1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Arrays.h"
23 #include "lld/Common/Filesystem.h"
24 #include "lld/Common/Memory.h"
25 #include "lld/Common/Strings.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/RandomNumberGenerator.h"
30 #include "llvm/Support/SHA1.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34
35 #define DEBUG_TYPE "lld"
36
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50
Writer()51 Writer() : buffer(errorHandler().outputBuffer) {}
52
53 void run();
54
55 private:
56 void copyLocalSymbols();
57 void addSectionSymbols();
58 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59 void sortSections();
60 void resolveShfLinkOrder();
61 void finalizeAddressDependentContent();
62 void optimizeBasicBlockJumps();
63 void sortInputSections();
64 void finalizeSections();
65 void checkExecuteOnly();
66 void setReservedSymbolSections();
67
68 std::vector<PhdrEntry *> createPhdrs(Partition &part);
69 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70 unsigned pFlags);
71 void assignFileOffsets();
72 void assignFileOffsetsBinary();
73 void setPhdrs(Partition &part);
74 void checkSections();
75 void fixSectionAlignments();
76 void openFile();
77 void writeTrapInstr();
78 void writeHeader();
79 void writeSections();
80 void writeSectionsBinary();
81 void writeBuildId();
82
83 std::unique_ptr<FileOutputBuffer> &buffer;
84
85 void addRelIpltSymbols();
86 void addStartEndSymbols();
87 void addStartStopSymbols(OutputSection *sec);
88
89 uint64_t fileSize;
90 uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93
isSectionPrefix(StringRef prefix,StringRef name)94 static bool isSectionPrefix(StringRef prefix, StringRef name) {
95 return name.startswith(prefix) || name == prefix.drop_back();
96 }
97
getOutputSectionName(const InputSectionBase * s)98 StringRef elf::getOutputSectionName(const InputSectionBase *s) {
99 if (config->relocatable)
100 return s->name;
101
102 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
103 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
104 // technically required, but not doing it is odd). This code guarantees that.
105 if (auto *isec = dyn_cast<InputSection>(s)) {
106 if (InputSectionBase *rel = isec->getRelocatedSection()) {
107 OutputSection *out = rel->getOutputSection();
108 if (s->type == SHT_RELA)
109 return saver.save(".rela" + out->name);
110 return saver.save(".rel" + out->name);
111 }
112 }
113
114 // A BssSection created for a common symbol is identified as "COMMON" in
115 // linker scripts. It should go to .bss section.
116 if (s->name == "COMMON")
117 return ".bss";
118
119 if (script->hasSectionsCommand)
120 return s->name;
121
122 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
123 // by grouping sections with certain prefixes.
124
125 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
126 // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
127 // We provide an option -z keep-text-section-prefix to group such sections
128 // into separate output sections. This is more flexible. See also
129 // sortISDBySectionOrder().
130 // ".text.unknown" means the hotness of the section is unknown. When
131 // SampleFDO is used, if a function doesn't have sample, it could be very
132 // cold or it could be a new function never being sampled. Those functions
133 // will be kept in the ".text.unknown" section.
134 // ".text.split." holds symbols which are split out from functions in other
135 // input sections. For example, with -fsplit-machine-functions, placing the
136 // cold parts in .text.split instead of .text.unlikely mitigates against poor
137 // profile inaccuracy. Techniques such as hugepage remapping can make
138 // conservative decisions at the section granularity.
139 if (config->zKeepTextSectionPrefix)
140 for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
141 ".text.startup.", ".text.exit.", ".text.split."})
142 if (isSectionPrefix(v, s->name))
143 return v.drop_back();
144
145 for (StringRef v :
146 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
147 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
148 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
149 if (isSectionPrefix(v, s->name))
150 return v.drop_back();
151
152 return s->name;
153 }
154
needsInterpSection()155 static bool needsInterpSection() {
156 return !config->relocatable && !config->shared &&
157 !config->dynamicLinker.empty() && script->needsInterpSection();
158 }
159
writeResult()160 template <class ELFT> void elf::writeResult() {
161 Writer<ELFT>().run();
162 }
163
removeEmptyPTLoad(std::vector<PhdrEntry * > & phdrs)164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
165 auto it = std::stable_partition(
166 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
167 if (p->p_type != PT_LOAD)
168 return true;
169 if (!p->firstSec)
170 return false;
171 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
172 return size != 0;
173 });
174
175 // Clear OutputSection::ptLoad for sections contained in removed
176 // segments.
177 DenseSet<PhdrEntry *> removed(it, phdrs.end());
178 for (OutputSection *sec : outputSections)
179 if (removed.count(sec->ptLoad))
180 sec->ptLoad = nullptr;
181 phdrs.erase(it, phdrs.end());
182 }
183
copySectionsIntoPartitions()184 void elf::copySectionsIntoPartitions() {
185 std::vector<InputSectionBase *> newSections;
186 for (unsigned part = 2; part != partitions.size() + 1; ++part) {
187 for (InputSectionBase *s : inputSections) {
188 if (!(s->flags & SHF_ALLOC) || !s->isLive())
189 continue;
190 InputSectionBase *copy;
191 if (s->type == SHT_NOTE)
192 copy = make<InputSection>(cast<InputSection>(*s));
193 else if (auto *es = dyn_cast<EhInputSection>(s))
194 copy = make<EhInputSection>(*es);
195 else
196 continue;
197 copy->partition = part;
198 newSections.push_back(copy);
199 }
200 }
201
202 inputSections.insert(inputSections.end(), newSections.begin(),
203 newSections.end());
204 }
205
combineEhSections()206 void elf::combineEhSections() {
207 llvm::TimeTraceScope timeScope("Combine EH sections");
208 for (InputSectionBase *&s : inputSections) {
209 // Ignore dead sections and the partition end marker (.part.end),
210 // whose partition number is out of bounds.
211 if (!s->isLive() || s->partition == 255)
212 continue;
213
214 Partition &part = s->getPartition();
215 if (auto *es = dyn_cast<EhInputSection>(s)) {
216 part.ehFrame->addSection(es);
217 s = nullptr;
218 } else if (s->kind() == SectionBase::Regular && part.armExidx &&
219 part.armExidx->addSection(cast<InputSection>(s))) {
220 s = nullptr;
221 }
222 }
223
224 std::vector<InputSectionBase *> &v = inputSections;
225 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
226 }
227
addOptionalRegular(StringRef name,SectionBase * sec,uint64_t val,uint8_t stOther=STV_HIDDEN,uint8_t binding=STB_GLOBAL)228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
229 uint64_t val, uint8_t stOther = STV_HIDDEN,
230 uint8_t binding = STB_GLOBAL) {
231 Symbol *s = symtab->find(name);
232 if (!s || s->isDefined())
233 return nullptr;
234
235 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
236 /*size=*/0, sec});
237 return cast<Defined>(s);
238 }
239
addAbsolute(StringRef name)240 static Defined *addAbsolute(StringRef name) {
241 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
242 STT_NOTYPE, 0, 0, nullptr});
243 return cast<Defined>(sym);
244 }
245
246 // The linker is expected to define some symbols depending on
247 // the linking result. This function defines such symbols.
addReservedSymbols()248 void elf::addReservedSymbols() {
249 if (config->emachine == EM_MIPS) {
250 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
251 // so that it points to an absolute address which by default is relative
252 // to GOT. Default offset is 0x7ff0.
253 // See "Global Data Symbols" in Chapter 6 in the following document:
254 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
255 ElfSym::mipsGp = addAbsolute("_gp");
256
257 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
258 // start of function and 'gp' pointer into GOT.
259 if (symtab->find("_gp_disp"))
260 ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
261
262 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
263 // pointer. This symbol is used in the code generated by .cpload pseudo-op
264 // in case of using -mno-shared option.
265 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
266 if (symtab->find("__gnu_local_gp"))
267 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
268 } else if (config->emachine == EM_PPC) {
269 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
270 // support Small Data Area, define it arbitrarily as 0.
271 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
272 } else if (config->emachine == EM_PPC64) {
273 addPPC64SaveRestore();
274 }
275
276 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
277 // combines the typical ELF GOT with the small data sections. It commonly
278 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
279 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
280 // represent the TOC base which is offset by 0x8000 bytes from the start of
281 // the .got section.
282 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
283 // correctness of some relocations depends on its value.
284 StringRef gotSymName =
285 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
286
287 if (Symbol *s = symtab->find(gotSymName)) {
288 if (s->isDefined()) {
289 error(toString(s->file) + " cannot redefine linker defined symbol '" +
290 gotSymName + "'");
291 return;
292 }
293
294 uint64_t gotOff = 0;
295 if (config->emachine == EM_PPC64)
296 gotOff = 0x8000;
297
298 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
299 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
300 ElfSym::globalOffsetTable = cast<Defined>(s);
301 }
302
303 // __ehdr_start is the location of ELF file headers. Note that we define
304 // this symbol unconditionally even when using a linker script, which
305 // differs from the behavior implemented by GNU linker which only define
306 // this symbol if ELF headers are in the memory mapped segment.
307 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
308
309 // __executable_start is not documented, but the expectation of at
310 // least the Android libc is that it points to the ELF header.
311 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
312
313 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
314 // each DSO. The address of the symbol doesn't matter as long as they are
315 // different in different DSOs, so we chose the start address of the DSO.
316 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
317
318 // If linker script do layout we do not need to create any standard symbols.
319 if (script->hasSectionsCommand)
320 return;
321
322 auto add = [](StringRef s, int64_t pos) {
323 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
324 };
325
326 ElfSym::bss = add("__bss_start", 0);
327 ElfSym::end1 = add("end", -1);
328 ElfSym::end2 = add("_end", -1);
329 ElfSym::etext1 = add("etext", -1);
330 ElfSym::etext2 = add("_etext", -1);
331 ElfSym::edata1 = add("edata", -1);
332 ElfSym::edata2 = add("_edata", -1);
333 }
334
findSection(StringRef name,unsigned partition=1)335 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
336 for (BaseCommand *base : script->sectionCommands)
337 if (auto *sec = dyn_cast<OutputSection>(base))
338 if (sec->name == name && sec->partition == partition)
339 return sec;
340 return nullptr;
341 }
342
createSyntheticSections()343 template <class ELFT> void elf::createSyntheticSections() {
344 // Initialize all pointers with NULL. This is needed because
345 // you can call lld::elf::main more than once as a library.
346 memset(&Out::first, 0, sizeof(Out));
347
348 // Add the .interp section first because it is not a SyntheticSection.
349 // The removeUnusedSyntheticSections() function relies on the
350 // SyntheticSections coming last.
351 if (needsInterpSection()) {
352 for (size_t i = 1; i <= partitions.size(); ++i) {
353 InputSection *sec = createInterpSection();
354 sec->partition = i;
355 inputSections.push_back(sec);
356 }
357 }
358
359 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
360
361 in.shStrTab = make<StringTableSection>(".shstrtab", false);
362
363 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
364 Out::programHeaders->alignment = config->wordsize;
365
366 if (config->strip != StripPolicy::All) {
367 in.strTab = make<StringTableSection>(".strtab", false);
368 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
369 in.symTabShndx = make<SymtabShndxSection>();
370 }
371
372 in.bss = make<BssSection>(".bss", 0, 1);
373 add(in.bss);
374
375 // If there is a SECTIONS command and a .data.rel.ro section name use name
376 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
377 // This makes sure our relro is contiguous.
378 bool hasDataRelRo =
379 script->hasSectionsCommand && findSection(".data.rel.ro", 0);
380 in.bssRelRo =
381 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
382 add(in.bssRelRo);
383
384 // Add MIPS-specific sections.
385 if (config->emachine == EM_MIPS) {
386 if (!config->shared && config->hasDynSymTab) {
387 in.mipsRldMap = make<MipsRldMapSection>();
388 add(in.mipsRldMap);
389 }
390 if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
391 add(sec);
392 if (auto *sec = MipsOptionsSection<ELFT>::create())
393 add(sec);
394 if (auto *sec = MipsReginfoSection<ELFT>::create())
395 add(sec);
396 }
397
398 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
399
400 for (Partition &part : partitions) {
401 auto add = [&](SyntheticSection *sec) {
402 sec->partition = part.getNumber();
403 inputSections.push_back(sec);
404 };
405
406 if (!part.name.empty()) {
407 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
408 part.elfHeader->name = part.name;
409 add(part.elfHeader);
410
411 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
412 add(part.programHeaders);
413 }
414
415 if (config->buildId != BuildIdKind::None) {
416 part.buildId = make<BuildIdSection>();
417 add(part.buildId);
418 }
419
420 part.dynStrTab = make<StringTableSection>(".dynstr", true);
421 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
422 part.dynamic = make<DynamicSection<ELFT>>();
423 if (config->androidPackDynRelocs)
424 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
425 else
426 part.relaDyn =
427 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
428
429 if (config->hasDynSymTab) {
430 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
431 add(part.dynSymTab);
432
433 part.verSym = make<VersionTableSection>();
434 add(part.verSym);
435
436 if (!namedVersionDefs().empty()) {
437 part.verDef = make<VersionDefinitionSection>();
438 add(part.verDef);
439 }
440
441 part.verNeed = make<VersionNeedSection<ELFT>>();
442 add(part.verNeed);
443
444 if (config->gnuHash) {
445 part.gnuHashTab = make<GnuHashTableSection>();
446 add(part.gnuHashTab);
447 }
448
449 if (config->sysvHash) {
450 part.hashTab = make<HashTableSection>();
451 add(part.hashTab);
452 }
453
454 add(part.dynamic);
455 add(part.dynStrTab);
456 add(part.relaDyn);
457 }
458
459 if (config->relrPackDynRelocs) {
460 part.relrDyn = make<RelrSection<ELFT>>();
461 add(part.relrDyn);
462 }
463
464 if (!config->relocatable) {
465 if (config->ehFrameHdr) {
466 part.ehFrameHdr = make<EhFrameHeader>();
467 add(part.ehFrameHdr);
468 }
469 part.ehFrame = make<EhFrameSection>();
470 add(part.ehFrame);
471 }
472
473 if (config->emachine == EM_ARM && !config->relocatable) {
474 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
475 // InputSections.
476 part.armExidx = make<ARMExidxSyntheticSection>();
477 add(part.armExidx);
478 }
479 }
480
481 if (partitions.size() != 1) {
482 // Create the partition end marker. This needs to be in partition number 255
483 // so that it is sorted after all other partitions. It also has other
484 // special handling (see createPhdrs() and combineEhSections()).
485 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
486 in.partEnd->partition = 255;
487 add(in.partEnd);
488
489 in.partIndex = make<PartitionIndexSection>();
490 addOptionalRegular("__part_index_begin", in.partIndex, 0);
491 addOptionalRegular("__part_index_end", in.partIndex,
492 in.partIndex->getSize());
493 add(in.partIndex);
494 }
495
496 // Add .got. MIPS' .got is so different from the other archs,
497 // it has its own class.
498 if (config->emachine == EM_MIPS) {
499 in.mipsGot = make<MipsGotSection>();
500 add(in.mipsGot);
501 } else {
502 in.got = make<GotSection>();
503 add(in.got);
504 }
505
506 if (config->emachine == EM_PPC) {
507 in.ppc32Got2 = make<PPC32Got2Section>();
508 add(in.ppc32Got2);
509 }
510
511 if (config->emachine == EM_PPC64) {
512 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
513 add(in.ppc64LongBranchTarget);
514 }
515
516 in.gotPlt = make<GotPltSection>();
517 add(in.gotPlt);
518 in.igotPlt = make<IgotPltSection>();
519 add(in.igotPlt);
520
521 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
522 // it as a relocation and ensure the referenced section is created.
523 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
524 if (target->gotBaseSymInGotPlt)
525 in.gotPlt->hasGotPltOffRel = true;
526 else
527 in.got->hasGotOffRel = true;
528 }
529
530 if (config->gdbIndex)
531 add(GdbIndexSection::create<ELFT>());
532
533 // We always need to add rel[a].plt to output if it has entries.
534 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
535 in.relaPlt = make<RelocationSection<ELFT>>(
536 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
537 add(in.relaPlt);
538
539 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
540 // relocations are processed last by the dynamic loader. We cannot place the
541 // iplt section in .rel.dyn when Android relocation packing is enabled because
542 // that would cause a section type mismatch. However, because the Android
543 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
544 // behaviour by placing the iplt section in .rel.plt.
545 in.relaIplt = make<RelocationSection<ELFT>>(
546 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
547 /*sort=*/false);
548 add(in.relaIplt);
549
550 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
551 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
552 in.ibtPlt = make<IBTPltSection>();
553 add(in.ibtPlt);
554 }
555
556 in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
557 : make<PltSection>();
558 add(in.plt);
559 in.iplt = make<IpltSection>();
560 add(in.iplt);
561
562 if (config->andFeatures)
563 add(make<GnuPropertySection>());
564
565 // .note.GNU-stack is always added when we are creating a re-linkable
566 // object file. Other linkers are using the presence of this marker
567 // section to control the executable-ness of the stack area, but that
568 // is irrelevant these days. Stack area should always be non-executable
569 // by default. So we emit this section unconditionally.
570 if (config->relocatable)
571 add(make<GnuStackSection>());
572
573 if (in.symTab)
574 add(in.symTab);
575 if (in.symTabShndx)
576 add(in.symTabShndx);
577 add(in.shStrTab);
578 if (in.strTab)
579 add(in.strTab);
580 }
581
582 // The main function of the writer.
run()583 template <class ELFT> void Writer<ELFT>::run() {
584 copyLocalSymbols();
585
586 if (config->copyRelocs)
587 addSectionSymbols();
588
589 // Now that we have a complete set of output sections. This function
590 // completes section contents. For example, we need to add strings
591 // to the string table, and add entries to .got and .plt.
592 // finalizeSections does that.
593 finalizeSections();
594 checkExecuteOnly();
595 if (errorCount())
596 return;
597
598 // If -compressed-debug-sections is specified, we need to compress
599 // .debug_* sections. Do it right now because it changes the size of
600 // output sections.
601 for (OutputSection *sec : outputSections)
602 sec->maybeCompress<ELFT>();
603
604 if (script->hasSectionsCommand)
605 script->allocateHeaders(mainPart->phdrs);
606
607 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
608 // 0 sized region. This has to be done late since only after assignAddresses
609 // we know the size of the sections.
610 for (Partition &part : partitions)
611 removeEmptyPTLoad(part.phdrs);
612
613 if (!config->oFormatBinary)
614 assignFileOffsets();
615 else
616 assignFileOffsetsBinary();
617
618 for (Partition &part : partitions)
619 setPhdrs(part);
620
621 if (config->relocatable)
622 for (OutputSection *sec : outputSections)
623 sec->addr = 0;
624
625 // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
626 // before checkSections() because the files may be useful in case
627 // checkSections() or openFile() fails, for example, due to an erroneous file
628 // size.
629 writeMapFile();
630 writeCrossReferenceTable();
631 writeArchiveStats();
632
633 if (config->checkSections)
634 checkSections();
635
636 // It does not make sense try to open the file if we have error already.
637 if (errorCount())
638 return;
639
640 {
641 llvm::TimeTraceScope timeScope("Write output file");
642 // Write the result down to a file.
643 openFile();
644 if (errorCount())
645 return;
646
647 if (!config->oFormatBinary) {
648 if (config->zSeparate != SeparateSegmentKind::None)
649 writeTrapInstr();
650 writeHeader();
651 writeSections();
652 } else {
653 writeSectionsBinary();
654 }
655
656 // Backfill .note.gnu.build-id section content. This is done at last
657 // because the content is usually a hash value of the entire output file.
658 writeBuildId();
659 if (errorCount())
660 return;
661
662 if (auto e = buffer->commit())
663 error("failed to write to the output file: " + toString(std::move(e)));
664 }
665 }
666
667 template <class ELFT, class RelTy>
markUsedLocalSymbolsImpl(ObjFile<ELFT> * file,llvm::ArrayRef<RelTy> rels)668 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
669 llvm::ArrayRef<RelTy> rels) {
670 for (const RelTy &rel : rels) {
671 Symbol &sym = file->getRelocTargetSym(rel);
672 if (sym.isLocal())
673 sym.used = true;
674 }
675 }
676
677 // The function ensures that the "used" field of local symbols reflects the fact
678 // that the symbol is used in a relocation from a live section.
markUsedLocalSymbols()679 template <class ELFT> static void markUsedLocalSymbols() {
680 // With --gc-sections, the field is already filled.
681 // See MarkLive<ELFT>::resolveReloc().
682 if (config->gcSections)
683 return;
684 // Without --gc-sections, the field is initialized with "true".
685 // Drop the flag first and then rise for symbols referenced in relocations.
686 for (InputFile *file : objectFiles) {
687 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
688 for (Symbol *b : f->getLocalSymbols())
689 b->used = false;
690 for (InputSectionBase *s : f->getSections()) {
691 InputSection *isec = dyn_cast_or_null<InputSection>(s);
692 if (!isec)
693 continue;
694 if (isec->type == SHT_REL)
695 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
696 else if (isec->type == SHT_RELA)
697 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
698 }
699 }
700 }
701
shouldKeepInSymtab(const Defined & sym)702 static bool shouldKeepInSymtab(const Defined &sym) {
703 if (sym.isSection())
704 return false;
705
706 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
707 // from live sections.
708 if (config->copyRelocs && sym.used)
709 return true;
710
711 // Exclude local symbols pointing to .ARM.exidx sections.
712 // They are probably mapping symbols "$d", which are optional for these
713 // sections. After merging the .ARM.exidx sections, some of these symbols
714 // may become dangling. The easiest way to avoid the issue is not to add
715 // them to the symbol table from the beginning.
716 if (config->emachine == EM_ARM && sym.section &&
717 sym.section->type == SHT_ARM_EXIDX)
718 return false;
719
720 if (config->discard == DiscardPolicy::None)
721 return true;
722 if (config->discard == DiscardPolicy::All)
723 return false;
724
725 // In ELF assembly .L symbols are normally discarded by the assembler.
726 // If the assembler fails to do so, the linker discards them if
727 // * --discard-locals is used.
728 // * The symbol is in a SHF_MERGE section, which is normally the reason for
729 // the assembler keeping the .L symbol.
730 StringRef name = sym.getName();
731 bool isLocal = name.startswith(".L") || name.empty();
732 if (!isLocal)
733 return true;
734
735 if (config->discard == DiscardPolicy::Locals)
736 return false;
737
738 SectionBase *sec = sym.section;
739 return !sec || !(sec->flags & SHF_MERGE);
740 }
741
includeInSymtab(const Symbol & b)742 static bool includeInSymtab(const Symbol &b) {
743 if (!b.isLocal() && !b.isUsedInRegularObj)
744 return false;
745
746 if (auto *d = dyn_cast<Defined>(&b)) {
747 // Always include absolute symbols.
748 SectionBase *sec = d->section;
749 if (!sec)
750 return true;
751 sec = sec->repl;
752
753 // Exclude symbols pointing to garbage-collected sections.
754 if (isa<InputSectionBase>(sec) && !sec->isLive())
755 return false;
756
757 if (auto *s = dyn_cast<MergeInputSection>(sec))
758 if (!s->getSectionPiece(d->value)->live)
759 return false;
760 return true;
761 }
762 return b.used;
763 }
764
765 // Local symbols are not in the linker's symbol table. This function scans
766 // each object file's symbol table to copy local symbols to the output.
copyLocalSymbols()767 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
768 if (!in.symTab)
769 return;
770 llvm::TimeTraceScope timeScope("Add local symbols");
771 if (config->copyRelocs && config->discard != DiscardPolicy::None)
772 markUsedLocalSymbols<ELFT>();
773 for (InputFile *file : objectFiles) {
774 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
775 for (Symbol *b : f->getLocalSymbols()) {
776 assert(b->isLocal() && "should have been caught in initializeSymbols()");
777 auto *dr = dyn_cast<Defined>(b);
778
779 // No reason to keep local undefined symbol in symtab.
780 if (!dr)
781 continue;
782 if (!includeInSymtab(*b))
783 continue;
784 if (!shouldKeepInSymtab(*dr))
785 continue;
786 in.symTab->addSymbol(b);
787 }
788 }
789 }
790
791 // Create a section symbol for each output section so that we can represent
792 // relocations that point to the section. If we know that no relocation is
793 // referring to a section (that happens if the section is a synthetic one), we
794 // don't create a section symbol for that section.
addSectionSymbols()795 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
796 for (BaseCommand *base : script->sectionCommands) {
797 auto *sec = dyn_cast<OutputSection>(base);
798 if (!sec)
799 continue;
800 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
801 if (auto *isd = dyn_cast<InputSectionDescription>(base))
802 return !isd->sections.empty();
803 return false;
804 });
805 if (i == sec->sectionCommands.end())
806 continue;
807 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
808
809 // Relocations are not using REL[A] section symbols.
810 if (isec->type == SHT_REL || isec->type == SHT_RELA)
811 continue;
812
813 // Unlike other synthetic sections, mergeable output sections contain data
814 // copied from input sections, and there may be a relocation pointing to its
815 // contents if -r or -emit-reloc are given.
816 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
817 continue;
818
819 // Set the symbol to be relative to the output section so that its st_value
820 // equals the output section address. Note, there may be a gap between the
821 // start of the output section and isec.
822 auto *sym =
823 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
824 /*value=*/0, /*size=*/0, isec->getOutputSection());
825 in.symTab->addSymbol(sym);
826 }
827 }
828
829 // Today's loaders have a feature to make segments read-only after
830 // processing dynamic relocations to enhance security. PT_GNU_RELRO
831 // is defined for that.
832 //
833 // This function returns true if a section needs to be put into a
834 // PT_GNU_RELRO segment.
isRelroSection(const OutputSection * sec)835 static bool isRelroSection(const OutputSection *sec) {
836 if (!config->zRelro)
837 return false;
838
839 uint64_t flags = sec->flags;
840
841 // Non-allocatable or non-writable sections don't need RELRO because
842 // they are not writable or not even mapped to memory in the first place.
843 // RELRO is for sections that are essentially read-only but need to
844 // be writable only at process startup to allow dynamic linker to
845 // apply relocations.
846 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
847 return false;
848
849 // Once initialized, TLS data segments are used as data templates
850 // for a thread-local storage. For each new thread, runtime
851 // allocates memory for a TLS and copy templates there. No thread
852 // are supposed to use templates directly. Thus, it can be in RELRO.
853 if (flags & SHF_TLS)
854 return true;
855
856 // .init_array, .preinit_array and .fini_array contain pointers to
857 // functions that are executed on process startup or exit. These
858 // pointers are set by the static linker, and they are not expected
859 // to change at runtime. But if you are an attacker, you could do
860 // interesting things by manipulating pointers in .fini_array, for
861 // example. So they are put into RELRO.
862 uint32_t type = sec->type;
863 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
864 type == SHT_PREINIT_ARRAY)
865 return true;
866
867 // .got contains pointers to external symbols. They are resolved by
868 // the dynamic linker when a module is loaded into memory, and after
869 // that they are not expected to change. So, it can be in RELRO.
870 if (in.got && sec == in.got->getParent())
871 return true;
872
873 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
874 // through r2 register, which is reserved for that purpose. Since r2 is used
875 // for accessing .got as well, .got and .toc need to be close enough in the
876 // virtual address space. Usually, .toc comes just after .got. Since we place
877 // .got into RELRO, .toc needs to be placed into RELRO too.
878 if (sec->name.equals(".toc"))
879 return true;
880
881 // .got.plt contains pointers to external function symbols. They are
882 // by default resolved lazily, so we usually cannot put it into RELRO.
883 // However, if "-z now" is given, the lazy symbol resolution is
884 // disabled, which enables us to put it into RELRO.
885 if (sec == in.gotPlt->getParent())
886 return config->zNow;
887
888 // .dynamic section contains data for the dynamic linker, and
889 // there's no need to write to it at runtime, so it's better to put
890 // it into RELRO.
891 if (sec->name == ".dynamic")
892 return true;
893
894 // Sections with some special names are put into RELRO. This is a
895 // bit unfortunate because section names shouldn't be significant in
896 // ELF in spirit. But in reality many linker features depend on
897 // magic section names.
898 StringRef s = sec->name;
899 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
900 s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
901 s == ".fini_array" || s == ".init_array" ||
902 s == ".openbsd.randomdata" || s == ".preinit_array";
903 }
904
905 // We compute a rank for each section. The rank indicates where the
906 // section should be placed in the file. Instead of using simple
907 // numbers (0,1,2...), we use a series of flags. One for each decision
908 // point when placing the section.
909 // Using flags has two key properties:
910 // * It is easy to check if a give branch was taken.
911 // * It is easy two see how similar two ranks are (see getRankProximity).
912 enum RankFlags {
913 RF_NOT_ADDR_SET = 1 << 27,
914 RF_NOT_ALLOC = 1 << 26,
915 RF_PARTITION = 1 << 18, // Partition number (8 bits)
916 RF_NOT_PART_EHDR = 1 << 17,
917 RF_NOT_PART_PHDR = 1 << 16,
918 RF_NOT_INTERP = 1 << 15,
919 RF_NOT_NOTE = 1 << 14,
920 RF_WRITE = 1 << 13,
921 RF_EXEC_WRITE = 1 << 12,
922 RF_EXEC = 1 << 11,
923 RF_RODATA = 1 << 10,
924 RF_NOT_RELRO = 1 << 9,
925 RF_NOT_TLS = 1 << 8,
926 RF_BSS = 1 << 7,
927 RF_PPC_NOT_TOCBSS = 1 << 6,
928 RF_PPC_TOCL = 1 << 5,
929 RF_PPC_TOC = 1 << 4,
930 RF_PPC_GOT = 1 << 3,
931 RF_PPC_BRANCH_LT = 1 << 2,
932 RF_MIPS_GPREL = 1 << 1,
933 RF_MIPS_NOT_GOT = 1 << 0
934 };
935
getSectionRank(const OutputSection * sec)936 static unsigned getSectionRank(const OutputSection *sec) {
937 unsigned rank = sec->partition * RF_PARTITION;
938
939 // We want to put section specified by -T option first, so we
940 // can start assigning VA starting from them later.
941 if (config->sectionStartMap.count(sec->name))
942 return rank;
943 rank |= RF_NOT_ADDR_SET;
944
945 // Allocatable sections go first to reduce the total PT_LOAD size and
946 // so debug info doesn't change addresses in actual code.
947 if (!(sec->flags & SHF_ALLOC))
948 return rank | RF_NOT_ALLOC;
949
950 if (sec->type == SHT_LLVM_PART_EHDR)
951 return rank;
952 rank |= RF_NOT_PART_EHDR;
953
954 if (sec->type == SHT_LLVM_PART_PHDR)
955 return rank;
956 rank |= RF_NOT_PART_PHDR;
957
958 // Put .interp first because some loaders want to see that section
959 // on the first page of the executable file when loaded into memory.
960 if (sec->name == ".interp")
961 return rank;
962 rank |= RF_NOT_INTERP;
963
964 // Put .note sections (which make up one PT_NOTE) at the beginning so that
965 // they are likely to be included in a core file even if core file size is
966 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
967 // included in a core to match core files with executables.
968 if (sec->type == SHT_NOTE)
969 return rank;
970 rank |= RF_NOT_NOTE;
971
972 // Sort sections based on their access permission in the following
973 // order: R, RX, RWX, RW. This order is based on the following
974 // considerations:
975 // * Read-only sections come first such that they go in the
976 // PT_LOAD covering the program headers at the start of the file.
977 // * Read-only, executable sections come next.
978 // * Writable, executable sections follow such that .plt on
979 // architectures where it needs to be writable will be placed
980 // between .text and .data.
981 // * Writable sections come last, such that .bss lands at the very
982 // end of the last PT_LOAD.
983 bool isExec = sec->flags & SHF_EXECINSTR;
984 bool isWrite = sec->flags & SHF_WRITE;
985
986 if (isExec) {
987 if (isWrite)
988 rank |= RF_EXEC_WRITE;
989 else
990 rank |= RF_EXEC;
991 } else if (isWrite) {
992 rank |= RF_WRITE;
993 } else if (sec->type == SHT_PROGBITS) {
994 // Make non-executable and non-writable PROGBITS sections (e.g .rodata
995 // .eh_frame) closer to .text. They likely contain PC or GOT relative
996 // relocations and there could be relocation overflow if other huge sections
997 // (.dynstr .dynsym) were placed in between.
998 rank |= RF_RODATA;
999 }
1000
1001 // Place RelRo sections first. After considering SHT_NOBITS below, the
1002 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
1003 // where | marks where page alignment happens. An alternative ordering is
1004 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
1005 // waste more bytes due to 2 alignment places.
1006 if (!isRelroSection(sec))
1007 rank |= RF_NOT_RELRO;
1008
1009 // If we got here we know that both A and B are in the same PT_LOAD.
1010
1011 // The TLS initialization block needs to be a single contiguous block in a R/W
1012 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
1013 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
1014 // after PROGBITS.
1015 if (!(sec->flags & SHF_TLS))
1016 rank |= RF_NOT_TLS;
1017
1018 // Within TLS sections, or within other RelRo sections, or within non-RelRo
1019 // sections, place non-NOBITS sections first.
1020 if (sec->type == SHT_NOBITS)
1021 rank |= RF_BSS;
1022
1023 // Some architectures have additional ordering restrictions for sections
1024 // within the same PT_LOAD.
1025 if (config->emachine == EM_PPC64) {
1026 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1027 // that we would like to make sure appear is a specific order to maximize
1028 // their coverage by a single signed 16-bit offset from the TOC base
1029 // pointer. Conversely, the special .tocbss section should be first among
1030 // all SHT_NOBITS sections. This will put it next to the loaded special
1031 // PPC64 sections (and, thus, within reach of the TOC base pointer).
1032 StringRef name = sec->name;
1033 if (name != ".tocbss")
1034 rank |= RF_PPC_NOT_TOCBSS;
1035
1036 if (name == ".toc1")
1037 rank |= RF_PPC_TOCL;
1038
1039 if (name == ".toc")
1040 rank |= RF_PPC_TOC;
1041
1042 if (name == ".got")
1043 rank |= RF_PPC_GOT;
1044
1045 if (name == ".branch_lt")
1046 rank |= RF_PPC_BRANCH_LT;
1047 }
1048
1049 if (config->emachine == EM_MIPS) {
1050 // All sections with SHF_MIPS_GPREL flag should be grouped together
1051 // because data in these sections is addressable with a gp relative address.
1052 if (sec->flags & SHF_MIPS_GPREL)
1053 rank |= RF_MIPS_GPREL;
1054
1055 if (sec->name != ".got")
1056 rank |= RF_MIPS_NOT_GOT;
1057 }
1058
1059 return rank;
1060 }
1061
compareSections(const BaseCommand * aCmd,const BaseCommand * bCmd)1062 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
1063 const OutputSection *a = cast<OutputSection>(aCmd);
1064 const OutputSection *b = cast<OutputSection>(bCmd);
1065
1066 if (a->sortRank != b->sortRank)
1067 return a->sortRank < b->sortRank;
1068
1069 if (!(a->sortRank & RF_NOT_ADDR_SET))
1070 return config->sectionStartMap.lookup(a->name) <
1071 config->sectionStartMap.lookup(b->name);
1072 return false;
1073 }
1074
add(OutputSection * sec)1075 void PhdrEntry::add(OutputSection *sec) {
1076 lastSec = sec;
1077 if (!firstSec)
1078 firstSec = sec;
1079 p_align = std::max(p_align, sec->alignment);
1080 if (p_type == PT_LOAD)
1081 sec->ptLoad = this;
1082 }
1083
1084 // The beginning and the ending of .rel[a].plt section are marked
1085 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1086 // executable. The runtime needs these symbols in order to resolve
1087 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1088 // need these symbols, since IRELATIVE relocs are resolved through GOT
1089 // and PLT. For details, see http://www.airs.com/blog/archives/403.
addRelIpltSymbols()1090 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1091 if (config->relocatable || config->isPic)
1092 return;
1093
1094 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1095 // because .rela.plt might be empty and thus removed from output.
1096 // We'll override Out::elfHeader with In.relaIplt later when we are
1097 // sure that .rela.plt exists in output.
1098 ElfSym::relaIpltStart = addOptionalRegular(
1099 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1100 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1101
1102 ElfSym::relaIpltEnd = addOptionalRegular(
1103 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1104 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1105 }
1106
1107 template <class ELFT>
forEachRelSec(llvm::function_ref<void (InputSectionBase &)> fn)1108 void Writer<ELFT>::forEachRelSec(
1109 llvm::function_ref<void(InputSectionBase &)> fn) {
1110 // Scan all relocations. Each relocation goes through a series
1111 // of tests to determine if it needs special treatment, such as
1112 // creating GOT, PLT, copy relocations, etc.
1113 // Note that relocations for non-alloc sections are directly
1114 // processed by InputSection::relocateNonAlloc.
1115 for (InputSectionBase *isec : inputSections)
1116 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1117 fn(*isec);
1118 for (Partition &part : partitions) {
1119 for (EhInputSection *es : part.ehFrame->sections)
1120 fn(*es);
1121 if (part.armExidx && part.armExidx->isLive())
1122 for (InputSection *ex : part.armExidx->exidxSections)
1123 fn(*ex);
1124 }
1125 }
1126
1127 // This function generates assignments for predefined symbols (e.g. _end or
1128 // _etext) and inserts them into the commands sequence to be processed at the
1129 // appropriate time. This ensures that the value is going to be correct by the
1130 // time any references to these symbols are processed and is equivalent to
1131 // defining these symbols explicitly in the linker script.
setReservedSymbolSections()1132 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1133 if (ElfSym::globalOffsetTable) {
1134 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1135 // to the start of the .got or .got.plt section.
1136 InputSection *gotSection = in.gotPlt;
1137 if (!target->gotBaseSymInGotPlt)
1138 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1139 : cast<InputSection>(in.got);
1140 ElfSym::globalOffsetTable->section = gotSection;
1141 }
1142
1143 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1144 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1145 ElfSym::relaIpltStart->section = in.relaIplt;
1146 ElfSym::relaIpltEnd->section = in.relaIplt;
1147 ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1148 }
1149
1150 PhdrEntry *last = nullptr;
1151 PhdrEntry *lastRO = nullptr;
1152
1153 for (Partition &part : partitions) {
1154 for (PhdrEntry *p : part.phdrs) {
1155 if (p->p_type != PT_LOAD)
1156 continue;
1157 last = p;
1158 if (!(p->p_flags & PF_W))
1159 lastRO = p;
1160 }
1161 }
1162
1163 if (lastRO) {
1164 // _etext is the first location after the last read-only loadable segment.
1165 if (ElfSym::etext1)
1166 ElfSym::etext1->section = lastRO->lastSec;
1167 if (ElfSym::etext2)
1168 ElfSym::etext2->section = lastRO->lastSec;
1169 }
1170
1171 if (last) {
1172 // _edata points to the end of the last mapped initialized section.
1173 OutputSection *edata = nullptr;
1174 for (OutputSection *os : outputSections) {
1175 if (os->type != SHT_NOBITS)
1176 edata = os;
1177 if (os == last->lastSec)
1178 break;
1179 }
1180
1181 if (ElfSym::edata1)
1182 ElfSym::edata1->section = edata;
1183 if (ElfSym::edata2)
1184 ElfSym::edata2->section = edata;
1185
1186 // _end is the first location after the uninitialized data region.
1187 if (ElfSym::end1)
1188 ElfSym::end1->section = last->lastSec;
1189 if (ElfSym::end2)
1190 ElfSym::end2->section = last->lastSec;
1191 }
1192
1193 if (ElfSym::bss)
1194 ElfSym::bss->section = findSection(".bss");
1195
1196 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1197 // be equal to the _gp symbol's value.
1198 if (ElfSym::mipsGp) {
1199 // Find GP-relative section with the lowest address
1200 // and use this address to calculate default _gp value.
1201 for (OutputSection *os : outputSections) {
1202 if (os->flags & SHF_MIPS_GPREL) {
1203 ElfSym::mipsGp->section = os;
1204 ElfSym::mipsGp->value = 0x7ff0;
1205 break;
1206 }
1207 }
1208 }
1209 }
1210
1211 // We want to find how similar two ranks are.
1212 // The more branches in getSectionRank that match, the more similar they are.
1213 // Since each branch corresponds to a bit flag, we can just use
1214 // countLeadingZeros.
getRankProximityAux(OutputSection * a,OutputSection * b)1215 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1216 return countLeadingZeros(a->sortRank ^ b->sortRank);
1217 }
1218
getRankProximity(OutputSection * a,BaseCommand * b)1219 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1220 auto *sec = dyn_cast<OutputSection>(b);
1221 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1222 }
1223
1224 // When placing orphan sections, we want to place them after symbol assignments
1225 // so that an orphan after
1226 // begin_foo = .;
1227 // foo : { *(foo) }
1228 // end_foo = .;
1229 // doesn't break the intended meaning of the begin/end symbols.
1230 // We don't want to go over sections since findOrphanPos is the
1231 // one in charge of deciding the order of the sections.
1232 // We don't want to go over changes to '.', since doing so in
1233 // rx_sec : { *(rx_sec) }
1234 // . = ALIGN(0x1000);
1235 // /* The RW PT_LOAD starts here*/
1236 // rw_sec : { *(rw_sec) }
1237 // would mean that the RW PT_LOAD would become unaligned.
shouldSkip(BaseCommand * cmd)1238 static bool shouldSkip(BaseCommand *cmd) {
1239 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1240 return assign->name != ".";
1241 return false;
1242 }
1243
1244 // We want to place orphan sections so that they share as much
1245 // characteristics with their neighbors as possible. For example, if
1246 // both are rw, or both are tls.
1247 static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand * >::iterator b,std::vector<BaseCommand * >::iterator e)1248 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1249 std::vector<BaseCommand *>::iterator e) {
1250 OutputSection *sec = cast<OutputSection>(*e);
1251
1252 // Find the first element that has as close a rank as possible.
1253 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1254 return getRankProximity(sec, a) < getRankProximity(sec, b);
1255 });
1256 if (i == e)
1257 return e;
1258
1259 // Consider all existing sections with the same proximity.
1260 int proximity = getRankProximity(sec, *i);
1261 for (; i != e; ++i) {
1262 auto *curSec = dyn_cast<OutputSection>(*i);
1263 if (!curSec || !curSec->hasInputSections)
1264 continue;
1265 if (getRankProximity(sec, curSec) != proximity ||
1266 sec->sortRank < curSec->sortRank)
1267 break;
1268 }
1269
1270 auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1271 auto *os = dyn_cast<OutputSection>(cmd);
1272 return os && os->hasInputSections;
1273 };
1274 auto j = std::find_if(llvm::make_reverse_iterator(i),
1275 llvm::make_reverse_iterator(b),
1276 isOutputSecWithInputSections);
1277 i = j.base();
1278
1279 // As a special case, if the orphan section is the last section, put
1280 // it at the very end, past any other commands.
1281 // This matches bfd's behavior and is convenient when the linker script fully
1282 // specifies the start of the file, but doesn't care about the end (the non
1283 // alloc sections for example).
1284 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1285 if (nextSec == e)
1286 return e;
1287
1288 while (i != e && shouldSkip(*i))
1289 ++i;
1290 return i;
1291 }
1292
1293 // Adds random priorities to sections not already in the map.
maybeShuffle(DenseMap<const InputSectionBase *,int> & order)1294 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1295 if (config->shuffleSections.empty())
1296 return;
1297
1298 std::vector<InputSectionBase *> matched, sections = inputSections;
1299 matched.reserve(sections.size());
1300 for (const auto &patAndSeed : config->shuffleSections) {
1301 matched.clear();
1302 for (InputSectionBase *sec : sections)
1303 if (patAndSeed.first.match(sec->name))
1304 matched.push_back(sec);
1305 const uint32_t seed = patAndSeed.second;
1306 if (seed == UINT32_MAX) {
1307 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1308 // section order is stable even if the number of sections changes. This is
1309 // useful to catch issues like static initialization order fiasco
1310 // reliably.
1311 std::reverse(matched.begin(), matched.end());
1312 } else {
1313 std::mt19937 g(seed ? seed : std::random_device()());
1314 llvm::shuffle(matched.begin(), matched.end(), g);
1315 }
1316 size_t i = 0;
1317 for (InputSectionBase *&sec : sections)
1318 if (patAndSeed.first.match(sec->name))
1319 sec = matched[i++];
1320 }
1321
1322 // Existing priorities are < 0, so use priorities >= 0 for the missing
1323 // sections.
1324 int prio = 0;
1325 for (InputSectionBase *sec : sections) {
1326 if (order.try_emplace(sec, prio).second)
1327 ++prio;
1328 }
1329 }
1330
1331 // Builds section order for handling --symbol-ordering-file.
buildSectionOrder()1332 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1333 DenseMap<const InputSectionBase *, int> sectionOrder;
1334 // Use the rarely used option -call-graph-ordering-file to sort sections.
1335 if (!config->callGraphProfile.empty())
1336 return computeCallGraphProfileOrder();
1337
1338 if (config->symbolOrderingFile.empty())
1339 return sectionOrder;
1340
1341 struct SymbolOrderEntry {
1342 int priority;
1343 bool present;
1344 };
1345
1346 // Build a map from symbols to their priorities. Symbols that didn't
1347 // appear in the symbol ordering file have the lowest priority 0.
1348 // All explicitly mentioned symbols have negative (higher) priorities.
1349 DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1350 int priority = -config->symbolOrderingFile.size();
1351 for (StringRef s : config->symbolOrderingFile)
1352 symbolOrder.insert({s, {priority++, false}});
1353
1354 // Build a map from sections to their priorities.
1355 auto addSym = [&](Symbol &sym) {
1356 auto it = symbolOrder.find(sym.getName());
1357 if (it == symbolOrder.end())
1358 return;
1359 SymbolOrderEntry &ent = it->second;
1360 ent.present = true;
1361
1362 maybeWarnUnorderableSymbol(&sym);
1363
1364 if (auto *d = dyn_cast<Defined>(&sym)) {
1365 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1366 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1367 priority = std::min(priority, ent.priority);
1368 }
1369 }
1370 };
1371
1372 // We want both global and local symbols. We get the global ones from the
1373 // symbol table and iterate the object files for the local ones.
1374 for (Symbol *sym : symtab->symbols())
1375 if (!sym->isLazy())
1376 addSym(*sym);
1377
1378 for (InputFile *file : objectFiles)
1379 for (Symbol *sym : file->getSymbols()) {
1380 if (!sym->isLocal())
1381 break;
1382 addSym(*sym);
1383 }
1384
1385 if (config->warnSymbolOrdering)
1386 for (auto orderEntry : symbolOrder)
1387 if (!orderEntry.second.present)
1388 warn("symbol ordering file: no such symbol: " + orderEntry.first);
1389
1390 return sectionOrder;
1391 }
1392
1393 // Sorts the sections in ISD according to the provided section order.
1394 static void
sortISDBySectionOrder(InputSectionDescription * isd,const DenseMap<const InputSectionBase *,int> & order)1395 sortISDBySectionOrder(InputSectionDescription *isd,
1396 const DenseMap<const InputSectionBase *, int> &order) {
1397 std::vector<InputSection *> unorderedSections;
1398 std::vector<std::pair<InputSection *, int>> orderedSections;
1399 uint64_t unorderedSize = 0;
1400
1401 for (InputSection *isec : isd->sections) {
1402 auto i = order.find(isec);
1403 if (i == order.end()) {
1404 unorderedSections.push_back(isec);
1405 unorderedSize += isec->getSize();
1406 continue;
1407 }
1408 orderedSections.push_back({isec, i->second});
1409 }
1410 llvm::sort(orderedSections, llvm::less_second());
1411
1412 // Find an insertion point for the ordered section list in the unordered
1413 // section list. On targets with limited-range branches, this is the mid-point
1414 // of the unordered section list. This decreases the likelihood that a range
1415 // extension thunk will be needed to enter or exit the ordered region. If the
1416 // ordered section list is a list of hot functions, we can generally expect
1417 // the ordered functions to be called more often than the unordered functions,
1418 // making it more likely that any particular call will be within range, and
1419 // therefore reducing the number of thunks required.
1420 //
1421 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1422 // If the layout is:
1423 //
1424 // 8MB hot
1425 // 32MB cold
1426 //
1427 // only the first 8-16MB of the cold code (depending on which hot function it
1428 // is actually calling) can call the hot code without a range extension thunk.
1429 // However, if we use this layout:
1430 //
1431 // 16MB cold
1432 // 8MB hot
1433 // 16MB cold
1434 //
1435 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1436 // of the second block of cold code can call the hot code without a thunk. So
1437 // we effectively double the amount of code that could potentially call into
1438 // the hot code without a thunk.
1439 size_t insPt = 0;
1440 if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1441 uint64_t unorderedPos = 0;
1442 for (; insPt != unorderedSections.size(); ++insPt) {
1443 unorderedPos += unorderedSections[insPt]->getSize();
1444 if (unorderedPos > unorderedSize / 2)
1445 break;
1446 }
1447 }
1448
1449 isd->sections.clear();
1450 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1451 isd->sections.push_back(isec);
1452 for (std::pair<InputSection *, int> p : orderedSections)
1453 isd->sections.push_back(p.first);
1454 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1455 isd->sections.push_back(isec);
1456 }
1457
sortSection(OutputSection * sec,const DenseMap<const InputSectionBase *,int> & order)1458 static void sortSection(OutputSection *sec,
1459 const DenseMap<const InputSectionBase *, int> &order) {
1460 StringRef name = sec->name;
1461
1462 // Never sort these.
1463 if (name == ".init" || name == ".fini")
1464 return;
1465
1466 // IRelative relocations that usually live in the .rel[a].dyn section should
1467 // be processed last by the dynamic loader. To achieve that we add synthetic
1468 // sections in the required order from the beginning so that the in.relaIplt
1469 // section is placed last in an output section. Here we just do not apply
1470 // sorting for an output section which holds the in.relaIplt section.
1471 if (in.relaIplt->getParent() == sec)
1472 return;
1473
1474 // Sort input sections by priority using the list provided by
1475 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1476 // digit radix sort. The sections may be sorted stably again by a more
1477 // significant key.
1478 if (!order.empty())
1479 for (BaseCommand *b : sec->sectionCommands)
1480 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1481 sortISDBySectionOrder(isd, order);
1482
1483 // Sort input sections by section name suffixes for
1484 // __attribute__((init_priority(N))).
1485 if (name == ".init_array" || name == ".fini_array") {
1486 if (!script->hasSectionsCommand)
1487 sec->sortInitFini();
1488 return;
1489 }
1490
1491 // Sort input sections by the special rule for .ctors and .dtors.
1492 if (name == ".ctors" || name == ".dtors") {
1493 if (!script->hasSectionsCommand)
1494 sec->sortCtorsDtors();
1495 return;
1496 }
1497
1498 // .toc is allocated just after .got and is accessed using GOT-relative
1499 // relocations. Object files compiled with small code model have an
1500 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1501 // To reduce the risk of relocation overflow, .toc contents are sorted so that
1502 // sections having smaller relocation offsets are at beginning of .toc
1503 if (config->emachine == EM_PPC64 && name == ".toc") {
1504 if (script->hasSectionsCommand)
1505 return;
1506 assert(sec->sectionCommands.size() == 1);
1507 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1508 llvm::stable_sort(isd->sections,
1509 [](const InputSection *a, const InputSection *b) -> bool {
1510 return a->file->ppc64SmallCodeModelTocRelocs &&
1511 !b->file->ppc64SmallCodeModelTocRelocs;
1512 });
1513 return;
1514 }
1515 }
1516
1517 // If no layout was provided by linker script, we want to apply default
1518 // sorting for special input sections. This also handles --symbol-ordering-file.
sortInputSections()1519 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1520 // Build the order once since it is expensive.
1521 DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1522 maybeShuffle(order);
1523 for (BaseCommand *base : script->sectionCommands)
1524 if (auto *sec = dyn_cast<OutputSection>(base))
1525 sortSection(sec, order);
1526 }
1527
sortSections()1528 template <class ELFT> void Writer<ELFT>::sortSections() {
1529 llvm::TimeTraceScope timeScope("Sort sections");
1530 script->adjustSectionsBeforeSorting();
1531
1532 // Don't sort if using -r. It is not necessary and we want to preserve the
1533 // relative order for SHF_LINK_ORDER sections.
1534 if (config->relocatable)
1535 return;
1536
1537 sortInputSections();
1538
1539 for (BaseCommand *base : script->sectionCommands) {
1540 auto *os = dyn_cast<OutputSection>(base);
1541 if (!os)
1542 continue;
1543 os->sortRank = getSectionRank(os);
1544
1545 // We want to assign rude approximation values to outSecOff fields
1546 // to know the relative order of the input sections. We use it for
1547 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1548 uint64_t i = 0;
1549 for (InputSection *sec : getInputSections(os))
1550 sec->outSecOff = i++;
1551 }
1552
1553 if (!script->hasSectionsCommand) {
1554 // We know that all the OutputSections are contiguous in this case.
1555 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1556 std::stable_sort(
1557 llvm::find_if(script->sectionCommands, isSection),
1558 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1559 compareSections);
1560
1561 // Process INSERT commands. From this point onwards the order of
1562 // script->sectionCommands is fixed.
1563 script->processInsertCommands();
1564 return;
1565 }
1566
1567 script->processInsertCommands();
1568
1569 // Orphan sections are sections present in the input files which are
1570 // not explicitly placed into the output file by the linker script.
1571 //
1572 // The sections in the linker script are already in the correct
1573 // order. We have to figuere out where to insert the orphan
1574 // sections.
1575 //
1576 // The order of the sections in the script is arbitrary and may not agree with
1577 // compareSections. This means that we cannot easily define a strict weak
1578 // ordering. To see why, consider a comparison of a section in the script and
1579 // one not in the script. We have a two simple options:
1580 // * Make them equivalent (a is not less than b, and b is not less than a).
1581 // The problem is then that equivalence has to be transitive and we can
1582 // have sections a, b and c with only b in a script and a less than c
1583 // which breaks this property.
1584 // * Use compareSectionsNonScript. Given that the script order doesn't have
1585 // to match, we can end up with sections a, b, c, d where b and c are in the
1586 // script and c is compareSectionsNonScript less than b. In which case d
1587 // can be equivalent to c, a to b and d < a. As a concrete example:
1588 // .a (rx) # not in script
1589 // .b (rx) # in script
1590 // .c (ro) # in script
1591 // .d (ro) # not in script
1592 //
1593 // The way we define an order then is:
1594 // * Sort only the orphan sections. They are in the end right now.
1595 // * Move each orphan section to its preferred position. We try
1596 // to put each section in the last position where it can share
1597 // a PT_LOAD.
1598 //
1599 // There is some ambiguity as to where exactly a new entry should be
1600 // inserted, because Commands contains not only output section
1601 // commands but also other types of commands such as symbol assignment
1602 // expressions. There's no correct answer here due to the lack of the
1603 // formal specification of the linker script. We use heuristics to
1604 // determine whether a new output command should be added before or
1605 // after another commands. For the details, look at shouldSkip
1606 // function.
1607
1608 auto i = script->sectionCommands.begin();
1609 auto e = script->sectionCommands.end();
1610 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1611 if (auto *sec = dyn_cast<OutputSection>(base))
1612 return sec->sectionIndex == UINT32_MAX;
1613 return false;
1614 });
1615
1616 // Sort the orphan sections.
1617 std::stable_sort(nonScriptI, e, compareSections);
1618
1619 // As a horrible special case, skip the first . assignment if it is before any
1620 // section. We do this because it is common to set a load address by starting
1621 // the script with ". = 0xabcd" and the expectation is that every section is
1622 // after that.
1623 auto firstSectionOrDotAssignment =
1624 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1625 if (firstSectionOrDotAssignment != e &&
1626 isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1627 ++firstSectionOrDotAssignment;
1628 i = firstSectionOrDotAssignment;
1629
1630 while (nonScriptI != e) {
1631 auto pos = findOrphanPos(i, nonScriptI);
1632 OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1633
1634 // As an optimization, find all sections with the same sort rank
1635 // and insert them with one rotate.
1636 unsigned rank = orphan->sortRank;
1637 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1638 return cast<OutputSection>(cmd)->sortRank != rank;
1639 });
1640 std::rotate(pos, nonScriptI, end);
1641 nonScriptI = end;
1642 }
1643
1644 script->adjustSectionsAfterSorting();
1645 }
1646
compareByFilePosition(InputSection * a,InputSection * b)1647 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1648 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1649 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1650 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1651 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1652 if (!la || !lb)
1653 return la && !lb;
1654 OutputSection *aOut = la->getParent();
1655 OutputSection *bOut = lb->getParent();
1656
1657 if (aOut != bOut)
1658 return aOut->addr < bOut->addr;
1659 return la->outSecOff < lb->outSecOff;
1660 }
1661
resolveShfLinkOrder()1662 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1663 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1664 for (OutputSection *sec : outputSections) {
1665 if (!(sec->flags & SHF_LINK_ORDER))
1666 continue;
1667
1668 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1669 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1670 if (!config->relocatable && config->emachine == EM_ARM &&
1671 sec->type == SHT_ARM_EXIDX)
1672 continue;
1673
1674 // Link order may be distributed across several InputSectionDescriptions.
1675 // Sorting is performed separately.
1676 std::vector<InputSection **> scriptSections;
1677 std::vector<InputSection *> sections;
1678 for (BaseCommand *base : sec->sectionCommands) {
1679 auto *isd = dyn_cast<InputSectionDescription>(base);
1680 if (!isd)
1681 continue;
1682 bool hasLinkOrder = false;
1683 scriptSections.clear();
1684 sections.clear();
1685 for (InputSection *&isec : isd->sections) {
1686 if (isec->flags & SHF_LINK_ORDER) {
1687 InputSection *link = isec->getLinkOrderDep();
1688 if (link && !link->getParent())
1689 error(toString(isec) + ": sh_link points to discarded section " +
1690 toString(link));
1691 hasLinkOrder = true;
1692 }
1693 scriptSections.push_back(&isec);
1694 sections.push_back(isec);
1695 }
1696 if (hasLinkOrder && errorCount() == 0) {
1697 llvm::stable_sort(sections, compareByFilePosition);
1698 for (int i = 0, n = sections.size(); i != n; ++i)
1699 *scriptSections[i] = sections[i];
1700 }
1701 }
1702 }
1703 }
1704
finalizeSynthetic(SyntheticSection * sec)1705 static void finalizeSynthetic(SyntheticSection *sec) {
1706 if (sec && sec->isNeeded() && sec->getParent()) {
1707 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1708 sec->finalizeContents();
1709 }
1710 }
1711
1712 // We need to generate and finalize the content that depends on the address of
1713 // InputSections. As the generation of the content may also alter InputSection
1714 // addresses we must converge to a fixed point. We do that here. See the comment
1715 // in Writer<ELFT>::finalizeSections().
finalizeAddressDependentContent()1716 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1717 llvm::TimeTraceScope timeScope("Finalize address dependent content");
1718 ThunkCreator tc;
1719 AArch64Err843419Patcher a64p;
1720 ARMErr657417Patcher a32p;
1721 script->assignAddresses();
1722 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1723 // do require the relative addresses of OutputSections because linker scripts
1724 // can assign Virtual Addresses to OutputSections that are not monotonically
1725 // increasing.
1726 for (Partition &part : partitions)
1727 finalizeSynthetic(part.armExidx);
1728 resolveShfLinkOrder();
1729
1730 // Converts call x@GDPLT to call __tls_get_addr
1731 if (config->emachine == EM_HEXAGON)
1732 hexagonTLSSymbolUpdate(outputSections);
1733
1734 int assignPasses = 0;
1735 for (;;) {
1736 bool changed = target->needsThunks && tc.createThunks(outputSections);
1737
1738 // With Thunk Size much smaller than branch range we expect to
1739 // converge quickly; if we get to 15 something has gone wrong.
1740 if (changed && tc.pass >= 15) {
1741 error("thunk creation not converged");
1742 break;
1743 }
1744
1745 if (config->fixCortexA53Errata843419) {
1746 if (changed)
1747 script->assignAddresses();
1748 changed |= a64p.createFixes();
1749 }
1750 if (config->fixCortexA8) {
1751 if (changed)
1752 script->assignAddresses();
1753 changed |= a32p.createFixes();
1754 }
1755
1756 if (in.mipsGot)
1757 in.mipsGot->updateAllocSize();
1758
1759 for (Partition &part : partitions) {
1760 changed |= part.relaDyn->updateAllocSize();
1761 if (part.relrDyn)
1762 changed |= part.relrDyn->updateAllocSize();
1763 }
1764
1765 const Defined *changedSym = script->assignAddresses();
1766 if (!changed) {
1767 // Some symbols may be dependent on section addresses. When we break the
1768 // loop, the symbol values are finalized because a previous
1769 // assignAddresses() finalized section addresses.
1770 if (!changedSym)
1771 break;
1772 if (++assignPasses == 5) {
1773 errorOrWarn("assignment to symbol " + toString(*changedSym) +
1774 " does not converge");
1775 break;
1776 }
1777 }
1778 }
1779
1780 // If addrExpr is set, the address may not be a multiple of the alignment.
1781 // Warn because this is error-prone.
1782 for (BaseCommand *cmd : script->sectionCommands)
1783 if (auto *os = dyn_cast<OutputSection>(cmd))
1784 if (os->addr % os->alignment != 0)
1785 warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1786 os->name + " is not a multiple of alignment (" +
1787 Twine(os->alignment) + ")");
1788 }
1789
1790 // If Input Sections have been shrunk (basic block sections) then
1791 // update symbol values and sizes associated with these sections. With basic
1792 // block sections, input sections can shrink when the jump instructions at
1793 // the end of the section are relaxed.
fixSymbolsAfterShrinking()1794 static void fixSymbolsAfterShrinking() {
1795 for (InputFile *File : objectFiles) {
1796 parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1797 auto *def = dyn_cast<Defined>(Sym);
1798 if (!def)
1799 return;
1800
1801 const SectionBase *sec = def->section;
1802 if (!sec)
1803 return;
1804
1805 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1806 if (!inputSec || !inputSec->bytesDropped)
1807 return;
1808
1809 const size_t OldSize = inputSec->data().size();
1810 const size_t NewSize = OldSize - inputSec->bytesDropped;
1811
1812 if (def->value > NewSize && def->value <= OldSize) {
1813 LLVM_DEBUG(llvm::dbgs()
1814 << "Moving symbol " << Sym->getName() << " from "
1815 << def->value << " to "
1816 << def->value - inputSec->bytesDropped << " bytes\n");
1817 def->value -= inputSec->bytesDropped;
1818 return;
1819 }
1820
1821 if (def->value + def->size > NewSize && def->value <= OldSize &&
1822 def->value + def->size <= OldSize) {
1823 LLVM_DEBUG(llvm::dbgs()
1824 << "Shrinking symbol " << Sym->getName() << " from "
1825 << def->size << " to " << def->size - inputSec->bytesDropped
1826 << " bytes\n");
1827 def->size -= inputSec->bytesDropped;
1828 }
1829 });
1830 }
1831 }
1832
1833 // If basic block sections exist, there are opportunities to delete fall thru
1834 // jumps and shrink jump instructions after basic block reordering. This
1835 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1836 // option is used.
optimizeBasicBlockJumps()1837 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1838 assert(config->optimizeBBJumps);
1839
1840 script->assignAddresses();
1841 // For every output section that has executable input sections, this
1842 // does the following:
1843 // 1. Deletes all direct jump instructions in input sections that
1844 // jump to the following section as it is not required.
1845 // 2. If there are two consecutive jump instructions, it checks
1846 // if they can be flipped and one can be deleted.
1847 for (OutputSection *os : outputSections) {
1848 if (!(os->flags & SHF_EXECINSTR))
1849 continue;
1850 std::vector<InputSection *> sections = getInputSections(os);
1851 std::vector<unsigned> result(sections.size());
1852 // Delete all fall through jump instructions. Also, check if two
1853 // consecutive jump instructions can be flipped so that a fall
1854 // through jmp instruction can be deleted.
1855 parallelForEachN(0, sections.size(), [&](size_t i) {
1856 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1857 InputSection &is = *sections[i];
1858 result[i] =
1859 target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1860 });
1861 size_t numDeleted = std::count(result.begin(), result.end(), 1);
1862 if (numDeleted > 0) {
1863 script->assignAddresses();
1864 LLVM_DEBUG(llvm::dbgs()
1865 << "Removing " << numDeleted << " fall through jumps\n");
1866 }
1867 }
1868
1869 fixSymbolsAfterShrinking();
1870
1871 for (OutputSection *os : outputSections) {
1872 std::vector<InputSection *> sections = getInputSections(os);
1873 for (InputSection *is : sections)
1874 is->trim();
1875 }
1876 }
1877
1878 // In order to allow users to manipulate linker-synthesized sections,
1879 // we had to add synthetic sections to the input section list early,
1880 // even before we make decisions whether they are needed. This allows
1881 // users to write scripts like this: ".mygot : { .got }".
1882 //
1883 // Doing it has an unintended side effects. If it turns out that we
1884 // don't need a .got (for example) at all because there's no
1885 // relocation that needs a .got, we don't want to emit .got.
1886 //
1887 // To deal with the above problem, this function is called after
1888 // scanRelocations is called to remove synthetic sections that turn
1889 // out to be empty.
removeUnusedSyntheticSections()1890 static void removeUnusedSyntheticSections() {
1891 // All input synthetic sections that can be empty are placed after
1892 // all regular ones. Reverse iterate to find the first synthetic section
1893 // after a non-synthetic one which will be our starting point.
1894 auto start = std::find_if(inputSections.rbegin(), inputSections.rend(),
1895 [](InputSectionBase *s) {
1896 return !isa<SyntheticSection>(s);
1897 })
1898 .base();
1899
1900 DenseSet<InputSectionDescription *> isdSet;
1901 // Mark unused synthetic sections for deletion
1902 auto end = std::stable_partition(
1903 start, inputSections.end(), [&](InputSectionBase *s) {
1904 SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1905 OutputSection *os = ss->getParent();
1906 if (!os || ss->isNeeded())
1907 return true;
1908
1909 // If we reach here, then ss is an unused synthetic section and we want
1910 // to remove it from the corresponding input section description, and
1911 // orphanSections.
1912 for (BaseCommand *b : os->sectionCommands)
1913 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1914 isdSet.insert(isd);
1915
1916 llvm::erase_if(
1917 script->orphanSections,
1918 [=](const InputSectionBase *isec) { return isec == ss; });
1919
1920 return false;
1921 });
1922
1923 DenseSet<InputSectionBase *> unused(end, inputSections.end());
1924 for (auto *isd : isdSet)
1925 llvm::erase_if(isd->sections,
1926 [=](InputSection *isec) { return unused.count(isec); });
1927
1928 // Erase unused synthetic sections.
1929 inputSections.erase(end, inputSections.end());
1930 }
1931
1932 // Create output section objects and add them to OutputSections.
finalizeSections()1933 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1934 Out::preinitArray = findSection(".preinit_array");
1935 Out::initArray = findSection(".init_array");
1936 Out::finiArray = findSection(".fini_array");
1937
1938 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1939 // symbols for sections, so that the runtime can get the start and end
1940 // addresses of each section by section name. Add such symbols.
1941 if (!config->relocatable) {
1942 addStartEndSymbols();
1943 for (BaseCommand *base : script->sectionCommands)
1944 if (auto *sec = dyn_cast<OutputSection>(base))
1945 addStartStopSymbols(sec);
1946 }
1947
1948 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1949 // It should be okay as no one seems to care about the type.
1950 // Even the author of gold doesn't remember why gold behaves that way.
1951 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1952 if (mainPart->dynamic->parent)
1953 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1954 STV_HIDDEN, STT_NOTYPE,
1955 /*value=*/0, /*size=*/0, mainPart->dynamic});
1956
1957 // Define __rel[a]_iplt_{start,end} symbols if needed.
1958 addRelIpltSymbols();
1959
1960 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1961 // should only be defined in an executable. If .sdata does not exist, its
1962 // value/section does not matter but it has to be relative, so set its
1963 // st_shndx arbitrarily to 1 (Out::elfHeader).
1964 if (config->emachine == EM_RISCV && !config->shared) {
1965 OutputSection *sec = findSection(".sdata");
1966 ElfSym::riscvGlobalPointer =
1967 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1968 0x800, STV_DEFAULT, STB_GLOBAL);
1969 }
1970
1971 if (config->emachine == EM_X86_64) {
1972 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1973 // way that:
1974 //
1975 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1976 // computes 0.
1977 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1978 // the TLS block).
1979 //
1980 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1981 // an absolute symbol of zero. This is different from GNU linkers which
1982 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1983 Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1984 if (s && s->isUndefined()) {
1985 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1986 STT_TLS, /*value=*/0, 0,
1987 /*section=*/nullptr});
1988 ElfSym::tlsModuleBase = cast<Defined>(s);
1989 }
1990 }
1991
1992 {
1993 llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1994 // This responsible for splitting up .eh_frame section into
1995 // pieces. The relocation scan uses those pieces, so this has to be
1996 // earlier.
1997 for (Partition &part : partitions)
1998 finalizeSynthetic(part.ehFrame);
1999 }
2000
2001 for (Symbol *sym : symtab->symbols())
2002 sym->isPreemptible = computeIsPreemptible(*sym);
2003
2004 // Change values of linker-script-defined symbols from placeholders (assigned
2005 // by declareSymbols) to actual definitions.
2006 script->processSymbolAssignments();
2007
2008 {
2009 llvm::TimeTraceScope timeScope("Scan relocations");
2010 // Scan relocations. This must be done after every symbol is declared so
2011 // that we can correctly decide if a dynamic relocation is needed. This is
2012 // called after processSymbolAssignments() because it needs to know whether
2013 // a linker-script-defined symbol is absolute.
2014 ppc64noTocRelax.clear();
2015 if (!config->relocatable) {
2016 forEachRelSec(scanRelocations<ELFT>);
2017 reportUndefinedSymbols<ELFT>();
2018 }
2019 }
2020
2021 if (in.plt && in.plt->isNeeded())
2022 in.plt->addSymbols();
2023 if (in.iplt && in.iplt->isNeeded())
2024 in.iplt->addSymbols();
2025
2026 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
2027 auto diagnose =
2028 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
2029 ? errorOrWarn
2030 : warn;
2031 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
2032 // entries are seen. These cases would otherwise lead to runtime errors
2033 // reported by the dynamic linker.
2034 //
2035 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
2036 // catch more cases. That is too much for us. Our approach resembles the one
2037 // used in ld.gold, achieves a good balance to be useful but not too smart.
2038 for (SharedFile *file : sharedFiles) {
2039 bool allNeededIsKnown =
2040 llvm::all_of(file->dtNeeded, [&](StringRef needed) {
2041 return symtab->soNames.count(needed);
2042 });
2043 if (!allNeededIsKnown)
2044 continue;
2045 for (Symbol *sym : file->requiredSymbols)
2046 if (sym->isUndefined() && !sym->isWeak())
2047 diagnose(toString(file) + ": undefined reference to " +
2048 toString(*sym) + " [--no-allow-shlib-undefined]");
2049 }
2050 }
2051
2052 {
2053 llvm::TimeTraceScope timeScope("Add symbols to symtabs");
2054 // Now that we have defined all possible global symbols including linker-
2055 // synthesized ones. Visit all symbols to give the finishing touches.
2056 for (Symbol *sym : symtab->symbols()) {
2057 if (!includeInSymtab(*sym))
2058 continue;
2059 if (in.symTab)
2060 in.symTab->addSymbol(sym);
2061
2062 if (sym->includeInDynsym()) {
2063 partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2064 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2065 if (file->isNeeded && !sym->isUndefined())
2066 addVerneed(sym);
2067 }
2068 }
2069
2070 // We also need to scan the dynamic relocation tables of the other
2071 // partitions and add any referenced symbols to the partition's dynsym.
2072 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2073 DenseSet<Symbol *> syms;
2074 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2075 syms.insert(e.sym);
2076 for (DynamicReloc &reloc : part.relaDyn->relocs)
2077 if (reloc.sym && reloc.needsDynSymIndex() &&
2078 syms.insert(reloc.sym).second)
2079 part.dynSymTab->addSymbol(reloc.sym);
2080 }
2081 }
2082
2083 // Do not proceed if there was an undefined symbol.
2084 if (errorCount())
2085 return;
2086
2087 if (in.mipsGot)
2088 in.mipsGot->build();
2089
2090 removeUnusedSyntheticSections();
2091 script->diagnoseOrphanHandling();
2092
2093 sortSections();
2094
2095 // Now that we have the final list, create a list of all the
2096 // OutputSections for convenience.
2097 for (BaseCommand *base : script->sectionCommands)
2098 if (auto *sec = dyn_cast<OutputSection>(base))
2099 outputSections.push_back(sec);
2100
2101 // Prefer command line supplied address over other constraints.
2102 for (OutputSection *sec : outputSections) {
2103 auto i = config->sectionStartMap.find(sec->name);
2104 if (i != config->sectionStartMap.end())
2105 sec->addrExpr = [=] { return i->second; };
2106 }
2107
2108 // With the outputSections available check for GDPLT relocations
2109 // and add __tls_get_addr symbol if needed.
2110 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2111 Symbol *sym = symtab->addSymbol(Undefined{
2112 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2113 sym->isPreemptible = true;
2114 partitions[0].dynSymTab->addSymbol(sym);
2115 }
2116
2117 // This is a bit of a hack. A value of 0 means undef, so we set it
2118 // to 1 to make __ehdr_start defined. The section number is not
2119 // particularly relevant.
2120 Out::elfHeader->sectionIndex = 1;
2121
2122 for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
2123 OutputSection *sec = outputSections[i];
2124 sec->sectionIndex = i + 1;
2125 sec->shName = in.shStrTab->addString(sec->name);
2126 }
2127
2128 // Binary and relocatable output does not have PHDRS.
2129 // The headers have to be created before finalize as that can influence the
2130 // image base and the dynamic section on mips includes the image base.
2131 if (!config->relocatable && !config->oFormatBinary) {
2132 for (Partition &part : partitions) {
2133 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2134 : createPhdrs(part);
2135 if (config->emachine == EM_ARM) {
2136 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2137 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2138 }
2139 if (config->emachine == EM_MIPS) {
2140 // Add separate segments for MIPS-specific sections.
2141 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2142 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2143 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2144 }
2145 }
2146 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2147
2148 // Find the TLS segment. This happens before the section layout loop so that
2149 // Android relocation packing can look up TLS symbol addresses. We only need
2150 // to care about the main partition here because all TLS symbols were moved
2151 // to the main partition (see MarkLive.cpp).
2152 for (PhdrEntry *p : mainPart->phdrs)
2153 if (p->p_type == PT_TLS)
2154 Out::tlsPhdr = p;
2155 }
2156
2157 // Some symbols are defined in term of program headers. Now that we
2158 // have the headers, we can find out which sections they point to.
2159 setReservedSymbolSections();
2160
2161 {
2162 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2163
2164 finalizeSynthetic(in.bss);
2165 finalizeSynthetic(in.bssRelRo);
2166 finalizeSynthetic(in.symTabShndx);
2167 finalizeSynthetic(in.shStrTab);
2168 finalizeSynthetic(in.strTab);
2169 finalizeSynthetic(in.got);
2170 finalizeSynthetic(in.mipsGot);
2171 finalizeSynthetic(in.igotPlt);
2172 finalizeSynthetic(in.gotPlt);
2173 finalizeSynthetic(in.relaIplt);
2174 finalizeSynthetic(in.relaPlt);
2175 finalizeSynthetic(in.plt);
2176 finalizeSynthetic(in.iplt);
2177 finalizeSynthetic(in.ppc32Got2);
2178 finalizeSynthetic(in.partIndex);
2179
2180 // Dynamic section must be the last one in this list and dynamic
2181 // symbol table section (dynSymTab) must be the first one.
2182 for (Partition &part : partitions) {
2183 finalizeSynthetic(part.dynSymTab);
2184 finalizeSynthetic(part.gnuHashTab);
2185 finalizeSynthetic(part.hashTab);
2186 finalizeSynthetic(part.verDef);
2187 finalizeSynthetic(part.relaDyn);
2188 finalizeSynthetic(part.relrDyn);
2189 finalizeSynthetic(part.ehFrameHdr);
2190 finalizeSynthetic(part.verSym);
2191 finalizeSynthetic(part.verNeed);
2192 finalizeSynthetic(part.dynamic);
2193 }
2194 }
2195
2196 if (!script->hasSectionsCommand && !config->relocatable)
2197 fixSectionAlignments();
2198
2199 // This is used to:
2200 // 1) Create "thunks":
2201 // Jump instructions in many ISAs have small displacements, and therefore
2202 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2203 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2204 // responsibility to create and insert small pieces of code between
2205 // sections to extend the ranges if jump targets are out of range. Such
2206 // code pieces are called "thunks".
2207 //
2208 // We add thunks at this stage. We couldn't do this before this point
2209 // because this is the earliest point where we know sizes of sections and
2210 // their layouts (that are needed to determine if jump targets are in
2211 // range).
2212 //
2213 // 2) Update the sections. We need to generate content that depends on the
2214 // address of InputSections. For example, MIPS GOT section content or
2215 // android packed relocations sections content.
2216 //
2217 // 3) Assign the final values for the linker script symbols. Linker scripts
2218 // sometimes using forward symbol declarations. We want to set the correct
2219 // values. They also might change after adding the thunks.
2220 finalizeAddressDependentContent();
2221 if (errorCount())
2222 return;
2223
2224 {
2225 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2226 // finalizeAddressDependentContent may have added local symbols to the
2227 // static symbol table.
2228 finalizeSynthetic(in.symTab);
2229 finalizeSynthetic(in.ppc64LongBranchTarget);
2230 }
2231
2232 // Relaxation to delete inter-basic block jumps created by basic block
2233 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2234 // can relax jump instructions based on symbol offset.
2235 if (config->optimizeBBJumps)
2236 optimizeBasicBlockJumps();
2237
2238 // Fill other section headers. The dynamic table is finalized
2239 // at the end because some tags like RELSZ depend on result
2240 // of finalizing other sections.
2241 for (OutputSection *sec : outputSections)
2242 sec->finalize();
2243 }
2244
2245 // Ensure data sections are not mixed with executable sections when
2246 // -execute-only is used. -execute-only is a feature to make pages executable
2247 // but not readable, and the feature is currently supported only on AArch64.
checkExecuteOnly()2248 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2249 if (!config->executeOnly)
2250 return;
2251
2252 for (OutputSection *os : outputSections)
2253 if (os->flags & SHF_EXECINSTR)
2254 for (InputSection *isec : getInputSections(os))
2255 if (!(isec->flags & SHF_EXECINSTR))
2256 error("cannot place " + toString(isec) + " into " + toString(os->name) +
2257 ": -execute-only does not support intermingling data and code");
2258 }
2259
2260 // The linker is expected to define SECNAME_start and SECNAME_end
2261 // symbols for a few sections. This function defines them.
addStartEndSymbols()2262 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2263 // If a section does not exist, there's ambiguity as to how we
2264 // define _start and _end symbols for an init/fini section. Since
2265 // the loader assume that the symbols are always defined, we need to
2266 // always define them. But what value? The loader iterates over all
2267 // pointers between _start and _end to run global ctors/dtors, so if
2268 // the section is empty, their symbol values don't actually matter
2269 // as long as _start and _end point to the same location.
2270 //
2271 // That said, we don't want to set the symbols to 0 (which is
2272 // probably the simplest value) because that could cause some
2273 // program to fail to link due to relocation overflow, if their
2274 // program text is above 2 GiB. We use the address of the .text
2275 // section instead to prevent that failure.
2276 //
2277 // In rare situations, the .text section may not exist. If that's the
2278 // case, use the image base address as a last resort.
2279 OutputSection *Default = findSection(".text");
2280 if (!Default)
2281 Default = Out::elfHeader;
2282
2283 auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2284 if (os) {
2285 addOptionalRegular(start, os, 0);
2286 addOptionalRegular(end, os, -1);
2287 } else {
2288 addOptionalRegular(start, Default, 0);
2289 addOptionalRegular(end, Default, 0);
2290 }
2291 };
2292
2293 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2294 define("__init_array_start", "__init_array_end", Out::initArray);
2295 define("__fini_array_start", "__fini_array_end", Out::finiArray);
2296
2297 if (OutputSection *sec = findSection(".ARM.exidx"))
2298 define("__exidx_start", "__exidx_end", sec);
2299 }
2300
2301 // If a section name is valid as a C identifier (which is rare because of
2302 // the leading '.'), linkers are expected to define __start_<secname> and
2303 // __stop_<secname> symbols. They are at beginning and end of the section,
2304 // respectively. This is not requested by the ELF standard, but GNU ld and
2305 // gold provide the feature, and used by many programs.
2306 template <class ELFT>
addStartStopSymbols(OutputSection * sec)2307 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2308 StringRef s = sec->name;
2309 if (!isValidCIdentifier(s))
2310 return;
2311 addOptionalRegular(saver.save("__start_" + s), sec, 0,
2312 config->zStartStopVisibility);
2313 addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2314 config->zStartStopVisibility);
2315 }
2316
needsPtLoad(OutputSection * sec)2317 static bool needsPtLoad(OutputSection *sec) {
2318 if (!(sec->flags & SHF_ALLOC))
2319 return false;
2320
2321 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2322 // responsible for allocating space for them, not the PT_LOAD that
2323 // contains the TLS initialization image.
2324 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2325 return false;
2326 return true;
2327 }
2328
2329 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2330 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2331 // RW. This means that there is no alignment in the RO to RX transition and we
2332 // cannot create a PT_LOAD there.
computeFlags(uint64_t flags)2333 static uint64_t computeFlags(uint64_t flags) {
2334 if (config->omagic)
2335 return PF_R | PF_W | PF_X;
2336 if (config->executeOnly && (flags & PF_X))
2337 return flags & ~PF_R;
2338 if (config->singleRoRx && !(flags & PF_W))
2339 return flags | PF_X;
2340 return flags;
2341 }
2342
2343 // Decide which program headers to create and which sections to include in each
2344 // one.
2345 template <class ELFT>
createPhdrs(Partition & part)2346 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2347 std::vector<PhdrEntry *> ret;
2348 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2349 ret.push_back(make<PhdrEntry>(type, flags));
2350 return ret.back();
2351 };
2352
2353 unsigned partNo = part.getNumber();
2354 bool isMain = partNo == 1;
2355
2356 // Add the first PT_LOAD segment for regular output sections.
2357 uint64_t flags = computeFlags(PF_R);
2358 PhdrEntry *load = nullptr;
2359
2360 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2361 // PT_LOAD.
2362 if (!config->nmagic && !config->omagic) {
2363 // The first phdr entry is PT_PHDR which describes the program header
2364 // itself.
2365 if (isMain)
2366 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2367 else
2368 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2369
2370 // PT_INTERP must be the second entry if exists.
2371 if (OutputSection *cmd = findSection(".interp", partNo))
2372 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2373
2374 // Add the headers. We will remove them if they don't fit.
2375 // In the other partitions the headers are ordinary sections, so they don't
2376 // need to be added here.
2377 if (isMain) {
2378 load = addHdr(PT_LOAD, flags);
2379 load->add(Out::elfHeader);
2380 load->add(Out::programHeaders);
2381 }
2382 }
2383
2384 // PT_GNU_RELRO includes all sections that should be marked as
2385 // read-only by dynamic linker after processing relocations.
2386 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2387 // an error message if more than one PT_GNU_RELRO PHDR is required.
2388 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2389 bool inRelroPhdr = false;
2390 OutputSection *relroEnd = nullptr;
2391 for (OutputSection *sec : outputSections) {
2392 if (sec->partition != partNo || !needsPtLoad(sec))
2393 continue;
2394 if (isRelroSection(sec)) {
2395 inRelroPhdr = true;
2396 if (!relroEnd)
2397 relRo->add(sec);
2398 else
2399 error("section: " + sec->name + " is not contiguous with other relro" +
2400 " sections");
2401 } else if (inRelroPhdr) {
2402 inRelroPhdr = false;
2403 relroEnd = sec;
2404 }
2405 }
2406
2407 for (OutputSection *sec : outputSections) {
2408 if (!needsPtLoad(sec))
2409 continue;
2410
2411 // Normally, sections in partitions other than the current partition are
2412 // ignored. But partition number 255 is a special case: it contains the
2413 // partition end marker (.part.end). It needs to be added to the main
2414 // partition so that a segment is created for it in the main partition,
2415 // which will cause the dynamic loader to reserve space for the other
2416 // partitions.
2417 if (sec->partition != partNo) {
2418 if (isMain && sec->partition == 255)
2419 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2420 continue;
2421 }
2422
2423 // Segments are contiguous memory regions that has the same attributes
2424 // (e.g. executable or writable). There is one phdr for each segment.
2425 // Therefore, we need to create a new phdr when the next section has
2426 // different flags or is loaded at a discontiguous address or memory
2427 // region using AT or AT> linker script command, respectively. At the same
2428 // time, we don't want to create a separate load segment for the headers,
2429 // even if the first output section has an AT or AT> attribute.
2430 uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2431 bool sameLMARegion =
2432 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2433 if (!(load && newFlags == flags && sec != relroEnd &&
2434 sec->memRegion == load->firstSec->memRegion &&
2435 (sameLMARegion || load->lastSec == Out::programHeaders))) {
2436 load = addHdr(PT_LOAD, newFlags);
2437 flags = newFlags;
2438 }
2439
2440 load->add(sec);
2441 }
2442
2443 // Add a TLS segment if any.
2444 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2445 for (OutputSection *sec : outputSections)
2446 if (sec->partition == partNo && sec->flags & SHF_TLS)
2447 tlsHdr->add(sec);
2448 if (tlsHdr->firstSec)
2449 ret.push_back(tlsHdr);
2450
2451 // Add an entry for .dynamic.
2452 if (OutputSection *sec = part.dynamic->getParent())
2453 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2454
2455 if (relRo->firstSec)
2456 ret.push_back(relRo);
2457
2458 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2459 if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2460 part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2461 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2462 ->add(part.ehFrameHdr->getParent());
2463
2464 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2465 // the dynamic linker fill the segment with random data.
2466 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2467 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2468
2469 if (config->zGnustack != GnuStackKind::None) {
2470 // PT_GNU_STACK is a special section to tell the loader to make the
2471 // pages for the stack non-executable. If you really want an executable
2472 // stack, you can pass -z execstack, but that's not recommended for
2473 // security reasons.
2474 unsigned perm = PF_R | PF_W;
2475 if (config->zGnustack == GnuStackKind::Exec)
2476 perm |= PF_X;
2477 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2478 }
2479
2480 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2481 // is expected to perform W^X violations, such as calling mprotect(2) or
2482 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2483 // OpenBSD.
2484 if (config->zWxneeded)
2485 addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2486
2487 if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2488 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2489
2490 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2491 // same alignment.
2492 PhdrEntry *note = nullptr;
2493 for (OutputSection *sec : outputSections) {
2494 if (sec->partition != partNo)
2495 continue;
2496 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2497 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2498 note = addHdr(PT_NOTE, PF_R);
2499 note->add(sec);
2500 } else {
2501 note = nullptr;
2502 }
2503 }
2504 return ret;
2505 }
2506
2507 template <class ELFT>
addPhdrForSection(Partition & part,unsigned shType,unsigned pType,unsigned pFlags)2508 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2509 unsigned pType, unsigned pFlags) {
2510 unsigned partNo = part.getNumber();
2511 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2512 return cmd->partition == partNo && cmd->type == shType;
2513 });
2514 if (i == outputSections.end())
2515 return;
2516
2517 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2518 entry->add(*i);
2519 part.phdrs.push_back(entry);
2520 }
2521
2522 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2523 // This is achieved by assigning an alignment expression to addrExpr of each
2524 // such section.
fixSectionAlignments()2525 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2526 const PhdrEntry *prev;
2527 auto pageAlign = [&](const PhdrEntry *p) {
2528 OutputSection *cmd = p->firstSec;
2529 if (!cmd)
2530 return;
2531 cmd->alignExpr = [align = cmd->alignment]() { return align; };
2532 if (!cmd->addrExpr) {
2533 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2534 // padding in the file contents.
2535 //
2536 // When -z separate-code is used we must not have any overlap in pages
2537 // between an executable segment and a non-executable segment. We align to
2538 // the next maximum page size boundary on transitions between executable
2539 // and non-executable segments.
2540 //
2541 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2542 // sections will be extracted to a separate file. Align to the next
2543 // maximum page size boundary so that we can find the ELF header at the
2544 // start. We cannot benefit from overlapping p_offset ranges with the
2545 // previous segment anyway.
2546 if (config->zSeparate == SeparateSegmentKind::Loadable ||
2547 (config->zSeparate == SeparateSegmentKind::Code && prev &&
2548 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2549 cmd->type == SHT_LLVM_PART_EHDR)
2550 cmd->addrExpr = [] {
2551 return alignTo(script->getDot(), config->maxPageSize);
2552 };
2553 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2554 // it must be the RW. Align to p_align(PT_TLS) to make sure
2555 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2556 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2557 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2558 // be congruent to 0 modulo p_align(PT_TLS).
2559 //
2560 // Technically this is not required, but as of 2019, some dynamic loaders
2561 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2562 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2563 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2564 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2565 // blocks correctly. We need to keep the workaround for a while.
2566 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2567 cmd->addrExpr = [] {
2568 return alignTo(script->getDot(), config->maxPageSize) +
2569 alignTo(script->getDot() % config->maxPageSize,
2570 Out::tlsPhdr->p_align);
2571 };
2572 else
2573 cmd->addrExpr = [] {
2574 return alignTo(script->getDot(), config->maxPageSize) +
2575 script->getDot() % config->maxPageSize;
2576 };
2577 }
2578 };
2579
2580 for (Partition &part : partitions) {
2581 prev = nullptr;
2582 for (const PhdrEntry *p : part.phdrs)
2583 if (p->p_type == PT_LOAD && p->firstSec) {
2584 pageAlign(p);
2585 prev = p;
2586 }
2587 }
2588 }
2589
2590 // Compute an in-file position for a given section. The file offset must be the
2591 // same with its virtual address modulo the page size, so that the loader can
2592 // load executables without any address adjustment.
computeFileOffset(OutputSection * os,uint64_t off)2593 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2594 // The first section in a PT_LOAD has to have congruent offset and address
2595 // modulo the maximum page size.
2596 if (os->ptLoad && os->ptLoad->firstSec == os)
2597 return alignTo(off, os->ptLoad->p_align, os->addr);
2598
2599 // File offsets are not significant for .bss sections other than the first one
2600 // in a PT_LOAD. By convention, we keep section offsets monotonically
2601 // increasing rather than setting to zero.
2602 if (os->type == SHT_NOBITS)
2603 return off;
2604
2605 // If the section is not in a PT_LOAD, we just have to align it.
2606 if (!os->ptLoad)
2607 return alignTo(off, os->alignment);
2608
2609 // If two sections share the same PT_LOAD the file offset is calculated
2610 // using this formula: Off2 = Off1 + (VA2 - VA1).
2611 OutputSection *first = os->ptLoad->firstSec;
2612 return first->offset + os->addr - first->addr;
2613 }
2614
2615 // Set an in-file position to a given section and returns the end position of
2616 // the section.
setFileOffset(OutputSection * os,uint64_t off)2617 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2618 off = computeFileOffset(os, off);
2619 os->offset = off;
2620
2621 if (os->type == SHT_NOBITS)
2622 return off;
2623 return off + os->size;
2624 }
2625
assignFileOffsetsBinary()2626 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2627 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2628 auto needsOffset = [](OutputSection &sec) {
2629 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2630 };
2631 uint64_t minAddr = UINT64_MAX;
2632 for (OutputSection *sec : outputSections)
2633 if (needsOffset(*sec)) {
2634 sec->offset = sec->getLMA();
2635 minAddr = std::min(minAddr, sec->offset);
2636 }
2637
2638 // Sections are laid out at LMA minus minAddr.
2639 fileSize = 0;
2640 for (OutputSection *sec : outputSections)
2641 if (needsOffset(*sec)) {
2642 sec->offset -= minAddr;
2643 fileSize = std::max(fileSize, sec->offset + sec->size);
2644 }
2645 }
2646
rangeToString(uint64_t addr,uint64_t len)2647 static std::string rangeToString(uint64_t addr, uint64_t len) {
2648 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2649 }
2650
2651 // Assign file offsets to output sections.
assignFileOffsets()2652 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2653 uint64_t off = 0;
2654 off = setFileOffset(Out::elfHeader, off);
2655 off = setFileOffset(Out::programHeaders, off);
2656
2657 PhdrEntry *lastRX = nullptr;
2658 for (Partition &part : partitions)
2659 for (PhdrEntry *p : part.phdrs)
2660 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2661 lastRX = p;
2662
2663 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2664 // will not occupy file offsets contained by a PT_LOAD.
2665 for (OutputSection *sec : outputSections) {
2666 if (!(sec->flags & SHF_ALLOC))
2667 continue;
2668 off = setFileOffset(sec, off);
2669
2670 // If this is a last section of the last executable segment and that
2671 // segment is the last loadable segment, align the offset of the
2672 // following section to avoid loading non-segments parts of the file.
2673 if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2674 lastRX->lastSec == sec)
2675 off = alignTo(off, config->commonPageSize);
2676 }
2677 for (OutputSection *sec : outputSections)
2678 if (!(sec->flags & SHF_ALLOC))
2679 off = setFileOffset(sec, off);
2680
2681 sectionHeaderOff = alignTo(off, config->wordsize);
2682 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2683
2684 // Our logic assumes that sections have rising VA within the same segment.
2685 // With use of linker scripts it is possible to violate this rule and get file
2686 // offset overlaps or overflows. That should never happen with a valid script
2687 // which does not move the location counter backwards and usually scripts do
2688 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2689 // kernel, which control segment distribution explicitly and move the counter
2690 // backwards, so we have to allow doing that to support linking them. We
2691 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2692 // we want to prevent file size overflows because it would crash the linker.
2693 for (OutputSection *sec : outputSections) {
2694 if (sec->type == SHT_NOBITS)
2695 continue;
2696 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2697 error("unable to place section " + sec->name + " at file offset " +
2698 rangeToString(sec->offset, sec->size) +
2699 "; check your linker script for overflows");
2700 }
2701 }
2702
2703 // Finalize the program headers. We call this function after we assign
2704 // file offsets and VAs to all sections.
setPhdrs(Partition & part)2705 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2706 for (PhdrEntry *p : part.phdrs) {
2707 OutputSection *first = p->firstSec;
2708 OutputSection *last = p->lastSec;
2709
2710 if (first) {
2711 p->p_filesz = last->offset - first->offset;
2712 if (last->type != SHT_NOBITS)
2713 p->p_filesz += last->size;
2714
2715 p->p_memsz = last->addr + last->size - first->addr;
2716 p->p_offset = first->offset;
2717 p->p_vaddr = first->addr;
2718
2719 // File offsets in partitions other than the main partition are relative
2720 // to the offset of the ELF headers. Perform that adjustment now.
2721 if (part.elfHeader)
2722 p->p_offset -= part.elfHeader->getParent()->offset;
2723
2724 if (!p->hasLMA)
2725 p->p_paddr = first->getLMA();
2726 }
2727
2728 if (p->p_type == PT_GNU_RELRO) {
2729 p->p_align = 1;
2730 // musl/glibc ld.so rounds the size down, so we need to round up
2731 // to protect the last page. This is a no-op on FreeBSD which always
2732 // rounds up.
2733 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2734 p->p_offset;
2735 }
2736 }
2737 }
2738
2739 // A helper struct for checkSectionOverlap.
2740 namespace {
2741 struct SectionOffset {
2742 OutputSection *sec;
2743 uint64_t offset;
2744 };
2745 } // namespace
2746
2747 // Check whether sections overlap for a specific address range (file offsets,
2748 // load and virtual addresses).
checkOverlap(StringRef name,std::vector<SectionOffset> & sections,bool isVirtualAddr)2749 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions,
2750 bool isVirtualAddr) {
2751 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2752 return a.offset < b.offset;
2753 });
2754
2755 // Finding overlap is easy given a vector is sorted by start position.
2756 // If an element starts before the end of the previous element, they overlap.
2757 for (size_t i = 1, end = sections.size(); i < end; ++i) {
2758 SectionOffset a = sections[i - 1];
2759 SectionOffset b = sections[i];
2760 if (b.offset >= a.offset + a.sec->size)
2761 continue;
2762
2763 // If both sections are in OVERLAY we allow the overlapping of virtual
2764 // addresses, because it is what OVERLAY was designed for.
2765 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2766 continue;
2767
2768 errorOrWarn("section " + a.sec->name + " " + name +
2769 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2770 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2771 b.sec->name + " range is " +
2772 rangeToString(b.offset, b.sec->size));
2773 }
2774 }
2775
2776 // Check for overlapping sections and address overflows.
2777 //
2778 // In this function we check that none of the output sections have overlapping
2779 // file offsets. For SHF_ALLOC sections we also check that the load address
2780 // ranges and the virtual address ranges don't overlap
checkSections()2781 template <class ELFT> void Writer<ELFT>::checkSections() {
2782 // First, check that section's VAs fit in available address space for target.
2783 for (OutputSection *os : outputSections)
2784 if ((os->addr + os->size < os->addr) ||
2785 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2786 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2787 " of size 0x" + utohexstr(os->size) +
2788 " exceeds available address space");
2789
2790 // Check for overlapping file offsets. In this case we need to skip any
2791 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2792 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2793 // binary is specified only add SHF_ALLOC sections are added to the output
2794 // file so we skip any non-allocated sections in that case.
2795 std::vector<SectionOffset> fileOffs;
2796 for (OutputSection *sec : outputSections)
2797 if (sec->size > 0 && sec->type != SHT_NOBITS &&
2798 (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2799 fileOffs.push_back({sec, sec->offset});
2800 checkOverlap("file", fileOffs, false);
2801
2802 // When linking with -r there is no need to check for overlapping virtual/load
2803 // addresses since those addresses will only be assigned when the final
2804 // executable/shared object is created.
2805 if (config->relocatable)
2806 return;
2807
2808 // Checking for overlapping virtual and load addresses only needs to take
2809 // into account SHF_ALLOC sections since others will not be loaded.
2810 // Furthermore, we also need to skip SHF_TLS sections since these will be
2811 // mapped to other addresses at runtime and can therefore have overlapping
2812 // ranges in the file.
2813 std::vector<SectionOffset> vmas;
2814 for (OutputSection *sec : outputSections)
2815 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2816 vmas.push_back({sec, sec->addr});
2817 checkOverlap("virtual address", vmas, true);
2818
2819 // Finally, check that the load addresses don't overlap. This will usually be
2820 // the same as the virtual addresses but can be different when using a linker
2821 // script with AT().
2822 std::vector<SectionOffset> lmas;
2823 for (OutputSection *sec : outputSections)
2824 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2825 lmas.push_back({sec, sec->getLMA()});
2826 checkOverlap("load address", lmas, false);
2827 }
2828
2829 // The entry point address is chosen in the following ways.
2830 //
2831 // 1. the '-e' entry command-line option;
2832 // 2. the ENTRY(symbol) command in a linker control script;
2833 // 3. the value of the symbol _start, if present;
2834 // 4. the number represented by the entry symbol, if it is a number;
2835 // 5. the address of the first byte of the .text section, if present;
2836 // 6. the address 0.
getEntryAddr()2837 static uint64_t getEntryAddr() {
2838 // Case 1, 2 or 3
2839 if (Symbol *b = symtab->find(config->entry))
2840 return b->getVA();
2841
2842 // Case 4
2843 uint64_t addr;
2844 if (to_integer(config->entry, addr))
2845 return addr;
2846
2847 // Case 5
2848 if (OutputSection *sec = findSection(".text")) {
2849 if (config->warnMissingEntry)
2850 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2851 utohexstr(sec->addr));
2852 return sec->addr;
2853 }
2854
2855 // Case 6
2856 if (config->warnMissingEntry)
2857 warn("cannot find entry symbol " + config->entry +
2858 "; not setting start address");
2859 return 0;
2860 }
2861
getELFType()2862 static uint16_t getELFType() {
2863 if (config->isPic)
2864 return ET_DYN;
2865 if (config->relocatable)
2866 return ET_REL;
2867 return ET_EXEC;
2868 }
2869
writeHeader()2870 template <class ELFT> void Writer<ELFT>::writeHeader() {
2871 writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2872 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2873
2874 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2875 eHdr->e_type = getELFType();
2876 eHdr->e_entry = getEntryAddr();
2877 eHdr->e_shoff = sectionHeaderOff;
2878
2879 // Write the section header table.
2880 //
2881 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2882 // and e_shstrndx fields. When the value of one of these fields exceeds
2883 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2884 // use fields in the section header at index 0 to store
2885 // the value. The sentinel values and fields are:
2886 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2887 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2888 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2889 size_t num = outputSections.size() + 1;
2890 if (num >= SHN_LORESERVE)
2891 sHdrs->sh_size = num;
2892 else
2893 eHdr->e_shnum = num;
2894
2895 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2896 if (strTabIndex >= SHN_LORESERVE) {
2897 sHdrs->sh_link = strTabIndex;
2898 eHdr->e_shstrndx = SHN_XINDEX;
2899 } else {
2900 eHdr->e_shstrndx = strTabIndex;
2901 }
2902
2903 for (OutputSection *sec : outputSections)
2904 sec->writeHeaderTo<ELFT>(++sHdrs);
2905 }
2906
2907 // Open a result file.
openFile()2908 template <class ELFT> void Writer<ELFT>::openFile() {
2909 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2910 if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2911 std::string msg;
2912 raw_string_ostream s(msg);
2913 s << "output file too large: " << Twine(fileSize) << " bytes\n"
2914 << "section sizes:\n";
2915 for (OutputSection *os : outputSections)
2916 s << os->name << ' ' << os->size << "\n";
2917 error(s.str());
2918 return;
2919 }
2920
2921 unlinkAsync(config->outputFile);
2922 unsigned flags = 0;
2923 if (!config->relocatable)
2924 flags |= FileOutputBuffer::F_executable;
2925 if (!config->mmapOutputFile)
2926 flags |= FileOutputBuffer::F_no_mmap;
2927 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2928 FileOutputBuffer::create(config->outputFile, fileSize, flags);
2929
2930 if (!bufferOrErr) {
2931 error("failed to open " + config->outputFile + ": " +
2932 llvm::toString(bufferOrErr.takeError()));
2933 return;
2934 }
2935 buffer = std::move(*bufferOrErr);
2936 Out::bufferStart = buffer->getBufferStart();
2937 }
2938
writeSectionsBinary()2939 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2940 for (OutputSection *sec : outputSections)
2941 if (sec->flags & SHF_ALLOC)
2942 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2943 }
2944
fillTrap(uint8_t * i,uint8_t * end)2945 static void fillTrap(uint8_t *i, uint8_t *end) {
2946 for (; i + 4 <= end; i += 4)
2947 memcpy(i, &target->trapInstr, 4);
2948 }
2949
2950 // Fill the last page of executable segments with trap instructions
2951 // instead of leaving them as zero. Even though it is not required by any
2952 // standard, it is in general a good thing to do for security reasons.
2953 //
2954 // We'll leave other pages in segments as-is because the rest will be
2955 // overwritten by output sections.
writeTrapInstr()2956 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2957 for (Partition &part : partitions) {
2958 // Fill the last page.
2959 for (PhdrEntry *p : part.phdrs)
2960 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2961 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2962 config->commonPageSize),
2963 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2964 config->commonPageSize));
2965
2966 // Round up the file size of the last segment to the page boundary iff it is
2967 // an executable segment to ensure that other tools don't accidentally
2968 // trim the instruction padding (e.g. when stripping the file).
2969 PhdrEntry *last = nullptr;
2970 for (PhdrEntry *p : part.phdrs)
2971 if (p->p_type == PT_LOAD)
2972 last = p;
2973
2974 if (last && (last->p_flags & PF_X))
2975 last->p_memsz = last->p_filesz =
2976 alignTo(last->p_filesz, config->commonPageSize);
2977 }
2978 }
2979
2980 // Write section contents to a mmap'ed file.
writeSections()2981 template <class ELFT> void Writer<ELFT>::writeSections() {
2982 // In -r or -emit-relocs mode, write the relocation sections first as in
2983 // ELf_Rel targets we might find out that we need to modify the relocated
2984 // section while doing it.
2985 for (OutputSection *sec : outputSections)
2986 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2987 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2988
2989 for (OutputSection *sec : outputSections)
2990 if (sec->type != SHT_REL && sec->type != SHT_RELA)
2991 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2992
2993 // Finally, check that all dynamic relocation addends were written correctly.
2994 if (config->checkDynamicRelocs && config->writeAddends) {
2995 for (OutputSection *sec : outputSections)
2996 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2997 sec->checkDynRelAddends(Out::bufferStart);
2998 }
2999 }
3000
3001 // Computes a hash value of Data using a given hash function.
3002 // In order to utilize multiple cores, we first split data into 1MB
3003 // chunks, compute a hash for each chunk, and then compute a hash value
3004 // of the hash values.
3005 static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,llvm::ArrayRef<uint8_t> data,std::function<void (uint8_t * dest,ArrayRef<uint8_t> arr)> hashFn)3006 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
3007 llvm::ArrayRef<uint8_t> data,
3008 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
3009 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
3010 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
3011
3012 // Compute hash values.
3013 parallelForEachN(0, chunks.size(), [&](size_t i) {
3014 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
3015 });
3016
3017 // Write to the final output buffer.
3018 hashFn(hashBuf.data(), hashes);
3019 }
3020
writeBuildId()3021 template <class ELFT> void Writer<ELFT>::writeBuildId() {
3022 if (!mainPart->buildId || !mainPart->buildId->getParent())
3023 return;
3024
3025 if (config->buildId == BuildIdKind::Hexstring) {
3026 for (Partition &part : partitions)
3027 part.buildId->writeBuildId(config->buildIdVector);
3028 return;
3029 }
3030
3031 // Compute a hash of all sections of the output file.
3032 size_t hashSize = mainPart->buildId->hashSize;
3033 std::vector<uint8_t> buildId(hashSize);
3034 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
3035
3036 switch (config->buildId) {
3037 case BuildIdKind::Fast:
3038 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3039 write64le(dest, xxHash64(arr));
3040 });
3041 break;
3042 case BuildIdKind::Md5:
3043 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3044 memcpy(dest, MD5::hash(arr).data(), hashSize);
3045 });
3046 break;
3047 case BuildIdKind::Sha1:
3048 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3049 memcpy(dest, SHA1::hash(arr).data(), hashSize);
3050 });
3051 break;
3052 case BuildIdKind::Uuid:
3053 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
3054 error("entropy source failure: " + ec.message());
3055 break;
3056 default:
3057 llvm_unreachable("unknown BuildIdKind");
3058 }
3059 for (Partition &part : partitions)
3060 part.buildId->writeBuildId(buildId);
3061 }
3062
3063 template void elf::createSyntheticSections<ELF32LE>();
3064 template void elf::createSyntheticSections<ELF32BE>();
3065 template void elf::createSyntheticSections<ELF64LE>();
3066 template void elf::createSyntheticSections<ELF64BE>();
3067
3068 template void elf::writeResult<ELF32LE>();
3069 template void elf::writeResult<ELF32BE>();
3070 template void elf::writeResult<ELF64LE>();
3071 template void elf::writeResult<ELF64BE>();
3072