1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCContext.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <string>
82 #include <utility>
83 #include <vector>
84
85 #define DEBUG_TYPE "irtranslator"
86
87 using namespace llvm;
88
89 static cl::opt<bool>
90 EnableCSEInIRTranslator("enable-cse-in-irtranslator",
91 cl::desc("Should enable CSE in irtranslator"),
92 cl::Optional, cl::init(false));
93 char IRTranslator::ID = 0;
94
95 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
96 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)97 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
98 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
99 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
100 INITIALIZE_PASS_DEPENDENCY(StackProtector)
101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
102 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
103 false, false)
104
105 static void reportTranslationError(MachineFunction &MF,
106 const TargetPassConfig &TPC,
107 OptimizationRemarkEmitter &ORE,
108 OptimizationRemarkMissed &R) {
109 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
110
111 // Print the function name explicitly if we don't have a debug location (which
112 // makes the diagnostic less useful) or if we're going to emit a raw error.
113 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
114 R << (" (in function: " + MF.getName() + ")").str();
115
116 if (TPC.isGlobalISelAbortEnabled())
117 report_fatal_error(R.getMsg());
118 else
119 ORE.emit(R);
120 }
121
IRTranslator(CodeGenOpt::Level optlevel)122 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
123 : MachineFunctionPass(ID), OptLevel(optlevel) {}
124
125 #ifndef NDEBUG
126 namespace {
127 /// Verify that every instruction created has the same DILocation as the
128 /// instruction being translated.
129 class DILocationVerifier : public GISelChangeObserver {
130 const Instruction *CurrInst = nullptr;
131
132 public:
133 DILocationVerifier() = default;
134 ~DILocationVerifier() = default;
135
getCurrentInst() const136 const Instruction *getCurrentInst() const { return CurrInst; }
setCurrentInst(const Instruction * Inst)137 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
138
erasingInstr(MachineInstr & MI)139 void erasingInstr(MachineInstr &MI) override {}
changingInstr(MachineInstr & MI)140 void changingInstr(MachineInstr &MI) override {}
changedInstr(MachineInstr & MI)141 void changedInstr(MachineInstr &MI) override {}
142
createdInstr(MachineInstr & MI)143 void createdInstr(MachineInstr &MI) override {
144 assert(getCurrentInst() && "Inserted instruction without a current MI");
145
146 // Only print the check message if we're actually checking it.
147 #ifndef NDEBUG
148 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
149 << " was copied to " << MI);
150 #endif
151 // We allow insts in the entry block to have a debug loc line of 0 because
152 // they could have originated from constants, and we don't want a jumpy
153 // debug experience.
154 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
155 MI.getDebugLoc().getLine() == 0) &&
156 "Line info was not transferred to all instructions");
157 }
158 };
159 } // namespace
160 #endif // ifndef NDEBUG
161
162
getAnalysisUsage(AnalysisUsage & AU) const163 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
164 AU.addRequired<StackProtector>();
165 AU.addRequired<TargetPassConfig>();
166 AU.addRequired<GISelCSEAnalysisWrapperPass>();
167 if (OptLevel != CodeGenOpt::None)
168 AU.addRequired<BranchProbabilityInfoWrapperPass>();
169 AU.addRequired<TargetLibraryInfoWrapperPass>();
170 AU.addPreserved<TargetLibraryInfoWrapperPass>();
171 getSelectionDAGFallbackAnalysisUsage(AU);
172 MachineFunctionPass::getAnalysisUsage(AU);
173 }
174
175 IRTranslator::ValueToVRegInfo::VRegListT &
allocateVRegs(const Value & Val)176 IRTranslator::allocateVRegs(const Value &Val) {
177 auto VRegsIt = VMap.findVRegs(Val);
178 if (VRegsIt != VMap.vregs_end())
179 return *VRegsIt->second;
180 auto *Regs = VMap.getVRegs(Val);
181 auto *Offsets = VMap.getOffsets(Val);
182 SmallVector<LLT, 4> SplitTys;
183 computeValueLLTs(*DL, *Val.getType(), SplitTys,
184 Offsets->empty() ? Offsets : nullptr);
185 for (unsigned i = 0; i < SplitTys.size(); ++i)
186 Regs->push_back(0);
187 return *Regs;
188 }
189
getOrCreateVRegs(const Value & Val)190 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
191 auto VRegsIt = VMap.findVRegs(Val);
192 if (VRegsIt != VMap.vregs_end())
193 return *VRegsIt->second;
194
195 if (Val.getType()->isVoidTy())
196 return *VMap.getVRegs(Val);
197
198 // Create entry for this type.
199 auto *VRegs = VMap.getVRegs(Val);
200 auto *Offsets = VMap.getOffsets(Val);
201
202 assert(Val.getType()->isSized() &&
203 "Don't know how to create an empty vreg");
204
205 SmallVector<LLT, 4> SplitTys;
206 computeValueLLTs(*DL, *Val.getType(), SplitTys,
207 Offsets->empty() ? Offsets : nullptr);
208
209 if (!isa<Constant>(Val)) {
210 for (auto Ty : SplitTys)
211 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
212 return *VRegs;
213 }
214
215 if (Val.getType()->isAggregateType()) {
216 // UndefValue, ConstantAggregateZero
217 auto &C = cast<Constant>(Val);
218 unsigned Idx = 0;
219 while (auto Elt = C.getAggregateElement(Idx++)) {
220 auto EltRegs = getOrCreateVRegs(*Elt);
221 llvm::copy(EltRegs, std::back_inserter(*VRegs));
222 }
223 } else {
224 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
225 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
226 bool Success = translate(cast<Constant>(Val), VRegs->front());
227 if (!Success) {
228 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
229 MF->getFunction().getSubprogram(),
230 &MF->getFunction().getEntryBlock());
231 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
232 reportTranslationError(*MF, *TPC, *ORE, R);
233 return *VRegs;
234 }
235 }
236
237 return *VRegs;
238 }
239
getOrCreateFrameIndex(const AllocaInst & AI)240 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
241 auto MapEntry = FrameIndices.find(&AI);
242 if (MapEntry != FrameIndices.end())
243 return MapEntry->second;
244
245 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
246 uint64_t Size =
247 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
248
249 // Always allocate at least one byte.
250 Size = std::max<uint64_t>(Size, 1u);
251
252 int &FI = FrameIndices[&AI];
253 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
254 return FI;
255 }
256
getMemOpAlign(const Instruction & I)257 Align IRTranslator::getMemOpAlign(const Instruction &I) {
258 if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
259 return SI->getAlign();
260 if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
261 return LI->getAlign();
262 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
263 return AI->getAlign();
264 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
265 return AI->getAlign();
266
267 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
268 R << "unable to translate memop: " << ore::NV("Opcode", &I);
269 reportTranslationError(*MF, *TPC, *ORE, R);
270 return Align(1);
271 }
272
getMBB(const BasicBlock & BB)273 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
274 MachineBasicBlock *&MBB = BBToMBB[&BB];
275 assert(MBB && "BasicBlock was not encountered before");
276 return *MBB;
277 }
278
addMachineCFGPred(CFGEdge Edge,MachineBasicBlock * NewPred)279 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
280 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
281 MachinePreds[Edge].push_back(NewPred);
282 }
283
translateBinaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)284 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
285 MachineIRBuilder &MIRBuilder) {
286 // Get or create a virtual register for each value.
287 // Unless the value is a Constant => loadimm cst?
288 // or inline constant each time?
289 // Creation of a virtual register needs to have a size.
290 Register Op0 = getOrCreateVReg(*U.getOperand(0));
291 Register Op1 = getOrCreateVReg(*U.getOperand(1));
292 Register Res = getOrCreateVReg(U);
293 uint16_t Flags = 0;
294 if (isa<Instruction>(U)) {
295 const Instruction &I = cast<Instruction>(U);
296 Flags = MachineInstr::copyFlagsFromInstruction(I);
297 }
298
299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
300 return true;
301 }
302
translateUnaryOp(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)303 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
304 MachineIRBuilder &MIRBuilder) {
305 Register Op0 = getOrCreateVReg(*U.getOperand(0));
306 Register Res = getOrCreateVReg(U);
307 uint16_t Flags = 0;
308 if (isa<Instruction>(U)) {
309 const Instruction &I = cast<Instruction>(U);
310 Flags = MachineInstr::copyFlagsFromInstruction(I);
311 }
312 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
313 return true;
314 }
315
translateFNeg(const User & U,MachineIRBuilder & MIRBuilder)316 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
317 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
318 }
319
translateCompare(const User & U,MachineIRBuilder & MIRBuilder)320 bool IRTranslator::translateCompare(const User &U,
321 MachineIRBuilder &MIRBuilder) {
322 auto *CI = dyn_cast<CmpInst>(&U);
323 Register Op0 = getOrCreateVReg(*U.getOperand(0));
324 Register Op1 = getOrCreateVReg(*U.getOperand(1));
325 Register Res = getOrCreateVReg(U);
326 CmpInst::Predicate Pred =
327 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
328 cast<ConstantExpr>(U).getPredicate());
329 if (CmpInst::isIntPredicate(Pred))
330 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
331 else if (Pred == CmpInst::FCMP_FALSE)
332 MIRBuilder.buildCopy(
333 Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
334 else if (Pred == CmpInst::FCMP_TRUE)
335 MIRBuilder.buildCopy(
336 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
337 else {
338 assert(CI && "Instruction should be CmpInst");
339 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
340 MachineInstr::copyFlagsFromInstruction(*CI));
341 }
342
343 return true;
344 }
345
translateRet(const User & U,MachineIRBuilder & MIRBuilder)346 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
347 const ReturnInst &RI = cast<ReturnInst>(U);
348 const Value *Ret = RI.getReturnValue();
349 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
350 Ret = nullptr;
351
352 ArrayRef<Register> VRegs;
353 if (Ret)
354 VRegs = getOrCreateVRegs(*Ret);
355
356 Register SwiftErrorVReg = 0;
357 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
358 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
359 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
360 }
361
362 // The target may mess up with the insertion point, but
363 // this is not important as a return is the last instruction
364 // of the block anyway.
365 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
366 }
367
emitBranchForMergedCondition(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,BranchProbability TProb,BranchProbability FProb,bool InvertCond)368 void IRTranslator::emitBranchForMergedCondition(
369 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
370 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
371 BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
372 // If the leaf of the tree is a comparison, merge the condition into
373 // the caseblock.
374 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
375 CmpInst::Predicate Condition;
376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
377 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
378 } else {
379 const FCmpInst *FC = cast<FCmpInst>(Cond);
380 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
381 }
382
383 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
384 BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
385 CurBuilder->getDebugLoc(), TProb, FProb);
386 SL->SwitchCases.push_back(CB);
387 return;
388 }
389
390 // Create a CaseBlock record representing this branch.
391 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
392 SwitchCG::CaseBlock CB(
393 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
394 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
395 SL->SwitchCases.push_back(CB);
396 }
397
isValInBlock(const Value * V,const BasicBlock * BB)398 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
399 if (const Instruction *I = dyn_cast<Instruction>(V))
400 return I->getParent() == BB;
401 return true;
402 }
403
findMergedConditions(const Value * Cond,MachineBasicBlock * TBB,MachineBasicBlock * FBB,MachineBasicBlock * CurBB,MachineBasicBlock * SwitchBB,Instruction::BinaryOps Opc,BranchProbability TProb,BranchProbability FProb,bool InvertCond)404 void IRTranslator::findMergedConditions(
405 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
406 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
407 Instruction::BinaryOps Opc, BranchProbability TProb,
408 BranchProbability FProb, bool InvertCond) {
409 using namespace PatternMatch;
410 assert((Opc == Instruction::And || Opc == Instruction::Or) &&
411 "Expected Opc to be AND/OR");
412 // Skip over not part of the tree and remember to invert op and operands at
413 // next level.
414 Value *NotCond;
415 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
416 isValInBlock(NotCond, CurBB->getBasicBlock())) {
417 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
418 !InvertCond);
419 return;
420 }
421
422 const Instruction *BOp = dyn_cast<Instruction>(Cond);
423 const Value *BOpOp0, *BOpOp1;
424 // Compute the effective opcode for Cond, taking into account whether it needs
425 // to be inverted, e.g.
426 // and (not (or A, B)), C
427 // gets lowered as
428 // and (and (not A, not B), C)
429 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
430 if (BOp) {
431 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
432 ? Instruction::And
433 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
434 ? Instruction::Or
435 : (Instruction::BinaryOps)0);
436 if (InvertCond) {
437 if (BOpc == Instruction::And)
438 BOpc = Instruction::Or;
439 else if (BOpc == Instruction::Or)
440 BOpc = Instruction::And;
441 }
442 }
443
444 // If this node is not part of the or/and tree, emit it as a branch.
445 // Note that all nodes in the tree should have same opcode.
446 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
447 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
448 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
449 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
450 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
451 InvertCond);
452 return;
453 }
454
455 // Create TmpBB after CurBB.
456 MachineFunction::iterator BBI(CurBB);
457 MachineBasicBlock *TmpBB =
458 MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
459 CurBB->getParent()->insert(++BBI, TmpBB);
460
461 if (Opc == Instruction::Or) {
462 // Codegen X | Y as:
463 // BB1:
464 // jmp_if_X TBB
465 // jmp TmpBB
466 // TmpBB:
467 // jmp_if_Y TBB
468 // jmp FBB
469 //
470
471 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
472 // The requirement is that
473 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
474 // = TrueProb for original BB.
475 // Assuming the original probabilities are A and B, one choice is to set
476 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
477 // A/(1+B) and 2B/(1+B). This choice assumes that
478 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
479 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
480 // TmpBB, but the math is more complicated.
481
482 auto NewTrueProb = TProb / 2;
483 auto NewFalseProb = TProb / 2 + FProb;
484 // Emit the LHS condition.
485 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
486 NewFalseProb, InvertCond);
487
488 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
489 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
490 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
491 // Emit the RHS condition into TmpBB.
492 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
493 Probs[1], InvertCond);
494 } else {
495 assert(Opc == Instruction::And && "Unknown merge op!");
496 // Codegen X & Y as:
497 // BB1:
498 // jmp_if_X TmpBB
499 // jmp FBB
500 // TmpBB:
501 // jmp_if_Y TBB
502 // jmp FBB
503 //
504 // This requires creation of TmpBB after CurBB.
505
506 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
507 // The requirement is that
508 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
509 // = FalseProb for original BB.
510 // Assuming the original probabilities are A and B, one choice is to set
511 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
512 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
513 // TrueProb for BB1 * FalseProb for TmpBB.
514
515 auto NewTrueProb = TProb + FProb / 2;
516 auto NewFalseProb = FProb / 2;
517 // Emit the LHS condition.
518 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
519 NewFalseProb, InvertCond);
520
521 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
522 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
523 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
524 // Emit the RHS condition into TmpBB.
525 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
526 Probs[1], InvertCond);
527 }
528 }
529
shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> & Cases)530 bool IRTranslator::shouldEmitAsBranches(
531 const std::vector<SwitchCG::CaseBlock> &Cases) {
532 // For multiple cases, it's better to emit as branches.
533 if (Cases.size() != 2)
534 return true;
535
536 // If this is two comparisons of the same values or'd or and'd together, they
537 // will get folded into a single comparison, so don't emit two blocks.
538 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
539 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
540 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
541 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
542 return false;
543 }
544
545 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
546 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
547 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
548 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
549 isa<Constant>(Cases[0].CmpRHS) &&
550 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
551 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
552 Cases[0].TrueBB == Cases[1].ThisBB)
553 return false;
554 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
555 Cases[0].FalseBB == Cases[1].ThisBB)
556 return false;
557 }
558
559 return true;
560 }
561
translateBr(const User & U,MachineIRBuilder & MIRBuilder)562 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
563 const BranchInst &BrInst = cast<BranchInst>(U);
564 auto &CurMBB = MIRBuilder.getMBB();
565 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
566
567 if (BrInst.isUnconditional()) {
568 // If the unconditional target is the layout successor, fallthrough.
569 if (!CurMBB.isLayoutSuccessor(Succ0MBB))
570 MIRBuilder.buildBr(*Succ0MBB);
571
572 // Link successors.
573 for (const BasicBlock *Succ : successors(&BrInst))
574 CurMBB.addSuccessor(&getMBB(*Succ));
575 return true;
576 }
577
578 // If this condition is one of the special cases we handle, do special stuff
579 // now.
580 const Value *CondVal = BrInst.getCondition();
581 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
582
583 const auto &TLI = *MF->getSubtarget().getTargetLowering();
584
585 // If this is a series of conditions that are or'd or and'd together, emit
586 // this as a sequence of branches instead of setcc's with and/or operations.
587 // As long as jumps are not expensive (exceptions for multi-use logic ops,
588 // unpredictable branches, and vector extracts because those jumps are likely
589 // expensive for any target), this should improve performance.
590 // For example, instead of something like:
591 // cmp A, B
592 // C = seteq
593 // cmp D, E
594 // F = setle
595 // or C, F
596 // jnz foo
597 // Emit:
598 // cmp A, B
599 // je foo
600 // cmp D, E
601 // jle foo
602 using namespace PatternMatch;
603 const Instruction *CondI = dyn_cast<Instruction>(CondVal);
604 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
605 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
606 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
607 Value *Vec;
608 const Value *BOp0, *BOp1;
609 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
610 Opcode = Instruction::And;
611 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
612 Opcode = Instruction::Or;
613
614 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
615 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
616 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
617 getEdgeProbability(&CurMBB, Succ0MBB),
618 getEdgeProbability(&CurMBB, Succ1MBB),
619 /*InvertCond=*/false);
620 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
621
622 // Allow some cases to be rejected.
623 if (shouldEmitAsBranches(SL->SwitchCases)) {
624 // Emit the branch for this block.
625 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
626 SL->SwitchCases.erase(SL->SwitchCases.begin());
627 return true;
628 }
629
630 // Okay, we decided not to do this, remove any inserted MBB's and clear
631 // SwitchCases.
632 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
633 MF->erase(SL->SwitchCases[I].ThisBB);
634
635 SL->SwitchCases.clear();
636 }
637 }
638
639 // Create a CaseBlock record representing this branch.
640 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
641 ConstantInt::getTrue(MF->getFunction().getContext()),
642 nullptr, Succ0MBB, Succ1MBB, &CurMBB,
643 CurBuilder->getDebugLoc());
644
645 // Use emitSwitchCase to actually insert the fast branch sequence for this
646 // cond branch.
647 emitSwitchCase(CB, &CurMBB, *CurBuilder);
648 return true;
649 }
650
addSuccessorWithProb(MachineBasicBlock * Src,MachineBasicBlock * Dst,BranchProbability Prob)651 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
652 MachineBasicBlock *Dst,
653 BranchProbability Prob) {
654 if (!FuncInfo.BPI) {
655 Src->addSuccessorWithoutProb(Dst);
656 return;
657 }
658 if (Prob.isUnknown())
659 Prob = getEdgeProbability(Src, Dst);
660 Src->addSuccessor(Dst, Prob);
661 }
662
663 BranchProbability
getEdgeProbability(const MachineBasicBlock * Src,const MachineBasicBlock * Dst) const664 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
665 const MachineBasicBlock *Dst) const {
666 const BasicBlock *SrcBB = Src->getBasicBlock();
667 const BasicBlock *DstBB = Dst->getBasicBlock();
668 if (!FuncInfo.BPI) {
669 // If BPI is not available, set the default probability as 1 / N, where N is
670 // the number of successors.
671 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
672 return BranchProbability(1, SuccSize);
673 }
674 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
675 }
676
translateSwitch(const User & U,MachineIRBuilder & MIB)677 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
678 using namespace SwitchCG;
679 // Extract cases from the switch.
680 const SwitchInst &SI = cast<SwitchInst>(U);
681 BranchProbabilityInfo *BPI = FuncInfo.BPI;
682 CaseClusterVector Clusters;
683 Clusters.reserve(SI.getNumCases());
684 for (auto &I : SI.cases()) {
685 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
686 assert(Succ && "Could not find successor mbb in mapping");
687 const ConstantInt *CaseVal = I.getCaseValue();
688 BranchProbability Prob =
689 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
690 : BranchProbability(1, SI.getNumCases() + 1);
691 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
692 }
693
694 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
695
696 // Cluster adjacent cases with the same destination. We do this at all
697 // optimization levels because it's cheap to do and will make codegen faster
698 // if there are many clusters.
699 sortAndRangeify(Clusters);
700
701 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
702
703 // If there is only the default destination, jump there directly.
704 if (Clusters.empty()) {
705 SwitchMBB->addSuccessor(DefaultMBB);
706 if (DefaultMBB != SwitchMBB->getNextNode())
707 MIB.buildBr(*DefaultMBB);
708 return true;
709 }
710
711 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
712 SL->findBitTestClusters(Clusters, &SI);
713
714 LLVM_DEBUG({
715 dbgs() << "Case clusters: ";
716 for (const CaseCluster &C : Clusters) {
717 if (C.Kind == CC_JumpTable)
718 dbgs() << "JT:";
719 if (C.Kind == CC_BitTests)
720 dbgs() << "BT:";
721
722 C.Low->getValue().print(dbgs(), true);
723 if (C.Low != C.High) {
724 dbgs() << '-';
725 C.High->getValue().print(dbgs(), true);
726 }
727 dbgs() << ' ';
728 }
729 dbgs() << '\n';
730 });
731
732 assert(!Clusters.empty());
733 SwitchWorkList WorkList;
734 CaseClusterIt First = Clusters.begin();
735 CaseClusterIt Last = Clusters.end() - 1;
736 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
737 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
738
739 // FIXME: At the moment we don't do any splitting optimizations here like
740 // SelectionDAG does, so this worklist only has one entry.
741 while (!WorkList.empty()) {
742 SwitchWorkListItem W = WorkList.back();
743 WorkList.pop_back();
744 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
745 return false;
746 }
747 return true;
748 }
749
emitJumpTable(SwitchCG::JumpTable & JT,MachineBasicBlock * MBB)750 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
751 MachineBasicBlock *MBB) {
752 // Emit the code for the jump table
753 assert(JT.Reg != -1U && "Should lower JT Header first!");
754 MachineIRBuilder MIB(*MBB->getParent());
755 MIB.setMBB(*MBB);
756 MIB.setDebugLoc(CurBuilder->getDebugLoc());
757
758 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
759 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
760
761 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
762 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
763 }
764
emitJumpTableHeader(SwitchCG::JumpTable & JT,SwitchCG::JumpTableHeader & JTH,MachineBasicBlock * HeaderBB)765 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
766 SwitchCG::JumpTableHeader &JTH,
767 MachineBasicBlock *HeaderBB) {
768 MachineIRBuilder MIB(*HeaderBB->getParent());
769 MIB.setMBB(*HeaderBB);
770 MIB.setDebugLoc(CurBuilder->getDebugLoc());
771
772 const Value &SValue = *JTH.SValue;
773 // Subtract the lowest switch case value from the value being switched on.
774 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
775 Register SwitchOpReg = getOrCreateVReg(SValue);
776 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
777 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
778
779 // This value may be smaller or larger than the target's pointer type, and
780 // therefore require extension or truncating.
781 Type *PtrIRTy = SValue.getType()->getPointerTo();
782 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
783 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
784
785 JT.Reg = Sub.getReg(0);
786
787 if (JTH.OmitRangeCheck) {
788 if (JT.MBB != HeaderBB->getNextNode())
789 MIB.buildBr(*JT.MBB);
790 return true;
791 }
792
793 // Emit the range check for the jump table, and branch to the default block
794 // for the switch statement if the value being switched on exceeds the
795 // largest case in the switch.
796 auto Cst = getOrCreateVReg(
797 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
798 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
799 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
800
801 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
802
803 // Avoid emitting unnecessary branches to the next block.
804 if (JT.MBB != HeaderBB->getNextNode())
805 BrCond = MIB.buildBr(*JT.MBB);
806 return true;
807 }
808
emitSwitchCase(SwitchCG::CaseBlock & CB,MachineBasicBlock * SwitchBB,MachineIRBuilder & MIB)809 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
810 MachineBasicBlock *SwitchBB,
811 MachineIRBuilder &MIB) {
812 Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
813 Register Cond;
814 DebugLoc OldDbgLoc = MIB.getDebugLoc();
815 MIB.setDebugLoc(CB.DbgLoc);
816 MIB.setMBB(*CB.ThisBB);
817
818 if (CB.PredInfo.NoCmp) {
819 // Branch or fall through to TrueBB.
820 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
821 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
822 CB.ThisBB);
823 CB.ThisBB->normalizeSuccProbs();
824 if (CB.TrueBB != CB.ThisBB->getNextNode())
825 MIB.buildBr(*CB.TrueBB);
826 MIB.setDebugLoc(OldDbgLoc);
827 return;
828 }
829
830 const LLT i1Ty = LLT::scalar(1);
831 // Build the compare.
832 if (!CB.CmpMHS) {
833 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
834 // For conditional branch lowering, we might try to do something silly like
835 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
836 // just re-use the existing condition vreg.
837 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
838 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
839 Cond = CondLHS;
840 } else {
841 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
842 if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
843 Cond =
844 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
845 else
846 Cond =
847 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
848 }
849 } else {
850 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
851 "Can only handle SLE ranges");
852
853 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
854 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
855
856 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
857 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
858 Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
859 Cond =
860 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
861 } else {
862 const LLT CmpTy = MRI->getType(CmpOpReg);
863 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
864 auto Diff = MIB.buildConstant(CmpTy, High - Low);
865 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
866 }
867 }
868
869 // Update successor info
870 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
871
872 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
873 CB.ThisBB);
874
875 // TrueBB and FalseBB are always different unless the incoming IR is
876 // degenerate. This only happens when running llc on weird IR.
877 if (CB.TrueBB != CB.FalseBB)
878 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
879 CB.ThisBB->normalizeSuccProbs();
880
881 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
882 CB.ThisBB);
883
884 MIB.buildBrCond(Cond, *CB.TrueBB);
885 MIB.buildBr(*CB.FalseBB);
886 MIB.setDebugLoc(OldDbgLoc);
887 }
888
lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)889 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
890 MachineBasicBlock *SwitchMBB,
891 MachineBasicBlock *CurMBB,
892 MachineBasicBlock *DefaultMBB,
893 MachineIRBuilder &MIB,
894 MachineFunction::iterator BBI,
895 BranchProbability UnhandledProbs,
896 SwitchCG::CaseClusterIt I,
897 MachineBasicBlock *Fallthrough,
898 bool FallthroughUnreachable) {
899 using namespace SwitchCG;
900 MachineFunction *CurMF = SwitchMBB->getParent();
901 // FIXME: Optimize away range check based on pivot comparisons.
902 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
903 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
904 BranchProbability DefaultProb = W.DefaultProb;
905
906 // The jump block hasn't been inserted yet; insert it here.
907 MachineBasicBlock *JumpMBB = JT->MBB;
908 CurMF->insert(BBI, JumpMBB);
909
910 // Since the jump table block is separate from the switch block, we need
911 // to keep track of it as a machine predecessor to the default block,
912 // otherwise we lose the phi edges.
913 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
914 CurMBB);
915 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
916 JumpMBB);
917
918 auto JumpProb = I->Prob;
919 auto FallthroughProb = UnhandledProbs;
920
921 // If the default statement is a target of the jump table, we evenly
922 // distribute the default probability to successors of CurMBB. Also
923 // update the probability on the edge from JumpMBB to Fallthrough.
924 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
925 SE = JumpMBB->succ_end();
926 SI != SE; ++SI) {
927 if (*SI == DefaultMBB) {
928 JumpProb += DefaultProb / 2;
929 FallthroughProb -= DefaultProb / 2;
930 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
931 JumpMBB->normalizeSuccProbs();
932 } else {
933 // Also record edges from the jump table block to it's successors.
934 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
935 JumpMBB);
936 }
937 }
938
939 // Skip the range check if the fallthrough block is unreachable.
940 if (FallthroughUnreachable)
941 JTH->OmitRangeCheck = true;
942
943 if (!JTH->OmitRangeCheck)
944 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
945 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
946 CurMBB->normalizeSuccProbs();
947
948 // The jump table header will be inserted in our current block, do the
949 // range check, and fall through to our fallthrough block.
950 JTH->HeaderBB = CurMBB;
951 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
952
953 // If we're in the right place, emit the jump table header right now.
954 if (CurMBB == SwitchMBB) {
955 if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
956 return false;
957 JTH->Emitted = true;
958 }
959 return true;
960 }
lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,Value * Cond,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable,BranchProbability UnhandledProbs,MachineBasicBlock * CurMBB,MachineIRBuilder & MIB,MachineBasicBlock * SwitchMBB)961 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
962 Value *Cond,
963 MachineBasicBlock *Fallthrough,
964 bool FallthroughUnreachable,
965 BranchProbability UnhandledProbs,
966 MachineBasicBlock *CurMBB,
967 MachineIRBuilder &MIB,
968 MachineBasicBlock *SwitchMBB) {
969 using namespace SwitchCG;
970 const Value *RHS, *LHS, *MHS;
971 CmpInst::Predicate Pred;
972 if (I->Low == I->High) {
973 // Check Cond == I->Low.
974 Pred = CmpInst::ICMP_EQ;
975 LHS = Cond;
976 RHS = I->Low;
977 MHS = nullptr;
978 } else {
979 // Check I->Low <= Cond <= I->High.
980 Pred = CmpInst::ICMP_SLE;
981 LHS = I->Low;
982 MHS = Cond;
983 RHS = I->High;
984 }
985
986 // If Fallthrough is unreachable, fold away the comparison.
987 // The false probability is the sum of all unhandled cases.
988 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
989 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
990
991 emitSwitchCase(CB, SwitchMBB, MIB);
992 return true;
993 }
994
emitBitTestHeader(SwitchCG::BitTestBlock & B,MachineBasicBlock * SwitchBB)995 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
996 MachineBasicBlock *SwitchBB) {
997 MachineIRBuilder &MIB = *CurBuilder;
998 MIB.setMBB(*SwitchBB);
999
1000 // Subtract the minimum value.
1001 Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1002
1003 LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1004 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1005 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1006
1007 // Ensure that the type will fit the mask value.
1008 LLT MaskTy = SwitchOpTy;
1009 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1010 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1011 // Switch table case range are encoded into series of masks.
1012 // Just use pointer type, it's guaranteed to fit.
1013 MaskTy = LLT::scalar(64);
1014 break;
1015 }
1016 }
1017 Register SubReg = RangeSub.getReg(0);
1018 if (SwitchOpTy != MaskTy)
1019 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1020
1021 B.RegVT = getMVTForLLT(MaskTy);
1022 B.Reg = SubReg;
1023
1024 MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1025
1026 if (!B.OmitRangeCheck)
1027 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1028 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1029
1030 SwitchBB->normalizeSuccProbs();
1031
1032 if (!B.OmitRangeCheck) {
1033 // Conditional branch to the default block.
1034 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1035 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1036 RangeSub, RangeCst);
1037 MIB.buildBrCond(RangeCmp, *B.Default);
1038 }
1039
1040 // Avoid emitting unnecessary branches to the next block.
1041 if (MBB != SwitchBB->getNextNode())
1042 MIB.buildBr(*MBB);
1043 }
1044
emitBitTestCase(SwitchCG::BitTestBlock & BB,MachineBasicBlock * NextMBB,BranchProbability BranchProbToNext,Register Reg,SwitchCG::BitTestCase & B,MachineBasicBlock * SwitchBB)1045 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1046 MachineBasicBlock *NextMBB,
1047 BranchProbability BranchProbToNext,
1048 Register Reg, SwitchCG::BitTestCase &B,
1049 MachineBasicBlock *SwitchBB) {
1050 MachineIRBuilder &MIB = *CurBuilder;
1051 MIB.setMBB(*SwitchBB);
1052
1053 LLT SwitchTy = getLLTForMVT(BB.RegVT);
1054 Register Cmp;
1055 unsigned PopCount = countPopulation(B.Mask);
1056 if (PopCount == 1) {
1057 // Testing for a single bit; just compare the shift count with what it
1058 // would need to be to shift a 1 bit in that position.
1059 auto MaskTrailingZeros =
1060 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1061 Cmp =
1062 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1063 .getReg(0);
1064 } else if (PopCount == BB.Range) {
1065 // There is only one zero bit in the range, test for it directly.
1066 auto MaskTrailingOnes =
1067 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1068 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1069 .getReg(0);
1070 } else {
1071 // Make desired shift.
1072 auto CstOne = MIB.buildConstant(SwitchTy, 1);
1073 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1074
1075 // Emit bit tests and jumps.
1076 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1077 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1078 auto CstZero = MIB.buildConstant(SwitchTy, 0);
1079 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1080 .getReg(0);
1081 }
1082
1083 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1084 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1085 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1086 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1087 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1088 // one as they are relative probabilities (and thus work more like weights),
1089 // and hence we need to normalize them to let the sum of them become one.
1090 SwitchBB->normalizeSuccProbs();
1091
1092 // Record the fact that the IR edge from the header to the bit test target
1093 // will go through our new block. Neeeded for PHIs to have nodes added.
1094 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1095 SwitchBB);
1096
1097 MIB.buildBrCond(Cmp, *B.TargetBB);
1098
1099 // Avoid emitting unnecessary branches to the next block.
1100 if (NextMBB != SwitchBB->getNextNode())
1101 MIB.buildBr(*NextMBB);
1102 }
1103
lowerBitTestWorkItem(SwitchCG::SwitchWorkListItem W,MachineBasicBlock * SwitchMBB,MachineBasicBlock * CurMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB,MachineFunction::iterator BBI,BranchProbability DefaultProb,BranchProbability UnhandledProbs,SwitchCG::CaseClusterIt I,MachineBasicBlock * Fallthrough,bool FallthroughUnreachable)1104 bool IRTranslator::lowerBitTestWorkItem(
1105 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1106 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1107 MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1108 BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1109 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1110 bool FallthroughUnreachable) {
1111 using namespace SwitchCG;
1112 MachineFunction *CurMF = SwitchMBB->getParent();
1113 // FIXME: Optimize away range check based on pivot comparisons.
1114 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1115 // The bit test blocks haven't been inserted yet; insert them here.
1116 for (BitTestCase &BTC : BTB->Cases)
1117 CurMF->insert(BBI, BTC.ThisBB);
1118
1119 // Fill in fields of the BitTestBlock.
1120 BTB->Parent = CurMBB;
1121 BTB->Default = Fallthrough;
1122
1123 BTB->DefaultProb = UnhandledProbs;
1124 // If the cases in bit test don't form a contiguous range, we evenly
1125 // distribute the probability on the edge to Fallthrough to two
1126 // successors of CurMBB.
1127 if (!BTB->ContiguousRange) {
1128 BTB->Prob += DefaultProb / 2;
1129 BTB->DefaultProb -= DefaultProb / 2;
1130 }
1131
1132 if (FallthroughUnreachable) {
1133 // Skip the range check if the fallthrough block is unreachable.
1134 BTB->OmitRangeCheck = true;
1135 }
1136
1137 // If we're in the right place, emit the bit test header right now.
1138 if (CurMBB == SwitchMBB) {
1139 emitBitTestHeader(*BTB, SwitchMBB);
1140 BTB->Emitted = true;
1141 }
1142 return true;
1143 }
1144
lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,Value * Cond,MachineBasicBlock * SwitchMBB,MachineBasicBlock * DefaultMBB,MachineIRBuilder & MIB)1145 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1146 Value *Cond,
1147 MachineBasicBlock *SwitchMBB,
1148 MachineBasicBlock *DefaultMBB,
1149 MachineIRBuilder &MIB) {
1150 using namespace SwitchCG;
1151 MachineFunction *CurMF = FuncInfo.MF;
1152 MachineBasicBlock *NextMBB = nullptr;
1153 MachineFunction::iterator BBI(W.MBB);
1154 if (++BBI != FuncInfo.MF->end())
1155 NextMBB = &*BBI;
1156
1157 if (EnableOpts) {
1158 // Here, we order cases by probability so the most likely case will be
1159 // checked first. However, two clusters can have the same probability in
1160 // which case their relative ordering is non-deterministic. So we use Low
1161 // as a tie-breaker as clusters are guaranteed to never overlap.
1162 llvm::sort(W.FirstCluster, W.LastCluster + 1,
1163 [](const CaseCluster &a, const CaseCluster &b) {
1164 return a.Prob != b.Prob
1165 ? a.Prob > b.Prob
1166 : a.Low->getValue().slt(b.Low->getValue());
1167 });
1168
1169 // Rearrange the case blocks so that the last one falls through if possible
1170 // without changing the order of probabilities.
1171 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1172 --I;
1173 if (I->Prob > W.LastCluster->Prob)
1174 break;
1175 if (I->Kind == CC_Range && I->MBB == NextMBB) {
1176 std::swap(*I, *W.LastCluster);
1177 break;
1178 }
1179 }
1180 }
1181
1182 // Compute total probability.
1183 BranchProbability DefaultProb = W.DefaultProb;
1184 BranchProbability UnhandledProbs = DefaultProb;
1185 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1186 UnhandledProbs += I->Prob;
1187
1188 MachineBasicBlock *CurMBB = W.MBB;
1189 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1190 bool FallthroughUnreachable = false;
1191 MachineBasicBlock *Fallthrough;
1192 if (I == W.LastCluster) {
1193 // For the last cluster, fall through to the default destination.
1194 Fallthrough = DefaultMBB;
1195 FallthroughUnreachable = isa<UnreachableInst>(
1196 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1197 } else {
1198 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1199 CurMF->insert(BBI, Fallthrough);
1200 }
1201 UnhandledProbs -= I->Prob;
1202
1203 switch (I->Kind) {
1204 case CC_BitTests: {
1205 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1206 DefaultProb, UnhandledProbs, I, Fallthrough,
1207 FallthroughUnreachable)) {
1208 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1209 return false;
1210 }
1211 break;
1212 }
1213
1214 case CC_JumpTable: {
1215 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1216 UnhandledProbs, I, Fallthrough,
1217 FallthroughUnreachable)) {
1218 LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1219 return false;
1220 }
1221 break;
1222 }
1223 case CC_Range: {
1224 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1225 FallthroughUnreachable, UnhandledProbs,
1226 CurMBB, MIB, SwitchMBB)) {
1227 LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1228 return false;
1229 }
1230 break;
1231 }
1232 }
1233 CurMBB = Fallthrough;
1234 }
1235
1236 return true;
1237 }
1238
translateIndirectBr(const User & U,MachineIRBuilder & MIRBuilder)1239 bool IRTranslator::translateIndirectBr(const User &U,
1240 MachineIRBuilder &MIRBuilder) {
1241 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1242
1243 const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1244 MIRBuilder.buildBrIndirect(Tgt);
1245
1246 // Link successors.
1247 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1248 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1249 for (const BasicBlock *Succ : successors(&BrInst)) {
1250 // It's legal for indirectbr instructions to have duplicate blocks in the
1251 // destination list. We don't allow this in MIR. Skip anything that's
1252 // already a successor.
1253 if (!AddedSuccessors.insert(Succ).second)
1254 continue;
1255 CurBB.addSuccessor(&getMBB(*Succ));
1256 }
1257
1258 return true;
1259 }
1260
isSwiftError(const Value * V)1261 static bool isSwiftError(const Value *V) {
1262 if (auto Arg = dyn_cast<Argument>(V))
1263 return Arg->hasSwiftErrorAttr();
1264 if (auto AI = dyn_cast<AllocaInst>(V))
1265 return AI->isSwiftError();
1266 return false;
1267 }
1268
translateLoad(const User & U,MachineIRBuilder & MIRBuilder)1269 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1270 const LoadInst &LI = cast<LoadInst>(U);
1271 if (DL->getTypeStoreSize(LI.getType()) == 0)
1272 return true;
1273
1274 ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1275 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1276 Register Base = getOrCreateVReg(*LI.getPointerOperand());
1277
1278 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1279 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1280
1281 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1282 assert(Regs.size() == 1 && "swifterror should be single pointer");
1283 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1284 LI.getPointerOperand());
1285 MIRBuilder.buildCopy(Regs[0], VReg);
1286 return true;
1287 }
1288
1289 auto &TLI = *MF->getSubtarget().getTargetLowering();
1290 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1291
1292 const MDNode *Ranges =
1293 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1294 for (unsigned i = 0; i < Regs.size(); ++i) {
1295 Register Addr;
1296 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1297
1298 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1299 Align BaseAlign = getMemOpAlign(LI);
1300 AAMDNodes AAMetadata;
1301 LI.getAAMetadata(AAMetadata);
1302 auto MMO = MF->getMachineMemOperand(
1303 Ptr, Flags, MRI->getType(Regs[i]),
1304 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1305 LI.getSyncScopeID(), LI.getOrdering());
1306 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1307 }
1308
1309 return true;
1310 }
1311
translateStore(const User & U,MachineIRBuilder & MIRBuilder)1312 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1313 const StoreInst &SI = cast<StoreInst>(U);
1314 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1315 return true;
1316
1317 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1318 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1319 Register Base = getOrCreateVReg(*SI.getPointerOperand());
1320
1321 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1322 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1323
1324 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1325 assert(Vals.size() == 1 && "swifterror should be single pointer");
1326
1327 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1328 SI.getPointerOperand());
1329 MIRBuilder.buildCopy(VReg, Vals[0]);
1330 return true;
1331 }
1332
1333 auto &TLI = *MF->getSubtarget().getTargetLowering();
1334 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1335
1336 for (unsigned i = 0; i < Vals.size(); ++i) {
1337 Register Addr;
1338 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1339
1340 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1341 Align BaseAlign = getMemOpAlign(SI);
1342 AAMDNodes AAMetadata;
1343 SI.getAAMetadata(AAMetadata);
1344 auto MMO = MF->getMachineMemOperand(
1345 Ptr, Flags, MRI->getType(Vals[i]),
1346 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1347 SI.getSyncScopeID(), SI.getOrdering());
1348 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1349 }
1350 return true;
1351 }
1352
getOffsetFromIndices(const User & U,const DataLayout & DL)1353 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1354 const Value *Src = U.getOperand(0);
1355 Type *Int32Ty = Type::getInt32Ty(U.getContext());
1356
1357 // getIndexedOffsetInType is designed for GEPs, so the first index is the
1358 // usual array element rather than looking into the actual aggregate.
1359 SmallVector<Value *, 1> Indices;
1360 Indices.push_back(ConstantInt::get(Int32Ty, 0));
1361
1362 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1363 for (auto Idx : EVI->indices())
1364 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1365 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1366 for (auto Idx : IVI->indices())
1367 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1368 } else {
1369 for (unsigned i = 1; i < U.getNumOperands(); ++i)
1370 Indices.push_back(U.getOperand(i));
1371 }
1372
1373 return 8 * static_cast<uint64_t>(
1374 DL.getIndexedOffsetInType(Src->getType(), Indices));
1375 }
1376
translateExtractValue(const User & U,MachineIRBuilder & MIRBuilder)1377 bool IRTranslator::translateExtractValue(const User &U,
1378 MachineIRBuilder &MIRBuilder) {
1379 const Value *Src = U.getOperand(0);
1380 uint64_t Offset = getOffsetFromIndices(U, *DL);
1381 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1382 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1383 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1384 auto &DstRegs = allocateVRegs(U);
1385
1386 for (unsigned i = 0; i < DstRegs.size(); ++i)
1387 DstRegs[i] = SrcRegs[Idx++];
1388
1389 return true;
1390 }
1391
translateInsertValue(const User & U,MachineIRBuilder & MIRBuilder)1392 bool IRTranslator::translateInsertValue(const User &U,
1393 MachineIRBuilder &MIRBuilder) {
1394 const Value *Src = U.getOperand(0);
1395 uint64_t Offset = getOffsetFromIndices(U, *DL);
1396 auto &DstRegs = allocateVRegs(U);
1397 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1398 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1399 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1400 auto InsertedIt = InsertedRegs.begin();
1401
1402 for (unsigned i = 0; i < DstRegs.size(); ++i) {
1403 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1404 DstRegs[i] = *InsertedIt++;
1405 else
1406 DstRegs[i] = SrcRegs[i];
1407 }
1408
1409 return true;
1410 }
1411
translateSelect(const User & U,MachineIRBuilder & MIRBuilder)1412 bool IRTranslator::translateSelect(const User &U,
1413 MachineIRBuilder &MIRBuilder) {
1414 Register Tst = getOrCreateVReg(*U.getOperand(0));
1415 ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1416 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1417 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1418
1419 uint16_t Flags = 0;
1420 if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1421 Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1422
1423 for (unsigned i = 0; i < ResRegs.size(); ++i) {
1424 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1425 }
1426
1427 return true;
1428 }
1429
translateCopy(const User & U,const Value & V,MachineIRBuilder & MIRBuilder)1430 bool IRTranslator::translateCopy(const User &U, const Value &V,
1431 MachineIRBuilder &MIRBuilder) {
1432 Register Src = getOrCreateVReg(V);
1433 auto &Regs = *VMap.getVRegs(U);
1434 if (Regs.empty()) {
1435 Regs.push_back(Src);
1436 VMap.getOffsets(U)->push_back(0);
1437 } else {
1438 // If we already assigned a vreg for this instruction, we can't change that.
1439 // Emit a copy to satisfy the users we already emitted.
1440 MIRBuilder.buildCopy(Regs[0], Src);
1441 }
1442 return true;
1443 }
1444
translateBitCast(const User & U,MachineIRBuilder & MIRBuilder)1445 bool IRTranslator::translateBitCast(const User &U,
1446 MachineIRBuilder &MIRBuilder) {
1447 // If we're bitcasting to the source type, we can reuse the source vreg.
1448 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1449 getLLTForType(*U.getType(), *DL))
1450 return translateCopy(U, *U.getOperand(0), MIRBuilder);
1451
1452 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1453 }
1454
translateCast(unsigned Opcode,const User & U,MachineIRBuilder & MIRBuilder)1455 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1456 MachineIRBuilder &MIRBuilder) {
1457 Register Op = getOrCreateVReg(*U.getOperand(0));
1458 Register Res = getOrCreateVReg(U);
1459 MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1460 return true;
1461 }
1462
translateGetElementPtr(const User & U,MachineIRBuilder & MIRBuilder)1463 bool IRTranslator::translateGetElementPtr(const User &U,
1464 MachineIRBuilder &MIRBuilder) {
1465 Value &Op0 = *U.getOperand(0);
1466 Register BaseReg = getOrCreateVReg(Op0);
1467 Type *PtrIRTy = Op0.getType();
1468 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1469 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1470 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1471
1472 // Normalize Vector GEP - all scalar operands should be converted to the
1473 // splat vector.
1474 unsigned VectorWidth = 0;
1475
1476 // True if we should use a splat vector; using VectorWidth alone is not
1477 // sufficient.
1478 bool WantSplatVector = false;
1479 if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1480 VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1481 // We don't produce 1 x N vectors; those are treated as scalars.
1482 WantSplatVector = VectorWidth > 1;
1483 }
1484
1485 // We might need to splat the base pointer into a vector if the offsets
1486 // are vectors.
1487 if (WantSplatVector && !PtrTy.isVector()) {
1488 BaseReg =
1489 MIRBuilder
1490 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1491 .getReg(0);
1492 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1493 PtrTy = getLLTForType(*PtrIRTy, *DL);
1494 OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1495 OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1496 }
1497
1498 int64_t Offset = 0;
1499 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1500 GTI != E; ++GTI) {
1501 const Value *Idx = GTI.getOperand();
1502 if (StructType *StTy = GTI.getStructTypeOrNull()) {
1503 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1504 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1505 continue;
1506 } else {
1507 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1508
1509 // If this is a scalar constant or a splat vector of constants,
1510 // handle it quickly.
1511 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1512 Offset += ElementSize * CI->getSExtValue();
1513 continue;
1514 }
1515
1516 if (Offset != 0) {
1517 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1518 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1519 .getReg(0);
1520 Offset = 0;
1521 }
1522
1523 Register IdxReg = getOrCreateVReg(*Idx);
1524 LLT IdxTy = MRI->getType(IdxReg);
1525 if (IdxTy != OffsetTy) {
1526 if (!IdxTy.isVector() && WantSplatVector) {
1527 IdxReg = MIRBuilder.buildSplatVector(
1528 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1529 }
1530
1531 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1532 }
1533
1534 // N = N + Idx * ElementSize;
1535 // Avoid doing it for ElementSize of 1.
1536 Register GepOffsetReg;
1537 if (ElementSize != 1) {
1538 auto ElementSizeMIB = MIRBuilder.buildConstant(
1539 getLLTForType(*OffsetIRTy, *DL), ElementSize);
1540 GepOffsetReg =
1541 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1542 } else
1543 GepOffsetReg = IdxReg;
1544
1545 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1546 }
1547 }
1548
1549 if (Offset != 0) {
1550 auto OffsetMIB =
1551 MIRBuilder.buildConstant(OffsetTy, Offset);
1552 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1553 return true;
1554 }
1555
1556 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1557 return true;
1558 }
1559
translateMemFunc(const CallInst & CI,MachineIRBuilder & MIRBuilder,unsigned Opcode)1560 bool IRTranslator::translateMemFunc(const CallInst &CI,
1561 MachineIRBuilder &MIRBuilder,
1562 unsigned Opcode) {
1563
1564 // If the source is undef, then just emit a nop.
1565 if (isa<UndefValue>(CI.getArgOperand(1)))
1566 return true;
1567
1568 SmallVector<Register, 3> SrcRegs;
1569
1570 unsigned MinPtrSize = UINT_MAX;
1571 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1572 Register SrcReg = getOrCreateVReg(**AI);
1573 LLT SrcTy = MRI->getType(SrcReg);
1574 if (SrcTy.isPointer())
1575 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1576 SrcRegs.push_back(SrcReg);
1577 }
1578
1579 LLT SizeTy = LLT::scalar(MinPtrSize);
1580
1581 // The size operand should be the minimum of the pointer sizes.
1582 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1583 if (MRI->getType(SizeOpReg) != SizeTy)
1584 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1585
1586 auto ICall = MIRBuilder.buildInstr(Opcode);
1587 for (Register SrcReg : SrcRegs)
1588 ICall.addUse(SrcReg);
1589
1590 Align DstAlign;
1591 Align SrcAlign;
1592 unsigned IsVol =
1593 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1594 ->getZExtValue();
1595
1596 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1597 DstAlign = MCI->getDestAlign().valueOrOne();
1598 SrcAlign = MCI->getSourceAlign().valueOrOne();
1599 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1600 DstAlign = MCI->getDestAlign().valueOrOne();
1601 SrcAlign = MCI->getSourceAlign().valueOrOne();
1602 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1603 DstAlign = MMI->getDestAlign().valueOrOne();
1604 SrcAlign = MMI->getSourceAlign().valueOrOne();
1605 } else {
1606 auto *MSI = cast<MemSetInst>(&CI);
1607 DstAlign = MSI->getDestAlign().valueOrOne();
1608 }
1609
1610 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1611 // We need to propagate the tail call flag from the IR inst as an argument.
1612 // Otherwise, we have to pessimize and assume later that we cannot tail call
1613 // any memory intrinsics.
1614 ICall.addImm(CI.isTailCall() ? 1 : 0);
1615 }
1616
1617 // Create mem operands to store the alignment and volatile info.
1618 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1619 ICall.addMemOperand(MF->getMachineMemOperand(
1620 MachinePointerInfo(CI.getArgOperand(0)),
1621 MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1622 if (Opcode != TargetOpcode::G_MEMSET)
1623 ICall.addMemOperand(MF->getMachineMemOperand(
1624 MachinePointerInfo(CI.getArgOperand(1)),
1625 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1626
1627 return true;
1628 }
1629
getStackGuard(Register DstReg,MachineIRBuilder & MIRBuilder)1630 void IRTranslator::getStackGuard(Register DstReg,
1631 MachineIRBuilder &MIRBuilder) {
1632 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1633 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1634 auto MIB =
1635 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1636
1637 auto &TLI = *MF->getSubtarget().getTargetLowering();
1638 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1639 if (!Global)
1640 return;
1641
1642 unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1643 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1644
1645 MachinePointerInfo MPInfo(Global);
1646 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1647 MachineMemOperand::MODereferenceable;
1648 MachineMemOperand *MemRef = MF->getMachineMemOperand(
1649 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1650 MIB.setMemRefs({MemRef});
1651 }
1652
translateOverflowIntrinsic(const CallInst & CI,unsigned Op,MachineIRBuilder & MIRBuilder)1653 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1654 MachineIRBuilder &MIRBuilder) {
1655 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1656 MIRBuilder.buildInstr(
1657 Op, {ResRegs[0], ResRegs[1]},
1658 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1659
1660 return true;
1661 }
1662
translateFixedPointIntrinsic(unsigned Op,const CallInst & CI,MachineIRBuilder & MIRBuilder)1663 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1664 MachineIRBuilder &MIRBuilder) {
1665 Register Dst = getOrCreateVReg(CI);
1666 Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1667 Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1668 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1669 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1670 return true;
1671 }
1672
getSimpleIntrinsicOpcode(Intrinsic::ID ID)1673 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1674 switch (ID) {
1675 default:
1676 break;
1677 case Intrinsic::bswap:
1678 return TargetOpcode::G_BSWAP;
1679 case Intrinsic::bitreverse:
1680 return TargetOpcode::G_BITREVERSE;
1681 case Intrinsic::fshl:
1682 return TargetOpcode::G_FSHL;
1683 case Intrinsic::fshr:
1684 return TargetOpcode::G_FSHR;
1685 case Intrinsic::ceil:
1686 return TargetOpcode::G_FCEIL;
1687 case Intrinsic::cos:
1688 return TargetOpcode::G_FCOS;
1689 case Intrinsic::ctpop:
1690 return TargetOpcode::G_CTPOP;
1691 case Intrinsic::exp:
1692 return TargetOpcode::G_FEXP;
1693 case Intrinsic::exp2:
1694 return TargetOpcode::G_FEXP2;
1695 case Intrinsic::fabs:
1696 return TargetOpcode::G_FABS;
1697 case Intrinsic::copysign:
1698 return TargetOpcode::G_FCOPYSIGN;
1699 case Intrinsic::minnum:
1700 return TargetOpcode::G_FMINNUM;
1701 case Intrinsic::maxnum:
1702 return TargetOpcode::G_FMAXNUM;
1703 case Intrinsic::minimum:
1704 return TargetOpcode::G_FMINIMUM;
1705 case Intrinsic::maximum:
1706 return TargetOpcode::G_FMAXIMUM;
1707 case Intrinsic::canonicalize:
1708 return TargetOpcode::G_FCANONICALIZE;
1709 case Intrinsic::floor:
1710 return TargetOpcode::G_FFLOOR;
1711 case Intrinsic::fma:
1712 return TargetOpcode::G_FMA;
1713 case Intrinsic::log:
1714 return TargetOpcode::G_FLOG;
1715 case Intrinsic::log2:
1716 return TargetOpcode::G_FLOG2;
1717 case Intrinsic::log10:
1718 return TargetOpcode::G_FLOG10;
1719 case Intrinsic::nearbyint:
1720 return TargetOpcode::G_FNEARBYINT;
1721 case Intrinsic::pow:
1722 return TargetOpcode::G_FPOW;
1723 case Intrinsic::powi:
1724 return TargetOpcode::G_FPOWI;
1725 case Intrinsic::rint:
1726 return TargetOpcode::G_FRINT;
1727 case Intrinsic::round:
1728 return TargetOpcode::G_INTRINSIC_ROUND;
1729 case Intrinsic::roundeven:
1730 return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1731 case Intrinsic::sin:
1732 return TargetOpcode::G_FSIN;
1733 case Intrinsic::sqrt:
1734 return TargetOpcode::G_FSQRT;
1735 case Intrinsic::trunc:
1736 return TargetOpcode::G_INTRINSIC_TRUNC;
1737 case Intrinsic::readcyclecounter:
1738 return TargetOpcode::G_READCYCLECOUNTER;
1739 case Intrinsic::ptrmask:
1740 return TargetOpcode::G_PTRMASK;
1741 case Intrinsic::lrint:
1742 return TargetOpcode::G_INTRINSIC_LRINT;
1743 // FADD/FMUL require checking the FMF, so are handled elsewhere.
1744 case Intrinsic::vector_reduce_fmin:
1745 return TargetOpcode::G_VECREDUCE_FMIN;
1746 case Intrinsic::vector_reduce_fmax:
1747 return TargetOpcode::G_VECREDUCE_FMAX;
1748 case Intrinsic::vector_reduce_add:
1749 return TargetOpcode::G_VECREDUCE_ADD;
1750 case Intrinsic::vector_reduce_mul:
1751 return TargetOpcode::G_VECREDUCE_MUL;
1752 case Intrinsic::vector_reduce_and:
1753 return TargetOpcode::G_VECREDUCE_AND;
1754 case Intrinsic::vector_reduce_or:
1755 return TargetOpcode::G_VECREDUCE_OR;
1756 case Intrinsic::vector_reduce_xor:
1757 return TargetOpcode::G_VECREDUCE_XOR;
1758 case Intrinsic::vector_reduce_smax:
1759 return TargetOpcode::G_VECREDUCE_SMAX;
1760 case Intrinsic::vector_reduce_smin:
1761 return TargetOpcode::G_VECREDUCE_SMIN;
1762 case Intrinsic::vector_reduce_umax:
1763 return TargetOpcode::G_VECREDUCE_UMAX;
1764 case Intrinsic::vector_reduce_umin:
1765 return TargetOpcode::G_VECREDUCE_UMIN;
1766 }
1767 return Intrinsic::not_intrinsic;
1768 }
1769
translateSimpleIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1770 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1771 Intrinsic::ID ID,
1772 MachineIRBuilder &MIRBuilder) {
1773
1774 unsigned Op = getSimpleIntrinsicOpcode(ID);
1775
1776 // Is this a simple intrinsic?
1777 if (Op == Intrinsic::not_intrinsic)
1778 return false;
1779
1780 // Yes. Let's translate it.
1781 SmallVector<llvm::SrcOp, 4> VRegs;
1782 for (auto &Arg : CI.arg_operands())
1783 VRegs.push_back(getOrCreateVReg(*Arg));
1784
1785 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1786 MachineInstr::copyFlagsFromInstruction(CI));
1787 return true;
1788 }
1789
1790 // TODO: Include ConstainedOps.def when all strict instructions are defined.
getConstrainedOpcode(Intrinsic::ID ID)1791 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1792 switch (ID) {
1793 case Intrinsic::experimental_constrained_fadd:
1794 return TargetOpcode::G_STRICT_FADD;
1795 case Intrinsic::experimental_constrained_fsub:
1796 return TargetOpcode::G_STRICT_FSUB;
1797 case Intrinsic::experimental_constrained_fmul:
1798 return TargetOpcode::G_STRICT_FMUL;
1799 case Intrinsic::experimental_constrained_fdiv:
1800 return TargetOpcode::G_STRICT_FDIV;
1801 case Intrinsic::experimental_constrained_frem:
1802 return TargetOpcode::G_STRICT_FREM;
1803 case Intrinsic::experimental_constrained_fma:
1804 return TargetOpcode::G_STRICT_FMA;
1805 case Intrinsic::experimental_constrained_sqrt:
1806 return TargetOpcode::G_STRICT_FSQRT;
1807 default:
1808 return 0;
1809 }
1810 }
1811
translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic & FPI,MachineIRBuilder & MIRBuilder)1812 bool IRTranslator::translateConstrainedFPIntrinsic(
1813 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1814 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1815
1816 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1817 if (!Opcode)
1818 return false;
1819
1820 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1821 if (EB == fp::ExceptionBehavior::ebIgnore)
1822 Flags |= MachineInstr::NoFPExcept;
1823
1824 SmallVector<llvm::SrcOp, 4> VRegs;
1825 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1826 if (!FPI.isUnaryOp())
1827 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1828 if (FPI.isTernaryOp())
1829 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1830
1831 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1832 return true;
1833 }
1834
translateKnownIntrinsic(const CallInst & CI,Intrinsic::ID ID,MachineIRBuilder & MIRBuilder)1835 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1836 MachineIRBuilder &MIRBuilder) {
1837 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1838 if (ORE->enabled()) {
1839 const Function &F = *MI->getParent()->getParent();
1840 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1841 if (MemoryOpRemark::canHandle(MI, TLI)) {
1842 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
1843 R.visit(MI);
1844 }
1845 }
1846 }
1847
1848 // If this is a simple intrinsic (that is, we just need to add a def of
1849 // a vreg, and uses for each arg operand, then translate it.
1850 if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1851 return true;
1852
1853 switch (ID) {
1854 default:
1855 break;
1856 case Intrinsic::lifetime_start:
1857 case Intrinsic::lifetime_end: {
1858 // No stack colouring in O0, discard region information.
1859 if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1860 return true;
1861
1862 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1863 : TargetOpcode::LIFETIME_END;
1864
1865 // Get the underlying objects for the location passed on the lifetime
1866 // marker.
1867 SmallVector<const Value *, 4> Allocas;
1868 getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1869
1870 // Iterate over each underlying object, creating lifetime markers for each
1871 // static alloca. Quit if we find a non-static alloca.
1872 for (const Value *V : Allocas) {
1873 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1874 if (!AI)
1875 continue;
1876
1877 if (!AI->isStaticAlloca())
1878 return true;
1879
1880 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1881 }
1882 return true;
1883 }
1884 case Intrinsic::dbg_declare: {
1885 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1886 assert(DI.getVariable() && "Missing variable");
1887
1888 const Value *Address = DI.getAddress();
1889 if (!Address || isa<UndefValue>(Address)) {
1890 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1891 return true;
1892 }
1893
1894 assert(DI.getVariable()->isValidLocationForIntrinsic(
1895 MIRBuilder.getDebugLoc()) &&
1896 "Expected inlined-at fields to agree");
1897 auto AI = dyn_cast<AllocaInst>(Address);
1898 if (AI && AI->isStaticAlloca()) {
1899 // Static allocas are tracked at the MF level, no need for DBG_VALUE
1900 // instructions (in fact, they get ignored if they *do* exist).
1901 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1902 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1903 } else {
1904 // A dbg.declare describes the address of a source variable, so lower it
1905 // into an indirect DBG_VALUE.
1906 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1907 DI.getVariable(), DI.getExpression());
1908 }
1909 return true;
1910 }
1911 case Intrinsic::dbg_label: {
1912 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1913 assert(DI.getLabel() && "Missing label");
1914
1915 assert(DI.getLabel()->isValidLocationForIntrinsic(
1916 MIRBuilder.getDebugLoc()) &&
1917 "Expected inlined-at fields to agree");
1918
1919 MIRBuilder.buildDbgLabel(DI.getLabel());
1920 return true;
1921 }
1922 case Intrinsic::vaend:
1923 // No target I know of cares about va_end. Certainly no in-tree target
1924 // does. Simplest intrinsic ever!
1925 return true;
1926 case Intrinsic::vastart: {
1927 auto &TLI = *MF->getSubtarget().getTargetLowering();
1928 Value *Ptr = CI.getArgOperand(0);
1929 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1930
1931 // FIXME: Get alignment
1932 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1933 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1934 MachineMemOperand::MOStore,
1935 ListSize, Align(1)));
1936 return true;
1937 }
1938 case Intrinsic::dbg_value: {
1939 // This form of DBG_VALUE is target-independent.
1940 const DbgValueInst &DI = cast<DbgValueInst>(CI);
1941 const Value *V = DI.getValue();
1942 assert(DI.getVariable()->isValidLocationForIntrinsic(
1943 MIRBuilder.getDebugLoc()) &&
1944 "Expected inlined-at fields to agree");
1945 if (!V || DI.hasArgList()) {
1946 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1947 // terminate any prior location.
1948 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1949 } else if (const auto *CI = dyn_cast<Constant>(V)) {
1950 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1951 } else {
1952 for (Register Reg : getOrCreateVRegs(*V)) {
1953 // FIXME: This does not handle register-indirect values at offset 0. The
1954 // direct/indirect thing shouldn't really be handled by something as
1955 // implicit as reg+noreg vs reg+imm in the first place, but it seems
1956 // pretty baked in right now.
1957 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1958 }
1959 }
1960 return true;
1961 }
1962 case Intrinsic::uadd_with_overflow:
1963 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1964 case Intrinsic::sadd_with_overflow:
1965 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1966 case Intrinsic::usub_with_overflow:
1967 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1968 case Intrinsic::ssub_with_overflow:
1969 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1970 case Intrinsic::umul_with_overflow:
1971 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1972 case Intrinsic::smul_with_overflow:
1973 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1974 case Intrinsic::uadd_sat:
1975 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1976 case Intrinsic::sadd_sat:
1977 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1978 case Intrinsic::usub_sat:
1979 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1980 case Intrinsic::ssub_sat:
1981 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1982 case Intrinsic::ushl_sat:
1983 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1984 case Intrinsic::sshl_sat:
1985 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1986 case Intrinsic::umin:
1987 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1988 case Intrinsic::umax:
1989 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1990 case Intrinsic::smin:
1991 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1992 case Intrinsic::smax:
1993 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1994 case Intrinsic::abs:
1995 // TODO: Preserve "int min is poison" arg in GMIR?
1996 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1997 case Intrinsic::smul_fix:
1998 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1999 case Intrinsic::umul_fix:
2000 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2001 case Intrinsic::smul_fix_sat:
2002 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2003 case Intrinsic::umul_fix_sat:
2004 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2005 case Intrinsic::sdiv_fix:
2006 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2007 case Intrinsic::udiv_fix:
2008 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2009 case Intrinsic::sdiv_fix_sat:
2010 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2011 case Intrinsic::udiv_fix_sat:
2012 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2013 case Intrinsic::fmuladd: {
2014 const TargetMachine &TM = MF->getTarget();
2015 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2016 Register Dst = getOrCreateVReg(CI);
2017 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2018 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2019 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2020 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2021 TLI.isFMAFasterThanFMulAndFAdd(*MF,
2022 TLI.getValueType(*DL, CI.getType()))) {
2023 // TODO: Revisit this to see if we should move this part of the
2024 // lowering to the combiner.
2025 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2026 MachineInstr::copyFlagsFromInstruction(CI));
2027 } else {
2028 LLT Ty = getLLTForType(*CI.getType(), *DL);
2029 auto FMul = MIRBuilder.buildFMul(
2030 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2031 MIRBuilder.buildFAdd(Dst, FMul, Op2,
2032 MachineInstr::copyFlagsFromInstruction(CI));
2033 }
2034 return true;
2035 }
2036 case Intrinsic::convert_from_fp16:
2037 // FIXME: This intrinsic should probably be removed from the IR.
2038 MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2039 getOrCreateVReg(*CI.getArgOperand(0)),
2040 MachineInstr::copyFlagsFromInstruction(CI));
2041 return true;
2042 case Intrinsic::convert_to_fp16:
2043 // FIXME: This intrinsic should probably be removed from the IR.
2044 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2045 getOrCreateVReg(*CI.getArgOperand(0)),
2046 MachineInstr::copyFlagsFromInstruction(CI));
2047 return true;
2048 case Intrinsic::memcpy_inline:
2049 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2050 case Intrinsic::memcpy:
2051 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2052 case Intrinsic::memmove:
2053 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2054 case Intrinsic::memset:
2055 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2056 case Intrinsic::eh_typeid_for: {
2057 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2058 Register Reg = getOrCreateVReg(CI);
2059 unsigned TypeID = MF->getTypeIDFor(GV);
2060 MIRBuilder.buildConstant(Reg, TypeID);
2061 return true;
2062 }
2063 case Intrinsic::objectsize:
2064 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2065
2066 case Intrinsic::is_constant:
2067 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2068
2069 case Intrinsic::stackguard:
2070 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2071 return true;
2072 case Intrinsic::stackprotector: {
2073 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2074 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2075 getStackGuard(GuardVal, MIRBuilder);
2076
2077 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2078 int FI = getOrCreateFrameIndex(*Slot);
2079 MF->getFrameInfo().setStackProtectorIndex(FI);
2080
2081 MIRBuilder.buildStore(
2082 GuardVal, getOrCreateVReg(*Slot),
2083 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2084 MachineMemOperand::MOStore |
2085 MachineMemOperand::MOVolatile,
2086 PtrTy, Align(8)));
2087 return true;
2088 }
2089 case Intrinsic::stacksave: {
2090 // Save the stack pointer to the location provided by the intrinsic.
2091 Register Reg = getOrCreateVReg(CI);
2092 Register StackPtr = MF->getSubtarget()
2093 .getTargetLowering()
2094 ->getStackPointerRegisterToSaveRestore();
2095
2096 // If the target doesn't specify a stack pointer, then fall back.
2097 if (!StackPtr)
2098 return false;
2099
2100 MIRBuilder.buildCopy(Reg, StackPtr);
2101 return true;
2102 }
2103 case Intrinsic::stackrestore: {
2104 // Restore the stack pointer from the location provided by the intrinsic.
2105 Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2106 Register StackPtr = MF->getSubtarget()
2107 .getTargetLowering()
2108 ->getStackPointerRegisterToSaveRestore();
2109
2110 // If the target doesn't specify a stack pointer, then fall back.
2111 if (!StackPtr)
2112 return false;
2113
2114 MIRBuilder.buildCopy(StackPtr, Reg);
2115 return true;
2116 }
2117 case Intrinsic::cttz:
2118 case Intrinsic::ctlz: {
2119 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2120 bool isTrailing = ID == Intrinsic::cttz;
2121 unsigned Opcode = isTrailing
2122 ? Cst->isZero() ? TargetOpcode::G_CTTZ
2123 : TargetOpcode::G_CTTZ_ZERO_UNDEF
2124 : Cst->isZero() ? TargetOpcode::G_CTLZ
2125 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2126 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2127 {getOrCreateVReg(*CI.getArgOperand(0))});
2128 return true;
2129 }
2130 case Intrinsic::invariant_start: {
2131 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2132 Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2133 MIRBuilder.buildUndef(Undef);
2134 return true;
2135 }
2136 case Intrinsic::invariant_end:
2137 return true;
2138 case Intrinsic::expect:
2139 case Intrinsic::annotation:
2140 case Intrinsic::ptr_annotation:
2141 case Intrinsic::launder_invariant_group:
2142 case Intrinsic::strip_invariant_group: {
2143 // Drop the intrinsic, but forward the value.
2144 MIRBuilder.buildCopy(getOrCreateVReg(CI),
2145 getOrCreateVReg(*CI.getArgOperand(0)));
2146 return true;
2147 }
2148 case Intrinsic::assume:
2149 case Intrinsic::experimental_noalias_scope_decl:
2150 case Intrinsic::var_annotation:
2151 case Intrinsic::sideeffect:
2152 // Discard annotate attributes, assumptions, and artificial side-effects.
2153 return true;
2154 case Intrinsic::read_volatile_register:
2155 case Intrinsic::read_register: {
2156 Value *Arg = CI.getArgOperand(0);
2157 MIRBuilder
2158 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2159 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2160 return true;
2161 }
2162 case Intrinsic::write_register: {
2163 Value *Arg = CI.getArgOperand(0);
2164 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2165 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2166 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2167 return true;
2168 }
2169 case Intrinsic::localescape: {
2170 MachineBasicBlock &EntryMBB = MF->front();
2171 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2172
2173 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2174 // is the same on all targets.
2175 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2176 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2177 if (isa<ConstantPointerNull>(Arg))
2178 continue; // Skip null pointers. They represent a hole in index space.
2179
2180 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2181 MCSymbol *FrameAllocSym =
2182 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2183 Idx);
2184
2185 // This should be inserted at the start of the entry block.
2186 auto LocalEscape =
2187 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2188 .addSym(FrameAllocSym)
2189 .addFrameIndex(FI);
2190
2191 EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2192 }
2193
2194 return true;
2195 }
2196 case Intrinsic::vector_reduce_fadd:
2197 case Intrinsic::vector_reduce_fmul: {
2198 // Need to check for the reassoc flag to decide whether we want a
2199 // sequential reduction opcode or not.
2200 Register Dst = getOrCreateVReg(CI);
2201 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2202 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2203 unsigned Opc = 0;
2204 if (!CI.hasAllowReassoc()) {
2205 // The sequential ordering case.
2206 Opc = ID == Intrinsic::vector_reduce_fadd
2207 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2208 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2209 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2210 MachineInstr::copyFlagsFromInstruction(CI));
2211 return true;
2212 }
2213 // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2214 // since the associativity doesn't matter.
2215 unsigned ScalarOpc;
2216 if (ID == Intrinsic::vector_reduce_fadd) {
2217 Opc = TargetOpcode::G_VECREDUCE_FADD;
2218 ScalarOpc = TargetOpcode::G_FADD;
2219 } else {
2220 Opc = TargetOpcode::G_VECREDUCE_FMUL;
2221 ScalarOpc = TargetOpcode::G_FMUL;
2222 }
2223 LLT DstTy = MRI->getType(Dst);
2224 auto Rdx = MIRBuilder.buildInstr(
2225 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2226 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2227 MachineInstr::copyFlagsFromInstruction(CI));
2228
2229 return true;
2230 }
2231 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2232 case Intrinsic::INTRINSIC:
2233 #include "llvm/IR/ConstrainedOps.def"
2234 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2235 MIRBuilder);
2236
2237 }
2238 return false;
2239 }
2240
translateInlineAsm(const CallBase & CB,MachineIRBuilder & MIRBuilder)2241 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2242 MachineIRBuilder &MIRBuilder) {
2243
2244 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2245
2246 if (!ALI) {
2247 LLVM_DEBUG(
2248 dbgs() << "Inline asm lowering is not supported for this target yet\n");
2249 return false;
2250 }
2251
2252 return ALI->lowerInlineAsm(
2253 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2254 }
2255
translateCallBase(const CallBase & CB,MachineIRBuilder & MIRBuilder)2256 bool IRTranslator::translateCallBase(const CallBase &CB,
2257 MachineIRBuilder &MIRBuilder) {
2258 ArrayRef<Register> Res = getOrCreateVRegs(CB);
2259
2260 SmallVector<ArrayRef<Register>, 8> Args;
2261 Register SwiftInVReg = 0;
2262 Register SwiftErrorVReg = 0;
2263 for (auto &Arg : CB.args()) {
2264 if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2265 assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2266 LLT Ty = getLLTForType(*Arg->getType(), *DL);
2267 SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2268 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2269 &CB, &MIRBuilder.getMBB(), Arg));
2270 Args.emplace_back(makeArrayRef(SwiftInVReg));
2271 SwiftErrorVReg =
2272 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2273 continue;
2274 }
2275 Args.push_back(getOrCreateVRegs(*Arg));
2276 }
2277
2278 if (auto *CI = dyn_cast<CallInst>(&CB)) {
2279 if (ORE->enabled()) {
2280 const Function &F = *CI->getParent()->getParent();
2281 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2282 if (MemoryOpRemark::canHandle(CI, TLI)) {
2283 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
2284 R.visit(CI);
2285 }
2286 }
2287 }
2288
2289 // We don't set HasCalls on MFI here yet because call lowering may decide to
2290 // optimize into tail calls. Instead, we defer that to selection where a final
2291 // scan is done to check if any instructions are calls.
2292 bool Success =
2293 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2294 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2295
2296 // Check if we just inserted a tail call.
2297 if (Success) {
2298 assert(!HasTailCall && "Can't tail call return twice from block?");
2299 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2300 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2301 }
2302
2303 return Success;
2304 }
2305
translateCall(const User & U,MachineIRBuilder & MIRBuilder)2306 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2307 const CallInst &CI = cast<CallInst>(U);
2308 auto TII = MF->getTarget().getIntrinsicInfo();
2309 const Function *F = CI.getCalledFunction();
2310
2311 // FIXME: support Windows dllimport function calls.
2312 if (F && (F->hasDLLImportStorageClass() ||
2313 (MF->getTarget().getTargetTriple().isOSWindows() &&
2314 F->hasExternalWeakLinkage())))
2315 return false;
2316
2317 // FIXME: support control flow guard targets.
2318 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2319 return false;
2320
2321 if (CI.isInlineAsm())
2322 return translateInlineAsm(CI, MIRBuilder);
2323
2324 Intrinsic::ID ID = Intrinsic::not_intrinsic;
2325 if (F && F->isIntrinsic()) {
2326 ID = F->getIntrinsicID();
2327 if (TII && ID == Intrinsic::not_intrinsic)
2328 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2329 }
2330
2331 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2332 return translateCallBase(CI, MIRBuilder);
2333
2334 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2335
2336 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2337 return true;
2338
2339 ArrayRef<Register> ResultRegs;
2340 if (!CI.getType()->isVoidTy())
2341 ResultRegs = getOrCreateVRegs(CI);
2342
2343 // Ignore the callsite attributes. Backend code is most likely not expecting
2344 // an intrinsic to sometimes have side effects and sometimes not.
2345 MachineInstrBuilder MIB =
2346 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2347 if (isa<FPMathOperator>(CI))
2348 MIB->copyIRFlags(CI);
2349
2350 for (auto &Arg : enumerate(CI.arg_operands())) {
2351 // If this is required to be an immediate, don't materialize it in a
2352 // register.
2353 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2354 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2355 // imm arguments are more convenient than cimm (and realistically
2356 // probably sufficient), so use them.
2357 assert(CI->getBitWidth() <= 64 &&
2358 "large intrinsic immediates not handled");
2359 MIB.addImm(CI->getSExtValue());
2360 } else {
2361 MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2362 }
2363 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2364 auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2365 if (!MDN) // This was probably an MDString.
2366 return false;
2367 MIB.addMetadata(MDN);
2368 } else {
2369 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2370 if (VRegs.size() > 1)
2371 return false;
2372 MIB.addUse(VRegs[0]);
2373 }
2374 }
2375
2376 // Add a MachineMemOperand if it is a target mem intrinsic.
2377 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2378 TargetLowering::IntrinsicInfo Info;
2379 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2380 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2381 Align Alignment = Info.align.getValueOr(
2382 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2383 LLT MemTy = Info.memVT.isSimple()
2384 ? getLLTForMVT(Info.memVT.getSimpleVT())
2385 : LLT::scalar(Info.memVT.getStoreSizeInBits());
2386 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2387 Info.flags, MemTy, Alignment));
2388 }
2389
2390 return true;
2391 }
2392
findUnwindDestinations(const BasicBlock * EHPadBB,BranchProbability Prob,SmallVectorImpl<std::pair<MachineBasicBlock *,BranchProbability>> & UnwindDests)2393 bool IRTranslator::findUnwindDestinations(
2394 const BasicBlock *EHPadBB,
2395 BranchProbability Prob,
2396 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2397 &UnwindDests) {
2398 EHPersonality Personality = classifyEHPersonality(
2399 EHPadBB->getParent()->getFunction().getPersonalityFn());
2400 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2401 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2402 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2403 bool IsSEH = isAsynchronousEHPersonality(Personality);
2404
2405 if (IsWasmCXX) {
2406 // Ignore this for now.
2407 return false;
2408 }
2409
2410 while (EHPadBB) {
2411 const Instruction *Pad = EHPadBB->getFirstNonPHI();
2412 BasicBlock *NewEHPadBB = nullptr;
2413 if (isa<LandingPadInst>(Pad)) {
2414 // Stop on landingpads. They are not funclets.
2415 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2416 break;
2417 }
2418 if (isa<CleanupPadInst>(Pad)) {
2419 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2420 // personalities.
2421 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2422 UnwindDests.back().first->setIsEHScopeEntry();
2423 UnwindDests.back().first->setIsEHFuncletEntry();
2424 break;
2425 }
2426 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2427 // Add the catchpad handlers to the possible destinations.
2428 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2429 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2430 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2431 if (IsMSVCCXX || IsCoreCLR)
2432 UnwindDests.back().first->setIsEHFuncletEntry();
2433 if (!IsSEH)
2434 UnwindDests.back().first->setIsEHScopeEntry();
2435 }
2436 NewEHPadBB = CatchSwitch->getUnwindDest();
2437 } else {
2438 continue;
2439 }
2440
2441 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2442 if (BPI && NewEHPadBB)
2443 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2444 EHPadBB = NewEHPadBB;
2445 }
2446 return true;
2447 }
2448
translateInvoke(const User & U,MachineIRBuilder & MIRBuilder)2449 bool IRTranslator::translateInvoke(const User &U,
2450 MachineIRBuilder &MIRBuilder) {
2451 const InvokeInst &I = cast<InvokeInst>(U);
2452 MCContext &Context = MF->getContext();
2453
2454 const BasicBlock *ReturnBB = I.getSuccessor(0);
2455 const BasicBlock *EHPadBB = I.getSuccessor(1);
2456
2457 const Function *Fn = I.getCalledFunction();
2458
2459 // FIXME: support invoking patchpoint and statepoint intrinsics.
2460 if (Fn && Fn->isIntrinsic())
2461 return false;
2462
2463 // FIXME: support whatever these are.
2464 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2465 return false;
2466
2467 // FIXME: support control flow guard targets.
2468 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2469 return false;
2470
2471 // FIXME: support Windows exception handling.
2472 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2473 return false;
2474
2475 bool LowerInlineAsm = false;
2476 if (I.isInlineAsm()) {
2477 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand());
2478 if (!IA->canThrow()) {
2479 // Fast path without emitting EH_LABELs.
2480
2481 if (!translateInlineAsm(I, MIRBuilder))
2482 return false;
2483
2484 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(),
2485 *ReturnMBB = &getMBB(*ReturnBB);
2486
2487 // Update successor info.
2488 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne());
2489
2490 MIRBuilder.buildBr(*ReturnMBB);
2491 return true;
2492 } else {
2493 LowerInlineAsm = true;
2494 }
2495 }
2496
2497 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2498 // the region covered by the try.
2499 MCSymbol *BeginSymbol = Context.createTempSymbol();
2500 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2501
2502 if (LowerInlineAsm) {
2503 if (!translateInlineAsm(I, MIRBuilder))
2504 return false;
2505 } else if (!translateCallBase(I, MIRBuilder))
2506 return false;
2507
2508 MCSymbol *EndSymbol = Context.createTempSymbol();
2509 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2510
2511 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2512 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2513 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2514 BranchProbability EHPadBBProb =
2515 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2516 : BranchProbability::getZero();
2517
2518 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2519 return false;
2520
2521 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2522 &ReturnMBB = getMBB(*ReturnBB);
2523 // Update successor info.
2524 addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2525 for (auto &UnwindDest : UnwindDests) {
2526 UnwindDest.first->setIsEHPad();
2527 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2528 }
2529 InvokeMBB->normalizeSuccProbs();
2530
2531 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2532 MIRBuilder.buildBr(ReturnMBB);
2533 return true;
2534 }
2535
translateCallBr(const User & U,MachineIRBuilder & MIRBuilder)2536 bool IRTranslator::translateCallBr(const User &U,
2537 MachineIRBuilder &MIRBuilder) {
2538 // FIXME: Implement this.
2539 return false;
2540 }
2541
translateLandingPad(const User & U,MachineIRBuilder & MIRBuilder)2542 bool IRTranslator::translateLandingPad(const User &U,
2543 MachineIRBuilder &MIRBuilder) {
2544 const LandingPadInst &LP = cast<LandingPadInst>(U);
2545
2546 MachineBasicBlock &MBB = MIRBuilder.getMBB();
2547
2548 MBB.setIsEHPad();
2549
2550 // If there aren't registers to copy the values into (e.g., during SjLj
2551 // exceptions), then don't bother.
2552 auto &TLI = *MF->getSubtarget().getTargetLowering();
2553 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2554 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2555 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2556 return true;
2557
2558 // If landingpad's return type is token type, we don't create DAG nodes
2559 // for its exception pointer and selector value. The extraction of exception
2560 // pointer or selector value from token type landingpads is not currently
2561 // supported.
2562 if (LP.getType()->isTokenTy())
2563 return true;
2564
2565 // Add a label to mark the beginning of the landing pad. Deletion of the
2566 // landing pad can thus be detected via the MachineModuleInfo.
2567 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2568 .addSym(MF->addLandingPad(&MBB));
2569
2570 // If the unwinder does not preserve all registers, ensure that the
2571 // function marks the clobbered registers as used.
2572 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2573 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2574 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2575
2576 LLT Ty = getLLTForType(*LP.getType(), *DL);
2577 Register Undef = MRI->createGenericVirtualRegister(Ty);
2578 MIRBuilder.buildUndef(Undef);
2579
2580 SmallVector<LLT, 2> Tys;
2581 for (Type *Ty : cast<StructType>(LP.getType())->elements())
2582 Tys.push_back(getLLTForType(*Ty, *DL));
2583 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2584
2585 // Mark exception register as live in.
2586 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2587 if (!ExceptionReg)
2588 return false;
2589
2590 MBB.addLiveIn(ExceptionReg);
2591 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2592 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2593
2594 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2595 if (!SelectorReg)
2596 return false;
2597
2598 MBB.addLiveIn(SelectorReg);
2599 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2600 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2601 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2602
2603 return true;
2604 }
2605
translateAlloca(const User & U,MachineIRBuilder & MIRBuilder)2606 bool IRTranslator::translateAlloca(const User &U,
2607 MachineIRBuilder &MIRBuilder) {
2608 auto &AI = cast<AllocaInst>(U);
2609
2610 if (AI.isSwiftError())
2611 return true;
2612
2613 if (AI.isStaticAlloca()) {
2614 Register Res = getOrCreateVReg(AI);
2615 int FI = getOrCreateFrameIndex(AI);
2616 MIRBuilder.buildFrameIndex(Res, FI);
2617 return true;
2618 }
2619
2620 // FIXME: support stack probing for Windows.
2621 if (MF->getTarget().getTargetTriple().isOSWindows())
2622 return false;
2623
2624 // Now we're in the harder dynamic case.
2625 Register NumElts = getOrCreateVReg(*AI.getArraySize());
2626 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2627 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2628 if (MRI->getType(NumElts) != IntPtrTy) {
2629 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2630 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2631 NumElts = ExtElts;
2632 }
2633
2634 Type *Ty = AI.getAllocatedType();
2635
2636 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2637 Register TySize =
2638 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2639 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2640
2641 // Round the size of the allocation up to the stack alignment size
2642 // by add SA-1 to the size. This doesn't overflow because we're computing
2643 // an address inside an alloca.
2644 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2645 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2646 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2647 MachineInstr::NoUWrap);
2648 auto AlignCst =
2649 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2650 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2651
2652 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2653 if (Alignment <= StackAlign)
2654 Alignment = Align(1);
2655 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2656
2657 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2658 assert(MF->getFrameInfo().hasVarSizedObjects());
2659 return true;
2660 }
2661
translateVAArg(const User & U,MachineIRBuilder & MIRBuilder)2662 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2663 // FIXME: We may need more info about the type. Because of how LLT works,
2664 // we're completely discarding the i64/double distinction here (amongst
2665 // others). Fortunately the ABIs I know of where that matters don't use va_arg
2666 // anyway but that's not guaranteed.
2667 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2668 {getOrCreateVReg(*U.getOperand(0)),
2669 DL->getABITypeAlign(U.getType()).value()});
2670 return true;
2671 }
2672
translateInsertElement(const User & U,MachineIRBuilder & MIRBuilder)2673 bool IRTranslator::translateInsertElement(const User &U,
2674 MachineIRBuilder &MIRBuilder) {
2675 // If it is a <1 x Ty> vector, use the scalar as it is
2676 // not a legal vector type in LLT.
2677 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2678 return translateCopy(U, *U.getOperand(1), MIRBuilder);
2679
2680 Register Res = getOrCreateVReg(U);
2681 Register Val = getOrCreateVReg(*U.getOperand(0));
2682 Register Elt = getOrCreateVReg(*U.getOperand(1));
2683 Register Idx = getOrCreateVReg(*U.getOperand(2));
2684 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2685 return true;
2686 }
2687
translateExtractElement(const User & U,MachineIRBuilder & MIRBuilder)2688 bool IRTranslator::translateExtractElement(const User &U,
2689 MachineIRBuilder &MIRBuilder) {
2690 // If it is a <1 x Ty> vector, use the scalar as it is
2691 // not a legal vector type in LLT.
2692 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2693 return translateCopy(U, *U.getOperand(0), MIRBuilder);
2694
2695 Register Res = getOrCreateVReg(U);
2696 Register Val = getOrCreateVReg(*U.getOperand(0));
2697 const auto &TLI = *MF->getSubtarget().getTargetLowering();
2698 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2699 Register Idx;
2700 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2701 if (CI->getBitWidth() != PreferredVecIdxWidth) {
2702 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2703 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2704 Idx = getOrCreateVReg(*NewIdxCI);
2705 }
2706 }
2707 if (!Idx)
2708 Idx = getOrCreateVReg(*U.getOperand(1));
2709 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2710 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2711 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2712 }
2713 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2714 return true;
2715 }
2716
translateShuffleVector(const User & U,MachineIRBuilder & MIRBuilder)2717 bool IRTranslator::translateShuffleVector(const User &U,
2718 MachineIRBuilder &MIRBuilder) {
2719 ArrayRef<int> Mask;
2720 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2721 Mask = SVI->getShuffleMask();
2722 else
2723 Mask = cast<ConstantExpr>(U).getShuffleMask();
2724 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2725 MIRBuilder
2726 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2727 {getOrCreateVReg(*U.getOperand(0)),
2728 getOrCreateVReg(*U.getOperand(1))})
2729 .addShuffleMask(MaskAlloc);
2730 return true;
2731 }
2732
translatePHI(const User & U,MachineIRBuilder & MIRBuilder)2733 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2734 const PHINode &PI = cast<PHINode>(U);
2735
2736 SmallVector<MachineInstr *, 4> Insts;
2737 for (auto Reg : getOrCreateVRegs(PI)) {
2738 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2739 Insts.push_back(MIB.getInstr());
2740 }
2741
2742 PendingPHIs.emplace_back(&PI, std::move(Insts));
2743 return true;
2744 }
2745
translateAtomicCmpXchg(const User & U,MachineIRBuilder & MIRBuilder)2746 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2747 MachineIRBuilder &MIRBuilder) {
2748 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2749
2750 auto &TLI = *MF->getSubtarget().getTargetLowering();
2751 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2752
2753 auto Res = getOrCreateVRegs(I);
2754 Register OldValRes = Res[0];
2755 Register SuccessRes = Res[1];
2756 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2757 Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2758 Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2759
2760 AAMDNodes AAMetadata;
2761 I.getAAMetadata(AAMetadata);
2762
2763 MIRBuilder.buildAtomicCmpXchgWithSuccess(
2764 OldValRes, SuccessRes, Addr, Cmp, NewVal,
2765 *MF->getMachineMemOperand(
2766 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2767 getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(),
2768 I.getSuccessOrdering(), I.getFailureOrdering()));
2769 return true;
2770 }
2771
translateAtomicRMW(const User & U,MachineIRBuilder & MIRBuilder)2772 bool IRTranslator::translateAtomicRMW(const User &U,
2773 MachineIRBuilder &MIRBuilder) {
2774 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2775 auto &TLI = *MF->getSubtarget().getTargetLowering();
2776 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2777
2778 Register Res = getOrCreateVReg(I);
2779 Register Addr = getOrCreateVReg(*I.getPointerOperand());
2780 Register Val = getOrCreateVReg(*I.getValOperand());
2781
2782 unsigned Opcode = 0;
2783 switch (I.getOperation()) {
2784 default:
2785 return false;
2786 case AtomicRMWInst::Xchg:
2787 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2788 break;
2789 case AtomicRMWInst::Add:
2790 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2791 break;
2792 case AtomicRMWInst::Sub:
2793 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2794 break;
2795 case AtomicRMWInst::And:
2796 Opcode = TargetOpcode::G_ATOMICRMW_AND;
2797 break;
2798 case AtomicRMWInst::Nand:
2799 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2800 break;
2801 case AtomicRMWInst::Or:
2802 Opcode = TargetOpcode::G_ATOMICRMW_OR;
2803 break;
2804 case AtomicRMWInst::Xor:
2805 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2806 break;
2807 case AtomicRMWInst::Max:
2808 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2809 break;
2810 case AtomicRMWInst::Min:
2811 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2812 break;
2813 case AtomicRMWInst::UMax:
2814 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2815 break;
2816 case AtomicRMWInst::UMin:
2817 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2818 break;
2819 case AtomicRMWInst::FAdd:
2820 Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2821 break;
2822 case AtomicRMWInst::FSub:
2823 Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2824 break;
2825 }
2826
2827 AAMDNodes AAMetadata;
2828 I.getAAMetadata(AAMetadata);
2829
2830 MIRBuilder.buildAtomicRMW(
2831 Opcode, Res, Addr, Val,
2832 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2833 Flags, MRI->getType(Val), getMemOpAlign(I),
2834 AAMetadata, nullptr, I.getSyncScopeID(),
2835 I.getOrdering()));
2836 return true;
2837 }
2838
translateFence(const User & U,MachineIRBuilder & MIRBuilder)2839 bool IRTranslator::translateFence(const User &U,
2840 MachineIRBuilder &MIRBuilder) {
2841 const FenceInst &Fence = cast<FenceInst>(U);
2842 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2843 Fence.getSyncScopeID());
2844 return true;
2845 }
2846
translateFreeze(const User & U,MachineIRBuilder & MIRBuilder)2847 bool IRTranslator::translateFreeze(const User &U,
2848 MachineIRBuilder &MIRBuilder) {
2849 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2850 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2851
2852 assert(DstRegs.size() == SrcRegs.size() &&
2853 "Freeze with different source and destination type?");
2854
2855 for (unsigned I = 0; I < DstRegs.size(); ++I) {
2856 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2857 }
2858
2859 return true;
2860 }
2861
finishPendingPhis()2862 void IRTranslator::finishPendingPhis() {
2863 #ifndef NDEBUG
2864 DILocationVerifier Verifier;
2865 GISelObserverWrapper WrapperObserver(&Verifier);
2866 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2867 #endif // ifndef NDEBUG
2868 for (auto &Phi : PendingPHIs) {
2869 const PHINode *PI = Phi.first;
2870 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2871 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2872 EntryBuilder->setDebugLoc(PI->getDebugLoc());
2873 #ifndef NDEBUG
2874 Verifier.setCurrentInst(PI);
2875 #endif // ifndef NDEBUG
2876
2877 SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2878 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2879 auto IRPred = PI->getIncomingBlock(i);
2880 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2881 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2882 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2883 continue;
2884 SeenPreds.insert(Pred);
2885 for (unsigned j = 0; j < ValRegs.size(); ++j) {
2886 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2887 MIB.addUse(ValRegs[j]);
2888 MIB.addMBB(Pred);
2889 }
2890 }
2891 }
2892 }
2893 }
2894
valueIsSplit(const Value & V,SmallVectorImpl<uint64_t> * Offsets)2895 bool IRTranslator::valueIsSplit(const Value &V,
2896 SmallVectorImpl<uint64_t> *Offsets) {
2897 SmallVector<LLT, 4> SplitTys;
2898 if (Offsets && !Offsets->empty())
2899 Offsets->clear();
2900 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2901 return SplitTys.size() > 1;
2902 }
2903
translate(const Instruction & Inst)2904 bool IRTranslator::translate(const Instruction &Inst) {
2905 CurBuilder->setDebugLoc(Inst.getDebugLoc());
2906
2907 auto &TLI = *MF->getSubtarget().getTargetLowering();
2908 if (TLI.fallBackToDAGISel(Inst))
2909 return false;
2910
2911 switch (Inst.getOpcode()) {
2912 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2913 case Instruction::OPCODE: \
2914 return translate##OPCODE(Inst, *CurBuilder.get());
2915 #include "llvm/IR/Instruction.def"
2916 default:
2917 return false;
2918 }
2919 }
2920
translate(const Constant & C,Register Reg)2921 bool IRTranslator::translate(const Constant &C, Register Reg) {
2922 // We only emit constants into the entry block from here. To prevent jumpy
2923 // debug behaviour set the line to 0.
2924 if (auto CurrInstDL = CurBuilder->getDL())
2925 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2926 CurrInstDL.getScope(),
2927 CurrInstDL.getInlinedAt()));
2928
2929 if (auto CI = dyn_cast<ConstantInt>(&C))
2930 EntryBuilder->buildConstant(Reg, *CI);
2931 else if (auto CF = dyn_cast<ConstantFP>(&C))
2932 EntryBuilder->buildFConstant(Reg, *CF);
2933 else if (isa<UndefValue>(C))
2934 EntryBuilder->buildUndef(Reg);
2935 else if (isa<ConstantPointerNull>(C))
2936 EntryBuilder->buildConstant(Reg, 0);
2937 else if (auto GV = dyn_cast<GlobalValue>(&C))
2938 EntryBuilder->buildGlobalValue(Reg, GV);
2939 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2940 if (!isa<FixedVectorType>(CAZ->getType()))
2941 return false;
2942 // Return the scalar if it is a <1 x Ty> vector.
2943 unsigned NumElts = CAZ->getElementCount().getFixedValue();
2944 if (NumElts == 1)
2945 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2946 SmallVector<Register, 4> Ops;
2947 for (unsigned I = 0; I < NumElts; ++I) {
2948 Constant &Elt = *CAZ->getElementValue(I);
2949 Ops.push_back(getOrCreateVReg(Elt));
2950 }
2951 EntryBuilder->buildBuildVector(Reg, Ops);
2952 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2953 // Return the scalar if it is a <1 x Ty> vector.
2954 if (CV->getNumElements() == 1)
2955 return translateCopy(C, *CV->getElementAsConstant(0),
2956 *EntryBuilder.get());
2957 SmallVector<Register, 4> Ops;
2958 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2959 Constant &Elt = *CV->getElementAsConstant(i);
2960 Ops.push_back(getOrCreateVReg(Elt));
2961 }
2962 EntryBuilder->buildBuildVector(Reg, Ops);
2963 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2964 switch(CE->getOpcode()) {
2965 #define HANDLE_INST(NUM, OPCODE, CLASS) \
2966 case Instruction::OPCODE: \
2967 return translate##OPCODE(*CE, *EntryBuilder.get());
2968 #include "llvm/IR/Instruction.def"
2969 default:
2970 return false;
2971 }
2972 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2973 if (CV->getNumOperands() == 1)
2974 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2975 SmallVector<Register, 4> Ops;
2976 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2977 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2978 }
2979 EntryBuilder->buildBuildVector(Reg, Ops);
2980 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2981 EntryBuilder->buildBlockAddress(Reg, BA);
2982 } else
2983 return false;
2984
2985 return true;
2986 }
2987
finalizeBasicBlock()2988 void IRTranslator::finalizeBasicBlock() {
2989 for (auto &BTB : SL->BitTestCases) {
2990 // Emit header first, if it wasn't already emitted.
2991 if (!BTB.Emitted)
2992 emitBitTestHeader(BTB, BTB.Parent);
2993
2994 BranchProbability UnhandledProb = BTB.Prob;
2995 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2996 UnhandledProb -= BTB.Cases[j].ExtraProb;
2997 // Set the current basic block to the mbb we wish to insert the code into
2998 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
2999 // If all cases cover a contiguous range, it is not necessary to jump to
3000 // the default block after the last bit test fails. This is because the
3001 // range check during bit test header creation has guaranteed that every
3002 // case here doesn't go outside the range. In this case, there is no need
3003 // to perform the last bit test, as it will always be true. Instead, make
3004 // the second-to-last bit-test fall through to the target of the last bit
3005 // test, and delete the last bit test.
3006
3007 MachineBasicBlock *NextMBB;
3008 if (BTB.ContiguousRange && j + 2 == ej) {
3009 // Second-to-last bit-test with contiguous range: fall through to the
3010 // target of the final bit test.
3011 NextMBB = BTB.Cases[j + 1].TargetBB;
3012 } else if (j + 1 == ej) {
3013 // For the last bit test, fall through to Default.
3014 NextMBB = BTB.Default;
3015 } else {
3016 // Otherwise, fall through to the next bit test.
3017 NextMBB = BTB.Cases[j + 1].ThisBB;
3018 }
3019
3020 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3021
3022 if (BTB.ContiguousRange && j + 2 == ej) {
3023 // We need to record the replacement phi edge here that normally
3024 // happens in emitBitTestCase before we delete the case, otherwise the
3025 // phi edge will be lost.
3026 addMachineCFGPred({BTB.Parent->getBasicBlock(),
3027 BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3028 MBB);
3029 // Since we're not going to use the final bit test, remove it.
3030 BTB.Cases.pop_back();
3031 break;
3032 }
3033 }
3034 // This is "default" BB. We have two jumps to it. From "header" BB and from
3035 // last "case" BB, unless the latter was skipped.
3036 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3037 BTB.Default->getBasicBlock()};
3038 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3039 if (!BTB.ContiguousRange) {
3040 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3041 }
3042 }
3043 SL->BitTestCases.clear();
3044
3045 for (auto &JTCase : SL->JTCases) {
3046 // Emit header first, if it wasn't already emitted.
3047 if (!JTCase.first.Emitted)
3048 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3049
3050 emitJumpTable(JTCase.second, JTCase.second.MBB);
3051 }
3052 SL->JTCases.clear();
3053
3054 for (auto &SwCase : SL->SwitchCases)
3055 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3056 SL->SwitchCases.clear();
3057 }
3058
finalizeFunction()3059 void IRTranslator::finalizeFunction() {
3060 // Release the memory used by the different maps we
3061 // needed during the translation.
3062 PendingPHIs.clear();
3063 VMap.reset();
3064 FrameIndices.clear();
3065 MachinePreds.clear();
3066 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3067 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3068 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3069 EntryBuilder.reset();
3070 CurBuilder.reset();
3071 FuncInfo.clear();
3072 }
3073
3074 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3075 /// variadic musttail call.
checkForMustTailInVarArgFn(bool IsVarArg,const BasicBlock & BB)3076 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3077 if (!IsVarArg)
3078 return false;
3079
3080 // Walk the block backwards, because tail calls usually only appear at the end
3081 // of a block.
3082 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3083 const auto *CI = dyn_cast<CallInst>(&I);
3084 return CI && CI->isMustTailCall();
3085 });
3086 }
3087
runOnMachineFunction(MachineFunction & CurMF)3088 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3089 MF = &CurMF;
3090 const Function &F = MF->getFunction();
3091 if (F.empty())
3092 return false;
3093 GISelCSEAnalysisWrapper &Wrapper =
3094 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3095 // Set the CSEConfig and run the analysis.
3096 GISelCSEInfo *CSEInfo = nullptr;
3097 TPC = &getAnalysis<TargetPassConfig>();
3098 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3099 ? EnableCSEInIRTranslator
3100 : TPC->isGISelCSEEnabled();
3101
3102 if (EnableCSE) {
3103 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3104 CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3105 EntryBuilder->setCSEInfo(CSEInfo);
3106 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3107 CurBuilder->setCSEInfo(CSEInfo);
3108 } else {
3109 EntryBuilder = std::make_unique<MachineIRBuilder>();
3110 CurBuilder = std::make_unique<MachineIRBuilder>();
3111 }
3112 CLI = MF->getSubtarget().getCallLowering();
3113 CurBuilder->setMF(*MF);
3114 EntryBuilder->setMF(*MF);
3115 MRI = &MF->getRegInfo();
3116 DL = &F.getParent()->getDataLayout();
3117 ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3118 const TargetMachine &TM = MF->getTarget();
3119 TM.resetTargetOptions(F);
3120 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3121 FuncInfo.MF = MF;
3122 if (EnableOpts)
3123 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3124 else
3125 FuncInfo.BPI = nullptr;
3126
3127 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3128
3129 const auto &TLI = *MF->getSubtarget().getTargetLowering();
3130
3131 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3132 SL->init(TLI, TM, *DL);
3133
3134
3135
3136 assert(PendingPHIs.empty() && "stale PHIs");
3137
3138 // Targets which want to use big endian can enable it using
3139 // enableBigEndian()
3140 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3141 // Currently we don't properly handle big endian code.
3142 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3143 F.getSubprogram(), &F.getEntryBlock());
3144 R << "unable to translate in big endian mode";
3145 reportTranslationError(*MF, *TPC, *ORE, R);
3146 }
3147
3148 // Release the per-function state when we return, whether we succeeded or not.
3149 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3150
3151 // Setup a separate basic-block for the arguments and constants
3152 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3153 MF->push_back(EntryBB);
3154 EntryBuilder->setMBB(*EntryBB);
3155
3156 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3157 SwiftError.setFunction(CurMF);
3158 SwiftError.createEntriesInEntryBlock(DbgLoc);
3159
3160 bool IsVarArg = F.isVarArg();
3161 bool HasMustTailInVarArgFn = false;
3162
3163 // Create all blocks, in IR order, to preserve the layout.
3164 for (const BasicBlock &BB: F) {
3165 auto *&MBB = BBToMBB[&BB];
3166
3167 MBB = MF->CreateMachineBasicBlock(&BB);
3168 MF->push_back(MBB);
3169
3170 if (BB.hasAddressTaken())
3171 MBB->setHasAddressTaken();
3172
3173 if (!HasMustTailInVarArgFn)
3174 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3175 }
3176
3177 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3178
3179 // Make our arguments/constants entry block fallthrough to the IR entry block.
3180 EntryBB->addSuccessor(&getMBB(F.front()));
3181
3182 if (CLI->fallBackToDAGISel(*MF)) {
3183 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3184 F.getSubprogram(), &F.getEntryBlock());
3185 R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3186 reportTranslationError(*MF, *TPC, *ORE, R);
3187 return false;
3188 }
3189
3190 // Lower the actual args into this basic block.
3191 SmallVector<ArrayRef<Register>, 8> VRegArgs;
3192 for (const Argument &Arg: F.args()) {
3193 if (DL->getTypeStoreSize(Arg.getType()).isZero())
3194 continue; // Don't handle zero sized types.
3195 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3196 VRegArgs.push_back(VRegs);
3197
3198 if (Arg.hasSwiftErrorAttr()) {
3199 assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3200 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3201 }
3202 }
3203
3204 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3205 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3206 F.getSubprogram(), &F.getEntryBlock());
3207 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3208 reportTranslationError(*MF, *TPC, *ORE, R);
3209 return false;
3210 }
3211
3212 // Need to visit defs before uses when translating instructions.
3213 GISelObserverWrapper WrapperObserver;
3214 if (EnableCSE && CSEInfo)
3215 WrapperObserver.addObserver(CSEInfo);
3216 {
3217 ReversePostOrderTraversal<const Function *> RPOT(&F);
3218 #ifndef NDEBUG
3219 DILocationVerifier Verifier;
3220 WrapperObserver.addObserver(&Verifier);
3221 #endif // ifndef NDEBUG
3222 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3223 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3224 for (const BasicBlock *BB : RPOT) {
3225 MachineBasicBlock &MBB = getMBB(*BB);
3226 // Set the insertion point of all the following translations to
3227 // the end of this basic block.
3228 CurBuilder->setMBB(MBB);
3229 HasTailCall = false;
3230 for (const Instruction &Inst : *BB) {
3231 // If we translated a tail call in the last step, then we know
3232 // everything after the call is either a return, or something that is
3233 // handled by the call itself. (E.g. a lifetime marker or assume
3234 // intrinsic.) In this case, we should stop translating the block and
3235 // move on.
3236 if (HasTailCall)
3237 break;
3238 #ifndef NDEBUG
3239 Verifier.setCurrentInst(&Inst);
3240 #endif // ifndef NDEBUG
3241 if (translate(Inst))
3242 continue;
3243
3244 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3245 Inst.getDebugLoc(), BB);
3246 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3247
3248 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3249 std::string InstStrStorage;
3250 raw_string_ostream InstStr(InstStrStorage);
3251 InstStr << Inst;
3252
3253 R << ": '" << InstStr.str() << "'";
3254 }
3255
3256 reportTranslationError(*MF, *TPC, *ORE, R);
3257 return false;
3258 }
3259
3260 finalizeBasicBlock();
3261 }
3262 #ifndef NDEBUG
3263 WrapperObserver.removeObserver(&Verifier);
3264 #endif
3265 }
3266
3267 finishPendingPhis();
3268
3269 SwiftError.propagateVRegs();
3270
3271 // Merge the argument lowering and constants block with its single
3272 // successor, the LLVM-IR entry block. We want the basic block to
3273 // be maximal.
3274 assert(EntryBB->succ_size() == 1 &&
3275 "Custom BB used for lowering should have only one successor");
3276 // Get the successor of the current entry block.
3277 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3278 assert(NewEntryBB.pred_size() == 1 &&
3279 "LLVM-IR entry block has a predecessor!?");
3280 // Move all the instruction from the current entry block to the
3281 // new entry block.
3282 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3283 EntryBB->end());
3284
3285 // Update the live-in information for the new entry block.
3286 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3287 NewEntryBB.addLiveIn(LiveIn);
3288 NewEntryBB.sortUniqueLiveIns();
3289
3290 // Get rid of the now empty basic block.
3291 EntryBB->removeSuccessor(&NewEntryBB);
3292 MF->remove(EntryBB);
3293 MF->DeleteMachineBasicBlock(EntryBB);
3294
3295 assert(&MF->front() == &NewEntryBB &&
3296 "New entry wasn't next in the list of basic block!");
3297
3298 // Initialize stack protector information.
3299 StackProtector &SP = getAnalysis<StackProtector>();
3300 SP.copyToMachineFrameInfo(MF->getFrameInfo());
3301
3302 return false;
3303 }
3304