1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/Support/BlockFrequency.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <iterator>
33 #include <list>
34 #include <numeric>
35 #include <utility>
36 #include <vector>
37
38 using namespace llvm;
39 using namespace llvm::bfi_detail;
40
41 #define DEBUG_TYPE "block-freq"
42
43 namespace llvm {
44 cl::opt<bool> CheckBFIUnknownBlockQueries(
45 "check-bfi-unknown-block-queries",
46 cl::init(false), cl::Hidden,
47 cl::desc("Check if block frequency is queried for an unknown block "
48 "for debugging missed BFI updates"));
49
50 cl::opt<bool> UseIterativeBFIInference(
51 "use-iterative-bfi-inference", cl::init(false), cl::Hidden, cl::ZeroOrMore,
52 cl::desc("Apply an iterative post-processing to infer correct BFI counts"));
53
54 cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock(
55 "iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden,
56 cl::desc("Iterative inference: maximum number of update iterations "
57 "per block"));
58
59 cl::opt<double> IterativeBFIPrecision(
60 "iterative-bfi-precision", cl::init(1e-12), cl::Hidden,
61 cl::desc("Iterative inference: delta convergence precision; smaller values "
62 "typically lead to better results at the cost of worsen runtime"));
63 }
64
toScaled() const65 ScaledNumber<uint64_t> BlockMass::toScaled() const {
66 if (isFull())
67 return ScaledNumber<uint64_t>(1, 0);
68 return ScaledNumber<uint64_t>(getMass() + 1, -64);
69 }
70
71 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const72 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
73 #endif
74
getHexDigit(int N)75 static char getHexDigit(int N) {
76 assert(N < 16);
77 if (N < 10)
78 return '0' + N;
79 return 'a' + N - 10;
80 }
81
print(raw_ostream & OS) const82 raw_ostream &BlockMass::print(raw_ostream &OS) const {
83 for (int Digits = 0; Digits < 16; ++Digits)
84 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
85 return OS;
86 }
87
88 namespace {
89
90 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
91 using Distribution = BlockFrequencyInfoImplBase::Distribution;
92 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
93 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
94 using LoopData = BlockFrequencyInfoImplBase::LoopData;
95 using Weight = BlockFrequencyInfoImplBase::Weight;
96 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
97
98 /// Dithering mass distributer.
99 ///
100 /// This class splits up a single mass into portions by weight, dithering to
101 /// spread out error. No mass is lost. The dithering precision depends on the
102 /// precision of the product of \a BlockMass and \a BranchProbability.
103 ///
104 /// The distribution algorithm follows.
105 ///
106 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
107 /// mass to distribute in \a RemMass.
108 ///
109 /// 2. For each portion:
110 ///
111 /// 1. Construct a branch probability, P, as the portion's weight divided
112 /// by the current value of \a RemWeight.
113 /// 2. Calculate the portion's mass as \a RemMass times P.
114 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
115 /// the current portion's weight and mass.
116 struct DitheringDistributer {
117 uint32_t RemWeight;
118 BlockMass RemMass;
119
120 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
121
122 BlockMass takeMass(uint32_t Weight);
123 };
124
125 } // end anonymous namespace
126
DitheringDistributer(Distribution & Dist,const BlockMass & Mass)127 DitheringDistributer::DitheringDistributer(Distribution &Dist,
128 const BlockMass &Mass) {
129 Dist.normalize();
130 RemWeight = Dist.Total;
131 RemMass = Mass;
132 }
133
takeMass(uint32_t Weight)134 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
135 assert(Weight && "invalid weight");
136 assert(Weight <= RemWeight);
137 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
138
139 // Decrement totals (dither).
140 RemWeight -= Weight;
141 RemMass -= Mass;
142 return Mass;
143 }
144
add(const BlockNode & Node,uint64_t Amount,Weight::DistType Type)145 void Distribution::add(const BlockNode &Node, uint64_t Amount,
146 Weight::DistType Type) {
147 assert(Amount && "invalid weight of 0");
148 uint64_t NewTotal = Total + Amount;
149
150 // Check for overflow. It should be impossible to overflow twice.
151 bool IsOverflow = NewTotal < Total;
152 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
153 DidOverflow |= IsOverflow;
154
155 // Update the total.
156 Total = NewTotal;
157
158 // Save the weight.
159 Weights.push_back(Weight(Type, Node, Amount));
160 }
161
combineWeight(Weight & W,const Weight & OtherW)162 static void combineWeight(Weight &W, const Weight &OtherW) {
163 assert(OtherW.TargetNode.isValid());
164 if (!W.Amount) {
165 W = OtherW;
166 return;
167 }
168 assert(W.Type == OtherW.Type);
169 assert(W.TargetNode == OtherW.TargetNode);
170 assert(OtherW.Amount && "Expected non-zero weight");
171 if (W.Amount > W.Amount + OtherW.Amount)
172 // Saturate on overflow.
173 W.Amount = UINT64_MAX;
174 else
175 W.Amount += OtherW.Amount;
176 }
177
combineWeightsBySorting(WeightList & Weights)178 static void combineWeightsBySorting(WeightList &Weights) {
179 // Sort so edges to the same node are adjacent.
180 llvm::sort(Weights, [](const Weight &L, const Weight &R) {
181 return L.TargetNode < R.TargetNode;
182 });
183
184 // Combine adjacent edges.
185 WeightList::iterator O = Weights.begin();
186 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
187 ++O, (I = L)) {
188 *O = *I;
189
190 // Find the adjacent weights to the same node.
191 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
192 combineWeight(*O, *L);
193 }
194
195 // Erase extra entries.
196 Weights.erase(O, Weights.end());
197 }
198
combineWeightsByHashing(WeightList & Weights)199 static void combineWeightsByHashing(WeightList &Weights) {
200 // Collect weights into a DenseMap.
201 using HashTable = DenseMap<BlockNode::IndexType, Weight>;
202
203 HashTable Combined(NextPowerOf2(2 * Weights.size()));
204 for (const Weight &W : Weights)
205 combineWeight(Combined[W.TargetNode.Index], W);
206
207 // Check whether anything changed.
208 if (Weights.size() == Combined.size())
209 return;
210
211 // Fill in the new weights.
212 Weights.clear();
213 Weights.reserve(Combined.size());
214 for (const auto &I : Combined)
215 Weights.push_back(I.second);
216 }
217
combineWeights(WeightList & Weights)218 static void combineWeights(WeightList &Weights) {
219 // Use a hash table for many successors to keep this linear.
220 if (Weights.size() > 128) {
221 combineWeightsByHashing(Weights);
222 return;
223 }
224
225 combineWeightsBySorting(Weights);
226 }
227
shiftRightAndRound(uint64_t N,int Shift)228 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
229 assert(Shift >= 0);
230 assert(Shift < 64);
231 if (!Shift)
232 return N;
233 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
234 }
235
normalize()236 void Distribution::normalize() {
237 // Early exit for termination nodes.
238 if (Weights.empty())
239 return;
240
241 // Only bother if there are multiple successors.
242 if (Weights.size() > 1)
243 combineWeights(Weights);
244
245 // Early exit when combined into a single successor.
246 if (Weights.size() == 1) {
247 Total = 1;
248 Weights.front().Amount = 1;
249 return;
250 }
251
252 // Determine how much to shift right so that the total fits into 32-bits.
253 //
254 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
255 // for each weight can cause a 32-bit overflow.
256 int Shift = 0;
257 if (DidOverflow)
258 Shift = 33;
259 else if (Total > UINT32_MAX)
260 Shift = 33 - countLeadingZeros(Total);
261
262 // Early exit if nothing needs to be scaled.
263 if (!Shift) {
264 // If we didn't overflow then combineWeights() shouldn't have changed the
265 // sum of the weights, but let's double-check.
266 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
267 [](uint64_t Sum, const Weight &W) {
268 return Sum + W.Amount;
269 }) &&
270 "Expected total to be correct");
271 return;
272 }
273
274 // Recompute the total through accumulation (rather than shifting it) so that
275 // it's accurate after shifting and any changes combineWeights() made above.
276 Total = 0;
277
278 // Sum the weights to each node and shift right if necessary.
279 for (Weight &W : Weights) {
280 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
281 // can round here without concern about overflow.
282 assert(W.TargetNode.isValid());
283 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
284 assert(W.Amount <= UINT32_MAX);
285
286 // Update the total.
287 Total += W.Amount;
288 }
289 assert(Total <= UINT32_MAX);
290 }
291
clear()292 void BlockFrequencyInfoImplBase::clear() {
293 // Swap with a default-constructed std::vector, since std::vector<>::clear()
294 // does not actually clear heap storage.
295 std::vector<FrequencyData>().swap(Freqs);
296 IsIrrLoopHeader.clear();
297 std::vector<WorkingData>().swap(Working);
298 Loops.clear();
299 }
300
301 /// Clear all memory not needed downstream.
302 ///
303 /// Releases all memory not used downstream. In particular, saves Freqs.
cleanup(BlockFrequencyInfoImplBase & BFI)304 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
305 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
306 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
307 BFI.clear();
308 BFI.Freqs = std::move(SavedFreqs);
309 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
310 }
311
addToDist(Distribution & Dist,const LoopData * OuterLoop,const BlockNode & Pred,const BlockNode & Succ,uint64_t Weight)312 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
313 const LoopData *OuterLoop,
314 const BlockNode &Pred,
315 const BlockNode &Succ,
316 uint64_t Weight) {
317 if (!Weight)
318 Weight = 1;
319
320 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
321 return OuterLoop && OuterLoop->isHeader(Node);
322 };
323
324 BlockNode Resolved = Working[Succ.Index].getResolvedNode();
325
326 #ifndef NDEBUG
327 auto debugSuccessor = [&](const char *Type) {
328 dbgs() << " =>"
329 << " [" << Type << "] weight = " << Weight;
330 if (!isLoopHeader(Resolved))
331 dbgs() << ", succ = " << getBlockName(Succ);
332 if (Resolved != Succ)
333 dbgs() << ", resolved = " << getBlockName(Resolved);
334 dbgs() << "\n";
335 };
336 (void)debugSuccessor;
337 #endif
338
339 if (isLoopHeader(Resolved)) {
340 LLVM_DEBUG(debugSuccessor("backedge"));
341 Dist.addBackedge(Resolved, Weight);
342 return true;
343 }
344
345 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
346 LLVM_DEBUG(debugSuccessor(" exit "));
347 Dist.addExit(Resolved, Weight);
348 return true;
349 }
350
351 if (Resolved < Pred) {
352 if (!isLoopHeader(Pred)) {
353 // If OuterLoop is an irreducible loop, we can't actually handle this.
354 assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
355 "unhandled irreducible control flow");
356
357 // Irreducible backedge. Abort.
358 LLVM_DEBUG(debugSuccessor("abort!!!"));
359 return false;
360 }
361
362 // If "Pred" is a loop header, then this isn't really a backedge; rather,
363 // OuterLoop must be irreducible. These false backedges can come only from
364 // secondary loop headers.
365 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
366 "unhandled irreducible control flow");
367 }
368
369 LLVM_DEBUG(debugSuccessor(" local "));
370 Dist.addLocal(Resolved, Weight);
371 return true;
372 }
373
addLoopSuccessorsToDist(const LoopData * OuterLoop,LoopData & Loop,Distribution & Dist)374 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
375 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
376 // Copy the exit map into Dist.
377 for (const auto &I : Loop.Exits)
378 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
379 I.second.getMass()))
380 // Irreducible backedge.
381 return false;
382
383 return true;
384 }
385
386 /// Compute the loop scale for a loop.
computeLoopScale(LoopData & Loop)387 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
388 // Compute loop scale.
389 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
390
391 // Infinite loops need special handling. If we give the back edge an infinite
392 // mass, they may saturate all the other scales in the function down to 1,
393 // making all the other region temperatures look exactly the same. Choose an
394 // arbitrary scale to avoid these issues.
395 //
396 // FIXME: An alternate way would be to select a symbolic scale which is later
397 // replaced to be the maximum of all computed scales plus 1. This would
398 // appropriately describe the loop as having a large scale, without skewing
399 // the final frequency computation.
400 const Scaled64 InfiniteLoopScale(1, 12);
401
402 // LoopScale == 1 / ExitMass
403 // ExitMass == HeadMass - BackedgeMass
404 BlockMass TotalBackedgeMass;
405 for (auto &Mass : Loop.BackedgeMass)
406 TotalBackedgeMass += Mass;
407 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
408
409 // Block scale stores the inverse of the scale. If this is an infinite loop,
410 // its exit mass will be zero. In this case, use an arbitrary scale for the
411 // loop scale.
412 Loop.Scale =
413 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
414
415 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
416 << BlockMass::getFull() << " - " << TotalBackedgeMass
417 << ")\n"
418 << " - scale = " << Loop.Scale << "\n");
419 }
420
421 /// Package up a loop.
packageLoop(LoopData & Loop)422 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
423 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
424
425 // Clear the subloop exits to prevent quadratic memory usage.
426 for (const BlockNode &M : Loop.Nodes) {
427 if (auto *Loop = Working[M.Index].getPackagedLoop())
428 Loop->Exits.clear();
429 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
430 }
431 Loop.IsPackaged = true;
432 }
433
434 #ifndef NDEBUG
debugAssign(const BlockFrequencyInfoImplBase & BFI,const DitheringDistributer & D,const BlockNode & T,const BlockMass & M,const char * Desc)435 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
436 const DitheringDistributer &D, const BlockNode &T,
437 const BlockMass &M, const char *Desc) {
438 dbgs() << " => assign " << M << " (" << D.RemMass << ")";
439 if (Desc)
440 dbgs() << " [" << Desc << "]";
441 if (T.isValid())
442 dbgs() << " to " << BFI.getBlockName(T);
443 dbgs() << "\n";
444 }
445 #endif
446
distributeMass(const BlockNode & Source,LoopData * OuterLoop,Distribution & Dist)447 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
448 LoopData *OuterLoop,
449 Distribution &Dist) {
450 BlockMass Mass = Working[Source.Index].getMass();
451 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
452
453 // Distribute mass to successors as laid out in Dist.
454 DitheringDistributer D(Dist, Mass);
455
456 for (const Weight &W : Dist.Weights) {
457 // Check for a local edge (non-backedge and non-exit).
458 BlockMass Taken = D.takeMass(W.Amount);
459 if (W.Type == Weight::Local) {
460 Working[W.TargetNode.Index].getMass() += Taken;
461 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
462 continue;
463 }
464
465 // Backedges and exits only make sense if we're processing a loop.
466 assert(OuterLoop && "backedge or exit outside of loop");
467
468 // Check for a backedge.
469 if (W.Type == Weight::Backedge) {
470 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
471 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
472 continue;
473 }
474
475 // This must be an exit.
476 assert(W.Type == Weight::Exit);
477 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
478 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
479 }
480 }
481
convertFloatingToInteger(BlockFrequencyInfoImplBase & BFI,const Scaled64 & Min,const Scaled64 & Max)482 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
483 const Scaled64 &Min, const Scaled64 &Max) {
484 // Scale the Factor to a size that creates integers. Ideally, integers would
485 // be scaled so that Max == UINT64_MAX so that they can be best
486 // differentiated. However, in the presence of large frequency values, small
487 // frequencies are scaled down to 1, making it impossible to differentiate
488 // small, unequal numbers. When the spread between Min and Max frequencies
489 // fits well within MaxBits, we make the scale be at least 8.
490 const unsigned MaxBits = 64;
491 const unsigned SpreadBits = (Max / Min).lg();
492 Scaled64 ScalingFactor;
493 if (SpreadBits <= MaxBits - 3) {
494 // If the values are small enough, make the scaling factor at least 8 to
495 // allow distinguishing small values.
496 ScalingFactor = Min.inverse();
497 ScalingFactor <<= 3;
498 } else {
499 // If the values need more than MaxBits to be represented, saturate small
500 // frequency values down to 1 by using a scaling factor that benefits large
501 // frequency values.
502 ScalingFactor = Scaled64(1, MaxBits) / Max;
503 }
504
505 // Translate the floats to integers.
506 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
507 << ", factor = " << ScalingFactor << "\n");
508 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
509 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
510 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
511 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
512 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
513 << ", int = " << BFI.Freqs[Index].Integer << "\n");
514 }
515 }
516
517 /// Unwrap a loop package.
518 ///
519 /// Visits all the members of a loop, adjusting their BlockData according to
520 /// the loop's pseudo-node.
unwrapLoop(BlockFrequencyInfoImplBase & BFI,LoopData & Loop)521 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
522 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
523 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
524 << "\n");
525 Loop.Scale *= Loop.Mass.toScaled();
526 Loop.IsPackaged = false;
527 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
528
529 // Propagate the head scale through the loop. Since members are visited in
530 // RPO, the head scale will be updated by the loop scale first, and then the
531 // final head scale will be used for updated the rest of the members.
532 for (const BlockNode &N : Loop.Nodes) {
533 const auto &Working = BFI.Working[N.Index];
534 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
535 : BFI.Freqs[N.Index].Scaled;
536 Scaled64 New = Loop.Scale * F;
537 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
538 << New << "\n");
539 F = New;
540 }
541 }
542
unwrapLoops()543 void BlockFrequencyInfoImplBase::unwrapLoops() {
544 // Set initial frequencies from loop-local masses.
545 for (size_t Index = 0; Index < Working.size(); ++Index)
546 Freqs[Index].Scaled = Working[Index].Mass.toScaled();
547
548 for (LoopData &Loop : Loops)
549 unwrapLoop(*this, Loop);
550 }
551
finalizeMetrics()552 void BlockFrequencyInfoImplBase::finalizeMetrics() {
553 // Unwrap loop packages in reverse post-order, tracking min and max
554 // frequencies.
555 auto Min = Scaled64::getLargest();
556 auto Max = Scaled64::getZero();
557 for (size_t Index = 0; Index < Working.size(); ++Index) {
558 // Update min/max scale.
559 Min = std::min(Min, Freqs[Index].Scaled);
560 Max = std::max(Max, Freqs[Index].Scaled);
561 }
562
563 // Convert to integers.
564 convertFloatingToInteger(*this, Min, Max);
565
566 // Clean up data structures.
567 cleanup(*this);
568
569 // Print out the final stats.
570 LLVM_DEBUG(dump());
571 }
572
573 BlockFrequency
getBlockFreq(const BlockNode & Node) const574 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
575 if (!Node.isValid()) {
576 #ifndef NDEBUG
577 if (CheckBFIUnknownBlockQueries) {
578 SmallString<256> Msg;
579 raw_svector_ostream OS(Msg);
580 OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
581 report_fatal_error(OS.str());
582 }
583 #endif
584 return 0;
585 }
586 return Freqs[Node.Index].Integer;
587 }
588
589 Optional<uint64_t>
getBlockProfileCount(const Function & F,const BlockNode & Node,bool AllowSynthetic) const590 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
591 const BlockNode &Node,
592 bool AllowSynthetic) const {
593 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
594 AllowSynthetic);
595 }
596
597 Optional<uint64_t>
getProfileCountFromFreq(const Function & F,uint64_t Freq,bool AllowSynthetic) const598 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
599 uint64_t Freq,
600 bool AllowSynthetic) const {
601 auto EntryCount = F.getEntryCount(AllowSynthetic);
602 if (!EntryCount)
603 return None;
604 // Use 128 bit APInt to do the arithmetic to avoid overflow.
605 APInt BlockCount(128, EntryCount.getCount());
606 APInt BlockFreq(128, Freq);
607 APInt EntryFreq(128, getEntryFreq());
608 BlockCount *= BlockFreq;
609 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
610 // lshr by 1 gives EntryFreq/2.
611 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
612 return BlockCount.getLimitedValue();
613 }
614
615 bool
isIrrLoopHeader(const BlockNode & Node)616 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
617 if (!Node.isValid())
618 return false;
619 return IsIrrLoopHeader.test(Node.Index);
620 }
621
622 Scaled64
getFloatingBlockFreq(const BlockNode & Node) const623 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
624 if (!Node.isValid())
625 return Scaled64::getZero();
626 return Freqs[Node.Index].Scaled;
627 }
628
setBlockFreq(const BlockNode & Node,uint64_t Freq)629 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
630 uint64_t Freq) {
631 assert(Node.isValid() && "Expected valid node");
632 assert(Node.Index < Freqs.size() && "Expected legal index");
633 Freqs[Node.Index].Integer = Freq;
634 }
635
636 std::string
getBlockName(const BlockNode & Node) const637 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
638 return {};
639 }
640
641 std::string
getLoopName(const LoopData & Loop) const642 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
643 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
644 }
645
646 raw_ostream &
printBlockFreq(raw_ostream & OS,const BlockNode & Node) const647 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
648 const BlockNode &Node) const {
649 return OS << getFloatingBlockFreq(Node);
650 }
651
652 raw_ostream &
printBlockFreq(raw_ostream & OS,const BlockFrequency & Freq) const653 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
654 const BlockFrequency &Freq) const {
655 Scaled64 Block(Freq.getFrequency(), 0);
656 Scaled64 Entry(getEntryFreq(), 0);
657
658 return OS << Block / Entry;
659 }
660
addNodesInLoop(const BFIBase::LoopData & OuterLoop)661 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
662 Start = OuterLoop.getHeader();
663 Nodes.reserve(OuterLoop.Nodes.size());
664 for (auto N : OuterLoop.Nodes)
665 addNode(N);
666 indexNodes();
667 }
668
addNodesInFunction()669 void IrreducibleGraph::addNodesInFunction() {
670 Start = 0;
671 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
672 if (!BFI.Working[Index].isPackaged())
673 addNode(Index);
674 indexNodes();
675 }
676
indexNodes()677 void IrreducibleGraph::indexNodes() {
678 for (auto &I : Nodes)
679 Lookup[I.Node.Index] = &I;
680 }
681
addEdge(IrrNode & Irr,const BlockNode & Succ,const BFIBase::LoopData * OuterLoop)682 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
683 const BFIBase::LoopData *OuterLoop) {
684 if (OuterLoop && OuterLoop->isHeader(Succ))
685 return;
686 auto L = Lookup.find(Succ.Index);
687 if (L == Lookup.end())
688 return;
689 IrrNode &SuccIrr = *L->second;
690 Irr.Edges.push_back(&SuccIrr);
691 SuccIrr.Edges.push_front(&Irr);
692 ++SuccIrr.NumIn;
693 }
694
695 namespace llvm {
696
697 template <> struct GraphTraits<IrreducibleGraph> {
698 using GraphT = bfi_detail::IrreducibleGraph;
699 using NodeRef = const GraphT::IrrNode *;
700 using ChildIteratorType = GraphT::IrrNode::iterator;
701
getEntryNodellvm::GraphTraits702 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
child_beginllvm::GraphTraits703 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
child_endllvm::GraphTraits704 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
705 };
706
707 } // end namespace llvm
708
709 /// Find extra irreducible headers.
710 ///
711 /// Find entry blocks and other blocks with backedges, which exist when \c G
712 /// contains irreducible sub-SCCs.
findIrreducibleHeaders(const BlockFrequencyInfoImplBase & BFI,const IrreducibleGraph & G,const std::vector<const IrreducibleGraph::IrrNode * > & SCC,LoopData::NodeList & Headers,LoopData::NodeList & Others)713 static void findIrreducibleHeaders(
714 const BlockFrequencyInfoImplBase &BFI,
715 const IrreducibleGraph &G,
716 const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
717 LoopData::NodeList &Headers, LoopData::NodeList &Others) {
718 // Map from nodes in the SCC to whether it's an entry block.
719 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
720
721 // InSCC also acts the set of nodes in the graph. Seed it.
722 for (const auto *I : SCC)
723 InSCC[I] = false;
724
725 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
726 auto &Irr = *I->first;
727 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
728 if (InSCC.count(P))
729 continue;
730
731 // This is an entry block.
732 I->second = true;
733 Headers.push_back(Irr.Node);
734 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
735 << "\n");
736 break;
737 }
738 }
739 assert(Headers.size() >= 2 &&
740 "Expected irreducible CFG; -loop-info is likely invalid");
741 if (Headers.size() == InSCC.size()) {
742 // Every block is a header.
743 llvm::sort(Headers);
744 return;
745 }
746
747 // Look for extra headers from irreducible sub-SCCs.
748 for (const auto &I : InSCC) {
749 // Entry blocks are already headers.
750 if (I.second)
751 continue;
752
753 auto &Irr = *I.first;
754 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
755 // Skip forward edges.
756 if (P->Node < Irr.Node)
757 continue;
758
759 // Skip predecessors from entry blocks. These can have inverted
760 // ordering.
761 if (InSCC.lookup(P))
762 continue;
763
764 // Store the extra header.
765 Headers.push_back(Irr.Node);
766 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
767 << "\n");
768 break;
769 }
770 if (Headers.back() == Irr.Node)
771 // Added this as a header.
772 continue;
773
774 // This is not a header.
775 Others.push_back(Irr.Node);
776 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
777 }
778 llvm::sort(Headers);
779 llvm::sort(Others);
780 }
781
createIrreducibleLoop(BlockFrequencyInfoImplBase & BFI,const IrreducibleGraph & G,LoopData * OuterLoop,std::list<LoopData>::iterator Insert,const std::vector<const IrreducibleGraph::IrrNode * > & SCC)782 static void createIrreducibleLoop(
783 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
784 LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
785 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
786 // Translate the SCC into RPO.
787 LLVM_DEBUG(dbgs() << " - found-scc\n");
788
789 LoopData::NodeList Headers;
790 LoopData::NodeList Others;
791 findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
792
793 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
794 Headers.end(), Others.begin(), Others.end());
795
796 // Update loop hierarchy.
797 for (const auto &N : Loop->Nodes)
798 if (BFI.Working[N.Index].isLoopHeader())
799 BFI.Working[N.Index].Loop->Parent = &*Loop;
800 else
801 BFI.Working[N.Index].Loop = &*Loop;
802 }
803
804 iterator_range<std::list<LoopData>::iterator>
analyzeIrreducible(const IrreducibleGraph & G,LoopData * OuterLoop,std::list<LoopData>::iterator Insert)805 BlockFrequencyInfoImplBase::analyzeIrreducible(
806 const IrreducibleGraph &G, LoopData *OuterLoop,
807 std::list<LoopData>::iterator Insert) {
808 assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
809 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
810
811 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
812 if (I->size() < 2)
813 continue;
814
815 // Translate the SCC into RPO.
816 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
817 }
818
819 if (OuterLoop)
820 return make_range(std::next(Prev), Insert);
821 return make_range(Loops.begin(), Insert);
822 }
823
824 void
updateLoopWithIrreducible(LoopData & OuterLoop)825 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
826 OuterLoop.Exits.clear();
827 for (auto &Mass : OuterLoop.BackedgeMass)
828 Mass = BlockMass::getEmpty();
829 auto O = OuterLoop.Nodes.begin() + 1;
830 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
831 if (!Working[I->Index].isPackaged())
832 *O++ = *I;
833 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
834 }
835
adjustLoopHeaderMass(LoopData & Loop)836 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
837 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
838
839 // Since the loop has more than one header block, the mass flowing back into
840 // each header will be different. Adjust the mass in each header loop to
841 // reflect the masses flowing through back edges.
842 //
843 // To do this, we distribute the initial mass using the backedge masses
844 // as weights for the distribution.
845 BlockMass LoopMass = BlockMass::getFull();
846 Distribution Dist;
847
848 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
849 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
850 auto &HeaderNode = Loop.Nodes[H];
851 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
852 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
853 << getBlockName(HeaderNode) << ": " << BackedgeMass
854 << "\n");
855 if (BackedgeMass.getMass() > 0)
856 Dist.addLocal(HeaderNode, BackedgeMass.getMass());
857 else
858 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
859 }
860
861 DitheringDistributer D(Dist, LoopMass);
862
863 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
864 << " to headers using above weights\n");
865 for (const Weight &W : Dist.Weights) {
866 BlockMass Taken = D.takeMass(W.Amount);
867 assert(W.Type == Weight::Local && "all weights should be local");
868 Working[W.TargetNode.Index].getMass() = Taken;
869 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
870 }
871 }
872
distributeIrrLoopHeaderMass(Distribution & Dist)873 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
874 BlockMass LoopMass = BlockMass::getFull();
875 DitheringDistributer D(Dist, LoopMass);
876 for (const Weight &W : Dist.Weights) {
877 BlockMass Taken = D.takeMass(W.Amount);
878 assert(W.Type == Weight::Local && "all weights should be local");
879 Working[W.TargetNode.Index].getMass() = Taken;
880 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
881 }
882 }
883