1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2006 Rice University
5 * Copyright (c) 2007 Alan L. Cox <[email protected]>
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Alan L. Cox,
9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Physical memory system implementation
36 *
37 * Any external functions defined by this module are only to be used by the
38 * virtual memory system.
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61 #include <sys/seq.h>
62
63 #include <ddb/ddb.h>
64
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_phys.h>
71 #include <vm/vm_pagequeue.h>
72
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74 "Too many physsegs.");
75
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 #endif
80
81 int __read_mostly vm_ndomains = 1;
82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
83
84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
85 int __read_mostly vm_phys_nsegs;
86
87 struct vm_phys_fictitious_seg;
88 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
89 struct vm_phys_fictitious_seg *);
90
91 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
92 RB_INITIALIZER(_vm_phys_fictitious_tree);
93
94 struct vm_phys_fictitious_seg {
95 RB_ENTRY(vm_phys_fictitious_seg) node;
96 /* Memory region data */
97 vm_paddr_t start;
98 vm_paddr_t end;
99 vm_page_t first_page;
100 };
101
102 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
103 vm_phys_fictitious_cmp);
104
105 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
106 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
107
108 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
109 vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
110 [VM_NFREEORDER_MAX];
111
112 static int __read_mostly vm_nfreelists;
113
114 /*
115 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
116 */
117 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
118
119 CTASSERT(VM_FREELIST_DEFAULT == 0);
120
121 #ifdef VM_FREELIST_DMA32
122 #define VM_DMA32_BOUNDARY ((vm_paddr_t)1 << 32)
123 #endif
124
125 /*
126 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
127 * the ordering of the free list boundaries.
128 */
129 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
130 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
131 #endif
132
133 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
134 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
135 NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
136
137 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
138 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
139 NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
140
141 #ifdef NUMA
142 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
143 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
144 NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
145 #endif
146
147 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
148 &vm_ndomains, 0, "Number of physical memory domains available.");
149
150 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
151 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
152 vm_paddr_t boundary);
153 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
154 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
155 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
156 int order, int tail);
157
158 /*
159 * Red-black tree helpers for vm fictitious range management.
160 */
161 static inline int
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg * p,struct vm_phys_fictitious_seg * range)162 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
163 struct vm_phys_fictitious_seg *range)
164 {
165
166 KASSERT(range->start != 0 && range->end != 0,
167 ("Invalid range passed on search for vm_fictitious page"));
168 if (p->start >= range->end)
169 return (1);
170 if (p->start < range->start)
171 return (-1);
172
173 return (0);
174 }
175
176 static int
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg * p1,struct vm_phys_fictitious_seg * p2)177 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
178 struct vm_phys_fictitious_seg *p2)
179 {
180
181 /* Check if this is a search for a page */
182 if (p1->end == 0)
183 return (vm_phys_fictitious_in_range(p1, p2));
184
185 KASSERT(p2->end != 0,
186 ("Invalid range passed as second parameter to vm fictitious comparison"));
187
188 /* Searching to add a new range */
189 if (p1->end <= p2->start)
190 return (-1);
191 if (p1->start >= p2->end)
192 return (1);
193
194 panic("Trying to add overlapping vm fictitious ranges:\n"
195 "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
196 (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
197 }
198
199 int
vm_phys_domain_match(int prefer,vm_paddr_t low,vm_paddr_t high)200 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
201 {
202 #ifdef NUMA
203 domainset_t mask;
204 int i;
205
206 if (vm_ndomains == 1 || mem_affinity == NULL)
207 return (0);
208
209 DOMAINSET_ZERO(&mask);
210 /*
211 * Check for any memory that overlaps low, high.
212 */
213 for (i = 0; mem_affinity[i].end != 0; i++)
214 if (mem_affinity[i].start <= high &&
215 mem_affinity[i].end >= low)
216 DOMAINSET_SET(mem_affinity[i].domain, &mask);
217 if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
218 return (prefer);
219 if (DOMAINSET_EMPTY(&mask))
220 panic("vm_phys_domain_match: Impossible constraint");
221 return (DOMAINSET_FFS(&mask) - 1);
222 #else
223 return (0);
224 #endif
225 }
226
227 /*
228 * Outputs the state of the physical memory allocator, specifically,
229 * the amount of physical memory in each free list.
230 */
231 static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)232 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
233 {
234 struct sbuf sbuf;
235 struct vm_freelist *fl;
236 int dom, error, flind, oind, pind;
237
238 error = sysctl_wire_old_buffer(req, 0);
239 if (error != 0)
240 return (error);
241 sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
242 for (dom = 0; dom < vm_ndomains; dom++) {
243 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
244 for (flind = 0; flind < vm_nfreelists; flind++) {
245 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
246 "\n ORDER (SIZE) | NUMBER"
247 "\n ", flind);
248 for (pind = 0; pind < VM_NFREEPOOL; pind++)
249 sbuf_printf(&sbuf, " | POOL %d", pind);
250 sbuf_printf(&sbuf, "\n-- ");
251 for (pind = 0; pind < VM_NFREEPOOL; pind++)
252 sbuf_printf(&sbuf, "-- -- ");
253 sbuf_printf(&sbuf, "--\n");
254 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
255 sbuf_printf(&sbuf, " %2d (%6dK)", oind,
256 1 << (PAGE_SHIFT - 10 + oind));
257 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
258 fl = vm_phys_free_queues[dom][flind][pind];
259 sbuf_printf(&sbuf, " | %6d",
260 fl[oind].lcnt);
261 }
262 sbuf_printf(&sbuf, "\n");
263 }
264 }
265 }
266 error = sbuf_finish(&sbuf);
267 sbuf_delete(&sbuf);
268 return (error);
269 }
270
271 /*
272 * Outputs the set of physical memory segments.
273 */
274 static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)275 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
276 {
277 struct sbuf sbuf;
278 struct vm_phys_seg *seg;
279 int error, segind;
280
281 error = sysctl_wire_old_buffer(req, 0);
282 if (error != 0)
283 return (error);
284 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
285 for (segind = 0; segind < vm_phys_nsegs; segind++) {
286 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
287 seg = &vm_phys_segs[segind];
288 sbuf_printf(&sbuf, "start: %#jx\n",
289 (uintmax_t)seg->start);
290 sbuf_printf(&sbuf, "end: %#jx\n",
291 (uintmax_t)seg->end);
292 sbuf_printf(&sbuf, "domain: %d\n", seg->domain);
293 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
294 }
295 error = sbuf_finish(&sbuf);
296 sbuf_delete(&sbuf);
297 return (error);
298 }
299
300 /*
301 * Return affinity, or -1 if there's no affinity information.
302 */
303 int
vm_phys_mem_affinity(int f,int t)304 vm_phys_mem_affinity(int f, int t)
305 {
306
307 #ifdef NUMA
308 if (mem_locality == NULL)
309 return (-1);
310 if (f >= vm_ndomains || t >= vm_ndomains)
311 return (-1);
312 return (mem_locality[f * vm_ndomains + t]);
313 #else
314 return (-1);
315 #endif
316 }
317
318 #ifdef NUMA
319 /*
320 * Outputs the VM locality table.
321 */
322 static int
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)323 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
324 {
325 struct sbuf sbuf;
326 int error, i, j;
327
328 error = sysctl_wire_old_buffer(req, 0);
329 if (error != 0)
330 return (error);
331 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
332
333 sbuf_printf(&sbuf, "\n");
334
335 for (i = 0; i < vm_ndomains; i++) {
336 sbuf_printf(&sbuf, "%d: ", i);
337 for (j = 0; j < vm_ndomains; j++) {
338 sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
339 }
340 sbuf_printf(&sbuf, "\n");
341 }
342 error = sbuf_finish(&sbuf);
343 sbuf_delete(&sbuf);
344 return (error);
345 }
346 #endif
347
348 static void
vm_freelist_add(struct vm_freelist * fl,vm_page_t m,int order,int tail)349 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
350 {
351
352 m->order = order;
353 if (tail)
354 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
355 else
356 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
357 fl[order].lcnt++;
358 }
359
360 static void
vm_freelist_rem(struct vm_freelist * fl,vm_page_t m,int order)361 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
362 {
363
364 TAILQ_REMOVE(&fl[order].pl, m, listq);
365 fl[order].lcnt--;
366 m->order = VM_NFREEORDER;
367 }
368
369 /*
370 * Create a physical memory segment.
371 */
372 static void
_vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end,int domain)373 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
374 {
375 struct vm_phys_seg *seg;
376
377 KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
378 ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
379 KASSERT(domain >= 0 && domain < vm_ndomains,
380 ("vm_phys_create_seg: invalid domain provided"));
381 seg = &vm_phys_segs[vm_phys_nsegs++];
382 while (seg > vm_phys_segs && (seg - 1)->start >= end) {
383 *seg = *(seg - 1);
384 seg--;
385 }
386 seg->start = start;
387 seg->end = end;
388 seg->domain = domain;
389 }
390
391 static void
vm_phys_create_seg(vm_paddr_t start,vm_paddr_t end)392 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
393 {
394 #ifdef NUMA
395 int i;
396
397 if (mem_affinity == NULL) {
398 _vm_phys_create_seg(start, end, 0);
399 return;
400 }
401
402 for (i = 0;; i++) {
403 if (mem_affinity[i].end == 0)
404 panic("Reached end of affinity info");
405 if (mem_affinity[i].end <= start)
406 continue;
407 if (mem_affinity[i].start > start)
408 panic("No affinity info for start %jx",
409 (uintmax_t)start);
410 if (mem_affinity[i].end >= end) {
411 _vm_phys_create_seg(start, end,
412 mem_affinity[i].domain);
413 break;
414 }
415 _vm_phys_create_seg(start, mem_affinity[i].end,
416 mem_affinity[i].domain);
417 start = mem_affinity[i].end;
418 }
419 #else
420 _vm_phys_create_seg(start, end, 0);
421 #endif
422 }
423
424 /*
425 * Add a physical memory segment.
426 */
427 void
vm_phys_add_seg(vm_paddr_t start,vm_paddr_t end)428 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
429 {
430 vm_paddr_t paddr;
431
432 KASSERT((start & PAGE_MASK) == 0,
433 ("vm_phys_define_seg: start is not page aligned"));
434 KASSERT((end & PAGE_MASK) == 0,
435 ("vm_phys_define_seg: end is not page aligned"));
436
437 /*
438 * Split the physical memory segment if it spans two or more free
439 * list boundaries.
440 */
441 paddr = start;
442 #ifdef VM_FREELIST_LOWMEM
443 if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
444 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
445 paddr = VM_LOWMEM_BOUNDARY;
446 }
447 #endif
448 #ifdef VM_FREELIST_DMA32
449 if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
450 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
451 paddr = VM_DMA32_BOUNDARY;
452 }
453 #endif
454 vm_phys_create_seg(paddr, end);
455 }
456
457 /*
458 * Initialize the physical memory allocator.
459 *
460 * Requires that vm_page_array is initialized!
461 */
462 void
vm_phys_init(void)463 vm_phys_init(void)
464 {
465 struct vm_freelist *fl;
466 struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
467 u_long npages;
468 int dom, flind, freelist, oind, pind, segind;
469
470 /*
471 * Compute the number of free lists, and generate the mapping from the
472 * manifest constants VM_FREELIST_* to the free list indices.
473 *
474 * Initially, the entries of vm_freelist_to_flind[] are set to either
475 * 0 or 1 to indicate which free lists should be created.
476 */
477 npages = 0;
478 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
479 seg = &vm_phys_segs[segind];
480 #ifdef VM_FREELIST_LOWMEM
481 if (seg->end <= VM_LOWMEM_BOUNDARY)
482 vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
483 else
484 #endif
485 #ifdef VM_FREELIST_DMA32
486 if (
487 #ifdef VM_DMA32_NPAGES_THRESHOLD
488 /*
489 * Create the DMA32 free list only if the amount of
490 * physical memory above physical address 4G exceeds the
491 * given threshold.
492 */
493 npages > VM_DMA32_NPAGES_THRESHOLD &&
494 #endif
495 seg->end <= VM_DMA32_BOUNDARY)
496 vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
497 else
498 #endif
499 {
500 npages += atop(seg->end - seg->start);
501 vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
502 }
503 }
504 /* Change each entry into a running total of the free lists. */
505 for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
506 vm_freelist_to_flind[freelist] +=
507 vm_freelist_to_flind[freelist - 1];
508 }
509 vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
510 KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
511 /* Change each entry into a free list index. */
512 for (freelist = 0; freelist < VM_NFREELIST; freelist++)
513 vm_freelist_to_flind[freelist]--;
514
515 /*
516 * Initialize the first_page and free_queues fields of each physical
517 * memory segment.
518 */
519 #ifdef VM_PHYSSEG_SPARSE
520 npages = 0;
521 #endif
522 for (segind = 0; segind < vm_phys_nsegs; segind++) {
523 seg = &vm_phys_segs[segind];
524 #ifdef VM_PHYSSEG_SPARSE
525 seg->first_page = &vm_page_array[npages];
526 npages += atop(seg->end - seg->start);
527 #else
528 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
529 #endif
530 #ifdef VM_FREELIST_LOWMEM
531 if (seg->end <= VM_LOWMEM_BOUNDARY) {
532 flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
533 KASSERT(flind >= 0,
534 ("vm_phys_init: LOWMEM flind < 0"));
535 } else
536 #endif
537 #ifdef VM_FREELIST_DMA32
538 if (seg->end <= VM_DMA32_BOUNDARY) {
539 flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
540 KASSERT(flind >= 0,
541 ("vm_phys_init: DMA32 flind < 0"));
542 } else
543 #endif
544 {
545 flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
546 KASSERT(flind >= 0,
547 ("vm_phys_init: DEFAULT flind < 0"));
548 }
549 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
550 }
551
552 /*
553 * Coalesce physical memory segments that are contiguous and share the
554 * same per-domain free queues.
555 */
556 prev_seg = vm_phys_segs;
557 seg = &vm_phys_segs[1];
558 end_seg = &vm_phys_segs[vm_phys_nsegs];
559 while (seg < end_seg) {
560 if (prev_seg->end == seg->start &&
561 prev_seg->free_queues == seg->free_queues) {
562 prev_seg->end = seg->end;
563 KASSERT(prev_seg->domain == seg->domain,
564 ("vm_phys_init: free queues cannot span domains"));
565 vm_phys_nsegs--;
566 end_seg--;
567 for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
568 *tmp_seg = *(tmp_seg + 1);
569 } else {
570 prev_seg = seg;
571 seg++;
572 }
573 }
574
575 /*
576 * Initialize the free queues.
577 */
578 for (dom = 0; dom < vm_ndomains; dom++) {
579 for (flind = 0; flind < vm_nfreelists; flind++) {
580 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
581 fl = vm_phys_free_queues[dom][flind][pind];
582 for (oind = 0; oind < VM_NFREEORDER; oind++)
583 TAILQ_INIT(&fl[oind].pl);
584 }
585 }
586 }
587
588 rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
589 }
590
591 /*
592 * Register info about the NUMA topology of the system.
593 *
594 * Invoked by platform-dependent code prior to vm_phys_init().
595 */
596 void
vm_phys_register_domains(int ndomains,struct mem_affinity * affinity,int * locality)597 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
598 int *locality)
599 {
600 #ifdef NUMA
601 int d, i;
602
603 /*
604 * For now the only override value that we support is 1, which
605 * effectively disables NUMA-awareness in the allocators.
606 */
607 d = 0;
608 TUNABLE_INT_FETCH("vm.numa.disabled", &d);
609 if (d)
610 ndomains = 1;
611
612 if (ndomains > 1) {
613 vm_ndomains = ndomains;
614 mem_affinity = affinity;
615 mem_locality = locality;
616 }
617
618 for (i = 0; i < vm_ndomains; i++)
619 DOMAINSET_SET(i, &all_domains);
620 #else
621 (void)ndomains;
622 (void)affinity;
623 (void)locality;
624 #endif
625 }
626
627 /*
628 * Split a contiguous, power of two-sized set of physical pages.
629 *
630 * When this function is called by a page allocation function, the caller
631 * should request insertion at the head unless the order [order, oind) queues
632 * are known to be empty. The objective being to reduce the likelihood of
633 * long-term fragmentation by promoting contemporaneous allocation and
634 * (hopefully) deallocation.
635 */
636 static __inline void
vm_phys_split_pages(vm_page_t m,int oind,struct vm_freelist * fl,int order,int tail)637 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
638 int tail)
639 {
640 vm_page_t m_buddy;
641
642 while (oind > order) {
643 oind--;
644 m_buddy = &m[1 << oind];
645 KASSERT(m_buddy->order == VM_NFREEORDER,
646 ("vm_phys_split_pages: page %p has unexpected order %d",
647 m_buddy, m_buddy->order));
648 vm_freelist_add(fl, m_buddy, oind, tail);
649 }
650 }
651
652 /*
653 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
654 * and sized set to the specified free list.
655 *
656 * When this function is called by a page allocation function, the caller
657 * should request insertion at the head unless the lower-order queues are
658 * known to be empty. The objective being to reduce the likelihood of long-
659 * term fragmentation by promoting contemporaneous allocation and (hopefully)
660 * deallocation.
661 *
662 * The physical page m's buddy must not be free.
663 */
664 static void
vm_phys_enq_range(vm_page_t m,u_int npages,struct vm_freelist * fl,int tail)665 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
666 {
667 u_int n;
668 int order;
669
670 KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
671 KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
672 ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
673 ("vm_phys_enq_range: page %p and npages %u are misaligned",
674 m, npages));
675 do {
676 KASSERT(m->order == VM_NFREEORDER,
677 ("vm_phys_enq_range: page %p has unexpected order %d",
678 m, m->order));
679 order = ffs(npages) - 1;
680 KASSERT(order < VM_NFREEORDER,
681 ("vm_phys_enq_range: order %d is out of range", order));
682 vm_freelist_add(fl, m, order, tail);
683 n = 1 << order;
684 m += n;
685 npages -= n;
686 } while (npages > 0);
687 }
688
689 /*
690 * Tries to allocate the specified number of pages from the specified pool
691 * within the specified domain. Returns the actual number of allocated pages
692 * and a pointer to each page through the array ma[].
693 *
694 * The returned pages may not be physically contiguous. However, in contrast
695 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
696 * calling this function once to allocate the desired number of pages will
697 * avoid wasted time in vm_phys_split_pages().
698 *
699 * The free page queues for the specified domain must be locked.
700 */
701 int
vm_phys_alloc_npages(int domain,int pool,int npages,vm_page_t ma[])702 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
703 {
704 struct vm_freelist *alt, *fl;
705 vm_page_t m;
706 int avail, end, flind, freelist, i, need, oind, pind;
707
708 KASSERT(domain >= 0 && domain < vm_ndomains,
709 ("vm_phys_alloc_npages: domain %d is out of range", domain));
710 KASSERT(pool < VM_NFREEPOOL,
711 ("vm_phys_alloc_npages: pool %d is out of range", pool));
712 KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
713 ("vm_phys_alloc_npages: npages %d is out of range", npages));
714 vm_domain_free_assert_locked(VM_DOMAIN(domain));
715 i = 0;
716 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
717 flind = vm_freelist_to_flind[freelist];
718 if (flind < 0)
719 continue;
720 fl = vm_phys_free_queues[domain][flind][pool];
721 for (oind = 0; oind < VM_NFREEORDER; oind++) {
722 while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
723 vm_freelist_rem(fl, m, oind);
724 avail = 1 << oind;
725 need = imin(npages - i, avail);
726 for (end = i + need; i < end;)
727 ma[i++] = m++;
728 if (need < avail) {
729 /*
730 * Return excess pages to fl. Its
731 * order [0, oind) queues are empty.
732 */
733 vm_phys_enq_range(m, avail - need, fl,
734 1);
735 return (npages);
736 } else if (i == npages)
737 return (npages);
738 }
739 }
740 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
741 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
742 alt = vm_phys_free_queues[domain][flind][pind];
743 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
744 NULL) {
745 vm_freelist_rem(alt, m, oind);
746 vm_phys_set_pool(pool, m, oind);
747 avail = 1 << oind;
748 need = imin(npages - i, avail);
749 for (end = i + need; i < end;)
750 ma[i++] = m++;
751 if (need < avail) {
752 /*
753 * Return excess pages to fl.
754 * Its order [0, oind) queues
755 * are empty.
756 */
757 vm_phys_enq_range(m, avail -
758 need, fl, 1);
759 return (npages);
760 } else if (i == npages)
761 return (npages);
762 }
763 }
764 }
765 }
766 return (i);
767 }
768
769 /*
770 * Allocate a contiguous, power of two-sized set of physical pages
771 * from the free lists.
772 *
773 * The free page queues must be locked.
774 */
775 vm_page_t
vm_phys_alloc_pages(int domain,int pool,int order)776 vm_phys_alloc_pages(int domain, int pool, int order)
777 {
778 vm_page_t m;
779 int freelist;
780
781 for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
782 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
783 if (m != NULL)
784 return (m);
785 }
786 return (NULL);
787 }
788
789 /*
790 * Allocate a contiguous, power of two-sized set of physical pages from the
791 * specified free list. The free list must be specified using one of the
792 * manifest constants VM_FREELIST_*.
793 *
794 * The free page queues must be locked.
795 */
796 vm_page_t
vm_phys_alloc_freelist_pages(int domain,int freelist,int pool,int order)797 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
798 {
799 struct vm_freelist *alt, *fl;
800 vm_page_t m;
801 int oind, pind, flind;
802
803 KASSERT(domain >= 0 && domain < vm_ndomains,
804 ("vm_phys_alloc_freelist_pages: domain %d is out of range",
805 domain));
806 KASSERT(freelist < VM_NFREELIST,
807 ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
808 freelist));
809 KASSERT(pool < VM_NFREEPOOL,
810 ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
811 KASSERT(order < VM_NFREEORDER,
812 ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
813
814 flind = vm_freelist_to_flind[freelist];
815 /* Check if freelist is present */
816 if (flind < 0)
817 return (NULL);
818
819 vm_domain_free_assert_locked(VM_DOMAIN(domain));
820 fl = &vm_phys_free_queues[domain][flind][pool][0];
821 for (oind = order; oind < VM_NFREEORDER; oind++) {
822 m = TAILQ_FIRST(&fl[oind].pl);
823 if (m != NULL) {
824 vm_freelist_rem(fl, m, oind);
825 /* The order [order, oind) queues are empty. */
826 vm_phys_split_pages(m, oind, fl, order, 1);
827 return (m);
828 }
829 }
830
831 /*
832 * The given pool was empty. Find the largest
833 * contiguous, power-of-two-sized set of pages in any
834 * pool. Transfer these pages to the given pool, and
835 * use them to satisfy the allocation.
836 */
837 for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
838 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
839 alt = &vm_phys_free_queues[domain][flind][pind][0];
840 m = TAILQ_FIRST(&alt[oind].pl);
841 if (m != NULL) {
842 vm_freelist_rem(alt, m, oind);
843 vm_phys_set_pool(pool, m, oind);
844 /* The order [order, oind) queues are empty. */
845 vm_phys_split_pages(m, oind, fl, order, 1);
846 return (m);
847 }
848 }
849 }
850 return (NULL);
851 }
852
853 /*
854 * Find the vm_page corresponding to the given physical address.
855 */
856 vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)857 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
858 {
859 struct vm_phys_seg *seg;
860 int segind;
861
862 for (segind = 0; segind < vm_phys_nsegs; segind++) {
863 seg = &vm_phys_segs[segind];
864 if (pa >= seg->start && pa < seg->end)
865 return (&seg->first_page[atop(pa - seg->start)]);
866 }
867 return (NULL);
868 }
869
870 vm_page_t
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)871 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
872 {
873 struct vm_phys_fictitious_seg tmp, *seg;
874 vm_page_t m;
875
876 m = NULL;
877 tmp.start = pa;
878 tmp.end = 0;
879
880 rw_rlock(&vm_phys_fictitious_reg_lock);
881 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
882 rw_runlock(&vm_phys_fictitious_reg_lock);
883 if (seg == NULL)
884 return (NULL);
885
886 m = &seg->first_page[atop(pa - seg->start)];
887 KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
888
889 return (m);
890 }
891
892 static inline void
vm_phys_fictitious_init_range(vm_page_t range,vm_paddr_t start,long page_count,vm_memattr_t memattr)893 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
894 long page_count, vm_memattr_t memattr)
895 {
896 long i;
897
898 bzero(range, page_count * sizeof(*range));
899 for (i = 0; i < page_count; i++) {
900 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
901 range[i].oflags &= ~VPO_UNMANAGED;
902 range[i].busy_lock = VPB_UNBUSIED;
903 }
904 }
905
906 int
vm_phys_fictitious_reg_range(vm_paddr_t start,vm_paddr_t end,vm_memattr_t memattr)907 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
908 vm_memattr_t memattr)
909 {
910 struct vm_phys_fictitious_seg *seg;
911 vm_page_t fp;
912 long page_count;
913 #ifdef VM_PHYSSEG_DENSE
914 long pi, pe;
915 long dpage_count;
916 #endif
917
918 KASSERT(start < end,
919 ("Start of segment isn't less than end (start: %jx end: %jx)",
920 (uintmax_t)start, (uintmax_t)end));
921
922 page_count = (end - start) / PAGE_SIZE;
923
924 #ifdef VM_PHYSSEG_DENSE
925 pi = atop(start);
926 pe = atop(end);
927 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
928 fp = &vm_page_array[pi - first_page];
929 if ((pe - first_page) > vm_page_array_size) {
930 /*
931 * We have a segment that starts inside
932 * of vm_page_array, but ends outside of it.
933 *
934 * Use vm_page_array pages for those that are
935 * inside of the vm_page_array range, and
936 * allocate the remaining ones.
937 */
938 dpage_count = vm_page_array_size - (pi - first_page);
939 vm_phys_fictitious_init_range(fp, start, dpage_count,
940 memattr);
941 page_count -= dpage_count;
942 start += ptoa(dpage_count);
943 goto alloc;
944 }
945 /*
946 * We can allocate the full range from vm_page_array,
947 * so there's no need to register the range in the tree.
948 */
949 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
950 return (0);
951 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
952 /*
953 * We have a segment that ends inside of vm_page_array,
954 * but starts outside of it.
955 */
956 fp = &vm_page_array[0];
957 dpage_count = pe - first_page;
958 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
959 memattr);
960 end -= ptoa(dpage_count);
961 page_count -= dpage_count;
962 goto alloc;
963 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
964 /*
965 * Trying to register a fictitious range that expands before
966 * and after vm_page_array.
967 */
968 return (EINVAL);
969 } else {
970 alloc:
971 #endif
972 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
973 M_WAITOK);
974 #ifdef VM_PHYSSEG_DENSE
975 }
976 #endif
977 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
978
979 seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
980 seg->start = start;
981 seg->end = end;
982 seg->first_page = fp;
983
984 rw_wlock(&vm_phys_fictitious_reg_lock);
985 RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
986 rw_wunlock(&vm_phys_fictitious_reg_lock);
987
988 return (0);
989 }
990
991 void
vm_phys_fictitious_unreg_range(vm_paddr_t start,vm_paddr_t end)992 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
993 {
994 struct vm_phys_fictitious_seg *seg, tmp;
995 #ifdef VM_PHYSSEG_DENSE
996 long pi, pe;
997 #endif
998
999 KASSERT(start < end,
1000 ("Start of segment isn't less than end (start: %jx end: %jx)",
1001 (uintmax_t)start, (uintmax_t)end));
1002
1003 #ifdef VM_PHYSSEG_DENSE
1004 pi = atop(start);
1005 pe = atop(end);
1006 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1007 if ((pe - first_page) <= vm_page_array_size) {
1008 /*
1009 * This segment was allocated using vm_page_array
1010 * only, there's nothing to do since those pages
1011 * were never added to the tree.
1012 */
1013 return;
1014 }
1015 /*
1016 * We have a segment that starts inside
1017 * of vm_page_array, but ends outside of it.
1018 *
1019 * Calculate how many pages were added to the
1020 * tree and free them.
1021 */
1022 start = ptoa(first_page + vm_page_array_size);
1023 } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1024 /*
1025 * We have a segment that ends inside of vm_page_array,
1026 * but starts outside of it.
1027 */
1028 end = ptoa(first_page);
1029 } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1030 /* Since it's not possible to register such a range, panic. */
1031 panic(
1032 "Unregistering not registered fictitious range [%#jx:%#jx]",
1033 (uintmax_t)start, (uintmax_t)end);
1034 }
1035 #endif
1036 tmp.start = start;
1037 tmp.end = 0;
1038
1039 rw_wlock(&vm_phys_fictitious_reg_lock);
1040 seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1041 if (seg->start != start || seg->end != end) {
1042 rw_wunlock(&vm_phys_fictitious_reg_lock);
1043 panic(
1044 "Unregistering not registered fictitious range [%#jx:%#jx]",
1045 (uintmax_t)start, (uintmax_t)end);
1046 }
1047 RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1048 rw_wunlock(&vm_phys_fictitious_reg_lock);
1049 free(seg->first_page, M_FICT_PAGES);
1050 free(seg, M_FICT_PAGES);
1051 }
1052
1053 /*
1054 * Free a contiguous, power of two-sized set of physical pages.
1055 *
1056 * The free page queues must be locked.
1057 */
1058 void
vm_phys_free_pages(vm_page_t m,int order)1059 vm_phys_free_pages(vm_page_t m, int order)
1060 {
1061 struct vm_freelist *fl;
1062 struct vm_phys_seg *seg;
1063 vm_paddr_t pa;
1064 vm_page_t m_buddy;
1065
1066 KASSERT(m->order == VM_NFREEORDER,
1067 ("vm_phys_free_pages: page %p has unexpected order %d",
1068 m, m->order));
1069 KASSERT(m->pool < VM_NFREEPOOL,
1070 ("vm_phys_free_pages: page %p has unexpected pool %d",
1071 m, m->pool));
1072 KASSERT(order < VM_NFREEORDER,
1073 ("vm_phys_free_pages: order %d is out of range", order));
1074 seg = &vm_phys_segs[m->segind];
1075 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1076 if (order < VM_NFREEORDER - 1) {
1077 pa = VM_PAGE_TO_PHYS(m);
1078 do {
1079 pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1080 if (pa < seg->start || pa >= seg->end)
1081 break;
1082 m_buddy = &seg->first_page[atop(pa - seg->start)];
1083 if (m_buddy->order != order)
1084 break;
1085 fl = (*seg->free_queues)[m_buddy->pool];
1086 vm_freelist_rem(fl, m_buddy, order);
1087 if (m_buddy->pool != m->pool)
1088 vm_phys_set_pool(m->pool, m_buddy, order);
1089 order++;
1090 pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1091 m = &seg->first_page[atop(pa - seg->start)];
1092 } while (order < VM_NFREEORDER - 1);
1093 }
1094 fl = (*seg->free_queues)[m->pool];
1095 vm_freelist_add(fl, m, order, 1);
1096 }
1097
1098 /*
1099 * Free a contiguous, arbitrarily sized set of physical pages.
1100 *
1101 * The free page queues must be locked.
1102 */
1103 void
vm_phys_free_contig(vm_page_t m,u_long npages)1104 vm_phys_free_contig(vm_page_t m, u_long npages)
1105 {
1106 u_int n;
1107 int order;
1108
1109 /*
1110 * Avoid unnecessary coalescing by freeing the pages in the largest
1111 * possible power-of-two-sized subsets.
1112 */
1113 vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1114 for (;; npages -= n) {
1115 /*
1116 * Unsigned "min" is used here so that "order" is assigned
1117 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1118 * or the low-order bits of its physical address are zero
1119 * because the size of a physical address exceeds the size of
1120 * a long.
1121 */
1122 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1123 VM_NFREEORDER - 1);
1124 n = 1 << order;
1125 if (npages < n)
1126 break;
1127 vm_phys_free_pages(m, order);
1128 m += n;
1129 }
1130 /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1131 for (; npages > 0; npages -= n) {
1132 order = flsl(npages) - 1;
1133 n = 1 << order;
1134 vm_phys_free_pages(m, order);
1135 m += n;
1136 }
1137 }
1138
1139 /*
1140 * Scan physical memory between the specified addresses "low" and "high" for a
1141 * run of contiguous physical pages that satisfy the specified conditions, and
1142 * return the lowest page in the run. The specified "alignment" determines
1143 * the alignment of the lowest physical page in the run. If the specified
1144 * "boundary" is non-zero, then the run of physical pages cannot span a
1145 * physical address that is a multiple of "boundary".
1146 *
1147 * "npages" must be greater than zero. Both "alignment" and "boundary" must
1148 * be a power of two.
1149 */
1150 vm_page_t
vm_phys_scan_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int options)1151 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1152 u_long alignment, vm_paddr_t boundary, int options)
1153 {
1154 vm_paddr_t pa_end;
1155 vm_page_t m_end, m_run, m_start;
1156 struct vm_phys_seg *seg;
1157 int segind;
1158
1159 KASSERT(npages > 0, ("npages is 0"));
1160 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1161 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1162 if (low >= high)
1163 return (NULL);
1164 for (segind = 0; segind < vm_phys_nsegs; segind++) {
1165 seg = &vm_phys_segs[segind];
1166 if (seg->domain != domain)
1167 continue;
1168 if (seg->start >= high)
1169 break;
1170 if (low >= seg->end)
1171 continue;
1172 if (low <= seg->start)
1173 m_start = seg->first_page;
1174 else
1175 m_start = &seg->first_page[atop(low - seg->start)];
1176 if (high < seg->end)
1177 pa_end = high;
1178 else
1179 pa_end = seg->end;
1180 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1181 continue;
1182 m_end = &seg->first_page[atop(pa_end - seg->start)];
1183 m_run = vm_page_scan_contig(npages, m_start, m_end,
1184 alignment, boundary, options);
1185 if (m_run != NULL)
1186 return (m_run);
1187 }
1188 return (NULL);
1189 }
1190
1191 /*
1192 * Set the pool for a contiguous, power of two-sized set of physical pages.
1193 */
1194 void
vm_phys_set_pool(int pool,vm_page_t m,int order)1195 vm_phys_set_pool(int pool, vm_page_t m, int order)
1196 {
1197 vm_page_t m_tmp;
1198
1199 for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1200 m_tmp->pool = pool;
1201 }
1202
1203 /*
1204 * Search for the given physical page "m" in the free lists. If the search
1205 * succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
1206 * FALSE, indicating that "m" is not in the free lists.
1207 *
1208 * The free page queues must be locked.
1209 */
1210 boolean_t
vm_phys_unfree_page(vm_page_t m)1211 vm_phys_unfree_page(vm_page_t m)
1212 {
1213 struct vm_freelist *fl;
1214 struct vm_phys_seg *seg;
1215 vm_paddr_t pa, pa_half;
1216 vm_page_t m_set, m_tmp;
1217 int order;
1218
1219 /*
1220 * First, find the contiguous, power of two-sized set of free
1221 * physical pages containing the given physical page "m" and
1222 * assign it to "m_set".
1223 */
1224 seg = &vm_phys_segs[m->segind];
1225 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1226 for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1227 order < VM_NFREEORDER - 1; ) {
1228 order++;
1229 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1230 if (pa >= seg->start)
1231 m_set = &seg->first_page[atop(pa - seg->start)];
1232 else
1233 return (FALSE);
1234 }
1235 if (m_set->order < order)
1236 return (FALSE);
1237 if (m_set->order == VM_NFREEORDER)
1238 return (FALSE);
1239 KASSERT(m_set->order < VM_NFREEORDER,
1240 ("vm_phys_unfree_page: page %p has unexpected order %d",
1241 m_set, m_set->order));
1242
1243 /*
1244 * Next, remove "m_set" from the free lists. Finally, extract
1245 * "m" from "m_set" using an iterative algorithm: While "m_set"
1246 * is larger than a page, shrink "m_set" by returning the half
1247 * of "m_set" that does not contain "m" to the free lists.
1248 */
1249 fl = (*seg->free_queues)[m_set->pool];
1250 order = m_set->order;
1251 vm_freelist_rem(fl, m_set, order);
1252 while (order > 0) {
1253 order--;
1254 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1255 if (m->phys_addr < pa_half)
1256 m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1257 else {
1258 m_tmp = m_set;
1259 m_set = &seg->first_page[atop(pa_half - seg->start)];
1260 }
1261 vm_freelist_add(fl, m_tmp, order, 0);
1262 }
1263 KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1264 return (TRUE);
1265 }
1266
1267 /*
1268 * Allocate a contiguous set of physical pages of the given size
1269 * "npages" from the free lists. All of the physical pages must be at
1270 * or above the given physical address "low" and below the given
1271 * physical address "high". The given value "alignment" determines the
1272 * alignment of the first physical page in the set. If the given value
1273 * "boundary" is non-zero, then the set of physical pages cannot cross
1274 * any physical address boundary that is a multiple of that value. Both
1275 * "alignment" and "boundary" must be a power of two.
1276 */
1277 vm_page_t
vm_phys_alloc_contig(int domain,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1278 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1279 u_long alignment, vm_paddr_t boundary)
1280 {
1281 vm_paddr_t pa_end, pa_start;
1282 vm_page_t m_run;
1283 struct vm_phys_seg *seg;
1284 int segind;
1285
1286 KASSERT(npages > 0, ("npages is 0"));
1287 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1288 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1289 vm_domain_free_assert_locked(VM_DOMAIN(domain));
1290 if (low >= high)
1291 return (NULL);
1292 m_run = NULL;
1293 for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1294 seg = &vm_phys_segs[segind];
1295 if (seg->start >= high || seg->domain != domain)
1296 continue;
1297 if (low >= seg->end)
1298 break;
1299 if (low <= seg->start)
1300 pa_start = seg->start;
1301 else
1302 pa_start = low;
1303 if (high < seg->end)
1304 pa_end = high;
1305 else
1306 pa_end = seg->end;
1307 if (pa_end - pa_start < ptoa(npages))
1308 continue;
1309 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1310 alignment, boundary);
1311 if (m_run != NULL)
1312 break;
1313 }
1314 return (m_run);
1315 }
1316
1317 /*
1318 * Allocate a run of contiguous physical pages from the free list for the
1319 * specified segment.
1320 */
1321 static vm_page_t
vm_phys_alloc_seg_contig(struct vm_phys_seg * seg,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)1322 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1323 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1324 {
1325 struct vm_freelist *fl;
1326 vm_paddr_t pa, pa_end, size;
1327 vm_page_t m, m_ret;
1328 u_long npages_end;
1329 int oind, order, pind;
1330
1331 KASSERT(npages > 0, ("npages is 0"));
1332 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1333 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1334 vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1335 /* Compute the queue that is the best fit for npages. */
1336 order = flsl(npages - 1);
1337 /* Search for a run satisfying the specified conditions. */
1338 size = npages << PAGE_SHIFT;
1339 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1340 oind++) {
1341 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1342 fl = (*seg->free_queues)[pind];
1343 TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1344 /*
1345 * Is the size of this allocation request
1346 * larger than the largest block size?
1347 */
1348 if (order >= VM_NFREEORDER) {
1349 /*
1350 * Determine if a sufficient number of
1351 * subsequent blocks to satisfy the
1352 * allocation request are free.
1353 */
1354 pa = VM_PAGE_TO_PHYS(m_ret);
1355 pa_end = pa + size;
1356 if (pa_end < pa)
1357 continue;
1358 for (;;) {
1359 pa += 1 << (PAGE_SHIFT +
1360 VM_NFREEORDER - 1);
1361 if (pa >= pa_end ||
1362 pa < seg->start ||
1363 pa >= seg->end)
1364 break;
1365 m = &seg->first_page[atop(pa -
1366 seg->start)];
1367 if (m->order != VM_NFREEORDER -
1368 1)
1369 break;
1370 }
1371 /* If not, go to the next block. */
1372 if (pa < pa_end)
1373 continue;
1374 }
1375
1376 /*
1377 * Determine if the blocks are within the
1378 * given range, satisfy the given alignment,
1379 * and do not cross the given boundary.
1380 */
1381 pa = VM_PAGE_TO_PHYS(m_ret);
1382 pa_end = pa + size;
1383 if (pa >= low && pa_end <= high &&
1384 (pa & (alignment - 1)) == 0 &&
1385 rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1386 goto done;
1387 }
1388 }
1389 }
1390 return (NULL);
1391 done:
1392 for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1393 fl = (*seg->free_queues)[m->pool];
1394 vm_freelist_rem(fl, m, oind);
1395 if (m->pool != VM_FREEPOOL_DEFAULT)
1396 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1397 }
1398 /* Return excess pages to the free lists. */
1399 npages_end = roundup2(npages, 1 << oind);
1400 if (npages < npages_end) {
1401 fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1402 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1403 }
1404 return (m_ret);
1405 }
1406
1407 #ifdef DDB
1408 /*
1409 * Show the number of physical pages in each of the free lists.
1410 */
DB_SHOW_COMMAND(freepages,db_show_freepages)1411 DB_SHOW_COMMAND(freepages, db_show_freepages)
1412 {
1413 struct vm_freelist *fl;
1414 int flind, oind, pind, dom;
1415
1416 for (dom = 0; dom < vm_ndomains; dom++) {
1417 db_printf("DOMAIN: %d\n", dom);
1418 for (flind = 0; flind < vm_nfreelists; flind++) {
1419 db_printf("FREE LIST %d:\n"
1420 "\n ORDER (SIZE) | NUMBER"
1421 "\n ", flind);
1422 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1423 db_printf(" | POOL %d", pind);
1424 db_printf("\n-- ");
1425 for (pind = 0; pind < VM_NFREEPOOL; pind++)
1426 db_printf("-- -- ");
1427 db_printf("--\n");
1428 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1429 db_printf(" %2.2d (%6.6dK)", oind,
1430 1 << (PAGE_SHIFT - 10 + oind));
1431 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1432 fl = vm_phys_free_queues[dom][flind][pind];
1433 db_printf(" | %6.6d", fl[oind].lcnt);
1434 }
1435 db_printf("\n");
1436 }
1437 db_printf("\n");
1438 }
1439 db_printf("\n");
1440 }
1441 }
1442 #endif
1443