If we know that the call does not access memory, then we'll still
1031 // know that about the inlined clone of this call site, and we don't
1032 // need to add metadata.
1033 if (Call->doesNotAccessMemory())
1034 continue;
1035
1036 IsFuncCall = true;
1037 if (CalleeAAR) {
1038 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1039
1040 // We'll retain this knowledge without additional metadata.
1041 if (AAResults::onlyAccessesInaccessibleMem(MRB))
1042 continue;
1043
1044 if (AAResults::onlyAccessesArgPointees(MRB))
1045 IsArgMemOnlyCall = true;
1046 }
1047
1048 for (Value *Arg : Call->args()) {
1049 // We need to check the underlying objects of all arguments, not just
1050 // the pointer arguments, because we might be passing pointers as
1051 // integers, etc.
1052 // However, if we know that the call only accesses pointer arguments,
1053 // then we only need to check the pointer arguments.
1054 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1055 continue;
1056
1057 PtrArgs.push_back(Arg);
1058 }
1059 }
1060
1061 // If we found no pointers, then this instruction is not suitable for
1062 // pairing with an instruction to receive aliasing metadata.
1063 // However, if this is a call, this we might just alias with none of the
1064 // noalias arguments.
1065 if (PtrArgs.empty() && !IsFuncCall)
1066 continue;
1067
1068 // It is possible that there is only one underlying object, but you
1069 // need to go through several PHIs to see it, and thus could be
1070 // repeated in the Objects list.
1071 SmallPtrSet<const Value *, 4> ObjSet;
1072 SmallVector<Metadata *, 4> Scopes, NoAliases;
1073
1074 SmallSetVector<const Argument *, 4> NAPtrArgs;
1075 for (const Value *V : PtrArgs) {
1076 SmallVector<const Value *, 4> Objects;
1077 getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1078
1079 for (const Value *O : Objects)
1080 ObjSet.insert(O);
1081 }
1082
1083 // Figure out if we're derived from anything that is not a noalias
1084 // argument.
1085 bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1086 for (const Value *V : ObjSet) {
1087 // Is this value a constant that cannot be derived from any pointer
1088 // value (we need to exclude constant expressions, for example, that
1089 // are formed from arithmetic on global symbols).
1090 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1091 isa<ConstantPointerNull>(V) ||
1092 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1093 if (IsNonPtrConst)
1094 continue;
1095
1096 // If this is anything other than a noalias argument, then we cannot
1097 // completely describe the aliasing properties using alias.scope
1098 // metadata (and, thus, won't add any).
1099 if (const Argument *A = dyn_cast<Argument>(V)) {
1100 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1101 UsesAliasingPtr = true;
1102 } else {
1103 UsesAliasingPtr = true;
1104 }
1105
1106 // If this is not some identified function-local object (which cannot
1107 // directly alias a noalias argument), or some other argument (which,
1108 // by definition, also cannot alias a noalias argument), then we could
1109 // alias a noalias argument that has been captured).
1110 if (!isa<Argument>(V) &&
1111 !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1112 CanDeriveViaCapture = true;
1113 }
1114
1115 // A function call can always get captured noalias pointers (via other
1116 // parameters, globals, etc.).
1117 if (IsFuncCall && !IsArgMemOnlyCall)
1118 CanDeriveViaCapture = true;
1119
1120 // First, we want to figure out all of the sets with which we definitely
1121 // don't alias. Iterate over all noalias set, and add those for which:
1122 // 1. The noalias argument is not in the set of objects from which we
1123 // definitely derive.
1124 // 2. The noalias argument has not yet been captured.
1125 // An arbitrary function that might load pointers could see captured
1126 // noalias arguments via other noalias arguments or globals, and so we
1127 // must always check for prior capture.
1128 for (const Argument *A : NoAliasArgs) {
1129 if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1130 // It might be tempting to skip the
1131 // PointerMayBeCapturedBefore check if
1132 // A->hasNoCaptureAttr() is true, but this is
1133 // incorrect because nocapture only guarantees
1134 // that no copies outlive the function, not
1135 // that the value cannot be locally captured.
1136 !PointerMayBeCapturedBefore(A,
1137 /* ReturnCaptures */ false,
1138 /* StoreCaptures */ false, I, &DT)))
1139 NoAliases.push_back(NewScopes[A]);
1140 }
1141
1142 if (!NoAliases.empty())
1143 NI->setMetadata(LLVMContext::MD_noalias,
1144 MDNode::concatenate(
1145 NI->getMetadata(LLVMContext::MD_noalias),
1146 MDNode::get(CalledFunc->getContext(), NoAliases)));
1147
1148 // Next, we want to figure out all of the sets to which we might belong.
1149 // We might belong to a set if the noalias argument is in the set of
1150 // underlying objects. If there is some non-noalias argument in our list
1151 // of underlying objects, then we cannot add a scope because the fact
1152 // that some access does not alias with any set of our noalias arguments
1153 // cannot itself guarantee that it does not alias with this access
1154 // (because there is some pointer of unknown origin involved and the
1155 // other access might also depend on this pointer). We also cannot add
1156 // scopes to arbitrary functions unless we know they don't access any
1157 // non-parameter pointer-values.
1158 bool CanAddScopes = !UsesAliasingPtr;
1159 if (CanAddScopes && IsFuncCall)
1160 CanAddScopes = IsArgMemOnlyCall;
1161
1162 if (CanAddScopes)
1163 for (const Argument *A : NoAliasArgs) {
1164 if (ObjSet.count(A))
1165 Scopes.push_back(NewScopes[A]);
1166 }
1167
1168 if (!Scopes.empty())
1169 NI->setMetadata(
1170 LLVMContext::MD_alias_scope,
1171 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1172 MDNode::get(CalledFunc->getContext(), Scopes)));
1173 }
1174 }
1175 }
1176
MayContainThrowingOrExitingCall(Instruction * Begin,Instruction * End)1177 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1178 Instruction *End) {
1179
1180 assert(Begin->getParent() == End->getParent() &&
1181 "Expected to be in same basic block!");
1182 unsigned NumInstChecked = 0;
1183 // Check that all instructions in the range [Begin, End) are guaranteed to
1184 // transfer execution to successor.
1185 for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1186 if (NumInstChecked++ > InlinerAttributeWindow ||
1187 !isGuaranteedToTransferExecutionToSuccessor(&I))
1188 return true;
1189 return false;
1190 }
1191
IdentifyValidAttributes(CallBase & CB)1192 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1193
1194 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1195 if (AB.empty())
1196 return AB;
1197 AttrBuilder Valid;
1198 // Only allow these white listed attributes to be propagated back to the
1199 // callee. This is because other attributes may only be valid on the call
1200 // itself, i.e. attributes such as signext and zeroext.
1201 if (auto DerefBytes = AB.getDereferenceableBytes())
1202 Valid.addDereferenceableAttr(DerefBytes);
1203 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1204 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1205 if (AB.contains(Attribute::NoAlias))
1206 Valid.addAttribute(Attribute::NoAlias);
1207 if (AB.contains(Attribute::NonNull))
1208 Valid.addAttribute(Attribute::NonNull);
1209 return Valid;
1210 }
1211
AddReturnAttributes(CallBase & CB,ValueToValueMapTy & VMap)1212 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1213 if (!UpdateReturnAttributes)
1214 return;
1215
1216 AttrBuilder Valid = IdentifyValidAttributes(CB);
1217 if (Valid.empty())
1218 return;
1219 auto *CalledFunction = CB.getCalledFunction();
1220 auto &Context = CalledFunction->getContext();
1221
1222 for (auto &BB : *CalledFunction) {
1223 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1224 if (!RI || !isa<CallBase>(RI->getOperand(0)))
1225 continue;
1226 auto *RetVal = cast<CallBase>(RI->getOperand(0));
1227 // Sanity check that the cloned RetVal exists and is a call, otherwise we
1228 // cannot add the attributes on the cloned RetVal.
1229 // Simplification during inlining could have transformed the cloned
1230 // instruction.
1231 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1232 if (!NewRetVal)
1233 continue;
1234 // Backward propagation of attributes to the returned value may be incorrect
1235 // if it is control flow dependent.
1236 // Consider:
1237 // @callee {
1238 // %rv = call @foo()
1239 // %rv2 = call @bar()
1240 // if (%rv2 != null)
1241 // return %rv2
1242 // if (%rv == null)
1243 // exit()
1244 // return %rv
1245 // }
1246 // caller() {
1247 // %val = call nonnull @callee()
1248 // }
1249 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1250 // limit the check to both RetVal and RI are in the same basic block and
1251 // there are no throwing/exiting instructions between these instructions.
1252 if (RI->getParent() != RetVal->getParent() ||
1253 MayContainThrowingOrExitingCall(RetVal, RI))
1254 continue;
1255 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1256 // instruction.
1257 // NB! When we have the same attribute already existing on NewRetVal, but
1258 // with a differing value, the AttributeList's merge API honours the already
1259 // existing attribute value (i.e. attributes such as dereferenceable,
1260 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1261 AttributeList AL = NewRetVal->getAttributes();
1262 AttributeList NewAL =
1263 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1264 NewRetVal->setAttributes(NewAL);
1265 }
1266 }
1267
1268 /// If the inlined function has non-byval align arguments, then
1269 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallBase & CB,InlineFunctionInfo & IFI)1270 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1271 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1272 return;
1273
1274 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1275 auto &DL = CB.getCaller()->getParent()->getDataLayout();
1276
1277 // To avoid inserting redundant assumptions, we should check for assumptions
1278 // already in the caller. To do this, we might need a DT of the caller.
1279 DominatorTree DT;
1280 bool DTCalculated = false;
1281
1282 Function *CalledFunc = CB.getCalledFunction();
1283 for (Argument &Arg : CalledFunc->args()) {
1284 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1285 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1286 if (!DTCalculated) {
1287 DT.recalculate(*CB.getCaller());
1288 DTCalculated = true;
1289 }
1290
1291 // If we can already prove the asserted alignment in the context of the
1292 // caller, then don't bother inserting the assumption.
1293 Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1294 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1295 continue;
1296
1297 CallInst *NewAsmp =
1298 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1299 AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1300 }
1301 }
1302 }
1303
1304 /// Once we have cloned code over from a callee into the caller,
1305 /// update the specified callgraph to reflect the changes we made.
1306 /// Note that it's possible that not all code was copied over, so only
1307 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallBase & CB,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1308 static void UpdateCallGraphAfterInlining(CallBase &CB,
1309 Function::iterator FirstNewBlock,
1310 ValueToValueMapTy &VMap,
1311 InlineFunctionInfo &IFI) {
1312 CallGraph &CG = *IFI.CG;
1313 const Function *Caller = CB.getCaller();
1314 const Function *Callee = CB.getCalledFunction();
1315 CallGraphNode *CalleeNode = CG[Callee];
1316 CallGraphNode *CallerNode = CG[Caller];
1317
1318 // Since we inlined some uninlined call sites in the callee into the caller,
1319 // add edges from the caller to all of the callees of the callee.
1320 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1321
1322 // Consider the case where CalleeNode == CallerNode.
1323 CallGraphNode::CalledFunctionsVector CallCache;
1324 if (CalleeNode == CallerNode) {
1325 CallCache.assign(I, E);
1326 I = CallCache.begin();
1327 E = CallCache.end();
1328 }
1329
1330 for (; I != E; ++I) {
1331 // Skip 'refererence' call records.
1332 if (!I->first)
1333 continue;
1334
1335 const Value *OrigCall = *I->first;
1336
1337 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1338 // Only copy the edge if the call was inlined!
1339 if (VMI == VMap.end() || VMI->second == nullptr)
1340 continue;
1341
1342 // If the call was inlined, but then constant folded, there is no edge to
1343 // add. Check for this case.
1344 auto *NewCall = dyn_cast<CallBase>(VMI->second);
1345 if (!NewCall)
1346 continue;
1347
1348 // We do not treat intrinsic calls like real function calls because we
1349 // expect them to become inline code; do not add an edge for an intrinsic.
1350 if (NewCall->getCalledFunction() &&
1351 NewCall->getCalledFunction()->isIntrinsic())
1352 continue;
1353
1354 // Remember that this call site got inlined for the client of
1355 // InlineFunction.
1356 IFI.InlinedCalls.push_back(NewCall);
1357
1358 // It's possible that inlining the callsite will cause it to go from an
1359 // indirect to a direct call by resolving a function pointer. If this
1360 // happens, set the callee of the new call site to a more precise
1361 // destination. This can also happen if the call graph node of the caller
1362 // was just unnecessarily imprecise.
1363 if (!I->second->getFunction())
1364 if (Function *F = NewCall->getCalledFunction()) {
1365 // Indirect call site resolved to direct call.
1366 CallerNode->addCalledFunction(NewCall, CG[F]);
1367
1368 continue;
1369 }
1370
1371 CallerNode->addCalledFunction(NewCall, I->second);
1372 }
1373
1374 // Update the call graph by deleting the edge from Callee to Caller. We must
1375 // do this after the loop above in case Caller and Callee are the same.
1376 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1377 }
1378
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1379 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1380 BasicBlock *InsertBlock,
1381 InlineFunctionInfo &IFI) {
1382 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1383 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1384
1385 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1386
1387 // Always generate a memcpy of alignment 1 here because we don't know
1388 // the alignment of the src pointer. Other optimizations can infer
1389 // better alignment.
1390 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1391 /*SrcAlign*/ Align(1), Size);
1392 }
1393
1394 /// When inlining a call site that has a byval argument,
1395 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1396 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1397 const Function *CalledFunc,
1398 InlineFunctionInfo &IFI,
1399 unsigned ByValAlignment) {
1400 PointerType *ArgTy = cast<PointerType>(Arg->getType());
1401 Type *AggTy = ArgTy->getElementType();
1402
1403 Function *Caller = TheCall->getFunction();
1404 const DataLayout &DL = Caller->getParent()->getDataLayout();
1405
1406 // If the called function is readonly, then it could not mutate the caller's
1407 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1408 // temporary.
1409 if (CalledFunc->onlyReadsMemory()) {
1410 // If the byval argument has a specified alignment that is greater than the
1411 // passed in pointer, then we either have to round up the input pointer or
1412 // give up on this transformation.
1413 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
1414 return Arg;
1415
1416 AssumptionCache *AC =
1417 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1418
1419 // If the pointer is already known to be sufficiently aligned, or if we can
1420 // round it up to a larger alignment, then we don't need a temporary.
1421 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1422 AC) >= ByValAlignment)
1423 return Arg;
1424
1425 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1426 // for code quality, but rarely happens and is required for correctness.
1427 }
1428
1429 // Create the alloca. If we have DataLayout, use nice alignment.
1430 Align Alignment(DL.getPrefTypeAlignment(AggTy));
1431
1432 // If the byval had an alignment specified, we *must* use at least that
1433 // alignment, as it is required by the byval argument (and uses of the
1434 // pointer inside the callee).
1435 Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1436
1437 Value *NewAlloca =
1438 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1439 Arg->getName(), &*Caller->begin()->begin());
1440 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1441
1442 // Uses of the argument in the function should use our new alloca
1443 // instead.
1444 return NewAlloca;
1445 }
1446
1447 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1448 static bool isUsedByLifetimeMarker(Value *V) {
1449 for (User *U : V->users())
1450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1451 if (II->isLifetimeStartOrEnd())
1452 return true;
1453 return false;
1454 }
1455
1456 // Check whether the given alloca already has
1457 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1458 static bool hasLifetimeMarkers(AllocaInst *AI) {
1459 Type *Ty = AI->getType();
1460 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1461 Ty->getPointerAddressSpace());
1462 if (Ty == Int8PtrTy)
1463 return isUsedByLifetimeMarker(AI);
1464
1465 // Do a scan to find all the casts to i8*.
1466 for (User *U : AI->users()) {
1467 if (U->getType() != Int8PtrTy) continue;
1468 if (U->stripPointerCasts() != AI) continue;
1469 if (isUsedByLifetimeMarker(U))
1470 return true;
1471 }
1472 return false;
1473 }
1474
1475 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1476 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1477 /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)1478 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1479 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1480 }
1481
1482 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1483 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
inlineDebugLoc(DebugLoc OrigDL,DILocation * InlinedAt,LLVMContext & Ctx,DenseMap<const MDNode *,MDNode * > & IANodes)1484 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1485 LLVMContext &Ctx,
1486 DenseMap<const MDNode *, MDNode *> &IANodes) {
1487 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1488 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1489 OrigDL.getScope(), IA);
1490 }
1491
1492 /// Update inlined instructions' line numbers to
1493 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)1494 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1495 Instruction *TheCall, bool CalleeHasDebugInfo) {
1496 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1497 if (!TheCallDL)
1498 return;
1499
1500 auto &Ctx = Fn->getContext();
1501 DILocation *InlinedAtNode = TheCallDL;
1502
1503 // Create a unique call site, not to be confused with any other call from the
1504 // same location.
1505 InlinedAtNode = DILocation::getDistinct(
1506 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1507 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1508
1509 // Cache the inlined-at nodes as they're built so they are reused, without
1510 // this every instruction's inlined-at chain would become distinct from each
1511 // other.
1512 DenseMap<const MDNode *, MDNode *> IANodes;
1513
1514 // Check if we are not generating inline line tables and want to use
1515 // the call site location instead.
1516 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1517
1518 for (; FI != Fn->end(); ++FI) {
1519 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1520 BI != BE; ++BI) {
1521 // Loop metadata needs to be updated so that the start and end locs
1522 // reference inlined-at locations.
1523 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1524 &IANodes](Metadata *MD) -> Metadata * {
1525 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1526 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1527 return MD;
1528 };
1529 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1530
1531 if (!NoInlineLineTables)
1532 if (DebugLoc DL = BI->getDebugLoc()) {
1533 DebugLoc IDL =
1534 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1535 BI->setDebugLoc(IDL);
1536 continue;
1537 }
1538
1539 if (CalleeHasDebugInfo && !NoInlineLineTables)
1540 continue;
1541
1542 // If the inlined instruction has no line number, or if inline info
1543 // is not being generated, make it look as if it originates from the call
1544 // location. This is important for ((__always_inline, __nodebug__))
1545 // functions which must use caller location for all instructions in their
1546 // function body.
1547
1548 // Don't update static allocas, as they may get moved later.
1549 if (auto *AI = dyn_cast<AllocaInst>(BI))
1550 if (allocaWouldBeStaticInEntry(AI))
1551 continue;
1552
1553 BI->setDebugLoc(TheCallDL);
1554 }
1555
1556 // Remove debug info intrinsics if we're not keeping inline info.
1557 if (NoInlineLineTables) {
1558 BasicBlock::iterator BI = FI->begin();
1559 while (BI != FI->end()) {
1560 if (isa<DbgInfoIntrinsic>(BI)) {
1561 BI = BI->eraseFromParent();
1562 continue;
1563 }
1564 ++BI;
1565 }
1566 }
1567
1568 }
1569 }
1570
1571 /// Update the block frequencies of the caller after a callee has been inlined.
1572 ///
1573 /// Each block cloned into the caller has its block frequency scaled by the
1574 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1575 /// callee's entry block gets the same frequency as the callsite block and the
1576 /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)1577 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1578 const ValueToValueMapTy &VMap,
1579 BlockFrequencyInfo *CallerBFI,
1580 BlockFrequencyInfo *CalleeBFI,
1581 const BasicBlock &CalleeEntryBlock) {
1582 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1583 for (auto Entry : VMap) {
1584 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1585 continue;
1586 auto *OrigBB = cast<BasicBlock>(Entry.first);
1587 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1588 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1589 if (!ClonedBBs.insert(ClonedBB).second) {
1590 // Multiple blocks in the callee might get mapped to one cloned block in
1591 // the caller since we prune the callee as we clone it. When that happens,
1592 // we want to use the maximum among the original blocks' frequencies.
1593 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1594 if (NewFreq > Freq)
1595 Freq = NewFreq;
1596 }
1597 CallerBFI->setBlockFreq(ClonedBB, Freq);
1598 }
1599 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1600 CallerBFI->setBlockFreqAndScale(
1601 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1602 ClonedBBs);
1603 }
1604
1605 /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const CallBase & TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)1606 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1607 const ProfileCount &CalleeEntryCount,
1608 const CallBase &TheCall, ProfileSummaryInfo *PSI,
1609 BlockFrequencyInfo *CallerBFI) {
1610 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1611 CalleeEntryCount.getCount() < 1)
1612 return;
1613 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1614 int64_t CallCount =
1615 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1616 updateProfileCallee(Callee, -CallCount, &VMap);
1617 }
1618
updateProfileCallee(Function * Callee,int64_t entryDelta,const ValueMap<const Value *,WeakTrackingVH> * VMap)1619 void llvm::updateProfileCallee(
1620 Function *Callee, int64_t entryDelta,
1621 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1622 auto CalleeCount = Callee->getEntryCount();
1623 if (!CalleeCount.hasValue())
1624 return;
1625
1626 uint64_t priorEntryCount = CalleeCount.getCount();
1627 uint64_t newEntryCount;
1628
1629 // Since CallSiteCount is an estimate, it could exceed the original callee
1630 // count and has to be set to 0 so guard against underflow.
1631 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1632 newEntryCount = 0;
1633 else
1634 newEntryCount = priorEntryCount + entryDelta;
1635
1636 // During inlining ?
1637 if (VMap) {
1638 uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1639 for (auto Entry : *VMap)
1640 if (isa<CallInst>(Entry.first))
1641 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1642 CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1643 }
1644
1645 if (entryDelta) {
1646 Callee->setEntryCount(newEntryCount);
1647
1648 for (BasicBlock &BB : *Callee)
1649 // No need to update the callsite if it is pruned during inlining.
1650 if (!VMap || VMap->count(&BB))
1651 for (Instruction &I : BB)
1652 if (CallInst *CI = dyn_cast<CallInst>(&I))
1653 CI->updateProfWeight(newEntryCount, priorEntryCount);
1654 }
1655 }
1656
1657 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1658 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1659 /// after the call. This function inlines the retainRV/claimRV calls.
1660 ///
1661 /// There are three cases to consider:
1662 ///
1663 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1664 /// object in the callee return block, the autoreleaseRV call and the
1665 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1666 /// is a claimRV call, a call to objc_release is emitted.
1667 ///
1668 /// 2. If there is a call in the callee return block that doesn't have operand
1669 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1670 /// is transferred to the call in the callee.
1671 ///
1672 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1673 /// a retainRV call.
1674 static void
inlineRetainOrClaimRVCalls(CallBase & CB,const SmallVectorImpl<ReturnInst * > & Returns)1675 inlineRetainOrClaimRVCalls(CallBase &CB,
1676 const SmallVectorImpl<ReturnInst *> &Returns) {
1677 Module *Mod = CB.getModule();
1678 bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
1679 IsClaimRV = !IsRetainRV;
1680
1681 for (auto *RI : Returns) {
1682 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1683 BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1684 BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1685 bool InsertRetainCall = IsRetainRV;
1686 IRBuilder<> Builder(RI->getContext());
1687
1688 // Walk backwards through the basic block looking for either a matching
1689 // autoreleaseRV call or an unannotated call.
1690 for (; I != EI;) {
1691 auto CurI = I++;
1692
1693 // Ignore casts.
1694 if (isa<CastInst>(*CurI))
1695 continue;
1696
1697 if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1698 if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1699 II->hasNUses(0) &&
1700 objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1701 // If we've found a matching authoreleaseRV call:
1702 // - If claimRV is attached to the call, insert a call to objc_release
1703 // and erase the autoreleaseRV call.
1704 // - If retainRV is attached to the call, just erase the autoreleaseRV
1705 // call.
1706 if (IsClaimRV) {
1707 Builder.SetInsertPoint(II);
1708 Function *IFn =
1709 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1710 Value *BC =
1711 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1712 Builder.CreateCall(IFn, BC, "");
1713 }
1714 II->eraseFromParent();
1715 InsertRetainCall = false;
1716 }
1717 } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1718 if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1719 !objcarc::hasAttachedCallOpBundle(CI)) {
1720 // If we've found an unannotated call that defines RetOpnd, add a
1721 // "clang.arc.attachedcall" operand bundle.
1722 Value *BundleArgs[] = {ConstantInt::get(
1723 Builder.getInt64Ty(),
1724 objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
1725 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1726 auto *NewCall = CallBase::addOperandBundle(
1727 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1728 NewCall->copyMetadata(*CI);
1729 CI->replaceAllUsesWith(NewCall);
1730 CI->eraseFromParent();
1731 InsertRetainCall = false;
1732 }
1733 }
1734
1735 break;
1736 }
1737
1738 if (InsertRetainCall) {
1739 // The retainRV is attached to the call and we've failed to find a
1740 // matching autoreleaseRV or an annotated call in the callee. Emit a call
1741 // to objc_retain.
1742 Builder.SetInsertPoint(RI);
1743 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1744 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1745 Builder.CreateCall(IFn, BC, "");
1746 }
1747 }
1748 }
1749
1750 /// This function inlines the called function into the basic block of the
1751 /// caller. This returns false if it is not possible to inline this call.
1752 /// The program is still in a well defined state if this occurs though.
1753 ///
1754 /// Note that this only does one level of inlining. For example, if the
1755 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1756 /// exists in the instruction stream. Similarly this will inline a recursive
1757 /// function by one level.
InlineFunction(CallBase & CB,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)1758 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1759 AAResults *CalleeAAR,
1760 bool InsertLifetime,
1761 Function *ForwardVarArgsTo) {
1762 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1763
1764 // FIXME: we don't inline callbr yet.
1765 if (isa<CallBrInst>(CB))
1766 return InlineResult::failure("We don't inline callbr yet.");
1767
1768 // If IFI has any state in it, zap it before we fill it in.
1769 IFI.reset();
1770
1771 Function *CalledFunc = CB.getCalledFunction();
1772 if (!CalledFunc || // Can't inline external function or indirect
1773 CalledFunc->isDeclaration()) // call!
1774 return InlineResult::failure("external or indirect");
1775
1776 // The inliner does not know how to inline through calls with operand bundles
1777 // in general ...
1778 if (CB.hasOperandBundles()) {
1779 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1780 uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1781 // ... but it knows how to inline through "deopt" operand bundles ...
1782 if (Tag == LLVMContext::OB_deopt)
1783 continue;
1784 // ... and "funclet" operand bundles.
1785 if (Tag == LLVMContext::OB_funclet)
1786 continue;
1787 if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1788 continue;
1789
1790 return InlineResult::failure("unsupported operand bundle");
1791 }
1792 }
1793
1794 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1795 // calls that we inline.
1796 bool MarkNoUnwind = CB.doesNotThrow();
1797
1798 BasicBlock *OrigBB = CB.getParent();
1799 Function *Caller = OrigBB->getParent();
1800
1801 // GC poses two hazards to inlining, which only occur when the callee has GC:
1802 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1803 // caller.
1804 // 2. If the caller has a differing GC, it is invalid to inline.
1805 if (CalledFunc->hasGC()) {
1806 if (!Caller->hasGC())
1807 Caller->setGC(CalledFunc->getGC());
1808 else if (CalledFunc->getGC() != Caller->getGC())
1809 return InlineResult::failure("incompatible GC");
1810 }
1811
1812 // Get the personality function from the callee if it contains a landing pad.
1813 Constant *CalledPersonality =
1814 CalledFunc->hasPersonalityFn()
1815 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1816 : nullptr;
1817
1818 // Find the personality function used by the landing pads of the caller. If it
1819 // exists, then check to see that it matches the personality function used in
1820 // the callee.
1821 Constant *CallerPersonality =
1822 Caller->hasPersonalityFn()
1823 ? Caller->getPersonalityFn()->stripPointerCasts()
1824 : nullptr;
1825 if (CalledPersonality) {
1826 if (!CallerPersonality)
1827 Caller->setPersonalityFn(CalledPersonality);
1828 // If the personality functions match, then we can perform the
1829 // inlining. Otherwise, we can't inline.
1830 // TODO: This isn't 100% true. Some personality functions are proper
1831 // supersets of others and can be used in place of the other.
1832 else if (CalledPersonality != CallerPersonality)
1833 return InlineResult::failure("incompatible personality");
1834 }
1835
1836 // We need to figure out which funclet the callsite was in so that we may
1837 // properly nest the callee.
1838 Instruction *CallSiteEHPad = nullptr;
1839 if (CallerPersonality) {
1840 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1841 if (isScopedEHPersonality(Personality)) {
1842 Optional<OperandBundleUse> ParentFunclet =
1843 CB.getOperandBundle(LLVMContext::OB_funclet);
1844 if (ParentFunclet)
1845 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1846
1847 // OK, the inlining site is legal. What about the target function?
1848
1849 if (CallSiteEHPad) {
1850 if (Personality == EHPersonality::MSVC_CXX) {
1851 // The MSVC personality cannot tolerate catches getting inlined into
1852 // cleanup funclets.
1853 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1854 // Ok, the call site is within a cleanuppad. Let's check the callee
1855 // for catchpads.
1856 for (const BasicBlock &CalledBB : *CalledFunc) {
1857 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1858 return InlineResult::failure("catch in cleanup funclet");
1859 }
1860 }
1861 } else if (isAsynchronousEHPersonality(Personality)) {
1862 // SEH is even less tolerant, there may not be any sort of exceptional
1863 // funclet in the callee.
1864 for (const BasicBlock &CalledBB : *CalledFunc) {
1865 if (CalledBB.isEHPad())
1866 return InlineResult::failure("SEH in cleanup funclet");
1867 }
1868 }
1869 }
1870 }
1871 }
1872
1873 // Determine if we are dealing with a call in an EHPad which does not unwind
1874 // to caller.
1875 bool EHPadForCallUnwindsLocally = false;
1876 if (CallSiteEHPad && isa<CallInst>(CB)) {
1877 UnwindDestMemoTy FuncletUnwindMap;
1878 Value *CallSiteUnwindDestToken =
1879 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1880
1881 EHPadForCallUnwindsLocally =
1882 CallSiteUnwindDestToken &&
1883 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1884 }
1885
1886 // Get an iterator to the last basic block in the function, which will have
1887 // the new function inlined after it.
1888 Function::iterator LastBlock = --Caller->end();
1889
1890 // Make sure to capture all of the return instructions from the cloned
1891 // function.
1892 SmallVector<ReturnInst*, 8> Returns;
1893 ClonedCodeInfo InlinedFunctionInfo;
1894 Function::iterator FirstNewBlock;
1895
1896 { // Scope to destroy VMap after cloning.
1897 ValueToValueMapTy VMap;
1898 // Keep a list of pair (dst, src) to emit byval initializations.
1899 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1900
1901 // When inlining a function that contains noalias scope metadata,
1902 // this metadata needs to be cloned so that the inlined blocks
1903 // have different "unique scopes" at every call site.
1904 // Track the metadata that must be cloned. Do this before other changes to
1905 // the function, so that we do not get in trouble when inlining caller ==
1906 // callee.
1907 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1908
1909 auto &DL = Caller->getParent()->getDataLayout();
1910
1911 // Calculate the vector of arguments to pass into the function cloner, which
1912 // matches up the formal to the actual argument values.
1913 auto AI = CB.arg_begin();
1914 unsigned ArgNo = 0;
1915 for (Function::arg_iterator I = CalledFunc->arg_begin(),
1916 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1917 Value *ActualArg = *AI;
1918
1919 // When byval arguments actually inlined, we need to make the copy implied
1920 // by them explicit. However, we don't do this if the callee is readonly
1921 // or readnone, because the copy would be unneeded: the callee doesn't
1922 // modify the struct.
1923 if (CB.isByValArgument(ArgNo)) {
1924 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1925 CalledFunc->getParamAlignment(ArgNo));
1926 if (ActualArg != *AI)
1927 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1928 }
1929
1930 VMap[&*I] = ActualArg;
1931 }
1932
1933 // TODO: Remove this when users have been updated to the assume bundles.
1934 // Add alignment assumptions if necessary. We do this before the inlined
1935 // instructions are actually cloned into the caller so that we can easily
1936 // check what will be known at the start of the inlined code.
1937 AddAlignmentAssumptions(CB, IFI);
1938
1939 AssumptionCache *AC =
1940 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1941
1942 /// Preserve all attributes on of the call and its parameters.
1943 salvageKnowledge(&CB, AC);
1944
1945 // We want the inliner to prune the code as it copies. We would LOVE to
1946 // have no dead or constant instructions leftover after inlining occurs
1947 // (which can happen, e.g., because an argument was constant), but we'll be
1948 // happy with whatever the cloner can do.
1949 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1950 /*ModuleLevelChanges=*/false, Returns, ".i",
1951 &InlinedFunctionInfo);
1952 // Remember the first block that is newly cloned over.
1953 FirstNewBlock = LastBlock; ++FirstNewBlock;
1954
1955 // Insert retainRV/clainRV runtime calls.
1956 if (objcarc::hasAttachedCallOpBundle(&CB))
1957 inlineRetainOrClaimRVCalls(CB, Returns);
1958
1959 // Updated caller/callee profiles only when requested. For sample loader
1960 // inlining, the context-sensitive inlinee profile doesn't need to be
1961 // subtracted from callee profile, and the inlined clone also doesn't need
1962 // to be scaled based on call site count.
1963 if (IFI.UpdateProfile) {
1964 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1965 // Update the BFI of blocks cloned into the caller.
1966 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1967 CalledFunc->front());
1968
1969 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1970 IFI.PSI, IFI.CallerBFI);
1971 }
1972
1973 // Inject byval arguments initialization.
1974 for (std::pair<Value*, Value*> &Init : ByValInit)
1975 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1976 &*FirstNewBlock, IFI);
1977
1978 Optional<OperandBundleUse> ParentDeopt =
1979 CB.getOperandBundle(LLVMContext::OB_deopt);
1980 if (ParentDeopt) {
1981 SmallVector<OperandBundleDef, 2> OpDefs;
1982
1983 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1984 CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1985 if (!ICS)
1986 continue; // instruction was DCE'd or RAUW'ed to undef
1987
1988 OpDefs.clear();
1989
1990 OpDefs.reserve(ICS->getNumOperandBundles());
1991
1992 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1993 ++COBi) {
1994 auto ChildOB = ICS->getOperandBundleAt(COBi);
1995 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1996 // If the inlined call has other operand bundles, let them be
1997 OpDefs.emplace_back(ChildOB);
1998 continue;
1999 }
2000
2001 // It may be useful to separate this logic (of handling operand
2002 // bundles) out to a separate "policy" component if this gets crowded.
2003 // Prepend the parent's deoptimization continuation to the newly
2004 // inlined call's deoptimization continuation.
2005 std::vector<Value *> MergedDeoptArgs;
2006 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2007 ChildOB.Inputs.size());
2008
2009 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2010 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2011
2012 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2013 }
2014
2015 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2016
2017 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2018 // this even if the call returns void.
2019 ICS->replaceAllUsesWith(NewI);
2020
2021 VH = nullptr;
2022 ICS->eraseFromParent();
2023 }
2024 }
2025
2026 // Update the callgraph if requested.
2027 if (IFI.CG)
2028 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2029
2030 // For 'nodebug' functions, the associated DISubprogram is always null.
2031 // Conservatively avoid propagating the callsite debug location to
2032 // instructions inlined from a function whose DISubprogram is not null.
2033 fixupLineNumbers(Caller, FirstNewBlock, &CB,
2034 CalledFunc->getSubprogram() != nullptr);
2035
2036 // Now clone the inlined noalias scope metadata.
2037 SAMetadataCloner.clone();
2038 SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2039
2040 // Add noalias metadata if necessary.
2041 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2042
2043 // Clone return attributes on the callsite into the calls within the inlined
2044 // function which feed into its return value.
2045 AddReturnAttributes(CB, VMap);
2046
2047 // Propagate metadata on the callsite if necessary.
2048 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2049
2050 // Register any cloned assumptions.
2051 if (IFI.GetAssumptionCache)
2052 for (BasicBlock &NewBlock :
2053 make_range(FirstNewBlock->getIterator(), Caller->end()))
2054 for (Instruction &I : NewBlock)
2055 if (auto *II = dyn_cast<AssumeInst>(&I))
2056 IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2057 }
2058
2059 // If there are any alloca instructions in the block that used to be the entry
2060 // block for the callee, move them to the entry block of the caller. First
2061 // calculate which instruction they should be inserted before. We insert the
2062 // instructions at the end of the current alloca list.
2063 {
2064 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2065 for (BasicBlock::iterator I = FirstNewBlock->begin(),
2066 E = FirstNewBlock->end(); I != E; ) {
2067 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2068 if (!AI) continue;
2069
2070 // If the alloca is now dead, remove it. This often occurs due to code
2071 // specialization.
2072 if (AI->use_empty()) {
2073 AI->eraseFromParent();
2074 continue;
2075 }
2076
2077 if (!allocaWouldBeStaticInEntry(AI))
2078 continue;
2079
2080 // Keep track of the static allocas that we inline into the caller.
2081 IFI.StaticAllocas.push_back(AI);
2082
2083 // Scan for the block of allocas that we can move over, and move them
2084 // all at once.
2085 while (isa<AllocaInst>(I) &&
2086 !cast<AllocaInst>(I)->use_empty() &&
2087 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2088 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2089 ++I;
2090 }
2091
2092 // Transfer all of the allocas over in a block. Using splice means
2093 // that the instructions aren't removed from the symbol table, then
2094 // reinserted.
2095 Caller->getEntryBlock().getInstList().splice(
2096 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2097 }
2098 }
2099
2100 SmallVector<Value*,4> VarArgsToForward;
2101 SmallVector<AttributeSet, 4> VarArgsAttrs;
2102 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2103 i < CB.getNumArgOperands(); i++) {
2104 VarArgsToForward.push_back(CB.getArgOperand(i));
2105 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2106 }
2107
2108 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2109 if (InlinedFunctionInfo.ContainsCalls) {
2110 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2111 if (CallInst *CI = dyn_cast<CallInst>(&CB))
2112 CallSiteTailKind = CI->getTailCallKind();
2113
2114 // For inlining purposes, the "notail" marker is the same as no marker.
2115 if (CallSiteTailKind == CallInst::TCK_NoTail)
2116 CallSiteTailKind = CallInst::TCK_None;
2117
2118 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2119 ++BB) {
2120 for (auto II = BB->begin(); II != BB->end();) {
2121 Instruction &I = *II++;
2122 CallInst *CI = dyn_cast<CallInst>(&I);
2123 if (!CI)
2124 continue;
2125
2126 // Forward varargs from inlined call site to calls to the
2127 // ForwardVarArgsTo function, if requested, and to musttail calls.
2128 if (!VarArgsToForward.empty() &&
2129 ((ForwardVarArgsTo &&
2130 CI->getCalledFunction() == ForwardVarArgsTo) ||
2131 CI->isMustTailCall())) {
2132 // Collect attributes for non-vararg parameters.
2133 AttributeList Attrs = CI->getAttributes();
2134 SmallVector<AttributeSet, 8> ArgAttrs;
2135 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2136 for (unsigned ArgNo = 0;
2137 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2138 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2139 }
2140
2141 // Add VarArg attributes.
2142 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2143 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2144 Attrs.getRetAttributes(), ArgAttrs);
2145 // Add VarArgs to existing parameters.
2146 SmallVector<Value *, 6> Params(CI->arg_operands());
2147 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2148 CallInst *NewCI = CallInst::Create(
2149 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2150 NewCI->setDebugLoc(CI->getDebugLoc());
2151 NewCI->setAttributes(Attrs);
2152 NewCI->setCallingConv(CI->getCallingConv());
2153 CI->replaceAllUsesWith(NewCI);
2154 CI->eraseFromParent();
2155 CI = NewCI;
2156 }
2157
2158 if (Function *F = CI->getCalledFunction())
2159 InlinedDeoptimizeCalls |=
2160 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2161
2162 // We need to reduce the strength of any inlined tail calls. For
2163 // musttail, we have to avoid introducing potential unbounded stack
2164 // growth. For example, if functions 'f' and 'g' are mutually recursive
2165 // with musttail, we can inline 'g' into 'f' so long as we preserve
2166 // musttail on the cloned call to 'f'. If either the inlined call site
2167 // or the cloned call site is *not* musttail, the program already has
2168 // one frame of stack growth, so it's safe to remove musttail. Here is
2169 // a table of example transformations:
2170 //
2171 // f -> musttail g -> musttail f ==> f -> musttail f
2172 // f -> musttail g -> tail f ==> f -> tail f
2173 // f -> g -> musttail f ==> f -> f
2174 // f -> g -> tail f ==> f -> f
2175 //
2176 // Inlined notail calls should remain notail calls.
2177 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2178 if (ChildTCK != CallInst::TCK_NoTail)
2179 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2180 CI->setTailCallKind(ChildTCK);
2181 InlinedMustTailCalls |= CI->isMustTailCall();
2182
2183 // Calls inlined through a 'nounwind' call site should be marked
2184 // 'nounwind'.
2185 if (MarkNoUnwind)
2186 CI->setDoesNotThrow();
2187 }
2188 }
2189 }
2190
2191 // Leave lifetime markers for the static alloca's, scoping them to the
2192 // function we just inlined.
2193 // We need to insert lifetime intrinsics even at O0 to avoid invalid
2194 // access caused by multithreaded coroutines. The check
2195 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2196 if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2197 !IFI.StaticAllocas.empty()) {
2198 IRBuilder<> builder(&FirstNewBlock->front());
2199 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2200 AllocaInst *AI = IFI.StaticAllocas[ai];
2201 // Don't mark swifterror allocas. They can't have bitcast uses.
2202 if (AI->isSwiftError())
2203 continue;
2204
2205 // If the alloca is already scoped to something smaller than the whole
2206 // function then there's no need to add redundant, less accurate markers.
2207 if (hasLifetimeMarkers(AI))
2208 continue;
2209
2210 // Try to determine the size of the allocation.
2211 ConstantInt *AllocaSize = nullptr;
2212 if (ConstantInt *AIArraySize =
2213 dyn_cast<ConstantInt>(AI->getArraySize())) {
2214 auto &DL = Caller->getParent()->getDataLayout();
2215 Type *AllocaType = AI->getAllocatedType();
2216 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2217 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2218
2219 // Don't add markers for zero-sized allocas.
2220 if (AllocaArraySize == 0)
2221 continue;
2222
2223 // Check that array size doesn't saturate uint64_t and doesn't
2224 // overflow when it's multiplied by type size.
2225 if (!AllocaTypeSize.isScalable() &&
2226 AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2227 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2228 AllocaTypeSize.getFixedSize()) {
2229 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2230 AllocaArraySize * AllocaTypeSize);
2231 }
2232 }
2233
2234 builder.CreateLifetimeStart(AI, AllocaSize);
2235 for (ReturnInst *RI : Returns) {
2236 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2237 // call and a return. The return kills all local allocas.
2238 if (InlinedMustTailCalls &&
2239 RI->getParent()->getTerminatingMustTailCall())
2240 continue;
2241 if (InlinedDeoptimizeCalls &&
2242 RI->getParent()->getTerminatingDeoptimizeCall())
2243 continue;
2244 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2245 }
2246 }
2247 }
2248
2249 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2250 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2251 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2252 Module *M = Caller->getParent();
2253 // Get the two intrinsics we care about.
2254 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2255 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2256
2257 // Insert the llvm.stacksave.
2258 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2259 .CreateCall(StackSave, {}, "savedstack");
2260
2261 // Insert a call to llvm.stackrestore before any return instructions in the
2262 // inlined function.
2263 for (ReturnInst *RI : Returns) {
2264 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2265 // call and a return. The return will restore the stack pointer.
2266 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2267 continue;
2268 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2269 continue;
2270 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2271 }
2272 }
2273
2274 // If we are inlining for an invoke instruction, we must make sure to rewrite
2275 // any call instructions into invoke instructions. This is sensitive to which
2276 // funclet pads were top-level in the inlinee, so must be done before
2277 // rewriting the "parent pad" links.
2278 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2279 BasicBlock *UnwindDest = II->getUnwindDest();
2280 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2281 if (isa<LandingPadInst>(FirstNonPHI)) {
2282 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2283 } else {
2284 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2285 }
2286 }
2287
2288 // Update the lexical scopes of the new funclets and callsites.
2289 // Anything that had 'none' as its parent is now nested inside the callsite's
2290 // EHPad.
2291
2292 if (CallSiteEHPad) {
2293 for (Function::iterator BB = FirstNewBlock->getIterator(),
2294 E = Caller->end();
2295 BB != E; ++BB) {
2296 // Add bundle operands to any top-level call sites.
2297 SmallVector<OperandBundleDef, 1> OpBundles;
2298 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2299 CallBase *I = dyn_cast<CallBase>(&*BBI++);
2300 if (!I)
2301 continue;
2302
2303 // Skip call sites which are nounwind intrinsics.
2304 auto *CalledFn =
2305 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2306 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2307 continue;
2308
2309 // Skip call sites which already have a "funclet" bundle.
2310 if (I->getOperandBundle(LLVMContext::OB_funclet))
2311 continue;
2312
2313 I->getOperandBundlesAsDefs(OpBundles);
2314 OpBundles.emplace_back("funclet", CallSiteEHPad);
2315
2316 Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2317 NewInst->takeName(I);
2318 I->replaceAllUsesWith(NewInst);
2319 I->eraseFromParent();
2320
2321 OpBundles.clear();
2322 }
2323
2324 // It is problematic if the inlinee has a cleanupret which unwinds to
2325 // caller and we inline it into a call site which doesn't unwind but into
2326 // an EH pad that does. Such an edge must be dynamically unreachable.
2327 // As such, we replace the cleanupret with unreachable.
2328 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2329 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2330 changeToUnreachable(CleanupRet);
2331
2332 Instruction *I = BB->getFirstNonPHI();
2333 if (!I->isEHPad())
2334 continue;
2335
2336 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2337 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2338 CatchSwitch->setParentPad(CallSiteEHPad);
2339 } else {
2340 auto *FPI = cast<FuncletPadInst>(I);
2341 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2342 FPI->setParentPad(CallSiteEHPad);
2343 }
2344 }
2345 }
2346
2347 if (InlinedDeoptimizeCalls) {
2348 // We need to at least remove the deoptimizing returns from the Return set,
2349 // so that the control flow from those returns does not get merged into the
2350 // caller (but terminate it instead). If the caller's return type does not
2351 // match the callee's return type, we also need to change the return type of
2352 // the intrinsic.
2353 if (Caller->getReturnType() == CB.getType()) {
2354 llvm::erase_if(Returns, [](ReturnInst *RI) {
2355 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2356 });
2357 } else {
2358 SmallVector<ReturnInst *, 8> NormalReturns;
2359 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2360 Caller->getParent(), Intrinsic::experimental_deoptimize,
2361 {Caller->getReturnType()});
2362
2363 for (ReturnInst *RI : Returns) {
2364 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2365 if (!DeoptCall) {
2366 NormalReturns.push_back(RI);
2367 continue;
2368 }
2369
2370 // The calling convention on the deoptimize call itself may be bogus,
2371 // since the code we're inlining may have undefined behavior (and may
2372 // never actually execute at runtime); but all
2373 // @llvm.experimental.deoptimize declarations have to have the same
2374 // calling convention in a well-formed module.
2375 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2376 NewDeoptIntrinsic->setCallingConv(CallingConv);
2377 auto *CurBB = RI->getParent();
2378 RI->eraseFromParent();
2379
2380 SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2381
2382 SmallVector<OperandBundleDef, 1> OpBundles;
2383 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2384 auto DeoptAttributes = DeoptCall->getAttributes();
2385 DeoptCall->eraseFromParent();
2386 assert(!OpBundles.empty() &&
2387 "Expected at least the deopt operand bundle");
2388
2389 IRBuilder<> Builder(CurBB);
2390 CallInst *NewDeoptCall =
2391 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2392 NewDeoptCall->setCallingConv(CallingConv);
2393 NewDeoptCall->setAttributes(DeoptAttributes);
2394 if (NewDeoptCall->getType()->isVoidTy())
2395 Builder.CreateRetVoid();
2396 else
2397 Builder.CreateRet(NewDeoptCall);
2398 }
2399
2400 // Leave behind the normal returns so we can merge control flow.
2401 std::swap(Returns, NormalReturns);
2402 }
2403 }
2404
2405 // Handle any inlined musttail call sites. In order for a new call site to be
2406 // musttail, the source of the clone and the inlined call site must have been
2407 // musttail. Therefore it's safe to return without merging control into the
2408 // phi below.
2409 if (InlinedMustTailCalls) {
2410 // Check if we need to bitcast the result of any musttail calls.
2411 Type *NewRetTy = Caller->getReturnType();
2412 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2413
2414 // Handle the returns preceded by musttail calls separately.
2415 SmallVector<ReturnInst *, 8> NormalReturns;
2416 for (ReturnInst *RI : Returns) {
2417 CallInst *ReturnedMustTail =
2418 RI->getParent()->getTerminatingMustTailCall();
2419 if (!ReturnedMustTail) {
2420 NormalReturns.push_back(RI);
2421 continue;
2422 }
2423 if (!NeedBitCast)
2424 continue;
2425
2426 // Delete the old return and any preceding bitcast.
2427 BasicBlock *CurBB = RI->getParent();
2428 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2429 RI->eraseFromParent();
2430 if (OldCast)
2431 OldCast->eraseFromParent();
2432
2433 // Insert a new bitcast and return with the right type.
2434 IRBuilder<> Builder(CurBB);
2435 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2436 }
2437
2438 // Leave behind the normal returns so we can merge control flow.
2439 std::swap(Returns, NormalReturns);
2440 }
2441
2442 // Now that all of the transforms on the inlined code have taken place but
2443 // before we splice the inlined code into the CFG and lose track of which
2444 // blocks were actually inlined, collect the call sites. We only do this if
2445 // call graph updates weren't requested, as those provide value handle based
2446 // tracking of inlined call sites instead. Calls to intrinsics are not
2447 // collected because they are not inlineable.
2448 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2449 // Otherwise just collect the raw call sites that were inlined.
2450 for (BasicBlock &NewBB :
2451 make_range(FirstNewBlock->getIterator(), Caller->end()))
2452 for (Instruction &I : NewBB)
2453 if (auto *CB = dyn_cast<CallBase>(&I))
2454 if (!(CB->getCalledFunction() &&
2455 CB->getCalledFunction()->isIntrinsic()))
2456 IFI.InlinedCallSites.push_back(CB);
2457 }
2458
2459 // If we cloned in _exactly one_ basic block, and if that block ends in a
2460 // return instruction, we splice the body of the inlined callee directly into
2461 // the calling basic block.
2462 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2463 // Move all of the instructions right before the call.
2464 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2465 FirstNewBlock->begin(), FirstNewBlock->end());
2466 // Remove the cloned basic block.
2467 Caller->getBasicBlockList().pop_back();
2468
2469 // If the call site was an invoke instruction, add a branch to the normal
2470 // destination.
2471 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2472 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2473 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2474 }
2475
2476 // If the return instruction returned a value, replace uses of the call with
2477 // uses of the returned value.
2478 if (!CB.use_empty()) {
2479 ReturnInst *R = Returns[0];
2480 if (&CB == R->getReturnValue())
2481 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2482 else
2483 CB.replaceAllUsesWith(R->getReturnValue());
2484 }
2485 // Since we are now done with the Call/Invoke, we can delete it.
2486 CB.eraseFromParent();
2487
2488 // Since we are now done with the return instruction, delete it also.
2489 Returns[0]->eraseFromParent();
2490
2491 // We are now done with the inlining.
2492 return InlineResult::success();
2493 }
2494
2495 // Otherwise, we have the normal case, of more than one block to inline or
2496 // multiple return sites.
2497
2498 // We want to clone the entire callee function into the hole between the
2499 // "starter" and "ender" blocks. How we accomplish this depends on whether
2500 // this is an invoke instruction or a call instruction.
2501 BasicBlock *AfterCallBB;
2502 BranchInst *CreatedBranchToNormalDest = nullptr;
2503 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2504
2505 // Add an unconditional branch to make this look like the CallInst case...
2506 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2507
2508 // Split the basic block. This guarantees that no PHI nodes will have to be
2509 // updated due to new incoming edges, and make the invoke case more
2510 // symmetric to the call case.
2511 AfterCallBB =
2512 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2513 CalledFunc->getName() + ".exit");
2514
2515 } else { // It's a call
2516 // If this is a call instruction, we need to split the basic block that
2517 // the call lives in.
2518 //
2519 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2520 CalledFunc->getName() + ".exit");
2521 }
2522
2523 if (IFI.CallerBFI) {
2524 // Copy original BB's block frequency to AfterCallBB
2525 IFI.CallerBFI->setBlockFreq(
2526 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2527 }
2528
2529 // Change the branch that used to go to AfterCallBB to branch to the first
2530 // basic block of the inlined function.
2531 //
2532 Instruction *Br = OrigBB->getTerminator();
2533 assert(Br && Br->getOpcode() == Instruction::Br &&
2534 "splitBasicBlock broken!");
2535 Br->setOperand(0, &*FirstNewBlock);
2536
2537 // Now that the function is correct, make it a little bit nicer. In
2538 // particular, move the basic blocks inserted from the end of the function
2539 // into the space made by splitting the source basic block.
2540 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2541 Caller->getBasicBlockList(), FirstNewBlock,
2542 Caller->end());
2543
2544 // Handle all of the return instructions that we just cloned in, and eliminate
2545 // any users of the original call/invoke instruction.
2546 Type *RTy = CalledFunc->getReturnType();
2547
2548 PHINode *PHI = nullptr;
2549 if (Returns.size() > 1) {
2550 // The PHI node should go at the front of the new basic block to merge all
2551 // possible incoming values.
2552 if (!CB.use_empty()) {
2553 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2554 &AfterCallBB->front());
2555 // Anything that used the result of the function call should now use the
2556 // PHI node as their operand.
2557 CB.replaceAllUsesWith(PHI);
2558 }
2559
2560 // Loop over all of the return instructions adding entries to the PHI node
2561 // as appropriate.
2562 if (PHI) {
2563 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2564 ReturnInst *RI = Returns[i];
2565 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2566 "Ret value not consistent in function!");
2567 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2568 }
2569 }
2570
2571 // Add a branch to the merge points and remove return instructions.
2572 DebugLoc Loc;
2573 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2574 ReturnInst *RI = Returns[i];
2575 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2576 Loc = RI->getDebugLoc();
2577 BI->setDebugLoc(Loc);
2578 RI->eraseFromParent();
2579 }
2580 // We need to set the debug location to *somewhere* inside the
2581 // inlined function. The line number may be nonsensical, but the
2582 // instruction will at least be associated with the right
2583 // function.
2584 if (CreatedBranchToNormalDest)
2585 CreatedBranchToNormalDest->setDebugLoc(Loc);
2586 } else if (!Returns.empty()) {
2587 // Otherwise, if there is exactly one return value, just replace anything
2588 // using the return value of the call with the computed value.
2589 if (!CB.use_empty()) {
2590 if (&CB == Returns[0]->getReturnValue())
2591 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2592 else
2593 CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2594 }
2595
2596 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2597 BasicBlock *ReturnBB = Returns[0]->getParent();
2598 ReturnBB->replaceAllUsesWith(AfterCallBB);
2599
2600 // Splice the code from the return block into the block that it will return
2601 // to, which contains the code that was after the call.
2602 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2603 ReturnBB->getInstList());
2604
2605 if (CreatedBranchToNormalDest)
2606 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2607
2608 // Delete the return instruction now and empty ReturnBB now.
2609 Returns[0]->eraseFromParent();
2610 ReturnBB->eraseFromParent();
2611 } else if (!CB.use_empty()) {
2612 // No returns, but something is using the return value of the call. Just
2613 // nuke the result.
2614 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2615 }
2616
2617 // Since we are now done with the Call/Invoke, we can delete it.
2618 CB.eraseFromParent();
2619
2620 // If we inlined any musttail calls and the original return is now
2621 // unreachable, delete it. It can only contain a bitcast and ret.
2622 if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2623 AfterCallBB->eraseFromParent();
2624
2625 // We should always be able to fold the entry block of the function into the
2626 // single predecessor of the block...
2627 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2628 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2629
2630 // Splice the code entry block into calling block, right before the
2631 // unconditional branch.
2632 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2633 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2634
2635 // Remove the unconditional branch.
2636 OrigBB->getInstList().erase(Br);
2637
2638 // Now we can remove the CalleeEntry block, which is now empty.
2639 Caller->getBasicBlockList().erase(CalleeEntry);
2640
2641 // If we inserted a phi node, check to see if it has a single value (e.g. all
2642 // the entries are the same or undef). If so, remove the PHI so it doesn't
2643 // block other optimizations.
2644 if (PHI) {
2645 AssumptionCache *AC =
2646 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2647 auto &DL = Caller->getParent()->getDataLayout();
2648 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2649 PHI->replaceAllUsesWith(V);
2650 PHI->eraseFromParent();
2651 }
2652 }
2653
2654 return InlineResult::success();
2655 }
2656