1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
29 #include "llvm/Analysis/LoopAnalysisManager.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/LoopPass.h"
32 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Scalar/LoopPassManager.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopPeel.h"
60 #include "llvm/Transforms/Utils/LoopSimplify.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include "llvm/Transforms/Utils/UnrollLoop.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <limits>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "loop-unroll"
75
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79 " the current top-most loop. This is sometimes preferred to reduce"
80 " compile time."));
81
82 static cl::opt<unsigned>
83 UnrollThreshold("unroll-threshold", cl::Hidden,
84 cl::desc("The cost threshold for loop unrolling"));
85
86 static cl::opt<unsigned>
87 UnrollOptSizeThreshold(
88 "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89 cl::desc("The cost threshold for loop unrolling when optimizing for "
90 "size"));
91
92 static cl::opt<unsigned> UnrollPartialThreshold(
93 "unroll-partial-threshold", cl::Hidden,
94 cl::desc("The cost threshold for partial loop unrolling"));
95
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99 "to the threshold when aggressively unrolling a loop due to the "
100 "dynamic cost savings. If completely unrolling a loop will reduce "
101 "the total runtime from X to Y, we boost the loop unroll "
102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103 "X/Y). This limit avoids excessive code bloat."));
104
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107 cl::desc("Don't allow loop unrolling to simulate more than this number of"
108 "iterations when checking full unroll profitability"));
109
110 static cl::opt<unsigned> UnrollCount(
111 "unroll-count", cl::Hidden,
112 cl::desc("Use this unroll count for all loops including those with "
113 "unroll_count pragma values, for testing purposes"));
114
115 static cl::opt<unsigned> UnrollMaxCount(
116 "unroll-max-count", cl::Hidden,
117 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118 "testing purposes"));
119
120 static cl::opt<unsigned> UnrollFullMaxCount(
121 "unroll-full-max-count", cl::Hidden,
122 cl::desc(
123 "Set the max unroll count for full unrolling, for testing purposes"));
124
125 static cl::opt<bool>
126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127 cl::desc("Allows loops to be partially unrolled until "
128 "-unroll-threshold loop size is reached."));
129
130 static cl::opt<bool> UnrollAllowRemainder(
131 "unroll-allow-remainder", cl::Hidden,
132 cl::desc("Allow generation of a loop remainder (extra iterations) "
133 "when unrolling a loop."));
134
135 static cl::opt<bool>
136 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
137 cl::desc("Unroll loops with run-time trip counts"));
138
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140 "unroll-max-upperbound", cl::init(8), cl::Hidden,
141 cl::desc(
142 "The max of trip count upper bound that is considered in unrolling"));
143
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146 cl::desc("Unrolled size limit for loops with an unroll(full) or "
147 "unroll_count pragma."));
148
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151 cl::desc("If the runtime tripcount for the loop is lower than the "
152 "threshold, the loop is considered as flat and will be less "
153 "aggressively unrolled."));
154
155 static cl::opt<bool> UnrollUnrollRemainder(
156 "unroll-remainder", cl::Hidden,
157 cl::desc("Allow the loop remainder to be unrolled."));
158
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163 "unroll-revisit-child-loops", cl::Hidden,
164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165 "This shouldn't typically be needed as child loops (or their "
166 "clones) were already visited."));
167
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171 "optimizations"));
172 static cl::opt<unsigned>
173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174 cl::Hidden,
175 cl::desc("Default threshold (max size of unrolled "
176 "loop), used in all but O3 optimizations"));
177
178 /// A magic value for use with the Threshold parameter to indicate
179 /// that the loop unroll should be performed regardless of how much
180 /// code expansion would result.
181 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
182
183 /// Gather the various unrolling parameters based on the defaults, compiler
184 /// flags, TTI overrides and user specified parameters.
gatherUnrollingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,int OptLevel,Optional<unsigned> UserThreshold,Optional<unsigned> UserCount,Optional<bool> UserAllowPartial,Optional<bool> UserRuntime,Optional<bool> UserUpperBound,Optional<unsigned> UserFullUnrollMaxCount)185 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
186 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
187 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel,
188 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount,
189 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime,
190 Optional<bool> UserUpperBound, Optional<unsigned> UserFullUnrollMaxCount) {
191 TargetTransformInfo::UnrollingPreferences UP;
192
193 // Set up the defaults
194 UP.Threshold =
195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196 UP.MaxPercentThresholdBoost = 400;
197 UP.OptSizeThreshold = UnrollOptSizeThreshold;
198 UP.PartialThreshold = 150;
199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200 UP.Count = 0;
201 UP.DefaultUnrollRuntimeCount = 8;
202 UP.MaxCount = std::numeric_limits<unsigned>::max();
203 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204 UP.BEInsns = 2;
205 UP.Partial = false;
206 UP.Runtime = false;
207 UP.AllowRemainder = true;
208 UP.UnrollRemainder = false;
209 UP.AllowExpensiveTripCount = false;
210 UP.Force = false;
211 UP.UpperBound = false;
212 UP.UnrollAndJam = false;
213 UP.UnrollAndJamInnerLoopThreshold = 60;
214 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215
216 // Override with any target specific settings
217 TTI.getUnrollingPreferences(L, SE, UP);
218
219 // Apply size attributes
220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221 // Let unroll hints / pragmas take precedence over PGSO.
222 (hasUnrollTransformation(L) != TM_ForcedByUser &&
223 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
224 PGSOQueryType::IRPass));
225 if (OptForSize) {
226 UP.Threshold = UP.OptSizeThreshold;
227 UP.PartialThreshold = UP.PartialOptSizeThreshold;
228 UP.MaxPercentThresholdBoost = 100;
229 }
230
231 // Apply any user values specified by cl::opt
232 if (UnrollThreshold.getNumOccurrences() > 0)
233 UP.Threshold = UnrollThreshold;
234 if (UnrollPartialThreshold.getNumOccurrences() > 0)
235 UP.PartialThreshold = UnrollPartialThreshold;
236 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
237 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
238 if (UnrollMaxCount.getNumOccurrences() > 0)
239 UP.MaxCount = UnrollMaxCount;
240 if (UnrollFullMaxCount.getNumOccurrences() > 0)
241 UP.FullUnrollMaxCount = UnrollFullMaxCount;
242 if (UnrollAllowPartial.getNumOccurrences() > 0)
243 UP.Partial = UnrollAllowPartial;
244 if (UnrollAllowRemainder.getNumOccurrences() > 0)
245 UP.AllowRemainder = UnrollAllowRemainder;
246 if (UnrollRuntime.getNumOccurrences() > 0)
247 UP.Runtime = UnrollRuntime;
248 if (UnrollMaxUpperBound == 0)
249 UP.UpperBound = false;
250 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
251 UP.UnrollRemainder = UnrollUnrollRemainder;
252 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
253 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
254
255 // Apply user values provided by argument
256 if (UserThreshold.hasValue()) {
257 UP.Threshold = *UserThreshold;
258 UP.PartialThreshold = *UserThreshold;
259 }
260 if (UserCount.hasValue())
261 UP.Count = *UserCount;
262 if (UserAllowPartial.hasValue())
263 UP.Partial = *UserAllowPartial;
264 if (UserRuntime.hasValue())
265 UP.Runtime = *UserRuntime;
266 if (UserUpperBound.hasValue())
267 UP.UpperBound = *UserUpperBound;
268 if (UserFullUnrollMaxCount.hasValue())
269 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
270
271 return UP;
272 }
273
274 namespace {
275
276 /// A struct to densely store the state of an instruction after unrolling at
277 /// each iteration.
278 ///
279 /// This is designed to work like a tuple of <Instruction *, int> for the
280 /// purposes of hashing and lookup, but to be able to associate two boolean
281 /// states with each key.
282 struct UnrolledInstState {
283 Instruction *I;
284 int Iteration : 30;
285 unsigned IsFree : 1;
286 unsigned IsCounted : 1;
287 };
288
289 /// Hashing and equality testing for a set of the instruction states.
290 struct UnrolledInstStateKeyInfo {
291 using PtrInfo = DenseMapInfo<Instruction *>;
292 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
293
getEmptyKey__anon166203140111::UnrolledInstStateKeyInfo294 static inline UnrolledInstState getEmptyKey() {
295 return {PtrInfo::getEmptyKey(), 0, 0, 0};
296 }
297
getTombstoneKey__anon166203140111::UnrolledInstStateKeyInfo298 static inline UnrolledInstState getTombstoneKey() {
299 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
300 }
301
getHashValue__anon166203140111::UnrolledInstStateKeyInfo302 static inline unsigned getHashValue(const UnrolledInstState &S) {
303 return PairInfo::getHashValue({S.I, S.Iteration});
304 }
305
isEqual__anon166203140111::UnrolledInstStateKeyInfo306 static inline bool isEqual(const UnrolledInstState &LHS,
307 const UnrolledInstState &RHS) {
308 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
309 }
310 };
311
312 struct EstimatedUnrollCost {
313 /// The estimated cost after unrolling.
314 unsigned UnrolledCost;
315
316 /// The estimated dynamic cost of executing the instructions in the
317 /// rolled form.
318 unsigned RolledDynamicCost;
319 };
320
321 } // end anonymous namespace
322
323 /// Figure out if the loop is worth full unrolling.
324 ///
325 /// Complete loop unrolling can make some loads constant, and we need to know
326 /// if that would expose any further optimization opportunities. This routine
327 /// estimates this optimization. It computes cost of unrolled loop
328 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
329 /// dynamic cost we mean that we won't count costs of blocks that are known not
330 /// to be executed (i.e. if we have a branch in the loop and we know that at the
331 /// given iteration its condition would be resolved to true, we won't add up the
332 /// cost of the 'false'-block).
333 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
334 /// the analysis failed (no benefits expected from the unrolling, or the loop is
335 /// too big to analyze), the returned value is None.
analyzeLoopUnrollCost(const Loop * L,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,const TargetTransformInfo & TTI,unsigned MaxUnrolledLoopSize,unsigned MaxIterationsCountToAnalyze)336 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
337 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
338 const SmallPtrSetImpl<const Value *> &EphValues,
339 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
340 unsigned MaxIterationsCountToAnalyze) {
341 // We want to be able to scale offsets by the trip count and add more offsets
342 // to them without checking for overflows, and we already don't want to
343 // analyze *massive* trip counts, so we force the max to be reasonably small.
344 assert(MaxIterationsCountToAnalyze <
345 (unsigned)(std::numeric_limits<int>::max() / 2) &&
346 "The unroll iterations max is too large!");
347
348 // Only analyze inner loops. We can't properly estimate cost of nested loops
349 // and we won't visit inner loops again anyway.
350 if (!L->isInnermost())
351 return None;
352
353 // Don't simulate loops with a big or unknown tripcount
354 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
355 return None;
356
357 SmallSetVector<BasicBlock *, 16> BBWorklist;
358 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
359 DenseMap<Value *, Value *> SimplifiedValues;
360 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
361
362 // The estimated cost of the unrolled form of the loop. We try to estimate
363 // this by simplifying as much as we can while computing the estimate.
364 InstructionCost UnrolledCost = 0;
365
366 // We also track the estimated dynamic (that is, actually executed) cost in
367 // the rolled form. This helps identify cases when the savings from unrolling
368 // aren't just exposing dead control flows, but actual reduced dynamic
369 // instructions due to the simplifications which we expect to occur after
370 // unrolling.
371 InstructionCost RolledDynamicCost = 0;
372
373 // We track the simplification of each instruction in each iteration. We use
374 // this to recursively merge costs into the unrolled cost on-demand so that
375 // we don't count the cost of any dead code. This is essentially a map from
376 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
377 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
378
379 // A small worklist used to accumulate cost of instructions from each
380 // observable and reached root in the loop.
381 SmallVector<Instruction *, 16> CostWorklist;
382
383 // PHI-used worklist used between iterations while accumulating cost.
384 SmallVector<Instruction *, 4> PHIUsedList;
385
386 // Helper function to accumulate cost for instructions in the loop.
387 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
388 assert(Iteration >= 0 && "Cannot have a negative iteration!");
389 assert(CostWorklist.empty() && "Must start with an empty cost list");
390 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
391 CostWorklist.push_back(&RootI);
392 TargetTransformInfo::TargetCostKind CostKind =
393 RootI.getFunction()->hasMinSize() ?
394 TargetTransformInfo::TCK_CodeSize :
395 TargetTransformInfo::TCK_SizeAndLatency;
396 for (;; --Iteration) {
397 do {
398 Instruction *I = CostWorklist.pop_back_val();
399
400 // InstCostMap only uses I and Iteration as a key, the other two values
401 // don't matter here.
402 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
403 if (CostIter == InstCostMap.end())
404 // If an input to a PHI node comes from a dead path through the loop
405 // we may have no cost data for it here. What that actually means is
406 // that it is free.
407 continue;
408 auto &Cost = *CostIter;
409 if (Cost.IsCounted)
410 // Already counted this instruction.
411 continue;
412
413 // Mark that we are counting the cost of this instruction now.
414 Cost.IsCounted = true;
415
416 // If this is a PHI node in the loop header, just add it to the PHI set.
417 if (auto *PhiI = dyn_cast<PHINode>(I))
418 if (PhiI->getParent() == L->getHeader()) {
419 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
420 "inherently simplify during unrolling.");
421 if (Iteration == 0)
422 continue;
423
424 // Push the incoming value from the backedge into the PHI used list
425 // if it is an in-loop instruction. We'll use this to populate the
426 // cost worklist for the next iteration (as we count backwards).
427 if (auto *OpI = dyn_cast<Instruction>(
428 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
429 if (L->contains(OpI))
430 PHIUsedList.push_back(OpI);
431 continue;
432 }
433
434 // First accumulate the cost of this instruction.
435 if (!Cost.IsFree) {
436 UnrolledCost += TTI.getUserCost(I, CostKind);
437 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
438 << Iteration << "): ");
439 LLVM_DEBUG(I->dump());
440 }
441
442 // We must count the cost of every operand which is not free,
443 // recursively. If we reach a loop PHI node, simply add it to the set
444 // to be considered on the next iteration (backwards!).
445 for (Value *Op : I->operands()) {
446 // Check whether this operand is free due to being a constant or
447 // outside the loop.
448 auto *OpI = dyn_cast<Instruction>(Op);
449 if (!OpI || !L->contains(OpI))
450 continue;
451
452 // Otherwise accumulate its cost.
453 CostWorklist.push_back(OpI);
454 }
455 } while (!CostWorklist.empty());
456
457 if (PHIUsedList.empty())
458 // We've exhausted the search.
459 break;
460
461 assert(Iteration > 0 &&
462 "Cannot track PHI-used values past the first iteration!");
463 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
464 PHIUsedList.clear();
465 }
466 };
467
468 // Ensure that we don't violate the loop structure invariants relied on by
469 // this analysis.
470 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
471 assert(L->isLCSSAForm(DT) &&
472 "Must have loops in LCSSA form to track live-out values.");
473
474 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
475
476 TargetTransformInfo::TargetCostKind CostKind =
477 L->getHeader()->getParent()->hasMinSize() ?
478 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
479 // Simulate execution of each iteration of the loop counting instructions,
480 // which would be simplified.
481 // Since the same load will take different values on different iterations,
482 // we literally have to go through all loop's iterations.
483 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
484 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
485
486 // Prepare for the iteration by collecting any simplified entry or backedge
487 // inputs.
488 for (Instruction &I : *L->getHeader()) {
489 auto *PHI = dyn_cast<PHINode>(&I);
490 if (!PHI)
491 break;
492
493 // The loop header PHI nodes must have exactly two input: one from the
494 // loop preheader and one from the loop latch.
495 assert(
496 PHI->getNumIncomingValues() == 2 &&
497 "Must have an incoming value only for the preheader and the latch.");
498
499 Value *V = PHI->getIncomingValueForBlock(
500 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
501 if (Iteration != 0 && SimplifiedValues.count(V))
502 V = SimplifiedValues.lookup(V);
503 SimplifiedInputValues.push_back({PHI, V});
504 }
505
506 // Now clear and re-populate the map for the next iteration.
507 SimplifiedValues.clear();
508 while (!SimplifiedInputValues.empty())
509 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
510
511 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
512
513 BBWorklist.clear();
514 BBWorklist.insert(L->getHeader());
515 // Note that we *must not* cache the size, this loop grows the worklist.
516 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
517 BasicBlock *BB = BBWorklist[Idx];
518
519 // Visit all instructions in the given basic block and try to simplify
520 // it. We don't change the actual IR, just count optimization
521 // opportunities.
522 for (Instruction &I : *BB) {
523 // These won't get into the final code - don't even try calculating the
524 // cost for them.
525 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
526 continue;
527
528 // Track this instruction's expected baseline cost when executing the
529 // rolled loop form.
530 RolledDynamicCost += TTI.getUserCost(&I, CostKind);
531
532 // Visit the instruction to analyze its loop cost after unrolling,
533 // and if the visitor returns true, mark the instruction as free after
534 // unrolling and continue.
535 bool IsFree = Analyzer.visit(I);
536 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
537 (unsigned)IsFree,
538 /*IsCounted*/ false}).second;
539 (void)Inserted;
540 assert(Inserted && "Cannot have a state for an unvisited instruction!");
541
542 if (IsFree)
543 continue;
544
545 // Can't properly model a cost of a call.
546 // FIXME: With a proper cost model we should be able to do it.
547 if (auto *CI = dyn_cast<CallInst>(&I)) {
548 const Function *Callee = CI->getCalledFunction();
549 if (!Callee || TTI.isLoweredToCall(Callee)) {
550 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
551 return None;
552 }
553 }
554
555 // If the instruction might have a side-effect recursively account for
556 // the cost of it and all the instructions leading up to it.
557 if (I.mayHaveSideEffects())
558 AddCostRecursively(I, Iteration);
559
560 // If unrolled body turns out to be too big, bail out.
561 if (UnrolledCost > MaxUnrolledLoopSize) {
562 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
563 << " UnrolledCost: " << UnrolledCost
564 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
565 << "\n");
566 return None;
567 }
568 }
569
570 Instruction *TI = BB->getTerminator();
571
572 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
573 if (SimplifiedValues.count(V))
574 V = SimplifiedValues.lookup(V);
575 return dyn_cast<Constant>(V);
576 };
577
578 // Add in the live successors by first checking whether we have terminator
579 // that may be simplified based on the values simplified by this call.
580 BasicBlock *KnownSucc = nullptr;
581 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
582 if (BI->isConditional()) {
583 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
584 // Just take the first successor if condition is undef
585 if (isa<UndefValue>(SimpleCond))
586 KnownSucc = BI->getSuccessor(0);
587 else if (ConstantInt *SimpleCondVal =
588 dyn_cast<ConstantInt>(SimpleCond))
589 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
590 }
591 }
592 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
593 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
594 // Just take the first successor if condition is undef
595 if (isa<UndefValue>(SimpleCond))
596 KnownSucc = SI->getSuccessor(0);
597 else if (ConstantInt *SimpleCondVal =
598 dyn_cast<ConstantInt>(SimpleCond))
599 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
600 }
601 }
602 if (KnownSucc) {
603 if (L->contains(KnownSucc))
604 BBWorklist.insert(KnownSucc);
605 else
606 ExitWorklist.insert({BB, KnownSucc});
607 continue;
608 }
609
610 // Add BB's successors to the worklist.
611 for (BasicBlock *Succ : successors(BB))
612 if (L->contains(Succ))
613 BBWorklist.insert(Succ);
614 else
615 ExitWorklist.insert({BB, Succ});
616 AddCostRecursively(*TI, Iteration);
617 }
618
619 // If we found no optimization opportunities on the first iteration, we
620 // won't find them on later ones too.
621 if (UnrolledCost == RolledDynamicCost) {
622 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
623 << " UnrolledCost: " << UnrolledCost << "\n");
624 return None;
625 }
626 }
627
628 while (!ExitWorklist.empty()) {
629 BasicBlock *ExitingBB, *ExitBB;
630 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
631
632 for (Instruction &I : *ExitBB) {
633 auto *PN = dyn_cast<PHINode>(&I);
634 if (!PN)
635 break;
636
637 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
638 if (auto *OpI = dyn_cast<Instruction>(Op))
639 if (L->contains(OpI))
640 AddCostRecursively(*OpI, TripCount - 1);
641 }
642 }
643
644 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
645 "All instructions must have a valid cost, whether the "
646 "loop is rolled or unrolled.");
647
648 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
649 << "UnrolledCost: " << UnrolledCost << ", "
650 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
651 return {{unsigned(*UnrolledCost.getValue()),
652 unsigned(*RolledDynamicCost.getValue())}};
653 }
654
655 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,bool & Convergent,const TargetTransformInfo & TTI,const SmallPtrSetImpl<const Value * > & EphValues,unsigned BEInsns)656 unsigned llvm::ApproximateLoopSize(
657 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
658 const TargetTransformInfo &TTI,
659 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
660 CodeMetrics Metrics;
661 for (BasicBlock *BB : L->blocks())
662 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
663 NumCalls = Metrics.NumInlineCandidates;
664 NotDuplicatable = Metrics.notDuplicatable;
665 Convergent = Metrics.convergent;
666
667 unsigned LoopSize = Metrics.NumInsts;
668
669 // Don't allow an estimate of size zero. This would allows unrolling of loops
670 // with huge iteration counts, which is a compile time problem even if it's
671 // not a problem for code quality. Also, the code using this size may assume
672 // that each loop has at least three instructions (likely a conditional
673 // branch, a comparison feeding that branch, and some kind of loop increment
674 // feeding that comparison instruction).
675 LoopSize = std::max(LoopSize, BEInsns + 1);
676
677 return LoopSize;
678 }
679
680 // Returns the loop hint metadata node with the given name (for example,
681 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
682 // returned.
getUnrollMetadataForLoop(const Loop * L,StringRef Name)683 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
684 if (MDNode *LoopID = L->getLoopID())
685 return GetUnrollMetadata(LoopID, Name);
686 return nullptr;
687 }
688
689 // Returns true if the loop has an unroll(full) pragma.
hasUnrollFullPragma(const Loop * L)690 static bool hasUnrollFullPragma(const Loop *L) {
691 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
692 }
693
694 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
695 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
hasUnrollEnablePragma(const Loop * L)696 static bool hasUnrollEnablePragma(const Loop *L) {
697 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
698 }
699
700 // Returns true if the loop has an runtime unroll(disable) pragma.
hasRuntimeUnrollDisablePragma(const Loop * L)701 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
702 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
703 }
704
705 // If loop has an unroll_count pragma return the (necessarily
706 // positive) value from the pragma. Otherwise return 0.
unrollCountPragmaValue(const Loop * L)707 static unsigned unrollCountPragmaValue(const Loop *L) {
708 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
709 if (MD) {
710 assert(MD->getNumOperands() == 2 &&
711 "Unroll count hint metadata should have two operands.");
712 unsigned Count =
713 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
714 assert(Count >= 1 && "Unroll count must be positive.");
715 return Count;
716 }
717 return 0;
718 }
719
720 // Computes the boosting factor for complete unrolling.
721 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
722 // be beneficial to fully unroll the loop even if unrolledcost is large. We
723 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
724 // the unroll threshold.
getFullUnrollBoostingFactor(const EstimatedUnrollCost & Cost,unsigned MaxPercentThresholdBoost)725 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
726 unsigned MaxPercentThresholdBoost) {
727 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
728 return 100;
729 else if (Cost.UnrolledCost != 0)
730 // The boosting factor is RolledDynamicCost / UnrolledCost
731 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
732 MaxPercentThresholdBoost);
733 else
734 return MaxPercentThresholdBoost;
735 }
736
737 // Produce an estimate of the unrolled cost of the specified loop. This
738 // is used to a) produce a cost estimate for partial unrolling and b) to
739 // cheaply estimate cost for full unrolling when we don't want to symbolically
740 // evaluate all iterations.
741 class UnrollCostEstimator {
742 const unsigned LoopSize;
743
744 public:
UnrollCostEstimator(Loop & L,unsigned LoopSize)745 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
746
747 // Returns loop size estimation for unrolled loop, given the unrolling
748 // configuration specified by UP.
getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences & UP)749 uint64_t getUnrolledLoopSize(TargetTransformInfo::UnrollingPreferences &UP) {
750 assert(LoopSize >= UP.BEInsns &&
751 "LoopSize should not be less than BEInsns!");
752 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
753 }
754 };
755
756 // Returns true if unroll count was set explicitly.
757 // Calculates unroll count and writes it to UP.Count.
758 // Unless IgnoreUser is true, will also use metadata and command-line options
759 // that are specific to to the LoopUnroll pass (which, for instance, are
760 // irrelevant for the LoopUnrollAndJam pass).
761 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
762 // many LoopUnroll-specific options. The shared functionality should be
763 // refactored into it own function.
computeUnrollCount(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,OptimizationRemarkEmitter * ORE,unsigned TripCount,unsigned MaxTripCount,bool MaxOrZero,unsigned TripMultiple,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,TargetTransformInfo::PeelingPreferences & PP,bool & UseUpperBound)764 bool llvm::computeUnrollCount(
765 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
766 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
767 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
768 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
769 TargetTransformInfo::UnrollingPreferences &UP,
770 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
771
772 UnrollCostEstimator UCE(*L, LoopSize);
773
774 // Use an explicit peel count that has been specified for testing. In this
775 // case it's not permitted to also specify an explicit unroll count.
776 if (PP.PeelCount) {
777 if (UnrollCount.getNumOccurrences() > 0) {
778 report_fatal_error("Cannot specify both explicit peel count and "
779 "explicit unroll count");
780 }
781 UP.Count = 1;
782 UP.Runtime = false;
783 return true;
784 }
785
786 // Check for explicit Count.
787 // 1st priority is unroll count set by "unroll-count" option.
788 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
789 if (UserUnrollCount) {
790 UP.Count = UnrollCount;
791 UP.AllowExpensiveTripCount = true;
792 UP.Force = true;
793 if (UP.AllowRemainder && UCE.getUnrolledLoopSize(UP) < UP.Threshold)
794 return true;
795 }
796
797 // 2nd priority is unroll count set by pragma.
798 unsigned PragmaCount = unrollCountPragmaValue(L);
799 if (PragmaCount > 0) {
800 UP.Count = PragmaCount;
801 UP.Runtime = true;
802 UP.AllowExpensiveTripCount = true;
803 UP.Force = true;
804 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) &&
805 UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
806 return true;
807 }
808 bool PragmaFullUnroll = hasUnrollFullPragma(L);
809 if (PragmaFullUnroll && TripCount != 0) {
810 UP.Count = TripCount;
811 if (UCE.getUnrolledLoopSize(UP) < PragmaUnrollThreshold)
812 return false;
813 }
814
815 bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
816 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
817 PragmaEnableUnroll || UserUnrollCount;
818
819 if (ExplicitUnroll && TripCount != 0) {
820 // If the loop has an unrolling pragma, we want to be more aggressive with
821 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
822 // value which is larger than the default limits.
823 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
824 UP.PartialThreshold =
825 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
826 }
827
828 // 3rd priority is full unroll count.
829 // Full unroll makes sense only when TripCount or its upper bound could be
830 // statically calculated.
831 // Also we need to check if we exceed FullUnrollMaxCount.
832
833 // We can unroll by the upper bound amount if it's generally allowed or if
834 // we know that the loop is executed either the upper bound or zero times.
835 // (MaxOrZero unrolling keeps only the first loop test, so the number of
836 // loop tests remains the same compared to the non-unrolled version, whereas
837 // the generic upper bound unrolling keeps all but the last loop test so the
838 // number of loop tests goes up which may end up being worse on targets with
839 // constrained branch predictor resources so is controlled by an option.)
840 // In addition we only unroll small upper bounds.
841 unsigned FullUnrollMaxTripCount = MaxTripCount;
842 if (!(UP.UpperBound || MaxOrZero) ||
843 FullUnrollMaxTripCount > UnrollMaxUpperBound)
844 FullUnrollMaxTripCount = 0;
845
846 // UnrollByMaxCount and ExactTripCount cannot both be non zero since we only
847 // compute the former when the latter is zero.
848 unsigned ExactTripCount = TripCount;
849 assert((ExactTripCount == 0 || FullUnrollMaxTripCount == 0) &&
850 "ExtractTripCount and UnrollByMaxCount cannot both be non zero.");
851
852 unsigned FullUnrollTripCount =
853 ExactTripCount ? ExactTripCount : FullUnrollMaxTripCount;
854 UP.Count = FullUnrollTripCount;
855 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
856 // When computing the unrolled size, note that BEInsns are not replicated
857 // like the rest of the loop body.
858 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) {
859 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
860 return ExplicitUnroll;
861 } else {
862 // The loop isn't that small, but we still can fully unroll it if that
863 // helps to remove a significant number of instructions.
864 // To check that, run additional analysis on the loop.
865 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
866 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
867 UP.Threshold * UP.MaxPercentThresholdBoost / 100,
868 UP.MaxIterationsCountToAnalyze)) {
869 unsigned Boost =
870 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
871 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
872 UseUpperBound = (FullUnrollMaxTripCount == FullUnrollTripCount);
873 return ExplicitUnroll;
874 }
875 }
876 }
877 }
878
879 // 4th priority is loop peeling.
880 computePeelCount(L, LoopSize, PP, TripCount, SE, UP.Threshold);
881 if (PP.PeelCount) {
882 UP.Runtime = false;
883 UP.Count = 1;
884 return ExplicitUnroll;
885 }
886
887 // 5th priority is partial unrolling.
888 // Try partial unroll only when TripCount could be statically calculated.
889 if (TripCount) {
890 UP.Partial |= ExplicitUnroll;
891 if (!UP.Partial) {
892 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
893 << "-unroll-allow-partial not given\n");
894 UP.Count = 0;
895 return false;
896 }
897 if (UP.Count == 0)
898 UP.Count = TripCount;
899 if (UP.PartialThreshold != NoThreshold) {
900 // Reduce unroll count to be modulo of TripCount for partial unrolling.
901 if (UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
902 UP.Count =
903 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
904 (LoopSize - UP.BEInsns);
905 if (UP.Count > UP.MaxCount)
906 UP.Count = UP.MaxCount;
907 while (UP.Count != 0 && TripCount % UP.Count != 0)
908 UP.Count--;
909 if (UP.AllowRemainder && UP.Count <= 1) {
910 // If there is no Count that is modulo of TripCount, set Count to
911 // largest power-of-two factor that satisfies the threshold limit.
912 // As we'll create fixup loop, do the type of unrolling only if
913 // remainder loop is allowed.
914 UP.Count = UP.DefaultUnrollRuntimeCount;
915 while (UP.Count != 0 &&
916 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
917 UP.Count >>= 1;
918 }
919 if (UP.Count < 2) {
920 if (PragmaEnableUnroll)
921 ORE->emit([&]() {
922 return OptimizationRemarkMissed(DEBUG_TYPE,
923 "UnrollAsDirectedTooLarge",
924 L->getStartLoc(), L->getHeader())
925 << "Unable to unroll loop as directed by unroll(enable) "
926 "pragma "
927 "because unrolled size is too large.";
928 });
929 UP.Count = 0;
930 }
931 } else {
932 UP.Count = TripCount;
933 }
934 if (UP.Count > UP.MaxCount)
935 UP.Count = UP.MaxCount;
936 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
937 UP.Count != TripCount)
938 ORE->emit([&]() {
939 return OptimizationRemarkMissed(DEBUG_TYPE,
940 "FullUnrollAsDirectedTooLarge",
941 L->getStartLoc(), L->getHeader())
942 << "Unable to fully unroll loop as directed by unroll pragma "
943 "because "
944 "unrolled size is too large.";
945 });
946 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count
947 << "\n");
948 return ExplicitUnroll;
949 }
950 assert(TripCount == 0 &&
951 "All cases when TripCount is constant should be covered here.");
952 if (PragmaFullUnroll)
953 ORE->emit([&]() {
954 return OptimizationRemarkMissed(
955 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
956 L->getStartLoc(), L->getHeader())
957 << "Unable to fully unroll loop as directed by unroll(full) "
958 "pragma "
959 "because loop has a runtime trip count.";
960 });
961
962 // 6th priority is runtime unrolling.
963 // Don't unroll a runtime trip count loop when it is disabled.
964 if (hasRuntimeUnrollDisablePragma(L)) {
965 UP.Count = 0;
966 return false;
967 }
968
969 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
970 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
971 UP.Count = 0;
972 return false;
973 }
974
975 // Check if the runtime trip count is too small when profile is available.
976 if (L->getHeader()->getParent()->hasProfileData()) {
977 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
978 if (*ProfileTripCount < FlatLoopTripCountThreshold)
979 return false;
980 else
981 UP.AllowExpensiveTripCount = true;
982 }
983 }
984
985 // Reduce count based on the type of unrolling and the threshold values.
986 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
987 if (!UP.Runtime) {
988 LLVM_DEBUG(
989 dbgs() << " will not try to unroll loop with runtime trip count "
990 << "-unroll-runtime not given\n");
991 UP.Count = 0;
992 return false;
993 }
994 if (UP.Count == 0)
995 UP.Count = UP.DefaultUnrollRuntimeCount;
996
997 // Reduce unroll count to be the largest power-of-two factor of
998 // the original count which satisfies the threshold limit.
999 while (UP.Count != 0 &&
1000 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1001 UP.Count >>= 1;
1002
1003 #ifndef NDEBUG
1004 unsigned OrigCount = UP.Count;
1005 #endif
1006
1007 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1008 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1009 UP.Count >>= 1;
1010 LLVM_DEBUG(
1011 dbgs() << "Remainder loop is restricted (that could architecture "
1012 "specific or because the loop contains a convergent "
1013 "instruction), so unroll count must divide the trip "
1014 "multiple, "
1015 << TripMultiple << ". Reducing unroll count from " << OrigCount
1016 << " to " << UP.Count << ".\n");
1017
1018 using namespace ore;
1019
1020 if (PragmaCount > 0 && !UP.AllowRemainder)
1021 ORE->emit([&]() {
1022 return OptimizationRemarkMissed(DEBUG_TYPE,
1023 "DifferentUnrollCountFromDirected",
1024 L->getStartLoc(), L->getHeader())
1025 << "Unable to unroll loop the number of times directed by "
1026 "unroll_count pragma because remainder loop is restricted "
1027 "(that could architecture specific or because the loop "
1028 "contains a convergent instruction) and so must have an "
1029 "unroll "
1030 "count that divides the loop trip multiple of "
1031 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1032 << NV("UnrollCount", UP.Count) << " time(s).";
1033 });
1034 }
1035
1036 if (UP.Count > UP.MaxCount)
1037 UP.Count = UP.MaxCount;
1038
1039 if (MaxTripCount && UP.Count > MaxTripCount)
1040 UP.Count = MaxTripCount;
1041
1042 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1043 << "\n");
1044 if (UP.Count < 2)
1045 UP.Count = 0;
1046 return ExplicitUnroll;
1047 }
1048
tryToUnrollLoop(Loop * L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const TargetTransformInfo & TTI,AssumptionCache & AC,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,bool PreserveLCSSA,int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV,Optional<unsigned> ProvidedCount,Optional<unsigned> ProvidedThreshold,Optional<bool> ProvidedAllowPartial,Optional<bool> ProvidedRuntime,Optional<bool> ProvidedUpperBound,Optional<bool> ProvidedAllowPeeling,Optional<bool> ProvidedAllowProfileBasedPeeling,Optional<unsigned> ProvidedFullUnrollMaxCount)1049 static LoopUnrollResult tryToUnrollLoop(
1050 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1051 const TargetTransformInfo &TTI, AssumptionCache &AC,
1052 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1053 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1054 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount,
1055 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial,
1056 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound,
1057 Optional<bool> ProvidedAllowPeeling,
1058 Optional<bool> ProvidedAllowProfileBasedPeeling,
1059 Optional<unsigned> ProvidedFullUnrollMaxCount) {
1060 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1061 << L->getHeader()->getParent()->getName() << "] Loop %"
1062 << L->getHeader()->getName() << "\n");
1063 TransformationMode TM = hasUnrollTransformation(L);
1064 if (TM & TM_Disable)
1065 return LoopUnrollResult::Unmodified;
1066 if (!L->isLoopSimplifyForm()) {
1067 LLVM_DEBUG(
1068 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1069 return LoopUnrollResult::Unmodified;
1070 }
1071
1072 // When automatic unrolling is disabled, do not unroll unless overridden for
1073 // this loop.
1074 if (OnlyWhenForced && !(TM & TM_Enable))
1075 return LoopUnrollResult::Unmodified;
1076
1077 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1078 unsigned NumInlineCandidates;
1079 bool NotDuplicatable;
1080 bool Convergent;
1081 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1082 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount,
1083 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1084 ProvidedFullUnrollMaxCount);
1085 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1086 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1087
1088 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1089 // as threshold later on.
1090 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1091 !OptForSize)
1092 return LoopUnrollResult::Unmodified;
1093
1094 SmallPtrSet<const Value *, 32> EphValues;
1095 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1096
1097 unsigned LoopSize =
1098 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1099 TTI, EphValues, UP.BEInsns);
1100 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1101 if (NotDuplicatable) {
1102 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1103 << " instructions.\n");
1104 return LoopUnrollResult::Unmodified;
1105 }
1106
1107 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1108 // later), to (fully) unroll loops, if it does not increase code size.
1109 if (OptForSize)
1110 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1111
1112 if (NumInlineCandidates != 0) {
1113 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1114 return LoopUnrollResult::Unmodified;
1115 }
1116
1117 // Find the smallest exact trip count for any exit. This is an upper bound
1118 // on the loop trip count, but an exit at an earlier iteration is still
1119 // possible. An unroll by the smallest exact trip count guarantees that all
1120 // brnaches relating to at least one exit can be eliminated. This is unlike
1121 // the max trip count, which only guarantees that the backedge can be broken.
1122 unsigned TripCount = 0;
1123 unsigned TripMultiple = 1;
1124 SmallVector<BasicBlock *, 8> ExitingBlocks;
1125 L->getExitingBlocks(ExitingBlocks);
1126 for (BasicBlock *ExitingBlock : ExitingBlocks)
1127 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1128 if (!TripCount || TC < TripCount)
1129 TripCount = TripMultiple = TC;
1130
1131 if (!TripCount) {
1132 // If no exact trip count is known, determine the trip multiple of either
1133 // the loop latch or the single exiting block.
1134 // TODO: Relax for multiple exits.
1135 BasicBlock *ExitingBlock = L->getLoopLatch();
1136 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1137 ExitingBlock = L->getExitingBlock();
1138 if (ExitingBlock)
1139 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1140 }
1141
1142 // If the loop contains a convergent operation, the prelude we'd add
1143 // to do the first few instructions before we hit the unrolled loop
1144 // is unsafe -- it adds a control-flow dependency to the convergent
1145 // operation. Therefore restrict remainder loop (try unrolling without).
1146 //
1147 // TODO: This is quite conservative. In practice, convergent_op()
1148 // is likely to be called unconditionally in the loop. In this
1149 // case, the program would be ill-formed (on most architectures)
1150 // unless n were the same on all threads in a thread group.
1151 // Assuming n is the same on all threads, any kind of unrolling is
1152 // safe. But currently llvm's notion of convergence isn't powerful
1153 // enough to express this.
1154 if (Convergent)
1155 UP.AllowRemainder = false;
1156
1157 // Try to find the trip count upper bound if we cannot find the exact trip
1158 // count.
1159 unsigned MaxTripCount = 0;
1160 bool MaxOrZero = false;
1161 if (!TripCount) {
1162 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1163 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1164 }
1165
1166 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1167 // fully unroll the loop.
1168 bool UseUpperBound = false;
1169 bool IsCountSetExplicitly = computeUnrollCount(
1170 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1171 TripMultiple, LoopSize, UP, PP, UseUpperBound);
1172 if (!UP.Count)
1173 return LoopUnrollResult::Unmodified;
1174
1175 if (PP.PeelCount) {
1176 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1177 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1178 << " with iteration count " << PP.PeelCount << "!\n");
1179 ORE.emit([&]() {
1180 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1181 L->getHeader())
1182 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1183 << " iterations";
1184 });
1185
1186 if (peelLoop(L, PP.PeelCount, LI, &SE, &DT, &AC, PreserveLCSSA)) {
1187 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1188 // If the loop was peeled, we already "used up" the profile information
1189 // we had, so we don't want to unroll or peel again.
1190 if (PP.PeelProfiledIterations)
1191 L->setLoopAlreadyUnrolled();
1192 return LoopUnrollResult::PartiallyUnrolled;
1193 }
1194 return LoopUnrollResult::Unmodified;
1195 }
1196
1197 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1198 // However, we only want to actually perform it if we don't know the trip
1199 // count and the unroll count doesn't divide the known trip multiple.
1200 // TODO: This decision should probably be pushed up into
1201 // computeUnrollCount().
1202 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1203
1204 // Save loop properties before it is transformed.
1205 MDNode *OrigLoopID = L->getLoopID();
1206
1207 // Unroll the loop.
1208 Loop *RemainderLoop = nullptr;
1209 LoopUnrollResult UnrollResult = UnrollLoop(
1210 L,
1211 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1212 UP.UnrollRemainder, ForgetAllSCEV},
1213 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1214 if (UnrollResult == LoopUnrollResult::Unmodified)
1215 return LoopUnrollResult::Unmodified;
1216
1217 if (RemainderLoop) {
1218 Optional<MDNode *> RemainderLoopID =
1219 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1220 LLVMLoopUnrollFollowupRemainder});
1221 if (RemainderLoopID.hasValue())
1222 RemainderLoop->setLoopID(RemainderLoopID.getValue());
1223 }
1224
1225 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1226 Optional<MDNode *> NewLoopID =
1227 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1228 LLVMLoopUnrollFollowupUnrolled});
1229 if (NewLoopID.hasValue()) {
1230 L->setLoopID(NewLoopID.getValue());
1231
1232 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1233 // explicitly.
1234 return UnrollResult;
1235 }
1236 }
1237
1238 // If loop has an unroll count pragma or unrolled by explicitly set count
1239 // mark loop as unrolled to prevent unrolling beyond that requested.
1240 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1241 L->setLoopAlreadyUnrolled();
1242
1243 return UnrollResult;
1244 }
1245
1246 namespace {
1247
1248 class LoopUnroll : public LoopPass {
1249 public:
1250 static char ID; // Pass ID, replacement for typeid
1251
1252 int OptLevel;
1253
1254 /// If false, use a cost model to determine whether unrolling of a loop is
1255 /// profitable. If true, only loops that explicitly request unrolling via
1256 /// metadata are considered. All other loops are skipped.
1257 bool OnlyWhenForced;
1258
1259 /// If false, when SCEV is invalidated, only forget everything in the
1260 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1261 /// Otherwise, forgetAllLoops and rebuild when needed next.
1262 bool ForgetAllSCEV;
1263
1264 Optional<unsigned> ProvidedCount;
1265 Optional<unsigned> ProvidedThreshold;
1266 Optional<bool> ProvidedAllowPartial;
1267 Optional<bool> ProvidedRuntime;
1268 Optional<bool> ProvidedUpperBound;
1269 Optional<bool> ProvidedAllowPeeling;
1270 Optional<bool> ProvidedAllowProfileBasedPeeling;
1271 Optional<unsigned> ProvidedFullUnrollMaxCount;
1272
LoopUnroll(int OptLevel=2,bool OnlyWhenForced=false,bool ForgetAllSCEV=false,Optional<unsigned> Threshold=None,Optional<unsigned> Count=None,Optional<bool> AllowPartial=None,Optional<bool> Runtime=None,Optional<bool> UpperBound=None,Optional<bool> AllowPeeling=None,Optional<bool> AllowProfileBasedPeeling=None,Optional<unsigned> ProvidedFullUnrollMaxCount=None)1273 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1274 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None,
1275 Optional<unsigned> Count = None,
1276 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
1277 Optional<bool> UpperBound = None,
1278 Optional<bool> AllowPeeling = None,
1279 Optional<bool> AllowProfileBasedPeeling = None,
1280 Optional<unsigned> ProvidedFullUnrollMaxCount = None)
1281 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1282 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1283 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1284 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1285 ProvidedAllowPeeling(AllowPeeling),
1286 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1287 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1288 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1289 }
1290
runOnLoop(Loop * L,LPPassManager & LPM)1291 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1292 if (skipLoop(L))
1293 return false;
1294
1295 Function &F = *L->getHeader()->getParent();
1296
1297 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1298 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1299 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1300 const TargetTransformInfo &TTI =
1301 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1302 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1303 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1304 // pass. Function analyses need to be preserved across loop transformations
1305 // but ORE cannot be preserved (see comment before the pass definition).
1306 OptimizationRemarkEmitter ORE(&F);
1307 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1308
1309 LoopUnrollResult Result = tryToUnrollLoop(
1310 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1311 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1312 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1313 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1314 ProvidedFullUnrollMaxCount);
1315
1316 if (Result == LoopUnrollResult::FullyUnrolled)
1317 LPM.markLoopAsDeleted(*L);
1318
1319 return Result != LoopUnrollResult::Unmodified;
1320 }
1321
1322 /// This transformation requires natural loop information & requires that
1323 /// loop preheaders be inserted into the CFG...
getAnalysisUsage(AnalysisUsage & AU) const1324 void getAnalysisUsage(AnalysisUsage &AU) const override {
1325 AU.addRequired<AssumptionCacheTracker>();
1326 AU.addRequired<TargetTransformInfoWrapperPass>();
1327 // FIXME: Loop passes are required to preserve domtree, and for now we just
1328 // recreate dom info if anything gets unrolled.
1329 getLoopAnalysisUsage(AU);
1330 }
1331 };
1332
1333 } // end anonymous namespace
1334
1335 char LoopUnroll::ID = 0;
1336
1337 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1338 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1339 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1340 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1341 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1342
1343 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1344 bool ForgetAllSCEV, int Threshold, int Count,
1345 int AllowPartial, int Runtime, int UpperBound,
1346 int AllowPeeling) {
1347 // TODO: It would make more sense for this function to take the optionals
1348 // directly, but that's dangerous since it would silently break out of tree
1349 // callers.
1350 return new LoopUnroll(
1351 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1352 Threshold == -1 ? None : Optional<unsigned>(Threshold),
1353 Count == -1 ? None : Optional<unsigned>(Count),
1354 AllowPartial == -1 ? None : Optional<bool>(AllowPartial),
1355 Runtime == -1 ? None : Optional<bool>(Runtime),
1356 UpperBound == -1 ? None : Optional<bool>(UpperBound),
1357 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling));
1358 }
1359
createSimpleLoopUnrollPass(int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV)1360 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1361 bool ForgetAllSCEV) {
1362 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1363 0, 0, 0, 1);
1364 }
1365
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & Updater)1366 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1367 LoopStandardAnalysisResults &AR,
1368 LPMUpdater &Updater) {
1369 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1370 // pass. Function analyses need to be preserved across loop transformations
1371 // but ORE cannot be preserved (see comment before the pass definition).
1372 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1373
1374 // Keep track of the previous loop structure so we can identify new loops
1375 // created by unrolling.
1376 Loop *ParentL = L.getParentLoop();
1377 SmallPtrSet<Loop *, 4> OldLoops;
1378 if (ParentL)
1379 OldLoops.insert(ParentL->begin(), ParentL->end());
1380 else
1381 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1382
1383 std::string LoopName = std::string(L.getName());
1384
1385 bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1386 /*BFI*/ nullptr, /*PSI*/ nullptr,
1387 /*PreserveLCSSA*/ true, OptLevel,
1388 OnlyWhenForced, ForgetSCEV, /*Count*/ None,
1389 /*Threshold*/ None, /*AllowPartial*/ false,
1390 /*Runtime*/ false, /*UpperBound*/ false,
1391 /*AllowPeeling*/ true,
1392 /*AllowProfileBasedPeeling*/ false,
1393 /*FullUnrollMaxCount*/ None) !=
1394 LoopUnrollResult::Unmodified;
1395 if (!Changed)
1396 return PreservedAnalyses::all();
1397
1398 // The parent must not be damaged by unrolling!
1399 #ifndef NDEBUG
1400 if (ParentL)
1401 ParentL->verifyLoop();
1402 #endif
1403
1404 // Unrolling can do several things to introduce new loops into a loop nest:
1405 // - Full unrolling clones child loops within the current loop but then
1406 // removes the current loop making all of the children appear to be new
1407 // sibling loops.
1408 //
1409 // When a new loop appears as a sibling loop after fully unrolling,
1410 // its nesting structure has fundamentally changed and we want to revisit
1411 // it to reflect that.
1412 //
1413 // When unrolling has removed the current loop, we need to tell the
1414 // infrastructure that it is gone.
1415 //
1416 // Finally, we support a debugging/testing mode where we revisit child loops
1417 // as well. These are not expected to require further optimizations as either
1418 // they or the loop they were cloned from have been directly visited already.
1419 // But the debugging mode allows us to check this assumption.
1420 bool IsCurrentLoopValid = false;
1421 SmallVector<Loop *, 4> SibLoops;
1422 if (ParentL)
1423 SibLoops.append(ParentL->begin(), ParentL->end());
1424 else
1425 SibLoops.append(AR.LI.begin(), AR.LI.end());
1426 erase_if(SibLoops, [&](Loop *SibLoop) {
1427 if (SibLoop == &L) {
1428 IsCurrentLoopValid = true;
1429 return true;
1430 }
1431
1432 // Otherwise erase the loop from the list if it was in the old loops.
1433 return OldLoops.contains(SibLoop);
1434 });
1435 Updater.addSiblingLoops(SibLoops);
1436
1437 if (!IsCurrentLoopValid) {
1438 Updater.markLoopAsDeleted(L, LoopName);
1439 } else {
1440 // We can only walk child loops if the current loop remained valid.
1441 if (UnrollRevisitChildLoops) {
1442 // Walk *all* of the child loops.
1443 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1444 Updater.addChildLoops(ChildLoops);
1445 }
1446 }
1447
1448 return getLoopPassPreservedAnalyses();
1449 }
1450
run(Function & F,FunctionAnalysisManager & AM)1451 PreservedAnalyses LoopUnrollPass::run(Function &F,
1452 FunctionAnalysisManager &AM) {
1453 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1454 auto &LI = AM.getResult<LoopAnalysis>(F);
1455 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1456 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1457 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1458 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1459
1460 LoopAnalysisManager *LAM = nullptr;
1461 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1462 LAM = &LAMProxy->getManager();
1463
1464 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1465 ProfileSummaryInfo *PSI =
1466 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1467 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1468 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1469
1470 bool Changed = false;
1471
1472 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1473 // Since simplification may add new inner loops, it has to run before the
1474 // legality and profitability checks. This means running the loop unroller
1475 // will simplify all loops, regardless of whether anything end up being
1476 // unrolled.
1477 for (auto &L : LI) {
1478 Changed |=
1479 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1480 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1481 }
1482
1483 // Add the loop nests in the reverse order of LoopInfo. See method
1484 // declaration.
1485 SmallPriorityWorklist<Loop *, 4> Worklist;
1486 appendLoopsToWorklist(LI, Worklist);
1487
1488 while (!Worklist.empty()) {
1489 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1490 // from back to front so that we work forward across the CFG, which
1491 // for unrolling is only needed to get optimization remarks emitted in
1492 // a forward order.
1493 Loop &L = *Worklist.pop_back_val();
1494 #ifndef NDEBUG
1495 Loop *ParentL = L.getParentLoop();
1496 #endif
1497
1498 // Check if the profile summary indicates that the profiled application
1499 // has a huge working set size, in which case we disable peeling to avoid
1500 // bloating it further.
1501 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1502 if (PSI && PSI->hasHugeWorkingSetSize())
1503 LocalAllowPeeling = false;
1504 std::string LoopName = std::string(L.getName());
1505 // The API here is quite complex to call and we allow to select some
1506 // flavors of unrolling during construction time (by setting UnrollOpts).
1507 LoopUnrollResult Result = tryToUnrollLoop(
1508 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1509 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1510 UnrollOpts.ForgetSCEV, /*Count*/ None,
1511 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime,
1512 UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1513 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1514 Changed |= Result != LoopUnrollResult::Unmodified;
1515
1516 // The parent must not be damaged by unrolling!
1517 #ifndef NDEBUG
1518 if (Result != LoopUnrollResult::Unmodified && ParentL)
1519 ParentL->verifyLoop();
1520 #endif
1521
1522 // Clear any cached analysis results for L if we removed it completely.
1523 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1524 LAM->clear(L, LoopName);
1525 }
1526
1527 if (!Changed)
1528 return PreservedAnalyses::all();
1529
1530 return getLoopPassPreservedAnalyses();
1531 }
1532