1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/Basic/CodeGenOptions.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23
24 using namespace clang;
25 using namespace CodeGen;
26
27 namespace {
28 struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32 };
33 }
34
35 static MemberCallInfo
commonEmitCXXMemberOrOperatorCall(CodeGenFunction & CGF,const CXXMethodDecl * MD,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList & Args,CallArgList * RtlArgs)36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41 isa<CXXOperatorCallExpr>(CE));
42 assert(MD->isInstance() &&
43 "Trying to emit a member or operator call expr on a static method!");
44
45 // Push the this ptr.
46 const CXXRecordDecl *RD =
47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57 unsigned PrefixSize = Args.size() - 1;
58
59 // And the rest of the call args.
60 if (RtlArgs) {
61 // Special case: if the caller emitted the arguments right-to-left already
62 // (prior to emitting the *this argument), we're done. This happens for
63 // assignment operators.
64 Args.addFrom(*RtlArgs);
65 } else if (CE) {
66 // Special case: skip first argument of CXXOperatorCall (it is "this").
67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69 CE->getDirectCallee());
70 } else {
71 assert(
72 FPT->getNumParams() == 0 &&
73 "No CallExpr specified for function with non-zero number of arguments");
74 }
75 return {required, PrefixSize};
76 }
77
EmitCXXMemberOrOperatorCall(const CXXMethodDecl * MD,const CGCallee & Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList * RtlArgs)78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
79 const CXXMethodDecl *MD, const CGCallee &Callee,
80 ReturnValueSlot ReturnValue,
81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82 const CallExpr *CE, CallArgList *RtlArgs) {
83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84 CallArgList Args;
85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90 CE && CE == MustTailCall,
91 CE ? CE->getExprLoc() : SourceLocation());
92 }
93
EmitCXXDestructorCall(GlobalDecl Dtor,const CGCallee & Callee,llvm::Value * This,QualType ThisTy,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE)94 RValue CodeGenFunction::EmitCXXDestructorCall(
95 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
97 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
98
99 assert(!ThisTy.isNull());
100 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
101 "Pointer/Object mixup");
102
103 LangAS SrcAS = ThisTy.getAddressSpace();
104 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
105 if (SrcAS != DstAS) {
106 QualType DstTy = DtorDecl->getThisType();
107 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
108 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
109 NewType);
110 }
111
112 CallArgList Args;
113 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
114 ImplicitParamTy, CE, Args, nullptr);
115 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
116 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
117 CE ? CE->getExprLoc() : SourceLocation{});
118 }
119
EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)120 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
121 const CXXPseudoDestructorExpr *E) {
122 QualType DestroyedType = E->getDestroyedType();
123 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
124 // Automatic Reference Counting:
125 // If the pseudo-expression names a retainable object with weak or
126 // strong lifetime, the object shall be released.
127 Expr *BaseExpr = E->getBase();
128 Address BaseValue = Address::invalid();
129 Qualifiers BaseQuals;
130
131 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
132 if (E->isArrow()) {
133 BaseValue = EmitPointerWithAlignment(BaseExpr);
134 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
135 BaseQuals = PTy->getPointeeType().getQualifiers();
136 } else {
137 LValue BaseLV = EmitLValue(BaseExpr);
138 BaseValue = BaseLV.getAddress(*this);
139 QualType BaseTy = BaseExpr->getType();
140 BaseQuals = BaseTy.getQualifiers();
141 }
142
143 switch (DestroyedType.getObjCLifetime()) {
144 case Qualifiers::OCL_None:
145 case Qualifiers::OCL_ExplicitNone:
146 case Qualifiers::OCL_Autoreleasing:
147 break;
148
149 case Qualifiers::OCL_Strong:
150 EmitARCRelease(Builder.CreateLoad(BaseValue,
151 DestroyedType.isVolatileQualified()),
152 ARCPreciseLifetime);
153 break;
154
155 case Qualifiers::OCL_Weak:
156 EmitARCDestroyWeak(BaseValue);
157 break;
158 }
159 } else {
160 // C++ [expr.pseudo]p1:
161 // The result shall only be used as the operand for the function call
162 // operator (), and the result of such a call has type void. The only
163 // effect is the evaluation of the postfix-expression before the dot or
164 // arrow.
165 EmitIgnoredExpr(E->getBase());
166 }
167
168 return RValue::get(nullptr);
169 }
170
getCXXRecord(const Expr * E)171 static CXXRecordDecl *getCXXRecord(const Expr *E) {
172 QualType T = E->getType();
173 if (const PointerType *PTy = T->getAs<PointerType>())
174 T = PTy->getPointeeType();
175 const RecordType *Ty = T->castAs<RecordType>();
176 return cast<CXXRecordDecl>(Ty->getDecl());
177 }
178
179 // Note: This function also emit constructor calls to support a MSVC
180 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)181 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
182 ReturnValueSlot ReturnValue) {
183 const Expr *callee = CE->getCallee()->IgnoreParens();
184
185 if (isa<BinaryOperator>(callee))
186 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
187
188 const MemberExpr *ME = cast<MemberExpr>(callee);
189 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
190
191 if (MD->isStatic()) {
192 // The method is static, emit it as we would a regular call.
193 CGCallee callee =
194 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
195 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
196 ReturnValue);
197 }
198
199 bool HasQualifier = ME->hasQualifier();
200 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
201 bool IsArrow = ME->isArrow();
202 const Expr *Base = ME->getBase();
203
204 return EmitCXXMemberOrOperatorMemberCallExpr(
205 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
206 }
207
EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr * CE,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue,bool HasQualifier,NestedNameSpecifier * Qualifier,bool IsArrow,const Expr * Base)208 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
209 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
210 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
211 const Expr *Base) {
212 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
213
214 // Compute the object pointer.
215 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
216
217 const CXXMethodDecl *DevirtualizedMethod = nullptr;
218 if (CanUseVirtualCall &&
219 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
220 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
221 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
222 assert(DevirtualizedMethod);
223 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
224 const Expr *Inner = Base->IgnoreParenBaseCasts();
225 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
226 MD->getReturnType().getCanonicalType())
227 // If the return types are not the same, this might be a case where more
228 // code needs to run to compensate for it. For example, the derived
229 // method might return a type that inherits form from the return
230 // type of MD and has a prefix.
231 // For now we just avoid devirtualizing these covariant cases.
232 DevirtualizedMethod = nullptr;
233 else if (getCXXRecord(Inner) == DevirtualizedClass)
234 // If the class of the Inner expression is where the dynamic method
235 // is defined, build the this pointer from it.
236 Base = Inner;
237 else if (getCXXRecord(Base) != DevirtualizedClass) {
238 // If the method is defined in a class that is not the best dynamic
239 // one or the one of the full expression, we would have to build
240 // a derived-to-base cast to compute the correct this pointer, but
241 // we don't have support for that yet, so do a virtual call.
242 DevirtualizedMethod = nullptr;
243 }
244 }
245
246 bool TrivialForCodegen =
247 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
248 bool TrivialAssignment =
249 TrivialForCodegen &&
250 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
251 !MD->getParent()->mayInsertExtraPadding();
252
253 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
254 // operator before the LHS.
255 CallArgList RtlArgStorage;
256 CallArgList *RtlArgs = nullptr;
257 LValue TrivialAssignmentRHS;
258 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
259 if (OCE->isAssignmentOp()) {
260 if (TrivialAssignment) {
261 TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
262 } else {
263 RtlArgs = &RtlArgStorage;
264 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
265 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
266 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
267 }
268 }
269 }
270
271 LValue This;
272 if (IsArrow) {
273 LValueBaseInfo BaseInfo;
274 TBAAAccessInfo TBAAInfo;
275 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
276 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
277 } else {
278 This = EmitLValue(Base);
279 }
280
281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283 // constructing a new complete object of type Ctor.
284 assert(!RtlArgs);
285 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
286 CallArgList Args;
287 commonEmitCXXMemberOrOperatorCall(
288 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr,
289 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
290
291 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
292 /*Delegating=*/false, This.getAddress(*this), Args,
293 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
294 /*NewPointerIsChecked=*/false);
295 return RValue::get(nullptr);
296 }
297
298 if (TrivialForCodegen) {
299 if (isa<CXXDestructorDecl>(MD))
300 return RValue::get(nullptr);
301
302 if (TrivialAssignment) {
303 // We don't like to generate the trivial copy/move assignment operator
304 // when it isn't necessary; just produce the proper effect here.
305 // It's important that we use the result of EmitLValue here rather than
306 // emitting call arguments, in order to preserve TBAA information from
307 // the RHS.
308 LValue RHS = isa<CXXOperatorCallExpr>(CE)
309 ? TrivialAssignmentRHS
310 : EmitLValue(*CE->arg_begin());
311 EmitAggregateAssign(This, RHS, CE->getType());
312 return RValue::get(This.getPointer(*this));
313 }
314
315 assert(MD->getParent()->mayInsertExtraPadding() &&
316 "unknown trivial member function");
317 }
318
319 // Compute the function type we're calling.
320 const CXXMethodDecl *CalleeDecl =
321 DevirtualizedMethod ? DevirtualizedMethod : MD;
322 const CGFunctionInfo *FInfo = nullptr;
323 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
324 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
325 GlobalDecl(Dtor, Dtor_Complete));
326 else
327 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
328
329 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
330
331 // C++11 [class.mfct.non-static]p2:
332 // If a non-static member function of a class X is called for an object that
333 // is not of type X, or of a type derived from X, the behavior is undefined.
334 SourceLocation CallLoc;
335 ASTContext &C = getContext();
336 if (CE)
337 CallLoc = CE->getExprLoc();
338
339 SanitizerSet SkippedChecks;
340 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
341 auto *IOA = CMCE->getImplicitObjectArgument();
342 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
343 if (IsImplicitObjectCXXThis)
344 SkippedChecks.set(SanitizerKind::Alignment, true);
345 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
346 SkippedChecks.set(SanitizerKind::Null, true);
347 }
348 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc,
349 This.getPointer(*this),
350 C.getRecordType(CalleeDecl->getParent()),
351 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
352
353 // C++ [class.virtual]p12:
354 // Explicit qualification with the scope operator (5.1) suppresses the
355 // virtual call mechanism.
356 //
357 // We also don't emit a virtual call if the base expression has a record type
358 // because then we know what the type is.
359 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
360
361 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
362 assert(CE->arg_begin() == CE->arg_end() &&
363 "Destructor shouldn't have explicit parameters");
364 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
365 if (UseVirtualCall) {
366 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
367 This.getAddress(*this),
368 cast<CXXMemberCallExpr>(CE));
369 } else {
370 GlobalDecl GD(Dtor, Dtor_Complete);
371 CGCallee Callee;
372 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
373 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
374 else if (!DevirtualizedMethod)
375 Callee =
376 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
377 else {
378 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
379 }
380
381 QualType ThisTy =
382 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
383 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
384 /*ImplicitParam=*/nullptr,
385 /*ImplicitParamTy=*/QualType(), CE);
386 }
387 return RValue::get(nullptr);
388 }
389
390 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
391 // 'CalleeDecl' instead.
392
393 CGCallee Callee;
394 if (UseVirtualCall) {
395 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty);
396 } else {
397 if (SanOpts.has(SanitizerKind::CFINVCall) &&
398 MD->getParent()->isDynamicClass()) {
399 llvm::Value *VTable;
400 const CXXRecordDecl *RD;
401 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
402 *this, This.getAddress(*this), CalleeDecl->getParent());
403 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
404 }
405
406 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
407 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
408 else if (!DevirtualizedMethod)
409 Callee =
410 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
411 else {
412 Callee =
413 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
414 GlobalDecl(DevirtualizedMethod));
415 }
416 }
417
418 if (MD->isVirtual()) {
419 Address NewThisAddr =
420 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
421 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall);
422 This.setAddress(NewThisAddr);
423 }
424
425 return EmitCXXMemberOrOperatorCall(
426 CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
427 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
428 }
429
430 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)431 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
432 ReturnValueSlot ReturnValue) {
433 const BinaryOperator *BO =
434 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
435 const Expr *BaseExpr = BO->getLHS();
436 const Expr *MemFnExpr = BO->getRHS();
437
438 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
439 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
440 const auto *RD =
441 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
442
443 // Emit the 'this' pointer.
444 Address This = Address::invalid();
445 if (BO->getOpcode() == BO_PtrMemI)
446 This = EmitPointerWithAlignment(BaseExpr);
447 else
448 This = EmitLValue(BaseExpr).getAddress(*this);
449
450 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
451 QualType(MPT->getClass(), 0));
452
453 // Get the member function pointer.
454 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
455
456 // Ask the ABI to load the callee. Note that This is modified.
457 llvm::Value *ThisPtrForCall = nullptr;
458 CGCallee Callee =
459 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
460 ThisPtrForCall, MemFnPtr, MPT);
461
462 CallArgList Args;
463
464 QualType ThisType =
465 getContext().getPointerType(getContext().getTagDeclType(RD));
466
467 // Push the this ptr.
468 Args.add(RValue::get(ThisPtrForCall), ThisType);
469
470 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
471
472 // And the rest of the call args
473 EmitCallArgs(Args, FPT, E->arguments());
474 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
475 /*PrefixSize=*/0),
476 Callee, ReturnValue, Args, nullptr, E == MustTailCall,
477 E->getExprLoc());
478 }
479
480 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)481 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
482 const CXXMethodDecl *MD,
483 ReturnValueSlot ReturnValue) {
484 assert(MD->isInstance() &&
485 "Trying to emit a member call expr on a static method!");
486 return EmitCXXMemberOrOperatorMemberCallExpr(
487 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
488 /*IsArrow=*/false, E->getArg(0));
489 }
490
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)491 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
492 ReturnValueSlot ReturnValue) {
493 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
494 }
495
EmitNullBaseClassInitialization(CodeGenFunction & CGF,Address DestPtr,const CXXRecordDecl * Base)496 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
497 Address DestPtr,
498 const CXXRecordDecl *Base) {
499 if (Base->isEmpty())
500 return;
501
502 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
503
504 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
505 CharUnits NVSize = Layout.getNonVirtualSize();
506
507 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
508 // present, they are initialized by the most derived class before calling the
509 // constructor.
510 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
511 Stores.emplace_back(CharUnits::Zero(), NVSize);
512
513 // Each store is split by the existence of a vbptr.
514 CharUnits VBPtrWidth = CGF.getPointerSize();
515 std::vector<CharUnits> VBPtrOffsets =
516 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
517 for (CharUnits VBPtrOffset : VBPtrOffsets) {
518 // Stop before we hit any virtual base pointers located in virtual bases.
519 if (VBPtrOffset >= NVSize)
520 break;
521 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
522 CharUnits LastStoreOffset = LastStore.first;
523 CharUnits LastStoreSize = LastStore.second;
524
525 CharUnits SplitBeforeOffset = LastStoreOffset;
526 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
527 assert(!SplitBeforeSize.isNegative() && "negative store size!");
528 if (!SplitBeforeSize.isZero())
529 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
530
531 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
532 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
533 assert(!SplitAfterSize.isNegative() && "negative store size!");
534 if (!SplitAfterSize.isZero())
535 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
536 }
537
538 // If the type contains a pointer to data member we can't memset it to zero.
539 // Instead, create a null constant and copy it to the destination.
540 // TODO: there are other patterns besides zero that we can usefully memset,
541 // like -1, which happens to be the pattern used by member-pointers.
542 // TODO: isZeroInitializable can be over-conservative in the case where a
543 // virtual base contains a member pointer.
544 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
545 if (!NullConstantForBase->isNullValue()) {
546 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
547 CGF.CGM.getModule(), NullConstantForBase->getType(),
548 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
549 NullConstantForBase, Twine());
550
551 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
552 DestPtr.getAlignment());
553 NullVariable->setAlignment(Align.getAsAlign());
554
555 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
556
557 // Get and call the appropriate llvm.memcpy overload.
558 for (std::pair<CharUnits, CharUnits> Store : Stores) {
559 CharUnits StoreOffset = Store.first;
560 CharUnits StoreSize = Store.second;
561 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
562 CGF.Builder.CreateMemCpy(
563 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
564 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
565 StoreSizeVal);
566 }
567
568 // Otherwise, just memset the whole thing to zero. This is legal
569 // because in LLVM, all default initializers (other than the ones we just
570 // handled above) are guaranteed to have a bit pattern of all zeros.
571 } else {
572 for (std::pair<CharUnits, CharUnits> Store : Stores) {
573 CharUnits StoreOffset = Store.first;
574 CharUnits StoreSize = Store.second;
575 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
576 CGF.Builder.CreateMemSet(
577 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
578 CGF.Builder.getInt8(0), StoreSizeVal);
579 }
580 }
581 }
582
583 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)584 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
585 AggValueSlot Dest) {
586 assert(!Dest.isIgnored() && "Must have a destination!");
587 const CXXConstructorDecl *CD = E->getConstructor();
588
589 // If we require zero initialization before (or instead of) calling the
590 // constructor, as can be the case with a non-user-provided default
591 // constructor, emit the zero initialization now, unless destination is
592 // already zeroed.
593 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
594 switch (E->getConstructionKind()) {
595 case CXXConstructExpr::CK_Delegating:
596 case CXXConstructExpr::CK_Complete:
597 EmitNullInitialization(Dest.getAddress(), E->getType());
598 break;
599 case CXXConstructExpr::CK_VirtualBase:
600 case CXXConstructExpr::CK_NonVirtualBase:
601 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
602 CD->getParent());
603 break;
604 }
605 }
606
607 // If this is a call to a trivial default constructor, do nothing.
608 if (CD->isTrivial() && CD->isDefaultConstructor())
609 return;
610
611 // Elide the constructor if we're constructing from a temporary.
612 if (getLangOpts().ElideConstructors && E->isElidable()) {
613 // FIXME: This only handles the simplest case, where the source object
614 // is passed directly as the first argument to the constructor.
615 // This should also handle stepping though implicit casts and
616 // conversion sequences which involve two steps, with a
617 // conversion operator followed by a converting constructor.
618 const Expr *SrcObj = E->getArg(0);
619 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
620 assert(
621 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
622 EmitAggExpr(SrcObj, Dest);
623 return;
624 }
625
626 if (const ArrayType *arrayType
627 = getContext().getAsArrayType(E->getType())) {
628 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
629 Dest.isSanitizerChecked());
630 } else {
631 CXXCtorType Type = Ctor_Complete;
632 bool ForVirtualBase = false;
633 bool Delegating = false;
634
635 switch (E->getConstructionKind()) {
636 case CXXConstructExpr::CK_Delegating:
637 // We should be emitting a constructor; GlobalDecl will assert this
638 Type = CurGD.getCtorType();
639 Delegating = true;
640 break;
641
642 case CXXConstructExpr::CK_Complete:
643 Type = Ctor_Complete;
644 break;
645
646 case CXXConstructExpr::CK_VirtualBase:
647 ForVirtualBase = true;
648 LLVM_FALLTHROUGH;
649
650 case CXXConstructExpr::CK_NonVirtualBase:
651 Type = Ctor_Base;
652 }
653
654 // Call the constructor.
655 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
656 }
657 }
658
EmitSynthesizedCXXCopyCtor(Address Dest,Address Src,const Expr * Exp)659 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
660 const Expr *Exp) {
661 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
662 Exp = E->getSubExpr();
663 assert(isa<CXXConstructExpr>(Exp) &&
664 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
665 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
666 const CXXConstructorDecl *CD = E->getConstructor();
667 RunCleanupsScope Scope(*this);
668
669 // If we require zero initialization before (or instead of) calling the
670 // constructor, as can be the case with a non-user-provided default
671 // constructor, emit the zero initialization now.
672 // FIXME. Do I still need this for a copy ctor synthesis?
673 if (E->requiresZeroInitialization())
674 EmitNullInitialization(Dest, E->getType());
675
676 assert(!getContext().getAsConstantArrayType(E->getType())
677 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
678 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
679 }
680
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)681 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
682 const CXXNewExpr *E) {
683 if (!E->isArray())
684 return CharUnits::Zero();
685
686 // No cookie is required if the operator new[] being used is the
687 // reserved placement operator new[].
688 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
689 return CharUnits::Zero();
690
691 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
692 }
693
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)694 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
695 const CXXNewExpr *e,
696 unsigned minElements,
697 llvm::Value *&numElements,
698 llvm::Value *&sizeWithoutCookie) {
699 QualType type = e->getAllocatedType();
700
701 if (!e->isArray()) {
702 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
703 sizeWithoutCookie
704 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
705 return sizeWithoutCookie;
706 }
707
708 // The width of size_t.
709 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
710
711 // Figure out the cookie size.
712 llvm::APInt cookieSize(sizeWidth,
713 CalculateCookiePadding(CGF, e).getQuantity());
714
715 // Emit the array size expression.
716 // We multiply the size of all dimensions for NumElements.
717 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
718 numElements =
719 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
720 if (!numElements)
721 numElements = CGF.EmitScalarExpr(*e->getArraySize());
722 assert(isa<llvm::IntegerType>(numElements->getType()));
723
724 // The number of elements can be have an arbitrary integer type;
725 // essentially, we need to multiply it by a constant factor, add a
726 // cookie size, and verify that the result is representable as a
727 // size_t. That's just a gloss, though, and it's wrong in one
728 // important way: if the count is negative, it's an error even if
729 // the cookie size would bring the total size >= 0.
730 bool isSigned
731 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
732 llvm::IntegerType *numElementsType
733 = cast<llvm::IntegerType>(numElements->getType());
734 unsigned numElementsWidth = numElementsType->getBitWidth();
735
736 // Compute the constant factor.
737 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
738 while (const ConstantArrayType *CAT
739 = CGF.getContext().getAsConstantArrayType(type)) {
740 type = CAT->getElementType();
741 arraySizeMultiplier *= CAT->getSize();
742 }
743
744 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
745 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
746 typeSizeMultiplier *= arraySizeMultiplier;
747
748 // This will be a size_t.
749 llvm::Value *size;
750
751 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
752 // Don't bloat the -O0 code.
753 if (llvm::ConstantInt *numElementsC =
754 dyn_cast<llvm::ConstantInt>(numElements)) {
755 const llvm::APInt &count = numElementsC->getValue();
756
757 bool hasAnyOverflow = false;
758
759 // If 'count' was a negative number, it's an overflow.
760 if (isSigned && count.isNegative())
761 hasAnyOverflow = true;
762
763 // We want to do all this arithmetic in size_t. If numElements is
764 // wider than that, check whether it's already too big, and if so,
765 // overflow.
766 else if (numElementsWidth > sizeWidth &&
767 numElementsWidth - sizeWidth > count.countLeadingZeros())
768 hasAnyOverflow = true;
769
770 // Okay, compute a count at the right width.
771 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
772
773 // If there is a brace-initializer, we cannot allocate fewer elements than
774 // there are initializers. If we do, that's treated like an overflow.
775 if (adjustedCount.ult(minElements))
776 hasAnyOverflow = true;
777
778 // Scale numElements by that. This might overflow, but we don't
779 // care because it only overflows if allocationSize does, too, and
780 // if that overflows then we shouldn't use this.
781 numElements = llvm::ConstantInt::get(CGF.SizeTy,
782 adjustedCount * arraySizeMultiplier);
783
784 // Compute the size before cookie, and track whether it overflowed.
785 bool overflow;
786 llvm::APInt allocationSize
787 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
788 hasAnyOverflow |= overflow;
789
790 // Add in the cookie, and check whether it's overflowed.
791 if (cookieSize != 0) {
792 // Save the current size without a cookie. This shouldn't be
793 // used if there was overflow.
794 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
795
796 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
797 hasAnyOverflow |= overflow;
798 }
799
800 // On overflow, produce a -1 so operator new will fail.
801 if (hasAnyOverflow) {
802 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
803 } else {
804 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
805 }
806
807 // Otherwise, we might need to use the overflow intrinsics.
808 } else {
809 // There are up to five conditions we need to test for:
810 // 1) if isSigned, we need to check whether numElements is negative;
811 // 2) if numElementsWidth > sizeWidth, we need to check whether
812 // numElements is larger than something representable in size_t;
813 // 3) if minElements > 0, we need to check whether numElements is smaller
814 // than that.
815 // 4) we need to compute
816 // sizeWithoutCookie := numElements * typeSizeMultiplier
817 // and check whether it overflows; and
818 // 5) if we need a cookie, we need to compute
819 // size := sizeWithoutCookie + cookieSize
820 // and check whether it overflows.
821
822 llvm::Value *hasOverflow = nullptr;
823
824 // If numElementsWidth > sizeWidth, then one way or another, we're
825 // going to have to do a comparison for (2), and this happens to
826 // take care of (1), too.
827 if (numElementsWidth > sizeWidth) {
828 llvm::APInt threshold(numElementsWidth, 1);
829 threshold <<= sizeWidth;
830
831 llvm::Value *thresholdV
832 = llvm::ConstantInt::get(numElementsType, threshold);
833
834 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
835 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
836
837 // Otherwise, if we're signed, we want to sext up to size_t.
838 } else if (isSigned) {
839 if (numElementsWidth < sizeWidth)
840 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
841
842 // If there's a non-1 type size multiplier, then we can do the
843 // signedness check at the same time as we do the multiply
844 // because a negative number times anything will cause an
845 // unsigned overflow. Otherwise, we have to do it here. But at least
846 // in this case, we can subsume the >= minElements check.
847 if (typeSizeMultiplier == 1)
848 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
849 llvm::ConstantInt::get(CGF.SizeTy, minElements));
850
851 // Otherwise, zext up to size_t if necessary.
852 } else if (numElementsWidth < sizeWidth) {
853 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
854 }
855
856 assert(numElements->getType() == CGF.SizeTy);
857
858 if (minElements) {
859 // Don't allow allocation of fewer elements than we have initializers.
860 if (!hasOverflow) {
861 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
862 llvm::ConstantInt::get(CGF.SizeTy, minElements));
863 } else if (numElementsWidth > sizeWidth) {
864 // The other existing overflow subsumes this check.
865 // We do an unsigned comparison, since any signed value < -1 is
866 // taken care of either above or below.
867 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
868 CGF.Builder.CreateICmpULT(numElements,
869 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
870 }
871 }
872
873 size = numElements;
874
875 // Multiply by the type size if necessary. This multiplier
876 // includes all the factors for nested arrays.
877 //
878 // This step also causes numElements to be scaled up by the
879 // nested-array factor if necessary. Overflow on this computation
880 // can be ignored because the result shouldn't be used if
881 // allocation fails.
882 if (typeSizeMultiplier != 1) {
883 llvm::Function *umul_with_overflow
884 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
885
886 llvm::Value *tsmV =
887 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
888 llvm::Value *result =
889 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
890
891 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
892 if (hasOverflow)
893 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
894 else
895 hasOverflow = overflowed;
896
897 size = CGF.Builder.CreateExtractValue(result, 0);
898
899 // Also scale up numElements by the array size multiplier.
900 if (arraySizeMultiplier != 1) {
901 // If the base element type size is 1, then we can re-use the
902 // multiply we just did.
903 if (typeSize.isOne()) {
904 assert(arraySizeMultiplier == typeSizeMultiplier);
905 numElements = size;
906
907 // Otherwise we need a separate multiply.
908 } else {
909 llvm::Value *asmV =
910 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
911 numElements = CGF.Builder.CreateMul(numElements, asmV);
912 }
913 }
914 } else {
915 // numElements doesn't need to be scaled.
916 assert(arraySizeMultiplier == 1);
917 }
918
919 // Add in the cookie size if necessary.
920 if (cookieSize != 0) {
921 sizeWithoutCookie = size;
922
923 llvm::Function *uadd_with_overflow
924 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
925
926 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
927 llvm::Value *result =
928 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
929
930 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
931 if (hasOverflow)
932 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
933 else
934 hasOverflow = overflowed;
935
936 size = CGF.Builder.CreateExtractValue(result, 0);
937 }
938
939 // If we had any possibility of dynamic overflow, make a select to
940 // overwrite 'size' with an all-ones value, which should cause
941 // operator new to throw.
942 if (hasOverflow)
943 size = CGF.Builder.CreateSelect(hasOverflow,
944 llvm::Constant::getAllOnesValue(CGF.SizeTy),
945 size);
946 }
947
948 if (cookieSize == 0)
949 sizeWithoutCookie = size;
950 else
951 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
952
953 return size;
954 }
955
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,Address NewPtr,AggValueSlot::Overlap_t MayOverlap)956 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
957 QualType AllocType, Address NewPtr,
958 AggValueSlot::Overlap_t MayOverlap) {
959 // FIXME: Refactor with EmitExprAsInit.
960 switch (CGF.getEvaluationKind(AllocType)) {
961 case TEK_Scalar:
962 CGF.EmitScalarInit(Init, nullptr,
963 CGF.MakeAddrLValue(NewPtr, AllocType), false);
964 return;
965 case TEK_Complex:
966 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
967 /*isInit*/ true);
968 return;
969 case TEK_Aggregate: {
970 AggValueSlot Slot
971 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
972 AggValueSlot::IsDestructed,
973 AggValueSlot::DoesNotNeedGCBarriers,
974 AggValueSlot::IsNotAliased,
975 MayOverlap, AggValueSlot::IsNotZeroed,
976 AggValueSlot::IsSanitizerChecked);
977 CGF.EmitAggExpr(Init, Slot);
978 return;
979 }
980 }
981 llvm_unreachable("bad evaluation kind");
982 }
983
EmitNewArrayInitializer(const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address BeginPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)984 void CodeGenFunction::EmitNewArrayInitializer(
985 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
986 Address BeginPtr, llvm::Value *NumElements,
987 llvm::Value *AllocSizeWithoutCookie) {
988 // If we have a type with trivial initialization and no initializer,
989 // there's nothing to do.
990 if (!E->hasInitializer())
991 return;
992
993 Address CurPtr = BeginPtr;
994
995 unsigned InitListElements = 0;
996
997 const Expr *Init = E->getInitializer();
998 Address EndOfInit = Address::invalid();
999 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1000 EHScopeStack::stable_iterator Cleanup;
1001 llvm::Instruction *CleanupDominator = nullptr;
1002
1003 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1004 CharUnits ElementAlign =
1005 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1006
1007 // Attempt to perform zero-initialization using memset.
1008 auto TryMemsetInitialization = [&]() -> bool {
1009 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1010 // we can initialize with a memset to -1.
1011 if (!CGM.getTypes().isZeroInitializable(ElementType))
1012 return false;
1013
1014 // Optimization: since zero initialization will just set the memory
1015 // to all zeroes, generate a single memset to do it in one shot.
1016
1017 // Subtract out the size of any elements we've already initialized.
1018 auto *RemainingSize = AllocSizeWithoutCookie;
1019 if (InitListElements) {
1020 // We know this can't overflow; we check this when doing the allocation.
1021 auto *InitializedSize = llvm::ConstantInt::get(
1022 RemainingSize->getType(),
1023 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1024 InitListElements);
1025 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1026 }
1027
1028 // Create the memset.
1029 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1030 return true;
1031 };
1032
1033 // If the initializer is an initializer list, first do the explicit elements.
1034 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1035 // Initializing from a (braced) string literal is a special case; the init
1036 // list element does not initialize a (single) array element.
1037 if (ILE->isStringLiteralInit()) {
1038 // Initialize the initial portion of length equal to that of the string
1039 // literal. The allocation must be for at least this much; we emitted a
1040 // check for that earlier.
1041 AggValueSlot Slot =
1042 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1043 AggValueSlot::IsDestructed,
1044 AggValueSlot::DoesNotNeedGCBarriers,
1045 AggValueSlot::IsNotAliased,
1046 AggValueSlot::DoesNotOverlap,
1047 AggValueSlot::IsNotZeroed,
1048 AggValueSlot::IsSanitizerChecked);
1049 EmitAggExpr(ILE->getInit(0), Slot);
1050
1051 // Move past these elements.
1052 InitListElements =
1053 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1054 ->getSize().getZExtValue();
1055 CurPtr =
1056 Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1057 CurPtr.getPointer(),
1058 Builder.getSize(InitListElements),
1059 "string.init.end"),
1060 CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1061 ElementSize));
1062
1063 // Zero out the rest, if any remain.
1064 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1065 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1066 bool OK = TryMemsetInitialization();
1067 (void)OK;
1068 assert(OK && "couldn't memset character type?");
1069 }
1070 return;
1071 }
1072
1073 InitListElements = ILE->getNumInits();
1074
1075 // If this is a multi-dimensional array new, we will initialize multiple
1076 // elements with each init list element.
1077 QualType AllocType = E->getAllocatedType();
1078 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1079 AllocType->getAsArrayTypeUnsafe())) {
1080 ElementTy = ConvertTypeForMem(AllocType);
1081 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1082 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1083 }
1084
1085 // Enter a partial-destruction Cleanup if necessary.
1086 if (needsEHCleanup(DtorKind)) {
1087 // In principle we could tell the Cleanup where we are more
1088 // directly, but the control flow can get so varied here that it
1089 // would actually be quite complex. Therefore we go through an
1090 // alloca.
1091 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1092 "array.init.end");
1093 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1094 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1095 ElementType, ElementAlign,
1096 getDestroyer(DtorKind));
1097 Cleanup = EHStack.stable_begin();
1098 }
1099
1100 CharUnits StartAlign = CurPtr.getAlignment();
1101 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1102 // Tell the cleanup that it needs to destroy up to this
1103 // element. TODO: some of these stores can be trivially
1104 // observed to be unnecessary.
1105 if (EndOfInit.isValid()) {
1106 auto FinishedPtr =
1107 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1108 Builder.CreateStore(FinishedPtr, EndOfInit);
1109 }
1110 // FIXME: If the last initializer is an incomplete initializer list for
1111 // an array, and we have an array filler, we can fold together the two
1112 // initialization loops.
1113 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1114 ILE->getInit(i)->getType(), CurPtr,
1115 AggValueSlot::DoesNotOverlap);
1116 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1117 CurPtr.getPointer(),
1118 Builder.getSize(1),
1119 "array.exp.next"),
1120 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1121 }
1122
1123 // The remaining elements are filled with the array filler expression.
1124 Init = ILE->getArrayFiller();
1125
1126 // Extract the initializer for the individual array elements by pulling
1127 // out the array filler from all the nested initializer lists. This avoids
1128 // generating a nested loop for the initialization.
1129 while (Init && Init->getType()->isConstantArrayType()) {
1130 auto *SubILE = dyn_cast<InitListExpr>(Init);
1131 if (!SubILE)
1132 break;
1133 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1134 Init = SubILE->getArrayFiller();
1135 }
1136
1137 // Switch back to initializing one base element at a time.
1138 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1139 }
1140
1141 // If all elements have already been initialized, skip any further
1142 // initialization.
1143 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1144 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1145 // If there was a Cleanup, deactivate it.
1146 if (CleanupDominator)
1147 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1148 return;
1149 }
1150
1151 assert(Init && "have trailing elements to initialize but no initializer");
1152
1153 // If this is a constructor call, try to optimize it out, and failing that
1154 // emit a single loop to initialize all remaining elements.
1155 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1156 CXXConstructorDecl *Ctor = CCE->getConstructor();
1157 if (Ctor->isTrivial()) {
1158 // If new expression did not specify value-initialization, then there
1159 // is no initialization.
1160 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1161 return;
1162
1163 if (TryMemsetInitialization())
1164 return;
1165 }
1166
1167 // Store the new Cleanup position for irregular Cleanups.
1168 //
1169 // FIXME: Share this cleanup with the constructor call emission rather than
1170 // having it create a cleanup of its own.
1171 if (EndOfInit.isValid())
1172 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1173
1174 // Emit a constructor call loop to initialize the remaining elements.
1175 if (InitListElements)
1176 NumElements = Builder.CreateSub(
1177 NumElements,
1178 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1179 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1180 /*NewPointerIsChecked*/true,
1181 CCE->requiresZeroInitialization());
1182 return;
1183 }
1184
1185 // If this is value-initialization, we can usually use memset.
1186 ImplicitValueInitExpr IVIE(ElementType);
1187 if (isa<ImplicitValueInitExpr>(Init)) {
1188 if (TryMemsetInitialization())
1189 return;
1190
1191 // Switch to an ImplicitValueInitExpr for the element type. This handles
1192 // only one case: multidimensional array new of pointers to members. In
1193 // all other cases, we already have an initializer for the array element.
1194 Init = &IVIE;
1195 }
1196
1197 // At this point we should have found an initializer for the individual
1198 // elements of the array.
1199 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1200 "got wrong type of element to initialize");
1201
1202 // If we have an empty initializer list, we can usually use memset.
1203 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1204 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1205 return;
1206
1207 // If we have a struct whose every field is value-initialized, we can
1208 // usually use memset.
1209 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1210 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1211 if (RType->getDecl()->isStruct()) {
1212 unsigned NumElements = 0;
1213 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1214 NumElements = CXXRD->getNumBases();
1215 for (auto *Field : RType->getDecl()->fields())
1216 if (!Field->isUnnamedBitfield())
1217 ++NumElements;
1218 // FIXME: Recurse into nested InitListExprs.
1219 if (ILE->getNumInits() == NumElements)
1220 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1221 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1222 --NumElements;
1223 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1224 return;
1225 }
1226 }
1227 }
1228
1229 // Create the loop blocks.
1230 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1231 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1232 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1233
1234 // Find the end of the array, hoisted out of the loop.
1235 llvm::Value *EndPtr =
1236 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(),
1237 NumElements, "array.end");
1238
1239 // If the number of elements isn't constant, we have to now check if there is
1240 // anything left to initialize.
1241 if (!ConstNum) {
1242 llvm::Value *IsEmpty =
1243 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1244 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1245 }
1246
1247 // Enter the loop.
1248 EmitBlock(LoopBB);
1249
1250 // Set up the current-element phi.
1251 llvm::PHINode *CurPtrPhi =
1252 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1253 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1254
1255 CurPtr = Address(CurPtrPhi, ElementAlign);
1256
1257 // Store the new Cleanup position for irregular Cleanups.
1258 if (EndOfInit.isValid())
1259 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1260
1261 // Enter a partial-destruction Cleanup if necessary.
1262 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1263 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1264 ElementType, ElementAlign,
1265 getDestroyer(DtorKind));
1266 Cleanup = EHStack.stable_begin();
1267 CleanupDominator = Builder.CreateUnreachable();
1268 }
1269
1270 // Emit the initializer into this element.
1271 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1272 AggValueSlot::DoesNotOverlap);
1273
1274 // Leave the Cleanup if we entered one.
1275 if (CleanupDominator) {
1276 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1277 CleanupDominator->eraseFromParent();
1278 }
1279
1280 // Advance to the next element by adjusting the pointer type as necessary.
1281 llvm::Value *NextPtr =
1282 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1283 "array.next");
1284
1285 // Check whether we've gotten to the end of the array and, if so,
1286 // exit the loop.
1287 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1288 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1289 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1290
1291 EmitBlock(ContBB);
1292 }
1293
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)1294 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1295 QualType ElementType, llvm::Type *ElementTy,
1296 Address NewPtr, llvm::Value *NumElements,
1297 llvm::Value *AllocSizeWithoutCookie) {
1298 ApplyDebugLocation DL(CGF, E);
1299 if (E->isArray())
1300 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1301 AllocSizeWithoutCookie);
1302 else if (const Expr *Init = E->getInitializer())
1303 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1304 AggValueSlot::DoesNotOverlap);
1305 }
1306
1307 /// Emit a call to an operator new or operator delete function, as implicitly
1308 /// created by new-expressions and delete-expressions.
EmitNewDeleteCall(CodeGenFunction & CGF,const FunctionDecl * CalleeDecl,const FunctionProtoType * CalleeType,const CallArgList & Args)1309 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1310 const FunctionDecl *CalleeDecl,
1311 const FunctionProtoType *CalleeType,
1312 const CallArgList &Args) {
1313 llvm::CallBase *CallOrInvoke;
1314 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1315 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1316 RValue RV =
1317 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1318 Args, CalleeType, /*ChainCall=*/false),
1319 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1320
1321 /// C++1y [expr.new]p10:
1322 /// [In a new-expression,] an implementation is allowed to omit a call
1323 /// to a replaceable global allocation function.
1324 ///
1325 /// We model such elidable calls with the 'builtin' attribute.
1326 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1327 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1328 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1329 CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1330 llvm::Attribute::Builtin);
1331 }
1332
1333 return RV;
1334 }
1335
EmitBuiltinNewDeleteCall(const FunctionProtoType * Type,const CallExpr * TheCall,bool IsDelete)1336 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1337 const CallExpr *TheCall,
1338 bool IsDelete) {
1339 CallArgList Args;
1340 EmitCallArgs(Args, Type, TheCall->arguments());
1341 // Find the allocation or deallocation function that we're calling.
1342 ASTContext &Ctx = getContext();
1343 DeclarationName Name = Ctx.DeclarationNames
1344 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1345
1346 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1347 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1348 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1349 return EmitNewDeleteCall(*this, FD, Type, Args);
1350 llvm_unreachable("predeclared global operator new/delete is missing");
1351 }
1352
1353 namespace {
1354 /// The parameters to pass to a usual operator delete.
1355 struct UsualDeleteParams {
1356 bool DestroyingDelete = false;
1357 bool Size = false;
1358 bool Alignment = false;
1359 };
1360 }
1361
getUsualDeleteParams(const FunctionDecl * FD)1362 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1363 UsualDeleteParams Params;
1364
1365 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1366 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1367
1368 // The first argument is always a void*.
1369 ++AI;
1370
1371 // The next parameter may be a std::destroying_delete_t.
1372 if (FD->isDestroyingOperatorDelete()) {
1373 Params.DestroyingDelete = true;
1374 assert(AI != AE);
1375 ++AI;
1376 }
1377
1378 // Figure out what other parameters we should be implicitly passing.
1379 if (AI != AE && (*AI)->isIntegerType()) {
1380 Params.Size = true;
1381 ++AI;
1382 }
1383
1384 if (AI != AE && (*AI)->isAlignValT()) {
1385 Params.Alignment = true;
1386 ++AI;
1387 }
1388
1389 assert(AI == AE && "unexpected usual deallocation function parameter");
1390 return Params;
1391 }
1392
1393 namespace {
1394 /// A cleanup to call the given 'operator delete' function upon abnormal
1395 /// exit from a new expression. Templated on a traits type that deals with
1396 /// ensuring that the arguments dominate the cleanup if necessary.
1397 template<typename Traits>
1398 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1399 /// Type used to hold llvm::Value*s.
1400 typedef typename Traits::ValueTy ValueTy;
1401 /// Type used to hold RValues.
1402 typedef typename Traits::RValueTy RValueTy;
1403 struct PlacementArg {
1404 RValueTy ArgValue;
1405 QualType ArgType;
1406 };
1407
1408 unsigned NumPlacementArgs : 31;
1409 unsigned PassAlignmentToPlacementDelete : 1;
1410 const FunctionDecl *OperatorDelete;
1411 ValueTy Ptr;
1412 ValueTy AllocSize;
1413 CharUnits AllocAlign;
1414
getPlacementArgs()1415 PlacementArg *getPlacementArgs() {
1416 return reinterpret_cast<PlacementArg *>(this + 1);
1417 }
1418
1419 public:
getExtraSize(size_t NumPlacementArgs)1420 static size_t getExtraSize(size_t NumPlacementArgs) {
1421 return NumPlacementArgs * sizeof(PlacementArg);
1422 }
1423
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,ValueTy Ptr,ValueTy AllocSize,bool PassAlignmentToPlacementDelete,CharUnits AllocAlign)1424 CallDeleteDuringNew(size_t NumPlacementArgs,
1425 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1426 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1427 CharUnits AllocAlign)
1428 : NumPlacementArgs(NumPlacementArgs),
1429 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1430 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1431 AllocAlign(AllocAlign) {}
1432
setPlacementArg(unsigned I,RValueTy Arg,QualType Type)1433 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1434 assert(I < NumPlacementArgs && "index out of range");
1435 getPlacementArgs()[I] = {Arg, Type};
1436 }
1437
Emit(CodeGenFunction & CGF,Flags flags)1438 void Emit(CodeGenFunction &CGF, Flags flags) override {
1439 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1440 CallArgList DeleteArgs;
1441
1442 // The first argument is always a void* (or C* for a destroying operator
1443 // delete for class type C).
1444 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1445
1446 // Figure out what other parameters we should be implicitly passing.
1447 UsualDeleteParams Params;
1448 if (NumPlacementArgs) {
1449 // A placement deallocation function is implicitly passed an alignment
1450 // if the placement allocation function was, but is never passed a size.
1451 Params.Alignment = PassAlignmentToPlacementDelete;
1452 } else {
1453 // For a non-placement new-expression, 'operator delete' can take a
1454 // size and/or an alignment if it has the right parameters.
1455 Params = getUsualDeleteParams(OperatorDelete);
1456 }
1457
1458 assert(!Params.DestroyingDelete &&
1459 "should not call destroying delete in a new-expression");
1460
1461 // The second argument can be a std::size_t (for non-placement delete).
1462 if (Params.Size)
1463 DeleteArgs.add(Traits::get(CGF, AllocSize),
1464 CGF.getContext().getSizeType());
1465
1466 // The next (second or third) argument can be a std::align_val_t, which
1467 // is an enum whose underlying type is std::size_t.
1468 // FIXME: Use the right type as the parameter type. Note that in a call
1469 // to operator delete(size_t, ...), we may not have it available.
1470 if (Params.Alignment)
1471 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1472 CGF.SizeTy, AllocAlign.getQuantity())),
1473 CGF.getContext().getSizeType());
1474
1475 // Pass the rest of the arguments, which must match exactly.
1476 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1477 auto Arg = getPlacementArgs()[I];
1478 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1479 }
1480
1481 // Call 'operator delete'.
1482 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1483 }
1484 };
1485 }
1486
1487 /// Enter a cleanup to call 'operator delete' if the initializer in a
1488 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,Address NewPtr,llvm::Value * AllocSize,CharUnits AllocAlign,const CallArgList & NewArgs)1489 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1490 const CXXNewExpr *E,
1491 Address NewPtr,
1492 llvm::Value *AllocSize,
1493 CharUnits AllocAlign,
1494 const CallArgList &NewArgs) {
1495 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1496
1497 // If we're not inside a conditional branch, then the cleanup will
1498 // dominate and we can do the easier (and more efficient) thing.
1499 if (!CGF.isInConditionalBranch()) {
1500 struct DirectCleanupTraits {
1501 typedef llvm::Value *ValueTy;
1502 typedef RValue RValueTy;
1503 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1504 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1505 };
1506
1507 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1508
1509 DirectCleanup *Cleanup = CGF.EHStack
1510 .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1511 E->getNumPlacementArgs(),
1512 E->getOperatorDelete(),
1513 NewPtr.getPointer(),
1514 AllocSize,
1515 E->passAlignment(),
1516 AllocAlign);
1517 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1518 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1519 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1520 }
1521
1522 return;
1523 }
1524
1525 // Otherwise, we need to save all this stuff.
1526 DominatingValue<RValue>::saved_type SavedNewPtr =
1527 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1528 DominatingValue<RValue>::saved_type SavedAllocSize =
1529 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1530
1531 struct ConditionalCleanupTraits {
1532 typedef DominatingValue<RValue>::saved_type ValueTy;
1533 typedef DominatingValue<RValue>::saved_type RValueTy;
1534 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1535 return V.restore(CGF);
1536 }
1537 };
1538 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1539
1540 ConditionalCleanup *Cleanup = CGF.EHStack
1541 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1542 E->getNumPlacementArgs(),
1543 E->getOperatorDelete(),
1544 SavedNewPtr,
1545 SavedAllocSize,
1546 E->passAlignment(),
1547 AllocAlign);
1548 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1549 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1550 Cleanup->setPlacementArg(
1551 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1552 }
1553
1554 CGF.initFullExprCleanup();
1555 }
1556
EmitCXXNewExpr(const CXXNewExpr * E)1557 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1558 // The element type being allocated.
1559 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1560
1561 // 1. Build a call to the allocation function.
1562 FunctionDecl *allocator = E->getOperatorNew();
1563
1564 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1565 unsigned minElements = 0;
1566 if (E->isArray() && E->hasInitializer()) {
1567 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1568 if (ILE && ILE->isStringLiteralInit())
1569 minElements =
1570 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1571 ->getSize().getZExtValue();
1572 else if (ILE)
1573 minElements = ILE->getNumInits();
1574 }
1575
1576 llvm::Value *numElements = nullptr;
1577 llvm::Value *allocSizeWithoutCookie = nullptr;
1578 llvm::Value *allocSize =
1579 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1580 allocSizeWithoutCookie);
1581 CharUnits allocAlign = getContext().getPreferredTypeAlignInChars(allocType);
1582
1583 // Emit the allocation call. If the allocator is a global placement
1584 // operator, just "inline" it directly.
1585 Address allocation = Address::invalid();
1586 CallArgList allocatorArgs;
1587 if (allocator->isReservedGlobalPlacementOperator()) {
1588 assert(E->getNumPlacementArgs() == 1);
1589 const Expr *arg = *E->placement_arguments().begin();
1590
1591 LValueBaseInfo BaseInfo;
1592 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1593
1594 // The pointer expression will, in many cases, be an opaque void*.
1595 // In these cases, discard the computed alignment and use the
1596 // formal alignment of the allocated type.
1597 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1598 allocation = Address(allocation.getPointer(), allocAlign);
1599
1600 // Set up allocatorArgs for the call to operator delete if it's not
1601 // the reserved global operator.
1602 if (E->getOperatorDelete() &&
1603 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1604 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1605 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1606 }
1607
1608 } else {
1609 const FunctionProtoType *allocatorType =
1610 allocator->getType()->castAs<FunctionProtoType>();
1611 unsigned ParamsToSkip = 0;
1612
1613 // The allocation size is the first argument.
1614 QualType sizeType = getContext().getSizeType();
1615 allocatorArgs.add(RValue::get(allocSize), sizeType);
1616 ++ParamsToSkip;
1617
1618 if (allocSize != allocSizeWithoutCookie) {
1619 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1620 allocAlign = std::max(allocAlign, cookieAlign);
1621 }
1622
1623 // The allocation alignment may be passed as the second argument.
1624 if (E->passAlignment()) {
1625 QualType AlignValT = sizeType;
1626 if (allocatorType->getNumParams() > 1) {
1627 AlignValT = allocatorType->getParamType(1);
1628 assert(getContext().hasSameUnqualifiedType(
1629 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1630 sizeType) &&
1631 "wrong type for alignment parameter");
1632 ++ParamsToSkip;
1633 } else {
1634 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1635 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1636 }
1637 allocatorArgs.add(
1638 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1639 AlignValT);
1640 }
1641
1642 // FIXME: Why do we not pass a CalleeDecl here?
1643 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1644 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1645
1646 RValue RV =
1647 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1648
1649 // Set !heapallocsite metadata on the call to operator new.
1650 if (getDebugInfo())
1651 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1652 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType,
1653 E->getExprLoc());
1654
1655 // If this was a call to a global replaceable allocation function that does
1656 // not take an alignment argument, the allocator is known to produce
1657 // storage that's suitably aligned for any object that fits, up to a known
1658 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1659 CharUnits allocationAlign = allocAlign;
1660 if (!E->passAlignment() &&
1661 allocator->isReplaceableGlobalAllocationFunction()) {
1662 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1663 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1664 allocationAlign = std::max(
1665 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1666 }
1667
1668 allocation = Address(RV.getScalarVal(), allocationAlign);
1669 }
1670
1671 // Emit a null check on the allocation result if the allocation
1672 // function is allowed to return null (because it has a non-throwing
1673 // exception spec or is the reserved placement new) and we have an
1674 // interesting initializer will be running sanitizers on the initialization.
1675 bool nullCheck = E->shouldNullCheckAllocation() &&
1676 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1677 sanitizePerformTypeCheck());
1678
1679 llvm::BasicBlock *nullCheckBB = nullptr;
1680 llvm::BasicBlock *contBB = nullptr;
1681
1682 // The null-check means that the initializer is conditionally
1683 // evaluated.
1684 ConditionalEvaluation conditional(*this);
1685
1686 if (nullCheck) {
1687 conditional.begin(*this);
1688
1689 nullCheckBB = Builder.GetInsertBlock();
1690 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1691 contBB = createBasicBlock("new.cont");
1692
1693 llvm::Value *isNull =
1694 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1695 Builder.CreateCondBr(isNull, contBB, notNullBB);
1696 EmitBlock(notNullBB);
1697 }
1698
1699 // If there's an operator delete, enter a cleanup to call it if an
1700 // exception is thrown.
1701 EHScopeStack::stable_iterator operatorDeleteCleanup;
1702 llvm::Instruction *cleanupDominator = nullptr;
1703 if (E->getOperatorDelete() &&
1704 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1705 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1706 allocatorArgs);
1707 operatorDeleteCleanup = EHStack.stable_begin();
1708 cleanupDominator = Builder.CreateUnreachable();
1709 }
1710
1711 assert((allocSize == allocSizeWithoutCookie) ==
1712 CalculateCookiePadding(*this, E).isZero());
1713 if (allocSize != allocSizeWithoutCookie) {
1714 assert(E->isArray());
1715 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1716 numElements,
1717 E, allocType);
1718 }
1719
1720 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1721 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1722
1723 // Passing pointer through launder.invariant.group to avoid propagation of
1724 // vptrs information which may be included in previous type.
1725 // To not break LTO with different optimizations levels, we do it regardless
1726 // of optimization level.
1727 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1728 allocator->isReservedGlobalPlacementOperator())
1729 result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1730 result.getAlignment());
1731
1732 // Emit sanitizer checks for pointer value now, so that in the case of an
1733 // array it was checked only once and not at each constructor call. We may
1734 // have already checked that the pointer is non-null.
1735 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1736 // we'll null check the wrong pointer here.
1737 SanitizerSet SkippedChecks;
1738 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1739 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
1740 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1741 result.getPointer(), allocType, result.getAlignment(),
1742 SkippedChecks, numElements);
1743
1744 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1745 allocSizeWithoutCookie);
1746 if (E->isArray()) {
1747 // NewPtr is a pointer to the base element type. If we're
1748 // allocating an array of arrays, we'll need to cast back to the
1749 // array pointer type.
1750 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1751 if (result.getType() != resultType)
1752 result = Builder.CreateBitCast(result, resultType);
1753 }
1754
1755 // Deactivate the 'operator delete' cleanup if we finished
1756 // initialization.
1757 if (operatorDeleteCleanup.isValid()) {
1758 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1759 cleanupDominator->eraseFromParent();
1760 }
1761
1762 llvm::Value *resultPtr = result.getPointer();
1763 if (nullCheck) {
1764 conditional.end(*this);
1765
1766 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1767 EmitBlock(contBB);
1768
1769 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1770 PHI->addIncoming(resultPtr, notNullBB);
1771 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1772 nullCheckBB);
1773
1774 resultPtr = PHI;
1775 }
1776
1777 return resultPtr;
1778 }
1779
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy,llvm::Value * NumElements,CharUnits CookieSize)1780 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1781 llvm::Value *Ptr, QualType DeleteTy,
1782 llvm::Value *NumElements,
1783 CharUnits CookieSize) {
1784 assert((!NumElements && CookieSize.isZero()) ||
1785 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1786
1787 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1788 CallArgList DeleteArgs;
1789
1790 auto Params = getUsualDeleteParams(DeleteFD);
1791 auto ParamTypeIt = DeleteFTy->param_type_begin();
1792
1793 // Pass the pointer itself.
1794 QualType ArgTy = *ParamTypeIt++;
1795 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1796 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1797
1798 // Pass the std::destroying_delete tag if present.
1799 llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1800 if (Params.DestroyingDelete) {
1801 QualType DDTag = *ParamTypeIt++;
1802 llvm::Type *Ty = getTypes().ConvertType(DDTag);
1803 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag);
1804 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag");
1805 DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1806 DeleteArgs.add(RValue::getAggregate(Address(DestroyingDeleteTag, Align)), DDTag);
1807 }
1808
1809 // Pass the size if the delete function has a size_t parameter.
1810 if (Params.Size) {
1811 QualType SizeType = *ParamTypeIt++;
1812 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1813 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1814 DeleteTypeSize.getQuantity());
1815
1816 // For array new, multiply by the number of elements.
1817 if (NumElements)
1818 Size = Builder.CreateMul(Size, NumElements);
1819
1820 // If there is a cookie, add the cookie size.
1821 if (!CookieSize.isZero())
1822 Size = Builder.CreateAdd(
1823 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1824
1825 DeleteArgs.add(RValue::get(Size), SizeType);
1826 }
1827
1828 // Pass the alignment if the delete function has an align_val_t parameter.
1829 if (Params.Alignment) {
1830 QualType AlignValType = *ParamTypeIt++;
1831 CharUnits DeleteTypeAlign =
1832 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1833 DeleteTy, true /* NeedsPreferredAlignment */));
1834 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1835 DeleteTypeAlign.getQuantity());
1836 DeleteArgs.add(RValue::get(Align), AlignValType);
1837 }
1838
1839 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1840 "unknown parameter to usual delete function");
1841
1842 // Emit the call to delete.
1843 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1844
1845 // If call argument lowering didn't use the destroying_delete_t alloca,
1846 // remove it again.
1847 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1848 DestroyingDeleteTag->eraseFromParent();
1849 }
1850
1851 namespace {
1852 /// Calls the given 'operator delete' on a single object.
1853 struct CallObjectDelete final : EHScopeStack::Cleanup {
1854 llvm::Value *Ptr;
1855 const FunctionDecl *OperatorDelete;
1856 QualType ElementType;
1857
CallObjectDelete__anonb29e8e2e0511::CallObjectDelete1858 CallObjectDelete(llvm::Value *Ptr,
1859 const FunctionDecl *OperatorDelete,
1860 QualType ElementType)
1861 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1862
Emit__anonb29e8e2e0511::CallObjectDelete1863 void Emit(CodeGenFunction &CGF, Flags flags) override {
1864 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1865 }
1866 };
1867 }
1868
1869 void
pushCallObjectDeleteCleanup(const FunctionDecl * OperatorDelete,llvm::Value * CompletePtr,QualType ElementType)1870 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1871 llvm::Value *CompletePtr,
1872 QualType ElementType) {
1873 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1874 OperatorDelete, ElementType);
1875 }
1876
1877 /// Emit the code for deleting a single object with a destroying operator
1878 /// delete. If the element type has a non-virtual destructor, Ptr has already
1879 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1880 /// Ptr points to an object of the static type.
EmitDestroyingObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType)1881 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1882 const CXXDeleteExpr *DE, Address Ptr,
1883 QualType ElementType) {
1884 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1885 if (Dtor && Dtor->isVirtual())
1886 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1887 Dtor);
1888 else
1889 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1890 }
1891
1892 /// Emit the code for deleting a single object.
1893 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1894 /// if not.
EmitObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType,llvm::BasicBlock * UnconditionalDeleteBlock)1895 static bool EmitObjectDelete(CodeGenFunction &CGF,
1896 const CXXDeleteExpr *DE,
1897 Address Ptr,
1898 QualType ElementType,
1899 llvm::BasicBlock *UnconditionalDeleteBlock) {
1900 // C++11 [expr.delete]p3:
1901 // If the static type of the object to be deleted is different from its
1902 // dynamic type, the static type shall be a base class of the dynamic type
1903 // of the object to be deleted and the static type shall have a virtual
1904 // destructor or the behavior is undefined.
1905 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
1906 DE->getExprLoc(), Ptr.getPointer(),
1907 ElementType);
1908
1909 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1910 assert(!OperatorDelete->isDestroyingOperatorDelete());
1911
1912 // Find the destructor for the type, if applicable. If the
1913 // destructor is virtual, we'll just emit the vcall and return.
1914 const CXXDestructorDecl *Dtor = nullptr;
1915 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1916 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1917 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1918 Dtor = RD->getDestructor();
1919
1920 if (Dtor->isVirtual()) {
1921 bool UseVirtualCall = true;
1922 const Expr *Base = DE->getArgument();
1923 if (auto *DevirtualizedDtor =
1924 dyn_cast_or_null<const CXXDestructorDecl>(
1925 Dtor->getDevirtualizedMethod(
1926 Base, CGF.CGM.getLangOpts().AppleKext))) {
1927 UseVirtualCall = false;
1928 const CXXRecordDecl *DevirtualizedClass =
1929 DevirtualizedDtor->getParent();
1930 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1931 // Devirtualized to the class of the base type (the type of the
1932 // whole expression).
1933 Dtor = DevirtualizedDtor;
1934 } else {
1935 // Devirtualized to some other type. Would need to cast the this
1936 // pointer to that type but we don't have support for that yet, so
1937 // do a virtual call. FIXME: handle the case where it is
1938 // devirtualized to the derived type (the type of the inner
1939 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1940 UseVirtualCall = true;
1941 }
1942 }
1943 if (UseVirtualCall) {
1944 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1945 Dtor);
1946 return false;
1947 }
1948 }
1949 }
1950 }
1951
1952 // Make sure that we call delete even if the dtor throws.
1953 // This doesn't have to a conditional cleanup because we're going
1954 // to pop it off in a second.
1955 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1956 Ptr.getPointer(),
1957 OperatorDelete, ElementType);
1958
1959 if (Dtor)
1960 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1961 /*ForVirtualBase=*/false,
1962 /*Delegating=*/false,
1963 Ptr, ElementType);
1964 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1965 switch (Lifetime) {
1966 case Qualifiers::OCL_None:
1967 case Qualifiers::OCL_ExplicitNone:
1968 case Qualifiers::OCL_Autoreleasing:
1969 break;
1970
1971 case Qualifiers::OCL_Strong:
1972 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1973 break;
1974
1975 case Qualifiers::OCL_Weak:
1976 CGF.EmitARCDestroyWeak(Ptr);
1977 break;
1978 }
1979 }
1980
1981 // When optimizing for size, call 'operator delete' unconditionally.
1982 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
1983 CGF.EmitBlock(UnconditionalDeleteBlock);
1984 CGF.PopCleanupBlock();
1985 return true;
1986 }
1987
1988 CGF.PopCleanupBlock();
1989 return false;
1990 }
1991
1992 namespace {
1993 /// Calls the given 'operator delete' on an array of objects.
1994 struct CallArrayDelete final : EHScopeStack::Cleanup {
1995 llvm::Value *Ptr;
1996 const FunctionDecl *OperatorDelete;
1997 llvm::Value *NumElements;
1998 QualType ElementType;
1999 CharUnits CookieSize;
2000
CallArrayDelete__anonb29e8e2e0611::CallArrayDelete2001 CallArrayDelete(llvm::Value *Ptr,
2002 const FunctionDecl *OperatorDelete,
2003 llvm::Value *NumElements,
2004 QualType ElementType,
2005 CharUnits CookieSize)
2006 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2007 ElementType(ElementType), CookieSize(CookieSize) {}
2008
Emit__anonb29e8e2e0611::CallArrayDelete2009 void Emit(CodeGenFunction &CGF, Flags flags) override {
2010 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2011 CookieSize);
2012 }
2013 };
2014 }
2015
2016 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,Address deletedPtr,QualType elementType)2017 static void EmitArrayDelete(CodeGenFunction &CGF,
2018 const CXXDeleteExpr *E,
2019 Address deletedPtr,
2020 QualType elementType) {
2021 llvm::Value *numElements = nullptr;
2022 llvm::Value *allocatedPtr = nullptr;
2023 CharUnits cookieSize;
2024 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2025 numElements, allocatedPtr, cookieSize);
2026
2027 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2028
2029 // Make sure that we call delete even if one of the dtors throws.
2030 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2031 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2032 allocatedPtr, operatorDelete,
2033 numElements, elementType,
2034 cookieSize);
2035
2036 // Destroy the elements.
2037 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2038 assert(numElements && "no element count for a type with a destructor!");
2039
2040 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2041 CharUnits elementAlign =
2042 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2043
2044 llvm::Value *arrayBegin = deletedPtr.getPointer();
2045 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2046 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2047
2048 // Note that it is legal to allocate a zero-length array, and we
2049 // can never fold the check away because the length should always
2050 // come from a cookie.
2051 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2052 CGF.getDestroyer(dtorKind),
2053 /*checkZeroLength*/ true,
2054 CGF.needsEHCleanup(dtorKind));
2055 }
2056
2057 // Pop the cleanup block.
2058 CGF.PopCleanupBlock();
2059 }
2060
EmitCXXDeleteExpr(const CXXDeleteExpr * E)2061 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2062 const Expr *Arg = E->getArgument();
2063 Address Ptr = EmitPointerWithAlignment(Arg);
2064
2065 // Null check the pointer.
2066 //
2067 // We could avoid this null check if we can determine that the object
2068 // destruction is trivial and doesn't require an array cookie; we can
2069 // unconditionally perform the operator delete call in that case. For now, we
2070 // assume that deleted pointers are null rarely enough that it's better to
2071 // keep the branch. This might be worth revisiting for a -O0 code size win.
2072 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2073 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2074
2075 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2076
2077 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2078 EmitBlock(DeleteNotNull);
2079
2080 QualType DeleteTy = E->getDestroyedType();
2081
2082 // A destroying operator delete overrides the entire operation of the
2083 // delete expression.
2084 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2085 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2086 EmitBlock(DeleteEnd);
2087 return;
2088 }
2089
2090 // We might be deleting a pointer to array. If so, GEP down to the
2091 // first non-array element.
2092 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2093 if (DeleteTy->isConstantArrayType()) {
2094 llvm::Value *Zero = Builder.getInt32(0);
2095 SmallVector<llvm::Value*,8> GEP;
2096
2097 GEP.push_back(Zero); // point at the outermost array
2098
2099 // For each layer of array type we're pointing at:
2100 while (const ConstantArrayType *Arr
2101 = getContext().getAsConstantArrayType(DeleteTy)) {
2102 // 1. Unpeel the array type.
2103 DeleteTy = Arr->getElementType();
2104
2105 // 2. GEP to the first element of the array.
2106 GEP.push_back(Zero);
2107 }
2108
2109 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(),
2110 Ptr.getPointer(), GEP, "del.first"),
2111 Ptr.getAlignment());
2112 }
2113
2114 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2115
2116 if (E->isArrayForm()) {
2117 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2118 EmitBlock(DeleteEnd);
2119 } else {
2120 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2121 EmitBlock(DeleteEnd);
2122 }
2123 }
2124
isGLValueFromPointerDeref(const Expr * E)2125 static bool isGLValueFromPointerDeref(const Expr *E) {
2126 E = E->IgnoreParens();
2127
2128 if (const auto *CE = dyn_cast<CastExpr>(E)) {
2129 if (!CE->getSubExpr()->isGLValue())
2130 return false;
2131 return isGLValueFromPointerDeref(CE->getSubExpr());
2132 }
2133
2134 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2135 return isGLValueFromPointerDeref(OVE->getSourceExpr());
2136
2137 if (const auto *BO = dyn_cast<BinaryOperator>(E))
2138 if (BO->getOpcode() == BO_Comma)
2139 return isGLValueFromPointerDeref(BO->getRHS());
2140
2141 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2142 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2143 isGLValueFromPointerDeref(ACO->getFalseExpr());
2144
2145 // C++11 [expr.sub]p1:
2146 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2147 if (isa<ArraySubscriptExpr>(E))
2148 return true;
2149
2150 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2151 if (UO->getOpcode() == UO_Deref)
2152 return true;
2153
2154 return false;
2155 }
2156
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)2157 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2158 llvm::Type *StdTypeInfoPtrTy) {
2159 // Get the vtable pointer.
2160 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2161
2162 QualType SrcRecordTy = E->getType();
2163
2164 // C++ [class.cdtor]p4:
2165 // If the operand of typeid refers to the object under construction or
2166 // destruction and the static type of the operand is neither the constructor
2167 // or destructor’s class nor one of its bases, the behavior is undefined.
2168 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
2169 ThisPtr.getPointer(), SrcRecordTy);
2170
2171 // C++ [expr.typeid]p2:
2172 // If the glvalue expression is obtained by applying the unary * operator to
2173 // a pointer and the pointer is a null pointer value, the typeid expression
2174 // throws the std::bad_typeid exception.
2175 //
2176 // However, this paragraph's intent is not clear. We choose a very generous
2177 // interpretation which implores us to consider comma operators, conditional
2178 // operators, parentheses and other such constructs.
2179 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2180 isGLValueFromPointerDeref(E), SrcRecordTy)) {
2181 llvm::BasicBlock *BadTypeidBlock =
2182 CGF.createBasicBlock("typeid.bad_typeid");
2183 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2184
2185 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2186 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2187
2188 CGF.EmitBlock(BadTypeidBlock);
2189 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2190 CGF.EmitBlock(EndBlock);
2191 }
2192
2193 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2194 StdTypeInfoPtrTy);
2195 }
2196
EmitCXXTypeidExpr(const CXXTypeidExpr * E)2197 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2198 llvm::Type *StdTypeInfoPtrTy =
2199 ConvertType(E->getType())->getPointerTo();
2200
2201 if (E->isTypeOperand()) {
2202 llvm::Constant *TypeInfo =
2203 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2204 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2205 }
2206
2207 // C++ [expr.typeid]p2:
2208 // When typeid is applied to a glvalue expression whose type is a
2209 // polymorphic class type, the result refers to a std::type_info object
2210 // representing the type of the most derived object (that is, the dynamic
2211 // type) to which the glvalue refers.
2212 // If the operand is already most derived object, no need to look up vtable.
2213 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext()))
2214 return EmitTypeidFromVTable(*this, E->getExprOperand(),
2215 StdTypeInfoPtrTy);
2216
2217 QualType OperandTy = E->getExprOperand()->getType();
2218 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2219 StdTypeInfoPtrTy);
2220 }
2221
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)2222 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2223 QualType DestTy) {
2224 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2225 if (DestTy->isPointerType())
2226 return llvm::Constant::getNullValue(DestLTy);
2227
2228 /// C++ [expr.dynamic.cast]p9:
2229 /// A failed cast to reference type throws std::bad_cast
2230 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2231 return nullptr;
2232
2233 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2234 return llvm::UndefValue::get(DestLTy);
2235 }
2236
EmitDynamicCast(Address ThisAddr,const CXXDynamicCastExpr * DCE)2237 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2238 const CXXDynamicCastExpr *DCE) {
2239 CGM.EmitExplicitCastExprType(DCE, this);
2240 QualType DestTy = DCE->getTypeAsWritten();
2241
2242 QualType SrcTy = DCE->getSubExpr()->getType();
2243
2244 // C++ [expr.dynamic.cast]p7:
2245 // If T is "pointer to cv void," then the result is a pointer to the most
2246 // derived object pointed to by v.
2247 const PointerType *DestPTy = DestTy->getAs<PointerType>();
2248
2249 bool isDynamicCastToVoid;
2250 QualType SrcRecordTy;
2251 QualType DestRecordTy;
2252 if (DestPTy) {
2253 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2254 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2255 DestRecordTy = DestPTy->getPointeeType();
2256 } else {
2257 isDynamicCastToVoid = false;
2258 SrcRecordTy = SrcTy;
2259 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2260 }
2261
2262 // C++ [class.cdtor]p5:
2263 // If the operand of the dynamic_cast refers to the object under
2264 // construction or destruction and the static type of the operand is not a
2265 // pointer to or object of the constructor or destructor’s own class or one
2266 // of its bases, the dynamic_cast results in undefined behavior.
2267 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2268 SrcRecordTy);
2269
2270 if (DCE->isAlwaysNull())
2271 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2272 return T;
2273
2274 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2275
2276 // C++ [expr.dynamic.cast]p4:
2277 // If the value of v is a null pointer value in the pointer case, the result
2278 // is the null pointer value of type T.
2279 bool ShouldNullCheckSrcValue =
2280 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2281 SrcRecordTy);
2282
2283 llvm::BasicBlock *CastNull = nullptr;
2284 llvm::BasicBlock *CastNotNull = nullptr;
2285 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2286
2287 if (ShouldNullCheckSrcValue) {
2288 CastNull = createBasicBlock("dynamic_cast.null");
2289 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2290
2291 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2292 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2293 EmitBlock(CastNotNull);
2294 }
2295
2296 llvm::Value *Value;
2297 if (isDynamicCastToVoid) {
2298 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2299 DestTy);
2300 } else {
2301 assert(DestRecordTy->isRecordType() &&
2302 "destination type must be a record type!");
2303 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2304 DestTy, DestRecordTy, CastEnd);
2305 CastNotNull = Builder.GetInsertBlock();
2306 }
2307
2308 if (ShouldNullCheckSrcValue) {
2309 EmitBranch(CastEnd);
2310
2311 EmitBlock(CastNull);
2312 EmitBranch(CastEnd);
2313 }
2314
2315 EmitBlock(CastEnd);
2316
2317 if (ShouldNullCheckSrcValue) {
2318 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2319 PHI->addIncoming(Value, CastNotNull);
2320 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2321
2322 Value = PHI;
2323 }
2324
2325 return Value;
2326 }
2327