xref: /freebsd-12.1/sys/vm/vnode_pager.c (revision 2a3873b3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/sysctl.h>
63 #include <sys/proc.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/bio.h>
67 #include <sys/buf.h>
68 #include <sys/vmmeter.h>
69 #include <sys/limits.h>
70 #include <sys/conf.h>
71 #include <sys/rwlock.h>
72 #include <sys/sf_buf.h>
73 #include <sys/domainset.h>
74 
75 #include <machine/atomic.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_map.h>
83 #include <vm/vnode_pager.h>
84 #include <vm/vm_extern.h>
85 
86 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
87     daddr_t *rtaddress, int *run);
88 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
89 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
90 static void vnode_pager_dealloc(vm_object_t);
91 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
92 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
93     int *, vop_getpages_iodone_t, void *);
94 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
95 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
96 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
97     vm_ooffset_t, struct ucred *cred);
98 static int vnode_pager_generic_getpages_done(struct buf *);
99 static void vnode_pager_generic_getpages_done_async(struct buf *);
100 
101 struct pagerops vnodepagerops = {
102 	.pgo_alloc =	vnode_pager_alloc,
103 	.pgo_dealloc =	vnode_pager_dealloc,
104 	.pgo_getpages =	vnode_pager_getpages,
105 	.pgo_getpages_async = vnode_pager_getpages_async,
106 	.pgo_putpages =	vnode_pager_putpages,
107 	.pgo_haspage =	vnode_pager_haspage,
108 };
109 
110 int vnode_pbuf_freecnt;
111 int vnode_async_pbuf_freecnt;
112 
113 static struct domainset *vnode_domainset = NULL;
114 
115 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
116     &vnode_domainset, 0, sysctl_handle_domainset, "A",
117     "Default vnode NUMA policy");
118 
119 /* Create the VM system backing object for this vnode */
120 int
vnode_create_vobject(struct vnode * vp,off_t isize,struct thread * td)121 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
122 {
123 	vm_object_t object;
124 	vm_ooffset_t size = isize;
125 	struct vattr va;
126 
127 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
128 		return (0);
129 
130 	while ((object = vp->v_object) != NULL) {
131 		VM_OBJECT_WLOCK(object);
132 		if (!(object->flags & OBJ_DEAD)) {
133 			VM_OBJECT_WUNLOCK(object);
134 			return (0);
135 		}
136 		VOP_UNLOCK(vp, 0);
137 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
138 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
139 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
140 	}
141 
142 	if (size == 0) {
143 		if (vn_isdisk(vp, NULL)) {
144 			size = IDX_TO_OFF(INT_MAX);
145 		} else {
146 			if (VOP_GETATTR(vp, &va, td->td_ucred))
147 				return (0);
148 			size = va.va_size;
149 		}
150 	}
151 
152 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
153 	/*
154 	 * Dereference the reference we just created.  This assumes
155 	 * that the object is associated with the vp.
156 	 */
157 	VM_OBJECT_WLOCK(object);
158 	object->ref_count--;
159 	VM_OBJECT_WUNLOCK(object);
160 	vrele(vp);
161 
162 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
163 
164 	return (0);
165 }
166 
167 void
vnode_destroy_vobject(struct vnode * vp)168 vnode_destroy_vobject(struct vnode *vp)
169 {
170 	struct vm_object *obj;
171 
172 	obj = vp->v_object;
173 	if (obj == NULL)
174 		return;
175 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
176 	VM_OBJECT_WLOCK(obj);
177 	umtx_shm_object_terminated(obj);
178 	if (obj->ref_count == 0) {
179 		/*
180 		 * don't double-terminate the object
181 		 */
182 		if ((obj->flags & OBJ_DEAD) == 0) {
183 			vm_object_terminate(obj);
184 		} else {
185 			/*
186 			 * Waiters were already handled during object
187 			 * termination.  The exclusive vnode lock hopefully
188 			 * prevented new waiters from referencing the dying
189 			 * object.
190 			 */
191 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
192 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
193 			    obj, obj->flags));
194 			vp->v_object = NULL;
195 			VM_OBJECT_WUNLOCK(obj);
196 		}
197 	} else {
198 		/*
199 		 * Woe to the process that tries to page now :-).
200 		 */
201 		vm_pager_deallocate(obj);
202 		VM_OBJECT_WUNLOCK(obj);
203 	}
204 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
205 }
206 
207 
208 /*
209  * Allocate (or lookup) pager for a vnode.
210  * Handle is a vnode pointer.
211  *
212  * MPSAFE
213  */
214 vm_object_t
vnode_pager_alloc(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t offset,struct ucred * cred)215 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
216     vm_ooffset_t offset, struct ucred *cred)
217 {
218 	vm_object_t object;
219 	struct vnode *vp;
220 
221 	/*
222 	 * Pageout to vnode, no can do yet.
223 	 */
224 	if (handle == NULL)
225 		return (NULL);
226 
227 	vp = (struct vnode *) handle;
228 
229 	/*
230 	 * If the object is being terminated, wait for it to
231 	 * go away.
232 	 */
233 retry:
234 	while ((object = vp->v_object) != NULL) {
235 		VM_OBJECT_WLOCK(object);
236 		if ((object->flags & OBJ_DEAD) == 0)
237 			break;
238 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
239 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
240 	}
241 
242 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
243 
244 	if (object == NULL) {
245 		/*
246 		 * Add an object of the appropriate size
247 		 */
248 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
249 
250 		object->un_pager.vnp.vnp_size = size;
251 		object->un_pager.vnp.writemappings = 0;
252 		object->domain.dr_policy = vnode_domainset;
253 
254 		object->handle = handle;
255 		VI_LOCK(vp);
256 		if (vp->v_object != NULL) {
257 			/*
258 			 * Object has been created while we were sleeping
259 			 */
260 			VI_UNLOCK(vp);
261 			VM_OBJECT_WLOCK(object);
262 			KASSERT(object->ref_count == 1,
263 			    ("leaked ref %p %d", object, object->ref_count));
264 			object->type = OBJT_DEAD;
265 			object->ref_count = 0;
266 			VM_OBJECT_WUNLOCK(object);
267 			vm_object_destroy(object);
268 			goto retry;
269 		}
270 		vp->v_object = object;
271 		VI_UNLOCK(vp);
272 	} else {
273 		object->ref_count++;
274 #if VM_NRESERVLEVEL > 0
275 		vm_object_color(object, 0);
276 #endif
277 		VM_OBJECT_WUNLOCK(object);
278 	}
279 	vrefact(vp);
280 	return (object);
281 }
282 
283 /*
284  *	The object must be locked.
285  */
286 static void
vnode_pager_dealloc(vm_object_t object)287 vnode_pager_dealloc(vm_object_t object)
288 {
289 	struct vnode *vp;
290 	int refs;
291 
292 	vp = object->handle;
293 	if (vp == NULL)
294 		panic("vnode_pager_dealloc: pager already dealloced");
295 
296 	VM_OBJECT_ASSERT_WLOCKED(object);
297 	vm_object_pip_wait(object, "vnpdea");
298 	refs = object->ref_count;
299 
300 	object->handle = NULL;
301 	object->type = OBJT_DEAD;
302 	if (object->flags & OBJ_DISCONNECTWNT) {
303 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
304 		wakeup(object);
305 	}
306 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
307 	if (object->un_pager.vnp.writemappings > 0) {
308 		object->un_pager.vnp.writemappings = 0;
309 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
310 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
311 		    __func__, vp, vp->v_writecount);
312 	}
313 	vp->v_object = NULL;
314 	VI_LOCK(vp);
315 
316 	/*
317 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
318 	 * following object->handle.  Clear all text references now.
319 	 * This also clears the transient references from
320 	 * kern_execve(), which is fine because dead_vnodeops uses nop
321 	 * for VOP_UNSET_TEXT().
322 	 */
323 	if (vp->v_writecount < 0)
324 		vp->v_writecount = 0;
325 	VI_UNLOCK(vp);
326 	VM_OBJECT_WUNLOCK(object);
327 	while (refs-- > 0)
328 		vunref(vp);
329 	VM_OBJECT_WLOCK(object);
330 }
331 
332 static boolean_t
vnode_pager_haspage(vm_object_t object,vm_pindex_t pindex,int * before,int * after)333 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
334     int *after)
335 {
336 	struct vnode *vp = object->handle;
337 	daddr_t bn;
338 	int err;
339 	daddr_t reqblock;
340 	int poff;
341 	int bsize;
342 	int pagesperblock, blocksperpage;
343 
344 	VM_OBJECT_ASSERT_WLOCKED(object);
345 	/*
346 	 * If no vp or vp is doomed or marked transparent to VM, we do not
347 	 * have the page.
348 	 */
349 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
350 		return FALSE;
351 	/*
352 	 * If the offset is beyond end of file we do
353 	 * not have the page.
354 	 */
355 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
356 		return FALSE;
357 
358 	bsize = vp->v_mount->mnt_stat.f_iosize;
359 	pagesperblock = bsize / PAGE_SIZE;
360 	blocksperpage = 0;
361 	if (pagesperblock > 0) {
362 		reqblock = pindex / pagesperblock;
363 	} else {
364 		blocksperpage = (PAGE_SIZE / bsize);
365 		reqblock = pindex * blocksperpage;
366 	}
367 	VM_OBJECT_WUNLOCK(object);
368 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
369 	VM_OBJECT_WLOCK(object);
370 	if (err)
371 		return TRUE;
372 	if (bn == -1)
373 		return FALSE;
374 	if (pagesperblock > 0) {
375 		poff = pindex - (reqblock * pagesperblock);
376 		if (before) {
377 			*before *= pagesperblock;
378 			*before += poff;
379 		}
380 		if (after) {
381 			/*
382 			 * The BMAP vop can report a partial block in the
383 			 * 'after', but must not report blocks after EOF.
384 			 * Assert the latter, and truncate 'after' in case
385 			 * of the former.
386 			 */
387 			KASSERT((reqblock + *after) * pagesperblock <
388 			    roundup2(object->size, pagesperblock),
389 			    ("%s: reqblock %jd after %d size %ju", __func__,
390 			    (intmax_t )reqblock, *after,
391 			    (uintmax_t )object->size));
392 			*after *= pagesperblock;
393 			*after += pagesperblock - (poff + 1);
394 			if (pindex + *after >= object->size)
395 				*after = object->size - 1 - pindex;
396 		}
397 	} else {
398 		if (before) {
399 			*before /= blocksperpage;
400 		}
401 
402 		if (after) {
403 			*after /= blocksperpage;
404 		}
405 	}
406 	return TRUE;
407 }
408 
409 /*
410  * Lets the VM system know about a change in size for a file.
411  * We adjust our own internal size and flush any cached pages in
412  * the associated object that are affected by the size change.
413  *
414  * Note: this routine may be invoked as a result of a pager put
415  * operation (possibly at object termination time), so we must be careful.
416  */
417 void
vnode_pager_setsize(struct vnode * vp,vm_ooffset_t nsize)418 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
419 {
420 	vm_object_t object;
421 	vm_page_t m;
422 	vm_pindex_t nobjsize;
423 
424 	if ((object = vp->v_object) == NULL)
425 		return;
426 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
427 	VM_OBJECT_WLOCK(object);
428 	if (object->type == OBJT_DEAD) {
429 		VM_OBJECT_WUNLOCK(object);
430 		return;
431 	}
432 	KASSERT(object->type == OBJT_VNODE,
433 	    ("not vnode-backed object %p", object));
434 	if (nsize == object->un_pager.vnp.vnp_size) {
435 		/*
436 		 * Hasn't changed size
437 		 */
438 		VM_OBJECT_WUNLOCK(object);
439 		return;
440 	}
441 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
442 	if (nsize < object->un_pager.vnp.vnp_size) {
443 		/*
444 		 * File has shrunk. Toss any cached pages beyond the new EOF.
445 		 */
446 		if (nobjsize < object->size)
447 			vm_object_page_remove(object, nobjsize, object->size,
448 			    0);
449 		/*
450 		 * this gets rid of garbage at the end of a page that is now
451 		 * only partially backed by the vnode.
452 		 *
453 		 * XXX for some reason (I don't know yet), if we take a
454 		 * completely invalid page and mark it partially valid
455 		 * it can screw up NFS reads, so we don't allow the case.
456 		 */
457 		if ((nsize & PAGE_MASK) &&
458 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
459 		    m->valid != 0) {
460 			int base = (int)nsize & PAGE_MASK;
461 			int size = PAGE_SIZE - base;
462 
463 			/*
464 			 * Clear out partial-page garbage in case
465 			 * the page has been mapped.
466 			 */
467 			pmap_zero_page_area(m, base, size);
468 
469 			/*
470 			 * Update the valid bits to reflect the blocks that
471 			 * have been zeroed.  Some of these valid bits may
472 			 * have already been set.
473 			 */
474 			vm_page_set_valid_range(m, base, size);
475 
476 			/*
477 			 * Round "base" to the next block boundary so that the
478 			 * dirty bit for a partially zeroed block is not
479 			 * cleared.
480 			 */
481 			base = roundup2(base, DEV_BSIZE);
482 
483 			/*
484 			 * Clear out partial-page dirty bits.
485 			 *
486 			 * note that we do not clear out the valid
487 			 * bits.  This would prevent bogus_page
488 			 * replacement from working properly.
489 			 */
490 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
491 		}
492 	}
493 	object->un_pager.vnp.vnp_size = nsize;
494 	object->size = nobjsize;
495 	VM_OBJECT_WUNLOCK(object);
496 }
497 
498 /*
499  * calculate the linear (byte) disk address of specified virtual
500  * file address
501  */
502 static int
vnode_pager_addr(struct vnode * vp,vm_ooffset_t address,daddr_t * rtaddress,int * run)503 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
504     int *run)
505 {
506 	int bsize;
507 	int err;
508 	daddr_t vblock;
509 	daddr_t voffset;
510 
511 	if (address < 0)
512 		return -1;
513 
514 	if (vp->v_iflag & VI_DOOMED)
515 		return -1;
516 
517 	bsize = vp->v_mount->mnt_stat.f_iosize;
518 	vblock = address / bsize;
519 	voffset = address % bsize;
520 
521 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
522 	if (err == 0) {
523 		if (*rtaddress != -1)
524 			*rtaddress += voffset / DEV_BSIZE;
525 		if (run) {
526 			*run += 1;
527 			*run *= bsize/PAGE_SIZE;
528 			*run -= voffset/PAGE_SIZE;
529 		}
530 	}
531 
532 	return (err);
533 }
534 
535 /*
536  * small block filesystem vnode pager input
537  */
538 static int
vnode_pager_input_smlfs(vm_object_t object,vm_page_t m)539 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
540 {
541 	struct vnode *vp;
542 	struct bufobj *bo;
543 	struct buf *bp;
544 	struct sf_buf *sf;
545 	daddr_t fileaddr;
546 	vm_offset_t bsize;
547 	vm_page_bits_t bits;
548 	int error, i;
549 
550 	error = 0;
551 	vp = object->handle;
552 	if (vp->v_iflag & VI_DOOMED)
553 		return VM_PAGER_BAD;
554 
555 	bsize = vp->v_mount->mnt_stat.f_iosize;
556 
557 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
558 
559 	sf = sf_buf_alloc(m, 0);
560 
561 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
562 		vm_ooffset_t address;
563 
564 		bits = vm_page_bits(i * bsize, bsize);
565 		if (m->valid & bits)
566 			continue;
567 
568 		address = IDX_TO_OFF(m->pindex) + i * bsize;
569 		if (address >= object->un_pager.vnp.vnp_size) {
570 			fileaddr = -1;
571 		} else {
572 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
573 			if (error)
574 				break;
575 		}
576 		if (fileaddr != -1) {
577 			bp = getpbuf(&vnode_pbuf_freecnt);
578 
579 			/* build a minimal buffer header */
580 			bp->b_iocmd = BIO_READ;
581 			bp->b_iodone = bdone;
582 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
583 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
584 			bp->b_rcred = crhold(curthread->td_ucred);
585 			bp->b_wcred = crhold(curthread->td_ucred);
586 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
587 			bp->b_blkno = fileaddr;
588 			pbgetbo(bo, bp);
589 			bp->b_vp = vp;
590 			bp->b_bcount = bsize;
591 			bp->b_bufsize = bsize;
592 			bp->b_runningbufspace = bp->b_bufsize;
593 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
594 
595 			/* do the input */
596 			bp->b_iooffset = dbtob(bp->b_blkno);
597 			bstrategy(bp);
598 
599 			bwait(bp, PVM, "vnsrd");
600 
601 			if ((bp->b_ioflags & BIO_ERROR) != 0)
602 				error = EIO;
603 
604 			/*
605 			 * free the buffer header back to the swap buffer pool
606 			 */
607 			bp->b_vp = NULL;
608 			pbrelbo(bp);
609 			relpbuf(bp, &vnode_pbuf_freecnt);
610 			if (error)
611 				break;
612 		} else
613 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
614 		KASSERT((m->dirty & bits) == 0,
615 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
616 		VM_OBJECT_WLOCK(object);
617 		m->valid |= bits;
618 		VM_OBJECT_WUNLOCK(object);
619 	}
620 	sf_buf_free(sf);
621 	if (error) {
622 		return VM_PAGER_ERROR;
623 	}
624 	return VM_PAGER_OK;
625 }
626 
627 /*
628  * old style vnode pager input routine
629  */
630 static int
vnode_pager_input_old(vm_object_t object,vm_page_t m)631 vnode_pager_input_old(vm_object_t object, vm_page_t m)
632 {
633 	struct uio auio;
634 	struct iovec aiov;
635 	int error;
636 	int size;
637 	struct sf_buf *sf;
638 	struct vnode *vp;
639 
640 	VM_OBJECT_ASSERT_WLOCKED(object);
641 	error = 0;
642 
643 	/*
644 	 * Return failure if beyond current EOF
645 	 */
646 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
647 		return VM_PAGER_BAD;
648 	} else {
649 		size = PAGE_SIZE;
650 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
651 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
652 		vp = object->handle;
653 		VM_OBJECT_WUNLOCK(object);
654 
655 		/*
656 		 * Allocate a kernel virtual address and initialize so that
657 		 * we can use VOP_READ/WRITE routines.
658 		 */
659 		sf = sf_buf_alloc(m, 0);
660 
661 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
662 		aiov.iov_len = size;
663 		auio.uio_iov = &aiov;
664 		auio.uio_iovcnt = 1;
665 		auio.uio_offset = IDX_TO_OFF(m->pindex);
666 		auio.uio_segflg = UIO_SYSSPACE;
667 		auio.uio_rw = UIO_READ;
668 		auio.uio_resid = size;
669 		auio.uio_td = curthread;
670 
671 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
672 		if (!error) {
673 			int count = size - auio.uio_resid;
674 
675 			if (count == 0)
676 				error = EINVAL;
677 			else if (count != PAGE_SIZE)
678 				bzero((caddr_t)sf_buf_kva(sf) + count,
679 				    PAGE_SIZE - count);
680 		}
681 		sf_buf_free(sf);
682 
683 		VM_OBJECT_WLOCK(object);
684 	}
685 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
686 	if (!error)
687 		m->valid = VM_PAGE_BITS_ALL;
688 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
689 }
690 
691 /*
692  * generic vnode pager input routine
693  */
694 
695 /*
696  * Local media VFS's that do not implement their own VOP_GETPAGES
697  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
698  * to implement the previous behaviour.
699  *
700  * All other FS's should use the bypass to get to the local media
701  * backing vp's VOP_GETPAGES.
702  */
703 static int
vnode_pager_getpages(vm_object_t object,vm_page_t * m,int count,int * rbehind,int * rahead)704 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
705     int *rahead)
706 {
707 	struct vnode *vp;
708 	int rtval;
709 
710 	vp = object->handle;
711 	VM_OBJECT_WUNLOCK(object);
712 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
713 	KASSERT(rtval != EOPNOTSUPP,
714 	    ("vnode_pager: FS getpages not implemented\n"));
715 	VM_OBJECT_WLOCK(object);
716 	return rtval;
717 }
718 
719 static int
vnode_pager_getpages_async(vm_object_t object,vm_page_t * m,int count,int * rbehind,int * rahead,vop_getpages_iodone_t iodone,void * arg)720 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
721     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
722 {
723 	struct vnode *vp;
724 	int rtval;
725 
726 	vp = object->handle;
727 	VM_OBJECT_WUNLOCK(object);
728 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
729 	KASSERT(rtval != EOPNOTSUPP,
730 	    ("vnode_pager: FS getpages_async not implemented\n"));
731 	VM_OBJECT_WLOCK(object);
732 	return (rtval);
733 }
734 
735 /*
736  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
737  * local filesystems, where partially valid pages can only occur at
738  * the end of file.
739  */
740 int
vnode_pager_local_getpages(struct vop_getpages_args * ap)741 vnode_pager_local_getpages(struct vop_getpages_args *ap)
742 {
743 
744 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
745 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
746 }
747 
748 int
vnode_pager_local_getpages_async(struct vop_getpages_async_args * ap)749 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
750 {
751 
752 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
753 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
754 }
755 
756 /*
757  * This is now called from local media FS's to operate against their
758  * own vnodes if they fail to implement VOP_GETPAGES.
759  */
760 int
vnode_pager_generic_getpages(struct vnode * vp,vm_page_t * m,int count,int * a_rbehind,int * a_rahead,vop_getpages_iodone_t iodone,void * arg)761 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
762     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
763 {
764 	vm_object_t object;
765 	struct bufobj *bo;
766 	struct buf *bp;
767 	off_t foff;
768 #ifdef INVARIANTS
769 	off_t blkno0;
770 #endif
771 	int bsize, pagesperblock, *freecnt;
772 	int error, before, after, rbehind, rahead, poff, i;
773 	int bytecount, secmask;
774 
775 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
776 	    ("%s does not support devices", __func__));
777 
778 	if (vp->v_iflag & VI_DOOMED)
779 		return (VM_PAGER_BAD);
780 
781 	object = vp->v_object;
782 	foff = IDX_TO_OFF(m[0]->pindex);
783 	bsize = vp->v_mount->mnt_stat.f_iosize;
784 	pagesperblock = bsize / PAGE_SIZE;
785 
786 	KASSERT(foff < object->un_pager.vnp.vnp_size,
787 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
788 	KASSERT(count <= nitems(bp->b_pages),
789 	    ("%s: requested %d pages", __func__, count));
790 
791 	/*
792 	 * The last page has valid blocks.  Invalid part can only
793 	 * exist at the end of file, and the page is made fully valid
794 	 * by zeroing in vm_pager_get_pages().
795 	 */
796 	if (m[count - 1]->valid != 0 && --count == 0) {
797 		if (iodone != NULL)
798 			iodone(arg, m, 1, 0);
799 		return (VM_PAGER_OK);
800 	}
801 
802 	/*
803 	 * Synchronous and asynchronous paging operations use different
804 	 * free pbuf counters.  This is done to avoid asynchronous requests
805 	 * to consume all pbufs.
806 	 * Allocate the pbuf at the very beginning of the function, so that
807 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
808 	 * but sleep.
809 	 */
810 	freecnt = iodone != NULL ?
811 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
812 	bp = getpbuf(freecnt);
813 
814 	/*
815 	 * Get the underlying device blocks for the file with VOP_BMAP().
816 	 * If the file system doesn't support VOP_BMAP, use old way of
817 	 * getting pages via VOP_READ.
818 	 */
819 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
820 	if (error == EOPNOTSUPP) {
821 		relpbuf(bp, freecnt);
822 		VM_OBJECT_WLOCK(object);
823 		for (i = 0; i < count; i++) {
824 			VM_CNT_INC(v_vnodein);
825 			VM_CNT_INC(v_vnodepgsin);
826 			error = vnode_pager_input_old(object, m[i]);
827 			if (error)
828 				break;
829 		}
830 		VM_OBJECT_WUNLOCK(object);
831 		return (error);
832 	} else if (error != 0) {
833 		relpbuf(bp, freecnt);
834 		return (VM_PAGER_ERROR);
835 	}
836 
837 	/*
838 	 * If the file system supports BMAP, but blocksize is smaller
839 	 * than a page size, then use special small filesystem code.
840 	 */
841 	if (pagesperblock == 0) {
842 		relpbuf(bp, freecnt);
843 		for (i = 0; i < count; i++) {
844 			VM_CNT_INC(v_vnodein);
845 			VM_CNT_INC(v_vnodepgsin);
846 			error = vnode_pager_input_smlfs(object, m[i]);
847 			if (error)
848 				break;
849 		}
850 		return (error);
851 	}
852 
853 	/*
854 	 * A sparse file can be encountered only for a single page request,
855 	 * which may not be preceded by call to vm_pager_haspage().
856 	 */
857 	if (bp->b_blkno == -1) {
858 		KASSERT(count == 1,
859 		    ("%s: array[%d] request to a sparse file %p", __func__,
860 		    count, vp));
861 		relpbuf(bp, freecnt);
862 		pmap_zero_page(m[0]);
863 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
864 		    __func__, m[0]));
865 		VM_OBJECT_WLOCK(object);
866 		m[0]->valid = VM_PAGE_BITS_ALL;
867 		VM_OBJECT_WUNLOCK(object);
868 		return (VM_PAGER_OK);
869 	}
870 
871 #ifdef INVARIANTS
872 	blkno0 = bp->b_blkno;
873 #endif
874 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
875 
876 	/* Recalculate blocks available after/before to pages. */
877 	poff = (foff % bsize) / PAGE_SIZE;
878 	before *= pagesperblock;
879 	before += poff;
880 	after *= pagesperblock;
881 	after += pagesperblock - (poff + 1);
882 	if (m[0]->pindex + after >= object->size)
883 		after = object->size - 1 - m[0]->pindex;
884 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
885 	    __func__, count, after + 1));
886 	after -= count - 1;
887 
888 	/* Trim requested rbehind/rahead to possible values. */
889 	rbehind = a_rbehind ? *a_rbehind : 0;
890 	rahead = a_rahead ? *a_rahead : 0;
891 	rbehind = min(rbehind, before);
892 	rbehind = min(rbehind, m[0]->pindex);
893 	rahead = min(rahead, after);
894 	rahead = min(rahead, object->size - m[count - 1]->pindex);
895 	/*
896 	 * Check that total amount of pages fit into buf.  Trim rbehind and
897 	 * rahead evenly if not.
898 	 */
899 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
900 		int trim, sum;
901 
902 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
903 		sum = rbehind + rahead;
904 		if (rbehind == before) {
905 			/* Roundup rbehind trim to block size. */
906 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
907 			if (rbehind < 0)
908 				rbehind = 0;
909 		} else
910 			rbehind -= trim * rbehind / sum;
911 		rahead -= trim * rahead / sum;
912 	}
913 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
914 	    ("%s: behind %d ahead %d count %d", __func__,
915 	    rbehind, rahead, count));
916 
917 	/*
918 	 * Fill in the bp->b_pages[] array with requested and optional
919 	 * read behind or read ahead pages.  Read behind pages are looked
920 	 * up in a backward direction, down to a first cached page.  Same
921 	 * for read ahead pages, but there is no need to shift the array
922 	 * in case of encountering a cached page.
923 	 */
924 	i = bp->b_npages = 0;
925 	if (rbehind) {
926 		vm_pindex_t startpindex, tpindex;
927 		vm_page_t p;
928 
929 		VM_OBJECT_WLOCK(object);
930 		startpindex = m[0]->pindex - rbehind;
931 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
932 		    p->pindex >= startpindex)
933 			startpindex = p->pindex + 1;
934 
935 		/* tpindex is unsigned; beware of numeric underflow. */
936 		for (tpindex = m[0]->pindex - 1;
937 		    tpindex >= startpindex && tpindex < m[0]->pindex;
938 		    tpindex--, i++) {
939 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
940 			if (p == NULL) {
941 				/* Shift the array. */
942 				for (int j = 0; j < i; j++)
943 					bp->b_pages[j] = bp->b_pages[j +
944 					    tpindex + 1 - startpindex];
945 				break;
946 			}
947 			bp->b_pages[tpindex - startpindex] = p;
948 		}
949 
950 		bp->b_pgbefore = i;
951 		bp->b_npages += i;
952 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
953 	} else
954 		bp->b_pgbefore = 0;
955 
956 	/* Requested pages. */
957 	for (int j = 0; j < count; j++, i++)
958 		bp->b_pages[i] = m[j];
959 	bp->b_npages += count;
960 
961 	if (rahead) {
962 		vm_pindex_t endpindex, tpindex;
963 		vm_page_t p;
964 
965 		if (!VM_OBJECT_WOWNED(object))
966 			VM_OBJECT_WLOCK(object);
967 		endpindex = m[count - 1]->pindex + rahead + 1;
968 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
969 		    p->pindex < endpindex)
970 			endpindex = p->pindex;
971 		if (endpindex > object->size)
972 			endpindex = object->size;
973 
974 		for (tpindex = m[count - 1]->pindex + 1;
975 		    tpindex < endpindex; i++, tpindex++) {
976 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
977 			if (p == NULL)
978 				break;
979 			bp->b_pages[i] = p;
980 		}
981 
982 		bp->b_pgafter = i - bp->b_npages;
983 		bp->b_npages = i;
984 	} else
985 		bp->b_pgafter = 0;
986 
987 	if (VM_OBJECT_WOWNED(object))
988 		VM_OBJECT_WUNLOCK(object);
989 
990 	/* Report back actual behind/ahead read. */
991 	if (a_rbehind)
992 		*a_rbehind = bp->b_pgbefore;
993 	if (a_rahead)
994 		*a_rahead = bp->b_pgafter;
995 
996 #ifdef INVARIANTS
997 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
998 	    ("%s: buf %p overflowed", __func__, bp));
999 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1000 		if (bp->b_pages[j] == bogus_page)
1001 			continue;
1002 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1003 		    j - prev, ("%s: pages array not consecutive, bp %p",
1004 		     __func__, bp));
1005 		prev = j;
1006 	}
1007 #endif
1008 
1009 	/*
1010 	 * Recalculate first offset and bytecount with regards to read behind.
1011 	 * Truncate bytecount to vnode real size and round up physical size
1012 	 * for real devices.
1013 	 */
1014 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1015 	bytecount = bp->b_npages << PAGE_SHIFT;
1016 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1017 		bytecount = object->un_pager.vnp.vnp_size - foff;
1018 	secmask = bo->bo_bsize - 1;
1019 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1020 	    ("%s: sector size %d too large", __func__, secmask + 1));
1021 	bytecount = (bytecount + secmask) & ~secmask;
1022 
1023 	/*
1024 	 * And map the pages to be read into the kva, if the filesystem
1025 	 * requires mapped buffers.
1026 	 */
1027 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1028 	    unmapped_buf_allowed) {
1029 		bp->b_data = unmapped_buf;
1030 		bp->b_offset = 0;
1031 	} else {
1032 		bp->b_data = bp->b_kvabase;
1033 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1034 	}
1035 
1036 	/* Build a minimal buffer header. */
1037 	bp->b_iocmd = BIO_READ;
1038 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1039 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1040 	bp->b_rcred = crhold(curthread->td_ucred);
1041 	bp->b_wcred = crhold(curthread->td_ucred);
1042 	pbgetbo(bo, bp);
1043 	bp->b_vp = vp;
1044 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1045 	bp->b_iooffset = dbtob(bp->b_blkno);
1046 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1047 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1048 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1049 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1050 	    "blkno0 %ju b_blkno %ju", bsize,
1051 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1052 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1053 
1054 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1055 	VM_CNT_INC(v_vnodein);
1056 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1057 
1058 	if (iodone != NULL) { /* async */
1059 		bp->b_pgiodone = iodone;
1060 		bp->b_caller1 = arg;
1061 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1062 		bp->b_flags |= B_ASYNC;
1063 		BUF_KERNPROC(bp);
1064 		bstrategy(bp);
1065 		return (VM_PAGER_OK);
1066 	} else {
1067 		bp->b_iodone = bdone;
1068 		bstrategy(bp);
1069 		bwait(bp, PVM, "vnread");
1070 		error = vnode_pager_generic_getpages_done(bp);
1071 		for (i = 0; i < bp->b_npages; i++)
1072 			bp->b_pages[i] = NULL;
1073 		bp->b_vp = NULL;
1074 		pbrelbo(bp);
1075 		relpbuf(bp, &vnode_pbuf_freecnt);
1076 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1077 	}
1078 }
1079 
1080 static void
vnode_pager_generic_getpages_done_async(struct buf * bp)1081 vnode_pager_generic_getpages_done_async(struct buf *bp)
1082 {
1083 	int error;
1084 
1085 	error = vnode_pager_generic_getpages_done(bp);
1086 	/* Run the iodone upon the requested range. */
1087 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1088 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1089 	for (int i = 0; i < bp->b_npages; i++)
1090 		bp->b_pages[i] = NULL;
1091 	bp->b_vp = NULL;
1092 	pbrelbo(bp);
1093 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1094 }
1095 
1096 static int
vnode_pager_generic_getpages_done(struct buf * bp)1097 vnode_pager_generic_getpages_done(struct buf *bp)
1098 {
1099 	vm_object_t object;
1100 	off_t tfoff, nextoff;
1101 	int i, error;
1102 
1103 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1104 	object = bp->b_vp->v_object;
1105 
1106 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1107 		if (!buf_mapped(bp)) {
1108 			bp->b_data = bp->b_kvabase;
1109 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1110 			    bp->b_npages);
1111 		}
1112 		bzero(bp->b_data + bp->b_bcount,
1113 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1114 	}
1115 	if (buf_mapped(bp)) {
1116 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1117 		bp->b_data = unmapped_buf;
1118 	}
1119 
1120 	VM_OBJECT_WLOCK(object);
1121 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1122 	    i < bp->b_npages; i++, tfoff = nextoff) {
1123 		vm_page_t mt;
1124 
1125 		nextoff = tfoff + PAGE_SIZE;
1126 		mt = bp->b_pages[i];
1127 
1128 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1129 			/*
1130 			 * Read filled up entire page.
1131 			 */
1132 			mt->valid = VM_PAGE_BITS_ALL;
1133 			KASSERT(mt->dirty == 0,
1134 			    ("%s: page %p is dirty", __func__, mt));
1135 			KASSERT(!pmap_page_is_mapped(mt),
1136 			    ("%s: page %p is mapped", __func__, mt));
1137 		} else {
1138 			/*
1139 			 * Read did not fill up entire page.
1140 			 *
1141 			 * Currently we do not set the entire page valid,
1142 			 * we just try to clear the piece that we couldn't
1143 			 * read.
1144 			 */
1145 			vm_page_set_valid_range(mt, 0,
1146 			    object->un_pager.vnp.vnp_size - tfoff);
1147 			KASSERT((mt->dirty & vm_page_bits(0,
1148 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1149 			    ("%s: page %p is dirty", __func__, mt));
1150 		}
1151 
1152 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1153 			vm_page_readahead_finish(mt);
1154 	}
1155 	VM_OBJECT_WUNLOCK(object);
1156 	if (error != 0)
1157 		printf("%s: I/O read error %d\n", __func__, error);
1158 
1159 	return (error);
1160 }
1161 
1162 /*
1163  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1164  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1165  * vnode_pager_generic_putpages() to implement the previous behaviour.
1166  *
1167  * All other FS's should use the bypass to get to the local media
1168  * backing vp's VOP_PUTPAGES.
1169  */
1170 static void
vnode_pager_putpages(vm_object_t object,vm_page_t * m,int count,int flags,int * rtvals)1171 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1172     int flags, int *rtvals)
1173 {
1174 	int rtval;
1175 	struct vnode *vp;
1176 	int bytes = count * PAGE_SIZE;
1177 
1178 	/*
1179 	 * Force synchronous operation if we are extremely low on memory
1180 	 * to prevent a low-memory deadlock.  VOP operations often need to
1181 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1182 	 * operation ).  The swapper handles the case by limiting the amount
1183 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1184 	 * for the vnode pager without a lot of work.
1185 	 *
1186 	 * Also, the backing vnode's iodone routine may not wake the pageout
1187 	 * daemon up.  This should be probably be addressed XXX.
1188 	 */
1189 
1190 	if (vm_page_count_min())
1191 		flags |= VM_PAGER_PUT_SYNC;
1192 
1193 	/*
1194 	 * Call device-specific putpages function
1195 	 */
1196 	vp = object->handle;
1197 	VM_OBJECT_WUNLOCK(object);
1198 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1199 	KASSERT(rtval != EOPNOTSUPP,
1200 	    ("vnode_pager: stale FS putpages\n"));
1201 	VM_OBJECT_WLOCK(object);
1202 }
1203 
1204 static int
vn_off2bidx(vm_ooffset_t offset)1205 vn_off2bidx(vm_ooffset_t offset)
1206 {
1207 
1208 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1209 }
1210 
1211 static bool
vn_dirty_blk(vm_page_t m,vm_ooffset_t offset)1212 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1213 {
1214 
1215 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1216 	    offset < IDX_TO_OFF(m->pindex + 1),
1217 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1218 	    (uintmax_t)offset));
1219 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1220 }
1221 
1222 /*
1223  * This is now called from local media FS's to operate against their
1224  * own vnodes if they fail to implement VOP_PUTPAGES.
1225  *
1226  * This is typically called indirectly via the pageout daemon and
1227  * clustering has already typically occurred, so in general we ask the
1228  * underlying filesystem to write the data out asynchronously rather
1229  * then delayed.
1230  */
1231 int
vnode_pager_generic_putpages(struct vnode * vp,vm_page_t * ma,int bytecount,int flags,int * rtvals)1232 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1233     int flags, int *rtvals)
1234 {
1235 	vm_object_t object;
1236 	vm_page_t m;
1237 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1238 	struct uio auio;
1239 	struct iovec aiov;
1240 	off_t prev_resid, wrsz;
1241 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1242 	bool in_hole;
1243 	static struct timeval lastfail;
1244 	static int curfail;
1245 
1246 	object = vp->v_object;
1247 	count = bytecount / PAGE_SIZE;
1248 
1249 	for (i = 0; i < count; i++)
1250 		rtvals[i] = VM_PAGER_ERROR;
1251 
1252 	if ((int64_t)ma[0]->pindex < 0) {
1253 		printf("vnode_pager_generic_putpages: "
1254 		    "attempt to write meta-data 0x%jx(%lx)\n",
1255 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1256 		rtvals[0] = VM_PAGER_BAD;
1257 		return (VM_PAGER_BAD);
1258 	}
1259 
1260 	maxsize = count * PAGE_SIZE;
1261 	ncount = count;
1262 
1263 	poffset = IDX_TO_OFF(ma[0]->pindex);
1264 
1265 	/*
1266 	 * If the page-aligned write is larger then the actual file we
1267 	 * have to invalidate pages occurring beyond the file EOF.  However,
1268 	 * there is an edge case where a file may not be page-aligned where
1269 	 * the last page is partially invalid.  In this case the filesystem
1270 	 * may not properly clear the dirty bits for the entire page (which
1271 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1272 	 * With the page locked we are free to fix-up the dirty bits here.
1273 	 *
1274 	 * We do not under any circumstances truncate the valid bits, as
1275 	 * this will screw up bogus page replacement.
1276 	 */
1277 	VM_OBJECT_RLOCK(object);
1278 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1279 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1280 			VM_OBJECT_RUNLOCK(object);
1281 			VM_OBJECT_WLOCK(object);
1282 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1283 				goto downgrade;
1284 		}
1285 		if (object->un_pager.vnp.vnp_size > poffset) {
1286 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1287 			ncount = btoc(maxsize);
1288 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1289 				pgoff = roundup2(pgoff, DEV_BSIZE);
1290 
1291 				/*
1292 				 * If the object is locked and the following
1293 				 * conditions hold, then the page's dirty
1294 				 * field cannot be concurrently changed by a
1295 				 * pmap operation.
1296 				 */
1297 				m = ma[ncount - 1];
1298 				vm_page_assert_sbusied(m);
1299 				KASSERT(!pmap_page_is_write_mapped(m),
1300 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1301 				MPASS(m->dirty != 0);
1302 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1303 				    pgoff);
1304 			}
1305 		} else {
1306 			maxsize = 0;
1307 			ncount = 0;
1308 		}
1309 		for (i = ncount; i < count; i++)
1310 			rtvals[i] = VM_PAGER_BAD;
1311 downgrade:
1312 		VM_OBJECT_LOCK_DOWNGRADE(object);
1313 	}
1314 
1315 	auio.uio_iov = &aiov;
1316 	auio.uio_segflg = UIO_NOCOPY;
1317 	auio.uio_rw = UIO_WRITE;
1318 	auio.uio_td = NULL;
1319 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1320 
1321 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1322 		/* Skip clean blocks. */
1323 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1324 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1325 			for (i = vn_off2bidx(prev_offset);
1326 			    i < sizeof(vm_page_bits_t) * NBBY &&
1327 			    prev_offset < maxblksz; i++) {
1328 				if (vn_dirty_blk(m, prev_offset)) {
1329 					in_hole = false;
1330 					break;
1331 				}
1332 				prev_offset += DEV_BSIZE;
1333 			}
1334 		}
1335 		if (in_hole)
1336 			goto write_done;
1337 
1338 		/* Find longest run of dirty blocks. */
1339 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1340 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1341 			for (i = vn_off2bidx(next_offset);
1342 			    i < sizeof(vm_page_bits_t) * NBBY &&
1343 			    next_offset < maxblksz; i++) {
1344 				if (!vn_dirty_blk(m, next_offset))
1345 					goto start_write;
1346 				next_offset += DEV_BSIZE;
1347 			}
1348 		}
1349 start_write:
1350 		if (next_offset > poffset + maxsize)
1351 			next_offset = poffset + maxsize;
1352 
1353 		/*
1354 		 * Getting here requires finding a dirty block in the
1355 		 * 'skip clean blocks' loop.
1356 		 */
1357 		MPASS(prev_offset < next_offset);
1358 
1359 		VM_OBJECT_RUNLOCK(object);
1360 		aiov.iov_base = NULL;
1361 		auio.uio_iovcnt = 1;
1362 		auio.uio_offset = prev_offset;
1363 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1364 		    prev_offset;
1365 		error = VOP_WRITE(vp, &auio,
1366 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1367 
1368 		wrsz = prev_resid - auio.uio_resid;
1369 		if (wrsz == 0) {
1370 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1371 				vn_printf(vp, "vnode_pager_putpages: "
1372 				    "zero-length write at %ju resid %zd\n",
1373 				    auio.uio_offset, auio.uio_resid);
1374 			}
1375 			VM_OBJECT_RLOCK(object);
1376 			break;
1377 		}
1378 
1379 		/* Adjust the starting offset for next iteration. */
1380 		prev_offset += wrsz;
1381 		MPASS(auio.uio_offset == prev_offset);
1382 
1383 		ppscheck = 0;
1384 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1385 		    &curfail, 1)) != 0)
1386 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1387 			    error);
1388 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1389 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1390 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1391 			    "at %ju\n", auio.uio_resid,
1392 			    (uintmax_t)ma[0]->pindex);
1393 		VM_OBJECT_RLOCK(object);
1394 		if (error != 0 || auio.uio_resid != 0)
1395 			break;
1396 	}
1397 write_done:
1398 	/* Mark completely processed pages. */
1399 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1400 		rtvals[i] = VM_PAGER_OK;
1401 	/* Mark partial EOF page. */
1402 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1403 		rtvals[i++] = VM_PAGER_OK;
1404 	/* Unwritten pages in range, free bonus if the page is clean. */
1405 	for (; i < ncount; i++)
1406 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1407 	VM_OBJECT_RUNLOCK(object);
1408 	VM_CNT_ADD(v_vnodepgsout, i);
1409 	VM_CNT_INC(v_vnodeout);
1410 	return (rtvals[0]);
1411 }
1412 
1413 int
vnode_pager_putpages_ioflags(int pager_flags)1414 vnode_pager_putpages_ioflags(int pager_flags)
1415 {
1416 	int ioflags;
1417 
1418 	/*
1419 	 * Pageouts are already clustered, use IO_ASYNC to force a
1420 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1421 	 * from saturating the buffer cache.  Dummy-up the sequential
1422 	 * heuristic to cause large ranges to cluster.  If neither
1423 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1424 	 * cluster.
1425 	 */
1426 	ioflags = IO_VMIO;
1427 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1428 		ioflags |= IO_SYNC;
1429 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1430 		ioflags |= IO_ASYNC;
1431 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1432 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1433 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1434 	return (ioflags);
1435 }
1436 
1437 /*
1438  * vnode_pager_undirty_pages().
1439  *
1440  * A helper to mark pages as clean after pageout that was possibly
1441  * done with a short write.  The lpos argument specifies the page run
1442  * length in bytes, and the written argument specifies how many bytes
1443  * were actually written.  eof is the offset past the last valid byte
1444  * in the vnode using the absolute file position of the first byte in
1445  * the run as the base from which it is computed.
1446  */
1447 void
vnode_pager_undirty_pages(vm_page_t * ma,int * rtvals,int written,off_t eof,int lpos)1448 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1449     int lpos)
1450 {
1451 	vm_object_t obj;
1452 	int i, pos, pos_devb;
1453 
1454 	if (written == 0 && eof >= lpos)
1455 		return;
1456 	obj = ma[0]->object;
1457 	VM_OBJECT_WLOCK(obj);
1458 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1459 		if (pos < trunc_page(written)) {
1460 			rtvals[i] = VM_PAGER_OK;
1461 			vm_page_undirty(ma[i]);
1462 		} else {
1463 			/* Partially written page. */
1464 			rtvals[i] = VM_PAGER_AGAIN;
1465 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1466 		}
1467 	}
1468 	if (eof >= lpos) /* avoid truncation */
1469 		goto done;
1470 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1471 		if (pos != trunc_page(pos)) {
1472 			/*
1473 			 * The page contains the last valid byte in
1474 			 * the vnode, mark the rest of the page as
1475 			 * clean, potentially making the whole page
1476 			 * clean.
1477 			 */
1478 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1479 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1480 			    pos_devb);
1481 
1482 			/*
1483 			 * If the page was cleaned, report the pageout
1484 			 * on it as successful.  msync() no longer
1485 			 * needs to write out the page, endlessly
1486 			 * creating write requests and dirty buffers.
1487 			 */
1488 			if (ma[i]->dirty == 0)
1489 				rtvals[i] = VM_PAGER_OK;
1490 
1491 			pos = round_page(pos);
1492 		} else {
1493 			/* vm_pageout_flush() clears dirty */
1494 			rtvals[i] = VM_PAGER_BAD;
1495 			pos += PAGE_SIZE;
1496 		}
1497 	}
1498 done:
1499 	VM_OBJECT_WUNLOCK(obj);
1500 }
1501 
1502 void
vnode_pager_update_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)1503 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1504     vm_offset_t end)
1505 {
1506 	struct vnode *vp;
1507 	vm_ooffset_t old_wm;
1508 
1509 	VM_OBJECT_WLOCK(object);
1510 	if (object->type != OBJT_VNODE) {
1511 		VM_OBJECT_WUNLOCK(object);
1512 		return;
1513 	}
1514 	old_wm = object->un_pager.vnp.writemappings;
1515 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1516 	vp = object->handle;
1517 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1518 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1519 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1520 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1521 		    __func__, vp, vp->v_writecount);
1522 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1523 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1524 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1525 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1526 		    __func__, vp, vp->v_writecount);
1527 	}
1528 	VM_OBJECT_WUNLOCK(object);
1529 }
1530 
1531 void
vnode_pager_release_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)1532 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1533     vm_offset_t end)
1534 {
1535 	struct vnode *vp;
1536 	struct mount *mp;
1537 	vm_offset_t inc;
1538 
1539 	VM_OBJECT_WLOCK(object);
1540 
1541 	/*
1542 	 * First, recheck the object type to account for the race when
1543 	 * the vnode is reclaimed.
1544 	 */
1545 	if (object->type != OBJT_VNODE) {
1546 		VM_OBJECT_WUNLOCK(object);
1547 		return;
1548 	}
1549 
1550 	/*
1551 	 * Optimize for the case when writemappings is not going to
1552 	 * zero.
1553 	 */
1554 	inc = end - start;
1555 	if (object->un_pager.vnp.writemappings != inc) {
1556 		object->un_pager.vnp.writemappings -= inc;
1557 		VM_OBJECT_WUNLOCK(object);
1558 		return;
1559 	}
1560 
1561 	vp = object->handle;
1562 	vhold(vp);
1563 	VM_OBJECT_WUNLOCK(object);
1564 	mp = NULL;
1565 	vn_start_write(vp, &mp, V_WAIT);
1566 	vn_lock(vp, LK_SHARED | LK_RETRY);
1567 
1568 	/*
1569 	 * Decrement the object's writemappings, by swapping the start
1570 	 * and end arguments for vnode_pager_update_writecount().  If
1571 	 * there was not a race with vnode reclaimation, then the
1572 	 * vnode's v_writecount is decremented.
1573 	 */
1574 	vnode_pager_update_writecount(object, end, start);
1575 	VOP_UNLOCK(vp, 0);
1576 	vdrop(vp);
1577 	if (mp != NULL)
1578 		vn_finished_write(mp);
1579 }
1580