1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 /// These variables are used for both exceptions and setjmp/longjmps.
48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 /// means nothing occurred, 1 means an exception occurred, and other numbers
50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
52 /// __threwValue is 0 for exceptions, and the argument to longjmp in case of
53 /// longjmp.
54 ///
55 /// * Exception handling
56 ///
57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
58 /// at link time. setThrew exists in Emscripten's compiler-rt:
59 ///
60 /// void setThrew(uintptr_t threw, int value) {
61 /// if (__THREW__ == 0) {
62 /// __THREW__ = threw;
63 /// __threwValue = value;
64 /// }
65 /// }
66 //
67 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
68 /// In exception handling, getTempRet0 indicates the type of an exception
69 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
70 /// function.
71 ///
72 /// 3) Lower
73 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
74 /// into
75 /// __THREW__ = 0;
76 /// call @__invoke_SIG(func, arg1, arg2)
77 /// %__THREW__.val = __THREW__;
78 /// __THREW__ = 0;
79 /// if (%__THREW__.val == 1)
80 /// goto %lpad
81 /// else
82 /// goto %invoke.cont
83 /// SIG is a mangled string generated based on the LLVM IR-level function
84 /// signature. After LLVM IR types are lowered to the target wasm types,
85 /// the names for these wrappers will change based on wasm types as well,
86 /// as in invoke_vi (function takes an int and returns void). The bodies of
87 /// these wrappers will be generated in JS glue code, and inside those
88 /// wrappers we use JS try-catch to generate actual exception effects. It
89 /// also calls the original callee function. An example wrapper in JS code
90 /// would look like this:
91 /// function invoke_vi(index,a1) {
92 /// try {
93 /// Module["dynCall_vi"](index,a1); // This calls original callee
94 /// } catch(e) {
95 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
96 /// _setThrew(1, 0); // setThrew is called here
97 /// }
98 /// }
99 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
100 /// so we can jump to the right BB based on this value.
101 ///
102 /// 4) Lower
103 /// %val = landingpad catch c1 catch c2 catch c3 ...
104 /// ... use %val ...
105 /// into
106 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
107 /// %val = {%fmc, getTempRet0()}
108 /// ... use %val ...
109 /// Here N is a number calculated based on the number of clauses.
110 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
111 ///
112 /// 5) Lower
113 /// resume {%a, %b}
114 /// into
115 /// call @__resumeException(%a)
116 /// where __resumeException() is a function in JS glue code.
117 ///
118 /// 6) Lower
119 /// call @llvm.eh.typeid.for(type) (intrinsic)
120 /// into
121 /// call @llvm_eh_typeid_for(type)
122 /// llvm_eh_typeid_for function will be generated in JS glue code.
123 ///
124 /// * Setjmp / Longjmp handling
125 ///
126 /// In case calls to longjmp() exists
127 ///
128 /// 1) Lower
129 /// longjmp(buf, value)
130 /// into
131 /// emscripten_longjmp(buf, value)
132 ///
133 /// In case calls to setjmp() exists
134 ///
135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
136 /// sejmpTableSize as follows:
137 /// setjmpTableSize = 4;
138 /// setjmpTable = (int *) malloc(40);
139 /// setjmpTable[0] = 0;
140 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
141 /// Emscripten compiler-rt.
142 ///
143 /// 3) Lower
144 /// setjmp(buf)
145 /// into
146 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
147 /// setjmpTableSize = getTempRet0();
148 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
149 /// is incrementally assigned from 0) and its label (a unique number that
150 /// represents each callsite of setjmp). When we need more entries in
151 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
152 /// compiler-rt and it will return the new table address, and assign the new
153 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
154 /// the buffer buf. A BB with setjmp is split into two after setjmp call in
155 /// order to make the post-setjmp BB the possible destination of longjmp BB.
156 ///
157 ///
158 /// 4) Lower every call that might longjmp into
159 /// __THREW__ = 0;
160 /// call @__invoke_SIG(func, arg1, arg2)
161 /// %__THREW__.val = __THREW__;
162 /// __THREW__ = 0;
163 /// %__threwValue.val = __threwValue;
164 /// if (%__THREW__.val != 0 & %__threwValue.val != 0) {
165 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
166 /// setjmpTableSize);
167 /// if (%label == 0)
168 /// emscripten_longjmp(%__THREW__.val, %__threwValue.val);
169 /// setTempRet0(%__threwValue.val);
170 /// } else {
171 /// %label = -1;
172 /// }
173 /// longjmp_result = getTempRet0();
174 /// switch label {
175 /// label 1: goto post-setjmp BB 1
176 /// label 2: goto post-setjmp BB 2
177 /// ...
178 /// default: goto splitted next BB
179 /// }
180 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
181 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
182 /// will be the address of matching jmp_buf buffer and __threwValue be the
183 /// second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
184 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
185 /// each setjmp callsite. Label 0 means this longjmp buffer does not
186 /// correspond to one of the setjmp callsites in this function, so in this
187 /// case we just chain the longjmp to the caller. Label -1 means no longjmp
188 /// occurred. Otherwise we jump to the right post-setjmp BB based on the
189 /// label.
190 ///
191 ///===----------------------------------------------------------------------===//
192
193 #include "WebAssembly.h"
194 #include "WebAssemblyTargetMachine.h"
195 #include "llvm/ADT/StringExtras.h"
196 #include "llvm/CodeGen/TargetPassConfig.h"
197 #include "llvm/IR/DebugInfoMetadata.h"
198 #include "llvm/IR/Dominators.h"
199 #include "llvm/IR/IRBuilder.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/SSAUpdater.h"
203
204 using namespace llvm;
205
206 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
207
208 static cl::list<std::string>
209 EHAllowlist("emscripten-cxx-exceptions-allowed",
210 cl::desc("The list of function names in which Emscripten-style "
211 "exception handling is enabled (see emscripten "
212 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
213 cl::CommaSeparated);
214
215 namespace {
216 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
217 bool EnableEH; // Enable exception handling
218 bool EnableSjLj; // Enable setjmp/longjmp handling
219 bool DoSjLj; // Whether we actually perform setjmp/longjmp handling
220
221 GlobalVariable *ThrewGV = nullptr;
222 GlobalVariable *ThrewValueGV = nullptr;
223 Function *GetTempRet0Func = nullptr;
224 Function *SetTempRet0Func = nullptr;
225 Function *ResumeF = nullptr;
226 Function *EHTypeIDF = nullptr;
227 Function *EmLongjmpF = nullptr;
228 Function *SaveSetjmpF = nullptr;
229 Function *TestSetjmpF = nullptr;
230
231 // __cxa_find_matching_catch_N functions.
232 // Indexed by the number of clauses in an original landingpad instruction.
233 DenseMap<int, Function *> FindMatchingCatches;
234 // Map of <function signature string, invoke_ wrappers>
235 StringMap<Function *> InvokeWrappers;
236 // Set of allowed function names for exception handling
237 std::set<std::string> EHAllowlistSet;
238 // Functions that contains calls to setjmp
239 SmallPtrSet<Function *, 8> SetjmpUsers;
240
getPassName() const241 StringRef getPassName() const override {
242 return "WebAssembly Lower Emscripten Exceptions";
243 }
244
245 bool runEHOnFunction(Function &F);
246 bool runSjLjOnFunction(Function &F);
247 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
248
249 Value *wrapInvoke(CallBase *CI);
250 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
251 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
252 Value *&LongjmpResult, BasicBlock *&EndBB);
253 Function *getInvokeWrapper(CallBase *CI);
254
areAllExceptionsAllowed() const255 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
256 bool canLongjmp(Module &M, const Value *Callee) const;
257 bool isEmAsmCall(Module &M, const Value *Callee) const;
supportsException(const Function * F) const258 bool supportsException(const Function *F) const {
259 return EnableEH && (areAllExceptionsAllowed() ||
260 EHAllowlistSet.count(std::string(F->getName())));
261 }
262
263 void rebuildSSA(Function &F);
264
265 public:
266 static char ID;
267
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)268 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
269 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
270 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
271 }
272 bool runOnModule(Module &M) override;
273
getAnalysisUsage(AnalysisUsage & AU) const274 void getAnalysisUsage(AnalysisUsage &AU) const override {
275 AU.addRequired<DominatorTreeWrapperPass>();
276 }
277 };
278 } // End anonymous namespace
279
280 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
281 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
282 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
283 false, false)
284
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)285 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
286 bool EnableSjLj) {
287 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
288 }
289
canThrow(const Value * V)290 static bool canThrow(const Value *V) {
291 if (const auto *F = dyn_cast<const Function>(V)) {
292 // Intrinsics cannot throw
293 if (F->isIntrinsic())
294 return false;
295 StringRef Name = F->getName();
296 // leave setjmp and longjmp (mostly) alone, we process them properly later
297 if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
298 return false;
299 return !F->doesNotThrow();
300 }
301 // not a function, so an indirect call - can throw, we can't tell
302 return true;
303 }
304
305 // Get a global variable with the given name. If it doesn't exist declare it,
306 // which will generate an import and assume that it will exist at link time.
getGlobalVariable(Module & M,Type * Ty,WebAssemblyTargetMachine & TM,const char * Name)307 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
308 WebAssemblyTargetMachine &TM,
309 const char *Name) {
310 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
311 if (!GV)
312 report_fatal_error(Twine("unable to create global: ") + Name);
313
314 // If the target supports TLS, make this variable thread-local. We can't just
315 // unconditionally make it thread-local and depend on
316 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
317 // the side effect of disallowing the object from being linked into a
318 // shared-memory module, which we don't want to be responsible for.
319 auto *Subtarget = TM.getSubtargetImpl();
320 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
321 ? GlobalValue::LocalExecTLSModel
322 : GlobalValue::NotThreadLocal;
323 GV->setThreadLocalMode(TLS);
324 return GV;
325 }
326
327 // Simple function name mangler.
328 // This function simply takes LLVM's string representation of parameter types
329 // and concatenate them with '_'. There are non-alphanumeric characters but llc
330 // is ok with it, and we need to postprocess these names after the lowering
331 // phase anyway.
getSignature(FunctionType * FTy)332 static std::string getSignature(FunctionType *FTy) {
333 std::string Sig;
334 raw_string_ostream OS(Sig);
335 OS << *FTy->getReturnType();
336 for (Type *ParamTy : FTy->params())
337 OS << "_" << *ParamTy;
338 if (FTy->isVarArg())
339 OS << "_...";
340 Sig = OS.str();
341 erase_if(Sig, isSpace);
342 // When s2wasm parses .s file, a comma means the end of an argument. So a
343 // mangled function name can contain any character but a comma.
344 std::replace(Sig.begin(), Sig.end(), ',', '.');
345 return Sig;
346 }
347
getEmscriptenFunction(FunctionType * Ty,const Twine & Name,Module * M)348 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
349 Module *M) {
350 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
351 // Tell the linker that this function is expected to be imported from the
352 // 'env' module.
353 if (!F->hasFnAttribute("wasm-import-module")) {
354 llvm::AttrBuilder B;
355 B.addAttribute("wasm-import-module", "env");
356 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
357 }
358 if (!F->hasFnAttribute("wasm-import-name")) {
359 llvm::AttrBuilder B;
360 B.addAttribute("wasm-import-name", F->getName());
361 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
362 }
363 return F;
364 }
365
366 // Returns an integer type for the target architecture's address space.
367 // i32 for wasm32 and i64 for wasm64.
getAddrIntType(Module * M)368 static Type *getAddrIntType(Module *M) {
369 IRBuilder<> IRB(M->getContext());
370 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
371 }
372
373 // Returns an integer pointer type for the target architecture's address space.
374 // i32* for wasm32 and i64* for wasm64.
getAddrPtrType(Module * M)375 static Type *getAddrPtrType(Module *M) {
376 return Type::getIntNPtrTy(M->getContext(),
377 M->getDataLayout().getPointerSizeInBits());
378 }
379
380 // Returns an integer whose type is the integer type for the target's address
381 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
382 // integer.
getAddrSizeInt(Module * M,uint64_t C)383 static Value *getAddrSizeInt(Module *M, uint64_t C) {
384 IRBuilder<> IRB(M->getContext());
385 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
386 }
387
388 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
389 // This is because a landingpad instruction contains two more arguments, a
390 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
391 // functions are named after the number of arguments in the original landingpad
392 // instruction.
393 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)394 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
395 unsigned NumClauses) {
396 if (FindMatchingCatches.count(NumClauses))
397 return FindMatchingCatches[NumClauses];
398 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
399 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
400 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
401 Function *F = getEmscriptenFunction(
402 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
403 FindMatchingCatches[NumClauses] = F;
404 return F;
405 }
406
407 // Generate invoke wrapper seqence with preamble and postamble
408 // Preamble:
409 // __THREW__ = 0;
410 // Postamble:
411 // %__THREW__.val = __THREW__; __THREW__ = 0;
412 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
413 // whether longjmp occurred), for future use.
wrapInvoke(CallBase * CI)414 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
415 Module *M = CI->getModule();
416 LLVMContext &C = M->getContext();
417
418 // If we are calling a function that is noreturn, we must remove that
419 // attribute. The code we insert here does expect it to return, after we
420 // catch the exception.
421 if (CI->doesNotReturn()) {
422 if (auto *F = CI->getCalledFunction())
423 F->removeFnAttr(Attribute::NoReturn);
424 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
425 }
426
427 IRBuilder<> IRB(C);
428 IRB.SetInsertPoint(CI);
429
430 // Pre-invoke
431 // __THREW__ = 0;
432 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
433
434 // Invoke function wrapper in JavaScript
435 SmallVector<Value *, 16> Args;
436 // Put the pointer to the callee as first argument, so it can be called
437 // within the invoke wrapper later
438 Args.push_back(CI->getCalledOperand());
439 Args.append(CI->arg_begin(), CI->arg_end());
440 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
441 NewCall->takeName(CI);
442 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
443 NewCall->setDebugLoc(CI->getDebugLoc());
444
445 // Because we added the pointer to the callee as first argument, all
446 // argument attribute indices have to be incremented by one.
447 SmallVector<AttributeSet, 8> ArgAttributes;
448 const AttributeList &InvokeAL = CI->getAttributes();
449
450 // No attributes for the callee pointer.
451 ArgAttributes.push_back(AttributeSet());
452 // Copy the argument attributes from the original
453 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
454 ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
455
456 AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
457 if (FnAttrs.contains(Attribute::AllocSize)) {
458 // The allocsize attribute (if any) referes to parameters by index and needs
459 // to be adjusted.
460 unsigned SizeArg;
461 Optional<unsigned> NEltArg;
462 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
463 SizeArg += 1;
464 if (NEltArg.hasValue())
465 NEltArg = NEltArg.getValue() + 1;
466 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
467 }
468
469 // Reconstruct the AttributesList based on the vector we constructed.
470 AttributeList NewCallAL =
471 AttributeList::get(C, AttributeSet::get(C, FnAttrs),
472 InvokeAL.getRetAttributes(), ArgAttributes);
473 NewCall->setAttributes(NewCallAL);
474
475 CI->replaceAllUsesWith(NewCall);
476
477 // Post-invoke
478 // %__THREW__.val = __THREW__; __THREW__ = 0;
479 Value *Threw =
480 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
481 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
482 return Threw;
483 }
484
485 // Get matching invoke wrapper based on callee signature
getInvokeWrapper(CallBase * CI)486 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
487 Module *M = CI->getModule();
488 SmallVector<Type *, 16> ArgTys;
489 FunctionType *CalleeFTy = CI->getFunctionType();
490
491 std::string Sig = getSignature(CalleeFTy);
492 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
493 return InvokeWrappers[Sig];
494
495 // Put the pointer to the callee as first argument
496 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
497 // Add argument types
498 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
499
500 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
501 CalleeFTy->isVarArg());
502 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
503 InvokeWrappers[Sig] = F;
504 return F;
505 }
506
canLongjmp(Module & M,const Value * Callee) const507 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
508 const Value *Callee) const {
509 if (auto *CalleeF = dyn_cast<Function>(Callee))
510 if (CalleeF->isIntrinsic())
511 return false;
512
513 // Attempting to transform inline assembly will result in something like:
514 // call void @__invoke_void(void ()* asm ...)
515 // which is invalid because inline assembly blocks do not have addresses
516 // and can't be passed by pointer. The result is a crash with illegal IR.
517 if (isa<InlineAsm>(Callee))
518 return false;
519 StringRef CalleeName = Callee->getName();
520
521 // The reason we include malloc/free here is to exclude the malloc/free
522 // calls generated in setjmp prep / cleanup routines.
523 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
524 return false;
525
526 // There are functions in Emscripten's JS glue code or compiler-rt
527 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
528 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
529 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
530 return false;
531
532 // __cxa_find_matching_catch_N functions cannot longjmp
533 if (Callee->getName().startswith("__cxa_find_matching_catch_"))
534 return false;
535
536 // Exception-catching related functions
537 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
538 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
539 CalleeName == "__clang_call_terminate")
540 return false;
541
542 // Otherwise we don't know
543 return true;
544 }
545
isEmAsmCall(Module & M,const Value * Callee) const546 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
547 const Value *Callee) const {
548 StringRef CalleeName = Callee->getName();
549 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
550 return CalleeName == "emscripten_asm_const_int" ||
551 CalleeName == "emscripten_asm_const_double" ||
552 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
553 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
554 CalleeName == "emscripten_asm_const_async_on_main_thread";
555 }
556
557 // Generate testSetjmp function call seqence with preamble and postamble.
558 // The code this generates is equivalent to the following JavaScript code:
559 // %__threwValue.val = __threwValue;
560 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
561 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
562 // if (%label == 0)
563 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
564 // setTempRet0(%__threwValue.val);
565 // } else {
566 // %label = -1;
567 // }
568 // %longjmp_result = getTempRet0();
569 //
570 // As output parameters. returns %label, %longjmp_result, and the BB the last
571 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,DebugLoc DL,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)572 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
573 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
574 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
575 BasicBlock *&EndBB) {
576 Function *F = BB->getParent();
577 Module *M = F->getParent();
578 LLVMContext &C = M->getContext();
579 IRBuilder<> IRB(C);
580 IRB.SetCurrentDebugLocation(DL);
581
582 // if (%__THREW__.val != 0 & %__threwValue.val != 0)
583 IRB.SetInsertPoint(BB);
584 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
585 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
586 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
587 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
588 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
589 ThrewValueGV->getName() + ".val");
590 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
591 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
592 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
593
594 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
595 // if (%label == 0)
596 IRB.SetInsertPoint(ThenBB1);
597 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
598 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
599 Value *ThrewPtr =
600 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
601 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
602 ThrewPtr->getName() + ".loaded");
603 Value *ThenLabel = IRB.CreateCall(
604 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
605 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
606 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
607
608 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
609 IRB.SetInsertPoint(ThenBB2);
610 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
611 IRB.CreateUnreachable();
612
613 // setTempRet0(%__threwValue.val);
614 IRB.SetInsertPoint(EndBB2);
615 IRB.CreateCall(SetTempRet0Func, ThrewValue);
616 IRB.CreateBr(EndBB1);
617
618 IRB.SetInsertPoint(ElseBB1);
619 IRB.CreateBr(EndBB1);
620
621 // longjmp_result = getTempRet0();
622 IRB.SetInsertPoint(EndBB1);
623 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
624 LabelPHI->addIncoming(ThenLabel, EndBB2);
625
626 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
627
628 // Output parameter assignment
629 Label = LabelPHI;
630 EndBB = EndBB1;
631 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
632 }
633
rebuildSSA(Function & F)634 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
635 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
636 DT.recalculate(F); // CFG has been changed
637 SSAUpdater SSA;
638 for (BasicBlock &BB : F) {
639 for (Instruction &I : BB) {
640 SSA.Initialize(I.getType(), I.getName());
641 SSA.AddAvailableValue(&BB, &I);
642 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
643 Use &U = *UI;
644 ++UI;
645 auto *User = cast<Instruction>(U.getUser());
646 if (auto *UserPN = dyn_cast<PHINode>(User))
647 if (UserPN->getIncomingBlock(U) == &BB)
648 continue;
649
650 if (DT.dominates(&I, User))
651 continue;
652 SSA.RewriteUseAfterInsertions(U);
653 }
654 }
655 }
656 }
657
658 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
659 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
660 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
661 // match. jmp_buf* will eventually be lowered to i32 in the wasm backend.
replaceLongjmpWithEmscriptenLongjmp(Function * LongjmpF,Function * EmLongjmpF)662 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
663 Function *EmLongjmpF) {
664 Module *M = LongjmpF->getParent();
665 SmallVector<CallInst *, 8> ToErase;
666 LLVMContext &C = LongjmpF->getParent()->getContext();
667 IRBuilder<> IRB(C);
668
669 // For calls to longjmp, replace it with emscripten_longjmp and cast its first
670 // argument (jmp_buf*) to int
671 for (User *U : LongjmpF->users()) {
672 auto *CI = dyn_cast<CallInst>(U);
673 if (CI && CI->getCalledFunction() == LongjmpF) {
674 IRB.SetInsertPoint(CI);
675 Value *Jmpbuf =
676 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
677 IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
678 ToErase.push_back(CI);
679 }
680 }
681 for (auto *I : ToErase)
682 I->eraseFromParent();
683
684 // If we have any remaining uses of longjmp's function pointer, replace it
685 // with (int(*)(jmp_buf*, int))emscripten_longjmp.
686 if (!LongjmpF->uses().empty()) {
687 Value *EmLongjmp =
688 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
689 LongjmpF->replaceAllUsesWith(EmLongjmp);
690 }
691 }
692
runOnModule(Module & M)693 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
694 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
695
696 LLVMContext &C = M.getContext();
697 IRBuilder<> IRB(C);
698
699 Function *SetjmpF = M.getFunction("setjmp");
700 Function *LongjmpF = M.getFunction("longjmp");
701 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
702 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
703 DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
704
705 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
706 assert(TPC && "Expected a TargetPassConfig");
707 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
708
709 if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
710 report_fatal_error("-exception-model=wasm not allowed with "
711 "-enable-emscripten-cxx-exceptions");
712
713 // Declare (or get) global variables __THREW__, __threwValue, and
714 // getTempRet0/setTempRet0 function which are used in common for both
715 // exception handling and setjmp/longjmp handling
716 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
717 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
718 GetTempRet0Func = getEmscriptenFunction(
719 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
720 SetTempRet0Func = getEmscriptenFunction(
721 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
722 "setTempRet0", &M);
723 GetTempRet0Func->setDoesNotThrow();
724 SetTempRet0Func->setDoesNotThrow();
725
726 bool Changed = false;
727
728 // Function registration for exception handling
729 if (EnableEH) {
730 // Register __resumeException function
731 FunctionType *ResumeFTy =
732 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
733 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
734
735 // Register llvm_eh_typeid_for function
736 FunctionType *EHTypeIDTy =
737 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
738 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
739 }
740
741 // Function registration and data pre-gathering for setjmp/longjmp handling
742 if (DoSjLj) {
743 // Register emscripten_longjmp function
744 FunctionType *FTy = FunctionType::get(
745 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
746 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
747
748 if (SetjmpF) {
749 // Register saveSetjmp function
750 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
751 FTy = FunctionType::get(Type::getInt32PtrTy(C),
752 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
753 Type::getInt32PtrTy(C), IRB.getInt32Ty()},
754 false);
755 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
756
757 // Register testSetjmp function
758 FTy = FunctionType::get(
759 IRB.getInt32Ty(),
760 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
761 false);
762 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
763
764 // Precompute setjmp users
765 for (User *U : SetjmpF->users()) {
766 auto *UI = cast<Instruction>(U);
767 SetjmpUsers.insert(UI->getFunction());
768 }
769 }
770 }
771
772 // Exception handling transformation
773 if (EnableEH) {
774 for (Function &F : M) {
775 if (F.isDeclaration())
776 continue;
777 Changed |= runEHOnFunction(F);
778 }
779 }
780
781 // Setjmp/longjmp handling transformation
782 if (DoSjLj) {
783 Changed = true; // We have setjmp or longjmp somewhere
784 if (LongjmpF)
785 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
786 // Only traverse functions that uses setjmp in order not to insert
787 // unnecessary prep / cleanup code in every function
788 if (SetjmpF)
789 for (Function *F : SetjmpUsers)
790 runSjLjOnFunction(*F);
791 }
792
793 if (!Changed) {
794 // Delete unused global variables and functions
795 if (ResumeF)
796 ResumeF->eraseFromParent();
797 if (EHTypeIDF)
798 EHTypeIDF->eraseFromParent();
799 if (EmLongjmpF)
800 EmLongjmpF->eraseFromParent();
801 if (SaveSetjmpF)
802 SaveSetjmpF->eraseFromParent();
803 if (TestSetjmpF)
804 TestSetjmpF->eraseFromParent();
805 return false;
806 }
807
808 return true;
809 }
810
runEHOnFunction(Function & F)811 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
812 Module &M = *F.getParent();
813 LLVMContext &C = F.getContext();
814 IRBuilder<> IRB(C);
815 bool Changed = false;
816 SmallVector<Instruction *, 64> ToErase;
817 SmallPtrSet<LandingPadInst *, 32> LandingPads;
818
819 for (BasicBlock &BB : F) {
820 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
821 if (!II)
822 continue;
823 Changed = true;
824 LandingPads.insert(II->getLandingPadInst());
825 IRB.SetInsertPoint(II);
826
827 const Value *Callee = II->getCalledOperand();
828 bool NeedInvoke = supportsException(&F) && canThrow(Callee);
829 if (NeedInvoke) {
830 // Wrap invoke with invoke wrapper and generate preamble/postamble
831 Value *Threw = wrapInvoke(II);
832 ToErase.push_back(II);
833
834 // If setjmp/longjmp handling is enabled, the thrown value can be not an
835 // exception but a longjmp. If the current function contains calls to
836 // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
837 // if the function does not contain setjmp calls, we shouldn't silently
838 // ignore longjmps; we should rethrow them so they can be correctly
839 // handled in somewhere up the call chain where setjmp is.
840 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
841 // thrown, other values when longjmp is thrown.
842 //
843 // if (%__THREW__.val == 0 || %__THREW__.val == 1)
844 // goto %tail
845 // else
846 // goto %longjmp.rethrow
847 //
848 // longjmp.rethrow: ;; This is longjmp. Rethrow it
849 // %__threwValue.val = __threwValue
850 // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
851 //
852 // tail: ;; Nothing happened or an exception is thrown
853 // ... Continue exception handling ...
854 if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(M, Callee)) {
855 BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
856 BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
857 Value *CmpEqOne =
858 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
859 Value *CmpEqZero =
860 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
861 Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
862 IRB.CreateCondBr(Or, Tail, RethrowBB);
863 IRB.SetInsertPoint(RethrowBB);
864 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
865 ThrewValueGV->getName() + ".val");
866 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
867
868 IRB.CreateUnreachable();
869 IRB.SetInsertPoint(Tail);
870 }
871
872 // Insert a branch based on __THREW__ variable
873 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
874 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
875
876 } else {
877 // This can't throw, and we don't need this invoke, just replace it with a
878 // call+branch
879 SmallVector<Value *, 16> Args(II->args());
880 CallInst *NewCall =
881 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
882 NewCall->takeName(II);
883 NewCall->setCallingConv(II->getCallingConv());
884 NewCall->setDebugLoc(II->getDebugLoc());
885 NewCall->setAttributes(II->getAttributes());
886 II->replaceAllUsesWith(NewCall);
887 ToErase.push_back(II);
888
889 IRB.CreateBr(II->getNormalDest());
890
891 // Remove any PHI node entries from the exception destination
892 II->getUnwindDest()->removePredecessor(&BB);
893 }
894 }
895
896 // Process resume instructions
897 for (BasicBlock &BB : F) {
898 // Scan the body of the basic block for resumes
899 for (Instruction &I : BB) {
900 auto *RI = dyn_cast<ResumeInst>(&I);
901 if (!RI)
902 continue;
903 Changed = true;
904
905 // Split the input into legal values
906 Value *Input = RI->getValue();
907 IRB.SetInsertPoint(RI);
908 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
909 // Create a call to __resumeException function
910 IRB.CreateCall(ResumeF, {Low});
911 // Add a terminator to the block
912 IRB.CreateUnreachable();
913 ToErase.push_back(RI);
914 }
915 }
916
917 // Process llvm.eh.typeid.for intrinsics
918 for (BasicBlock &BB : F) {
919 for (Instruction &I : BB) {
920 auto *CI = dyn_cast<CallInst>(&I);
921 if (!CI)
922 continue;
923 const Function *Callee = CI->getCalledFunction();
924 if (!Callee)
925 continue;
926 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
927 continue;
928 Changed = true;
929
930 IRB.SetInsertPoint(CI);
931 CallInst *NewCI =
932 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
933 CI->replaceAllUsesWith(NewCI);
934 ToErase.push_back(CI);
935 }
936 }
937
938 // Look for orphan landingpads, can occur in blocks with no predecessors
939 for (BasicBlock &BB : F) {
940 Instruction *I = BB.getFirstNonPHI();
941 if (auto *LPI = dyn_cast<LandingPadInst>(I))
942 LandingPads.insert(LPI);
943 }
944 Changed |= !LandingPads.empty();
945
946 // Handle all the landingpad for this function together, as multiple invokes
947 // may share a single lp
948 for (LandingPadInst *LPI : LandingPads) {
949 IRB.SetInsertPoint(LPI);
950 SmallVector<Value *, 16> FMCArgs;
951 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
952 Constant *Clause = LPI->getClause(I);
953 // TODO Handle filters (= exception specifications).
954 // https://bugs.llvm.org/show_bug.cgi?id=50396
955 if (LPI->isCatch(I))
956 FMCArgs.push_back(Clause);
957 }
958
959 // Create a call to __cxa_find_matching_catch_N function
960 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
961 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
962 Value *Undef = UndefValue::get(LPI->getType());
963 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
964 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
965 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
966
967 LPI->replaceAllUsesWith(Pair1);
968 ToErase.push_back(LPI);
969 }
970
971 // Erase everything we no longer need in this function
972 for (Instruction *I : ToErase)
973 I->eraseFromParent();
974
975 return Changed;
976 }
977
978 // This tries to get debug info from the instruction before which a new
979 // instruction will be inserted, and if there's no debug info in that
980 // instruction, tries to get the info instead from the previous instruction (if
981 // any). If none of these has debug info and a DISubprogram is provided, it
982 // creates a dummy debug info with the first line of the function, because IR
983 // verifier requires all inlinable callsites should have debug info when both a
984 // caller and callee have DISubprogram. If none of these conditions are met,
985 // returns empty info.
getOrCreateDebugLoc(const Instruction * InsertBefore,DISubprogram * SP)986 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
987 DISubprogram *SP) {
988 assert(InsertBefore);
989 if (InsertBefore->getDebugLoc())
990 return InsertBefore->getDebugLoc();
991 const Instruction *Prev = InsertBefore->getPrevNode();
992 if (Prev && Prev->getDebugLoc())
993 return Prev->getDebugLoc();
994 if (SP)
995 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
996 return DebugLoc();
997 }
998
runSjLjOnFunction(Function & F)999 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1000 Module &M = *F.getParent();
1001 LLVMContext &C = F.getContext();
1002 IRBuilder<> IRB(C);
1003 SmallVector<Instruction *, 64> ToErase;
1004 // Vector of %setjmpTable values
1005 std::vector<Instruction *> SetjmpTableInsts;
1006 // Vector of %setjmpTableSize values
1007 std::vector<Instruction *> SetjmpTableSizeInsts;
1008
1009 // Setjmp preparation
1010
1011 // This instruction effectively means %setjmpTableSize = 4.
1012 // We create this as an instruction intentionally, and we don't want to fold
1013 // this instruction to a constant 4, because this value will be used in
1014 // SSAUpdater.AddAvailableValue(...) later.
1015 BasicBlock &EntryBB = F.getEntryBlock();
1016 DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
1017 BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
1018 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
1019 &*EntryBB.getFirstInsertionPt());
1020 SetjmpTableSize->setDebugLoc(FirstDL);
1021 // setjmpTable = (int *) malloc(40);
1022 Instruction *SetjmpTable = CallInst::CreateMalloc(
1023 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1024 nullptr, nullptr, "setjmpTable");
1025 SetjmpTable->setDebugLoc(FirstDL);
1026 // CallInst::CreateMalloc may return a bitcast instruction if the result types
1027 // mismatch. We need to set the debug loc for the original call too.
1028 auto *MallocCall = SetjmpTable->stripPointerCasts();
1029 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1030 MallocCallI->setDebugLoc(FirstDL);
1031 }
1032 // setjmpTable[0] = 0;
1033 IRB.SetInsertPoint(SetjmpTableSize);
1034 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1035 SetjmpTableInsts.push_back(SetjmpTable);
1036 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1037
1038 // Setjmp transformation
1039 std::vector<PHINode *> SetjmpRetPHIs;
1040 Function *SetjmpF = M.getFunction("setjmp");
1041 for (User *U : SetjmpF->users()) {
1042 auto *CI = dyn_cast<CallInst>(U);
1043 if (!CI)
1044 report_fatal_error("Does not support indirect calls to setjmp");
1045
1046 BasicBlock *BB = CI->getParent();
1047 if (BB->getParent() != &F) // in other function
1048 continue;
1049
1050 // The tail is everything right after the call, and will be reached once
1051 // when setjmp is called, and later when longjmp returns to the setjmp
1052 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1053 // Add a phi to the tail, which will be the output of setjmp, which
1054 // indicates if this is the first call or a longjmp back. The phi directly
1055 // uses the right value based on where we arrive from
1056 IRB.SetInsertPoint(Tail->getFirstNonPHI());
1057 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1058
1059 // setjmp initial call returns 0
1060 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1061 // The proper output is now this, not the setjmp call itself
1062 CI->replaceAllUsesWith(SetjmpRet);
1063 // longjmp returns to the setjmp will add themselves to this phi
1064 SetjmpRetPHIs.push_back(SetjmpRet);
1065
1066 // Fix call target
1067 // Our index in the function is our place in the array + 1 to avoid index
1068 // 0, because index 0 means the longjmp is not ours to handle.
1069 IRB.SetInsertPoint(CI);
1070 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1071 SetjmpTable, SetjmpTableSize};
1072 Instruction *NewSetjmpTable =
1073 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1074 Instruction *NewSetjmpTableSize =
1075 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
1076 SetjmpTableInsts.push_back(NewSetjmpTable);
1077 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1078 ToErase.push_back(CI);
1079 }
1080
1081 // Update each call that can longjmp so it can return to a setjmp where
1082 // relevant.
1083
1084 // Because we are creating new BBs while processing and don't want to make
1085 // all these newly created BBs candidates again for longjmp processing, we
1086 // first make the vector of candidate BBs.
1087 std::vector<BasicBlock *> BBs;
1088 for (BasicBlock &BB : F)
1089 BBs.push_back(&BB);
1090
1091 // BBs.size() will change within the loop, so we query it every time
1092 for (unsigned I = 0; I < BBs.size(); I++) {
1093 BasicBlock *BB = BBs[I];
1094 for (Instruction &I : *BB) {
1095 assert(!isa<InvokeInst>(&I));
1096 auto *CI = dyn_cast<CallInst>(&I);
1097 if (!CI)
1098 continue;
1099
1100 const Value *Callee = CI->getCalledOperand();
1101 if (!canLongjmp(M, Callee))
1102 continue;
1103 if (isEmAsmCall(M, Callee))
1104 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1105 F.getName() +
1106 ". Please consider using EM_JS, or move the "
1107 "EM_ASM into another function.",
1108 false);
1109
1110 Value *Threw = nullptr;
1111 BasicBlock *Tail;
1112 if (Callee->getName().startswith("__invoke_")) {
1113 // If invoke wrapper has already been generated for this call in
1114 // previous EH phase, search for the load instruction
1115 // %__THREW__.val = __THREW__;
1116 // in postamble after the invoke wrapper call
1117 LoadInst *ThrewLI = nullptr;
1118 StoreInst *ThrewResetSI = nullptr;
1119 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1120 I != IE; ++I) {
1121 if (auto *LI = dyn_cast<LoadInst>(I))
1122 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1123 if (GV == ThrewGV) {
1124 Threw = ThrewLI = LI;
1125 break;
1126 }
1127 }
1128 // Search for the store instruction after the load above
1129 // __THREW__ = 0;
1130 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1131 I != IE; ++I) {
1132 if (auto *SI = dyn_cast<StoreInst>(I)) {
1133 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1134 if (GV == ThrewGV &&
1135 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1136 ThrewResetSI = SI;
1137 break;
1138 }
1139 }
1140 }
1141 }
1142 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1143 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1144 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1145
1146 } else {
1147 // Wrap call with invoke wrapper and generate preamble/postamble
1148 Threw = wrapInvoke(CI);
1149 ToErase.push_back(CI);
1150 Tail = SplitBlock(BB, CI->getNextNode());
1151
1152 // If exception handling is enabled, the thrown value can be not a
1153 // longjmp but an exception, in which case we shouldn't silently ignore
1154 // exceptions; we should rethrow them.
1155 // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1156 // thrown, other values when longjmp is thrown.
1157 //
1158 // if (%__THREW__.val == 1)
1159 // goto %eh.rethrow
1160 // else
1161 // goto %normal
1162 //
1163 // eh.rethrow: ;; Rethrow exception
1164 // %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1165 // __resumeException(%exn)
1166 //
1167 // normal:
1168 // <-- Insertion point. Will insert sjlj handling code from here
1169 // goto %tail
1170 //
1171 // tail:
1172 // ...
1173 if (supportsException(&F) && canThrow(Callee)) {
1174 IRB.SetInsertPoint(CI);
1175 // We will add a new conditional branch. So remove the branch created
1176 // when we split the BB
1177 ToErase.push_back(BB->getTerminator());
1178 BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1179 BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
1180 Value *CmpEqOne =
1181 IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1182 IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
1183 IRB.SetInsertPoint(RethrowBB);
1184 CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1185 IRB.CreateCall(ResumeF, {Exn});
1186 IRB.CreateUnreachable();
1187 IRB.SetInsertPoint(NormalBB);
1188 IRB.CreateBr(Tail);
1189 BB = NormalBB; // New insertion point to insert testSetjmp()
1190 }
1191 }
1192
1193 // We need to replace the terminator in Tail - SplitBlock makes BB go
1194 // straight to Tail, we need to check if a longjmp occurred, and go to the
1195 // right setjmp-tail if so
1196 ToErase.push_back(BB->getTerminator());
1197
1198 // Generate a function call to testSetjmp function and preamble/postamble
1199 // code to figure out (1) whether longjmp occurred (2) if longjmp
1200 // occurred, which setjmp it corresponds to
1201 Value *Label = nullptr;
1202 Value *LongjmpResult = nullptr;
1203 BasicBlock *EndBB = nullptr;
1204 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1205 Label, LongjmpResult, EndBB);
1206 assert(Label && LongjmpResult && EndBB);
1207
1208 // Create switch instruction
1209 IRB.SetInsertPoint(EndBB);
1210 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1211 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1212 // -1 means no longjmp happened, continue normally (will hit the default
1213 // switch case). 0 means a longjmp that is not ours to handle, needs a
1214 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1215 // 0).
1216 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1217 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1218 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1219 }
1220
1221 // We are splitting the block here, and must continue to find other calls
1222 // in the block - which is now split. so continue to traverse in the Tail
1223 BBs.push_back(Tail);
1224 }
1225 }
1226
1227 // Erase everything we no longer need in this function
1228 for (Instruction *I : ToErase)
1229 I->eraseFromParent();
1230
1231 // Free setjmpTable buffer before each return instruction
1232 for (BasicBlock &BB : F) {
1233 Instruction *TI = BB.getTerminator();
1234 if (isa<ReturnInst>(TI)) {
1235 DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1236 auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1237 Free->setDebugLoc(DL);
1238 // CallInst::CreateFree may create a bitcast instruction if its argument
1239 // types mismatch. We need to set the debug loc for the bitcast too.
1240 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1241 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1242 BitCastI->setDebugLoc(DL);
1243 }
1244 }
1245 }
1246
1247 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1248 // (when buffer reallocation occurs)
1249 // entry:
1250 // setjmpTableSize = 4;
1251 // setjmpTable = (int *) malloc(40);
1252 // setjmpTable[0] = 0;
1253 // ...
1254 // somebb:
1255 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1256 // setjmpTableSize = getTempRet0();
1257 // So we need to make sure the SSA for these variables is valid so that every
1258 // saveSetjmp and testSetjmp calls have the correct arguments.
1259 SSAUpdater SetjmpTableSSA;
1260 SSAUpdater SetjmpTableSizeSSA;
1261 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1262 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1263 for (Instruction *I : SetjmpTableInsts)
1264 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1265 for (Instruction *I : SetjmpTableSizeInsts)
1266 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1267
1268 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1269 UI != UE;) {
1270 // Grab the use before incrementing the iterator.
1271 Use &U = *UI;
1272 // Increment the iterator before removing the use from the list.
1273 ++UI;
1274 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1275 if (I->getParent() != &EntryBB)
1276 SetjmpTableSSA.RewriteUse(U);
1277 }
1278 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1279 UI != UE;) {
1280 Use &U = *UI;
1281 ++UI;
1282 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1283 if (I->getParent() != &EntryBB)
1284 SetjmpTableSizeSSA.RewriteUse(U);
1285 }
1286
1287 // Finally, our modifications to the cfg can break dominance of SSA variables.
1288 // For example, in this code,
1289 // if (x()) { .. setjmp() .. }
1290 // if (y()) { .. longjmp() .. }
1291 // We must split the longjmp block, and it can jump into the block splitted
1292 // from setjmp one. But that means that when we split the setjmp block, it's
1293 // first part no longer dominates its second part - there is a theoretically
1294 // possible control flow path where x() is false, then y() is true and we
1295 // reach the second part of the setjmp block, without ever reaching the first
1296 // part. So, we rebuild SSA form here.
1297 rebuildSSA(F);
1298 return true;
1299 }
1300