1 //===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "GDBRemoteRegisterContext.h"
10
11 #include "lldb/Target/ExecutionContext.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/RegisterValue.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 #include "ProcessGDBRemote.h"
19 #include "ProcessGDBRemoteLog.h"
20 #include "ThreadGDBRemote.h"
21 #include "Utility/ARM_DWARF_Registers.h"
22 #include "Utility/ARM_ehframe_Registers.h"
23 #include "lldb/Utility/StringExtractorGDBRemote.h"
24
25 #include <memory>
26
27 using namespace lldb;
28 using namespace lldb_private;
29 using namespace lldb_private::process_gdb_remote;
30
31 // GDBRemoteRegisterContext constructor
GDBRemoteRegisterContext(ThreadGDBRemote & thread,uint32_t concrete_frame_idx,GDBRemoteDynamicRegisterInfoSP reg_info_sp,bool read_all_at_once,bool write_all_at_once)32 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
33 ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
34 GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
35 bool write_all_at_once)
36 : RegisterContext(thread, concrete_frame_idx),
37 m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
38 m_read_all_at_once(read_all_at_once),
39 m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) {
40 // Resize our vector of bools to contain one bool for every register. We will
41 // use these boolean values to know when a register value is valid in
42 // m_reg_data.
43 m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
44
45 // Make a heap based buffer that is big enough to store all registers
46 DataBufferSP reg_data_sp(
47 new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
48 m_reg_data.SetData(reg_data_sp);
49 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
50 }
51
52 // Destructor
53 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() = default;
54
InvalidateAllRegisters()55 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
56 SetAllRegisterValid(false);
57 }
58
SetAllRegisterValid(bool b)59 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
60 m_gpacket_cached = b;
61 std::vector<bool>::iterator pos, end = m_reg_valid.end();
62 for (pos = m_reg_valid.begin(); pos != end; ++pos)
63 *pos = b;
64 }
65
GetRegisterCount()66 size_t GDBRemoteRegisterContext::GetRegisterCount() {
67 return m_reg_info_sp->GetNumRegisters();
68 }
69
70 const RegisterInfo *
GetRegisterInfoAtIndex(size_t reg)71 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
72 RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfoAtIndex(reg);
73
74 if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
75 const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
76 uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
77 reg_info->byte_size = reg_size;
78 }
79 return reg_info;
80 }
81
GetRegisterSetCount()82 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
83 return m_reg_info_sp->GetNumRegisterSets();
84 }
85
GetRegisterSet(size_t reg_set)86 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
87 return m_reg_info_sp->GetRegisterSet(reg_set);
88 }
89
ReadRegister(const RegisterInfo * reg_info,RegisterValue & value)90 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
91 RegisterValue &value) {
92 // Read the register
93 if (ReadRegisterBytes(reg_info, m_reg_data)) {
94 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
95 if (m_reg_valid[reg] == false)
96 return false;
97 const bool partial_data_ok = false;
98 Status error(value.SetValueFromData(
99 reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
100 return error.Success();
101 }
102 return false;
103 }
104
PrivateSetRegisterValue(uint32_t reg,llvm::ArrayRef<uint8_t> data)105 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
106 uint32_t reg, llvm::ArrayRef<uint8_t> data) {
107 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
108 if (reg_info == nullptr)
109 return false;
110
111 // Invalidate if needed
112 InvalidateIfNeeded(false);
113
114 const size_t reg_byte_size = reg_info->byte_size;
115 memcpy(const_cast<uint8_t *>(
116 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
117 data.data(), std::min(data.size(), reg_byte_size));
118 bool success = data.size() >= reg_byte_size;
119 if (success) {
120 SetRegisterIsValid(reg, true);
121 } else if (data.size() > 0) {
122 // Only set register is valid to false if we copied some bytes, else leave
123 // it as it was.
124 SetRegisterIsValid(reg, false);
125 }
126 return success;
127 }
128
PrivateSetRegisterValue(uint32_t reg,uint64_t new_reg_val)129 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
130 uint64_t new_reg_val) {
131 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
132 if (reg_info == nullptr)
133 return false;
134
135 // Early in process startup, we can get a thread that has an invalid byte
136 // order because the process hasn't been completely set up yet (see the ctor
137 // where the byte order is setfrom the process). If that's the case, we
138 // can't set the value here.
139 if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
140 return false;
141 }
142
143 // Invalidate if needed
144 InvalidateIfNeeded(false);
145
146 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
147 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
148
149 // If our register context and our register info disagree, which should never
150 // happen, don't overwrite past the end of the buffer.
151 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
152 return false;
153
154 // Grab a pointer to where we are going to put this register
155 uint8_t *dst = const_cast<uint8_t *>(
156 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
157
158 if (dst == nullptr)
159 return false;
160
161 if (data.CopyByteOrderedData(0, // src offset
162 reg_info->byte_size, // src length
163 dst, // dst
164 reg_info->byte_size, // dst length
165 m_reg_data.GetByteOrder())) // dst byte order
166 {
167 SetRegisterIsValid(reg, true);
168 return true;
169 }
170 return false;
171 }
172
173 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
GetPrimordialRegister(const RegisterInfo * reg_info,GDBRemoteCommunicationClient & gdb_comm)174 bool GDBRemoteRegisterContext::GetPrimordialRegister(
175 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
176 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
177 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
178
179 if (DataBufferSP buffer_sp =
180 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
181 return PrivateSetRegisterValue(
182 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
183 buffer_sp->GetByteSize()));
184 return false;
185 }
186
ReadRegisterBytes(const RegisterInfo * reg_info,DataExtractor & data)187 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
188 DataExtractor &data) {
189 ExecutionContext exe_ctx(CalculateThread());
190
191 Process *process = exe_ctx.GetProcessPtr();
192 Thread *thread = exe_ctx.GetThreadPtr();
193 if (process == nullptr || thread == nullptr)
194 return false;
195
196 GDBRemoteCommunicationClient &gdb_comm(
197 ((ProcessGDBRemote *)process)->GetGDBRemote());
198
199 InvalidateIfNeeded(false);
200
201 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
202
203 if (!GetRegisterIsValid(reg)) {
204 if (m_read_all_at_once && !m_gpacket_cached) {
205 if (DataBufferSP buffer_sp =
206 gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
207 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
208 buffer_sp->GetBytes(),
209 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
210 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
211 SetAllRegisterValid(true);
212 return true;
213 } else if (buffer_sp->GetByteSize() > 0) {
214 const int regcount = m_reg_info_sp->GetNumRegisters();
215 for (int i = 0; i < regcount; i++) {
216 struct RegisterInfo *reginfo =
217 m_reg_info_sp->GetRegisterInfoAtIndex(i);
218 if (reginfo->byte_offset + reginfo->byte_size <=
219 buffer_sp->GetByteSize()) {
220 m_reg_valid[i] = true;
221 } else {
222 m_reg_valid[i] = false;
223 }
224 }
225
226 m_gpacket_cached = true;
227 if (GetRegisterIsValid(reg))
228 return true;
229 } else {
230 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
231 GDBR_LOG_PACKETS));
232 LLDB_LOGF(
233 log,
234 "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
235 "to read the "
236 "entire register context at once, expected at least %" PRId64
237 " bytes "
238 "but only got %" PRId64 " bytes.",
239 m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
240 return false;
241 }
242 }
243 }
244 if (reg_info->value_regs) {
245 // Process this composite register request by delegating to the
246 // constituent primordial registers.
247
248 // Index of the primordial register.
249 bool success = true;
250 for (uint32_t idx = 0; success; ++idx) {
251 const uint32_t prim_reg = reg_info->value_regs[idx];
252 if (prim_reg == LLDB_INVALID_REGNUM)
253 break;
254 // We have a valid primordial register as our constituent. Grab the
255 // corresponding register info.
256 const RegisterInfo *prim_reg_info =
257 GetRegisterInfo(eRegisterKindProcessPlugin, prim_reg);
258 if (prim_reg_info == nullptr)
259 success = false;
260 else {
261 // Read the containing register if it hasn't already been read
262 if (!GetRegisterIsValid(prim_reg))
263 success = GetPrimordialRegister(prim_reg_info, gdb_comm);
264 }
265 }
266
267 if (success) {
268 // If we reach this point, all primordial register requests have
269 // succeeded. Validate this composite register.
270 SetRegisterIsValid(reg_info, true);
271 }
272 } else {
273 // Get each register individually
274 GetPrimordialRegister(reg_info, gdb_comm);
275 }
276
277 // Make sure we got a valid register value after reading it
278 if (!GetRegisterIsValid(reg))
279 return false;
280 }
281
282 if (&data != &m_reg_data) {
283 assert(m_reg_data.GetByteSize() >=
284 reg_info->byte_offset + reg_info->byte_size);
285 // If our register context and our register info disagree, which should
286 // never happen, don't read past the end of the buffer.
287 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
288 return false;
289
290 // If we aren't extracting into our own buffer (which only happens when
291 // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
292 // we transfer bytes from our buffer into the data buffer that was passed
293 // in
294
295 data.SetByteOrder(m_reg_data.GetByteOrder());
296 data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
297 }
298 return true;
299 }
300
WriteRegister(const RegisterInfo * reg_info,const RegisterValue & value)301 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
302 const RegisterValue &value) {
303 DataExtractor data;
304 if (value.GetData(data))
305 return WriteRegisterBytes(reg_info, data, 0);
306 return false;
307 }
308
309 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
SetPrimordialRegister(const RegisterInfo * reg_info,GDBRemoteCommunicationClient & gdb_comm)310 bool GDBRemoteRegisterContext::SetPrimordialRegister(
311 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
312 StreamString packet;
313 StringExtractorGDBRemote response;
314 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
315 // Invalidate just this register
316 SetRegisterIsValid(reg, false);
317
318 return gdb_comm.WriteRegister(
319 m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
320 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
321 reg_info->byte_size});
322 }
323
WriteRegisterBytes(const RegisterInfo * reg_info,DataExtractor & data,uint32_t data_offset)324 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
325 DataExtractor &data,
326 uint32_t data_offset) {
327 ExecutionContext exe_ctx(CalculateThread());
328
329 Process *process = exe_ctx.GetProcessPtr();
330 Thread *thread = exe_ctx.GetThreadPtr();
331 if (process == nullptr || thread == nullptr)
332 return false;
333
334 GDBRemoteCommunicationClient &gdb_comm(
335 ((ProcessGDBRemote *)process)->GetGDBRemote());
336
337 assert(m_reg_data.GetByteSize() >=
338 reg_info->byte_offset + reg_info->byte_size);
339
340 // If our register context and our register info disagree, which should never
341 // happen, don't overwrite past the end of the buffer.
342 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
343 return false;
344
345 // Grab a pointer to where we are going to put this register
346 uint8_t *dst = const_cast<uint8_t *>(
347 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
348
349 if (dst == nullptr)
350 return false;
351
352 // Code below is specific to AArch64 target in SVE state
353 // If vector granule (vg) register is being written then thread's
354 // register context reconfiguration is triggered on success.
355 bool do_reconfigure_arm64_sve = false;
356 const ArchSpec &arch = process->GetTarget().GetArchitecture();
357 if (arch.IsValid() && arch.GetTriple().isAArch64())
358 if (strcmp(reg_info->name, "vg") == 0)
359 do_reconfigure_arm64_sve = true;
360
361 if (data.CopyByteOrderedData(data_offset, // src offset
362 reg_info->byte_size, // src length
363 dst, // dst
364 reg_info->byte_size, // dst length
365 m_reg_data.GetByteOrder())) // dst byte order
366 {
367 GDBRemoteClientBase::Lock lock(gdb_comm);
368 if (lock) {
369 if (m_write_all_at_once) {
370 // Invalidate all register values
371 InvalidateIfNeeded(true);
372
373 // Set all registers in one packet
374 if (gdb_comm.WriteAllRegisters(
375 m_thread.GetProtocolID(),
376 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
377
378 {
379 SetAllRegisterValid(false);
380
381 if (do_reconfigure_arm64_sve)
382 AArch64SVEReconfigure();
383
384 return true;
385 }
386 } else {
387 bool success = true;
388
389 if (reg_info->value_regs) {
390 // This register is part of another register. In this case we read
391 // the actual register data for any "value_regs", and once all that
392 // data is read, we will have enough data in our register context
393 // bytes for the value of this register
394
395 // Invalidate this composite register first.
396
397 for (uint32_t idx = 0; success; ++idx) {
398 const uint32_t reg = reg_info->value_regs[idx];
399 if (reg == LLDB_INVALID_REGNUM)
400 break;
401 // We have a valid primordial register as our constituent. Grab the
402 // corresponding register info.
403 const RegisterInfo *value_reg_info =
404 GetRegisterInfo(eRegisterKindProcessPlugin, reg);
405 if (value_reg_info == nullptr)
406 success = false;
407 else
408 success = SetPrimordialRegister(value_reg_info, gdb_comm);
409 }
410 } else {
411 // This is an actual register, write it
412 success = SetPrimordialRegister(reg_info, gdb_comm);
413
414 if (success && do_reconfigure_arm64_sve)
415 AArch64SVEReconfigure();
416 }
417
418 // Check if writing this register will invalidate any other register
419 // values? If so, invalidate them
420 if (reg_info->invalidate_regs) {
421 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
422 reg != LLDB_INVALID_REGNUM;
423 reg = reg_info->invalidate_regs[++idx])
424 SetRegisterIsValid(ConvertRegisterKindToRegisterNumber(
425 eRegisterKindProcessPlugin, reg),
426 false);
427 }
428
429 return success;
430 }
431 } else {
432 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
433 GDBR_LOG_PACKETS));
434 if (log) {
435 if (log->GetVerbose()) {
436 StreamString strm;
437 gdb_comm.DumpHistory(strm);
438 LLDB_LOGF(log,
439 "error: failed to get packet sequence mutex, not sending "
440 "write register for \"%s\":\n%s",
441 reg_info->name, strm.GetData());
442 } else
443 LLDB_LOGF(log,
444 "error: failed to get packet sequence mutex, not sending "
445 "write register for \"%s\"",
446 reg_info->name);
447 }
448 }
449 }
450 return false;
451 }
452
ReadAllRegisterValues(RegisterCheckpoint & reg_checkpoint)453 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
454 RegisterCheckpoint ®_checkpoint) {
455 ExecutionContext exe_ctx(CalculateThread());
456
457 Process *process = exe_ctx.GetProcessPtr();
458 Thread *thread = exe_ctx.GetThreadPtr();
459 if (process == nullptr || thread == nullptr)
460 return false;
461
462 GDBRemoteCommunicationClient &gdb_comm(
463 ((ProcessGDBRemote *)process)->GetGDBRemote());
464
465 uint32_t save_id = 0;
466 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
467 reg_checkpoint.SetID(save_id);
468 reg_checkpoint.GetData().reset();
469 return true;
470 } else {
471 reg_checkpoint.SetID(0); // Invalid save ID is zero
472 return ReadAllRegisterValues(reg_checkpoint.GetData());
473 }
474 }
475
WriteAllRegisterValues(const RegisterCheckpoint & reg_checkpoint)476 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
477 const RegisterCheckpoint ®_checkpoint) {
478 uint32_t save_id = reg_checkpoint.GetID();
479 if (save_id != 0) {
480 ExecutionContext exe_ctx(CalculateThread());
481
482 Process *process = exe_ctx.GetProcessPtr();
483 Thread *thread = exe_ctx.GetThreadPtr();
484 if (process == nullptr || thread == nullptr)
485 return false;
486
487 GDBRemoteCommunicationClient &gdb_comm(
488 ((ProcessGDBRemote *)process)->GetGDBRemote());
489
490 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
491 } else {
492 return WriteAllRegisterValues(reg_checkpoint.GetData());
493 }
494 }
495
ReadAllRegisterValues(lldb::DataBufferSP & data_sp)496 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
497 lldb::DataBufferSP &data_sp) {
498 ExecutionContext exe_ctx(CalculateThread());
499
500 Process *process = exe_ctx.GetProcessPtr();
501 Thread *thread = exe_ctx.GetThreadPtr();
502 if (process == nullptr || thread == nullptr)
503 return false;
504
505 GDBRemoteCommunicationClient &gdb_comm(
506 ((ProcessGDBRemote *)process)->GetGDBRemote());
507
508 const bool use_g_packet =
509 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
510
511 GDBRemoteClientBase::Lock lock(gdb_comm);
512 if (lock) {
513 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
514 InvalidateAllRegisters();
515
516 if (use_g_packet &&
517 (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
518 return true;
519
520 // We're going to read each register
521 // individually and store them as binary data in a buffer.
522 const RegisterInfo *reg_info;
523
524 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
525 i++) {
526 if (reg_info
527 ->value_regs) // skip registers that are slices of real registers
528 continue;
529 ReadRegisterBytes(reg_info, m_reg_data);
530 // ReadRegisterBytes saves the contents of the register in to the
531 // m_reg_data buffer
532 }
533 data_sp = std::make_shared<DataBufferHeap>(
534 m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
535 return true;
536 } else {
537
538 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
539 GDBR_LOG_PACKETS));
540 if (log) {
541 if (log->GetVerbose()) {
542 StreamString strm;
543 gdb_comm.DumpHistory(strm);
544 LLDB_LOGF(log,
545 "error: failed to get packet sequence mutex, not sending "
546 "read all registers:\n%s",
547 strm.GetData());
548 } else
549 LLDB_LOGF(log,
550 "error: failed to get packet sequence mutex, not sending "
551 "read all registers");
552 }
553 }
554
555 data_sp.reset();
556 return false;
557 }
558
WriteAllRegisterValues(const lldb::DataBufferSP & data_sp)559 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
560 const lldb::DataBufferSP &data_sp) {
561 if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
562 return false;
563
564 ExecutionContext exe_ctx(CalculateThread());
565
566 Process *process = exe_ctx.GetProcessPtr();
567 Thread *thread = exe_ctx.GetThreadPtr();
568 if (process == nullptr || thread == nullptr)
569 return false;
570
571 GDBRemoteCommunicationClient &gdb_comm(
572 ((ProcessGDBRemote *)process)->GetGDBRemote());
573
574 const bool use_g_packet =
575 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
576
577 GDBRemoteClientBase::Lock lock(gdb_comm);
578 if (lock) {
579 // The data_sp contains the G response packet.
580 if (use_g_packet) {
581 if (gdb_comm.WriteAllRegisters(
582 m_thread.GetProtocolID(),
583 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
584 return true;
585
586 uint32_t num_restored = 0;
587 // We need to manually go through all of the registers and restore them
588 // manually
589 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
590 m_reg_data.GetAddressByteSize());
591
592 const RegisterInfo *reg_info;
593
594 // The g packet contents may either include the slice registers
595 // (registers defined in terms of other registers, e.g. eax is a subset
596 // of rax) or not. The slice registers should NOT be in the g packet,
597 // but some implementations may incorrectly include them.
598 //
599 // If the slice registers are included in the packet, we must step over
600 // the slice registers when parsing the packet -- relying on the
601 // RegisterInfo byte_offset field would be incorrect. If the slice
602 // registers are not included, then using the byte_offset values into the
603 // data buffer is the best way to find individual register values.
604
605 uint64_t size_including_slice_registers = 0;
606 uint64_t size_not_including_slice_registers = 0;
607 uint64_t size_by_highest_offset = 0;
608
609 for (uint32_t reg_idx = 0;
610 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
611 size_including_slice_registers += reg_info->byte_size;
612 if (reg_info->value_regs == nullptr)
613 size_not_including_slice_registers += reg_info->byte_size;
614 if (reg_info->byte_offset >= size_by_highest_offset)
615 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
616 }
617
618 bool use_byte_offset_into_buffer;
619 if (size_by_highest_offset == restore_data.GetByteSize()) {
620 // The size of the packet agrees with the highest offset: + size in the
621 // register file
622 use_byte_offset_into_buffer = true;
623 } else if (size_not_including_slice_registers ==
624 restore_data.GetByteSize()) {
625 // The size of the packet is the same as concatenating all of the
626 // registers sequentially, skipping the slice registers
627 use_byte_offset_into_buffer = true;
628 } else if (size_including_slice_registers == restore_data.GetByteSize()) {
629 // The slice registers are present in the packet (when they shouldn't
630 // be). Don't try to use the RegisterInfo byte_offset into the
631 // restore_data, it will point to the wrong place.
632 use_byte_offset_into_buffer = false;
633 } else {
634 // None of our expected sizes match the actual g packet data we're
635 // looking at. The most conservative approach here is to use the
636 // running total byte offset.
637 use_byte_offset_into_buffer = false;
638 }
639
640 // In case our register definitions don't include the correct offsets,
641 // keep track of the size of each reg & compute offset based on that.
642 uint32_t running_byte_offset = 0;
643 for (uint32_t reg_idx = 0;
644 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
645 ++reg_idx, running_byte_offset += reg_info->byte_size) {
646 // Skip composite aka slice registers (e.g. eax is a slice of rax).
647 if (reg_info->value_regs)
648 continue;
649
650 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
651
652 uint32_t register_offset;
653 if (use_byte_offset_into_buffer) {
654 register_offset = reg_info->byte_offset;
655 } else {
656 register_offset = running_byte_offset;
657 }
658
659 const uint32_t reg_byte_size = reg_info->byte_size;
660
661 const uint8_t *restore_src =
662 restore_data.PeekData(register_offset, reg_byte_size);
663 if (restore_src) {
664 SetRegisterIsValid(reg, false);
665 if (gdb_comm.WriteRegister(
666 m_thread.GetProtocolID(),
667 reg_info->kinds[eRegisterKindProcessPlugin],
668 {restore_src, reg_byte_size}))
669 ++num_restored;
670 }
671 }
672 return num_restored > 0;
673 } else {
674 // For the use_g_packet == false case, we're going to write each register
675 // individually. The data buffer is binary data in this case, instead of
676 // ascii characters.
677
678 bool arm64_debugserver = false;
679 if (m_thread.GetProcess().get()) {
680 const ArchSpec &arch =
681 m_thread.GetProcess()->GetTarget().GetArchitecture();
682 if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
683 arch.GetMachine() == llvm::Triple::aarch64_32) &&
684 arch.GetTriple().getVendor() == llvm::Triple::Apple &&
685 arch.GetTriple().getOS() == llvm::Triple::IOS) {
686 arm64_debugserver = true;
687 }
688 }
689 uint32_t num_restored = 0;
690 const RegisterInfo *reg_info;
691 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
692 i++) {
693 if (reg_info->value_regs) // skip registers that are slices of real
694 // registers
695 continue;
696 // Skip the fpsr and fpcr floating point status/control register
697 // writing to work around a bug in an older version of debugserver that
698 // would lead to register context corruption when writing fpsr/fpcr.
699 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
700 strcmp(reg_info->name, "fpcr") == 0)) {
701 continue;
702 }
703
704 SetRegisterIsValid(reg_info, false);
705 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
706 reg_info->kinds[eRegisterKindProcessPlugin],
707 {data_sp->GetBytes() + reg_info->byte_offset,
708 reg_info->byte_size}))
709 ++num_restored;
710 }
711 return num_restored > 0;
712 }
713 } else {
714 Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
715 GDBR_LOG_PACKETS));
716 if (log) {
717 if (log->GetVerbose()) {
718 StreamString strm;
719 gdb_comm.DumpHistory(strm);
720 LLDB_LOGF(log,
721 "error: failed to get packet sequence mutex, not sending "
722 "write all registers:\n%s",
723 strm.GetData());
724 } else
725 LLDB_LOGF(log,
726 "error: failed to get packet sequence mutex, not sending "
727 "write all registers");
728 }
729 }
730 return false;
731 }
732
ConvertRegisterKindToRegisterNumber(lldb::RegisterKind kind,uint32_t num)733 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
734 lldb::RegisterKind kind, uint32_t num) {
735 return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
736 }
737
AArch64SVEReconfigure()738 bool GDBRemoteRegisterContext::AArch64SVEReconfigure() {
739 if (!m_reg_info_sp)
740 return false;
741
742 const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("vg");
743 if (!reg_info)
744 return false;
745
746 uint64_t fail_value = LLDB_INVALID_ADDRESS;
747 uint32_t vg_reg_num = reg_info->kinds[eRegisterKindLLDB];
748 uint64_t vg_reg_value = ReadRegisterAsUnsigned(vg_reg_num, fail_value);
749
750 if (vg_reg_value != fail_value && vg_reg_value <= 32) {
751 const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("p0");
752 if (!reg_info || vg_reg_value == reg_info->byte_size)
753 return false;
754
755 if (m_reg_info_sp->UpdateARM64SVERegistersInfos(vg_reg_value)) {
756 // Make a heap based buffer that is big enough to store all registers
757 m_reg_data.SetData(std::make_shared<DataBufferHeap>(
758 m_reg_info_sp->GetRegisterDataByteSize(), 0));
759 m_reg_data.SetByteOrder(GetByteOrder());
760
761 InvalidateAllRegisters();
762
763 return true;
764 }
765 }
766
767 return false;
768 }
769
UpdateARM64SVERegistersInfos(uint64_t vg)770 bool GDBRemoteDynamicRegisterInfo::UpdateARM64SVERegistersInfos(uint64_t vg) {
771 // SVE Z register size is vg x 8 bytes.
772 uint32_t z_reg_byte_size = vg * 8;
773
774 // SVE vector length has changed, accordingly set size of Z, P and FFR
775 // registers. Also invalidate register offsets it will be recalculated
776 // after SVE register size update.
777 for (auto ® : m_regs) {
778 if (reg.value_regs == nullptr) {
779 if (reg.name[0] == 'z' && isdigit(reg.name[1]))
780 reg.byte_size = z_reg_byte_size;
781 else if (reg.name[0] == 'p' && isdigit(reg.name[1]))
782 reg.byte_size = vg;
783 else if (strcmp(reg.name, "ffr") == 0)
784 reg.byte_size = vg;
785 }
786 reg.byte_offset = LLDB_INVALID_INDEX32;
787 }
788
789 // Re-calculate register offsets
790 ConfigureOffsets();
791 return true;
792 }
793
HardcodeARMRegisters(bool from_scratch)794 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
795 // For Advanced SIMD and VFP register mapping.
796 static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1)
797 static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3)
798 static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5)
799 static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7)
800 static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9)
801 static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11)
802 static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13)
803 static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15)
804 static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17)
805 static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19)
806 static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
807 static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
808 static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
809 static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
810 static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
811 static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
812 static uint32_t g_q0_regs[] = {
813 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
814 static uint32_t g_q1_regs[] = {
815 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
816 static uint32_t g_q2_regs[] = {
817 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
818 static uint32_t g_q3_regs[] = {
819 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
820 static uint32_t g_q4_regs[] = {
821 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
822 static uint32_t g_q5_regs[] = {
823 46, 47, 48, 49,
824 LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
825 static uint32_t g_q6_regs[] = {
826 50, 51, 52, 53,
827 LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
828 static uint32_t g_q7_regs[] = {
829 54, 55, 56, 57,
830 LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
831 static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17)
832 static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19)
833 static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
834 static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
835 static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
836 static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
837 static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
838 static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
839
840 // This is our array of composite registers, with each element coming from
841 // the above register mappings.
842 static uint32_t *g_composites[] = {
843 g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs,
844 g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs,
845 g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs,
846 g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs,
847 g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
848 g_q14_regs, g_q15_regs};
849
850 // clang-format off
851 static RegisterInfo g_register_infos[] = {
852 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN
853 // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ========
854 { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 },
855 { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 },
856 { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 },
857 { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 },
858 { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 },
859 { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 },
860 { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 },
861 { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 },
862 { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 },
863 { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 },
864 { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 },
865 { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 },
866 { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 },
867 { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 },
868 { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 },
869 { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 },
870 { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 },
871 { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 },
872 { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 },
873 { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 },
874 { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 },
875 { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 },
876 { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 },
877 { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 },
878 { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 },
879 { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 },
880 { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 },
881 { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 },
882 { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 },
883 { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 },
884 { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 },
885 { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 },
886 { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 },
887 { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 },
888 { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 },
889 { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 },
890 { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 },
891 { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 },
892 { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 },
893 { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 },
894 { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 },
895 { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 },
896 { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 },
897 { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 },
898 { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 },
899 { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 },
900 { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 },
901 { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 },
902 { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 },
903 { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 },
904 { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 },
905 { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 },
906 { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 },
907 { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 },
908 { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 },
909 { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 },
910 { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 },
911 { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 },
912 { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 },
913 { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 },
914 { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 },
915 { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 },
916 { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 },
917 { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 },
918 { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 },
919 { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 },
920 { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 },
921 { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 },
922 { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 },
923 { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 },
924 { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 },
925 { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 },
926 { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 },
927 { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 },
928 { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 },
929 { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 },
930 { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 },
931 { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 },
932 { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 },
933 { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 },
934 { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 },
935 { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 },
936 { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 },
937 { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 },
938 { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 },
939 { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 },
940 { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 },
941 { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 },
942 { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 },
943 { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 },
944 { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 },
945 { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 },
946 { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 },
947 { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 },
948 { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 },
949 { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 },
950 { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 },
951 { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 },
952 { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 },
953 { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 },
954 { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 },
955 { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 },
956 { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 },
957 { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 },
958 { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 },
959 { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 },
960 { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 }
961 };
962 // clang-format on
963
964 static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
965 static ConstString gpr_reg_set("General Purpose Registers");
966 static ConstString sfp_reg_set("Software Floating Point Registers");
967 static ConstString vfp_reg_set("Floating Point Registers");
968 size_t i;
969 if (from_scratch) {
970 // Calculate the offsets of the registers
971 // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
972 // which comes after the "primordial" registers is important. This enables
973 // us to calculate the offset of the composite register by using the offset
974 // of its first primordial register. For example, to calculate the offset
975 // of q0, use s0's offset.
976 if (g_register_infos[2].byte_offset == 0) {
977 uint32_t byte_offset = 0;
978 for (i = 0; i < num_registers; ++i) {
979 // For primordial registers, increment the byte_offset by the byte_size
980 // to arrive at the byte_offset for the next register. Otherwise, we
981 // have a composite register whose offset can be calculated by
982 // consulting the offset of its first primordial register.
983 if (!g_register_infos[i].value_regs) {
984 g_register_infos[i].byte_offset = byte_offset;
985 byte_offset += g_register_infos[i].byte_size;
986 } else {
987 const uint32_t first_primordial_reg =
988 g_register_infos[i].value_regs[0];
989 g_register_infos[i].byte_offset =
990 g_register_infos[first_primordial_reg].byte_offset;
991 }
992 }
993 }
994 for (i = 0; i < num_registers; ++i) {
995 ConstString name;
996 ConstString alt_name;
997 if (g_register_infos[i].name && g_register_infos[i].name[0])
998 name.SetCString(g_register_infos[i].name);
999 if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
1000 alt_name.SetCString(g_register_infos[i].alt_name);
1001
1002 if (i <= 15 || i == 25)
1003 AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
1004 else if (i <= 24)
1005 AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
1006 else
1007 AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
1008 }
1009 } else {
1010 // Add composite registers to our primordial registers, then.
1011 const size_t num_composites = llvm::array_lengthof(g_composites);
1012 const size_t num_dynamic_regs = GetNumRegisters();
1013 const size_t num_common_regs = num_registers - num_composites;
1014 RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
1015
1016 // First we need to validate that all registers that we already have match
1017 // the non composite regs. If so, then we can add the registers, else we
1018 // need to bail
1019 bool match = true;
1020 if (num_dynamic_regs == num_common_regs) {
1021 for (i = 0; match && i < num_dynamic_regs; ++i) {
1022 // Make sure all register names match
1023 if (m_regs[i].name && g_register_infos[i].name) {
1024 if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
1025 match = false;
1026 break;
1027 }
1028 }
1029
1030 // Make sure all register byte sizes match
1031 if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
1032 match = false;
1033 break;
1034 }
1035 }
1036 } else {
1037 // Wrong number of registers.
1038 match = false;
1039 }
1040 // If "match" is true, then we can add extra registers.
1041 if (match) {
1042 for (i = 0; i < num_composites; ++i) {
1043 ConstString name;
1044 ConstString alt_name;
1045 const uint32_t first_primordial_reg =
1046 g_comp_register_infos[i].value_regs[0];
1047 const char *reg_name = g_register_infos[first_primordial_reg].name;
1048 if (reg_name && reg_name[0]) {
1049 for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
1050 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1051 // Find a matching primordial register info entry.
1052 if (reg_info && reg_info->name &&
1053 ::strcasecmp(reg_info->name, reg_name) == 0) {
1054 // The name matches the existing primordial entry. Find and
1055 // assign the offset, and then add this composite register entry.
1056 g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1057 name.SetCString(g_comp_register_infos[i].name);
1058 AddRegister(g_comp_register_infos[i], name, alt_name,
1059 vfp_reg_set);
1060 }
1061 }
1062 }
1063 }
1064 }
1065 }
1066 }
1067