1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Utility/DataExtractor.h"
10
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/LEB128.h"
27 #include "llvm/Support/MD5.h"
28 #include "llvm/Support/MathExtras.h"
29
30 #include <algorithm>
31 #include <array>
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
35
36 #include <cctype>
37 #include <cinttypes>
38 #include <cstring>
39
40 using namespace lldb;
41 using namespace lldb_private;
42
ReadInt16(const unsigned char * ptr,offset_t offset)43 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
44 uint16_t value;
45 memcpy(&value, ptr + offset, 2);
46 return value;
47 }
48
ReadInt32(const unsigned char * ptr,offset_t offset=0)49 static inline uint32_t ReadInt32(const unsigned char *ptr,
50 offset_t offset = 0) {
51 uint32_t value;
52 memcpy(&value, ptr + offset, 4);
53 return value;
54 }
55
ReadInt64(const unsigned char * ptr,offset_t offset=0)56 static inline uint64_t ReadInt64(const unsigned char *ptr,
57 offset_t offset = 0) {
58 uint64_t value;
59 memcpy(&value, ptr + offset, 8);
60 return value;
61 }
62
ReadInt16(const void * ptr)63 static inline uint16_t ReadInt16(const void *ptr) {
64 uint16_t value;
65 memcpy(&value, ptr, 2);
66 return value;
67 }
68
ReadSwapInt16(const unsigned char * ptr,offset_t offset)69 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
70 offset_t offset) {
71 uint16_t value;
72 memcpy(&value, ptr + offset, 2);
73 return llvm::ByteSwap_16(value);
74 }
75
ReadSwapInt32(const unsigned char * ptr,offset_t offset)76 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
77 offset_t offset) {
78 uint32_t value;
79 memcpy(&value, ptr + offset, 4);
80 return llvm::ByteSwap_32(value);
81 }
82
ReadSwapInt64(const unsigned char * ptr,offset_t offset)83 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
84 offset_t offset) {
85 uint64_t value;
86 memcpy(&value, ptr + offset, 8);
87 return llvm::ByteSwap_64(value);
88 }
89
ReadSwapInt16(const void * ptr)90 static inline uint16_t ReadSwapInt16(const void *ptr) {
91 uint16_t value;
92 memcpy(&value, ptr, 2);
93 return llvm::ByteSwap_16(value);
94 }
95
ReadSwapInt32(const void * ptr)96 static inline uint32_t ReadSwapInt32(const void *ptr) {
97 uint32_t value;
98 memcpy(&value, ptr, 4);
99 return llvm::ByteSwap_32(value);
100 }
101
ReadSwapInt64(const void * ptr)102 static inline uint64_t ReadSwapInt64(const void *ptr) {
103 uint64_t value;
104 memcpy(&value, ptr, 8);
105 return llvm::ByteSwap_64(value);
106 }
107
ReadMaxInt64(const uint8_t * data,size_t byte_size,ByteOrder byte_order)108 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
109 ByteOrder byte_order) {
110 uint64_t res = 0;
111 if (byte_order == eByteOrderBig)
112 for (size_t i = 0; i < byte_size; ++i)
113 res = (res << 8) | data[i];
114 else {
115 assert(byte_order == eByteOrderLittle);
116 for (size_t i = 0; i < byte_size; ++i)
117 res = (res << 8) | data[byte_size - 1 - i];
118 }
119 return res;
120 }
121
DataExtractor()122 DataExtractor::DataExtractor()
123 : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
124 m_data_sp() {}
125
126 // This constructor allows us to use data that is owned by someone else. The
127 // data must stay around as long as this object is valid.
DataExtractor(const void * data,offset_t length,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)128 DataExtractor::DataExtractor(const void *data, offset_t length,
129 ByteOrder endian, uint32_t addr_size,
130 uint32_t target_byte_size /*=1*/)
131 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
132 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
133 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
134 m_target_byte_size(target_byte_size) {
135 assert(addr_size >= 1 && addr_size <= 8);
136 }
137
138 // Make a shared pointer reference to the shared data in "data_sp" and set the
139 // endian swapping setting to "swap", and the address size to "addr_size". The
140 // shared data reference will ensure the data lives as long as any
141 // DataExtractor objects exist that have a reference to this data.
DataExtractor(const DataBufferSP & data_sp,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)142 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
143 uint32_t addr_size,
144 uint32_t target_byte_size /*=1*/)
145 : m_start(nullptr), m_end(nullptr), m_byte_order(endian),
146 m_addr_size(addr_size), m_data_sp(),
147 m_target_byte_size(target_byte_size) {
148 assert(addr_size >= 1 && addr_size <= 8);
149 SetData(data_sp);
150 }
151
152 // Initialize this object with a subset of the data bytes in "data". If "data"
153 // contains shared data, then a reference to this shared data will added and
154 // the shared data will stay around as long as any object contains a reference
155 // to that data. The endian swap and address size settings are copied from
156 // "data".
DataExtractor(const DataExtractor & data,offset_t offset,offset_t length,uint32_t target_byte_size)157 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
158 offset_t length, uint32_t target_byte_size /*=1*/)
159 : m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
160 m_addr_size(data.m_addr_size), m_data_sp(),
161 m_target_byte_size(target_byte_size) {
162 assert(m_addr_size >= 1 && m_addr_size <= 8);
163 if (data.ValidOffset(offset)) {
164 offset_t bytes_available = data.GetByteSize() - offset;
165 if (length > bytes_available)
166 length = bytes_available;
167 SetData(data, offset, length);
168 }
169 }
170
DataExtractor(const DataExtractor & rhs)171 DataExtractor::DataExtractor(const DataExtractor &rhs)
172 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
173 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
174 m_target_byte_size(rhs.m_target_byte_size) {
175 assert(m_addr_size >= 1 && m_addr_size <= 8);
176 }
177
178 // Assignment operator
operator =(const DataExtractor & rhs)179 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
180 if (this != &rhs) {
181 m_start = rhs.m_start;
182 m_end = rhs.m_end;
183 m_byte_order = rhs.m_byte_order;
184 m_addr_size = rhs.m_addr_size;
185 m_data_sp = rhs.m_data_sp;
186 }
187 return *this;
188 }
189
190 DataExtractor::~DataExtractor() = default;
191
192 // Clears the object contents back to a default invalid state, and release any
193 // references to shared data that this object may contain.
Clear()194 void DataExtractor::Clear() {
195 m_start = nullptr;
196 m_end = nullptr;
197 m_byte_order = endian::InlHostByteOrder();
198 m_addr_size = sizeof(void *);
199 m_data_sp.reset();
200 }
201
202 // If this object contains shared data, this function returns the offset into
203 // that shared data. Else zero is returned.
GetSharedDataOffset() const204 size_t DataExtractor::GetSharedDataOffset() const {
205 if (m_start != nullptr) {
206 const DataBuffer *data = m_data_sp.get();
207 if (data != nullptr) {
208 const uint8_t *data_bytes = data->GetBytes();
209 if (data_bytes != nullptr) {
210 assert(m_start >= data_bytes);
211 return m_start - data_bytes;
212 }
213 }
214 }
215 return 0;
216 }
217
218 // Set the data with which this object will extract from to data starting at
219 // BYTES and set the length of the data to LENGTH bytes long. The data is
220 // externally owned must be around at least as long as this object points to
221 // the data. No copy of the data is made, this object just refers to this data
222 // and can extract from it. If this object refers to any shared data upon
223 // entry, the reference to that data will be released. Is SWAP is set to true,
224 // any data extracted will be endian swapped.
SetData(const void * bytes,offset_t length,ByteOrder endian)225 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
226 ByteOrder endian) {
227 m_byte_order = endian;
228 m_data_sp.reset();
229 if (bytes == nullptr || length == 0) {
230 m_start = nullptr;
231 m_end = nullptr;
232 } else {
233 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
234 m_end = m_start + length;
235 }
236 return GetByteSize();
237 }
238
239 // Assign the data for this object to be a subrange in "data" starting
240 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
241 // "data_offset" is not a valid offset into "data", then this object will
242 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
243 // large, the length will be capped at the number of bytes remaining in "data".
244 // If "data" contains a shared pointer to other data, then a ref counted
245 // pointer to that data will be made in this object. If "data" doesn't contain
246 // a shared pointer to data, then the bytes referred to in "data" will need to
247 // exist at least as long as this object refers to those bytes. The address
248 // size and endian swap settings are copied from the current values in "data".
SetData(const DataExtractor & data,offset_t data_offset,offset_t data_length)249 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
250 offset_t data_offset,
251 offset_t data_length) {
252 m_addr_size = data.m_addr_size;
253 assert(m_addr_size >= 1 && m_addr_size <= 8);
254 // If "data" contains shared pointer to data, then we can use that
255 if (data.m_data_sp) {
256 m_byte_order = data.m_byte_order;
257 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
258 data_length);
259 }
260
261 // We have a DataExtractor object that just has a pointer to bytes
262 if (data.ValidOffset(data_offset)) {
263 if (data_length > data.GetByteSize() - data_offset)
264 data_length = data.GetByteSize() - data_offset;
265 return SetData(data.GetDataStart() + data_offset, data_length,
266 data.GetByteOrder());
267 }
268 return 0;
269 }
270
271 // Assign the data for this object to be a subrange of the shared data in
272 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
273 // "data_length" bytes later. If "data_offset" is not a valid offset into
274 // "data_sp", then this object will contain no bytes. If "data_offset" is
275 // within "data_sp" yet "data_length" is too large, the length will be capped
276 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
277 // data in "data_sp" will be made in this object IF the number of bytes this
278 // object refers to in greater than zero (if at least one byte was available
279 // starting at "data_offset") to ensure the data stays around as long as it is
280 // needed. The address size and endian swap settings will remain unchanged from
281 // their current settings.
SetData(const DataBufferSP & data_sp,offset_t data_offset,offset_t data_length)282 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
283 offset_t data_offset,
284 offset_t data_length) {
285 m_start = m_end = nullptr;
286
287 if (data_length > 0) {
288 m_data_sp = data_sp;
289 if (data_sp) {
290 const size_t data_size = data_sp->GetByteSize();
291 if (data_offset < data_size) {
292 m_start = data_sp->GetBytes() + data_offset;
293 const size_t bytes_left = data_size - data_offset;
294 // Cap the length of we asked for too many
295 if (data_length <= bytes_left)
296 m_end = m_start + data_length; // We got all the bytes we wanted
297 else
298 m_end = m_start + bytes_left; // Not all the bytes requested were
299 // available in the shared data
300 }
301 }
302 }
303
304 size_t new_size = GetByteSize();
305
306 // Don't hold a shared pointer to the data buffer if we don't share any valid
307 // bytes in the shared buffer.
308 if (new_size == 0)
309 m_data_sp.reset();
310
311 return new_size;
312 }
313
314 // Extract a single unsigned char from the binary data and update the offset
315 // pointed to by "offset_ptr".
316 //
317 // RETURNS the byte that was extracted, or zero on failure.
GetU8(offset_t * offset_ptr) const318 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
319 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
320 if (data)
321 return *data;
322 return 0;
323 }
324
325 // Extract "count" unsigned chars from the binary data and update the offset
326 // pointed to by "offset_ptr". The extracted data is copied into "dst".
327 //
328 // RETURNS the non-nullptr buffer pointer upon successful extraction of
329 // all the requested bytes, or nullptr when the data is not available in the
330 // buffer due to being out of bounds, or insufficient data.
GetU8(offset_t * offset_ptr,void * dst,uint32_t count) const331 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
332 uint32_t count) const {
333 const uint8_t *data =
334 static_cast<const uint8_t *>(GetData(offset_ptr, count));
335 if (data) {
336 // Copy the data into the buffer
337 memcpy(dst, data, count);
338 // Return a non-nullptr pointer to the converted data as an indicator of
339 // success
340 return dst;
341 }
342 return nullptr;
343 }
344
345 // Extract a single uint16_t from the data and update the offset pointed to by
346 // "offset_ptr".
347 //
348 // RETURNS the uint16_t that was extracted, or zero on failure.
GetU16(offset_t * offset_ptr) const349 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
350 uint16_t val = 0;
351 const uint8_t *data =
352 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
353 if (data) {
354 if (m_byte_order != endian::InlHostByteOrder())
355 val = ReadSwapInt16(data);
356 else
357 val = ReadInt16(data);
358 }
359 return val;
360 }
361
GetU16_unchecked(offset_t * offset_ptr) const362 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
363 uint16_t val;
364 if (m_byte_order == endian::InlHostByteOrder())
365 val = ReadInt16(m_start, *offset_ptr);
366 else
367 val = ReadSwapInt16(m_start, *offset_ptr);
368 *offset_ptr += sizeof(val);
369 return val;
370 }
371
GetU32_unchecked(offset_t * offset_ptr) const372 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
373 uint32_t val;
374 if (m_byte_order == endian::InlHostByteOrder())
375 val = ReadInt32(m_start, *offset_ptr);
376 else
377 val = ReadSwapInt32(m_start, *offset_ptr);
378 *offset_ptr += sizeof(val);
379 return val;
380 }
381
GetU64_unchecked(offset_t * offset_ptr) const382 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
383 uint64_t val;
384 if (m_byte_order == endian::InlHostByteOrder())
385 val = ReadInt64(m_start, *offset_ptr);
386 else
387 val = ReadSwapInt64(m_start, *offset_ptr);
388 *offset_ptr += sizeof(val);
389 return val;
390 }
391
392 // Extract "count" uint16_t values from the binary data and update the offset
393 // pointed to by "offset_ptr". The extracted data is copied into "dst".
394 //
395 // RETURNS the non-nullptr buffer pointer upon successful extraction of
396 // all the requested bytes, or nullptr when the data is not available in the
397 // buffer due to being out of bounds, or insufficient data.
GetU16(offset_t * offset_ptr,void * void_dst,uint32_t count) const398 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
399 uint32_t count) const {
400 const size_t src_size = sizeof(uint16_t) * count;
401 const uint16_t *src =
402 static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
403 if (src) {
404 if (m_byte_order != endian::InlHostByteOrder()) {
405 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
406 uint16_t *dst_end = dst_pos + count;
407 const uint16_t *src_pos = src;
408 while (dst_pos < dst_end) {
409 *dst_pos = ReadSwapInt16(src_pos);
410 ++dst_pos;
411 ++src_pos;
412 }
413 } else {
414 memcpy(void_dst, src, src_size);
415 }
416 // Return a non-nullptr pointer to the converted data as an indicator of
417 // success
418 return void_dst;
419 }
420 return nullptr;
421 }
422
423 // Extract a single uint32_t from the data and update the offset pointed to by
424 // "offset_ptr".
425 //
426 // RETURNS the uint32_t that was extracted, or zero on failure.
GetU32(offset_t * offset_ptr) const427 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
428 uint32_t val = 0;
429 const uint8_t *data =
430 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
431 if (data) {
432 if (m_byte_order != endian::InlHostByteOrder()) {
433 val = ReadSwapInt32(data);
434 } else {
435 memcpy(&val, data, 4);
436 }
437 }
438 return val;
439 }
440
441 // Extract "count" uint32_t values from the binary data and update the offset
442 // pointed to by "offset_ptr". The extracted data is copied into "dst".
443 //
444 // RETURNS the non-nullptr buffer pointer upon successful extraction of
445 // all the requested bytes, or nullptr when the data is not available in the
446 // buffer due to being out of bounds, or insufficient data.
GetU32(offset_t * offset_ptr,void * void_dst,uint32_t count) const447 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
448 uint32_t count) const {
449 const size_t src_size = sizeof(uint32_t) * count;
450 const uint32_t *src =
451 static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
452 if (src) {
453 if (m_byte_order != endian::InlHostByteOrder()) {
454 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
455 uint32_t *dst_end = dst_pos + count;
456 const uint32_t *src_pos = src;
457 while (dst_pos < dst_end) {
458 *dst_pos = ReadSwapInt32(src_pos);
459 ++dst_pos;
460 ++src_pos;
461 }
462 } else {
463 memcpy(void_dst, src, src_size);
464 }
465 // Return a non-nullptr pointer to the converted data as an indicator of
466 // success
467 return void_dst;
468 }
469 return nullptr;
470 }
471
472 // Extract a single uint64_t from the data and update the offset pointed to by
473 // "offset_ptr".
474 //
475 // RETURNS the uint64_t that was extracted, or zero on failure.
GetU64(offset_t * offset_ptr) const476 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
477 uint64_t val = 0;
478 const uint8_t *data =
479 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
480 if (data) {
481 if (m_byte_order != endian::InlHostByteOrder()) {
482 val = ReadSwapInt64(data);
483 } else {
484 memcpy(&val, data, 8);
485 }
486 }
487 return val;
488 }
489
490 // GetU64
491 //
492 // Get multiple consecutive 64 bit values. Return true if the entire read
493 // succeeds and increment the offset pointed to by offset_ptr, else return
494 // false and leave the offset pointed to by offset_ptr unchanged.
GetU64(offset_t * offset_ptr,void * void_dst,uint32_t count) const495 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
496 uint32_t count) const {
497 const size_t src_size = sizeof(uint64_t) * count;
498 const uint64_t *src =
499 static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
500 if (src) {
501 if (m_byte_order != endian::InlHostByteOrder()) {
502 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
503 uint64_t *dst_end = dst_pos + count;
504 const uint64_t *src_pos = src;
505 while (dst_pos < dst_end) {
506 *dst_pos = ReadSwapInt64(src_pos);
507 ++dst_pos;
508 ++src_pos;
509 }
510 } else {
511 memcpy(void_dst, src, src_size);
512 }
513 // Return a non-nullptr pointer to the converted data as an indicator of
514 // success
515 return void_dst;
516 }
517 return nullptr;
518 }
519
GetMaxU32(offset_t * offset_ptr,size_t byte_size) const520 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
521 size_t byte_size) const {
522 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
523 return GetMaxU64(offset_ptr, byte_size);
524 }
525
GetMaxU64(offset_t * offset_ptr,size_t byte_size) const526 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
527 size_t byte_size) const {
528 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
529 switch (byte_size) {
530 case 1:
531 return GetU8(offset_ptr);
532 case 2:
533 return GetU16(offset_ptr);
534 case 4:
535 return GetU32(offset_ptr);
536 case 8:
537 return GetU64(offset_ptr);
538 default: {
539 // General case.
540 const uint8_t *data =
541 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
542 if (data == nullptr)
543 return 0;
544 return ReadMaxInt64(data, byte_size, m_byte_order);
545 }
546 }
547 return 0;
548 }
549
GetMaxU64_unchecked(offset_t * offset_ptr,size_t byte_size) const550 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
551 size_t byte_size) const {
552 switch (byte_size) {
553 case 1:
554 return GetU8_unchecked(offset_ptr);
555 case 2:
556 return GetU16_unchecked(offset_ptr);
557 case 4:
558 return GetU32_unchecked(offset_ptr);
559 case 8:
560 return GetU64_unchecked(offset_ptr);
561 default: {
562 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
563 *offset_ptr += byte_size;
564 return res;
565 }
566 }
567 return 0;
568 }
569
GetMaxS64(offset_t * offset_ptr,size_t byte_size) const570 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
571 uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
572 return llvm::SignExtend64(u64, 8 * byte_size);
573 }
574
GetMaxU64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const575 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
576 uint32_t bitfield_bit_size,
577 uint32_t bitfield_bit_offset) const {
578 assert(bitfield_bit_size <= 64);
579 uint64_t uval64 = GetMaxU64(offset_ptr, size);
580
581 if (bitfield_bit_size == 0)
582 return uval64;
583
584 int32_t lsbcount = bitfield_bit_offset;
585 if (m_byte_order == eByteOrderBig)
586 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
587
588 if (lsbcount > 0)
589 uval64 >>= lsbcount;
590
591 uint64_t bitfield_mask =
592 (bitfield_bit_size == 64
593 ? std::numeric_limits<uint64_t>::max()
594 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
595 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
596 return uval64;
597
598 uval64 &= bitfield_mask;
599
600 return uval64;
601 }
602
GetMaxS64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const603 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
604 uint32_t bitfield_bit_size,
605 uint32_t bitfield_bit_offset) const {
606 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
607 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
608 int64_t sval64 = GetMaxS64(offset_ptr, size);
609 if (bitfield_bit_size == 0)
610 return sval64;
611 int32_t lsbcount = bitfield_bit_offset;
612 if (m_byte_order == eByteOrderBig)
613 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
614 if (lsbcount > 0)
615 sval64 >>= lsbcount;
616 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
617 sval64 &= bitfield_mask;
618 // sign extend if needed
619 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
620 sval64 |= ~bitfield_mask;
621 return sval64;
622 }
623
GetFloat(offset_t * offset_ptr) const624 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
625 return Get<float>(offset_ptr, 0.0f);
626 }
627
GetDouble(offset_t * offset_ptr) const628 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
629 return Get<double>(offset_ptr, 0.0);
630 }
631
GetLongDouble(offset_t * offset_ptr) const632 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
633 long double val = 0.0;
634 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
635 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
636 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
637 endian::InlHostByteOrder());
638 #else
639 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
640 sizeof(val), endian::InlHostByteOrder());
641 #endif
642 return val;
643 }
644
645 // Extract a single address from the data and update the offset pointed to by
646 // "offset_ptr". The size of the extracted address comes from the
647 // "this->m_addr_size" member variable and should be set correctly prior to
648 // extracting any address values.
649 //
650 // RETURNS the address that was extracted, or zero on failure.
GetAddress(offset_t * offset_ptr) const651 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
652 assert(m_addr_size >= 1 && m_addr_size <= 8);
653 return GetMaxU64(offset_ptr, m_addr_size);
654 }
655
GetAddress_unchecked(offset_t * offset_ptr) const656 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
657 assert(m_addr_size >= 1 && m_addr_size <= 8);
658 return GetMaxU64_unchecked(offset_ptr, m_addr_size);
659 }
660
ExtractBytes(offset_t offset,offset_t length,ByteOrder dst_byte_order,void * dst) const661 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
662 ByteOrder dst_byte_order, void *dst) const {
663 const uint8_t *src = PeekData(offset, length);
664 if (src) {
665 if (dst_byte_order != GetByteOrder()) {
666 // Validate that only a word- or register-sized dst is byte swapped
667 assert(length == 1 || length == 2 || length == 4 || length == 8 ||
668 length == 10 || length == 16 || length == 32);
669
670 for (uint32_t i = 0; i < length; ++i)
671 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
672 } else
673 ::memcpy(dst, src, length);
674 return length;
675 }
676 return 0;
677 }
678
679 // Extract data as it exists in target memory
CopyData(offset_t offset,offset_t length,void * dst) const680 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
681 void *dst) const {
682 const uint8_t *src = PeekData(offset, length);
683 if (src) {
684 ::memcpy(dst, src, length);
685 return length;
686 }
687 return 0;
688 }
689
690 // Extract data and swap if needed when doing the copy
691 lldb::offset_t
CopyByteOrderedData(offset_t src_offset,offset_t src_len,void * dst_void_ptr,offset_t dst_len,ByteOrder dst_byte_order) const692 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
693 void *dst_void_ptr, offset_t dst_len,
694 ByteOrder dst_byte_order) const {
695 // Validate the source info
696 if (!ValidOffsetForDataOfSize(src_offset, src_len))
697 assert(ValidOffsetForDataOfSize(src_offset, src_len));
698 assert(src_len > 0);
699 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
700
701 // Validate the destination info
702 assert(dst_void_ptr != nullptr);
703 assert(dst_len > 0);
704 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
705
706 // Validate that only a word- or register-sized dst is byte swapped
707 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
708 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
709 dst_len == 32);
710
711 // Must have valid byte orders set in this object and for destination
712 if (!(dst_byte_order == eByteOrderBig ||
713 dst_byte_order == eByteOrderLittle) ||
714 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
715 return 0;
716
717 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
718 const uint8_t *src = PeekData(src_offset, src_len);
719 if (src) {
720 if (dst_len >= src_len) {
721 // We are copying the entire value from src into dst. Calculate how many,
722 // if any, zeroes we need for the most significant bytes if "dst_len" is
723 // greater than "src_len"...
724 const size_t num_zeroes = dst_len - src_len;
725 if (dst_byte_order == eByteOrderBig) {
726 // Big endian, so we lead with zeroes...
727 if (num_zeroes > 0)
728 ::memset(dst, 0, num_zeroes);
729 // Then either copy or swap the rest
730 if (m_byte_order == eByteOrderBig) {
731 ::memcpy(dst + num_zeroes, src, src_len);
732 } else {
733 for (uint32_t i = 0; i < src_len; ++i)
734 dst[i + num_zeroes] = src[src_len - 1 - i];
735 }
736 } else {
737 // Little endian destination, so we lead the value bytes
738 if (m_byte_order == eByteOrderBig) {
739 for (uint32_t i = 0; i < src_len; ++i)
740 dst[i] = src[src_len - 1 - i];
741 } else {
742 ::memcpy(dst, src, src_len);
743 }
744 // And zero the rest...
745 if (num_zeroes > 0)
746 ::memset(dst + src_len, 0, num_zeroes);
747 }
748 return src_len;
749 } else {
750 // We are only copying some of the value from src into dst..
751
752 if (dst_byte_order == eByteOrderBig) {
753 // Big endian dst
754 if (m_byte_order == eByteOrderBig) {
755 // Big endian dst, with big endian src
756 ::memcpy(dst, src + (src_len - dst_len), dst_len);
757 } else {
758 // Big endian dst, with little endian src
759 for (uint32_t i = 0; i < dst_len; ++i)
760 dst[i] = src[dst_len - 1 - i];
761 }
762 } else {
763 // Little endian dst
764 if (m_byte_order == eByteOrderBig) {
765 // Little endian dst, with big endian src
766 for (uint32_t i = 0; i < dst_len; ++i)
767 dst[i] = src[src_len - 1 - i];
768 } else {
769 // Little endian dst, with big endian src
770 ::memcpy(dst, src, dst_len);
771 }
772 }
773 return dst_len;
774 }
775 }
776 return 0;
777 }
778
779 // Extracts a variable length NULL terminated C string from the data at the
780 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
781 // the offset of the byte that follows the NULL terminator byte.
782 //
783 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
784 // non-zero and there aren't enough available bytes, nullptr will be returned
785 // and "offset_ptr" will not be updated.
GetCStr(offset_t * offset_ptr) const786 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
787 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
788 // Already at the end of the data.
789 if (!start)
790 return nullptr;
791
792 const char *end = reinterpret_cast<const char *>(m_end);
793
794 // Check all bytes for a null terminator that terminates a C string.
795 const char *terminator_or_end = std::find(start, end, '\0');
796
797 // We didn't find a null terminator, so return nullptr to indicate that there
798 // is no valid C string at that offset.
799 if (terminator_or_end == end)
800 return nullptr;
801
802 // Update offset_ptr for the caller to point to the data behind the
803 // terminator (which is 1 byte long).
804 *offset_ptr += (terminator_or_end - start + 1UL);
805 return start;
806 }
807
808 // Extracts a NULL terminated C string from the fixed length field of length
809 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
810 // updated with the offset of the byte that follows the fixed length field.
811 //
812 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
813 // plus the length of the field is out of bounds, or if the field does not
814 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
815 // will not be updated.
GetCStr(offset_t * offset_ptr,offset_t len) const816 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
817 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
818 if (cstr != nullptr) {
819 if (memchr(cstr, '\0', len) == nullptr) {
820 return nullptr;
821 }
822 *offset_ptr += len;
823 return cstr;
824 }
825 return nullptr;
826 }
827
828 // Peeks at a string in the contained data. No verification is done to make
829 // sure the entire string lies within the bounds of this object's data, only
830 // "offset" is verified to be a valid offset.
831 //
832 // Returns a valid C string pointer if "offset" is a valid offset in this
833 // object's data, else nullptr is returned.
PeekCStr(offset_t offset) const834 const char *DataExtractor::PeekCStr(offset_t offset) const {
835 return reinterpret_cast<const char *>(PeekData(offset, 1));
836 }
837
838 // Extracts an unsigned LEB128 number from this object's data starting at the
839 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
840 // will be updated with the offset of the byte following the last extracted
841 // byte.
842 //
843 // Returned the extracted integer value.
GetULEB128(offset_t * offset_ptr) const844 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
845 const uint8_t *src = PeekData(*offset_ptr, 1);
846 if (src == nullptr)
847 return 0;
848
849 unsigned byte_count = 0;
850 uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
851 *offset_ptr += byte_count;
852 return result;
853 }
854
855 // Extracts an signed LEB128 number from this object's data starting at the
856 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
857 // will be updated with the offset of the byte following the last extracted
858 // byte.
859 //
860 // Returned the extracted integer value.
GetSLEB128(offset_t * offset_ptr) const861 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
862 const uint8_t *src = PeekData(*offset_ptr, 1);
863 if (src == nullptr)
864 return 0;
865
866 unsigned byte_count = 0;
867 int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
868 *offset_ptr += byte_count;
869 return result;
870 }
871
872 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
873 // at the offset pointed to by "offset_ptr". The offset pointed to by
874 // "offset_ptr" will be updated with the offset of the byte following the last
875 // extracted byte.
876 //
877 // Returns the number of bytes consumed during the extraction.
Skip_LEB128(offset_t * offset_ptr) const878 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
879 uint32_t bytes_consumed = 0;
880 const uint8_t *src = PeekData(*offset_ptr, 1);
881 if (src == nullptr)
882 return 0;
883
884 const uint8_t *end = m_end;
885
886 if (src < end) {
887 const uint8_t *src_pos = src;
888 while ((src_pos < end) && (*src_pos++ & 0x80))
889 ++bytes_consumed;
890 *offset_ptr += src_pos - src;
891 }
892 return bytes_consumed;
893 }
894
895 // Dumps bytes from this object's data to the stream "s" starting
896 // "start_offset" bytes into this data, and ending with the byte before
897 // "end_offset". "base_addr" will be added to the offset into the dumped data
898 // when showing the offset into the data in the output information.
899 // "num_per_line" objects of type "type" will be dumped with the option to
900 // override the format for each object with "type_format". "type_format" is a
901 // printf style formatting string. If "type_format" is nullptr, then an
902 // appropriate format string will be used for the supplied "type". If the
903 // stream "s" is nullptr, then the output will be send to Log().
PutToLog(Log * log,offset_t start_offset,offset_t length,uint64_t base_addr,uint32_t num_per_line,DataExtractor::Type type) const904 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
905 offset_t length, uint64_t base_addr,
906 uint32_t num_per_line,
907 DataExtractor::Type type) const {
908 if (log == nullptr)
909 return start_offset;
910
911 offset_t offset;
912 offset_t end_offset;
913 uint32_t count;
914 StreamString sstr;
915 for (offset = start_offset, end_offset = offset + length, count = 0;
916 ValidOffset(offset) && offset < end_offset; ++count) {
917 if ((count % num_per_line) == 0) {
918 // Print out any previous string
919 if (sstr.GetSize() > 0) {
920 log->PutString(sstr.GetString());
921 sstr.Clear();
922 }
923 // Reset string offset and fill the current line string with address:
924 if (base_addr != LLDB_INVALID_ADDRESS)
925 sstr.Printf("0x%8.8" PRIx64 ":",
926 static_cast<uint64_t>(base_addr + (offset - start_offset)));
927 }
928
929 switch (type) {
930 case TypeUInt8:
931 sstr.Printf(" %2.2x", GetU8(&offset));
932 break;
933 case TypeChar: {
934 char ch = GetU8(&offset);
935 sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
936 } break;
937 case TypeUInt16:
938 sstr.Printf(" %4.4x", GetU16(&offset));
939 break;
940 case TypeUInt32:
941 sstr.Printf(" %8.8x", GetU32(&offset));
942 break;
943 case TypeUInt64:
944 sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
945 break;
946 case TypePointer:
947 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
948 break;
949 case TypeULEB128:
950 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
951 break;
952 case TypeSLEB128:
953 sstr.Printf(" %" PRId64, GetSLEB128(&offset));
954 break;
955 }
956 }
957
958 if (!sstr.Empty())
959 log->PutString(sstr.GetString());
960
961 return offset; // Return the offset at which we ended up
962 }
963
Copy(DataExtractor & dest_data) const964 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
965 if (m_data_sp) {
966 // we can pass along the SP to the data
967 dest_data.SetData(m_data_sp);
968 } else {
969 const uint8_t *base_ptr = m_start;
970 size_t data_size = GetByteSize();
971 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
972 }
973 return GetByteSize();
974 }
975
Append(DataExtractor & rhs)976 bool DataExtractor::Append(DataExtractor &rhs) {
977 if (rhs.GetByteOrder() != GetByteOrder())
978 return false;
979
980 if (rhs.GetByteSize() == 0)
981 return true;
982
983 if (GetByteSize() == 0)
984 return (rhs.Copy(*this) > 0);
985
986 size_t bytes = GetByteSize() + rhs.GetByteSize();
987
988 DataBufferHeap *buffer_heap_ptr = nullptr;
989 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
990
991 if (!buffer_sp || buffer_heap_ptr == nullptr)
992 return false;
993
994 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
995
996 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
997 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
998
999 SetData(buffer_sp);
1000
1001 return true;
1002 }
1003
Append(void * buf,offset_t length)1004 bool DataExtractor::Append(void *buf, offset_t length) {
1005 if (buf == nullptr)
1006 return false;
1007
1008 if (length == 0)
1009 return true;
1010
1011 size_t bytes = GetByteSize() + length;
1012
1013 DataBufferHeap *buffer_heap_ptr = nullptr;
1014 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1015
1016 if (!buffer_sp || buffer_heap_ptr == nullptr)
1017 return false;
1018
1019 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1020
1021 if (GetByteSize() > 0)
1022 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1023
1024 memcpy(bytes_ptr + GetByteSize(), buf, length);
1025
1026 SetData(buffer_sp);
1027
1028 return true;
1029 }
1030
Checksum(llvm::SmallVectorImpl<uint8_t> & dest,uint64_t max_data)1031 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1032 uint64_t max_data) {
1033 if (max_data == 0)
1034 max_data = GetByteSize();
1035 else
1036 max_data = std::min(max_data, GetByteSize());
1037
1038 llvm::MD5 md5;
1039
1040 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1041 md5.update(data);
1042
1043 llvm::MD5::MD5Result result;
1044 md5.final(result);
1045
1046 dest.clear();
1047 dest.append(result.Bytes.begin(), result.Bytes.end());
1048 }
1049