1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/TargetParser.h"
22 #include <cstdlib>
23 using namespace clang;
24
25 static const LangASMap DefaultAddrSpaceMap = {0};
26
27 // TargetInfo Constructor.
TargetInfo(const llvm::Triple & T)28 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
29 // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or
30 // SPARC. These should be overridden by concrete targets as needed.
31 BigEndian = !T.isLittleEndian();
32 TLSSupported = true;
33 VLASupported = true;
34 NoAsmVariants = false;
35 HasLegalHalfType = false;
36 HasFloat128 = false;
37 HasFloat16 = false;
38 HasBFloat16 = false;
39 HasStrictFP = false;
40 PointerWidth = PointerAlign = 32;
41 BoolWidth = BoolAlign = 8;
42 IntWidth = IntAlign = 32;
43 LongWidth = LongAlign = 32;
44 LongLongWidth = LongLongAlign = 64;
45
46 // Fixed point default bit widths
47 ShortAccumWidth = ShortAccumAlign = 16;
48 AccumWidth = AccumAlign = 32;
49 LongAccumWidth = LongAccumAlign = 64;
50 ShortFractWidth = ShortFractAlign = 8;
51 FractWidth = FractAlign = 16;
52 LongFractWidth = LongFractAlign = 32;
53
54 // Fixed point default integral and fractional bit sizes
55 // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
56 // types by default to have the same number of fractional bits between _Accum
57 // and _Fract types.
58 PaddingOnUnsignedFixedPoint = false;
59 ShortAccumScale = 7;
60 AccumScale = 15;
61 LongAccumScale = 31;
62
63 SuitableAlign = 64;
64 DefaultAlignForAttributeAligned = 128;
65 MinGlobalAlign = 0;
66 // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
67 // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
68 // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
69 // This alignment guarantee also applies to Windows and Android. On Darwin,
70 // the alignment is 16 bytes on both 64-bit and 32-bit systems.
71 if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
72 NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
73 else if (T.isOSDarwin())
74 NewAlign = 128;
75 else
76 NewAlign = 0; // Infer from basic type alignment.
77 HalfWidth = 16;
78 HalfAlign = 16;
79 FloatWidth = 32;
80 FloatAlign = 32;
81 DoubleWidth = 64;
82 DoubleAlign = 64;
83 LongDoubleWidth = 64;
84 LongDoubleAlign = 64;
85 Float128Align = 128;
86 LargeArrayMinWidth = 0;
87 LargeArrayAlign = 0;
88 MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
89 MaxVectorAlign = 0;
90 MaxTLSAlign = 0;
91 SimdDefaultAlign = 0;
92 SizeType = UnsignedLong;
93 PtrDiffType = SignedLong;
94 IntMaxType = SignedLongLong;
95 IntPtrType = SignedLong;
96 WCharType = SignedInt;
97 WIntType = SignedInt;
98 Char16Type = UnsignedShort;
99 Char32Type = UnsignedInt;
100 Int64Type = SignedLongLong;
101 Int16Type = SignedShort;
102 SigAtomicType = SignedInt;
103 ProcessIDType = SignedInt;
104 UseSignedCharForObjCBool = true;
105 UseBitFieldTypeAlignment = true;
106 UseZeroLengthBitfieldAlignment = false;
107 UseLeadingZeroLengthBitfield = true;
108 UseExplicitBitFieldAlignment = true;
109 ZeroLengthBitfieldBoundary = 0;
110 MaxAlignedAttribute = 0;
111 HalfFormat = &llvm::APFloat::IEEEhalf();
112 FloatFormat = &llvm::APFloat::IEEEsingle();
113 DoubleFormat = &llvm::APFloat::IEEEdouble();
114 LongDoubleFormat = &llvm::APFloat::IEEEdouble();
115 Float128Format = &llvm::APFloat::IEEEquad();
116 MCountName = "mcount";
117 UserLabelPrefix = "_";
118 RegParmMax = 0;
119 SSERegParmMax = 0;
120 HasAlignMac68kSupport = false;
121 HasBuiltinMSVaList = false;
122 IsRenderScriptTarget = false;
123 HasAArch64SVETypes = false;
124 HasRISCVVTypes = false;
125 AllowAMDGPUUnsafeFPAtomics = false;
126 ARMCDECoprocMask = 0;
127
128 // Default to no types using fpret.
129 RealTypeUsesObjCFPRet = 0;
130
131 // Default to not using fp2ret for __Complex long double
132 ComplexLongDoubleUsesFP2Ret = false;
133
134 // Set the C++ ABI based on the triple.
135 TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
136 ? TargetCXXABI::Microsoft
137 : TargetCXXABI::GenericItanium);
138
139 // Default to an empty address space map.
140 AddrSpaceMap = &DefaultAddrSpaceMap;
141 UseAddrSpaceMapMangling = false;
142
143 // Default to an unknown platform name.
144 PlatformName = "unknown";
145 PlatformMinVersion = VersionTuple();
146
147 MaxOpenCLWorkGroupSize = 1024;
148 }
149
150 // Out of line virtual dtor for TargetInfo.
~TargetInfo()151 TargetInfo::~TargetInfo() {}
152
resetDataLayout(StringRef DL,const char * ULP)153 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) {
154 DataLayoutString = DL.str();
155 UserLabelPrefix = ULP;
156 }
157
158 bool
checkCFProtectionBranchSupported(DiagnosticsEngine & Diags) const159 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
160 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
161 return false;
162 }
163
164 bool
checkCFProtectionReturnSupported(DiagnosticsEngine & Diags) const165 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
166 Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
167 return false;
168 }
169
170 /// getTypeName - Return the user string for the specified integer type enum.
171 /// For example, SignedShort -> "short".
getTypeName(IntType T)172 const char *TargetInfo::getTypeName(IntType T) {
173 switch (T) {
174 default: llvm_unreachable("not an integer!");
175 case SignedChar: return "signed char";
176 case UnsignedChar: return "unsigned char";
177 case SignedShort: return "short";
178 case UnsignedShort: return "unsigned short";
179 case SignedInt: return "int";
180 case UnsignedInt: return "unsigned int";
181 case SignedLong: return "long int";
182 case UnsignedLong: return "long unsigned int";
183 case SignedLongLong: return "long long int";
184 case UnsignedLongLong: return "long long unsigned int";
185 }
186 }
187
188 /// getTypeConstantSuffix - Return the constant suffix for the specified
189 /// integer type enum. For example, SignedLong -> "L".
getTypeConstantSuffix(IntType T) const190 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
191 switch (T) {
192 default: llvm_unreachable("not an integer!");
193 case SignedChar:
194 case SignedShort:
195 case SignedInt: return "";
196 case SignedLong: return "L";
197 case SignedLongLong: return "LL";
198 case UnsignedChar:
199 if (getCharWidth() < getIntWidth())
200 return "";
201 LLVM_FALLTHROUGH;
202 case UnsignedShort:
203 if (getShortWidth() < getIntWidth())
204 return "";
205 LLVM_FALLTHROUGH;
206 case UnsignedInt: return "U";
207 case UnsignedLong: return "UL";
208 case UnsignedLongLong: return "ULL";
209 }
210 }
211
212 /// getTypeFormatModifier - Return the printf format modifier for the
213 /// specified integer type enum. For example, SignedLong -> "l".
214
getTypeFormatModifier(IntType T)215 const char *TargetInfo::getTypeFormatModifier(IntType T) {
216 switch (T) {
217 default: llvm_unreachable("not an integer!");
218 case SignedChar:
219 case UnsignedChar: return "hh";
220 case SignedShort:
221 case UnsignedShort: return "h";
222 case SignedInt:
223 case UnsignedInt: return "";
224 case SignedLong:
225 case UnsignedLong: return "l";
226 case SignedLongLong:
227 case UnsignedLongLong: return "ll";
228 }
229 }
230
231 /// getTypeWidth - Return the width (in bits) of the specified integer type
232 /// enum. For example, SignedInt -> getIntWidth().
getTypeWidth(IntType T) const233 unsigned TargetInfo::getTypeWidth(IntType T) const {
234 switch (T) {
235 default: llvm_unreachable("not an integer!");
236 case SignedChar:
237 case UnsignedChar: return getCharWidth();
238 case SignedShort:
239 case UnsignedShort: return getShortWidth();
240 case SignedInt:
241 case UnsignedInt: return getIntWidth();
242 case SignedLong:
243 case UnsignedLong: return getLongWidth();
244 case SignedLongLong:
245 case UnsignedLongLong: return getLongLongWidth();
246 };
247 }
248
getIntTypeByWidth(unsigned BitWidth,bool IsSigned) const249 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
250 unsigned BitWidth, bool IsSigned) const {
251 if (getCharWidth() == BitWidth)
252 return IsSigned ? SignedChar : UnsignedChar;
253 if (getShortWidth() == BitWidth)
254 return IsSigned ? SignedShort : UnsignedShort;
255 if (getIntWidth() == BitWidth)
256 return IsSigned ? SignedInt : UnsignedInt;
257 if (getLongWidth() == BitWidth)
258 return IsSigned ? SignedLong : UnsignedLong;
259 if (getLongLongWidth() == BitWidth)
260 return IsSigned ? SignedLongLong : UnsignedLongLong;
261 return NoInt;
262 }
263
getLeastIntTypeByWidth(unsigned BitWidth,bool IsSigned) const264 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
265 bool IsSigned) const {
266 if (getCharWidth() >= BitWidth)
267 return IsSigned ? SignedChar : UnsignedChar;
268 if (getShortWidth() >= BitWidth)
269 return IsSigned ? SignedShort : UnsignedShort;
270 if (getIntWidth() >= BitWidth)
271 return IsSigned ? SignedInt : UnsignedInt;
272 if (getLongWidth() >= BitWidth)
273 return IsSigned ? SignedLong : UnsignedLong;
274 if (getLongLongWidth() >= BitWidth)
275 return IsSigned ? SignedLongLong : UnsignedLongLong;
276 return NoInt;
277 }
278
getRealTypeByWidth(unsigned BitWidth,bool ExplicitIEEE) const279 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth,
280 bool ExplicitIEEE) const {
281 if (getFloatWidth() == BitWidth)
282 return Float;
283 if (getDoubleWidth() == BitWidth)
284 return Double;
285
286 switch (BitWidth) {
287 case 96:
288 if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
289 return LongDouble;
290 break;
291 case 128:
292 // The caller explicitly asked for an IEEE compliant type but we still
293 // have to check if the target supports it.
294 if (ExplicitIEEE)
295 return hasFloat128Type() ? Float128 : NoFloat;
296 if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
297 &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
298 return LongDouble;
299 if (hasFloat128Type())
300 return Float128;
301 break;
302 }
303
304 return NoFloat;
305 }
306
307 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
308 /// enum. For example, SignedInt -> getIntAlign().
getTypeAlign(IntType T) const309 unsigned TargetInfo::getTypeAlign(IntType T) const {
310 switch (T) {
311 default: llvm_unreachable("not an integer!");
312 case SignedChar:
313 case UnsignedChar: return getCharAlign();
314 case SignedShort:
315 case UnsignedShort: return getShortAlign();
316 case SignedInt:
317 case UnsignedInt: return getIntAlign();
318 case SignedLong:
319 case UnsignedLong: return getLongAlign();
320 case SignedLongLong:
321 case UnsignedLongLong: return getLongLongAlign();
322 };
323 }
324
325 /// isTypeSigned - Return whether an integer types is signed. Returns true if
326 /// the type is signed; false otherwise.
isTypeSigned(IntType T)327 bool TargetInfo::isTypeSigned(IntType T) {
328 switch (T) {
329 default: llvm_unreachable("not an integer!");
330 case SignedChar:
331 case SignedShort:
332 case SignedInt:
333 case SignedLong:
334 case SignedLongLong:
335 return true;
336 case UnsignedChar:
337 case UnsignedShort:
338 case UnsignedInt:
339 case UnsignedLong:
340 case UnsignedLongLong:
341 return false;
342 };
343 }
344
345 /// adjust - Set forced language options.
346 /// Apply changes to the target information with respect to certain
347 /// language options which change the target configuration and adjust
348 /// the language based on the target options where applicable.
adjust(DiagnosticsEngine & Diags,LangOptions & Opts)349 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) {
350 if (Opts.NoBitFieldTypeAlign)
351 UseBitFieldTypeAlignment = false;
352
353 switch (Opts.WCharSize) {
354 default: llvm_unreachable("invalid wchar_t width");
355 case 0: break;
356 case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
357 case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
358 case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
359 }
360
361 if (Opts.AlignDouble) {
362 DoubleAlign = LongLongAlign = 64;
363 LongDoubleAlign = 64;
364 }
365
366 if (Opts.OpenCL) {
367 // OpenCL C requires specific widths for types, irrespective of
368 // what these normally are for the target.
369 // We also define long long and long double here, although the
370 // OpenCL standard only mentions these as "reserved".
371 IntWidth = IntAlign = 32;
372 LongWidth = LongAlign = 64;
373 LongLongWidth = LongLongAlign = 128;
374 HalfWidth = HalfAlign = 16;
375 FloatWidth = FloatAlign = 32;
376
377 // Embedded 32-bit targets (OpenCL EP) might have double C type
378 // defined as float. Let's not override this as it might lead
379 // to generating illegal code that uses 64bit doubles.
380 if (DoubleWidth != FloatWidth) {
381 DoubleWidth = DoubleAlign = 64;
382 DoubleFormat = &llvm::APFloat::IEEEdouble();
383 }
384 LongDoubleWidth = LongDoubleAlign = 128;
385
386 unsigned MaxPointerWidth = getMaxPointerWidth();
387 assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
388 bool Is32BitArch = MaxPointerWidth == 32;
389 SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
390 PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
391 IntPtrType = Is32BitArch ? SignedInt : SignedLong;
392
393 IntMaxType = SignedLongLong;
394 Int64Type = SignedLong;
395
396 HalfFormat = &llvm::APFloat::IEEEhalf();
397 FloatFormat = &llvm::APFloat::IEEEsingle();
398 LongDoubleFormat = &llvm::APFloat::IEEEquad();
399
400 // OpenCL C v3.0 s6.7.5 - The generic address space requires support for
401 // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space
402 // feature
403 // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0
404 // or later and __opencl_c_pipes feature
405 // FIXME: These language options are also defined in setLangDefaults()
406 // for OpenCL C 2.0 but with no access to target capabilities. Target
407 // should be immutable once created and thus these language options need
408 // to be defined only once.
409 if (Opts.OpenCLVersion == 300) {
410 const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts();
411 Opts.OpenCLGenericAddressSpace = hasFeatureEnabled(
412 OpenCLFeaturesMap, "__opencl_c_generic_address_space");
413 Opts.OpenCLPipes =
414 hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes");
415 }
416 }
417
418 if (Opts.DoubleSize) {
419 if (Opts.DoubleSize == 32) {
420 DoubleWidth = 32;
421 LongDoubleWidth = 32;
422 DoubleFormat = &llvm::APFloat::IEEEsingle();
423 LongDoubleFormat = &llvm::APFloat::IEEEsingle();
424 } else if (Opts.DoubleSize == 64) {
425 DoubleWidth = 64;
426 LongDoubleWidth = 64;
427 DoubleFormat = &llvm::APFloat::IEEEdouble();
428 LongDoubleFormat = &llvm::APFloat::IEEEdouble();
429 }
430 }
431
432 if (Opts.LongDoubleSize) {
433 if (Opts.LongDoubleSize == DoubleWidth) {
434 LongDoubleWidth = DoubleWidth;
435 LongDoubleAlign = DoubleAlign;
436 LongDoubleFormat = DoubleFormat;
437 } else if (Opts.LongDoubleSize == 128) {
438 LongDoubleWidth = LongDoubleAlign = 128;
439 LongDoubleFormat = &llvm::APFloat::IEEEquad();
440 }
441 }
442
443 if (Opts.NewAlignOverride)
444 NewAlign = Opts.NewAlignOverride * getCharWidth();
445
446 // Each unsigned fixed point type has the same number of fractional bits as
447 // its corresponding signed type.
448 PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
449 CheckFixedPointBits();
450
451 if (Opts.ProtectParens && !checkArithmeticFenceSupported()) {
452 Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens";
453 Opts.ProtectParens = false;
454 }
455 }
456
initFeatureMap(llvm::StringMap<bool> & Features,DiagnosticsEngine & Diags,StringRef CPU,const std::vector<std::string> & FeatureVec) const457 bool TargetInfo::initFeatureMap(
458 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
459 const std::vector<std::string> &FeatureVec) const {
460 for (const auto &F : FeatureVec) {
461 StringRef Name = F;
462 // Apply the feature via the target.
463 bool Enabled = Name[0] == '+';
464 setFeatureEnabled(Features, Name.substr(1), Enabled);
465 }
466 return true;
467 }
468
469 TargetInfo::CallingConvKind
getCallingConvKind(bool ClangABICompat4) const470 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
471 if (getCXXABI() != TargetCXXABI::Microsoft &&
472 (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
473 return CCK_ClangABI4OrPS4;
474 return CCK_Default;
475 }
476
getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const477 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
478 switch (TK) {
479 case OCLTK_Image:
480 case OCLTK_Pipe:
481 return LangAS::opencl_global;
482
483 case OCLTK_Sampler:
484 return LangAS::opencl_constant;
485
486 default:
487 return LangAS::Default;
488 }
489 }
490
491 //===----------------------------------------------------------------------===//
492
493
removeGCCRegisterPrefix(StringRef Name)494 static StringRef removeGCCRegisterPrefix(StringRef Name) {
495 if (Name[0] == '%' || Name[0] == '#')
496 Name = Name.substr(1);
497
498 return Name;
499 }
500
501 /// isValidClobber - Returns whether the passed in string is
502 /// a valid clobber in an inline asm statement. This is used by
503 /// Sema.
isValidClobber(StringRef Name) const504 bool TargetInfo::isValidClobber(StringRef Name) const {
505 return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" ||
506 Name == "unwind");
507 }
508
509 /// isValidGCCRegisterName - Returns whether the passed in string
510 /// is a valid register name according to GCC. This is used by Sema for
511 /// inline asm statements.
isValidGCCRegisterName(StringRef Name) const512 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
513 if (Name.empty())
514 return false;
515
516 // Get rid of any register prefix.
517 Name = removeGCCRegisterPrefix(Name);
518 if (Name.empty())
519 return false;
520
521 ArrayRef<const char *> Names = getGCCRegNames();
522
523 // If we have a number it maps to an entry in the register name array.
524 if (isDigit(Name[0])) {
525 unsigned n;
526 if (!Name.getAsInteger(0, n))
527 return n < Names.size();
528 }
529
530 // Check register names.
531 if (llvm::is_contained(Names, Name))
532 return true;
533
534 // Check any additional names that we have.
535 for (const AddlRegName &ARN : getGCCAddlRegNames())
536 for (const char *AN : ARN.Names) {
537 if (!AN)
538 break;
539 // Make sure the register that the additional name is for is within
540 // the bounds of the register names from above.
541 if (AN == Name && ARN.RegNum < Names.size())
542 return true;
543 }
544
545 // Now check aliases.
546 for (const GCCRegAlias &GRA : getGCCRegAliases())
547 for (const char *A : GRA.Aliases) {
548 if (!A)
549 break;
550 if (A == Name)
551 return true;
552 }
553
554 return false;
555 }
556
getNormalizedGCCRegisterName(StringRef Name,bool ReturnCanonical) const557 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
558 bool ReturnCanonical) const {
559 assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
560
561 // Get rid of any register prefix.
562 Name = removeGCCRegisterPrefix(Name);
563
564 ArrayRef<const char *> Names = getGCCRegNames();
565
566 // First, check if we have a number.
567 if (isDigit(Name[0])) {
568 unsigned n;
569 if (!Name.getAsInteger(0, n)) {
570 assert(n < Names.size() && "Out of bounds register number!");
571 return Names[n];
572 }
573 }
574
575 // Check any additional names that we have.
576 for (const AddlRegName &ARN : getGCCAddlRegNames())
577 for (const char *AN : ARN.Names) {
578 if (!AN)
579 break;
580 // Make sure the register that the additional name is for is within
581 // the bounds of the register names from above.
582 if (AN == Name && ARN.RegNum < Names.size())
583 return ReturnCanonical ? Names[ARN.RegNum] : Name;
584 }
585
586 // Now check aliases.
587 for (const GCCRegAlias &RA : getGCCRegAliases())
588 for (const char *A : RA.Aliases) {
589 if (!A)
590 break;
591 if (A == Name)
592 return RA.Register;
593 }
594
595 return Name;
596 }
597
validateOutputConstraint(ConstraintInfo & Info) const598 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
599 const char *Name = Info.getConstraintStr().c_str();
600 // An output constraint must start with '=' or '+'
601 if (*Name != '=' && *Name != '+')
602 return false;
603
604 if (*Name == '+')
605 Info.setIsReadWrite();
606
607 Name++;
608 while (*Name) {
609 switch (*Name) {
610 default:
611 if (!validateAsmConstraint(Name, Info)) {
612 // FIXME: We temporarily return false
613 // so we can add more constraints as we hit it.
614 // Eventually, an unknown constraint should just be treated as 'g'.
615 return false;
616 }
617 break;
618 case '&': // early clobber.
619 Info.setEarlyClobber();
620 break;
621 case '%': // commutative.
622 // FIXME: Check that there is a another register after this one.
623 break;
624 case 'r': // general register.
625 Info.setAllowsRegister();
626 break;
627 case 'm': // memory operand.
628 case 'o': // offsetable memory operand.
629 case 'V': // non-offsetable memory operand.
630 case '<': // autodecrement memory operand.
631 case '>': // autoincrement memory operand.
632 Info.setAllowsMemory();
633 break;
634 case 'g': // general register, memory operand or immediate integer.
635 case 'X': // any operand.
636 Info.setAllowsRegister();
637 Info.setAllowsMemory();
638 break;
639 case ',': // multiple alternative constraint. Pass it.
640 // Handle additional optional '=' or '+' modifiers.
641 if (Name[1] == '=' || Name[1] == '+')
642 Name++;
643 break;
644 case '#': // Ignore as constraint.
645 while (Name[1] && Name[1] != ',')
646 Name++;
647 break;
648 case '?': // Disparage slightly code.
649 case '!': // Disparage severely.
650 case '*': // Ignore for choosing register preferences.
651 case 'i': // Ignore i,n,E,F as output constraints (match from the other
652 // chars)
653 case 'n':
654 case 'E':
655 case 'F':
656 break; // Pass them.
657 }
658
659 Name++;
660 }
661
662 // Early clobber with a read-write constraint which doesn't permit registers
663 // is invalid.
664 if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
665 return false;
666
667 // If a constraint allows neither memory nor register operands it contains
668 // only modifiers. Reject it.
669 return Info.allowsMemory() || Info.allowsRegister();
670 }
671
resolveSymbolicName(const char * & Name,ArrayRef<ConstraintInfo> OutputConstraints,unsigned & Index) const672 bool TargetInfo::resolveSymbolicName(const char *&Name,
673 ArrayRef<ConstraintInfo> OutputConstraints,
674 unsigned &Index) const {
675 assert(*Name == '[' && "Symbolic name did not start with '['");
676 Name++;
677 const char *Start = Name;
678 while (*Name && *Name != ']')
679 Name++;
680
681 if (!*Name) {
682 // Missing ']'
683 return false;
684 }
685
686 std::string SymbolicName(Start, Name - Start);
687
688 for (Index = 0; Index != OutputConstraints.size(); ++Index)
689 if (SymbolicName == OutputConstraints[Index].getName())
690 return true;
691
692 return false;
693 }
694
validateInputConstraint(MutableArrayRef<ConstraintInfo> OutputConstraints,ConstraintInfo & Info) const695 bool TargetInfo::validateInputConstraint(
696 MutableArrayRef<ConstraintInfo> OutputConstraints,
697 ConstraintInfo &Info) const {
698 const char *Name = Info.ConstraintStr.c_str();
699
700 if (!*Name)
701 return false;
702
703 while (*Name) {
704 switch (*Name) {
705 default:
706 // Check if we have a matching constraint
707 if (*Name >= '0' && *Name <= '9') {
708 const char *DigitStart = Name;
709 while (Name[1] >= '0' && Name[1] <= '9')
710 Name++;
711 const char *DigitEnd = Name;
712 unsigned i;
713 if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
714 .getAsInteger(10, i))
715 return false;
716
717 // Check if matching constraint is out of bounds.
718 if (i >= OutputConstraints.size()) return false;
719
720 // A number must refer to an output only operand.
721 if (OutputConstraints[i].isReadWrite())
722 return false;
723
724 // If the constraint is already tied, it must be tied to the
725 // same operand referenced to by the number.
726 if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
727 return false;
728
729 // The constraint should have the same info as the respective
730 // output constraint.
731 Info.setTiedOperand(i, OutputConstraints[i]);
732 } else if (!validateAsmConstraint(Name, Info)) {
733 // FIXME: This error return is in place temporarily so we can
734 // add more constraints as we hit it. Eventually, an unknown
735 // constraint should just be treated as 'g'.
736 return false;
737 }
738 break;
739 case '[': {
740 unsigned Index = 0;
741 if (!resolveSymbolicName(Name, OutputConstraints, Index))
742 return false;
743
744 // If the constraint is already tied, it must be tied to the
745 // same operand referenced to by the number.
746 if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
747 return false;
748
749 // A number must refer to an output only operand.
750 if (OutputConstraints[Index].isReadWrite())
751 return false;
752
753 Info.setTiedOperand(Index, OutputConstraints[Index]);
754 break;
755 }
756 case '%': // commutative
757 // FIXME: Fail if % is used with the last operand.
758 break;
759 case 'i': // immediate integer.
760 break;
761 case 'n': // immediate integer with a known value.
762 Info.setRequiresImmediate();
763 break;
764 case 'I': // Various constant constraints with target-specific meanings.
765 case 'J':
766 case 'K':
767 case 'L':
768 case 'M':
769 case 'N':
770 case 'O':
771 case 'P':
772 if (!validateAsmConstraint(Name, Info))
773 return false;
774 break;
775 case 'r': // general register.
776 Info.setAllowsRegister();
777 break;
778 case 'm': // memory operand.
779 case 'o': // offsettable memory operand.
780 case 'V': // non-offsettable memory operand.
781 case '<': // autodecrement memory operand.
782 case '>': // autoincrement memory operand.
783 Info.setAllowsMemory();
784 break;
785 case 'g': // general register, memory operand or immediate integer.
786 case 'X': // any operand.
787 Info.setAllowsRegister();
788 Info.setAllowsMemory();
789 break;
790 case 'E': // immediate floating point.
791 case 'F': // immediate floating point.
792 case 'p': // address operand.
793 break;
794 case ',': // multiple alternative constraint. Ignore comma.
795 break;
796 case '#': // Ignore as constraint.
797 while (Name[1] && Name[1] != ',')
798 Name++;
799 break;
800 case '?': // Disparage slightly code.
801 case '!': // Disparage severely.
802 case '*': // Ignore for choosing register preferences.
803 break; // Pass them.
804 }
805
806 Name++;
807 }
808
809 return true;
810 }
811
CheckFixedPointBits() const812 void TargetInfo::CheckFixedPointBits() const {
813 // Check that the number of fractional and integral bits (and maybe sign) can
814 // fit into the bits given for a fixed point type.
815 assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
816 assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
817 assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
818 assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
819 ShortAccumWidth);
820 assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
821 assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
822 LongAccumWidth);
823
824 assert(getShortFractScale() + 1 <= ShortFractWidth);
825 assert(getFractScale() + 1 <= FractWidth);
826 assert(getLongFractScale() + 1 <= LongFractWidth);
827 assert(getUnsignedShortFractScale() <= ShortFractWidth);
828 assert(getUnsignedFractScale() <= FractWidth);
829 assert(getUnsignedLongFractScale() <= LongFractWidth);
830
831 // Each unsigned fract type has either the same number of fractional bits
832 // as, or one more fractional bit than, its corresponding signed fract type.
833 assert(getShortFractScale() == getUnsignedShortFractScale() ||
834 getShortFractScale() == getUnsignedShortFractScale() - 1);
835 assert(getFractScale() == getUnsignedFractScale() ||
836 getFractScale() == getUnsignedFractScale() - 1);
837 assert(getLongFractScale() == getUnsignedLongFractScale() ||
838 getLongFractScale() == getUnsignedLongFractScale() - 1);
839
840 // When arranged in order of increasing rank (see 6.3.1.3a), the number of
841 // fractional bits is nondecreasing for each of the following sets of
842 // fixed-point types:
843 // - signed fract types
844 // - unsigned fract types
845 // - signed accum types
846 // - unsigned accum types.
847 assert(getLongFractScale() >= getFractScale() &&
848 getFractScale() >= getShortFractScale());
849 assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
850 getUnsignedFractScale() >= getUnsignedShortFractScale());
851 assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
852 assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
853 getUnsignedAccumScale() >= getUnsignedShortAccumScale());
854
855 // When arranged in order of increasing rank (see 6.3.1.3a), the number of
856 // integral bits is nondecreasing for each of the following sets of
857 // fixed-point types:
858 // - signed accum types
859 // - unsigned accum types
860 assert(getLongAccumIBits() >= getAccumIBits() &&
861 getAccumIBits() >= getShortAccumIBits());
862 assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
863 getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
864
865 // Each signed accum type has at least as many integral bits as its
866 // corresponding unsigned accum type.
867 assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
868 assert(getAccumIBits() >= getUnsignedAccumIBits());
869 assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
870 }
871
copyAuxTarget(const TargetInfo * Aux)872 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
873 auto *Target = static_cast<TransferrableTargetInfo*>(this);
874 auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
875 *Target = *Src;
876 }
877