1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44
45 /***/
46
ClangCallConvToLLVMCallConv(CallingConv CC)47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48 switch (CC) {
49 default: return llvm::CallingConv::C;
50 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54 case CC_Win64: return llvm::CallingConv::Win64;
55 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59 // TODO: Add support for __pascal to LLVM.
60 case CC_X86Pascal: return llvm::CallingConv::C;
61 // TODO: Add support for __vectorcall to LLVM.
62 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68 case CC_Swift: return llvm::CallingConv::Swift;
69 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
70 }
71 }
72
73 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
74 /// qualification. Either or both of RD and MD may be null. A null RD indicates
75 /// that there is no meaningful 'this' type, and a null MD can occur when
76 /// calling a method pointer.
DeriveThisType(const CXXRecordDecl * RD,const CXXMethodDecl * MD)77 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
78 const CXXMethodDecl *MD) {
79 QualType RecTy;
80 if (RD)
81 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
82 else
83 RecTy = Context.VoidTy;
84
85 if (MD)
86 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
87 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
88 }
89
90 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)91 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
92 return MD->getType()->getCanonicalTypeUnqualified()
93 .getAs<FunctionProtoType>();
94 }
95
96 /// Returns the "extra-canonicalized" return type, which discards
97 /// qualifiers on the return type. Codegen doesn't care about them,
98 /// and it makes ABI code a little easier to be able to assume that
99 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)100 static CanQualType GetReturnType(QualType RetTy) {
101 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
102 }
103
104 /// Arrange the argument and result information for a value of the given
105 /// unprototyped freestanding function type.
106 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)107 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
108 // When translating an unprototyped function type, always use a
109 // variadic type.
110 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
111 /*instanceMethod=*/false,
112 /*chainCall=*/false, None,
113 FTNP->getExtInfo(), {}, RequiredArgs(0));
114 }
115
addExtParameterInfosForCall(llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)116 static void addExtParameterInfosForCall(
117 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
118 const FunctionProtoType *proto,
119 unsigned prefixArgs,
120 unsigned totalArgs) {
121 assert(proto->hasExtParameterInfos());
122 assert(paramInfos.size() <= prefixArgs);
123 assert(proto->getNumParams() + prefixArgs <= totalArgs);
124
125 paramInfos.reserve(totalArgs);
126
127 // Add default infos for any prefix args that don't already have infos.
128 paramInfos.resize(prefixArgs);
129
130 // Add infos for the prototype.
131 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
132 paramInfos.push_back(ParamInfo);
133 // pass_object_size params have no parameter info.
134 if (ParamInfo.hasPassObjectSize())
135 paramInfos.emplace_back();
136 }
137
138 assert(paramInfos.size() <= totalArgs &&
139 "Did we forget to insert pass_object_size args?");
140 // Add default infos for the variadic and/or suffix arguments.
141 paramInfos.resize(totalArgs);
142 }
143
144 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
145 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & paramInfos,CanQual<FunctionProtoType> FPT)146 static void appendParameterTypes(const CodeGenTypes &CGT,
147 SmallVectorImpl<CanQualType> &prefix,
148 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
149 CanQual<FunctionProtoType> FPT) {
150 // Fast path: don't touch param info if we don't need to.
151 if (!FPT->hasExtParameterInfos()) {
152 assert(paramInfos.empty() &&
153 "We have paramInfos, but the prototype doesn't?");
154 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
155 return;
156 }
157
158 unsigned PrefixSize = prefix.size();
159 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
160 // parameters; the only thing that can change this is the presence of
161 // pass_object_size. So, we preallocate for the common case.
162 prefix.reserve(prefix.size() + FPT->getNumParams());
163
164 auto ExtInfos = FPT->getExtParameterInfos();
165 assert(ExtInfos.size() == FPT->getNumParams());
166 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
167 prefix.push_back(FPT->getParamType(I));
168 if (ExtInfos[I].hasPassObjectSize())
169 prefix.push_back(CGT.getContext().getSizeType());
170 }
171
172 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
173 prefix.size());
174 }
175
176 /// Arrange the LLVM function layout for a value of the given function
177 /// type, on top of any implicit parameters already stored.
178 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)179 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
180 SmallVectorImpl<CanQualType> &prefix,
181 CanQual<FunctionProtoType> FTP) {
182 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
183 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
184 // FIXME: Kill copy.
185 appendParameterTypes(CGT, prefix, paramInfos, FTP);
186 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
187
188 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
189 /*chainCall=*/false, prefix,
190 FTP->getExtInfo(), paramInfos,
191 Required);
192 }
193
194 /// Arrange the argument and result information for a value of the
195 /// given freestanding function type.
196 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)197 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
198 SmallVector<CanQualType, 16> argTypes;
199 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
200 FTP);
201 }
202
getCallingConventionForDecl(const ObjCMethodDecl * D,bool IsWindows)203 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
204 bool IsWindows) {
205 // Set the appropriate calling convention for the Function.
206 if (D->hasAttr<StdCallAttr>())
207 return CC_X86StdCall;
208
209 if (D->hasAttr<FastCallAttr>())
210 return CC_X86FastCall;
211
212 if (D->hasAttr<RegCallAttr>())
213 return CC_X86RegCall;
214
215 if (D->hasAttr<ThisCallAttr>())
216 return CC_X86ThisCall;
217
218 if (D->hasAttr<VectorCallAttr>())
219 return CC_X86VectorCall;
220
221 if (D->hasAttr<PascalAttr>())
222 return CC_X86Pascal;
223
224 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
225 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
226
227 if (D->hasAttr<AArch64VectorPcsAttr>())
228 return CC_AArch64VectorCall;
229
230 if (D->hasAttr<IntelOclBiccAttr>())
231 return CC_IntelOclBicc;
232
233 if (D->hasAttr<MSABIAttr>())
234 return IsWindows ? CC_C : CC_Win64;
235
236 if (D->hasAttr<SysVABIAttr>())
237 return IsWindows ? CC_X86_64SysV : CC_C;
238
239 if (D->hasAttr<PreserveMostAttr>())
240 return CC_PreserveMost;
241
242 if (D->hasAttr<PreserveAllAttr>())
243 return CC_PreserveAll;
244
245 return CC_C;
246 }
247
248 /// Arrange the argument and result information for a call to an
249 /// unknown C++ non-static member function of the given abstract type.
250 /// (A null RD means we don't have any meaningful "this" argument type,
251 /// so fall back to a generic pointer type).
252 /// The member function must be an ordinary function, i.e. not a
253 /// constructor or destructor.
254 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)255 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
256 const FunctionProtoType *FTP,
257 const CXXMethodDecl *MD) {
258 SmallVector<CanQualType, 16> argTypes;
259
260 // Add the 'this' pointer.
261 argTypes.push_back(DeriveThisType(RD, MD));
262
263 return ::arrangeLLVMFunctionInfo(
264 *this, true, argTypes,
265 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
266 }
267
268 /// Set calling convention for CUDA/HIP kernel.
setCUDAKernelCallingConvention(CanQualType & FTy,CodeGenModule & CGM,const FunctionDecl * FD)269 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
270 const FunctionDecl *FD) {
271 if (FD->hasAttr<CUDAGlobalAttr>()) {
272 const FunctionType *FT = FTy->getAs<FunctionType>();
273 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
274 FTy = FT->getCanonicalTypeUnqualified();
275 }
276 }
277
278 /// Arrange the argument and result information for a declaration or
279 /// definition of the given C++ non-static member function. The
280 /// member function must be an ordinary function, i.e. not a
281 /// constructor or destructor.
282 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)283 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
284 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
285 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
286
287 CanQualType FT = GetFormalType(MD).getAs<Type>();
288 setCUDAKernelCallingConvention(FT, CGM, MD);
289 auto prototype = FT.getAs<FunctionProtoType>();
290
291 if (MD->isInstance()) {
292 // The abstract case is perfectly fine.
293 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
294 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
295 }
296
297 return arrangeFreeFunctionType(prototype);
298 }
299
inheritingCtorHasParams(const InheritedConstructor & Inherited,CXXCtorType Type)300 bool CodeGenTypes::inheritingCtorHasParams(
301 const InheritedConstructor &Inherited, CXXCtorType Type) {
302 // Parameters are unnecessary if we're constructing a base class subobject
303 // and the inherited constructor lives in a virtual base.
304 return Type == Ctor_Complete ||
305 !Inherited.getShadowDecl()->constructsVirtualBase() ||
306 !Target.getCXXABI().hasConstructorVariants();
307 }
308
309 const CGFunctionInfo &
arrangeCXXStructorDeclaration(GlobalDecl GD)310 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
311 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
312
313 SmallVector<CanQualType, 16> argTypes;
314 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
315 argTypes.push_back(DeriveThisType(MD->getParent(), MD));
316
317 bool PassParams = true;
318
319 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
320 // A base class inheriting constructor doesn't get forwarded arguments
321 // needed to construct a virtual base (or base class thereof).
322 if (auto Inherited = CD->getInheritedConstructor())
323 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
324 }
325
326 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327
328 // Add the formal parameters.
329 if (PassParams)
330 appendParameterTypes(*this, argTypes, paramInfos, FTP);
331
332 CGCXXABI::AddedStructorArgCounts AddedArgs =
333 TheCXXABI.buildStructorSignature(GD, argTypes);
334 if (!paramInfos.empty()) {
335 // Note: prefix implies after the first param.
336 if (AddedArgs.Prefix)
337 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338 FunctionProtoType::ExtParameterInfo{});
339 if (AddedArgs.Suffix)
340 paramInfos.append(AddedArgs.Suffix,
341 FunctionProtoType::ExtParameterInfo{});
342 }
343
344 RequiredArgs required =
345 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346 : RequiredArgs::All);
347
348 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350 ? argTypes.front()
351 : TheCXXABI.hasMostDerivedReturn(GD)
352 ? CGM.getContext().VoidPtrTy
353 : Context.VoidTy;
354 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355 /*chainCall=*/false, argTypes, extInfo,
356 paramInfos, required);
357 }
358
359 static SmallVector<CanQualType, 16>
getArgTypesForCall(ASTContext & ctx,const CallArgList & args)360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361 SmallVector<CanQualType, 16> argTypes;
362 for (auto &arg : args)
363 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364 return argTypes;
365 }
366
367 static SmallVector<CanQualType, 16>
getArgTypesForDeclaration(ASTContext & ctx,const FunctionArgList & args)368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369 SmallVector<CanQualType, 16> argTypes;
370 for (auto &arg : args)
371 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372 return argTypes;
373 }
374
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
getExtParameterInfosForCall(const FunctionProtoType * proto,unsigned prefixArgs,unsigned totalArgs)376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377 unsigned prefixArgs, unsigned totalArgs) {
378 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379 if (proto->hasExtParameterInfos()) {
380 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381 }
382 return result;
383 }
384
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraPrefixArgs,unsigned ExtraSuffixArgs,bool PassProtoArgs)394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395 const CXXConstructorDecl *D,
396 CXXCtorType CtorKind,
397 unsigned ExtraPrefixArgs,
398 unsigned ExtraSuffixArgs,
399 bool PassProtoArgs) {
400 // FIXME: Kill copy.
401 SmallVector<CanQualType, 16> ArgTypes;
402 for (const auto &Arg : args)
403 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404
405 // +1 for implicit this, which should always be args[0].
406 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407
408 CanQual<FunctionProtoType> FPT = GetFormalType(D);
409 RequiredArgs Required = PassProtoArgs
410 ? RequiredArgs::forPrototypePlus(
411 FPT, TotalPrefixArgs + ExtraSuffixArgs)
412 : RequiredArgs::All;
413
414 GlobalDecl GD(D, CtorKind);
415 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
416 ? ArgTypes.front()
417 : TheCXXABI.hasMostDerivedReturn(GD)
418 ? CGM.getContext().VoidPtrTy
419 : Context.VoidTy;
420
421 FunctionType::ExtInfo Info = FPT->getExtInfo();
422 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
423 // If the prototype args are elided, we should only have ABI-specific args,
424 // which never have param info.
425 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
426 // ABI-specific suffix arguments are treated the same as variadic arguments.
427 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
428 ArgTypes.size());
429 }
430 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
431 /*chainCall=*/false, ArgTypes, Info,
432 ParamInfos, Required);
433 }
434
435 /// Arrange the argument and result information for the declaration or
436 /// definition of the given function.
437 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)438 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
439 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
440 if (MD->isInstance())
441 return arrangeCXXMethodDeclaration(MD);
442
443 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
444
445 assert(isa<FunctionType>(FTy));
446 setCUDAKernelCallingConvention(FTy, CGM, FD);
447
448 // When declaring a function without a prototype, always use a
449 // non-variadic type.
450 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
451 return arrangeLLVMFunctionInfo(
452 noProto->getReturnType(), /*instanceMethod=*/false,
453 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
454 }
455
456 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
457 }
458
459 /// Arrange the argument and result information for the declaration or
460 /// definition of an Objective-C method.
461 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)462 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
463 // It happens that this is the same as a call with no optional
464 // arguments, except also using the formal 'self' type.
465 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
466 }
467
468 /// Arrange the argument and result information for the function type
469 /// through which to perform a send to the given Objective-C method,
470 /// using the given receiver type. The receiver type is not always
471 /// the 'self' type of the method or even an Objective-C pointer type.
472 /// This is *not* the right method for actually performing such a
473 /// message send, due to the possibility of optional arguments.
474 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)475 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
476 QualType receiverType) {
477 SmallVector<CanQualType, 16> argTys;
478 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
479 argTys.push_back(Context.getCanonicalParamType(receiverType));
480 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
481 // FIXME: Kill copy?
482 for (const auto *I : MD->parameters()) {
483 argTys.push_back(Context.getCanonicalParamType(I->getType()));
484 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
485 I->hasAttr<NoEscapeAttr>());
486 extParamInfos.push_back(extParamInfo);
487 }
488
489 FunctionType::ExtInfo einfo;
490 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
491 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
492
493 if (getContext().getLangOpts().ObjCAutoRefCount &&
494 MD->hasAttr<NSReturnsRetainedAttr>())
495 einfo = einfo.withProducesResult(true);
496
497 RequiredArgs required =
498 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
499
500 return arrangeLLVMFunctionInfo(
501 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
502 /*chainCall=*/false, argTys, einfo, extParamInfos, required);
503 }
504
505 const CGFunctionInfo &
arrangeUnprototypedObjCMessageSend(QualType returnType,const CallArgList & args)506 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
507 const CallArgList &args) {
508 auto argTypes = getArgTypesForCall(Context, args);
509 FunctionType::ExtInfo einfo;
510
511 return arrangeLLVMFunctionInfo(
512 GetReturnType(returnType), /*instanceMethod=*/false,
513 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
514 }
515
516 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)517 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
518 // FIXME: Do we need to handle ObjCMethodDecl?
519 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
520
521 if (isa<CXXConstructorDecl>(GD.getDecl()) ||
522 isa<CXXDestructorDecl>(GD.getDecl()))
523 return arrangeCXXStructorDeclaration(GD);
524
525 return arrangeFunctionDeclaration(FD);
526 }
527
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs. Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
arrangeUnprototypedMustTailThunk(const CXXMethodDecl * MD)534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535 assert(MD->isVirtual() && "only methods have thunks");
536 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
538 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539 /*chainCall=*/false, ArgTys,
540 FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542
543 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545 CXXCtorType CT) {
546 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547
548 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549 SmallVector<CanQualType, 2> ArgTys;
550 const CXXRecordDecl *RD = CD->getParent();
551 ArgTys.push_back(DeriveThisType(RD, CD));
552 if (CT == Ctor_CopyingClosure)
553 ArgTys.push_back(*FTP->param_type_begin());
554 if (RD->getNumVBases() > 0)
555 ArgTys.push_back(Context.IntTy);
556 CallingConv CC = Context.getDefaultCallingConvention(
557 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559 /*chainCall=*/false, ArgTys,
560 FunctionType::ExtInfo(CC), {},
561 RequiredArgs::All);
562 }
563
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568 CodeGenModule &CGM,
569 const CallArgList &args,
570 const FunctionType *fnType,
571 unsigned numExtraRequiredArgs,
572 bool chainCall) {
573 assert(args.size() >= numExtraRequiredArgs);
574
575 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576
577 // In most cases, there are no optional arguments.
578 RequiredArgs required = RequiredArgs::All;
579
580 // If we have a variadic prototype, the required arguments are the
581 // extra prefix plus the arguments in the prototype.
582 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583 if (proto->isVariadic())
584 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
585
586 if (proto->hasExtParameterInfos())
587 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588 args.size());
589
590 // If we don't have a prototype at all, but we're supposed to
591 // explicitly use the variadic convention for unprototyped calls,
592 // treat all of the arguments as required but preserve the nominal
593 // possibility of variadics.
594 } else if (CGM.getTargetCodeGenInfo()
595 .isNoProtoCallVariadic(args,
596 cast<FunctionNoProtoType>(fnType))) {
597 required = RequiredArgs(args.size());
598 }
599
600 // FIXME: Kill copy.
601 SmallVector<CanQualType, 16> argTypes;
602 for (const auto &arg : args)
603 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605 /*instanceMethod=*/false, chainCall,
606 argTypes, fnType->getExtInfo(), paramInfos,
607 required);
608 }
609
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments. The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616 const FunctionType *fnType,
617 bool chainCall) {
618 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619 chainCall ? 1 : 0, chainCall);
620 }
621
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626 const FunctionType *fnType) {
627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628 /*chainCall=*/false);
629 }
630
631 const CGFunctionInfo &
arrangeBlockFunctionDeclaration(const FunctionProtoType * proto,const FunctionArgList & params)632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633 const FunctionArgList ¶ms) {
634 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635 auto argTypes = getArgTypesForDeclaration(Context, params);
636
637 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
638 /*instanceMethod*/ false, /*chainCall*/ false,
639 argTypes, proto->getExtInfo(), paramInfos,
640 RequiredArgs::forPrototypePlus(proto, 1));
641 }
642
643 const CGFunctionInfo &
arrangeBuiltinFunctionCall(QualType resultType,const CallArgList & args)644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645 const CallArgList &args) {
646 // FIXME: Kill copy.
647 SmallVector<CanQualType, 16> argTypes;
648 for (const auto &Arg : args)
649 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650 return arrangeLLVMFunctionInfo(
651 GetReturnType(resultType), /*instanceMethod=*/false,
652 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653 /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655
656 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(QualType resultType,const FunctionArgList & args)657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658 const FunctionArgList &args) {
659 auto argTypes = getArgTypesForDeclaration(Context, args);
660
661 return arrangeLLVMFunctionInfo(
662 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665
666 const CGFunctionInfo &
arrangeBuiltinFunctionDeclaration(CanQualType resultType,ArrayRef<CanQualType> argTypes)667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668 ArrayRef<CanQualType> argTypes) {
669 return arrangeLLVMFunctionInfo(
670 resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * proto,RequiredArgs required,unsigned numPrefixArgs)679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680 const FunctionProtoType *proto,
681 RequiredArgs required,
682 unsigned numPrefixArgs) {
683 assert(numPrefixArgs + 1 <= args.size() &&
684 "Emitting a call with less args than the required prefix?");
685 // Add one to account for `this`. It's a bit awkward here, but we don't count
686 // `this` in similar places elsewhere.
687 auto paramInfos =
688 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689
690 // FIXME: Kill copy.
691 auto argTypes = getArgTypesForCall(Context, args);
692
693 FunctionType::ExtInfo info = proto->getExtInfo();
694 return arrangeLLVMFunctionInfo(
695 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696 /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698
arrangeNullaryFunction()699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700 return arrangeLLVMFunctionInfo(
701 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702 None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704
705 const CGFunctionInfo &
arrangeCall(const CGFunctionInfo & signature,const CallArgList & args)706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707 const CallArgList &args) {
708 assert(signature.arg_size() <= args.size());
709 if (signature.arg_size() == args.size())
710 return signature;
711
712 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713 auto sigParamInfos = signature.getExtParameterInfos();
714 if (!sigParamInfos.empty()) {
715 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716 paramInfos.resize(args.size());
717 }
718
719 auto argTypes = getArgTypesForCall(Context, args);
720
721 assert(signature.getRequiredArgs().allowsOptionalArgs());
722 return arrangeLLVMFunctionInfo(signature.getReturnType(),
723 signature.isInstanceMethod(),
724 signature.isChainCall(),
725 argTypes,
726 signature.getExtInfo(),
727 paramInfos,
728 signature.getRequiredArgs());
729 }
730
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type. This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,RequiredArgs required)741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742 bool instanceMethod,
743 bool chainCall,
744 ArrayRef<CanQualType> argTypes,
745 FunctionType::ExtInfo info,
746 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747 RequiredArgs required) {
748 assert(llvm::all_of(argTypes,
749 [](CanQualType T) { return T.isCanonicalAsParam(); }));
750
751 // Lookup or create unique function info.
752 llvm::FoldingSetNodeID ID;
753 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754 required, resultType, argTypes);
755
756 void *insertPos = nullptr;
757 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758 if (FI)
759 return *FI;
760
761 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762
763 // Construct the function info. We co-allocate the ArgInfos.
764 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765 paramInfos, resultType, argTypes, required);
766 FunctionInfos.InsertNode(FI, insertPos);
767
768 bool inserted = FunctionsBeingProcessed.insert(FI).second;
769 (void)inserted;
770 assert(inserted && "Recursively being processed?");
771
772 // Compute ABI information.
773 if (CC == llvm::CallingConv::SPIR_KERNEL) {
774 // Force target independent argument handling for the host visible
775 // kernel functions.
776 computeSPIRKernelABIInfo(CGM, *FI);
777 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
778 swiftcall::computeABIInfo(CGM, *FI);
779 } else {
780 getABIInfo().computeInfo(*FI);
781 }
782
783 // Loop over all of the computed argument and return value info. If any of
784 // them are direct or extend without a specified coerce type, specify the
785 // default now.
786 ABIArgInfo &retInfo = FI->getReturnInfo();
787 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789
790 for (auto &I : FI->arguments())
791 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792 I.info.setCoerceToType(ConvertType(I.type));
793
794 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795 assert(erased && "Not in set?");
796
797 return *FI;
798 }
799
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,ArrayRef<ExtParameterInfo> paramInfos,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801 bool instanceMethod,
802 bool chainCall,
803 const FunctionType::ExtInfo &info,
804 ArrayRef<ExtParameterInfo> paramInfos,
805 CanQualType resultType,
806 ArrayRef<CanQualType> argTypes,
807 RequiredArgs required) {
808 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809 assert(!required.allowsOptionalArgs() ||
810 required.getNumRequiredArgs() <= argTypes.size());
811
812 void *buffer =
813 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
814 argTypes.size() + 1, paramInfos.size()));
815
816 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817 FI->CallingConvention = llvmCC;
818 FI->EffectiveCallingConvention = llvmCC;
819 FI->ASTCallingConvention = info.getCC();
820 FI->InstanceMethod = instanceMethod;
821 FI->ChainCall = chainCall;
822 FI->CmseNSCall = info.getCmseNSCall();
823 FI->NoReturn = info.getNoReturn();
824 FI->ReturnsRetained = info.getProducesResult();
825 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
826 FI->NoCfCheck = info.getNoCfCheck();
827 FI->Required = required;
828 FI->HasRegParm = info.getHasRegParm();
829 FI->RegParm = info.getRegParm();
830 FI->ArgStruct = nullptr;
831 FI->ArgStructAlign = 0;
832 FI->NumArgs = argTypes.size();
833 FI->HasExtParameterInfos = !paramInfos.empty();
834 FI->getArgsBuffer()[0].type = resultType;
835 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
836 FI->getArgsBuffer()[i + 1].type = argTypes[i];
837 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
838 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
839 return FI;
840 }
841
842 /***/
843
844 namespace {
845 // ABIArgInfo::Expand implementation.
846
847 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
848 struct TypeExpansion {
849 enum TypeExpansionKind {
850 // Elements of constant arrays are expanded recursively.
851 TEK_ConstantArray,
852 // Record fields are expanded recursively (but if record is a union, only
853 // the field with the largest size is expanded).
854 TEK_Record,
855 // For complex types, real and imaginary parts are expanded recursively.
856 TEK_Complex,
857 // All other types are not expandable.
858 TEK_None
859 };
860
861 const TypeExpansionKind Kind;
862
TypeExpansion__anond6ec6b980211::TypeExpansion863 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anond6ec6b980211::TypeExpansion864 virtual ~TypeExpansion() {}
865 };
866
867 struct ConstantArrayExpansion : TypeExpansion {
868 QualType EltTy;
869 uint64_t NumElts;
870
ConstantArrayExpansion__anond6ec6b980211::ConstantArrayExpansion871 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
872 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anond6ec6b980211::ConstantArrayExpansion873 static bool classof(const TypeExpansion *TE) {
874 return TE->Kind == TEK_ConstantArray;
875 }
876 };
877
878 struct RecordExpansion : TypeExpansion {
879 SmallVector<const CXXBaseSpecifier *, 1> Bases;
880
881 SmallVector<const FieldDecl *, 1> Fields;
882
RecordExpansion__anond6ec6b980211::RecordExpansion883 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
884 SmallVector<const FieldDecl *, 1> &&Fields)
885 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
886 Fields(std::move(Fields)) {}
classof__anond6ec6b980211::RecordExpansion887 static bool classof(const TypeExpansion *TE) {
888 return TE->Kind == TEK_Record;
889 }
890 };
891
892 struct ComplexExpansion : TypeExpansion {
893 QualType EltTy;
894
ComplexExpansion__anond6ec6b980211::ComplexExpansion895 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anond6ec6b980211::ComplexExpansion896 static bool classof(const TypeExpansion *TE) {
897 return TE->Kind == TEK_Complex;
898 }
899 };
900
901 struct NoExpansion : TypeExpansion {
NoExpansion__anond6ec6b980211::NoExpansion902 NoExpansion() : TypeExpansion(TEK_None) {}
classof__anond6ec6b980211::NoExpansion903 static bool classof(const TypeExpansion *TE) {
904 return TE->Kind == TEK_None;
905 }
906 };
907 } // namespace
908
909 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)910 getTypeExpansion(QualType Ty, const ASTContext &Context) {
911 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
912 return std::make_unique<ConstantArrayExpansion>(
913 AT->getElementType(), AT->getSize().getZExtValue());
914 }
915 if (const RecordType *RT = Ty->getAs<RecordType>()) {
916 SmallVector<const CXXBaseSpecifier *, 1> Bases;
917 SmallVector<const FieldDecl *, 1> Fields;
918 const RecordDecl *RD = RT->getDecl();
919 assert(!RD->hasFlexibleArrayMember() &&
920 "Cannot expand structure with flexible array.");
921 if (RD->isUnion()) {
922 // Unions can be here only in degenerative cases - all the fields are same
923 // after flattening. Thus we have to use the "largest" field.
924 const FieldDecl *LargestFD = nullptr;
925 CharUnits UnionSize = CharUnits::Zero();
926
927 for (const auto *FD : RD->fields()) {
928 if (FD->isZeroLengthBitField(Context))
929 continue;
930 assert(!FD->isBitField() &&
931 "Cannot expand structure with bit-field members.");
932 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
933 if (UnionSize < FieldSize) {
934 UnionSize = FieldSize;
935 LargestFD = FD;
936 }
937 }
938 if (LargestFD)
939 Fields.push_back(LargestFD);
940 } else {
941 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
942 assert(!CXXRD->isDynamicClass() &&
943 "cannot expand vtable pointers in dynamic classes");
944 for (const CXXBaseSpecifier &BS : CXXRD->bases())
945 Bases.push_back(&BS);
946 }
947
948 for (const auto *FD : RD->fields()) {
949 if (FD->isZeroLengthBitField(Context))
950 continue;
951 assert(!FD->isBitField() &&
952 "Cannot expand structure with bit-field members.");
953 Fields.push_back(FD);
954 }
955 }
956 return std::make_unique<RecordExpansion>(std::move(Bases),
957 std::move(Fields));
958 }
959 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
960 return std::make_unique<ComplexExpansion>(CT->getElementType());
961 }
962 return std::make_unique<NoExpansion>();
963 }
964
getExpansionSize(QualType Ty,const ASTContext & Context)965 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
966 auto Exp = getTypeExpansion(Ty, Context);
967 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
968 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
969 }
970 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
971 int Res = 0;
972 for (auto BS : RExp->Bases)
973 Res += getExpansionSize(BS->getType(), Context);
974 for (auto FD : RExp->Fields)
975 Res += getExpansionSize(FD->getType(), Context);
976 return Res;
977 }
978 if (isa<ComplexExpansion>(Exp.get()))
979 return 2;
980 assert(isa<NoExpansion>(Exp.get()));
981 return 1;
982 }
983
984 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)985 CodeGenTypes::getExpandedTypes(QualType Ty,
986 SmallVectorImpl<llvm::Type *>::iterator &TI) {
987 auto Exp = getTypeExpansion(Ty, Context);
988 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
989 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
990 getExpandedTypes(CAExp->EltTy, TI);
991 }
992 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
993 for (auto BS : RExp->Bases)
994 getExpandedTypes(BS->getType(), TI);
995 for (auto FD : RExp->Fields)
996 getExpandedTypes(FD->getType(), TI);
997 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
998 llvm::Type *EltTy = ConvertType(CExp->EltTy);
999 *TI++ = EltTy;
1000 *TI++ = EltTy;
1001 } else {
1002 assert(isa<NoExpansion>(Exp.get()));
1003 *TI++ = ConvertType(Ty);
1004 }
1005 }
1006
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)1007 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1008 ConstantArrayExpansion *CAE,
1009 Address BaseAddr,
1010 llvm::function_ref<void(Address)> Fn) {
1011 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1012 CharUnits EltAlign =
1013 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1014
1015 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1016 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1017 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1018 Fn(Address(EltAddr, EltAlign));
1019 }
1020 }
1021
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator & AI)1022 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1023 llvm::Function::arg_iterator &AI) {
1024 assert(LV.isSimple() &&
1025 "Unexpected non-simple lvalue during struct expansion.");
1026
1027 auto Exp = getTypeExpansion(Ty, getContext());
1028 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1029 forConstantArrayExpansion(
1030 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1031 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1032 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1033 });
1034 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1035 Address This = LV.getAddress(*this);
1036 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1037 // Perform a single step derived-to-base conversion.
1038 Address Base =
1039 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1040 /*NullCheckValue=*/false, SourceLocation());
1041 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1042
1043 // Recurse onto bases.
1044 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1045 }
1046 for (auto FD : RExp->Fields) {
1047 // FIXME: What are the right qualifiers here?
1048 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1049 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1050 }
1051 } else if (isa<ComplexExpansion>(Exp.get())) {
1052 auto realValue = &*AI++;
1053 auto imagValue = &*AI++;
1054 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1055 } else {
1056 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1057 // primitive store.
1058 assert(isa<NoExpansion>(Exp.get()));
1059 if (LV.isBitField())
1060 EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1061 else
1062 EmitStoreOfScalar(&*AI++, LV);
1063 }
1064 }
1065
ExpandTypeToArgs(QualType Ty,CallArg Arg,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)1066 void CodeGenFunction::ExpandTypeToArgs(
1067 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1068 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1069 auto Exp = getTypeExpansion(Ty, getContext());
1070 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1071 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1072 : Arg.getKnownRValue().getAggregateAddress();
1073 forConstantArrayExpansion(
1074 *this, CAExp, Addr, [&](Address EltAddr) {
1075 CallArg EltArg = CallArg(
1076 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1077 CAExp->EltTy);
1078 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1079 IRCallArgPos);
1080 });
1081 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1082 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1083 : Arg.getKnownRValue().getAggregateAddress();
1084 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1085 // Perform a single step derived-to-base conversion.
1086 Address Base =
1087 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1088 /*NullCheckValue=*/false, SourceLocation());
1089 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1090
1091 // Recurse onto bases.
1092 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1093 IRCallArgPos);
1094 }
1095
1096 LValue LV = MakeAddrLValue(This, Ty);
1097 for (auto FD : RExp->Fields) {
1098 CallArg FldArg =
1099 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1100 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1101 IRCallArgPos);
1102 }
1103 } else if (isa<ComplexExpansion>(Exp.get())) {
1104 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1105 IRCallArgs[IRCallArgPos++] = CV.first;
1106 IRCallArgs[IRCallArgPos++] = CV.second;
1107 } else {
1108 assert(isa<NoExpansion>(Exp.get()));
1109 auto RV = Arg.getKnownRValue();
1110 assert(RV.isScalar() &&
1111 "Unexpected non-scalar rvalue during struct expansion.");
1112
1113 // Insert a bitcast as needed.
1114 llvm::Value *V = RV.getScalarVal();
1115 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1116 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1117 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1118
1119 IRCallArgs[IRCallArgPos++] = V;
1120 }
1121 }
1122
1123 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign,const Twine & Name="tmp")1124 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1125 CharUnits MinAlign,
1126 const Twine &Name = "tmp") {
1127 // Don't use an alignment that's worse than what LLVM would prefer.
1128 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1129 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1130
1131 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1132 }
1133
1134 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1135 /// accessing some number of bytes out of it, try to gep into the struct to get
1136 /// at its inner goodness. Dive as deep as possible without entering an element
1137 /// with an in-memory size smaller than DstSize.
1138 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)1139 EnterStructPointerForCoercedAccess(Address SrcPtr,
1140 llvm::StructType *SrcSTy,
1141 uint64_t DstSize, CodeGenFunction &CGF) {
1142 // We can't dive into a zero-element struct.
1143 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1144
1145 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1146
1147 // If the first elt is at least as large as what we're looking for, or if the
1148 // first element is the same size as the whole struct, we can enter it. The
1149 // comparison must be made on the store size and not the alloca size. Using
1150 // the alloca size may overstate the size of the load.
1151 uint64_t FirstEltSize =
1152 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1153 if (FirstEltSize < DstSize &&
1154 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1155 return SrcPtr;
1156
1157 // GEP into the first element.
1158 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1159
1160 // If the first element is a struct, recurse.
1161 llvm::Type *SrcTy = SrcPtr.getElementType();
1162 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1163 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1164
1165 return SrcPtr;
1166 }
1167
1168 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1169 /// are either integers or pointers. This does a truncation of the value if it
1170 /// is too large or a zero extension if it is too small.
1171 ///
1172 /// This behaves as if the value were coerced through memory, so on big-endian
1173 /// targets the high bits are preserved in a truncation, while little-endian
1174 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)1175 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1176 llvm::Type *Ty,
1177 CodeGenFunction &CGF) {
1178 if (Val->getType() == Ty)
1179 return Val;
1180
1181 if (isa<llvm::PointerType>(Val->getType())) {
1182 // If this is Pointer->Pointer avoid conversion to and from int.
1183 if (isa<llvm::PointerType>(Ty))
1184 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1185
1186 // Convert the pointer to an integer so we can play with its width.
1187 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1188 }
1189
1190 llvm::Type *DestIntTy = Ty;
1191 if (isa<llvm::PointerType>(DestIntTy))
1192 DestIntTy = CGF.IntPtrTy;
1193
1194 if (Val->getType() != DestIntTy) {
1195 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1196 if (DL.isBigEndian()) {
1197 // Preserve the high bits on big-endian targets.
1198 // That is what memory coercion does.
1199 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1200 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1201
1202 if (SrcSize > DstSize) {
1203 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1204 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1205 } else {
1206 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1207 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1208 }
1209 } else {
1210 // Little-endian targets preserve the low bits. No shifts required.
1211 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1212 }
1213 }
1214
1215 if (isa<llvm::PointerType>(Ty))
1216 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1217 return Val;
1218 }
1219
1220
1221
1222 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1223 /// a pointer to an object of type \arg Ty, known to be aligned to
1224 /// \arg SrcAlign bytes.
1225 ///
1226 /// This safely handles the case when the src type is smaller than the
1227 /// destination type; in this situation the values of bits which not
1228 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)1229 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1230 CodeGenFunction &CGF) {
1231 llvm::Type *SrcTy = Src.getElementType();
1232
1233 // If SrcTy and Ty are the same, just do a load.
1234 if (SrcTy == Ty)
1235 return CGF.Builder.CreateLoad(Src);
1236
1237 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1238
1239 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1240 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1241 DstSize.getFixedSize(), CGF);
1242 SrcTy = Src.getElementType();
1243 }
1244
1245 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1246
1247 // If the source and destination are integer or pointer types, just do an
1248 // extension or truncation to the desired type.
1249 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1250 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1251 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1252 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1253 }
1254
1255 // If load is legal, just bitcast the src pointer.
1256 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1257 SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1258 // Generally SrcSize is never greater than DstSize, since this means we are
1259 // losing bits. However, this can happen in cases where the structure has
1260 // additional padding, for example due to a user specified alignment.
1261 //
1262 // FIXME: Assert that we aren't truncating non-padding bits when have access
1263 // to that information.
1264 Src = CGF.Builder.CreateBitCast(Src,
1265 Ty->getPointerTo(Src.getAddressSpace()));
1266 return CGF.Builder.CreateLoad(Src);
1267 }
1268
1269 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1270 // the types match, use the llvm.experimental.vector.insert intrinsic to
1271 // perform the conversion.
1272 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1273 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1274 if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1275 auto *Load = CGF.Builder.CreateLoad(Src);
1276 auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1277 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1278 return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero,
1279 "castScalableSve");
1280 }
1281 }
1282 }
1283
1284 // Otherwise do coercion through memory. This is stupid, but simple.
1285 Address Tmp =
1286 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1287 CGF.Builder.CreateMemCpy(
1288 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1289 Src.getAlignment().getAsAlign(),
1290 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1291 return CGF.Builder.CreateLoad(Tmp);
1292 }
1293
1294 // Function to store a first-class aggregate into memory. We prefer to
1295 // store the elements rather than the aggregate to be more friendly to
1296 // fast-isel.
1297 // FIXME: Do we need to recurse here?
EmitAggregateStore(llvm::Value * Val,Address Dest,bool DestIsVolatile)1298 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1299 bool DestIsVolatile) {
1300 // Prefer scalar stores to first-class aggregate stores.
1301 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1302 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1303 Address EltPtr = Builder.CreateStructGEP(Dest, i);
1304 llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1305 Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1306 }
1307 } else {
1308 Builder.CreateStore(Val, Dest, DestIsVolatile);
1309 }
1310 }
1311
1312 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1313 /// where the source and destination may have different types. The
1314 /// destination is known to be aligned to \arg DstAlign bytes.
1315 ///
1316 /// This safely handles the case when the src type is larger than the
1317 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1318 static void CreateCoercedStore(llvm::Value *Src,
1319 Address Dst,
1320 bool DstIsVolatile,
1321 CodeGenFunction &CGF) {
1322 llvm::Type *SrcTy = Src->getType();
1323 llvm::Type *DstTy = Dst.getElementType();
1324 if (SrcTy == DstTy) {
1325 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1326 return;
1327 }
1328
1329 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1330
1331 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1332 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1333 SrcSize.getFixedSize(), CGF);
1334 DstTy = Dst.getElementType();
1335 }
1336
1337 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1338 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1339 if (SrcPtrTy && DstPtrTy &&
1340 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1341 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1342 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1343 return;
1344 }
1345
1346 // If the source and destination are integer or pointer types, just do an
1347 // extension or truncation to the desired type.
1348 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1349 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1350 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1351 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1352 return;
1353 }
1354
1355 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1356
1357 // If store is legal, just bitcast the src pointer.
1358 if (isa<llvm::ScalableVectorType>(SrcTy) ||
1359 isa<llvm::ScalableVectorType>(DstTy) ||
1360 SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1361 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1362 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1363 } else {
1364 // Otherwise do coercion through memory. This is stupid, but
1365 // simple.
1366
1367 // Generally SrcSize is never greater than DstSize, since this means we are
1368 // losing bits. However, this can happen in cases where the structure has
1369 // additional padding, for example due to a user specified alignment.
1370 //
1371 // FIXME: Assert that we aren't truncating non-padding bits when have access
1372 // to that information.
1373 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1374 CGF.Builder.CreateStore(Src, Tmp);
1375 CGF.Builder.CreateMemCpy(
1376 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1377 Tmp.getAlignment().getAsAlign(),
1378 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1379 }
1380 }
1381
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1382 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1383 const ABIArgInfo &info) {
1384 if (unsigned offset = info.getDirectOffset()) {
1385 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1386 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1387 CharUnits::fromQuantity(offset));
1388 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1389 }
1390 return addr;
1391 }
1392
1393 namespace {
1394
1395 /// Encapsulates information about the way function arguments from
1396 /// CGFunctionInfo should be passed to actual LLVM IR function.
1397 class ClangToLLVMArgMapping {
1398 static const unsigned InvalidIndex = ~0U;
1399 unsigned InallocaArgNo;
1400 unsigned SRetArgNo;
1401 unsigned TotalIRArgs;
1402
1403 /// Arguments of LLVM IR function corresponding to single Clang argument.
1404 struct IRArgs {
1405 unsigned PaddingArgIndex;
1406 // Argument is expanded to IR arguments at positions
1407 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1408 unsigned FirstArgIndex;
1409 unsigned NumberOfArgs;
1410
IRArgs__anond6ec6b980511::ClangToLLVMArgMapping::IRArgs1411 IRArgs()
1412 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1413 NumberOfArgs(0) {}
1414 };
1415
1416 SmallVector<IRArgs, 8> ArgInfo;
1417
1418 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1419 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1420 bool OnlyRequiredArgs = false)
1421 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1422 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1423 construct(Context, FI, OnlyRequiredArgs);
1424 }
1425
hasInallocaArg() const1426 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1427 unsigned getInallocaArgNo() const {
1428 assert(hasInallocaArg());
1429 return InallocaArgNo;
1430 }
1431
hasSRetArg() const1432 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1433 unsigned getSRetArgNo() const {
1434 assert(hasSRetArg());
1435 return SRetArgNo;
1436 }
1437
totalIRArgs() const1438 unsigned totalIRArgs() const { return TotalIRArgs; }
1439
hasPaddingArg(unsigned ArgNo) const1440 bool hasPaddingArg(unsigned ArgNo) const {
1441 assert(ArgNo < ArgInfo.size());
1442 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1443 }
getPaddingArgNo(unsigned ArgNo) const1444 unsigned getPaddingArgNo(unsigned ArgNo) const {
1445 assert(hasPaddingArg(ArgNo));
1446 return ArgInfo[ArgNo].PaddingArgIndex;
1447 }
1448
1449 /// Returns index of first IR argument corresponding to ArgNo, and their
1450 /// quantity.
getIRArgs(unsigned ArgNo) const1451 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1452 assert(ArgNo < ArgInfo.size());
1453 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1454 ArgInfo[ArgNo].NumberOfArgs);
1455 }
1456
1457 private:
1458 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1459 bool OnlyRequiredArgs);
1460 };
1461
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1462 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1463 const CGFunctionInfo &FI,
1464 bool OnlyRequiredArgs) {
1465 unsigned IRArgNo = 0;
1466 bool SwapThisWithSRet = false;
1467 const ABIArgInfo &RetAI = FI.getReturnInfo();
1468
1469 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1470 SwapThisWithSRet = RetAI.isSRetAfterThis();
1471 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1472 }
1473
1474 unsigned ArgNo = 0;
1475 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1476 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1477 ++I, ++ArgNo) {
1478 assert(I != FI.arg_end());
1479 QualType ArgType = I->type;
1480 const ABIArgInfo &AI = I->info;
1481 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1482 auto &IRArgs = ArgInfo[ArgNo];
1483
1484 if (AI.getPaddingType())
1485 IRArgs.PaddingArgIndex = IRArgNo++;
1486
1487 switch (AI.getKind()) {
1488 case ABIArgInfo::Extend:
1489 case ABIArgInfo::Direct: {
1490 // FIXME: handle sseregparm someday...
1491 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1492 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1493 IRArgs.NumberOfArgs = STy->getNumElements();
1494 } else {
1495 IRArgs.NumberOfArgs = 1;
1496 }
1497 break;
1498 }
1499 case ABIArgInfo::Indirect:
1500 case ABIArgInfo::IndirectAliased:
1501 IRArgs.NumberOfArgs = 1;
1502 break;
1503 case ABIArgInfo::Ignore:
1504 case ABIArgInfo::InAlloca:
1505 // ignore and inalloca doesn't have matching LLVM parameters.
1506 IRArgs.NumberOfArgs = 0;
1507 break;
1508 case ABIArgInfo::CoerceAndExpand:
1509 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1510 break;
1511 case ABIArgInfo::Expand:
1512 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1513 break;
1514 }
1515
1516 if (IRArgs.NumberOfArgs > 0) {
1517 IRArgs.FirstArgIndex = IRArgNo;
1518 IRArgNo += IRArgs.NumberOfArgs;
1519 }
1520
1521 // Skip over the sret parameter when it comes second. We already handled it
1522 // above.
1523 if (IRArgNo == 1 && SwapThisWithSRet)
1524 IRArgNo++;
1525 }
1526 assert(ArgNo == ArgInfo.size());
1527
1528 if (FI.usesInAlloca())
1529 InallocaArgNo = IRArgNo++;
1530
1531 TotalIRArgs = IRArgNo;
1532 }
1533 } // namespace
1534
1535 /***/
1536
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1537 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1538 const auto &RI = FI.getReturnInfo();
1539 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1540 }
1541
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1542 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1543 return ReturnTypeUsesSRet(FI) &&
1544 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1545 }
1546
ReturnTypeUsesFPRet(QualType ResultType)1547 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1548 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1549 switch (BT->getKind()) {
1550 default:
1551 return false;
1552 case BuiltinType::Float:
1553 return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1554 case BuiltinType::Double:
1555 return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1556 case BuiltinType::LongDouble:
1557 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1558 }
1559 }
1560
1561 return false;
1562 }
1563
ReturnTypeUsesFP2Ret(QualType ResultType)1564 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1565 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1566 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1567 if (BT->getKind() == BuiltinType::LongDouble)
1568 return getTarget().useObjCFP2RetForComplexLongDouble();
1569 }
1570 }
1571
1572 return false;
1573 }
1574
GetFunctionType(GlobalDecl GD)1575 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1576 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1577 return GetFunctionType(FI);
1578 }
1579
1580 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1581 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1582
1583 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1584 (void)Inserted;
1585 assert(Inserted && "Recursively being processed?");
1586
1587 llvm::Type *resultType = nullptr;
1588 const ABIArgInfo &retAI = FI.getReturnInfo();
1589 switch (retAI.getKind()) {
1590 case ABIArgInfo::Expand:
1591 case ABIArgInfo::IndirectAliased:
1592 llvm_unreachable("Invalid ABI kind for return argument");
1593
1594 case ABIArgInfo::Extend:
1595 case ABIArgInfo::Direct:
1596 resultType = retAI.getCoerceToType();
1597 break;
1598
1599 case ABIArgInfo::InAlloca:
1600 if (retAI.getInAllocaSRet()) {
1601 // sret things on win32 aren't void, they return the sret pointer.
1602 QualType ret = FI.getReturnType();
1603 llvm::Type *ty = ConvertType(ret);
1604 unsigned addressSpace = Context.getTargetAddressSpace(ret);
1605 resultType = llvm::PointerType::get(ty, addressSpace);
1606 } else {
1607 resultType = llvm::Type::getVoidTy(getLLVMContext());
1608 }
1609 break;
1610
1611 case ABIArgInfo::Indirect:
1612 case ABIArgInfo::Ignore:
1613 resultType = llvm::Type::getVoidTy(getLLVMContext());
1614 break;
1615
1616 case ABIArgInfo::CoerceAndExpand:
1617 resultType = retAI.getUnpaddedCoerceAndExpandType();
1618 break;
1619 }
1620
1621 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1622 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1623
1624 // Add type for sret argument.
1625 if (IRFunctionArgs.hasSRetArg()) {
1626 QualType Ret = FI.getReturnType();
1627 llvm::Type *Ty = ConvertType(Ret);
1628 unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1629 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1630 llvm::PointerType::get(Ty, AddressSpace);
1631 }
1632
1633 // Add type for inalloca argument.
1634 if (IRFunctionArgs.hasInallocaArg()) {
1635 auto ArgStruct = FI.getArgStruct();
1636 assert(ArgStruct);
1637 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1638 }
1639
1640 // Add in all of the required arguments.
1641 unsigned ArgNo = 0;
1642 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1643 ie = it + FI.getNumRequiredArgs();
1644 for (; it != ie; ++it, ++ArgNo) {
1645 const ABIArgInfo &ArgInfo = it->info;
1646
1647 // Insert a padding type to ensure proper alignment.
1648 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1649 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1650 ArgInfo.getPaddingType();
1651
1652 unsigned FirstIRArg, NumIRArgs;
1653 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1654
1655 switch (ArgInfo.getKind()) {
1656 case ABIArgInfo::Ignore:
1657 case ABIArgInfo::InAlloca:
1658 assert(NumIRArgs == 0);
1659 break;
1660
1661 case ABIArgInfo::Indirect: {
1662 assert(NumIRArgs == 1);
1663 // indirect arguments are always on the stack, which is alloca addr space.
1664 llvm::Type *LTy = ConvertTypeForMem(it->type);
1665 ArgTypes[FirstIRArg] = LTy->getPointerTo(
1666 CGM.getDataLayout().getAllocaAddrSpace());
1667 break;
1668 }
1669 case ABIArgInfo::IndirectAliased: {
1670 assert(NumIRArgs == 1);
1671 llvm::Type *LTy = ConvertTypeForMem(it->type);
1672 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1673 break;
1674 }
1675 case ABIArgInfo::Extend:
1676 case ABIArgInfo::Direct: {
1677 // Fast-isel and the optimizer generally like scalar values better than
1678 // FCAs, so we flatten them if this is safe to do for this argument.
1679 llvm::Type *argType = ArgInfo.getCoerceToType();
1680 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1681 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1682 assert(NumIRArgs == st->getNumElements());
1683 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1684 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1685 } else {
1686 assert(NumIRArgs == 1);
1687 ArgTypes[FirstIRArg] = argType;
1688 }
1689 break;
1690 }
1691
1692 case ABIArgInfo::CoerceAndExpand: {
1693 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1694 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1695 *ArgTypesIter++ = EltTy;
1696 }
1697 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1698 break;
1699 }
1700
1701 case ABIArgInfo::Expand:
1702 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1703 getExpandedTypes(it->type, ArgTypesIter);
1704 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1705 break;
1706 }
1707 }
1708
1709 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1710 assert(Erased && "Not in set?");
1711
1712 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1713 }
1714
GetFunctionTypeForVTable(GlobalDecl GD)1715 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1716 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1717 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1718
1719 if (!isFuncTypeConvertible(FPT))
1720 return llvm::StructType::get(getLLVMContext());
1721
1722 return GetFunctionType(GD);
1723 }
1724
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1725 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1726 llvm::AttrBuilder &FuncAttrs,
1727 const FunctionProtoType *FPT) {
1728 if (!FPT)
1729 return;
1730
1731 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1732 FPT->isNothrow())
1733 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1734 }
1735
MayDropFunctionReturn(const ASTContext & Context,QualType ReturnType)1736 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1737 QualType ReturnType) {
1738 // We can't just discard the return value for a record type with a
1739 // complex destructor or a non-trivially copyable type.
1740 if (const RecordType *RT =
1741 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1742 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1743 return ClassDecl->hasTrivialDestructor();
1744 }
1745 return ReturnType.isTriviallyCopyableType(Context);
1746 }
1747
getDefaultFunctionAttributes(StringRef Name,bool HasOptnone,bool AttrOnCallSite,llvm::AttrBuilder & FuncAttrs)1748 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1749 bool HasOptnone,
1750 bool AttrOnCallSite,
1751 llvm::AttrBuilder &FuncAttrs) {
1752 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1753 if (!HasOptnone) {
1754 if (CodeGenOpts.OptimizeSize)
1755 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1756 if (CodeGenOpts.OptimizeSize == 2)
1757 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1758 }
1759
1760 if (CodeGenOpts.DisableRedZone)
1761 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1762 if (CodeGenOpts.IndirectTlsSegRefs)
1763 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1764 if (CodeGenOpts.NoImplicitFloat)
1765 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1766
1767 if (AttrOnCallSite) {
1768 // Attributes that should go on the call site only.
1769 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1770 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1771 if (!CodeGenOpts.TrapFuncName.empty())
1772 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1773 } else {
1774 StringRef FpKind;
1775 switch (CodeGenOpts.getFramePointer()) {
1776 case CodeGenOptions::FramePointerKind::None:
1777 FpKind = "none";
1778 break;
1779 case CodeGenOptions::FramePointerKind::NonLeaf:
1780 FpKind = "non-leaf";
1781 break;
1782 case CodeGenOptions::FramePointerKind::All:
1783 FpKind = "all";
1784 break;
1785 }
1786 FuncAttrs.addAttribute("frame-pointer", FpKind);
1787
1788 if (CodeGenOpts.LessPreciseFPMAD)
1789 FuncAttrs.addAttribute("less-precise-fpmad", "true");
1790
1791 if (CodeGenOpts.NullPointerIsValid)
1792 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1793
1794 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1795 FuncAttrs.addAttribute("denormal-fp-math",
1796 CodeGenOpts.FPDenormalMode.str());
1797 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1798 FuncAttrs.addAttribute(
1799 "denormal-fp-math-f32",
1800 CodeGenOpts.FP32DenormalMode.str());
1801 }
1802
1803 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1804 FuncAttrs.addAttribute("no-trapping-math", "true");
1805
1806 // Strict (compliant) code is the default, so only add this attribute to
1807 // indicate that we are trying to workaround a problem case.
1808 if (!CodeGenOpts.StrictFloatCastOverflow)
1809 FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1810
1811 // TODO: Are these all needed?
1812 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1813 if (LangOpts.NoHonorInfs)
1814 FuncAttrs.addAttribute("no-infs-fp-math", "true");
1815 if (LangOpts.NoHonorNaNs)
1816 FuncAttrs.addAttribute("no-nans-fp-math", "true");
1817 if (LangOpts.UnsafeFPMath)
1818 FuncAttrs.addAttribute("unsafe-fp-math", "true");
1819 if (CodeGenOpts.SoftFloat)
1820 FuncAttrs.addAttribute("use-soft-float", "true");
1821 FuncAttrs.addAttribute("stack-protector-buffer-size",
1822 llvm::utostr(CodeGenOpts.SSPBufferSize));
1823 if (LangOpts.NoSignedZero)
1824 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1825
1826 // TODO: Reciprocal estimate codegen options should apply to instructions?
1827 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1828 if (!Recips.empty())
1829 FuncAttrs.addAttribute("reciprocal-estimates",
1830 llvm::join(Recips, ","));
1831
1832 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1833 CodeGenOpts.PreferVectorWidth != "none")
1834 FuncAttrs.addAttribute("prefer-vector-width",
1835 CodeGenOpts.PreferVectorWidth);
1836
1837 if (CodeGenOpts.StackRealignment)
1838 FuncAttrs.addAttribute("stackrealign");
1839 if (CodeGenOpts.Backchain)
1840 FuncAttrs.addAttribute("backchain");
1841 if (CodeGenOpts.EnableSegmentedStacks)
1842 FuncAttrs.addAttribute("split-stack");
1843
1844 if (CodeGenOpts.SpeculativeLoadHardening)
1845 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1846 }
1847
1848 if (getLangOpts().assumeFunctionsAreConvergent()) {
1849 // Conservatively, mark all functions and calls in CUDA and OpenCL as
1850 // convergent (meaning, they may call an intrinsically convergent op, such
1851 // as __syncthreads() / barrier(), and so can't have certain optimizations
1852 // applied around them). LLVM will remove this attribute where it safely
1853 // can.
1854 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1855 }
1856
1857 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1858 // Exceptions aren't supported in CUDA device code.
1859 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1860 }
1861
1862 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1863 StringRef Var, Value;
1864 std::tie(Var, Value) = Attr.split('=');
1865 FuncAttrs.addAttribute(Var, Value);
1866 }
1867 }
1868
addDefaultFunctionDefinitionAttributes(llvm::Function & F)1869 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1870 llvm::AttrBuilder FuncAttrs;
1871 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1872 /* AttrOnCallSite = */ false, FuncAttrs);
1873 // TODO: call GetCPUAndFeaturesAttributes?
1874 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1875 }
1876
addDefaultFunctionDefinitionAttributes(llvm::AttrBuilder & attrs)1877 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1878 llvm::AttrBuilder &attrs) {
1879 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1880 /*for call*/ false, attrs);
1881 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1882 }
1883
addNoBuiltinAttributes(llvm::AttrBuilder & FuncAttrs,const LangOptions & LangOpts,const NoBuiltinAttr * NBA=nullptr)1884 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1885 const LangOptions &LangOpts,
1886 const NoBuiltinAttr *NBA = nullptr) {
1887 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1888 SmallString<32> AttributeName;
1889 AttributeName += "no-builtin-";
1890 AttributeName += BuiltinName;
1891 FuncAttrs.addAttribute(AttributeName);
1892 };
1893
1894 // First, handle the language options passed through -fno-builtin.
1895 if (LangOpts.NoBuiltin) {
1896 // -fno-builtin disables them all.
1897 FuncAttrs.addAttribute("no-builtins");
1898 return;
1899 }
1900
1901 // Then, add attributes for builtins specified through -fno-builtin-<name>.
1902 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1903
1904 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1905 // the source.
1906 if (!NBA)
1907 return;
1908
1909 // If there is a wildcard in the builtin names specified through the
1910 // attribute, disable them all.
1911 if (llvm::is_contained(NBA->builtinNames(), "*")) {
1912 FuncAttrs.addAttribute("no-builtins");
1913 return;
1914 }
1915
1916 // And last, add the rest of the builtin names.
1917 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1918 }
1919
DetermineNoUndef(QualType QTy,CodeGenTypes & Types,const llvm::DataLayout & DL,const ABIArgInfo & AI,bool CheckCoerce=true)1920 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
1921 const llvm::DataLayout &DL, const ABIArgInfo &AI,
1922 bool CheckCoerce = true) {
1923 llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
1924 if (AI.getKind() == ABIArgInfo::Indirect)
1925 return true;
1926 if (AI.getKind() == ABIArgInfo::Extend)
1927 return true;
1928 if (!DL.typeSizeEqualsStoreSize(Ty))
1929 // TODO: This will result in a modest amount of values not marked noundef
1930 // when they could be. We care about values that *invisibly* contain undef
1931 // bits from the perspective of LLVM IR.
1932 return false;
1933 if (CheckCoerce && AI.canHaveCoerceToType()) {
1934 llvm::Type *CoerceTy = AI.getCoerceToType();
1935 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
1936 DL.getTypeSizeInBits(Ty)))
1937 // If we're coercing to a type with a greater size than the canonical one,
1938 // we're introducing new undef bits.
1939 // Coercing to a type of smaller or equal size is ok, as we know that
1940 // there's no internal padding (typeSizeEqualsStoreSize).
1941 return false;
1942 }
1943 if (QTy->isExtIntType())
1944 return true;
1945 if (QTy->isReferenceType())
1946 return true;
1947 if (QTy->isNullPtrType())
1948 return false;
1949 if (QTy->isMemberPointerType())
1950 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
1951 // now, never mark them.
1952 return false;
1953 if (QTy->isScalarType()) {
1954 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
1955 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
1956 return true;
1957 }
1958 if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
1959 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
1960 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
1961 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
1962 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
1963 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
1964
1965 // TODO: Some structs may be `noundef`, in specific situations.
1966 return false;
1967 }
1968
1969 /// Construct the IR attribute list of a function or call.
1970 ///
1971 /// When adding an attribute, please consider where it should be handled:
1972 ///
1973 /// - getDefaultFunctionAttributes is for attributes that are essentially
1974 /// part of the global target configuration (but perhaps can be
1975 /// overridden on a per-function basis). Adding attributes there
1976 /// will cause them to also be set in frontends that build on Clang's
1977 /// target-configuration logic, as well as for code defined in library
1978 /// modules such as CUDA's libdevice.
1979 ///
1980 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1981 /// and adds declaration-specific, convention-specific, and
1982 /// frontend-specific logic. The last is of particular importance:
1983 /// attributes that restrict how the frontend generates code must be
1984 /// added here rather than getDefaultFunctionAttributes.
1985 ///
ConstructAttributeList(StringRef Name,const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,llvm::AttributeList & AttrList,unsigned & CallingConv,bool AttrOnCallSite,bool IsThunk)1986 void CodeGenModule::ConstructAttributeList(StringRef Name,
1987 const CGFunctionInfo &FI,
1988 CGCalleeInfo CalleeInfo,
1989 llvm::AttributeList &AttrList,
1990 unsigned &CallingConv,
1991 bool AttrOnCallSite, bool IsThunk) {
1992 llvm::AttrBuilder FuncAttrs;
1993 llvm::AttrBuilder RetAttrs;
1994
1995 // Collect function IR attributes from the CC lowering.
1996 // We'll collect the paramete and result attributes later.
1997 CallingConv = FI.getEffectiveCallingConvention();
1998 if (FI.isNoReturn())
1999 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2000 if (FI.isCmseNSCall())
2001 FuncAttrs.addAttribute("cmse_nonsecure_call");
2002
2003 // Collect function IR attributes from the callee prototype if we have one.
2004 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2005 CalleeInfo.getCalleeFunctionProtoType());
2006
2007 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2008
2009 bool HasOptnone = false;
2010 // The NoBuiltinAttr attached to the target FunctionDecl.
2011 const NoBuiltinAttr *NBA = nullptr;
2012
2013 // Collect function IR attributes based on declaration-specific
2014 // information.
2015 // FIXME: handle sseregparm someday...
2016 if (TargetDecl) {
2017 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2018 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2019 if (TargetDecl->hasAttr<NoThrowAttr>())
2020 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2021 if (TargetDecl->hasAttr<NoReturnAttr>())
2022 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2023 if (TargetDecl->hasAttr<ColdAttr>())
2024 FuncAttrs.addAttribute(llvm::Attribute::Cold);
2025 if (TargetDecl->hasAttr<HotAttr>())
2026 FuncAttrs.addAttribute(llvm::Attribute::Hot);
2027 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2028 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2029 if (TargetDecl->hasAttr<ConvergentAttr>())
2030 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2031
2032 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2033 AddAttributesFromFunctionProtoType(
2034 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2035 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2036 // A sane operator new returns a non-aliasing pointer.
2037 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2038 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2039 (Kind == OO_New || Kind == OO_Array_New))
2040 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2041 }
2042 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2043 const bool IsVirtualCall = MD && MD->isVirtual();
2044 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2045 // virtual function. These attributes are not inherited by overloads.
2046 if (!(AttrOnCallSite && IsVirtualCall)) {
2047 if (Fn->isNoReturn())
2048 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2049 NBA = Fn->getAttr<NoBuiltinAttr>();
2050 }
2051 // Only place nomerge attribute on call sites, never functions. This
2052 // allows it to work on indirect virtual function calls.
2053 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2054 FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2055
2056 // Add known guaranteed alignment for allocation functions.
2057 if (unsigned BuiltinID = Fn->getBuiltinID()) {
2058 switch (BuiltinID) {
2059 case Builtin::BIaligned_alloc:
2060 case Builtin::BIcalloc:
2061 case Builtin::BImalloc:
2062 case Builtin::BImemalign:
2063 case Builtin::BIrealloc:
2064 case Builtin::BIstrdup:
2065 case Builtin::BIstrndup:
2066 RetAttrs.addAlignmentAttr(Context.getTargetInfo().getNewAlign() /
2067 Context.getTargetInfo().getCharWidth());
2068 break;
2069 default:
2070 break;
2071 }
2072 }
2073 }
2074
2075 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2076 if (TargetDecl->hasAttr<ConstAttr>()) {
2077 FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
2078 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2079 // gcc specifies that 'const' functions have greater restrictions than
2080 // 'pure' functions, so they also cannot have infinite loops.
2081 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2082 } else if (TargetDecl->hasAttr<PureAttr>()) {
2083 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
2084 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2085 // gcc specifies that 'pure' functions cannot have infinite loops.
2086 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2087 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2088 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2089 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2090 }
2091 if (TargetDecl->hasAttr<RestrictAttr>())
2092 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2093 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2094 !CodeGenOpts.NullPointerIsValid)
2095 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2096 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2097 FuncAttrs.addAttribute("no_caller_saved_registers");
2098 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2099 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2100 if (TargetDecl->hasAttr<LeafAttr>())
2101 FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2102
2103 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2104 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2105 Optional<unsigned> NumElemsParam;
2106 if (AllocSize->getNumElemsParam().isValid())
2107 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2108 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2109 NumElemsParam);
2110 }
2111
2112 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2113 if (getLangOpts().OpenCLVersion <= 120) {
2114 // OpenCL v1.2 Work groups are always uniform
2115 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2116 } else {
2117 // OpenCL v2.0 Work groups may be whether uniform or not.
2118 // '-cl-uniform-work-group-size' compile option gets a hint
2119 // to the compiler that the global work-size be a multiple of
2120 // the work-group size specified to clEnqueueNDRangeKernel
2121 // (i.e. work groups are uniform).
2122 FuncAttrs.addAttribute("uniform-work-group-size",
2123 llvm::toStringRef(CodeGenOpts.UniformWGSize));
2124 }
2125 }
2126
2127 std::string AssumptionValueStr;
2128 for (AssumptionAttr *AssumptionA :
2129 TargetDecl->specific_attrs<AssumptionAttr>()) {
2130 std::string AS = AssumptionA->getAssumption().str();
2131 if (!AS.empty() && !AssumptionValueStr.empty())
2132 AssumptionValueStr += ",";
2133 AssumptionValueStr += AS;
2134 }
2135
2136 if (!AssumptionValueStr.empty())
2137 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2138 }
2139
2140 // Attach "no-builtins" attributes to:
2141 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2142 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2143 // The attributes can come from:
2144 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2145 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2146 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2147
2148 // Collect function IR attributes based on global settiings.
2149 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2150
2151 // Override some default IR attributes based on declaration-specific
2152 // information.
2153 if (TargetDecl) {
2154 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2155 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2156 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2157 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2158 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2159 FuncAttrs.removeAttribute("split-stack");
2160
2161 // Add NonLazyBind attribute to function declarations when -fno-plt
2162 // is used.
2163 // FIXME: what if we just haven't processed the function definition
2164 // yet, or if it's an external definition like C99 inline?
2165 if (CodeGenOpts.NoPLT) {
2166 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2167 if (!Fn->isDefined() && !AttrOnCallSite) {
2168 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2169 }
2170 }
2171 }
2172 }
2173
2174 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2175 // functions with -funique-internal-linkage-names.
2176 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2177 if (isa<FunctionDecl>(TargetDecl)) {
2178 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) ==
2179 llvm::GlobalValue::InternalLinkage)
2180 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2181 "selected");
2182 }
2183 }
2184
2185 // Collect non-call-site function IR attributes from declaration-specific
2186 // information.
2187 if (!AttrOnCallSite) {
2188 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2189 FuncAttrs.addAttribute("cmse_nonsecure_entry");
2190
2191 // Whether tail calls are enabled.
2192 auto shouldDisableTailCalls = [&] {
2193 // Should this be honored in getDefaultFunctionAttributes?
2194 if (CodeGenOpts.DisableTailCalls)
2195 return true;
2196
2197 if (!TargetDecl)
2198 return false;
2199
2200 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2201 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2202 return true;
2203
2204 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2205 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2206 if (!BD->doesNotEscape())
2207 return true;
2208 }
2209
2210 return false;
2211 };
2212 if (shouldDisableTailCalls())
2213 FuncAttrs.addAttribute("disable-tail-calls", "true");
2214
2215 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2216 // handles these separately to set them based on the global defaults.
2217 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2218 }
2219
2220 // Collect attributes from arguments and return values.
2221 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2222
2223 QualType RetTy = FI.getReturnType();
2224 const ABIArgInfo &RetAI = FI.getReturnInfo();
2225 const llvm::DataLayout &DL = getDataLayout();
2226
2227 // C++ explicitly makes returning undefined values UB. C's rule only applies
2228 // to used values, so we never mark them noundef for now.
2229 bool HasStrictReturn = getLangOpts().CPlusPlus;
2230 if (TargetDecl) {
2231 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl))
2232 HasStrictReturn &= !FDecl->isExternC();
2233 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl))
2234 // Function pointer
2235 HasStrictReturn &= !VDecl->isExternC();
2236 }
2237
2238 // We don't want to be too aggressive with the return checking, unless
2239 // it's explicit in the code opts or we're using an appropriate sanitizer.
2240 // Try to respect what the programmer intended.
2241 HasStrictReturn &= getCodeGenOpts().StrictReturn ||
2242 !MayDropFunctionReturn(getContext(), RetTy) ||
2243 getLangOpts().Sanitize.has(SanitizerKind::Memory) ||
2244 getLangOpts().Sanitize.has(SanitizerKind::Return);
2245
2246 // Determine if the return type could be partially undef
2247 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) {
2248 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2249 DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2250 RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2251 }
2252
2253 switch (RetAI.getKind()) {
2254 case ABIArgInfo::Extend:
2255 if (RetAI.isSignExt())
2256 RetAttrs.addAttribute(llvm::Attribute::SExt);
2257 else
2258 RetAttrs.addAttribute(llvm::Attribute::ZExt);
2259 LLVM_FALLTHROUGH;
2260 case ABIArgInfo::Direct:
2261 if (RetAI.getInReg())
2262 RetAttrs.addAttribute(llvm::Attribute::InReg);
2263 break;
2264 case ABIArgInfo::Ignore:
2265 break;
2266
2267 case ABIArgInfo::InAlloca:
2268 case ABIArgInfo::Indirect: {
2269 // inalloca and sret disable readnone and readonly
2270 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2271 .removeAttribute(llvm::Attribute::ReadNone);
2272 break;
2273 }
2274
2275 case ABIArgInfo::CoerceAndExpand:
2276 break;
2277
2278 case ABIArgInfo::Expand:
2279 case ABIArgInfo::IndirectAliased:
2280 llvm_unreachable("Invalid ABI kind for return argument");
2281 }
2282
2283 if (!IsThunk) {
2284 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2285 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2286 QualType PTy = RefTy->getPointeeType();
2287 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2288 RetAttrs.addDereferenceableAttr(
2289 getMinimumObjectSize(PTy).getQuantity());
2290 if (getContext().getTargetAddressSpace(PTy) == 0 &&
2291 !CodeGenOpts.NullPointerIsValid)
2292 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2293 if (PTy->isObjectType()) {
2294 llvm::Align Alignment =
2295 getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2296 RetAttrs.addAlignmentAttr(Alignment);
2297 }
2298 }
2299 }
2300
2301 bool hasUsedSRet = false;
2302 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2303
2304 // Attach attributes to sret.
2305 if (IRFunctionArgs.hasSRetArg()) {
2306 llvm::AttrBuilder SRETAttrs;
2307 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2308 hasUsedSRet = true;
2309 if (RetAI.getInReg())
2310 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2311 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2312 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2313 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2314 }
2315
2316 // Attach attributes to inalloca argument.
2317 if (IRFunctionArgs.hasInallocaArg()) {
2318 llvm::AttrBuilder Attrs;
2319 Attrs.addInAllocaAttr(FI.getArgStruct());
2320 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2321 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2322 }
2323
2324 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2325 // unless this is a thunk function.
2326 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2327 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2328 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2329 auto IRArgs = IRFunctionArgs.getIRArgs(0);
2330
2331 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2332
2333 llvm::AttrBuilder Attrs;
2334
2335 QualType ThisTy =
2336 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
2337
2338 if (!CodeGenOpts.NullPointerIsValid &&
2339 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2340 Attrs.addAttribute(llvm::Attribute::NonNull);
2341 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2342 } else {
2343 // FIXME dereferenceable should be correct here, regardless of
2344 // NullPointerIsValid. However, dereferenceable currently does not always
2345 // respect NullPointerIsValid and may imply nonnull and break the program.
2346 // See https://reviews.llvm.org/D66618 for discussions.
2347 Attrs.addDereferenceableOrNullAttr(
2348 getMinimumObjectSize(
2349 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2350 .getQuantity());
2351 }
2352
2353 llvm::Align Alignment =
2354 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2355 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2356 .getAsAlign();
2357 Attrs.addAlignmentAttr(Alignment);
2358
2359 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2360 }
2361
2362 unsigned ArgNo = 0;
2363 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2364 E = FI.arg_end();
2365 I != E; ++I, ++ArgNo) {
2366 QualType ParamType = I->type;
2367 const ABIArgInfo &AI = I->info;
2368 llvm::AttrBuilder Attrs;
2369
2370 // Add attribute for padding argument, if necessary.
2371 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2372 if (AI.getPaddingInReg()) {
2373 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2374 llvm::AttributeSet::get(
2375 getLLVMContext(),
2376 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2377 }
2378 }
2379
2380 // Decide whether the argument we're handling could be partially undef
2381 bool ArgNoUndef = DetermineNoUndef(ParamType, getTypes(), DL, AI);
2382 if (CodeGenOpts.EnableNoundefAttrs && ArgNoUndef)
2383 Attrs.addAttribute(llvm::Attribute::NoUndef);
2384
2385 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2386 // have the corresponding parameter variable. It doesn't make
2387 // sense to do it here because parameters are so messed up.
2388 switch (AI.getKind()) {
2389 case ABIArgInfo::Extend:
2390 if (AI.isSignExt())
2391 Attrs.addAttribute(llvm::Attribute::SExt);
2392 else
2393 Attrs.addAttribute(llvm::Attribute::ZExt);
2394 LLVM_FALLTHROUGH;
2395 case ABIArgInfo::Direct:
2396 if (ArgNo == 0 && FI.isChainCall())
2397 Attrs.addAttribute(llvm::Attribute::Nest);
2398 else if (AI.getInReg())
2399 Attrs.addAttribute(llvm::Attribute::InReg);
2400 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2401 break;
2402
2403 case ABIArgInfo::Indirect: {
2404 if (AI.getInReg())
2405 Attrs.addAttribute(llvm::Attribute::InReg);
2406
2407 if (AI.getIndirectByVal())
2408 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2409
2410 auto *Decl = ParamType->getAsRecordDecl();
2411 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2412 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2413 // When calling the function, the pointer passed in will be the only
2414 // reference to the underlying object. Mark it accordingly.
2415 Attrs.addAttribute(llvm::Attribute::NoAlias);
2416
2417 // TODO: We could add the byref attribute if not byval, but it would
2418 // require updating many testcases.
2419
2420 CharUnits Align = AI.getIndirectAlign();
2421
2422 // In a byval argument, it is important that the required
2423 // alignment of the type is honored, as LLVM might be creating a
2424 // *new* stack object, and needs to know what alignment to give
2425 // it. (Sometimes it can deduce a sensible alignment on its own,
2426 // but not if clang decides it must emit a packed struct, or the
2427 // user specifies increased alignment requirements.)
2428 //
2429 // This is different from indirect *not* byval, where the object
2430 // exists already, and the align attribute is purely
2431 // informative.
2432 assert(!Align.isZero());
2433
2434 // For now, only add this when we have a byval argument.
2435 // TODO: be less lazy about updating test cases.
2436 if (AI.getIndirectByVal())
2437 Attrs.addAlignmentAttr(Align.getQuantity());
2438
2439 // byval disables readnone and readonly.
2440 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2441 .removeAttribute(llvm::Attribute::ReadNone);
2442
2443 break;
2444 }
2445 case ABIArgInfo::IndirectAliased: {
2446 CharUnits Align = AI.getIndirectAlign();
2447 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2448 Attrs.addAlignmentAttr(Align.getQuantity());
2449 break;
2450 }
2451 case ABIArgInfo::Ignore:
2452 case ABIArgInfo::Expand:
2453 case ABIArgInfo::CoerceAndExpand:
2454 break;
2455
2456 case ABIArgInfo::InAlloca:
2457 // inalloca disables readnone and readonly.
2458 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2459 .removeAttribute(llvm::Attribute::ReadNone);
2460 continue;
2461 }
2462
2463 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2464 QualType PTy = RefTy->getPointeeType();
2465 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2466 Attrs.addDereferenceableAttr(
2467 getMinimumObjectSize(PTy).getQuantity());
2468 if (getContext().getTargetAddressSpace(PTy) == 0 &&
2469 !CodeGenOpts.NullPointerIsValid)
2470 Attrs.addAttribute(llvm::Attribute::NonNull);
2471 if (PTy->isObjectType()) {
2472 llvm::Align Alignment =
2473 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2474 Attrs.addAlignmentAttr(Alignment);
2475 }
2476 }
2477
2478 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2479 case ParameterABI::Ordinary:
2480 break;
2481
2482 case ParameterABI::SwiftIndirectResult: {
2483 // Add 'sret' if we haven't already used it for something, but
2484 // only if the result is void.
2485 if (!hasUsedSRet && RetTy->isVoidType()) {
2486 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2487 hasUsedSRet = true;
2488 }
2489
2490 // Add 'noalias' in either case.
2491 Attrs.addAttribute(llvm::Attribute::NoAlias);
2492
2493 // Add 'dereferenceable' and 'alignment'.
2494 auto PTy = ParamType->getPointeeType();
2495 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2496 auto info = getContext().getTypeInfoInChars(PTy);
2497 Attrs.addDereferenceableAttr(info.Width.getQuantity());
2498 Attrs.addAlignmentAttr(info.Align.getAsAlign());
2499 }
2500 break;
2501 }
2502
2503 case ParameterABI::SwiftErrorResult:
2504 Attrs.addAttribute(llvm::Attribute::SwiftError);
2505 break;
2506
2507 case ParameterABI::SwiftContext:
2508 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2509 break;
2510
2511 case ParameterABI::SwiftAsyncContext:
2512 Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2513 break;
2514 }
2515
2516 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2517 Attrs.addAttribute(llvm::Attribute::NoCapture);
2518
2519 if (Attrs.hasAttributes()) {
2520 unsigned FirstIRArg, NumIRArgs;
2521 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2522 for (unsigned i = 0; i < NumIRArgs; i++)
2523 ArgAttrs[FirstIRArg + i] =
2524 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2525 }
2526 }
2527 assert(ArgNo == FI.arg_size());
2528
2529 AttrList = llvm::AttributeList::get(
2530 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2531 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2532 }
2533
2534 /// An argument came in as a promoted argument; demote it back to its
2535 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)2536 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2537 const VarDecl *var,
2538 llvm::Value *value) {
2539 llvm::Type *varType = CGF.ConvertType(var->getType());
2540
2541 // This can happen with promotions that actually don't change the
2542 // underlying type, like the enum promotions.
2543 if (value->getType() == varType) return value;
2544
2545 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2546 && "unexpected promotion type");
2547
2548 if (isa<llvm::IntegerType>(varType))
2549 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2550
2551 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2552 }
2553
2554 /// Returns the attribute (either parameter attribute, or function
2555 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)2556 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2557 QualType ArgType, unsigned ArgNo) {
2558 // FIXME: __attribute__((nonnull)) can also be applied to:
2559 // - references to pointers, where the pointee is known to be
2560 // nonnull (apparently a Clang extension)
2561 // - transparent unions containing pointers
2562 // In the former case, LLVM IR cannot represent the constraint. In
2563 // the latter case, we have no guarantee that the transparent union
2564 // is in fact passed as a pointer.
2565 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2566 return nullptr;
2567 // First, check attribute on parameter itself.
2568 if (PVD) {
2569 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2570 return ParmNNAttr;
2571 }
2572 // Check function attributes.
2573 if (!FD)
2574 return nullptr;
2575 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2576 if (NNAttr->isNonNull(ArgNo))
2577 return NNAttr;
2578 }
2579 return nullptr;
2580 }
2581
2582 namespace {
2583 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2584 Address Temp;
2585 Address Arg;
CopyBackSwiftError__anond6ec6b980811::CopyBackSwiftError2586 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
Emit__anond6ec6b980811::CopyBackSwiftError2587 void Emit(CodeGenFunction &CGF, Flags flags) override {
2588 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2589 CGF.Builder.CreateStore(errorValue, Arg);
2590 }
2591 };
2592 }
2593
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)2594 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2595 llvm::Function *Fn,
2596 const FunctionArgList &Args) {
2597 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2598 // Naked functions don't have prologues.
2599 return;
2600
2601 // If this is an implicit-return-zero function, go ahead and
2602 // initialize the return value. TODO: it might be nice to have
2603 // a more general mechanism for this that didn't require synthesized
2604 // return statements.
2605 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2606 if (FD->hasImplicitReturnZero()) {
2607 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2608 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2609 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2610 Builder.CreateStore(Zero, ReturnValue);
2611 }
2612 }
2613
2614 // FIXME: We no longer need the types from FunctionArgList; lift up and
2615 // simplify.
2616
2617 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2618 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2619
2620 // If we're using inalloca, all the memory arguments are GEPs off of the last
2621 // parameter, which is a pointer to the complete memory area.
2622 Address ArgStruct = Address::invalid();
2623 if (IRFunctionArgs.hasInallocaArg()) {
2624 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2625 FI.getArgStructAlignment());
2626
2627 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2628 }
2629
2630 // Name the struct return parameter.
2631 if (IRFunctionArgs.hasSRetArg()) {
2632 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2633 AI->setName("agg.result");
2634 AI->addAttr(llvm::Attribute::NoAlias);
2635 }
2636
2637 // Track if we received the parameter as a pointer (indirect, byval, or
2638 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2639 // into a local alloca for us.
2640 SmallVector<ParamValue, 16> ArgVals;
2641 ArgVals.reserve(Args.size());
2642
2643 // Create a pointer value for every parameter declaration. This usually
2644 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2645 // any cleanups or do anything that might unwind. We do that separately, so
2646 // we can push the cleanups in the correct order for the ABI.
2647 assert(FI.arg_size() == Args.size() &&
2648 "Mismatch between function signature & arguments.");
2649 unsigned ArgNo = 0;
2650 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2651 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2652 i != e; ++i, ++info_it, ++ArgNo) {
2653 const VarDecl *Arg = *i;
2654 const ABIArgInfo &ArgI = info_it->info;
2655
2656 bool isPromoted =
2657 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2658 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2659 // the parameter is promoted. In this case we convert to
2660 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2661 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2662 assert(hasScalarEvaluationKind(Ty) ==
2663 hasScalarEvaluationKind(Arg->getType()));
2664
2665 unsigned FirstIRArg, NumIRArgs;
2666 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2667
2668 switch (ArgI.getKind()) {
2669 case ABIArgInfo::InAlloca: {
2670 assert(NumIRArgs == 0);
2671 auto FieldIndex = ArgI.getInAllocaFieldIndex();
2672 Address V =
2673 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2674 if (ArgI.getInAllocaIndirect())
2675 V = Address(Builder.CreateLoad(V),
2676 getContext().getTypeAlignInChars(Ty));
2677 ArgVals.push_back(ParamValue::forIndirect(V));
2678 break;
2679 }
2680
2681 case ABIArgInfo::Indirect:
2682 case ABIArgInfo::IndirectAliased: {
2683 assert(NumIRArgs == 1);
2684 Address ParamAddr =
2685 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2686
2687 if (!hasScalarEvaluationKind(Ty)) {
2688 // Aggregates and complex variables are accessed by reference. All we
2689 // need to do is realign the value, if requested. Also, if the address
2690 // may be aliased, copy it to ensure that the parameter variable is
2691 // mutable and has a unique adress, as C requires.
2692 Address V = ParamAddr;
2693 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2694 Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2695
2696 // Copy from the incoming argument pointer to the temporary with the
2697 // appropriate alignment.
2698 //
2699 // FIXME: We should have a common utility for generating an aggregate
2700 // copy.
2701 CharUnits Size = getContext().getTypeSizeInChars(Ty);
2702 Builder.CreateMemCpy(
2703 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2704 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2705 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2706 V = AlignedTemp;
2707 }
2708 ArgVals.push_back(ParamValue::forIndirect(V));
2709 } else {
2710 // Load scalar value from indirect argument.
2711 llvm::Value *V =
2712 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2713
2714 if (isPromoted)
2715 V = emitArgumentDemotion(*this, Arg, V);
2716 ArgVals.push_back(ParamValue::forDirect(V));
2717 }
2718 break;
2719 }
2720
2721 case ABIArgInfo::Extend:
2722 case ABIArgInfo::Direct: {
2723 auto AI = Fn->getArg(FirstIRArg);
2724 llvm::Type *LTy = ConvertType(Arg->getType());
2725
2726 // Prepare parameter attributes. So far, only attributes for pointer
2727 // parameters are prepared. See
2728 // http://llvm.org/docs/LangRef.html#paramattrs.
2729 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2730 ArgI.getCoerceToType()->isPointerTy()) {
2731 assert(NumIRArgs == 1);
2732
2733 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2734 // Set `nonnull` attribute if any.
2735 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2736 PVD->getFunctionScopeIndex()) &&
2737 !CGM.getCodeGenOpts().NullPointerIsValid)
2738 AI->addAttr(llvm::Attribute::NonNull);
2739
2740 QualType OTy = PVD->getOriginalType();
2741 if (const auto *ArrTy =
2742 getContext().getAsConstantArrayType(OTy)) {
2743 // A C99 array parameter declaration with the static keyword also
2744 // indicates dereferenceability, and if the size is constant we can
2745 // use the dereferenceable attribute (which requires the size in
2746 // bytes).
2747 if (ArrTy->getSizeModifier() == ArrayType::Static) {
2748 QualType ETy = ArrTy->getElementType();
2749 llvm::Align Alignment =
2750 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2751 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2752 uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2753 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2754 ArrSize) {
2755 llvm::AttrBuilder Attrs;
2756 Attrs.addDereferenceableAttr(
2757 getContext().getTypeSizeInChars(ETy).getQuantity() *
2758 ArrSize);
2759 AI->addAttrs(Attrs);
2760 } else if (getContext().getTargetInfo().getNullPointerValue(
2761 ETy.getAddressSpace()) == 0 &&
2762 !CGM.getCodeGenOpts().NullPointerIsValid) {
2763 AI->addAttr(llvm::Attribute::NonNull);
2764 }
2765 }
2766 } else if (const auto *ArrTy =
2767 getContext().getAsVariableArrayType(OTy)) {
2768 // For C99 VLAs with the static keyword, we don't know the size so
2769 // we can't use the dereferenceable attribute, but in addrspace(0)
2770 // we know that it must be nonnull.
2771 if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2772 QualType ETy = ArrTy->getElementType();
2773 llvm::Align Alignment =
2774 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2775 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2776 if (!getContext().getTargetAddressSpace(ETy) &&
2777 !CGM.getCodeGenOpts().NullPointerIsValid)
2778 AI->addAttr(llvm::Attribute::NonNull);
2779 }
2780 }
2781
2782 // Set `align` attribute if any.
2783 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2784 if (!AVAttr)
2785 if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2786 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2787 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2788 // If alignment-assumption sanitizer is enabled, we do *not* add
2789 // alignment attribute here, but emit normal alignment assumption,
2790 // so the UBSAN check could function.
2791 llvm::ConstantInt *AlignmentCI =
2792 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2793 unsigned AlignmentInt =
2794 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2795 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2796 AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2797 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2798 llvm::Align(AlignmentInt)));
2799 }
2800 }
2801 }
2802
2803 // Set 'noalias' if an argument type has the `restrict` qualifier.
2804 if (Arg->getType().isRestrictQualified())
2805 AI->addAttr(llvm::Attribute::NoAlias);
2806 }
2807
2808 // Prepare the argument value. If we have the trivial case, handle it
2809 // with no muss and fuss.
2810 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2811 ArgI.getCoerceToType() == ConvertType(Ty) &&
2812 ArgI.getDirectOffset() == 0) {
2813 assert(NumIRArgs == 1);
2814
2815 // LLVM expects swifterror parameters to be used in very restricted
2816 // ways. Copy the value into a less-restricted temporary.
2817 llvm::Value *V = AI;
2818 if (FI.getExtParameterInfo(ArgNo).getABI()
2819 == ParameterABI::SwiftErrorResult) {
2820 QualType pointeeTy = Ty->getPointeeType();
2821 assert(pointeeTy->isPointerType());
2822 Address temp =
2823 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2824 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2825 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2826 Builder.CreateStore(incomingErrorValue, temp);
2827 V = temp.getPointer();
2828
2829 // Push a cleanup to copy the value back at the end of the function.
2830 // The convention does not guarantee that the value will be written
2831 // back if the function exits with an unwind exception.
2832 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2833 }
2834
2835 // Ensure the argument is the correct type.
2836 if (V->getType() != ArgI.getCoerceToType())
2837 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2838
2839 if (isPromoted)
2840 V = emitArgumentDemotion(*this, Arg, V);
2841
2842 // Because of merging of function types from multiple decls it is
2843 // possible for the type of an argument to not match the corresponding
2844 // type in the function type. Since we are codegening the callee
2845 // in here, add a cast to the argument type.
2846 llvm::Type *LTy = ConvertType(Arg->getType());
2847 if (V->getType() != LTy)
2848 V = Builder.CreateBitCast(V, LTy);
2849
2850 ArgVals.push_back(ParamValue::forDirect(V));
2851 break;
2852 }
2853
2854 // VLST arguments are coerced to VLATs at the function boundary for
2855 // ABI consistency. If this is a VLST that was coerced to
2856 // a VLAT at the function boundary and the types match up, use
2857 // llvm.experimental.vector.extract to convert back to the original
2858 // VLST.
2859 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2860 auto *Coerced = Fn->getArg(FirstIRArg);
2861 if (auto *VecTyFrom =
2862 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2863 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2864 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2865
2866 assert(NumIRArgs == 1);
2867 Coerced->setName(Arg->getName() + ".coerce");
2868 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2869 VecTyTo, Coerced, Zero, "castFixedSve")));
2870 break;
2871 }
2872 }
2873 }
2874
2875 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2876 Arg->getName());
2877
2878 // Pointer to store into.
2879 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2880
2881 // Fast-isel and the optimizer generally like scalar values better than
2882 // FCAs, so we flatten them if this is safe to do for this argument.
2883 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2884 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2885 STy->getNumElements() > 1) {
2886 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2887 llvm::Type *DstTy = Ptr.getElementType();
2888 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2889
2890 Address AddrToStoreInto = Address::invalid();
2891 if (SrcSize <= DstSize) {
2892 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2893 } else {
2894 AddrToStoreInto =
2895 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2896 }
2897
2898 assert(STy->getNumElements() == NumIRArgs);
2899 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2900 auto AI = Fn->getArg(FirstIRArg + i);
2901 AI->setName(Arg->getName() + ".coerce" + Twine(i));
2902 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2903 Builder.CreateStore(AI, EltPtr);
2904 }
2905
2906 if (SrcSize > DstSize) {
2907 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2908 }
2909
2910 } else {
2911 // Simple case, just do a coerced store of the argument into the alloca.
2912 assert(NumIRArgs == 1);
2913 auto AI = Fn->getArg(FirstIRArg);
2914 AI->setName(Arg->getName() + ".coerce");
2915 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2916 }
2917
2918 // Match to what EmitParmDecl is expecting for this type.
2919 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2920 llvm::Value *V =
2921 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2922 if (isPromoted)
2923 V = emitArgumentDemotion(*this, Arg, V);
2924 ArgVals.push_back(ParamValue::forDirect(V));
2925 } else {
2926 ArgVals.push_back(ParamValue::forIndirect(Alloca));
2927 }
2928 break;
2929 }
2930
2931 case ABIArgInfo::CoerceAndExpand: {
2932 // Reconstruct into a temporary.
2933 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2934 ArgVals.push_back(ParamValue::forIndirect(alloca));
2935
2936 auto coercionType = ArgI.getCoerceAndExpandType();
2937 alloca = Builder.CreateElementBitCast(alloca, coercionType);
2938
2939 unsigned argIndex = FirstIRArg;
2940 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2941 llvm::Type *eltType = coercionType->getElementType(i);
2942 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2943 continue;
2944
2945 auto eltAddr = Builder.CreateStructGEP(alloca, i);
2946 auto elt = Fn->getArg(argIndex++);
2947 Builder.CreateStore(elt, eltAddr);
2948 }
2949 assert(argIndex == FirstIRArg + NumIRArgs);
2950 break;
2951 }
2952
2953 case ABIArgInfo::Expand: {
2954 // If this structure was expanded into multiple arguments then
2955 // we need to create a temporary and reconstruct it from the
2956 // arguments.
2957 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2958 LValue LV = MakeAddrLValue(Alloca, Ty);
2959 ArgVals.push_back(ParamValue::forIndirect(Alloca));
2960
2961 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2962 ExpandTypeFromArgs(Ty, LV, FnArgIter);
2963 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2964 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2965 auto AI = Fn->getArg(FirstIRArg + i);
2966 AI->setName(Arg->getName() + "." + Twine(i));
2967 }
2968 break;
2969 }
2970
2971 case ABIArgInfo::Ignore:
2972 assert(NumIRArgs == 0);
2973 // Initialize the local variable appropriately.
2974 if (!hasScalarEvaluationKind(Ty)) {
2975 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2976 } else {
2977 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2978 ArgVals.push_back(ParamValue::forDirect(U));
2979 }
2980 break;
2981 }
2982 }
2983
2984 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2985 for (int I = Args.size() - 1; I >= 0; --I)
2986 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2987 } else {
2988 for (unsigned I = 0, E = Args.size(); I != E; ++I)
2989 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2990 }
2991 }
2992
eraseUnusedBitCasts(llvm::Instruction * insn)2993 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2994 while (insn->use_empty()) {
2995 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2996 if (!bitcast) return;
2997
2998 // This is "safe" because we would have used a ConstantExpr otherwise.
2999 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3000 bitcast->eraseFromParent();
3001 }
3002 }
3003
3004 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3005 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3006 llvm::Value *result) {
3007 // We must be immediately followed the cast.
3008 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3009 if (BB->empty()) return nullptr;
3010 if (&BB->back() != result) return nullptr;
3011
3012 llvm::Type *resultType = result->getType();
3013
3014 // result is in a BasicBlock and is therefore an Instruction.
3015 llvm::Instruction *generator = cast<llvm::Instruction>(result);
3016
3017 SmallVector<llvm::Instruction *, 4> InstsToKill;
3018
3019 // Look for:
3020 // %generator = bitcast %type1* %generator2 to %type2*
3021 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3022 // We would have emitted this as a constant if the operand weren't
3023 // an Instruction.
3024 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3025
3026 // Require the generator to be immediately followed by the cast.
3027 if (generator->getNextNode() != bitcast)
3028 return nullptr;
3029
3030 InstsToKill.push_back(bitcast);
3031 }
3032
3033 // Look for:
3034 // %generator = call i8* @objc_retain(i8* %originalResult)
3035 // or
3036 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3037 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3038 if (!call) return nullptr;
3039
3040 bool doRetainAutorelease;
3041
3042 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3043 doRetainAutorelease = true;
3044 } else if (call->getCalledOperand() ==
3045 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3046 doRetainAutorelease = false;
3047
3048 // If we emitted an assembly marker for this call (and the
3049 // ARCEntrypoints field should have been set if so), go looking
3050 // for that call. If we can't find it, we can't do this
3051 // optimization. But it should always be the immediately previous
3052 // instruction, unless we needed bitcasts around the call.
3053 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3054 llvm::Instruction *prev = call->getPrevNode();
3055 assert(prev);
3056 if (isa<llvm::BitCastInst>(prev)) {
3057 prev = prev->getPrevNode();
3058 assert(prev);
3059 }
3060 assert(isa<llvm::CallInst>(prev));
3061 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3062 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3063 InstsToKill.push_back(prev);
3064 }
3065 } else {
3066 return nullptr;
3067 }
3068
3069 result = call->getArgOperand(0);
3070 InstsToKill.push_back(call);
3071
3072 // Keep killing bitcasts, for sanity. Note that we no longer care
3073 // about precise ordering as long as there's exactly one use.
3074 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3075 if (!bitcast->hasOneUse()) break;
3076 InstsToKill.push_back(bitcast);
3077 result = bitcast->getOperand(0);
3078 }
3079
3080 // Delete all the unnecessary instructions, from latest to earliest.
3081 for (auto *I : InstsToKill)
3082 I->eraseFromParent();
3083
3084 // Do the fused retain/autorelease if we were asked to.
3085 if (doRetainAutorelease)
3086 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3087
3088 // Cast back to the result type.
3089 return CGF.Builder.CreateBitCast(result, resultType);
3090 }
3091
3092 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)3093 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3094 llvm::Value *result) {
3095 // This is only applicable to a method with an immutable 'self'.
3096 const ObjCMethodDecl *method =
3097 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3098 if (!method) return nullptr;
3099 const VarDecl *self = method->getSelfDecl();
3100 if (!self->getType().isConstQualified()) return nullptr;
3101
3102 // Look for a retain call.
3103 llvm::CallInst *retainCall =
3104 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
3105 if (!retainCall || retainCall->getCalledOperand() !=
3106 CGF.CGM.getObjCEntrypoints().objc_retain)
3107 return nullptr;
3108
3109 // Look for an ordinary load of 'self'.
3110 llvm::Value *retainedValue = retainCall->getArgOperand(0);
3111 llvm::LoadInst *load =
3112 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3113 if (!load || load->isAtomic() || load->isVolatile() ||
3114 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3115 return nullptr;
3116
3117 // Okay! Burn it all down. This relies for correctness on the
3118 // assumption that the retain is emitted as part of the return and
3119 // that thereafter everything is used "linearly".
3120 llvm::Type *resultType = result->getType();
3121 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3122 assert(retainCall->use_empty());
3123 retainCall->eraseFromParent();
3124 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3125
3126 return CGF.Builder.CreateBitCast(load, resultType);
3127 }
3128
3129 /// Emit an ARC autorelease of the result of a function.
3130 ///
3131 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)3132 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3133 llvm::Value *result) {
3134 // If we're returning 'self', kill the initial retain. This is a
3135 // heuristic attempt to "encourage correctness" in the really unfortunate
3136 // case where we have a return of self during a dealloc and we desperately
3137 // need to avoid the possible autorelease.
3138 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3139 return self;
3140
3141 // At -O0, try to emit a fused retain/autorelease.
3142 if (CGF.shouldUseFusedARCCalls())
3143 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3144 return fused;
3145
3146 return CGF.EmitARCAutoreleaseReturnValue(result);
3147 }
3148
3149 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)3150 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3151 // Check if a User is a store which pointerOperand is the ReturnValue.
3152 // We are looking for stores to the ReturnValue, not for stores of the
3153 // ReturnValue to some other location.
3154 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3155 auto *SI = dyn_cast<llvm::StoreInst>(U);
3156 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3157 return nullptr;
3158 // These aren't actually possible for non-coerced returns, and we
3159 // only care about non-coerced returns on this code path.
3160 assert(!SI->isAtomic() && !SI->isVolatile());
3161 return SI;
3162 };
3163 // If there are multiple uses of the return-value slot, just check
3164 // for something immediately preceding the IP. Sometimes this can
3165 // happen with how we generate implicit-returns; it can also happen
3166 // with noreturn cleanups.
3167 if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3168 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3169 if (IP->empty()) return nullptr;
3170 llvm::Instruction *I = &IP->back();
3171
3172 // Skip lifetime markers
3173 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3174 IE = IP->rend();
3175 II != IE; ++II) {
3176 if (llvm::IntrinsicInst *Intrinsic =
3177 dyn_cast<llvm::IntrinsicInst>(&*II)) {
3178 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3179 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3180 ++II;
3181 if (II == IE)
3182 break;
3183 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3184 continue;
3185 }
3186 }
3187 I = &*II;
3188 break;
3189 }
3190
3191 return GetStoreIfValid(I);
3192 }
3193
3194 llvm::StoreInst *store =
3195 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3196 if (!store) return nullptr;
3197
3198 // Now do a first-and-dirty dominance check: just walk up the
3199 // single-predecessors chain from the current insertion point.
3200 llvm::BasicBlock *StoreBB = store->getParent();
3201 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3202 while (IP != StoreBB) {
3203 if (!(IP = IP->getSinglePredecessor()))
3204 return nullptr;
3205 }
3206
3207 // Okay, the store's basic block dominates the insertion point; we
3208 // can do our thing.
3209 return store;
3210 }
3211
3212 // Helper functions for EmitCMSEClearRecord
3213
3214 // Set the bits corresponding to a field having width `BitWidth` and located at
3215 // offset `BitOffset` (from the least significant bit) within a storage unit of
3216 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3217 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int BitOffset,int BitWidth,int CharWidth)3218 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3219 int BitWidth, int CharWidth) {
3220 assert(CharWidth <= 64);
3221 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3222
3223 int Pos = 0;
3224 if (BitOffset >= CharWidth) {
3225 Pos += BitOffset / CharWidth;
3226 BitOffset = BitOffset % CharWidth;
3227 }
3228
3229 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3230 if (BitOffset + BitWidth >= CharWidth) {
3231 Bits[Pos++] |= (Used << BitOffset) & Used;
3232 BitWidth -= CharWidth - BitOffset;
3233 BitOffset = 0;
3234 }
3235
3236 while (BitWidth >= CharWidth) {
3237 Bits[Pos++] = Used;
3238 BitWidth -= CharWidth;
3239 }
3240
3241 if (BitWidth > 0)
3242 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3243 }
3244
3245 // Set the bits corresponding to a field having width `BitWidth` and located at
3246 // offset `BitOffset` (from the least significant bit) within a storage unit of
3247 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3248 // `Bits` corresponds to one target byte. Use target endian layout.
setBitRange(SmallVectorImpl<uint64_t> & Bits,int StorageOffset,int StorageSize,int BitOffset,int BitWidth,int CharWidth,bool BigEndian)3249 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3250 int StorageSize, int BitOffset, int BitWidth,
3251 int CharWidth, bool BigEndian) {
3252
3253 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3254 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3255
3256 if (BigEndian)
3257 std::reverse(TmpBits.begin(), TmpBits.end());
3258
3259 for (uint64_t V : TmpBits)
3260 Bits[StorageOffset++] |= V;
3261 }
3262
3263 static void setUsedBits(CodeGenModule &, QualType, int,
3264 SmallVectorImpl<uint64_t> &);
3265
3266 // Set the bits in `Bits`, which correspond to the value representations of
3267 // the actual members of the record type `RTy`. Note that this function does
3268 // not handle base classes, virtual tables, etc, since they cannot happen in
3269 // CMSE function arguments or return. The bit mask corresponds to the target
3270 // memory layout, i.e. it's endian dependent.
setUsedBits(CodeGenModule & CGM,const RecordType * RTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3271 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3272 SmallVectorImpl<uint64_t> &Bits) {
3273 ASTContext &Context = CGM.getContext();
3274 int CharWidth = Context.getCharWidth();
3275 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3276 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3277 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3278
3279 int Idx = 0;
3280 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3281 const FieldDecl *F = *I;
3282
3283 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3284 F->getType()->isIncompleteArrayType())
3285 continue;
3286
3287 if (F->isBitField()) {
3288 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3289 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3290 BFI.StorageSize / CharWidth, BFI.Offset,
3291 BFI.Size, CharWidth,
3292 CGM.getDataLayout().isBigEndian());
3293 continue;
3294 }
3295
3296 setUsedBits(CGM, F->getType(),
3297 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3298 }
3299 }
3300
3301 // Set the bits in `Bits`, which correspond to the value representations of
3302 // the elements of an array type `ATy`.
setUsedBits(CodeGenModule & CGM,const ConstantArrayType * ATy,int Offset,SmallVectorImpl<uint64_t> & Bits)3303 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3304 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3305 const ASTContext &Context = CGM.getContext();
3306
3307 QualType ETy = Context.getBaseElementType(ATy);
3308 int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3309 SmallVector<uint64_t, 4> TmpBits(Size);
3310 setUsedBits(CGM, ETy, 0, TmpBits);
3311
3312 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3313 auto Src = TmpBits.begin();
3314 auto Dst = Bits.begin() + Offset + I * Size;
3315 for (int J = 0; J < Size; ++J)
3316 *Dst++ |= *Src++;
3317 }
3318 }
3319
3320 // Set the bits in `Bits`, which correspond to the value representations of
3321 // the type `QTy`.
setUsedBits(CodeGenModule & CGM,QualType QTy,int Offset,SmallVectorImpl<uint64_t> & Bits)3322 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3323 SmallVectorImpl<uint64_t> &Bits) {
3324 if (const auto *RTy = QTy->getAs<RecordType>())
3325 return setUsedBits(CGM, RTy, Offset, Bits);
3326
3327 ASTContext &Context = CGM.getContext();
3328 if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3329 return setUsedBits(CGM, ATy, Offset, Bits);
3330
3331 int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3332 if (Size <= 0)
3333 return;
3334
3335 std::fill_n(Bits.begin() + Offset, Size,
3336 (uint64_t(1) << Context.getCharWidth()) - 1);
3337 }
3338
buildMultiCharMask(const SmallVectorImpl<uint64_t> & Bits,int Pos,int Size,int CharWidth,bool BigEndian)3339 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3340 int Pos, int Size, int CharWidth,
3341 bool BigEndian) {
3342 assert(Size > 0);
3343 uint64_t Mask = 0;
3344 if (BigEndian) {
3345 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3346 ++P)
3347 Mask = (Mask << CharWidth) | *P;
3348 } else {
3349 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3350 do
3351 Mask = (Mask << CharWidth) | *--P;
3352 while (P != End);
3353 }
3354 return Mask;
3355 }
3356
3357 // Emit code to clear the bits in a record, which aren't a part of any user
3358 // declared member, when the record is a function return.
EmitCMSEClearRecord(llvm::Value * Src,llvm::IntegerType * ITy,QualType QTy)3359 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3360 llvm::IntegerType *ITy,
3361 QualType QTy) {
3362 assert(Src->getType() == ITy);
3363 assert(ITy->getScalarSizeInBits() <= 64);
3364
3365 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3366 int Size = DataLayout.getTypeStoreSize(ITy);
3367 SmallVector<uint64_t, 4> Bits(Size);
3368 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3369
3370 int CharWidth = CGM.getContext().getCharWidth();
3371 uint64_t Mask =
3372 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3373
3374 return Builder.CreateAnd(Src, Mask, "cmse.clear");
3375 }
3376
3377 // Emit code to clear the bits in a record, which aren't a part of any user
3378 // declared member, when the record is a function argument.
EmitCMSEClearRecord(llvm::Value * Src,llvm::ArrayType * ATy,QualType QTy)3379 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3380 llvm::ArrayType *ATy,
3381 QualType QTy) {
3382 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3383 int Size = DataLayout.getTypeStoreSize(ATy);
3384 SmallVector<uint64_t, 16> Bits(Size);
3385 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3386
3387 // Clear each element of the LLVM array.
3388 int CharWidth = CGM.getContext().getCharWidth();
3389 int CharsPerElt =
3390 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3391 int MaskIndex = 0;
3392 llvm::Value *R = llvm::UndefValue::get(ATy);
3393 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3394 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3395 DataLayout.isBigEndian());
3396 MaskIndex += CharsPerElt;
3397 llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3398 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3399 R = Builder.CreateInsertValue(R, T1, I);
3400 }
3401
3402 return R;
3403 }
3404
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)3405 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3406 bool EmitRetDbgLoc,
3407 SourceLocation EndLoc) {
3408 if (FI.isNoReturn()) {
3409 // Noreturn functions don't return.
3410 EmitUnreachable(EndLoc);
3411 return;
3412 }
3413
3414 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3415 // Naked functions don't have epilogues.
3416 Builder.CreateUnreachable();
3417 return;
3418 }
3419
3420 // Functions with no result always return void.
3421 if (!ReturnValue.isValid()) {
3422 Builder.CreateRetVoid();
3423 return;
3424 }
3425
3426 llvm::DebugLoc RetDbgLoc;
3427 llvm::Value *RV = nullptr;
3428 QualType RetTy = FI.getReturnType();
3429 const ABIArgInfo &RetAI = FI.getReturnInfo();
3430
3431 switch (RetAI.getKind()) {
3432 case ABIArgInfo::InAlloca:
3433 // Aggregrates get evaluated directly into the destination. Sometimes we
3434 // need to return the sret value in a register, though.
3435 assert(hasAggregateEvaluationKind(RetTy));
3436 if (RetAI.getInAllocaSRet()) {
3437 llvm::Function::arg_iterator EI = CurFn->arg_end();
3438 --EI;
3439 llvm::Value *ArgStruct = &*EI;
3440 llvm::Value *SRet = Builder.CreateStructGEP(
3441 EI->getType()->getPointerElementType(), ArgStruct,
3442 RetAI.getInAllocaFieldIndex());
3443 llvm::Type *Ty =
3444 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3445 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3446 }
3447 break;
3448
3449 case ABIArgInfo::Indirect: {
3450 auto AI = CurFn->arg_begin();
3451 if (RetAI.isSRetAfterThis())
3452 ++AI;
3453 switch (getEvaluationKind(RetTy)) {
3454 case TEK_Complex: {
3455 ComplexPairTy RT =
3456 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3457 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3458 /*isInit*/ true);
3459 break;
3460 }
3461 case TEK_Aggregate:
3462 // Do nothing; aggregrates get evaluated directly into the destination.
3463 break;
3464 case TEK_Scalar:
3465 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3466 MakeNaturalAlignAddrLValue(&*AI, RetTy),
3467 /*isInit*/ true);
3468 break;
3469 }
3470 break;
3471 }
3472
3473 case ABIArgInfo::Extend:
3474 case ABIArgInfo::Direct:
3475 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3476 RetAI.getDirectOffset() == 0) {
3477 // The internal return value temp always will have pointer-to-return-type
3478 // type, just do a load.
3479
3480 // If there is a dominating store to ReturnValue, we can elide
3481 // the load, zap the store, and usually zap the alloca.
3482 if (llvm::StoreInst *SI =
3483 findDominatingStoreToReturnValue(*this)) {
3484 // Reuse the debug location from the store unless there is
3485 // cleanup code to be emitted between the store and return
3486 // instruction.
3487 if (EmitRetDbgLoc && !AutoreleaseResult)
3488 RetDbgLoc = SI->getDebugLoc();
3489 // Get the stored value and nuke the now-dead store.
3490 RV = SI->getValueOperand();
3491 SI->eraseFromParent();
3492
3493 // Otherwise, we have to do a simple load.
3494 } else {
3495 RV = Builder.CreateLoad(ReturnValue);
3496 }
3497 } else {
3498 // If the value is offset in memory, apply the offset now.
3499 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3500
3501 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3502 }
3503
3504 // In ARC, end functions that return a retainable type with a call
3505 // to objc_autoreleaseReturnValue.
3506 if (AutoreleaseResult) {
3507 #ifndef NDEBUG
3508 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3509 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3510 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3511 // CurCodeDecl or BlockInfo.
3512 QualType RT;
3513
3514 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3515 RT = FD->getReturnType();
3516 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3517 RT = MD->getReturnType();
3518 else if (isa<BlockDecl>(CurCodeDecl))
3519 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3520 else
3521 llvm_unreachable("Unexpected function/method type");
3522
3523 assert(getLangOpts().ObjCAutoRefCount &&
3524 !FI.isReturnsRetained() &&
3525 RT->isObjCRetainableType());
3526 #endif
3527 RV = emitAutoreleaseOfResult(*this, RV);
3528 }
3529
3530 break;
3531
3532 case ABIArgInfo::Ignore:
3533 break;
3534
3535 case ABIArgInfo::CoerceAndExpand: {
3536 auto coercionType = RetAI.getCoerceAndExpandType();
3537
3538 // Load all of the coerced elements out into results.
3539 llvm::SmallVector<llvm::Value*, 4> results;
3540 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3541 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3542 auto coercedEltType = coercionType->getElementType(i);
3543 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3544 continue;
3545
3546 auto eltAddr = Builder.CreateStructGEP(addr, i);
3547 auto elt = Builder.CreateLoad(eltAddr);
3548 results.push_back(elt);
3549 }
3550
3551 // If we have one result, it's the single direct result type.
3552 if (results.size() == 1) {
3553 RV = results[0];
3554
3555 // Otherwise, we need to make a first-class aggregate.
3556 } else {
3557 // Construct a return type that lacks padding elements.
3558 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3559
3560 RV = llvm::UndefValue::get(returnType);
3561 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3562 RV = Builder.CreateInsertValue(RV, results[i], i);
3563 }
3564 }
3565 break;
3566 }
3567 case ABIArgInfo::Expand:
3568 case ABIArgInfo::IndirectAliased:
3569 llvm_unreachable("Invalid ABI kind for return argument");
3570 }
3571
3572 llvm::Instruction *Ret;
3573 if (RV) {
3574 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3575 // For certain return types, clear padding bits, as they may reveal
3576 // sensitive information.
3577 // Small struct/union types are passed as integers.
3578 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3579 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3580 RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3581 }
3582 EmitReturnValueCheck(RV);
3583 Ret = Builder.CreateRet(RV);
3584 } else {
3585 Ret = Builder.CreateRetVoid();
3586 }
3587
3588 if (RetDbgLoc)
3589 Ret->setDebugLoc(std::move(RetDbgLoc));
3590 }
3591
EmitReturnValueCheck(llvm::Value * RV)3592 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3593 // A current decl may not be available when emitting vtable thunks.
3594 if (!CurCodeDecl)
3595 return;
3596
3597 // If the return block isn't reachable, neither is this check, so don't emit
3598 // it.
3599 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3600 return;
3601
3602 ReturnsNonNullAttr *RetNNAttr = nullptr;
3603 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3604 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3605
3606 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3607 return;
3608
3609 // Prefer the returns_nonnull attribute if it's present.
3610 SourceLocation AttrLoc;
3611 SanitizerMask CheckKind;
3612 SanitizerHandler Handler;
3613 if (RetNNAttr) {
3614 assert(!requiresReturnValueNullabilityCheck() &&
3615 "Cannot check nullability and the nonnull attribute");
3616 AttrLoc = RetNNAttr->getLocation();
3617 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3618 Handler = SanitizerHandler::NonnullReturn;
3619 } else {
3620 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3621 if (auto *TSI = DD->getTypeSourceInfo())
3622 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3623 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3624 CheckKind = SanitizerKind::NullabilityReturn;
3625 Handler = SanitizerHandler::NullabilityReturn;
3626 }
3627
3628 SanitizerScope SanScope(this);
3629
3630 // Make sure the "return" source location is valid. If we're checking a
3631 // nullability annotation, make sure the preconditions for the check are met.
3632 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3633 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3634 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3635 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3636 if (requiresReturnValueNullabilityCheck())
3637 CanNullCheck =
3638 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3639 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3640 EmitBlock(Check);
3641
3642 // Now do the null check.
3643 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3644 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3645 llvm::Value *DynamicData[] = {SLocPtr};
3646 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3647
3648 EmitBlock(NoCheck);
3649
3650 #ifndef NDEBUG
3651 // The return location should not be used after the check has been emitted.
3652 ReturnLocation = Address::invalid();
3653 #endif
3654 }
3655
isInAllocaArgument(CGCXXABI & ABI,QualType type)3656 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3657 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3658 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3659 }
3660
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)3661 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3662 QualType Ty) {
3663 // FIXME: Generate IR in one pass, rather than going back and fixing up these
3664 // placeholders.
3665 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3666 llvm::Type *IRPtrTy = IRTy->getPointerTo();
3667 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3668
3669 // FIXME: When we generate this IR in one pass, we shouldn't need
3670 // this win32-specific alignment hack.
3671 CharUnits Align = CharUnits::fromQuantity(4);
3672 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3673
3674 return AggValueSlot::forAddr(Address(Placeholder, Align),
3675 Ty.getQualifiers(),
3676 AggValueSlot::IsNotDestructed,
3677 AggValueSlot::DoesNotNeedGCBarriers,
3678 AggValueSlot::IsNotAliased,
3679 AggValueSlot::DoesNotOverlap);
3680 }
3681
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)3682 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3683 const VarDecl *param,
3684 SourceLocation loc) {
3685 // StartFunction converted the ABI-lowered parameter(s) into a
3686 // local alloca. We need to turn that into an r-value suitable
3687 // for EmitCall.
3688 Address local = GetAddrOfLocalVar(param);
3689
3690 QualType type = param->getType();
3691
3692 if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3693 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3694 }
3695
3696 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3697 // but the argument needs to be the original pointer.
3698 if (type->isReferenceType()) {
3699 args.add(RValue::get(Builder.CreateLoad(local)), type);
3700
3701 // In ARC, move out of consumed arguments so that the release cleanup
3702 // entered by StartFunction doesn't cause an over-release. This isn't
3703 // optimal -O0 code generation, but it should get cleaned up when
3704 // optimization is enabled. This also assumes that delegate calls are
3705 // performed exactly once for a set of arguments, but that should be safe.
3706 } else if (getLangOpts().ObjCAutoRefCount &&
3707 param->hasAttr<NSConsumedAttr>() &&
3708 type->isObjCRetainableType()) {
3709 llvm::Value *ptr = Builder.CreateLoad(local);
3710 auto null =
3711 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3712 Builder.CreateStore(null, local);
3713 args.add(RValue::get(ptr), type);
3714
3715 // For the most part, we just need to load the alloca, except that
3716 // aggregate r-values are actually pointers to temporaries.
3717 } else {
3718 args.add(convertTempToRValue(local, type, loc), type);
3719 }
3720
3721 // Deactivate the cleanup for the callee-destructed param that was pushed.
3722 if (type->isRecordType() && !CurFuncIsThunk &&
3723 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3724 param->needsDestruction(getContext())) {
3725 EHScopeStack::stable_iterator cleanup =
3726 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3727 assert(cleanup.isValid() &&
3728 "cleanup for callee-destructed param not recorded");
3729 // This unreachable is a temporary marker which will be removed later.
3730 llvm::Instruction *isActive = Builder.CreateUnreachable();
3731 args.addArgCleanupDeactivation(cleanup, isActive);
3732 }
3733 }
3734
isProvablyNull(llvm::Value * addr)3735 static bool isProvablyNull(llvm::Value *addr) {
3736 return isa<llvm::ConstantPointerNull>(addr);
3737 }
3738
3739 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)3740 static void emitWriteback(CodeGenFunction &CGF,
3741 const CallArgList::Writeback &writeback) {
3742 const LValue &srcLV = writeback.Source;
3743 Address srcAddr = srcLV.getAddress(CGF);
3744 assert(!isProvablyNull(srcAddr.getPointer()) &&
3745 "shouldn't have writeback for provably null argument");
3746
3747 llvm::BasicBlock *contBB = nullptr;
3748
3749 // If the argument wasn't provably non-null, we need to null check
3750 // before doing the store.
3751 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3752 CGF.CGM.getDataLayout());
3753 if (!provablyNonNull) {
3754 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3755 contBB = CGF.createBasicBlock("icr.done");
3756
3757 llvm::Value *isNull =
3758 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3759 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3760 CGF.EmitBlock(writebackBB);
3761 }
3762
3763 // Load the value to writeback.
3764 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3765
3766 // Cast it back, in case we're writing an id to a Foo* or something.
3767 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3768 "icr.writeback-cast");
3769
3770 // Perform the writeback.
3771
3772 // If we have a "to use" value, it's something we need to emit a use
3773 // of. This has to be carefully threaded in: if it's done after the
3774 // release it's potentially undefined behavior (and the optimizer
3775 // will ignore it), and if it happens before the retain then the
3776 // optimizer could move the release there.
3777 if (writeback.ToUse) {
3778 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3779
3780 // Retain the new value. No need to block-copy here: the block's
3781 // being passed up the stack.
3782 value = CGF.EmitARCRetainNonBlock(value);
3783
3784 // Emit the intrinsic use here.
3785 CGF.EmitARCIntrinsicUse(writeback.ToUse);
3786
3787 // Load the old value (primitively).
3788 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3789
3790 // Put the new value in place (primitively).
3791 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3792
3793 // Release the old value.
3794 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3795
3796 // Otherwise, we can just do a normal lvalue store.
3797 } else {
3798 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3799 }
3800
3801 // Jump to the continuation block.
3802 if (!provablyNonNull)
3803 CGF.EmitBlock(contBB);
3804 }
3805
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)3806 static void emitWritebacks(CodeGenFunction &CGF,
3807 const CallArgList &args) {
3808 for (const auto &I : args.writebacks())
3809 emitWriteback(CGF, I);
3810 }
3811
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)3812 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3813 const CallArgList &CallArgs) {
3814 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3815 CallArgs.getCleanupsToDeactivate();
3816 // Iterate in reverse to increase the likelihood of popping the cleanup.
3817 for (const auto &I : llvm::reverse(Cleanups)) {
3818 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3819 I.IsActiveIP->eraseFromParent();
3820 }
3821 }
3822
maybeGetUnaryAddrOfOperand(const Expr * E)3823 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3824 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3825 if (uop->getOpcode() == UO_AddrOf)
3826 return uop->getSubExpr();
3827 return nullptr;
3828 }
3829
3830 /// Emit an argument that's being passed call-by-writeback. That is,
3831 /// we are passing the address of an __autoreleased temporary; it
3832 /// might be copy-initialized with the current value of the given
3833 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)3834 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3835 const ObjCIndirectCopyRestoreExpr *CRE) {
3836 LValue srcLV;
3837
3838 // Make an optimistic effort to emit the address as an l-value.
3839 // This can fail if the argument expression is more complicated.
3840 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3841 srcLV = CGF.EmitLValue(lvExpr);
3842
3843 // Otherwise, just emit it as a scalar.
3844 } else {
3845 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3846
3847 QualType srcAddrType =
3848 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3849 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3850 }
3851 Address srcAddr = srcLV.getAddress(CGF);
3852
3853 // The dest and src types don't necessarily match in LLVM terms
3854 // because of the crazy ObjC compatibility rules.
3855
3856 llvm::PointerType *destType =
3857 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3858
3859 // If the address is a constant null, just pass the appropriate null.
3860 if (isProvablyNull(srcAddr.getPointer())) {
3861 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3862 CRE->getType());
3863 return;
3864 }
3865
3866 // Create the temporary.
3867 Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3868 CGF.getPointerAlign(),
3869 "icr.temp");
3870 // Loading an l-value can introduce a cleanup if the l-value is __weak,
3871 // and that cleanup will be conditional if we can't prove that the l-value
3872 // isn't null, so we need to register a dominating point so that the cleanups
3873 // system will make valid IR.
3874 CodeGenFunction::ConditionalEvaluation condEval(CGF);
3875
3876 // Zero-initialize it if we're not doing a copy-initialization.
3877 bool shouldCopy = CRE->shouldCopy();
3878 if (!shouldCopy) {
3879 llvm::Value *null =
3880 llvm::ConstantPointerNull::get(
3881 cast<llvm::PointerType>(destType->getElementType()));
3882 CGF.Builder.CreateStore(null, temp);
3883 }
3884
3885 llvm::BasicBlock *contBB = nullptr;
3886 llvm::BasicBlock *originBB = nullptr;
3887
3888 // If the address is *not* known to be non-null, we need to switch.
3889 llvm::Value *finalArgument;
3890
3891 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3892 CGF.CGM.getDataLayout());
3893 if (provablyNonNull) {
3894 finalArgument = temp.getPointer();
3895 } else {
3896 llvm::Value *isNull =
3897 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3898
3899 finalArgument = CGF.Builder.CreateSelect(isNull,
3900 llvm::ConstantPointerNull::get(destType),
3901 temp.getPointer(), "icr.argument");
3902
3903 // If we need to copy, then the load has to be conditional, which
3904 // means we need control flow.
3905 if (shouldCopy) {
3906 originBB = CGF.Builder.GetInsertBlock();
3907 contBB = CGF.createBasicBlock("icr.cont");
3908 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3909 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3910 CGF.EmitBlock(copyBB);
3911 condEval.begin(CGF);
3912 }
3913 }
3914
3915 llvm::Value *valueToUse = nullptr;
3916
3917 // Perform a copy if necessary.
3918 if (shouldCopy) {
3919 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3920 assert(srcRV.isScalar());
3921
3922 llvm::Value *src = srcRV.getScalarVal();
3923 src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3924 "icr.cast");
3925
3926 // Use an ordinary store, not a store-to-lvalue.
3927 CGF.Builder.CreateStore(src, temp);
3928
3929 // If optimization is enabled, and the value was held in a
3930 // __strong variable, we need to tell the optimizer that this
3931 // value has to stay alive until we're doing the store back.
3932 // This is because the temporary is effectively unretained,
3933 // and so otherwise we can violate the high-level semantics.
3934 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3935 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3936 valueToUse = src;
3937 }
3938 }
3939
3940 // Finish the control flow if we needed it.
3941 if (shouldCopy && !provablyNonNull) {
3942 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3943 CGF.EmitBlock(contBB);
3944
3945 // Make a phi for the value to intrinsically use.
3946 if (valueToUse) {
3947 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3948 "icr.to-use");
3949 phiToUse->addIncoming(valueToUse, copyBB);
3950 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3951 originBB);
3952 valueToUse = phiToUse;
3953 }
3954
3955 condEval.end(CGF);
3956 }
3957
3958 args.addWriteback(srcLV, temp, valueToUse);
3959 args.add(RValue::get(finalArgument), CRE->getType());
3960 }
3961
allocateArgumentMemory(CodeGenFunction & CGF)3962 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3963 assert(!StackBase);
3964
3965 // Save the stack.
3966 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3967 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3968 }
3969
freeArgumentMemory(CodeGenFunction & CGF) const3970 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3971 if (StackBase) {
3972 // Restore the stack after the call.
3973 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3974 CGF.Builder.CreateCall(F, StackBase);
3975 }
3976 }
3977
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,AbstractCallee AC,unsigned ParmNum)3978 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3979 SourceLocation ArgLoc,
3980 AbstractCallee AC,
3981 unsigned ParmNum) {
3982 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3983 SanOpts.has(SanitizerKind::NullabilityArg)))
3984 return;
3985
3986 // The param decl may be missing in a variadic function.
3987 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3988 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3989
3990 // Prefer the nonnull attribute if it's present.
3991 const NonNullAttr *NNAttr = nullptr;
3992 if (SanOpts.has(SanitizerKind::NonnullAttribute))
3993 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3994
3995 bool CanCheckNullability = false;
3996 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3997 auto Nullability = PVD->getType()->getNullability(getContext());
3998 CanCheckNullability = Nullability &&
3999 *Nullability == NullabilityKind::NonNull &&
4000 PVD->getTypeSourceInfo();
4001 }
4002
4003 if (!NNAttr && !CanCheckNullability)
4004 return;
4005
4006 SourceLocation AttrLoc;
4007 SanitizerMask CheckKind;
4008 SanitizerHandler Handler;
4009 if (NNAttr) {
4010 AttrLoc = NNAttr->getLocation();
4011 CheckKind = SanitizerKind::NonnullAttribute;
4012 Handler = SanitizerHandler::NonnullArg;
4013 } else {
4014 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4015 CheckKind = SanitizerKind::NullabilityArg;
4016 Handler = SanitizerHandler::NullabilityArg;
4017 }
4018
4019 SanitizerScope SanScope(this);
4020 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4021 llvm::Constant *StaticData[] = {
4022 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4023 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4024 };
4025 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
4026 }
4027
4028 // Check if the call is going to use the inalloca convention. This needs to
4029 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4030 // later, so we can't check it directly.
hasInAllocaArgs(CodeGenModule & CGM,CallingConv ExplicitCC,ArrayRef<QualType> ArgTypes)4031 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4032 ArrayRef<QualType> ArgTypes) {
4033 // The Swift calling conventions don't go through the target-specific
4034 // argument classification, they never use inalloca.
4035 // TODO: Consider limiting inalloca use to only calling conventions supported
4036 // by MSVC.
4037 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4038 return false;
4039 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4040 return false;
4041 return llvm::any_of(ArgTypes, [&](QualType Ty) {
4042 return isInAllocaArgument(CGM.getCXXABI(), Ty);
4043 });
4044 }
4045
4046 #ifndef NDEBUG
4047 // Determine whether the given argument is an Objective-C method
4048 // that may have type parameters in its signature.
isObjCMethodWithTypeParams(const ObjCMethodDecl * method)4049 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4050 const DeclContext *dc = method->getDeclContext();
4051 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4052 return classDecl->getTypeParamListAsWritten();
4053 }
4054
4055 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4056 return catDecl->getTypeParamList();
4057 }
4058
4059 return false;
4060 }
4061 #endif
4062
4063 /// EmitCallArgs - Emit call arguments for a function.
EmitCallArgs(CallArgList & Args,PrototypeWrapper Prototype,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,AbstractCallee AC,unsigned ParamsToSkip,EvaluationOrder Order)4064 void CodeGenFunction::EmitCallArgs(
4065 CallArgList &Args, PrototypeWrapper Prototype,
4066 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4067 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4068 SmallVector<QualType, 16> ArgTypes;
4069
4070 assert((ParamsToSkip == 0 || Prototype.P) &&
4071 "Can't skip parameters if type info is not provided");
4072
4073 // This variable only captures *explicitly* written conventions, not those
4074 // applied by default via command line flags or target defaults, such as
4075 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4076 // require knowing if this is a C++ instance method or being able to see
4077 // unprototyped FunctionTypes.
4078 CallingConv ExplicitCC = CC_C;
4079
4080 // First, if a prototype was provided, use those argument types.
4081 bool IsVariadic = false;
4082 if (Prototype.P) {
4083 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4084 if (MD) {
4085 IsVariadic = MD->isVariadic();
4086 ExplicitCC = getCallingConventionForDecl(
4087 MD, CGM.getTarget().getTriple().isOSWindows());
4088 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4089 MD->param_type_end());
4090 } else {
4091 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4092 IsVariadic = FPT->isVariadic();
4093 ExplicitCC = FPT->getExtInfo().getCC();
4094 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4095 FPT->param_type_end());
4096 }
4097
4098 #ifndef NDEBUG
4099 // Check that the prototyped types match the argument expression types.
4100 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4101 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4102 for (QualType Ty : ArgTypes) {
4103 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4104 assert(
4105 (isGenericMethod || Ty->isVariablyModifiedType() ||
4106 Ty.getNonReferenceType()->isObjCRetainableType() ||
4107 getContext()
4108 .getCanonicalType(Ty.getNonReferenceType())
4109 .getTypePtr() ==
4110 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4111 "type mismatch in call argument!");
4112 ++Arg;
4113 }
4114
4115 // Either we've emitted all the call args, or we have a call to variadic
4116 // function.
4117 assert((Arg == ArgRange.end() || IsVariadic) &&
4118 "Extra arguments in non-variadic function!");
4119 #endif
4120 }
4121
4122 // If we still have any arguments, emit them using the type of the argument.
4123 for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
4124 ArgRange.end()))
4125 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4126 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4127
4128 // We must evaluate arguments from right to left in the MS C++ ABI,
4129 // because arguments are destroyed left to right in the callee. As a special
4130 // case, there are certain language constructs that require left-to-right
4131 // evaluation, and in those cases we consider the evaluation order requirement
4132 // to trump the "destruction order is reverse construction order" guarantee.
4133 bool LeftToRight =
4134 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4135 ? Order == EvaluationOrder::ForceLeftToRight
4136 : Order != EvaluationOrder::ForceRightToLeft;
4137
4138 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4139 RValue EmittedArg) {
4140 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4141 return;
4142 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4143 if (PS == nullptr)
4144 return;
4145
4146 const auto &Context = getContext();
4147 auto SizeTy = Context.getSizeType();
4148 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4149 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4150 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4151 EmittedArg.getScalarVal(),
4152 PS->isDynamic());
4153 Args.add(RValue::get(V), SizeTy);
4154 // If we're emitting args in reverse, be sure to do so with
4155 // pass_object_size, as well.
4156 if (!LeftToRight)
4157 std::swap(Args.back(), *(&Args.back() - 1));
4158 };
4159
4160 // Insert a stack save if we're going to need any inalloca args.
4161 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4162 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4163 "inalloca only supported on x86");
4164 Args.allocateArgumentMemory(*this);
4165 }
4166
4167 // Evaluate each argument in the appropriate order.
4168 size_t CallArgsStart = Args.size();
4169 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4170 unsigned Idx = LeftToRight ? I : E - I - 1;
4171 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4172 unsigned InitialArgSize = Args.size();
4173 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4174 // the argument and parameter match or the objc method is parameterized.
4175 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4176 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4177 ArgTypes[Idx]) ||
4178 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4179 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4180 "Argument and parameter types don't match");
4181 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4182 // In particular, we depend on it being the last arg in Args, and the
4183 // objectsize bits depend on there only being one arg if !LeftToRight.
4184 assert(InitialArgSize + 1 == Args.size() &&
4185 "The code below depends on only adding one arg per EmitCallArg");
4186 (void)InitialArgSize;
4187 // Since pointer argument are never emitted as LValue, it is safe to emit
4188 // non-null argument check for r-value only.
4189 if (!Args.back().hasLValue()) {
4190 RValue RVArg = Args.back().getKnownRValue();
4191 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4192 ParamsToSkip + Idx);
4193 // @llvm.objectsize should never have side-effects and shouldn't need
4194 // destruction/cleanups, so we can safely "emit" it after its arg,
4195 // regardless of right-to-leftness
4196 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4197 }
4198 }
4199
4200 if (!LeftToRight) {
4201 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4202 // IR function.
4203 std::reverse(Args.begin() + CallArgsStart, Args.end());
4204 }
4205 }
4206
4207 namespace {
4208
4209 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anond6ec6b980c11::DestroyUnpassedArg4210 DestroyUnpassedArg(Address Addr, QualType Ty)
4211 : Addr(Addr), Ty(Ty) {}
4212
4213 Address Addr;
4214 QualType Ty;
4215
Emit__anond6ec6b980c11::DestroyUnpassedArg4216 void Emit(CodeGenFunction &CGF, Flags flags) override {
4217 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4218 if (DtorKind == QualType::DK_cxx_destructor) {
4219 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4220 assert(!Dtor->isTrivial());
4221 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4222 /*Delegating=*/false, Addr, Ty);
4223 } else {
4224 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4225 }
4226 }
4227 };
4228
4229 struct DisableDebugLocationUpdates {
4230 CodeGenFunction &CGF;
4231 bool disabledDebugInfo;
DisableDebugLocationUpdates__anond6ec6b980c11::DisableDebugLocationUpdates4232 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4233 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4234 CGF.disableDebugInfo();
4235 }
~DisableDebugLocationUpdates__anond6ec6b980c11::DisableDebugLocationUpdates4236 ~DisableDebugLocationUpdates() {
4237 if (disabledDebugInfo)
4238 CGF.enableDebugInfo();
4239 }
4240 };
4241
4242 } // end anonymous namespace
4243
getRValue(CodeGenFunction & CGF) const4244 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4245 if (!HasLV)
4246 return RV;
4247 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4248 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4249 LV.isVolatile());
4250 IsUsed = true;
4251 return RValue::getAggregate(Copy.getAddress(CGF));
4252 }
4253
copyInto(CodeGenFunction & CGF,Address Addr) const4254 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4255 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4256 if (!HasLV && RV.isScalar())
4257 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4258 else if (!HasLV && RV.isComplex())
4259 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4260 else {
4261 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4262 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4263 // We assume that call args are never copied into subobjects.
4264 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4265 HasLV ? LV.isVolatileQualified()
4266 : RV.isVolatileQualified());
4267 }
4268 IsUsed = true;
4269 }
4270
EmitCallArg(CallArgList & args,const Expr * E,QualType type)4271 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4272 QualType type) {
4273 DisableDebugLocationUpdates Dis(*this, E);
4274 if (const ObjCIndirectCopyRestoreExpr *CRE
4275 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4276 assert(getLangOpts().ObjCAutoRefCount);
4277 return emitWritebackArg(*this, args, CRE);
4278 }
4279
4280 assert(type->isReferenceType() == E->isGLValue() &&
4281 "reference binding to unmaterialized r-value!");
4282
4283 if (E->isGLValue()) {
4284 assert(E->getObjectKind() == OK_Ordinary);
4285 return args.add(EmitReferenceBindingToExpr(E), type);
4286 }
4287
4288 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4289
4290 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4291 // However, we still have to push an EH-only cleanup in case we unwind before
4292 // we make it to the call.
4293 if (type->isRecordType() &&
4294 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4295 // If we're using inalloca, use the argument memory. Otherwise, use a
4296 // temporary.
4297 AggValueSlot Slot;
4298 if (args.isUsingInAlloca())
4299 Slot = createPlaceholderSlot(*this, type);
4300 else
4301 Slot = CreateAggTemp(type, "agg.tmp");
4302
4303 bool DestroyedInCallee = true, NeedsEHCleanup = true;
4304 if (const auto *RD = type->getAsCXXRecordDecl())
4305 DestroyedInCallee = RD->hasNonTrivialDestructor();
4306 else
4307 NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4308
4309 if (DestroyedInCallee)
4310 Slot.setExternallyDestructed();
4311
4312 EmitAggExpr(E, Slot);
4313 RValue RV = Slot.asRValue();
4314 args.add(RV, type);
4315
4316 if (DestroyedInCallee && NeedsEHCleanup) {
4317 // Create a no-op GEP between the placeholder and the cleanup so we can
4318 // RAUW it successfully. It also serves as a marker of the first
4319 // instruction where the cleanup is active.
4320 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4321 type);
4322 // This unreachable is a temporary marker which will be removed later.
4323 llvm::Instruction *IsActive = Builder.CreateUnreachable();
4324 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4325 }
4326 return;
4327 }
4328
4329 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4330 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4331 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4332 assert(L.isSimple());
4333 args.addUncopiedAggregate(L, type);
4334 return;
4335 }
4336
4337 args.add(EmitAnyExprToTemp(E), type);
4338 }
4339
getVarArgType(const Expr * Arg)4340 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4341 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4342 // implicitly widens null pointer constants that are arguments to varargs
4343 // functions to pointer-sized ints.
4344 if (!getTarget().getTriple().isOSWindows())
4345 return Arg->getType();
4346
4347 if (Arg->getType()->isIntegerType() &&
4348 getContext().getTypeSize(Arg->getType()) <
4349 getContext().getTargetInfo().getPointerWidth(0) &&
4350 Arg->isNullPointerConstant(getContext(),
4351 Expr::NPC_ValueDependentIsNotNull)) {
4352 return getContext().getIntPtrType();
4353 }
4354
4355 return Arg->getType();
4356 }
4357
4358 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4359 // optimizer it can aggressively ignore unwind edges.
4360 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)4361 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4362 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4363 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4364 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4365 CGM.getNoObjCARCExceptionsMetadata());
4366 }
4367
4368 /// Emits a call to the given no-arguments nounwind runtime function.
4369 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4370 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4371 const llvm::Twine &name) {
4372 return EmitNounwindRuntimeCall(callee, None, name);
4373 }
4374
4375 /// Emits a call to the given nounwind runtime function.
4376 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4377 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4378 ArrayRef<llvm::Value *> args,
4379 const llvm::Twine &name) {
4380 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4381 call->setDoesNotThrow();
4382 return call;
4383 }
4384
4385 /// Emits a simple call (never an invoke) to the given no-arguments
4386 /// runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,const llvm::Twine & name)4387 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4388 const llvm::Twine &name) {
4389 return EmitRuntimeCall(callee, None, name);
4390 }
4391
4392 // Calls which may throw must have operand bundles indicating which funclet
4393 // they are nested within.
4394 SmallVector<llvm::OperandBundleDef, 1>
getBundlesForFunclet(llvm::Value * Callee)4395 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4396 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4397 // There is no need for a funclet operand bundle if we aren't inside a
4398 // funclet.
4399 if (!CurrentFuncletPad)
4400 return BundleList;
4401
4402 // Skip intrinsics which cannot throw.
4403 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4404 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4405 return BundleList;
4406
4407 BundleList.emplace_back("funclet", CurrentFuncletPad);
4408 return BundleList;
4409 }
4410
4411 /// Emits a simple call (never an invoke) to the given runtime function.
EmitRuntimeCall(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)4412 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4413 ArrayRef<llvm::Value *> args,
4414 const llvm::Twine &name) {
4415 llvm::CallInst *call = Builder.CreateCall(
4416 callee, args, getBundlesForFunclet(callee.getCallee()), name);
4417 call->setCallingConv(getRuntimeCC());
4418 return call;
4419 }
4420
4421 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args)4422 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4423 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4424 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4425 getBundlesForFunclet(callee.getCallee());
4426
4427 if (getInvokeDest()) {
4428 llvm::InvokeInst *invoke =
4429 Builder.CreateInvoke(callee,
4430 getUnreachableBlock(),
4431 getInvokeDest(),
4432 args,
4433 BundleList);
4434 invoke->setDoesNotReturn();
4435 invoke->setCallingConv(getRuntimeCC());
4436 } else {
4437 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4438 call->setDoesNotReturn();
4439 call->setCallingConv(getRuntimeCC());
4440 Builder.CreateUnreachable();
4441 }
4442 }
4443
4444 /// Emits a call or invoke instruction to the given nullary runtime function.
4445 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,const Twine & name)4446 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4447 const Twine &name) {
4448 return EmitRuntimeCallOrInvoke(callee, None, name);
4449 }
4450
4451 /// Emits a call or invoke instruction to the given runtime function.
4452 llvm::CallBase *
EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,ArrayRef<llvm::Value * > args,const Twine & name)4453 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4454 ArrayRef<llvm::Value *> args,
4455 const Twine &name) {
4456 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4457 call->setCallingConv(getRuntimeCC());
4458 return call;
4459 }
4460
4461 /// Emits a call or invoke instruction to the given function, depending
4462 /// on the current state of the EH stack.
EmitCallOrInvoke(llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)4463 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4464 ArrayRef<llvm::Value *> Args,
4465 const Twine &Name) {
4466 llvm::BasicBlock *InvokeDest = getInvokeDest();
4467 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4468 getBundlesForFunclet(Callee.getCallee());
4469
4470 llvm::CallBase *Inst;
4471 if (!InvokeDest)
4472 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4473 else {
4474 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4475 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4476 Name);
4477 EmitBlock(ContBB);
4478 }
4479
4480 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4481 // optimizer it can aggressively ignore unwind edges.
4482 if (CGM.getLangOpts().ObjCAutoRefCount)
4483 AddObjCARCExceptionMetadata(Inst);
4484
4485 return Inst;
4486 }
4487
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)4488 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4489 llvm::Value *New) {
4490 DeferredReplacements.push_back(
4491 std::make_pair(llvm::WeakTrackingVH(Old), New));
4492 }
4493
4494 namespace {
4495
4496 /// Specify given \p NewAlign as the alignment of return value attribute. If
4497 /// such attribute already exists, re-set it to the maximal one of two options.
4498 LLVM_NODISCARD llvm::AttributeList
maybeRaiseRetAlignmentAttribute(llvm::LLVMContext & Ctx,const llvm::AttributeList & Attrs,llvm::Align NewAlign)4499 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4500 const llvm::AttributeList &Attrs,
4501 llvm::Align NewAlign) {
4502 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4503 if (CurAlign >= NewAlign)
4504 return Attrs;
4505 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4506 return Attrs
4507 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4508 llvm::Attribute::AttrKind::Alignment)
4509 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4510 }
4511
4512 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4513 protected:
4514 CodeGenFunction &CGF;
4515
4516 /// We do nothing if this is, or becomes, nullptr.
4517 const AlignedAttrTy *AA = nullptr;
4518
4519 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4520 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4521
AbstractAssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4522 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4523 : CGF(CGF_) {
4524 if (!FuncDecl)
4525 return;
4526 AA = FuncDecl->getAttr<AlignedAttrTy>();
4527 }
4528
4529 public:
4530 /// If we can, materialize the alignment as an attribute on return value.
4531 LLVM_NODISCARD llvm::AttributeList
TryEmitAsCallSiteAttribute(const llvm::AttributeList & Attrs)4532 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4533 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4534 return Attrs;
4535 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4536 if (!AlignmentCI)
4537 return Attrs;
4538 // We may legitimately have non-power-of-2 alignment here.
4539 // If so, this is UB land, emit it via `@llvm.assume` instead.
4540 if (!AlignmentCI->getValue().isPowerOf2())
4541 return Attrs;
4542 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4543 CGF.getLLVMContext(), Attrs,
4544 llvm::Align(
4545 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4546 AA = nullptr; // We're done. Disallow doing anything else.
4547 return NewAttrs;
4548 }
4549
4550 /// Emit alignment assumption.
4551 /// This is a general fallback that we take if either there is an offset,
4552 /// or the alignment is variable or we are sanitizing for alignment.
EmitAsAnAssumption(SourceLocation Loc,QualType RetTy,RValue & Ret)4553 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4554 if (!AA)
4555 return;
4556 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4557 AA->getLocation(), Alignment, OffsetCI);
4558 AA = nullptr; // We're done. Disallow doing anything else.
4559 }
4560 };
4561
4562 /// Helper data structure to emit `AssumeAlignedAttr`.
4563 class AssumeAlignedAttrEmitter final
4564 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4565 public:
AssumeAlignedAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl)4566 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4567 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4568 if (!AA)
4569 return;
4570 // It is guaranteed that the alignment/offset are constants.
4571 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4572 if (Expr *Offset = AA->getOffset()) {
4573 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4574 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4575 OffsetCI = nullptr;
4576 }
4577 }
4578 };
4579
4580 /// Helper data structure to emit `AllocAlignAttr`.
4581 class AllocAlignAttrEmitter final
4582 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4583 public:
AllocAlignAttrEmitter(CodeGenFunction & CGF_,const Decl * FuncDecl,const CallArgList & CallArgs)4584 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4585 const CallArgList &CallArgs)
4586 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4587 if (!AA)
4588 return;
4589 // Alignment may or may not be a constant, and that is okay.
4590 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4591 .getRValue(CGF)
4592 .getScalarVal();
4593 }
4594 };
4595
4596 } // namespace
4597
EmitCall(const CGFunctionInfo & CallInfo,const CGCallee & Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,llvm::CallBase ** callOrInvoke,bool IsMustTail,SourceLocation Loc)4598 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4599 const CGCallee &Callee,
4600 ReturnValueSlot ReturnValue,
4601 const CallArgList &CallArgs,
4602 llvm::CallBase **callOrInvoke, bool IsMustTail,
4603 SourceLocation Loc) {
4604 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4605
4606 assert(Callee.isOrdinary() || Callee.isVirtual());
4607
4608 // Handle struct-return functions by passing a pointer to the
4609 // location that we would like to return into.
4610 QualType RetTy = CallInfo.getReturnType();
4611 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4612
4613 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4614
4615 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4616 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4617 // We can only guarantee that a function is called from the correct
4618 // context/function based on the appropriate target attributes,
4619 // so only check in the case where we have both always_inline and target
4620 // since otherwise we could be making a conditional call after a check for
4621 // the proper cpu features (and it won't cause code generation issues due to
4622 // function based code generation).
4623 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4624 TargetDecl->hasAttr<TargetAttr>())
4625 checkTargetFeatures(Loc, FD);
4626
4627 // Some architectures (such as x86-64) have the ABI changed based on
4628 // attribute-target/features. Give them a chance to diagnose.
4629 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4630 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4631 }
4632
4633 #ifndef NDEBUG
4634 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4635 // For an inalloca varargs function, we don't expect CallInfo to match the
4636 // function pointer's type, because the inalloca struct a will have extra
4637 // fields in it for the varargs parameters. Code later in this function
4638 // bitcasts the function pointer to the type derived from CallInfo.
4639 //
4640 // In other cases, we assert that the types match up (until pointers stop
4641 // having pointee types).
4642 llvm::Type *TypeFromVal;
4643 if (Callee.isVirtual())
4644 TypeFromVal = Callee.getVirtualFunctionType();
4645 else
4646 TypeFromVal =
4647 Callee.getFunctionPointer()->getType()->getPointerElementType();
4648 assert(IRFuncTy == TypeFromVal);
4649 }
4650 #endif
4651
4652 // 1. Set up the arguments.
4653
4654 // If we're using inalloca, insert the allocation after the stack save.
4655 // FIXME: Do this earlier rather than hacking it in here!
4656 Address ArgMemory = Address::invalid();
4657 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4658 const llvm::DataLayout &DL = CGM.getDataLayout();
4659 llvm::Instruction *IP = CallArgs.getStackBase();
4660 llvm::AllocaInst *AI;
4661 if (IP) {
4662 IP = IP->getNextNode();
4663 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4664 "argmem", IP);
4665 } else {
4666 AI = CreateTempAlloca(ArgStruct, "argmem");
4667 }
4668 auto Align = CallInfo.getArgStructAlignment();
4669 AI->setAlignment(Align.getAsAlign());
4670 AI->setUsedWithInAlloca(true);
4671 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4672 ArgMemory = Address(AI, Align);
4673 }
4674
4675 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4676 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4677
4678 // If the call returns a temporary with struct return, create a temporary
4679 // alloca to hold the result, unless one is given to us.
4680 Address SRetPtr = Address::invalid();
4681 Address SRetAlloca = Address::invalid();
4682 llvm::Value *UnusedReturnSizePtr = nullptr;
4683 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4684 if (!ReturnValue.isNull()) {
4685 SRetPtr = ReturnValue.getValue();
4686 } else {
4687 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4688 if (HaveInsertPoint() && ReturnValue.isUnused()) {
4689 llvm::TypeSize size =
4690 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4691 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4692 }
4693 }
4694 if (IRFunctionArgs.hasSRetArg()) {
4695 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4696 } else if (RetAI.isInAlloca()) {
4697 Address Addr =
4698 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4699 Builder.CreateStore(SRetPtr.getPointer(), Addr);
4700 }
4701 }
4702
4703 Address swiftErrorTemp = Address::invalid();
4704 Address swiftErrorArg = Address::invalid();
4705
4706 // When passing arguments using temporary allocas, we need to add the
4707 // appropriate lifetime markers. This vector keeps track of all the lifetime
4708 // markers that need to be ended right after the call.
4709 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4710
4711 // Translate all of the arguments as necessary to match the IR lowering.
4712 assert(CallInfo.arg_size() == CallArgs.size() &&
4713 "Mismatch between function signature & arguments.");
4714 unsigned ArgNo = 0;
4715 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4716 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4717 I != E; ++I, ++info_it, ++ArgNo) {
4718 const ABIArgInfo &ArgInfo = info_it->info;
4719
4720 // Insert a padding argument to ensure proper alignment.
4721 if (IRFunctionArgs.hasPaddingArg(ArgNo))
4722 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4723 llvm::UndefValue::get(ArgInfo.getPaddingType());
4724
4725 unsigned FirstIRArg, NumIRArgs;
4726 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4727
4728 switch (ArgInfo.getKind()) {
4729 case ABIArgInfo::InAlloca: {
4730 assert(NumIRArgs == 0);
4731 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4732 if (I->isAggregate()) {
4733 Address Addr = I->hasLValue()
4734 ? I->getKnownLValue().getAddress(*this)
4735 : I->getKnownRValue().getAggregateAddress();
4736 llvm::Instruction *Placeholder =
4737 cast<llvm::Instruction>(Addr.getPointer());
4738
4739 if (!ArgInfo.getInAllocaIndirect()) {
4740 // Replace the placeholder with the appropriate argument slot GEP.
4741 CGBuilderTy::InsertPoint IP = Builder.saveIP();
4742 Builder.SetInsertPoint(Placeholder);
4743 Addr = Builder.CreateStructGEP(ArgMemory,
4744 ArgInfo.getInAllocaFieldIndex());
4745 Builder.restoreIP(IP);
4746 } else {
4747 // For indirect things such as overaligned structs, replace the
4748 // placeholder with a regular aggregate temporary alloca. Store the
4749 // address of this alloca into the struct.
4750 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4751 Address ArgSlot = Builder.CreateStructGEP(
4752 ArgMemory, ArgInfo.getInAllocaFieldIndex());
4753 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4754 }
4755 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4756 } else if (ArgInfo.getInAllocaIndirect()) {
4757 // Make a temporary alloca and store the address of it into the argument
4758 // struct.
4759 Address Addr = CreateMemTempWithoutCast(
4760 I->Ty, getContext().getTypeAlignInChars(I->Ty),
4761 "indirect-arg-temp");
4762 I->copyInto(*this, Addr);
4763 Address ArgSlot =
4764 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4765 Builder.CreateStore(Addr.getPointer(), ArgSlot);
4766 } else {
4767 // Store the RValue into the argument struct.
4768 Address Addr =
4769 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4770 unsigned AS = Addr.getType()->getPointerAddressSpace();
4771 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4772 // There are some cases where a trivial bitcast is not avoidable. The
4773 // definition of a type later in a translation unit may change it's type
4774 // from {}* to (%struct.foo*)*.
4775 if (Addr.getType() != MemType)
4776 Addr = Builder.CreateBitCast(Addr, MemType);
4777 I->copyInto(*this, Addr);
4778 }
4779 break;
4780 }
4781
4782 case ABIArgInfo::Indirect:
4783 case ABIArgInfo::IndirectAliased: {
4784 assert(NumIRArgs == 1);
4785 if (!I->isAggregate()) {
4786 // Make a temporary alloca to pass the argument.
4787 Address Addr = CreateMemTempWithoutCast(
4788 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4789 IRCallArgs[FirstIRArg] = Addr.getPointer();
4790
4791 I->copyInto(*this, Addr);
4792 } else {
4793 // We want to avoid creating an unnecessary temporary+copy here;
4794 // however, we need one in three cases:
4795 // 1. If the argument is not byval, and we are required to copy the
4796 // source. (This case doesn't occur on any common architecture.)
4797 // 2. If the argument is byval, RV is not sufficiently aligned, and
4798 // we cannot force it to be sufficiently aligned.
4799 // 3. If the argument is byval, but RV is not located in default
4800 // or alloca address space.
4801 Address Addr = I->hasLValue()
4802 ? I->getKnownLValue().getAddress(*this)
4803 : I->getKnownRValue().getAggregateAddress();
4804 llvm::Value *V = Addr.getPointer();
4805 CharUnits Align = ArgInfo.getIndirectAlign();
4806 const llvm::DataLayout *TD = &CGM.getDataLayout();
4807
4808 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4809 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4810 TD->getAllocaAddrSpace()) &&
4811 "indirect argument must be in alloca address space");
4812
4813 bool NeedCopy = false;
4814
4815 if (Addr.getAlignment() < Align &&
4816 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4817 Align.getAsAlign()) {
4818 NeedCopy = true;
4819 } else if (I->hasLValue()) {
4820 auto LV = I->getKnownLValue();
4821 auto AS = LV.getAddressSpace();
4822
4823 if (!ArgInfo.getIndirectByVal() ||
4824 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4825 NeedCopy = true;
4826 }
4827 if (!getLangOpts().OpenCL) {
4828 if ((ArgInfo.getIndirectByVal() &&
4829 (AS != LangAS::Default &&
4830 AS != CGM.getASTAllocaAddressSpace()))) {
4831 NeedCopy = true;
4832 }
4833 }
4834 // For OpenCL even if RV is located in default or alloca address space
4835 // we don't want to perform address space cast for it.
4836 else if ((ArgInfo.getIndirectByVal() &&
4837 Addr.getType()->getAddressSpace() != IRFuncTy->
4838 getParamType(FirstIRArg)->getPointerAddressSpace())) {
4839 NeedCopy = true;
4840 }
4841 }
4842
4843 if (NeedCopy) {
4844 // Create an aligned temporary, and copy to it.
4845 Address AI = CreateMemTempWithoutCast(
4846 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4847 IRCallArgs[FirstIRArg] = AI.getPointer();
4848
4849 // Emit lifetime markers for the temporary alloca.
4850 llvm::TypeSize ByvalTempElementSize =
4851 CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4852 llvm::Value *LifetimeSize =
4853 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4854
4855 // Add cleanup code to emit the end lifetime marker after the call.
4856 if (LifetimeSize) // In case we disabled lifetime markers.
4857 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4858
4859 // Generate the copy.
4860 I->copyInto(*this, AI);
4861 } else {
4862 // Skip the extra memcpy call.
4863 auto *T = V->getType()->getPointerElementType()->getPointerTo(
4864 CGM.getDataLayout().getAllocaAddrSpace());
4865 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4866 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4867 true);
4868 }
4869 }
4870 break;
4871 }
4872
4873 case ABIArgInfo::Ignore:
4874 assert(NumIRArgs == 0);
4875 break;
4876
4877 case ABIArgInfo::Extend:
4878 case ABIArgInfo::Direct: {
4879 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4880 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4881 ArgInfo.getDirectOffset() == 0) {
4882 assert(NumIRArgs == 1);
4883 llvm::Value *V;
4884 if (!I->isAggregate())
4885 V = I->getKnownRValue().getScalarVal();
4886 else
4887 V = Builder.CreateLoad(
4888 I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4889 : I->getKnownRValue().getAggregateAddress());
4890
4891 // Implement swifterror by copying into a new swifterror argument.
4892 // We'll write back in the normal path out of the call.
4893 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4894 == ParameterABI::SwiftErrorResult) {
4895 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4896
4897 QualType pointeeTy = I->Ty->getPointeeType();
4898 swiftErrorArg =
4899 Address(V, getContext().getTypeAlignInChars(pointeeTy));
4900
4901 swiftErrorTemp =
4902 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4903 V = swiftErrorTemp.getPointer();
4904 cast<llvm::AllocaInst>(V)->setSwiftError(true);
4905
4906 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4907 Builder.CreateStore(errorValue, swiftErrorTemp);
4908 }
4909
4910 // We might have to widen integers, but we should never truncate.
4911 if (ArgInfo.getCoerceToType() != V->getType() &&
4912 V->getType()->isIntegerTy())
4913 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4914
4915 // If the argument doesn't match, perform a bitcast to coerce it. This
4916 // can happen due to trivial type mismatches.
4917 if (FirstIRArg < IRFuncTy->getNumParams() &&
4918 V->getType() != IRFuncTy->getParamType(FirstIRArg))
4919 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4920
4921 IRCallArgs[FirstIRArg] = V;
4922 break;
4923 }
4924
4925 // FIXME: Avoid the conversion through memory if possible.
4926 Address Src = Address::invalid();
4927 if (!I->isAggregate()) {
4928 Src = CreateMemTemp(I->Ty, "coerce");
4929 I->copyInto(*this, Src);
4930 } else {
4931 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4932 : I->getKnownRValue().getAggregateAddress();
4933 }
4934
4935 // If the value is offset in memory, apply the offset now.
4936 Src = emitAddressAtOffset(*this, Src, ArgInfo);
4937
4938 // Fast-isel and the optimizer generally like scalar values better than
4939 // FCAs, so we flatten them if this is safe to do for this argument.
4940 llvm::StructType *STy =
4941 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4942 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4943 llvm::Type *SrcTy = Src.getElementType();
4944 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4945 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4946
4947 // If the source type is smaller than the destination type of the
4948 // coerce-to logic, copy the source value into a temp alloca the size
4949 // of the destination type to allow loading all of it. The bits past
4950 // the source value are left undef.
4951 if (SrcSize < DstSize) {
4952 Address TempAlloca
4953 = CreateTempAlloca(STy, Src.getAlignment(),
4954 Src.getName() + ".coerce");
4955 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4956 Src = TempAlloca;
4957 } else {
4958 Src = Builder.CreateBitCast(Src,
4959 STy->getPointerTo(Src.getAddressSpace()));
4960 }
4961
4962 assert(NumIRArgs == STy->getNumElements());
4963 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4964 Address EltPtr = Builder.CreateStructGEP(Src, i);
4965 llvm::Value *LI = Builder.CreateLoad(EltPtr);
4966 IRCallArgs[FirstIRArg + i] = LI;
4967 }
4968 } else {
4969 // In the simple case, just pass the coerced loaded value.
4970 assert(NumIRArgs == 1);
4971 llvm::Value *Load =
4972 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4973
4974 if (CallInfo.isCmseNSCall()) {
4975 // For certain parameter types, clear padding bits, as they may reveal
4976 // sensitive information.
4977 // Small struct/union types are passed as integer arrays.
4978 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4979 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4980 Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4981 }
4982 IRCallArgs[FirstIRArg] = Load;
4983 }
4984
4985 break;
4986 }
4987
4988 case ABIArgInfo::CoerceAndExpand: {
4989 auto coercionType = ArgInfo.getCoerceAndExpandType();
4990 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4991
4992 llvm::Value *tempSize = nullptr;
4993 Address addr = Address::invalid();
4994 Address AllocaAddr = Address::invalid();
4995 if (I->isAggregate()) {
4996 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4997 : I->getKnownRValue().getAggregateAddress();
4998
4999 } else {
5000 RValue RV = I->getKnownRValue();
5001 assert(RV.isScalar()); // complex should always just be direct
5002
5003 llvm::Type *scalarType = RV.getScalarVal()->getType();
5004 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5005 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
5006
5007 // Materialize to a temporary.
5008 addr = CreateTempAlloca(
5009 RV.getScalarVal()->getType(),
5010 CharUnits::fromQuantity(std::max(
5011 (unsigned)layout->getAlignment().value(), scalarAlign)),
5012 "tmp",
5013 /*ArraySize=*/nullptr, &AllocaAddr);
5014 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5015
5016 Builder.CreateStore(RV.getScalarVal(), addr);
5017 }
5018
5019 addr = Builder.CreateElementBitCast(addr, coercionType);
5020
5021 unsigned IRArgPos = FirstIRArg;
5022 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5023 llvm::Type *eltType = coercionType->getElementType(i);
5024 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5025 Address eltAddr = Builder.CreateStructGEP(addr, i);
5026 llvm::Value *elt = Builder.CreateLoad(eltAddr);
5027 IRCallArgs[IRArgPos++] = elt;
5028 }
5029 assert(IRArgPos == FirstIRArg + NumIRArgs);
5030
5031 if (tempSize) {
5032 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5033 }
5034
5035 break;
5036 }
5037
5038 case ABIArgInfo::Expand: {
5039 unsigned IRArgPos = FirstIRArg;
5040 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5041 assert(IRArgPos == FirstIRArg + NumIRArgs);
5042 break;
5043 }
5044 }
5045 }
5046
5047 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5048 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5049
5050 // If we're using inalloca, set up that argument.
5051 if (ArgMemory.isValid()) {
5052 llvm::Value *Arg = ArgMemory.getPointer();
5053 if (CallInfo.isVariadic()) {
5054 // When passing non-POD arguments by value to variadic functions, we will
5055 // end up with a variadic prototype and an inalloca call site. In such
5056 // cases, we can't do any parameter mismatch checks. Give up and bitcast
5057 // the callee.
5058 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
5059 CalleePtr =
5060 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
5061 } else {
5062 llvm::Type *LastParamTy =
5063 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
5064 if (Arg->getType() != LastParamTy) {
5065 #ifndef NDEBUG
5066 // Assert that these structs have equivalent element types.
5067 llvm::StructType *FullTy = CallInfo.getArgStruct();
5068 llvm::StructType *DeclaredTy = cast<llvm::StructType>(
5069 cast<llvm::PointerType>(LastParamTy)->getElementType());
5070 assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
5071 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
5072 DE = DeclaredTy->element_end(),
5073 FI = FullTy->element_begin();
5074 DI != DE; ++DI, ++FI)
5075 assert(*DI == *FI);
5076 #endif
5077 Arg = Builder.CreateBitCast(Arg, LastParamTy);
5078 }
5079 }
5080 assert(IRFunctionArgs.hasInallocaArg());
5081 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5082 }
5083
5084 // 2. Prepare the function pointer.
5085
5086 // If the callee is a bitcast of a non-variadic function to have a
5087 // variadic function pointer type, check to see if we can remove the
5088 // bitcast. This comes up with unprototyped functions.
5089 //
5090 // This makes the IR nicer, but more importantly it ensures that we
5091 // can inline the function at -O0 if it is marked always_inline.
5092 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5093 llvm::Value *Ptr) -> llvm::Function * {
5094 if (!CalleeFT->isVarArg())
5095 return nullptr;
5096
5097 // Get underlying value if it's a bitcast
5098 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5099 if (CE->getOpcode() == llvm::Instruction::BitCast)
5100 Ptr = CE->getOperand(0);
5101 }
5102
5103 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5104 if (!OrigFn)
5105 return nullptr;
5106
5107 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5108
5109 // If the original type is variadic, or if any of the component types
5110 // disagree, we cannot remove the cast.
5111 if (OrigFT->isVarArg() ||
5112 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5113 OrigFT->getReturnType() != CalleeFT->getReturnType())
5114 return nullptr;
5115
5116 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5117 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5118 return nullptr;
5119
5120 return OrigFn;
5121 };
5122
5123 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5124 CalleePtr = OrigFn;
5125 IRFuncTy = OrigFn->getFunctionType();
5126 }
5127
5128 // 3. Perform the actual call.
5129
5130 // Deactivate any cleanups that we're supposed to do immediately before
5131 // the call.
5132 if (!CallArgs.getCleanupsToDeactivate().empty())
5133 deactivateArgCleanupsBeforeCall(*this, CallArgs);
5134
5135 // Assert that the arguments we computed match up. The IR verifier
5136 // will catch this, but this is a common enough source of problems
5137 // during IRGen changes that it's way better for debugging to catch
5138 // it ourselves here.
5139 #ifndef NDEBUG
5140 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5141 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5142 // Inalloca argument can have different type.
5143 if (IRFunctionArgs.hasInallocaArg() &&
5144 i == IRFunctionArgs.getInallocaArgNo())
5145 continue;
5146 if (i < IRFuncTy->getNumParams())
5147 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5148 }
5149 #endif
5150
5151 // Update the largest vector width if any arguments have vector types.
5152 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5153 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5154 LargestVectorWidth =
5155 std::max((uint64_t)LargestVectorWidth,
5156 VT->getPrimitiveSizeInBits().getKnownMinSize());
5157 }
5158
5159 // Compute the calling convention and attributes.
5160 unsigned CallingConv;
5161 llvm::AttributeList Attrs;
5162 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5163 Callee.getAbstractInfo(), Attrs, CallingConv,
5164 /*AttrOnCallSite=*/true,
5165 /*IsThunk=*/false);
5166
5167 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5168 if (FD->hasAttr<StrictFPAttr>())
5169 // All calls within a strictfp function are marked strictfp
5170 Attrs =
5171 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5172 llvm::Attribute::StrictFP);
5173
5174 // Add call-site nomerge attribute if exists.
5175 if (InNoMergeAttributedStmt)
5176 Attrs =
5177 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5178 llvm::Attribute::NoMerge);
5179
5180 // Apply some call-site-specific attributes.
5181 // TODO: work this into building the attribute set.
5182
5183 // Apply always_inline to all calls within flatten functions.
5184 // FIXME: should this really take priority over __try, below?
5185 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5186 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5187 Attrs =
5188 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5189 llvm::Attribute::AlwaysInline);
5190 }
5191
5192 // Disable inlining inside SEH __try blocks.
5193 if (isSEHTryScope()) {
5194 Attrs =
5195 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5196 llvm::Attribute::NoInline);
5197 }
5198
5199 // Decide whether to use a call or an invoke.
5200 bool CannotThrow;
5201 if (currentFunctionUsesSEHTry()) {
5202 // SEH cares about asynchronous exceptions, so everything can "throw."
5203 CannotThrow = false;
5204 } else if (isCleanupPadScope() &&
5205 EHPersonality::get(*this).isMSVCXXPersonality()) {
5206 // The MSVC++ personality will implicitly terminate the program if an
5207 // exception is thrown during a cleanup outside of a try/catch.
5208 // We don't need to model anything in IR to get this behavior.
5209 CannotThrow = true;
5210 } else {
5211 // Otherwise, nounwind call sites will never throw.
5212 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5213
5214 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5215 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5216 CannotThrow = true;
5217 }
5218
5219 // If we made a temporary, be sure to clean up after ourselves. Note that we
5220 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5221 // pop this cleanup later on. Being eager about this is OK, since this
5222 // temporary is 'invisible' outside of the callee.
5223 if (UnusedReturnSizePtr)
5224 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5225 UnusedReturnSizePtr);
5226
5227 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5228
5229 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5230 getBundlesForFunclet(CalleePtr);
5231
5232 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5233 if (FD->hasAttr<StrictFPAttr>())
5234 // All calls within a strictfp function are marked strictfp
5235 Attrs =
5236 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5237 llvm::Attribute::StrictFP);
5238
5239 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5240 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5241
5242 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5243 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5244
5245 // Emit the actual call/invoke instruction.
5246 llvm::CallBase *CI;
5247 if (!InvokeDest) {
5248 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5249 } else {
5250 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5251 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5252 BundleList);
5253 EmitBlock(Cont);
5254 }
5255 if (callOrInvoke)
5256 *callOrInvoke = CI;
5257
5258 // If this is within a function that has the guard(nocf) attribute and is an
5259 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5260 // Control Flow Guard checks should not be added, even if the call is inlined.
5261 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5262 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5263 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5264 Attrs = Attrs.addAttribute(
5265 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5266 }
5267 }
5268
5269 // Apply the attributes and calling convention.
5270 CI->setAttributes(Attrs);
5271 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5272
5273 // Apply various metadata.
5274
5275 if (!CI->getType()->isVoidTy())
5276 CI->setName("call");
5277
5278 // Update largest vector width from the return type.
5279 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5280 LargestVectorWidth =
5281 std::max((uint64_t)LargestVectorWidth,
5282 VT->getPrimitiveSizeInBits().getKnownMinSize());
5283
5284 // Insert instrumentation or attach profile metadata at indirect call sites.
5285 // For more details, see the comment before the definition of
5286 // IPVK_IndirectCallTarget in InstrProfData.inc.
5287 if (!CI->getCalledFunction())
5288 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5289 CI, CalleePtr);
5290
5291 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5292 // optimizer it can aggressively ignore unwind edges.
5293 if (CGM.getLangOpts().ObjCAutoRefCount)
5294 AddObjCARCExceptionMetadata(CI);
5295
5296 // Set tail call kind if necessary.
5297 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5298 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5299 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5300 else if (IsMustTail)
5301 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5302 }
5303
5304 // Add metadata for calls to MSAllocator functions
5305 if (getDebugInfo() && TargetDecl &&
5306 TargetDecl->hasAttr<MSAllocatorAttr>())
5307 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5308
5309 // 4. Finish the call.
5310
5311 // If the call doesn't return, finish the basic block and clear the
5312 // insertion point; this allows the rest of IRGen to discard
5313 // unreachable code.
5314 if (CI->doesNotReturn()) {
5315 if (UnusedReturnSizePtr)
5316 PopCleanupBlock();
5317
5318 // Strip away the noreturn attribute to better diagnose unreachable UB.
5319 if (SanOpts.has(SanitizerKind::Unreachable)) {
5320 // Also remove from function since CallBase::hasFnAttr additionally checks
5321 // attributes of the called function.
5322 if (auto *F = CI->getCalledFunction())
5323 F->removeFnAttr(llvm::Attribute::NoReturn);
5324 CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5325 llvm::Attribute::NoReturn);
5326
5327 // Avoid incompatibility with ASan which relies on the `noreturn`
5328 // attribute to insert handler calls.
5329 if (SanOpts.hasOneOf(SanitizerKind::Address |
5330 SanitizerKind::KernelAddress)) {
5331 SanitizerScope SanScope(this);
5332 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5333 Builder.SetInsertPoint(CI);
5334 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5335 llvm::FunctionCallee Fn =
5336 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5337 EmitNounwindRuntimeCall(Fn);
5338 }
5339 }
5340
5341 EmitUnreachable(Loc);
5342 Builder.ClearInsertionPoint();
5343
5344 // FIXME: For now, emit a dummy basic block because expr emitters in
5345 // generally are not ready to handle emitting expressions at unreachable
5346 // points.
5347 EnsureInsertPoint();
5348
5349 // Return a reasonable RValue.
5350 return GetUndefRValue(RetTy);
5351 }
5352
5353 // If this is a musttail call, return immediately. We do not branch to the
5354 // epilogue in this case.
5355 if (IsMustTail) {
5356 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5357 ++it) {
5358 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5359 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5360 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5361 }
5362 if (CI->getType()->isVoidTy())
5363 Builder.CreateRetVoid();
5364 else
5365 Builder.CreateRet(CI);
5366 Builder.ClearInsertionPoint();
5367 EnsureInsertPoint();
5368 return GetUndefRValue(RetTy);
5369 }
5370
5371 // Perform the swifterror writeback.
5372 if (swiftErrorTemp.isValid()) {
5373 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5374 Builder.CreateStore(errorResult, swiftErrorArg);
5375 }
5376
5377 // Emit any call-associated writebacks immediately. Arguably this
5378 // should happen after any return-value munging.
5379 if (CallArgs.hasWritebacks())
5380 emitWritebacks(*this, CallArgs);
5381
5382 // The stack cleanup for inalloca arguments has to run out of the normal
5383 // lexical order, so deactivate it and run it manually here.
5384 CallArgs.freeArgumentMemory(*this);
5385
5386 // Extract the return value.
5387 RValue Ret = [&] {
5388 switch (RetAI.getKind()) {
5389 case ABIArgInfo::CoerceAndExpand: {
5390 auto coercionType = RetAI.getCoerceAndExpandType();
5391
5392 Address addr = SRetPtr;
5393 addr = Builder.CreateElementBitCast(addr, coercionType);
5394
5395 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5396 bool requiresExtract = isa<llvm::StructType>(CI->getType());
5397
5398 unsigned unpaddedIndex = 0;
5399 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5400 llvm::Type *eltType = coercionType->getElementType(i);
5401 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5402 Address eltAddr = Builder.CreateStructGEP(addr, i);
5403 llvm::Value *elt = CI;
5404 if (requiresExtract)
5405 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5406 else
5407 assert(unpaddedIndex == 0);
5408 Builder.CreateStore(elt, eltAddr);
5409 }
5410 // FALLTHROUGH
5411 LLVM_FALLTHROUGH;
5412 }
5413
5414 case ABIArgInfo::InAlloca:
5415 case ABIArgInfo::Indirect: {
5416 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5417 if (UnusedReturnSizePtr)
5418 PopCleanupBlock();
5419 return ret;
5420 }
5421
5422 case ABIArgInfo::Ignore:
5423 // If we are ignoring an argument that had a result, make sure to
5424 // construct the appropriate return value for our caller.
5425 return GetUndefRValue(RetTy);
5426
5427 case ABIArgInfo::Extend:
5428 case ABIArgInfo::Direct: {
5429 llvm::Type *RetIRTy = ConvertType(RetTy);
5430 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5431 switch (getEvaluationKind(RetTy)) {
5432 case TEK_Complex: {
5433 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5434 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5435 return RValue::getComplex(std::make_pair(Real, Imag));
5436 }
5437 case TEK_Aggregate: {
5438 Address DestPtr = ReturnValue.getValue();
5439 bool DestIsVolatile = ReturnValue.isVolatile();
5440
5441 if (!DestPtr.isValid()) {
5442 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5443 DestIsVolatile = false;
5444 }
5445 EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5446 return RValue::getAggregate(DestPtr);
5447 }
5448 case TEK_Scalar: {
5449 // If the argument doesn't match, perform a bitcast to coerce it. This
5450 // can happen due to trivial type mismatches.
5451 llvm::Value *V = CI;
5452 if (V->getType() != RetIRTy)
5453 V = Builder.CreateBitCast(V, RetIRTy);
5454 return RValue::get(V);
5455 }
5456 }
5457 llvm_unreachable("bad evaluation kind");
5458 }
5459
5460 Address DestPtr = ReturnValue.getValue();
5461 bool DestIsVolatile = ReturnValue.isVolatile();
5462
5463 if (!DestPtr.isValid()) {
5464 DestPtr = CreateMemTemp(RetTy, "coerce");
5465 DestIsVolatile = false;
5466 }
5467
5468 // If the value is offset in memory, apply the offset now.
5469 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5470 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5471
5472 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5473 }
5474
5475 case ABIArgInfo::Expand:
5476 case ABIArgInfo::IndirectAliased:
5477 llvm_unreachable("Invalid ABI kind for return argument");
5478 }
5479
5480 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5481 } ();
5482
5483 // Emit the assume_aligned check on the return value.
5484 if (Ret.isScalar() && TargetDecl) {
5485 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5486 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5487 }
5488
5489 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5490 // we can't use the full cleanup mechanism.
5491 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5492 LifetimeEnd.Emit(*this, /*Flags=*/{});
5493
5494 if (!ReturnValue.isExternallyDestructed() &&
5495 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5496 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5497 RetTy);
5498
5499 return Ret;
5500 }
5501
prepareConcreteCallee(CodeGenFunction & CGF) const5502 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5503 if (isVirtual()) {
5504 const CallExpr *CE = getVirtualCallExpr();
5505 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5506 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5507 CE ? CE->getBeginLoc() : SourceLocation());
5508 }
5509
5510 return *this;
5511 }
5512
5513 /* VarArg handling */
5514
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)5515 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5516 VAListAddr = VE->isMicrosoftABI()
5517 ? EmitMSVAListRef(VE->getSubExpr())
5518 : EmitVAListRef(VE->getSubExpr());
5519 QualType Ty = VE->getType();
5520 if (VE->isMicrosoftABI())
5521 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5522 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5523 }
5524