1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
41
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
44
45 using namespace llvm;
46
47 static cl::opt<bool>
48 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
49 cl::desc("Disable type promotion pass"));
50
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
54 //
55 // define hidden i32 @cmp(i8 zeroext) {
56 // %2 = add i8 %0, -49
57 // %3 = icmp ult i8 %2, 3
58 // ..
59 // }
60 //
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
64 //
65 // t19: i32 = add t4, Constant:i32<-49>
66 // t24: i32 = and t19, Constant:i32<255>
67 //
68 // Consequently, we generate code like this:
69 //
70 // subs r0, #49
71 // uxtb r1, r0
72 // cmp r1, #3
73 //
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
77 //
78 // sub.w r1, r0, #49
79 // cmp r1, #3
80 //
81 // We achieve this by type promoting the IR to i32 like so for this example:
82 //
83 // define i32 @cmp(i8 zeroext %c) {
84 // %0 = zext i8 %c to i32
85 // %c.off = add i32 %0, -49
86 // %1 = icmp ult i32 %c.off, 3
87 // ..
88 // }
89 //
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
93 //
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
98 //
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
102
103 namespace {
104 class IRPromoter {
105 LLVMContext &Ctx;
106 IntegerType *OrigTy = nullptr;
107 unsigned PromotedWidth = 0;
108 SetVector<Value*> &Visited;
109 SetVector<Value*> &Sources;
110 SetVector<Instruction*> &Sinks;
111 SmallVectorImpl<Instruction*> &SafeWrap;
112 IntegerType *ExtTy = nullptr;
113 SmallPtrSet<Value*, 8> NewInsts;
114 SmallPtrSet<Instruction*, 4> InstsToRemove;
115 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
116 SmallPtrSet<Value*, 8> Promoted;
117
118 void ReplaceAllUsersOfWith(Value *From, Value *To);
119 void PrepareWrappingAdds(void);
120 void ExtendSources(void);
121 void ConvertTruncs(void);
122 void PromoteTree(void);
123 void TruncateSinks(void);
124 void Cleanup(void);
125
126 public:
IRPromoter(LLVMContext & C,IntegerType * Ty,unsigned Width,SetVector<Value * > & visited,SetVector<Value * > & sources,SetVector<Instruction * > & sinks,SmallVectorImpl<Instruction * > & wrap)127 IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
128 SetVector<Value*> &visited, SetVector<Value*> &sources,
129 SetVector<Instruction*> &sinks,
130 SmallVectorImpl<Instruction*> &wrap) :
131 Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
132 Sources(sources), Sinks(sinks), SafeWrap(wrap) {
133 ExtTy = IntegerType::get(Ctx, PromotedWidth);
134 assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() <
135 ExtTy->getPrimitiveSizeInBits().getFixedSize() &&
136 "Original type not smaller than extended type");
137 }
138
139 void Mutate();
140 };
141
142 class TypePromotion : public FunctionPass {
143 unsigned TypeSize = 0;
144 LLVMContext *Ctx = nullptr;
145 unsigned RegisterBitWidth = 0;
146 SmallPtrSet<Value*, 16> AllVisited;
147 SmallPtrSet<Instruction*, 8> SafeToPromote;
148 SmallVector<Instruction*, 4> SafeWrap;
149
150 // Does V have the same size result type as TypeSize.
151 bool EqualTypeSize(Value *V);
152 // Does V have the same size, or narrower, result type as TypeSize.
153 bool LessOrEqualTypeSize(Value *V);
154 // Does V have a result type that is wider than TypeSize.
155 bool GreaterThanTypeSize(Value *V);
156 // Does V have a result type that is narrower than TypeSize.
157 bool LessThanTypeSize(Value *V);
158 // Should V be a leaf in the promote tree?
159 bool isSource(Value *V);
160 // Should V be a root in the promotion tree?
161 bool isSink(Value *V);
162 // Should we change the result type of V? It will result in the users of V
163 // being visited.
164 bool shouldPromote(Value *V);
165 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
166 // result won't affect the computation?
167 bool isSafeWrap(Instruction *I);
168 // Can V have its integer type promoted, or can the type be ignored.
169 bool isSupportedType(Value *V);
170 // Is V an instruction with a supported opcode or another value that we can
171 // handle, such as constants and basic blocks.
172 bool isSupportedValue(Value *V);
173 // Is V an instruction thats result can trivially promoted, or has safe
174 // wrapping.
175 bool isLegalToPromote(Value *V);
176 bool TryToPromote(Value *V, unsigned PromotedWidth);
177
178 public:
179 static char ID;
180
TypePromotion()181 TypePromotion() : FunctionPass(ID) {}
182
getAnalysisUsage(AnalysisUsage & AU) const183 void getAnalysisUsage(AnalysisUsage &AU) const override {
184 AU.addRequired<TargetTransformInfoWrapperPass>();
185 AU.addRequired<TargetPassConfig>();
186 }
187
getPassName() const188 StringRef getPassName() const override { return PASS_NAME; }
189
190 bool runOnFunction(Function &F) override;
191 };
192
193 }
194
GenerateSignBits(Value * V)195 static bool GenerateSignBits(Value *V) {
196 if (!isa<Instruction>(V))
197 return false;
198
199 unsigned Opc = cast<Instruction>(V)->getOpcode();
200 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
201 Opc == Instruction::SRem || Opc == Instruction::SExt;
202 }
203
EqualTypeSize(Value * V)204 bool TypePromotion::EqualTypeSize(Value *V) {
205 return V->getType()->getScalarSizeInBits() == TypeSize;
206 }
207
LessOrEqualTypeSize(Value * V)208 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
209 return V->getType()->getScalarSizeInBits() <= TypeSize;
210 }
211
GreaterThanTypeSize(Value * V)212 bool TypePromotion::GreaterThanTypeSize(Value *V) {
213 return V->getType()->getScalarSizeInBits() > TypeSize;
214 }
215
LessThanTypeSize(Value * V)216 bool TypePromotion::LessThanTypeSize(Value *V) {
217 return V->getType()->getScalarSizeInBits() < TypeSize;
218 }
219
220 /// Return true if the given value is a source in the use-def chain, producing
221 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
222 /// of the tree to i32. We guarantee that these won't populate the upper bits
223 /// of the register. ZExt on the loads will be free, and the same for call
224 /// return values because we only accept ones that guarantee a zeroext ret val.
225 /// Many arguments will have the zeroext attribute too, so those would be free
226 /// too.
isSource(Value * V)227 bool TypePromotion::isSource(Value *V) {
228 if (!isa<IntegerType>(V->getType()))
229 return false;
230
231 // TODO Allow zext to be sources.
232 if (isa<Argument>(V))
233 return true;
234 else if (isa<LoadInst>(V))
235 return true;
236 else if (isa<BitCastInst>(V))
237 return true;
238 else if (auto *Call = dyn_cast<CallInst>(V))
239 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
240 else if (auto *Trunc = dyn_cast<TruncInst>(V))
241 return EqualTypeSize(Trunc);
242 return false;
243 }
244
245 /// Return true if V will require any promoted values to be truncated for the
246 /// the IR to remain valid. We can't mutate the value type of these
247 /// instructions.
isSink(Value * V)248 bool TypePromotion::isSink(Value *V) {
249 // TODO The truncate also isn't actually necessary because we would already
250 // proved that the data value is kept within the range of the original data
251 // type.
252
253 // Sinks are:
254 // - points where the value in the register is being observed, such as an
255 // icmp, switch or store.
256 // - points where value types have to match, such as calls and returns.
257 // - zext are included to ease the transformation and are generally removed
258 // later on.
259 if (auto *Store = dyn_cast<StoreInst>(V))
260 return LessOrEqualTypeSize(Store->getValueOperand());
261 if (auto *Return = dyn_cast<ReturnInst>(V))
262 return LessOrEqualTypeSize(Return->getReturnValue());
263 if (auto *ZExt = dyn_cast<ZExtInst>(V))
264 return GreaterThanTypeSize(ZExt);
265 if (auto *Switch = dyn_cast<SwitchInst>(V))
266 return LessThanTypeSize(Switch->getCondition());
267 if (auto *ICmp = dyn_cast<ICmpInst>(V))
268 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
269
270 return isa<CallInst>(V);
271 }
272
273 /// Return whether this instruction can safely wrap.
isSafeWrap(Instruction * I)274 bool TypePromotion::isSafeWrap(Instruction *I) {
275 // We can support a, potentially, wrapping instruction (I) if:
276 // - It is only used by an unsigned icmp.
277 // - The icmp uses a constant.
278 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
279 // around zero to become a larger number than before.
280 // - The wrapping instruction (I) also uses a constant.
281 //
282 // We can then use the two constants to calculate whether the result would
283 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
284 // just underflows the range, the icmp would give the same result whether the
285 // result has been truncated or not. We calculate this by:
286 // - Zero extending both constants, if needed, to 32-bits.
287 // - Take the absolute value of I's constant, adding this to the icmp const.
288 // - Check that this value is not out of range for small type. If it is, it
289 // means that it has underflowed enough to wrap around the icmp constant.
290 //
291 // For example:
292 //
293 // %sub = sub i8 %a, 2
294 // %cmp = icmp ule i8 %sub, 254
295 //
296 // If %a = 0, %sub = -2 == FE == 254
297 // But if this is evalulated as a i32
298 // %sub = -2 == FF FF FF FE == 4294967294
299 // So the unsigned compares (i8 and i32) would not yield the same result.
300 //
301 // Another way to look at it is:
302 // %a - 2 <= 254
303 // %a + 2 <= 254 + 2
304 // %a <= 256
305 // And we can't represent 256 in the i8 format, so we don't support it.
306 //
307 // Whereas:
308 //
309 // %sub i8 %a, 1
310 // %cmp = icmp ule i8 %sub, 254
311 //
312 // If %a = 0, %sub = -1 == FF == 255
313 // As i32:
314 // %sub = -1 == FF FF FF FF == 4294967295
315 //
316 // In this case, the unsigned compare results would be the same and this
317 // would also be true for ult, uge and ugt:
318 // - (255 < 254) == (0xFFFFFFFF < 254) == false
319 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
320 // - (255 > 254) == (0xFFFFFFFF > 254) == true
321 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
322 //
323 // To demonstrate why we can't handle increasing values:
324 //
325 // %add = add i8 %a, 2
326 // %cmp = icmp ult i8 %add, 127
327 //
328 // If %a = 254, %add = 256 == (i8 1)
329 // As i32:
330 // %add = 256
331 //
332 // (1 < 127) != (256 < 127)
333
334 unsigned Opc = I->getOpcode();
335 if (Opc != Instruction::Add && Opc != Instruction::Sub)
336 return false;
337
338 if (!I->hasOneUse() ||
339 !isa<ICmpInst>(*I->user_begin()) ||
340 !isa<ConstantInt>(I->getOperand(1)))
341 return false;
342
343 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
344 bool NegImm = OverflowConst->isNegative();
345 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
346 ((Opc == Instruction::Add) && NegImm);
347 if (!IsDecreasing)
348 return false;
349
350 // Don't support an icmp that deals with sign bits.
351 auto *CI = cast<ICmpInst>(*I->user_begin());
352 if (CI->isSigned() || CI->isEquality())
353 return false;
354
355 ConstantInt *ICmpConst = nullptr;
356 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
357 ICmpConst = Const;
358 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
359 ICmpConst = Const;
360 else
361 return false;
362
363 // Now check that the result can't wrap on itself.
364 APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
365 ICmpConst->getValue().zext(32) : ICmpConst->getValue();
366
367 Total += OverflowConst->getValue().getBitWidth() < 32 ?
368 OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
369
370 APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
371
372 if (Total.getBitWidth() > Max.getBitWidth()) {
373 if (Total.ugt(Max.zext(Total.getBitWidth())))
374 return false;
375 } else if (Max.getBitWidth() > Total.getBitWidth()) {
376 if (Total.zext(Max.getBitWidth()).ugt(Max))
377 return false;
378 } else if (Total.ugt(Max))
379 return false;
380
381 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
382 << *I << "\n");
383 SafeWrap.push_back(I);
384 return true;
385 }
386
shouldPromote(Value * V)387 bool TypePromotion::shouldPromote(Value *V) {
388 if (!isa<IntegerType>(V->getType()) || isSink(V))
389 return false;
390
391 if (isSource(V))
392 return true;
393
394 auto *I = dyn_cast<Instruction>(V);
395 if (!I)
396 return false;
397
398 if (isa<ICmpInst>(I))
399 return false;
400
401 return true;
402 }
403
404 /// Return whether we can safely mutate V's type to ExtTy without having to be
405 /// concerned with zero extending or truncation.
isPromotedResultSafe(Value * V)406 static bool isPromotedResultSafe(Value *V) {
407 if (GenerateSignBits(V))
408 return false;
409
410 if (!isa<Instruction>(V))
411 return true;
412
413 if (!isa<OverflowingBinaryOperator>(V))
414 return true;
415
416 return cast<Instruction>(V)->hasNoUnsignedWrap();
417 }
418
ReplaceAllUsersOfWith(Value * From,Value * To)419 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
420 SmallVector<Instruction*, 4> Users;
421 Instruction *InstTo = dyn_cast<Instruction>(To);
422 bool ReplacedAll = true;
423
424 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
425 << "\n");
426
427 for (Use &U : From->uses()) {
428 auto *User = cast<Instruction>(U.getUser());
429 if (InstTo && User->isIdenticalTo(InstTo)) {
430 ReplacedAll = false;
431 continue;
432 }
433 Users.push_back(User);
434 }
435
436 for (auto *U : Users)
437 U->replaceUsesOfWith(From, To);
438
439 if (ReplacedAll)
440 if (auto *I = dyn_cast<Instruction>(From))
441 InstsToRemove.insert(I);
442 }
443
PrepareWrappingAdds()444 void IRPromoter::PrepareWrappingAdds() {
445 LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
446 IRBuilder<> Builder{Ctx};
447
448 // For adds that safely wrap and use a negative immediate as operand 1, we
449 // create an equivalent instruction using a positive immediate.
450 // That positive immediate can then be zext along with all the other
451 // immediates later.
452 for (auto *I : SafeWrap) {
453 if (I->getOpcode() != Instruction::Add)
454 continue;
455
456 LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
457 assert((isa<ConstantInt>(I->getOperand(1)) &&
458 cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
459 "Wrapping should have a negative immediate as the second operand");
460
461 auto Const = cast<ConstantInt>(I->getOperand(1));
462 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
463 Builder.SetInsertPoint(I);
464 Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
465 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
466 NewInst->copyIRFlags(I);
467 NewInsts.insert(NewInst);
468 }
469 InstsToRemove.insert(I);
470 I->replaceAllUsesWith(NewVal);
471 LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
472 }
473 for (auto *I : NewInsts)
474 Visited.insert(I);
475 }
476
ExtendSources()477 void IRPromoter::ExtendSources() {
478 IRBuilder<> Builder{Ctx};
479
480 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
481 assert(V->getType() != ExtTy && "zext already extends to i32");
482 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
483 Builder.SetInsertPoint(InsertPt);
484 if (auto *I = dyn_cast<Instruction>(V))
485 Builder.SetCurrentDebugLocation(I->getDebugLoc());
486
487 Value *ZExt = Builder.CreateZExt(V, ExtTy);
488 if (auto *I = dyn_cast<Instruction>(ZExt)) {
489 if (isa<Argument>(V))
490 I->moveBefore(InsertPt);
491 else
492 I->moveAfter(InsertPt);
493 NewInsts.insert(I);
494 }
495
496 ReplaceAllUsersOfWith(V, ZExt);
497 };
498
499 // Now, insert extending instructions between the sources and their users.
500 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
501 for (auto V : Sources) {
502 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
503 if (auto *I = dyn_cast<Instruction>(V))
504 InsertZExt(I, I);
505 else if (auto *Arg = dyn_cast<Argument>(V)) {
506 BasicBlock &BB = Arg->getParent()->front();
507 InsertZExt(Arg, &*BB.getFirstInsertionPt());
508 } else {
509 llvm_unreachable("unhandled source that needs extending");
510 }
511 Promoted.insert(V);
512 }
513 }
514
PromoteTree()515 void IRPromoter::PromoteTree() {
516 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
517
518 IRBuilder<> Builder{Ctx};
519
520 // Mutate the types of the instructions within the tree. Here we handle
521 // constant operands.
522 for (auto *V : Visited) {
523 if (Sources.count(V))
524 continue;
525
526 auto *I = cast<Instruction>(V);
527 if (Sinks.count(I))
528 continue;
529
530 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
531 Value *Op = I->getOperand(i);
532 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
533 continue;
534
535 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
536 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
537 I->setOperand(i, NewConst);
538 } else if (isa<UndefValue>(Op))
539 I->setOperand(i, UndefValue::get(ExtTy));
540 }
541
542 // Mutate the result type, unless this is an icmp.
543 if (!isa<ICmpInst>(I)) {
544 I->mutateType(ExtTy);
545 Promoted.insert(I);
546 }
547 }
548 }
549
TruncateSinks()550 void IRPromoter::TruncateSinks() {
551 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
552
553 IRBuilder<> Builder{Ctx};
554
555 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
556 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
557 return nullptr;
558
559 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
560 return nullptr;
561
562 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
563 << *V << "\n");
564 Builder.SetInsertPoint(cast<Instruction>(V));
565 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
566 if (Trunc)
567 NewInsts.insert(Trunc);
568 return Trunc;
569 };
570
571 // Fix up any stores or returns that use the results of the promoted
572 // chain.
573 for (auto I : Sinks) {
574 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
575
576 // Handle calls separately as we need to iterate over arg operands.
577 if (auto *Call = dyn_cast<CallInst>(I)) {
578 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
579 Value *Arg = Call->getArgOperand(i);
580 Type *Ty = TruncTysMap[Call][i];
581 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
582 Trunc->moveBefore(Call);
583 Call->setArgOperand(i, Trunc);
584 }
585 }
586 continue;
587 }
588
589 // Special case switches because we need to truncate the condition.
590 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
591 Type *Ty = TruncTysMap[Switch][0];
592 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
593 Trunc->moveBefore(Switch);
594 Switch->setCondition(Trunc);
595 }
596 continue;
597 }
598
599 // Now handle the others.
600 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
601 Type *Ty = TruncTysMap[I][i];
602 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
603 Trunc->moveBefore(I);
604 I->setOperand(i, Trunc);
605 }
606 }
607 }
608 }
609
Cleanup()610 void IRPromoter::Cleanup() {
611 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
612 // Some zexts will now have become redundant, along with their trunc
613 // operands, so remove them
614 for (auto V : Visited) {
615 if (!isa<ZExtInst>(V))
616 continue;
617
618 auto ZExt = cast<ZExtInst>(V);
619 if (ZExt->getDestTy() != ExtTy)
620 continue;
621
622 Value *Src = ZExt->getOperand(0);
623 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
624 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
625 << "\n");
626 ReplaceAllUsersOfWith(ZExt, Src);
627 continue;
628 }
629
630 // Unless they produce a value that is narrower than ExtTy, we can
631 // replace the result of the zext with the input of a newly inserted
632 // trunc.
633 if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
634 Src->getType() == OrigTy) {
635 auto *Trunc = cast<TruncInst>(Src);
636 assert(Trunc->getOperand(0)->getType() == ExtTy &&
637 "expected inserted trunc to be operating on i32");
638 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
639 }
640 }
641
642 for (auto *I : InstsToRemove) {
643 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
644 I->dropAllReferences();
645 I->eraseFromParent();
646 }
647 }
648
ConvertTruncs()649 void IRPromoter::ConvertTruncs() {
650 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
651 IRBuilder<> Builder{Ctx};
652
653 for (auto *V : Visited) {
654 if (!isa<TruncInst>(V) || Sources.count(V))
655 continue;
656
657 auto *Trunc = cast<TruncInst>(V);
658 Builder.SetInsertPoint(Trunc);
659 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
660 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
661
662 unsigned NumBits = DestTy->getScalarSizeInBits();
663 ConstantInt *Mask =
664 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
665 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
666
667 if (auto *I = dyn_cast<Instruction>(Masked))
668 NewInsts.insert(I);
669
670 ReplaceAllUsersOfWith(Trunc, Masked);
671 }
672 }
673
Mutate()674 void IRPromoter::Mutate() {
675 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
676 << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
677
678 // Cache original types of the values that will likely need truncating
679 for (auto *I : Sinks) {
680 if (auto *Call = dyn_cast<CallInst>(I)) {
681 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
682 Value *Arg = Call->getArgOperand(i);
683 TruncTysMap[Call].push_back(Arg->getType());
684 }
685 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
686 TruncTysMap[I].push_back(Switch->getCondition()->getType());
687 else {
688 for (unsigned i = 0; i < I->getNumOperands(); ++i)
689 TruncTysMap[I].push_back(I->getOperand(i)->getType());
690 }
691 }
692 for (auto *V : Visited) {
693 if (!isa<TruncInst>(V) || Sources.count(V))
694 continue;
695 auto *Trunc = cast<TruncInst>(V);
696 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
697 }
698
699 // Convert adds using negative immediates to equivalent instructions that use
700 // positive constants.
701 PrepareWrappingAdds();
702
703 // Insert zext instructions between sources and their users.
704 ExtendSources();
705
706 // Promote visited instructions, mutating their types in place.
707 PromoteTree();
708
709 // Convert any truncs, that aren't sources, into AND masks.
710 ConvertTruncs();
711
712 // Insert trunc instructions for use by calls, stores etc...
713 TruncateSinks();
714
715 // Finally, remove unecessary zexts and truncs, delete old instructions and
716 // clear the data structures.
717 Cleanup();
718
719 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
720 }
721
722 /// We disallow booleans to make life easier when dealing with icmps but allow
723 /// any other integer that fits in a scalar register. Void types are accepted
724 /// so we can handle switches.
isSupportedType(Value * V)725 bool TypePromotion::isSupportedType(Value *V) {
726 Type *Ty = V->getType();
727
728 // Allow voids and pointers, these won't be promoted.
729 if (Ty->isVoidTy() || Ty->isPointerTy())
730 return true;
731
732 if (!isa<IntegerType>(Ty) ||
733 cast<IntegerType>(Ty)->getBitWidth() == 1 ||
734 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
735 return false;
736
737 return LessOrEqualTypeSize(V);
738 }
739
740 /// We accept most instructions, as well as Arguments and ConstantInsts. We
741 /// Disallow casts other than zext and truncs and only allow calls if their
742 /// return value is zeroext. We don't allow opcodes that can introduce sign
743 /// bits.
isSupportedValue(Value * V)744 bool TypePromotion::isSupportedValue(Value *V) {
745 if (auto *I = dyn_cast<Instruction>(V)) {
746 switch (I->getOpcode()) {
747 default:
748 return isa<BinaryOperator>(I) && isSupportedType(I) &&
749 !GenerateSignBits(I);
750 case Instruction::GetElementPtr:
751 case Instruction::Store:
752 case Instruction::Br:
753 case Instruction::Switch:
754 return true;
755 case Instruction::PHI:
756 case Instruction::Select:
757 case Instruction::Ret:
758 case Instruction::Load:
759 case Instruction::Trunc:
760 case Instruction::BitCast:
761 return isSupportedType(I);
762 case Instruction::ZExt:
763 return isSupportedType(I->getOperand(0));
764 case Instruction::ICmp:
765 // Now that we allow small types than TypeSize, only allow icmp of
766 // TypeSize because they will require a trunc to be legalised.
767 // TODO: Allow icmp of smaller types, and calculate at the end
768 // whether the transform would be beneficial.
769 if (isa<PointerType>(I->getOperand(0)->getType()))
770 return true;
771 return EqualTypeSize(I->getOperand(0));
772 case Instruction::Call: {
773 // Special cases for calls as we need to check for zeroext
774 // TODO We should accept calls even if they don't have zeroext, as they
775 // can still be sinks.
776 auto *Call = cast<CallInst>(I);
777 return isSupportedType(Call) &&
778 Call->hasRetAttr(Attribute::AttrKind::ZExt);
779 }
780 }
781 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
782 return isSupportedType(V);
783 } else if (isa<Argument>(V))
784 return isSupportedType(V);
785
786 return isa<BasicBlock>(V);
787 }
788
789 /// Check that the type of V would be promoted and that the original type is
790 /// smaller than the targeted promoted type. Check that we're not trying to
791 /// promote something larger than our base 'TypeSize' type.
isLegalToPromote(Value * V)792 bool TypePromotion::isLegalToPromote(Value *V) {
793
794 auto *I = dyn_cast<Instruction>(V);
795 if (!I)
796 return true;
797
798 if (SafeToPromote.count(I))
799 return true;
800
801 if (isPromotedResultSafe(V) || isSafeWrap(I)) {
802 SafeToPromote.insert(I);
803 return true;
804 }
805 return false;
806 }
807
TryToPromote(Value * V,unsigned PromotedWidth)808 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
809 Type *OrigTy = V->getType();
810 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
811 SafeToPromote.clear();
812 SafeWrap.clear();
813
814 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
815 return false;
816
817 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
818 << TypeSize << " bits to " << PromotedWidth << "\n");
819
820 SetVector<Value*> WorkList;
821 SetVector<Value*> Sources;
822 SetVector<Instruction*> Sinks;
823 SetVector<Value*> CurrentVisited;
824 WorkList.insert(V);
825
826 // Return true if V was added to the worklist as a supported instruction,
827 // if it was already visited, or if we don't need to explore it (e.g.
828 // pointer values and GEPs), and false otherwise.
829 auto AddLegalInst = [&](Value *V) {
830 if (CurrentVisited.count(V))
831 return true;
832
833 // Ignore GEPs because they don't need promoting and the constant indices
834 // will prevent the transformation.
835 if (isa<GetElementPtrInst>(V))
836 return true;
837
838 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
839 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
840 return false;
841 }
842
843 WorkList.insert(V);
844 return true;
845 };
846
847 // Iterate through, and add to, a tree of operands and users in the use-def.
848 while (!WorkList.empty()) {
849 Value *V = WorkList.pop_back_val();
850 if (CurrentVisited.count(V))
851 continue;
852
853 // Ignore non-instructions, other than arguments.
854 if (!isa<Instruction>(V) && !isSource(V))
855 continue;
856
857 // If we've already visited this value from somewhere, bail now because
858 // the tree has already been explored.
859 // TODO: This could limit the transform, ie if we try to promote something
860 // from an i8 and fail first, before trying an i16.
861 if (AllVisited.count(V))
862 return false;
863
864 CurrentVisited.insert(V);
865 AllVisited.insert(V);
866
867 // Calls can be both sources and sinks.
868 if (isSink(V))
869 Sinks.insert(cast<Instruction>(V));
870
871 if (isSource(V))
872 Sources.insert(V);
873
874 if (!isSink(V) && !isSource(V)) {
875 if (auto *I = dyn_cast<Instruction>(V)) {
876 // Visit operands of any instruction visited.
877 for (auto &U : I->operands()) {
878 if (!AddLegalInst(U))
879 return false;
880 }
881 }
882 }
883
884 // Don't visit users of a node which isn't going to be mutated unless its a
885 // source.
886 if (isSource(V) || shouldPromote(V)) {
887 for (Use &U : V->uses()) {
888 if (!AddLegalInst(U.getUser()))
889 return false;
890 }
891 }
892 }
893
894 LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
895 for (auto *I : CurrentVisited)
896 I->dump();
897 );
898
899 unsigned ToPromote = 0;
900 unsigned NonFreeArgs = 0;
901 SmallPtrSet<BasicBlock*, 4> Blocks;
902 for (auto *V : CurrentVisited) {
903 if (auto *I = dyn_cast<Instruction>(V))
904 Blocks.insert(I->getParent());
905
906 if (Sources.count(V)) {
907 if (auto *Arg = dyn_cast<Argument>(V))
908 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
909 ++NonFreeArgs;
910 continue;
911 }
912
913 if (Sinks.count(cast<Instruction>(V)))
914 continue;
915 ++ToPromote;
916 }
917
918 // DAG optimizations should be able to handle these cases better, especially
919 // for function arguments.
920 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
921 return false;
922
923 IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
924 CurrentVisited, Sources, Sinks, SafeWrap);
925 Promoter.Mutate();
926 return true;
927 }
928
runOnFunction(Function & F)929 bool TypePromotion::runOnFunction(Function &F) {
930 if (skipFunction(F) || DisablePromotion)
931 return false;
932
933 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
934
935 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
936 if (!TPC)
937 return false;
938
939 AllVisited.clear();
940 SafeToPromote.clear();
941 SafeWrap.clear();
942 bool MadeChange = false;
943 const DataLayout &DL = F.getParent()->getDataLayout();
944 const TargetMachine &TM = TPC->getTM<TargetMachine>();
945 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
946 const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
947 const TargetTransformInfo &TII =
948 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
949 RegisterBitWidth =
950 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize();
951 Ctx = &F.getParent()->getContext();
952
953 // Search up from icmps to try to promote their operands.
954 for (BasicBlock &BB : F) {
955 for (auto &I : BB) {
956 if (AllVisited.count(&I))
957 continue;
958
959 if (!isa<ICmpInst>(&I))
960 continue;
961
962 auto *ICmp = cast<ICmpInst>(&I);
963 // Skip signed or pointer compares
964 if (ICmp->isSigned() ||
965 !isa<IntegerType>(ICmp->getOperand(0)->getType()))
966 continue;
967
968 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
969
970 for (auto &Op : ICmp->operands()) {
971 if (auto *I = dyn_cast<Instruction>(Op)) {
972 EVT SrcVT = TLI->getValueType(DL, I->getType());
973 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
974 break;
975
976 if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
977 TargetLowering::TypePromoteInteger)
978 break;
979 EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
980 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
981 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
982 << "for promoted type\n");
983 break;
984 }
985
986 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
987 break;
988 }
989 }
990 }
991 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
992 dbgs() << F;
993 report_fatal_error("Broken function after type promotion");
994 });
995 }
996 if (MadeChange)
997 LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
998
999 AllVisited.clear();
1000 SafeToPromote.clear();
1001 SafeWrap.clear();
1002
1003 return MadeChange;
1004 }
1005
1006 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1007 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1008
1009 char TypePromotion::ID = 0;
1010
createTypePromotionPass()1011 FunctionPass *llvm::createTypePromotionPass() {
1012 return new TypePromotion();
1013 }
1014