xref: /freebsd-12.1/sys/vm/vm_object.c (revision 1927eda7)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  [email protected]
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/cpuset.h>
75 #include <sys/lock.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/kernel.h>
79 #include <sys/pctrie.h>
80 #include <sys/sysctl.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>		/* for curproc, pageproc */
83 #include <sys/socket.h>
84 #include <sys/resourcevar.h>
85 #include <sys/rwlock.h>
86 #include <sys/user.h>
87 #include <sys/vnode.h>
88 #include <sys/vmmeter.h>
89 #include <sys/sx.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_param.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_phys.h>
100 #include <vm/vm_pagequeue.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/uma.h>
107 
108 static int old_msync;
109 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
110     "Use old (insecure) msync behavior");
111 
112 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
113 		    int pagerflags, int flags, boolean_t *clearobjflags,
114 		    boolean_t *eio);
115 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
116 		    boolean_t *clearobjflags);
117 static void	vm_object_qcollapse(vm_object_t object);
118 static void	vm_object_vndeallocate(vm_object_t object);
119 
120 /*
121  *	Virtual memory objects maintain the actual data
122  *	associated with allocated virtual memory.  A given
123  *	page of memory exists within exactly one object.
124  *
125  *	An object is only deallocated when all "references"
126  *	are given up.  Only one "reference" to a given
127  *	region of an object should be writeable.
128  *
129  *	Associated with each object is a list of all resident
130  *	memory pages belonging to that object; this list is
131  *	maintained by the "vm_page" module, and locked by the object's
132  *	lock.
133  *
134  *	Each object also records a "pager" routine which is
135  *	used to retrieve (and store) pages to the proper backing
136  *	storage.  In addition, objects may be backed by other
137  *	objects from which they were virtual-copied.
138  *
139  *	The only items within the object structure which are
140  *	modified after time of creation are:
141  *		reference count		locked by object's lock
142  *		pager routine		locked by object's lock
143  *
144  */
145 
146 struct object_q vm_object_list;
147 struct mtx vm_object_list_mtx;	/* lock for object list and count */
148 
149 struct vm_object kernel_object_store;
150 
151 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
152     "VM object stats");
153 
154 static counter_u64_t object_collapses = EARLY_COUNTER;
155 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
156     &object_collapses,
157     "VM object collapses");
158 
159 static counter_u64_t object_bypasses = EARLY_COUNTER;
160 SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
161     &object_bypasses,
162     "VM object bypasses");
163 
164 static void
counter_startup(void)165 counter_startup(void)
166 {
167 
168 	object_collapses = counter_u64_alloc(M_WAITOK);
169 	object_bypasses = counter_u64_alloc(M_WAITOK);
170 }
171 SYSINIT(object_counters, SI_SUB_CPU, SI_ORDER_ANY, counter_startup, NULL);
172 
173 static uma_zone_t obj_zone;
174 
175 static int vm_object_zinit(void *mem, int size, int flags);
176 
177 #ifdef INVARIANTS
178 static void vm_object_zdtor(void *mem, int size, void *arg);
179 
180 static void
vm_object_zdtor(void * mem,int size,void * arg)181 vm_object_zdtor(void *mem, int size, void *arg)
182 {
183 	vm_object_t object;
184 
185 	object = (vm_object_t)mem;
186 	KASSERT(object->ref_count == 0,
187 	    ("object %p ref_count = %d", object, object->ref_count));
188 	KASSERT(TAILQ_EMPTY(&object->memq),
189 	    ("object %p has resident pages in its memq", object));
190 	KASSERT(vm_radix_is_empty(&object->rtree),
191 	    ("object %p has resident pages in its trie", object));
192 #if VM_NRESERVLEVEL > 0
193 	KASSERT(LIST_EMPTY(&object->rvq),
194 	    ("object %p has reservations",
195 	    object));
196 #endif
197 	KASSERT(object->paging_in_progress == 0,
198 	    ("object %p paging_in_progress = %d",
199 	    object, object->paging_in_progress));
200 	KASSERT(object->resident_page_count == 0,
201 	    ("object %p resident_page_count = %d",
202 	    object, object->resident_page_count));
203 	KASSERT(object->shadow_count == 0,
204 	    ("object %p shadow_count = %d",
205 	    object, object->shadow_count));
206 	KASSERT(object->type == OBJT_DEAD,
207 	    ("object %p has non-dead type %d",
208 	    object, object->type));
209 }
210 #endif
211 
212 static int
vm_object_zinit(void * mem,int size,int flags)213 vm_object_zinit(void *mem, int size, int flags)
214 {
215 	vm_object_t object;
216 
217 	object = (vm_object_t)mem;
218 	rw_init_flags(&object->lock, "vm object", RW_DUPOK | RW_NEW);
219 
220 	/* These are true for any object that has been freed */
221 	object->type = OBJT_DEAD;
222 	object->ref_count = 0;
223 	vm_radix_init(&object->rtree);
224 	object->paging_in_progress = 0;
225 	object->resident_page_count = 0;
226 	object->shadow_count = 0;
227 	object->flags = OBJ_DEAD;
228 
229 	mtx_lock(&vm_object_list_mtx);
230 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
231 	mtx_unlock(&vm_object_list_mtx);
232 	return (0);
233 }
234 
235 static void
_vm_object_allocate(objtype_t type,vm_pindex_t size,vm_object_t object)236 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
237 {
238 
239 	TAILQ_INIT(&object->memq);
240 	LIST_INIT(&object->shadow_head);
241 
242 	object->type = type;
243 	if (type == OBJT_SWAP)
244 		pctrie_init(&object->un_pager.swp.swp_blks);
245 
246 	/*
247 	 * Ensure that swap_pager_swapoff() iteration over object_list
248 	 * sees up to date type and pctrie head if it observed
249 	 * non-dead object.
250 	 */
251 	atomic_thread_fence_rel();
252 
253 	switch (type) {
254 	case OBJT_DEAD:
255 		panic("_vm_object_allocate: can't create OBJT_DEAD");
256 	case OBJT_DEFAULT:
257 	case OBJT_SWAP:
258 		object->flags = OBJ_ONEMAPPING;
259 		break;
260 	case OBJT_DEVICE:
261 	case OBJT_SG:
262 		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
263 		break;
264 	case OBJT_MGTDEVICE:
265 		object->flags = OBJ_FICTITIOUS;
266 		break;
267 	case OBJT_PHYS:
268 		object->flags = OBJ_UNMANAGED;
269 		break;
270 	case OBJT_VNODE:
271 		object->flags = 0;
272 		break;
273 	default:
274 		panic("_vm_object_allocate: type %d is undefined", type);
275 	}
276 	object->size = size;
277 	object->domain.dr_policy = NULL;
278 	object->generation = 1;
279 	object->ref_count = 1;
280 	object->memattr = VM_MEMATTR_DEFAULT;
281 	object->cred = NULL;
282 	object->charge = 0;
283 	object->handle = NULL;
284 	object->backing_object = NULL;
285 	object->backing_object_offset = (vm_ooffset_t) 0;
286 #if VM_NRESERVLEVEL > 0
287 	LIST_INIT(&object->rvq);
288 #endif
289 	umtx_shm_object_init(object);
290 }
291 
292 /*
293  *	vm_object_init:
294  *
295  *	Initialize the VM objects module.
296  */
297 void
vm_object_init(void)298 vm_object_init(void)
299 {
300 	TAILQ_INIT(&vm_object_list);
301 	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
302 
303 	rw_init(&kernel_object->lock, "kernel vm object");
304 	_vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS -
305 	    VM_MIN_KERNEL_ADDRESS), kernel_object);
306 #if VM_NRESERVLEVEL > 0
307 	kernel_object->flags |= OBJ_COLORED;
308 	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
309 #endif
310 
311 	/*
312 	 * The lock portion of struct vm_object must be type stable due
313 	 * to vm_pageout_fallback_object_lock locking a vm object
314 	 * without holding any references to it.
315 	 */
316 	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
317 #ifdef INVARIANTS
318 	    vm_object_zdtor,
319 #else
320 	    NULL,
321 #endif
322 	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
323 
324 	vm_radix_zinit();
325 }
326 
327 void
vm_object_clear_flag(vm_object_t object,u_short bits)328 vm_object_clear_flag(vm_object_t object, u_short bits)
329 {
330 
331 	VM_OBJECT_ASSERT_WLOCKED(object);
332 	object->flags &= ~bits;
333 }
334 
335 /*
336  *	Sets the default memory attribute for the specified object.  Pages
337  *	that are allocated to this object are by default assigned this memory
338  *	attribute.
339  *
340  *	Presently, this function must be called before any pages are allocated
341  *	to the object.  In the future, this requirement may be relaxed for
342  *	"default" and "swap" objects.
343  */
344 int
vm_object_set_memattr(vm_object_t object,vm_memattr_t memattr)345 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
346 {
347 
348 	VM_OBJECT_ASSERT_WLOCKED(object);
349 	switch (object->type) {
350 	case OBJT_DEFAULT:
351 	case OBJT_DEVICE:
352 	case OBJT_MGTDEVICE:
353 	case OBJT_PHYS:
354 	case OBJT_SG:
355 	case OBJT_SWAP:
356 	case OBJT_VNODE:
357 		if (!TAILQ_EMPTY(&object->memq))
358 			return (KERN_FAILURE);
359 		break;
360 	case OBJT_DEAD:
361 		return (KERN_INVALID_ARGUMENT);
362 	default:
363 		panic("vm_object_set_memattr: object %p is of undefined type",
364 		    object);
365 	}
366 	object->memattr = memattr;
367 	return (KERN_SUCCESS);
368 }
369 
370 void
vm_object_pip_add(vm_object_t object,short i)371 vm_object_pip_add(vm_object_t object, short i)
372 {
373 
374 	VM_OBJECT_ASSERT_WLOCKED(object);
375 	object->paging_in_progress += i;
376 }
377 
378 void
vm_object_pip_subtract(vm_object_t object,short i)379 vm_object_pip_subtract(vm_object_t object, short i)
380 {
381 
382 	VM_OBJECT_ASSERT_WLOCKED(object);
383 	object->paging_in_progress -= i;
384 }
385 
386 void
vm_object_pip_wakeup(vm_object_t object)387 vm_object_pip_wakeup(vm_object_t object)
388 {
389 
390 	VM_OBJECT_ASSERT_WLOCKED(object);
391 	object->paging_in_progress--;
392 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
393 		vm_object_clear_flag(object, OBJ_PIPWNT);
394 		wakeup(object);
395 	}
396 }
397 
398 void
vm_object_pip_wakeupn(vm_object_t object,short i)399 vm_object_pip_wakeupn(vm_object_t object, short i)
400 {
401 
402 	VM_OBJECT_ASSERT_WLOCKED(object);
403 	if (i)
404 		object->paging_in_progress -= i;
405 	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
406 		vm_object_clear_flag(object, OBJ_PIPWNT);
407 		wakeup(object);
408 	}
409 }
410 
411 void
vm_object_pip_wait(vm_object_t object,char * waitid)412 vm_object_pip_wait(vm_object_t object, char *waitid)
413 {
414 
415 	VM_OBJECT_ASSERT_WLOCKED(object);
416 	while (object->paging_in_progress) {
417 		object->flags |= OBJ_PIPWNT;
418 		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
419 	}
420 }
421 
422 /*
423  *	vm_object_allocate:
424  *
425  *	Returns a new object with the given size.
426  */
427 vm_object_t
vm_object_allocate(objtype_t type,vm_pindex_t size)428 vm_object_allocate(objtype_t type, vm_pindex_t size)
429 {
430 	vm_object_t object;
431 
432 	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
433 	_vm_object_allocate(type, size, object);
434 	return (object);
435 }
436 
437 
438 /*
439  *	vm_object_reference:
440  *
441  *	Gets another reference to the given object.  Note: OBJ_DEAD
442  *	objects can be referenced during final cleaning.
443  */
444 void
vm_object_reference(vm_object_t object)445 vm_object_reference(vm_object_t object)
446 {
447 	if (object == NULL)
448 		return;
449 	VM_OBJECT_WLOCK(object);
450 	vm_object_reference_locked(object);
451 	VM_OBJECT_WUNLOCK(object);
452 }
453 
454 /*
455  *	vm_object_reference_locked:
456  *
457  *	Gets another reference to the given object.
458  *
459  *	The object must be locked.
460  */
461 void
vm_object_reference_locked(vm_object_t object)462 vm_object_reference_locked(vm_object_t object)
463 {
464 	struct vnode *vp;
465 
466 	VM_OBJECT_ASSERT_WLOCKED(object);
467 	object->ref_count++;
468 	if (object->type == OBJT_VNODE) {
469 		vp = object->handle;
470 		vref(vp);
471 	}
472 }
473 
474 /*
475  * Handle deallocating an object of type OBJT_VNODE.
476  */
477 static void
vm_object_vndeallocate(vm_object_t object)478 vm_object_vndeallocate(vm_object_t object)
479 {
480 	struct vnode *vp = (struct vnode *) object->handle;
481 
482 	VM_OBJECT_ASSERT_WLOCKED(object);
483 	KASSERT(object->type == OBJT_VNODE,
484 	    ("vm_object_vndeallocate: not a vnode object"));
485 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
486 #ifdef INVARIANTS
487 	if (object->ref_count == 0) {
488 		vn_printf(vp, "vm_object_vndeallocate ");
489 		panic("vm_object_vndeallocate: bad object reference count");
490 	}
491 #endif
492 
493 	if (!umtx_shm_vnobj_persistent && object->ref_count == 1)
494 		umtx_shm_object_terminated(object);
495 
496 	object->ref_count--;
497 
498 	/* vrele may need the vnode lock. */
499 	VM_OBJECT_WUNLOCK(object);
500 	vrele(vp);
501 }
502 
503 /*
504  *	vm_object_deallocate:
505  *
506  *	Release a reference to the specified object,
507  *	gained either through a vm_object_allocate
508  *	or a vm_object_reference call.  When all references
509  *	are gone, storage associated with this object
510  *	may be relinquished.
511  *
512  *	No object may be locked.
513  */
514 void
vm_object_deallocate(vm_object_t object)515 vm_object_deallocate(vm_object_t object)
516 {
517 	vm_object_t temp;
518 
519 	while (object != NULL) {
520 		VM_OBJECT_WLOCK(object);
521 		if (object->type == OBJT_VNODE) {
522 			vm_object_vndeallocate(object);
523 			return;
524 		}
525 
526 		KASSERT(object->ref_count != 0,
527 			("vm_object_deallocate: object deallocated too many times: %d", object->type));
528 
529 		/*
530 		 * If the reference count goes to 0 we start calling
531 		 * vm_object_terminate() on the object chain.
532 		 * A ref count of 1 may be a special case depending on the
533 		 * shadow count being 0 or 1.
534 		 */
535 		object->ref_count--;
536 		if (object->ref_count > 1) {
537 			VM_OBJECT_WUNLOCK(object);
538 			return;
539 		} else if (object->ref_count == 1) {
540 			if (object->shadow_count == 0 &&
541 			    object->handle == NULL &&
542 			    (object->type == OBJT_DEFAULT ||
543 			    (object->type == OBJT_SWAP &&
544 			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
545 				vm_object_set_flag(object, OBJ_ONEMAPPING);
546 			} else if ((object->shadow_count == 1) &&
547 			    (object->handle == NULL) &&
548 			    (object->type == OBJT_DEFAULT ||
549 			     object->type == OBJT_SWAP)) {
550 				vm_object_t robject;
551 
552 				robject = LIST_FIRST(&object->shadow_head);
553 				KASSERT(robject != NULL,
554 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
555 					 object->ref_count,
556 					 object->shadow_count));
557 				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
558 				    ("shadowed tmpfs v_object %p", object));
559 				if (!VM_OBJECT_TRYWLOCK(robject)) {
560 					/*
561 					 * Avoid a potential deadlock.
562 					 */
563 					object->ref_count++;
564 					VM_OBJECT_WUNLOCK(object);
565 					/*
566 					 * More likely than not the thread
567 					 * holding robject's lock has lower
568 					 * priority than the current thread.
569 					 * Let the lower priority thread run.
570 					 */
571 					pause("vmo_de", 1);
572 					continue;
573 				}
574 				/*
575 				 * Collapse object into its shadow unless its
576 				 * shadow is dead.  In that case, object will
577 				 * be deallocated by the thread that is
578 				 * deallocating its shadow.
579 				 */
580 				if ((robject->flags & OBJ_DEAD) == 0 &&
581 				    (robject->handle == NULL) &&
582 				    (robject->type == OBJT_DEFAULT ||
583 				     robject->type == OBJT_SWAP)) {
584 
585 					robject->ref_count++;
586 retry:
587 					if (robject->paging_in_progress) {
588 						VM_OBJECT_WUNLOCK(object);
589 						vm_object_pip_wait(robject,
590 						    "objde1");
591 						temp = robject->backing_object;
592 						if (object == temp) {
593 							VM_OBJECT_WLOCK(object);
594 							goto retry;
595 						}
596 					} else if (object->paging_in_progress) {
597 						VM_OBJECT_WUNLOCK(robject);
598 						object->flags |= OBJ_PIPWNT;
599 						VM_OBJECT_SLEEP(object, object,
600 						    PDROP | PVM, "objde2", 0);
601 						VM_OBJECT_WLOCK(robject);
602 						temp = robject->backing_object;
603 						if (object == temp) {
604 							VM_OBJECT_WLOCK(object);
605 							goto retry;
606 						}
607 					} else
608 						VM_OBJECT_WUNLOCK(object);
609 
610 					if (robject->ref_count == 1) {
611 						robject->ref_count--;
612 						object = robject;
613 						goto doterm;
614 					}
615 					object = robject;
616 					vm_object_collapse(object);
617 					VM_OBJECT_WUNLOCK(object);
618 					continue;
619 				}
620 				VM_OBJECT_WUNLOCK(robject);
621 			}
622 			VM_OBJECT_WUNLOCK(object);
623 			return;
624 		}
625 doterm:
626 		umtx_shm_object_terminated(object);
627 		temp = object->backing_object;
628 		if (temp != NULL) {
629 			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
630 			    ("shadowed tmpfs v_object 2 %p", object));
631 			VM_OBJECT_WLOCK(temp);
632 			LIST_REMOVE(object, shadow_list);
633 			temp->shadow_count--;
634 			VM_OBJECT_WUNLOCK(temp);
635 			object->backing_object = NULL;
636 		}
637 		/*
638 		 * Don't double-terminate, we could be in a termination
639 		 * recursion due to the terminate having to sync data
640 		 * to disk.
641 		 */
642 		if ((object->flags & OBJ_DEAD) == 0)
643 			vm_object_terminate(object);
644 		else
645 			VM_OBJECT_WUNLOCK(object);
646 		object = temp;
647 	}
648 }
649 
650 /*
651  *	vm_object_destroy removes the object from the global object list
652  *      and frees the space for the object.
653  */
654 void
vm_object_destroy(vm_object_t object)655 vm_object_destroy(vm_object_t object)
656 {
657 
658 	/*
659 	 * Release the allocation charge.
660 	 */
661 	if (object->cred != NULL) {
662 		swap_release_by_cred(object->charge, object->cred);
663 		object->charge = 0;
664 		crfree(object->cred);
665 		object->cred = NULL;
666 	}
667 
668 	/*
669 	 * Free the space for the object.
670 	 */
671 	uma_zfree(obj_zone, object);
672 }
673 
674 /*
675  *	vm_object_terminate_pages removes any remaining pageable pages
676  *	from the object and resets the object to an empty state.
677  */
678 static void
vm_object_terminate_pages(vm_object_t object)679 vm_object_terminate_pages(vm_object_t object)
680 {
681 	vm_page_t p, p_next;
682 	struct mtx *mtx;
683 
684 	VM_OBJECT_ASSERT_WLOCKED(object);
685 
686 	mtx = NULL;
687 
688 	/*
689 	 * Free any remaining pageable pages.  This also removes them from the
690 	 * paging queues.  However, don't free wired pages, just remove them
691 	 * from the object.  Rather than incrementally removing each page from
692 	 * the object, the page and object are reset to any empty state.
693 	 */
694 	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
695 		vm_page_assert_unbusied(p);
696 		if ((object->flags & OBJ_UNMANAGED) == 0)
697 			/*
698 			 * vm_page_free_prep() only needs the page
699 			 * lock for managed pages.
700 			 */
701 			vm_page_change_lock(p, &mtx);
702 		p->object = NULL;
703 		if (vm_page_wired(p))
704 			continue;
705 		VM_CNT_INC(v_pfree);
706 		vm_page_free(p);
707 	}
708 	if (mtx != NULL)
709 		mtx_unlock(mtx);
710 
711 	/*
712 	 * If the object contained any pages, then reset it to an empty state.
713 	 * None of the object's fields, including "resident_page_count", were
714 	 * modified by the preceding loop.
715 	 */
716 	if (object->resident_page_count != 0) {
717 		vm_radix_reclaim_allnodes(&object->rtree);
718 		TAILQ_INIT(&object->memq);
719 		object->resident_page_count = 0;
720 		if (object->type == OBJT_VNODE)
721 			vdrop(object->handle);
722 	}
723 }
724 
725 /*
726  *	vm_object_terminate actually destroys the specified object, freeing
727  *	up all previously used resources.
728  *
729  *	The object must be locked.
730  *	This routine may block.
731  */
732 void
vm_object_terminate(vm_object_t object)733 vm_object_terminate(vm_object_t object)
734 {
735 
736 	VM_OBJECT_ASSERT_WLOCKED(object);
737 
738 	/*
739 	 * Make sure no one uses us.
740 	 */
741 	vm_object_set_flag(object, OBJ_DEAD);
742 
743 	/*
744 	 * wait for the pageout daemon to be done with the object
745 	 */
746 	vm_object_pip_wait(object, "objtrm");
747 
748 	KASSERT(!object->paging_in_progress,
749 		("vm_object_terminate: pageout in progress"));
750 
751 	/*
752 	 * Clean and free the pages, as appropriate. All references to the
753 	 * object are gone, so we don't need to lock it.
754 	 */
755 	if (object->type == OBJT_VNODE) {
756 		struct vnode *vp = (struct vnode *)object->handle;
757 
758 		/*
759 		 * Clean pages and flush buffers.
760 		 */
761 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
762 		VM_OBJECT_WUNLOCK(object);
763 
764 		vinvalbuf(vp, V_SAVE, 0, 0);
765 
766 		BO_LOCK(&vp->v_bufobj);
767 		vp->v_bufobj.bo_flag |= BO_DEAD;
768 		BO_UNLOCK(&vp->v_bufobj);
769 
770 		VM_OBJECT_WLOCK(object);
771 	}
772 
773 	KASSERT(object->ref_count == 0,
774 		("vm_object_terminate: object with references, ref_count=%d",
775 		object->ref_count));
776 
777 	if ((object->flags & OBJ_PG_DTOR) == 0)
778 		vm_object_terminate_pages(object);
779 
780 #if VM_NRESERVLEVEL > 0
781 	if (__predict_false(!LIST_EMPTY(&object->rvq)))
782 		vm_reserv_break_all(object);
783 #endif
784 
785 	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
786 	    object->type == OBJT_SWAP,
787 	    ("%s: non-swap obj %p has cred", __func__, object));
788 
789 	/*
790 	 * Let the pager know object is dead.
791 	 */
792 	vm_pager_deallocate(object);
793 	VM_OBJECT_WUNLOCK(object);
794 
795 	vm_object_destroy(object);
796 }
797 
798 /*
799  * Make the page read-only so that we can clear the object flags.  However, if
800  * this is a nosync mmap then the object is likely to stay dirty so do not
801  * mess with the page and do not clear the object flags.  Returns TRUE if the
802  * page should be flushed, and FALSE otherwise.
803  */
804 static boolean_t
vm_object_page_remove_write(vm_page_t p,int flags,boolean_t * clearobjflags)805 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
806 {
807 
808 	/*
809 	 * If we have been asked to skip nosync pages and this is a
810 	 * nosync page, skip it.  Note that the object flags were not
811 	 * cleared in this case so we do not have to set them.
812 	 */
813 	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
814 		*clearobjflags = FALSE;
815 		return (FALSE);
816 	} else {
817 		pmap_remove_write(p);
818 		return (p->dirty != 0);
819 	}
820 }
821 
822 /*
823  *	vm_object_page_clean
824  *
825  *	Clean all dirty pages in the specified range of object.  Leaves page
826  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
827  *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
828  *	leaving the object dirty.
829  *
830  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
831  *	synchronous clustering mode implementation.
832  *
833  *	Odd semantics: if start == end, we clean everything.
834  *
835  *	The object must be locked.
836  *
837  *	Returns FALSE if some page from the range was not written, as
838  *	reported by the pager, and TRUE otherwise.
839  */
840 boolean_t
vm_object_page_clean(vm_object_t object,vm_ooffset_t start,vm_ooffset_t end,int flags)841 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
842     int flags)
843 {
844 	vm_page_t np, p;
845 	vm_pindex_t pi, tend, tstart;
846 	int curgeneration, n, pagerflags;
847 	boolean_t clearobjflags, eio, res;
848 
849 	VM_OBJECT_ASSERT_WLOCKED(object);
850 
851 	/*
852 	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
853 	 * objects.  The check below prevents the function from
854 	 * operating on non-vnode objects.
855 	 */
856 	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
857 	    object->resident_page_count == 0)
858 		return (TRUE);
859 
860 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
861 	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
862 	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
863 
864 	tstart = OFF_TO_IDX(start);
865 	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
866 	clearobjflags = tstart == 0 && tend >= object->size;
867 	res = TRUE;
868 
869 rescan:
870 	curgeneration = object->generation;
871 
872 	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
873 		pi = p->pindex;
874 		if (pi >= tend)
875 			break;
876 		np = TAILQ_NEXT(p, listq);
877 		if (p->valid == 0)
878 			continue;
879 		if (vm_page_sleep_if_busy(p, "vpcwai")) {
880 			if (object->generation != curgeneration) {
881 				if ((flags & OBJPC_SYNC) != 0)
882 					goto rescan;
883 				else
884 					clearobjflags = FALSE;
885 			}
886 			np = vm_page_find_least(object, pi);
887 			continue;
888 		}
889 		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
890 			continue;
891 
892 		n = vm_object_page_collect_flush(object, p, pagerflags,
893 		    flags, &clearobjflags, &eio);
894 		if (eio) {
895 			res = FALSE;
896 			clearobjflags = FALSE;
897 		}
898 		if (object->generation != curgeneration) {
899 			if ((flags & OBJPC_SYNC) != 0)
900 				goto rescan;
901 			else
902 				clearobjflags = FALSE;
903 		}
904 
905 		/*
906 		 * If the VOP_PUTPAGES() did a truncated write, so
907 		 * that even the first page of the run is not fully
908 		 * written, vm_pageout_flush() returns 0 as the run
909 		 * length.  Since the condition that caused truncated
910 		 * write may be permanent, e.g. exhausted free space,
911 		 * accepting n == 0 would cause an infinite loop.
912 		 *
913 		 * Forwarding the iterator leaves the unwritten page
914 		 * behind, but there is not much we can do there if
915 		 * filesystem refuses to write it.
916 		 */
917 		if (n == 0) {
918 			n = 1;
919 			clearobjflags = FALSE;
920 		}
921 		np = vm_page_find_least(object, pi + n);
922 	}
923 #if 0
924 	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
925 #endif
926 
927 	if (clearobjflags)
928 		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
929 	return (res);
930 }
931 
932 static int
vm_object_page_collect_flush(vm_object_t object,vm_page_t p,int pagerflags,int flags,boolean_t * clearobjflags,boolean_t * eio)933 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
934     int flags, boolean_t *clearobjflags, boolean_t *eio)
935 {
936 	vm_page_t ma[vm_pageout_page_count], p_first, tp;
937 	int count, i, mreq, runlen;
938 
939 	vm_page_lock_assert(p, MA_NOTOWNED);
940 	VM_OBJECT_ASSERT_WLOCKED(object);
941 
942 	count = 1;
943 	mreq = 0;
944 
945 	for (tp = p; count < vm_pageout_page_count; count++) {
946 		tp = vm_page_next(tp);
947 		if (tp == NULL || vm_page_busied(tp))
948 			break;
949 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
950 			break;
951 	}
952 
953 	for (p_first = p; count < vm_pageout_page_count; count++) {
954 		tp = vm_page_prev(p_first);
955 		if (tp == NULL || vm_page_busied(tp))
956 			break;
957 		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
958 			break;
959 		p_first = tp;
960 		mreq++;
961 	}
962 
963 	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
964 		ma[i] = tp;
965 
966 	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
967 	return (runlen);
968 }
969 
970 /*
971  * Note that there is absolutely no sense in writing out
972  * anonymous objects, so we track down the vnode object
973  * to write out.
974  * We invalidate (remove) all pages from the address space
975  * for semantic correctness.
976  *
977  * If the backing object is a device object with unmanaged pages, then any
978  * mappings to the specified range of pages must be removed before this
979  * function is called.
980  *
981  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
982  * may start out with a NULL object.
983  */
984 boolean_t
vm_object_sync(vm_object_t object,vm_ooffset_t offset,vm_size_t size,boolean_t syncio,boolean_t invalidate)985 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
986     boolean_t syncio, boolean_t invalidate)
987 {
988 	vm_object_t backing_object;
989 	struct vnode *vp;
990 	struct mount *mp;
991 	int error, flags, fsync_after;
992 	boolean_t res;
993 
994 	if (object == NULL)
995 		return (TRUE);
996 	res = TRUE;
997 	error = 0;
998 	VM_OBJECT_WLOCK(object);
999 	while ((backing_object = object->backing_object) != NULL) {
1000 		VM_OBJECT_WLOCK(backing_object);
1001 		offset += object->backing_object_offset;
1002 		VM_OBJECT_WUNLOCK(object);
1003 		object = backing_object;
1004 		if (object->size < OFF_TO_IDX(offset + size))
1005 			size = IDX_TO_OFF(object->size) - offset;
1006 	}
1007 	/*
1008 	 * Flush pages if writing is allowed, invalidate them
1009 	 * if invalidation requested.  Pages undergoing I/O
1010 	 * will be ignored by vm_object_page_remove().
1011 	 *
1012 	 * We cannot lock the vnode and then wait for paging
1013 	 * to complete without deadlocking against vm_fault.
1014 	 * Instead we simply call vm_object_page_remove() and
1015 	 * allow it to block internally on a page-by-page
1016 	 * basis when it encounters pages undergoing async
1017 	 * I/O.
1018 	 */
1019 	if (object->type == OBJT_VNODE &&
1020 	    (object->flags & OBJ_MIGHTBEDIRTY) != 0 &&
1021 	    ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) {
1022 		VM_OBJECT_WUNLOCK(object);
1023 		(void) vn_start_write(vp, &mp, V_WAIT);
1024 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1025 		if (syncio && !invalidate && offset == 0 &&
1026 		    atop(size) == object->size) {
1027 			/*
1028 			 * If syncing the whole mapping of the file,
1029 			 * it is faster to schedule all the writes in
1030 			 * async mode, also allowing the clustering,
1031 			 * and then wait for i/o to complete.
1032 			 */
1033 			flags = 0;
1034 			fsync_after = TRUE;
1035 		} else {
1036 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1037 			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1038 			fsync_after = FALSE;
1039 		}
1040 		VM_OBJECT_WLOCK(object);
1041 		res = vm_object_page_clean(object, offset, offset + size,
1042 		    flags);
1043 		VM_OBJECT_WUNLOCK(object);
1044 		if (fsync_after)
1045 			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1046 		VOP_UNLOCK(vp, 0);
1047 		vn_finished_write(mp);
1048 		if (error != 0)
1049 			res = FALSE;
1050 		VM_OBJECT_WLOCK(object);
1051 	}
1052 	if ((object->type == OBJT_VNODE ||
1053 	     object->type == OBJT_DEVICE) && invalidate) {
1054 		if (object->type == OBJT_DEVICE)
1055 			/*
1056 			 * The option OBJPR_NOTMAPPED must be passed here
1057 			 * because vm_object_page_remove() cannot remove
1058 			 * unmanaged mappings.
1059 			 */
1060 			flags = OBJPR_NOTMAPPED;
1061 		else if (old_msync)
1062 			flags = 0;
1063 		else
1064 			flags = OBJPR_CLEANONLY;
1065 		vm_object_page_remove(object, OFF_TO_IDX(offset),
1066 		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1067 	}
1068 	VM_OBJECT_WUNLOCK(object);
1069 	return (res);
1070 }
1071 
1072 /*
1073  * Determine whether the given advice can be applied to the object.  Advice is
1074  * not applied to unmanaged pages since they never belong to page queues, and
1075  * since MADV_FREE is destructive, it can apply only to anonymous pages that
1076  * have been mapped at most once.
1077  */
1078 static bool
vm_object_advice_applies(vm_object_t object,int advice)1079 vm_object_advice_applies(vm_object_t object, int advice)
1080 {
1081 
1082 	if ((object->flags & OBJ_UNMANAGED) != 0)
1083 		return (false);
1084 	if (advice != MADV_FREE)
1085 		return (true);
1086 	return ((object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) &&
1087 	    (object->flags & OBJ_ONEMAPPING) != 0);
1088 }
1089 
1090 static void
vm_object_madvise_freespace(vm_object_t object,int advice,vm_pindex_t pindex,vm_size_t size)1091 vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex,
1092     vm_size_t size)
1093 {
1094 
1095 	if (advice == MADV_FREE && object->type == OBJT_SWAP)
1096 		swap_pager_freespace(object, pindex, size);
1097 }
1098 
1099 /*
1100  *	vm_object_madvise:
1101  *
1102  *	Implements the madvise function at the object/page level.
1103  *
1104  *	MADV_WILLNEED	(any object)
1105  *
1106  *	    Activate the specified pages if they are resident.
1107  *
1108  *	MADV_DONTNEED	(any object)
1109  *
1110  *	    Deactivate the specified pages if they are resident.
1111  *
1112  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1113  *			 OBJ_ONEMAPPING only)
1114  *
1115  *	    Deactivate and clean the specified pages if they are
1116  *	    resident.  This permits the process to reuse the pages
1117  *	    without faulting or the kernel to reclaim the pages
1118  *	    without I/O.
1119  */
1120 void
vm_object_madvise(vm_object_t object,vm_pindex_t pindex,vm_pindex_t end,int advice)1121 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1122     int advice)
1123 {
1124 	vm_pindex_t tpindex;
1125 	vm_object_t backing_object, tobject;
1126 	vm_page_t m, tm;
1127 
1128 	if (object == NULL)
1129 		return;
1130 
1131 relookup:
1132 	VM_OBJECT_WLOCK(object);
1133 	if (!vm_object_advice_applies(object, advice)) {
1134 		VM_OBJECT_WUNLOCK(object);
1135 		return;
1136 	}
1137 	for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) {
1138 		tobject = object;
1139 
1140 		/*
1141 		 * If the next page isn't resident in the top-level object, we
1142 		 * need to search the shadow chain.  When applying MADV_FREE, we
1143 		 * take care to release any swap space used to store
1144 		 * non-resident pages.
1145 		 */
1146 		if (m == NULL || pindex < m->pindex) {
1147 			/*
1148 			 * Optimize a common case: if the top-level object has
1149 			 * no backing object, we can skip over the non-resident
1150 			 * range in constant time.
1151 			 */
1152 			if (object->backing_object == NULL) {
1153 				tpindex = (m != NULL && m->pindex < end) ?
1154 				    m->pindex : end;
1155 				vm_object_madvise_freespace(object, advice,
1156 				    pindex, tpindex - pindex);
1157 				if ((pindex = tpindex) == end)
1158 					break;
1159 				goto next_page;
1160 			}
1161 
1162 			tpindex = pindex;
1163 			do {
1164 				vm_object_madvise_freespace(tobject, advice,
1165 				    tpindex, 1);
1166 				/*
1167 				 * Prepare to search the next object in the
1168 				 * chain.
1169 				 */
1170 				backing_object = tobject->backing_object;
1171 				if (backing_object == NULL)
1172 					goto next_pindex;
1173 				VM_OBJECT_WLOCK(backing_object);
1174 				tpindex +=
1175 				    OFF_TO_IDX(tobject->backing_object_offset);
1176 				if (tobject != object)
1177 					VM_OBJECT_WUNLOCK(tobject);
1178 				tobject = backing_object;
1179 				if (!vm_object_advice_applies(tobject, advice))
1180 					goto next_pindex;
1181 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
1182 			    NULL);
1183 		} else {
1184 next_page:
1185 			tm = m;
1186 			m = TAILQ_NEXT(m, listq);
1187 		}
1188 
1189 		/*
1190 		 * If the page is not in a normal state, skip it.
1191 		 */
1192 		if (tm->valid != VM_PAGE_BITS_ALL)
1193 			goto next_pindex;
1194 		vm_page_lock(tm);
1195 		if (vm_page_held(tm)) {
1196 			vm_page_unlock(tm);
1197 			goto next_pindex;
1198 		}
1199 		KASSERT((tm->flags & PG_FICTITIOUS) == 0,
1200 		    ("vm_object_madvise: page %p is fictitious", tm));
1201 		KASSERT((tm->oflags & VPO_UNMANAGED) == 0,
1202 		    ("vm_object_madvise: page %p is not managed", tm));
1203 		if (vm_page_busied(tm)) {
1204 			if (object != tobject)
1205 				VM_OBJECT_WUNLOCK(tobject);
1206 			VM_OBJECT_WUNLOCK(object);
1207 			if (advice == MADV_WILLNEED) {
1208 				/*
1209 				 * Reference the page before unlocking and
1210 				 * sleeping so that the page daemon is less
1211 				 * likely to reclaim it.
1212 				 */
1213 				vm_page_aflag_set(tm, PGA_REFERENCED);
1214 			}
1215 			vm_page_busy_sleep(tm, "madvpo", false);
1216   			goto relookup;
1217 		}
1218 		vm_page_advise(tm, advice);
1219 		vm_page_unlock(tm);
1220 		vm_object_madvise_freespace(tobject, advice, tm->pindex, 1);
1221 next_pindex:
1222 		if (tobject != object)
1223 			VM_OBJECT_WUNLOCK(tobject);
1224 	}
1225 	VM_OBJECT_WUNLOCK(object);
1226 }
1227 
1228 /*
1229  *	vm_object_shadow:
1230  *
1231  *	Create a new object which is backed by the
1232  *	specified existing object range.  The source
1233  *	object reference is deallocated.
1234  *
1235  *	The new object and offset into that object
1236  *	are returned in the source parameters.
1237  */
1238 void
vm_object_shadow(vm_object_t * object,vm_ooffset_t * offset,vm_size_t length)1239 vm_object_shadow(
1240 	vm_object_t *object,	/* IN/OUT */
1241 	vm_ooffset_t *offset,	/* IN/OUT */
1242 	vm_size_t length)
1243 {
1244 	vm_object_t source;
1245 	vm_object_t result;
1246 
1247 	source = *object;
1248 
1249 	/*
1250 	 * Don't create the new object if the old object isn't shared.
1251 	 */
1252 	if (source != NULL) {
1253 		VM_OBJECT_WLOCK(source);
1254 		if (source->ref_count == 1 &&
1255 		    source->handle == NULL &&
1256 		    (source->type == OBJT_DEFAULT ||
1257 		     source->type == OBJT_SWAP)) {
1258 			VM_OBJECT_WUNLOCK(source);
1259 			return;
1260 		}
1261 		VM_OBJECT_WUNLOCK(source);
1262 	}
1263 
1264 	/*
1265 	 * Allocate a new object with the given length.
1266 	 */
1267 	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1268 
1269 	/*
1270 	 * The new object shadows the source object, adding a reference to it.
1271 	 * Our caller changes his reference to point to the new object,
1272 	 * removing a reference to the source object.  Net result: no change
1273 	 * of reference count.
1274 	 *
1275 	 * Try to optimize the result object's page color when shadowing
1276 	 * in order to maintain page coloring consistency in the combined
1277 	 * shadowed object.
1278 	 */
1279 	result->backing_object = source;
1280 	/*
1281 	 * Store the offset into the source object, and fix up the offset into
1282 	 * the new object.
1283 	 */
1284 	result->backing_object_offset = *offset;
1285 	if (source != NULL) {
1286 		VM_OBJECT_WLOCK(source);
1287 		result->domain = source->domain;
1288 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1289 		source->shadow_count++;
1290 #if VM_NRESERVLEVEL > 0
1291 		result->flags |= source->flags & OBJ_COLORED;
1292 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1293 		    ((1 << (VM_NFREEORDER - 1)) - 1);
1294 #endif
1295 		VM_OBJECT_WUNLOCK(source);
1296 	}
1297 
1298 
1299 	/*
1300 	 * Return the new things
1301 	 */
1302 	*offset = 0;
1303 	*object = result;
1304 }
1305 
1306 /*
1307  *	vm_object_split:
1308  *
1309  * Split the pages in a map entry into a new object.  This affords
1310  * easier removal of unused pages, and keeps object inheritance from
1311  * being a negative impact on memory usage.
1312  */
1313 void
vm_object_split(vm_map_entry_t entry)1314 vm_object_split(vm_map_entry_t entry)
1315 {
1316 	vm_page_t m, m_next;
1317 	vm_object_t orig_object, new_object, source;
1318 	vm_pindex_t idx, offidxstart;
1319 	vm_size_t size;
1320 
1321 	orig_object = entry->object.vm_object;
1322 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1323 		return;
1324 	if (orig_object->ref_count <= 1)
1325 		return;
1326 	VM_OBJECT_WUNLOCK(orig_object);
1327 
1328 	offidxstart = OFF_TO_IDX(entry->offset);
1329 	size = atop(entry->end - entry->start);
1330 
1331 	/*
1332 	 * If swap_pager_copy() is later called, it will convert new_object
1333 	 * into a swap object.
1334 	 */
1335 	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1336 
1337 	/*
1338 	 * At this point, the new object is still private, so the order in
1339 	 * which the original and new objects are locked does not matter.
1340 	 */
1341 	VM_OBJECT_WLOCK(new_object);
1342 	VM_OBJECT_WLOCK(orig_object);
1343 	new_object->domain = orig_object->domain;
1344 	source = orig_object->backing_object;
1345 	if (source != NULL) {
1346 		VM_OBJECT_WLOCK(source);
1347 		if ((source->flags & OBJ_DEAD) != 0) {
1348 			VM_OBJECT_WUNLOCK(source);
1349 			VM_OBJECT_WUNLOCK(orig_object);
1350 			VM_OBJECT_WUNLOCK(new_object);
1351 			vm_object_deallocate(new_object);
1352 			VM_OBJECT_WLOCK(orig_object);
1353 			return;
1354 		}
1355 		LIST_INSERT_HEAD(&source->shadow_head,
1356 				  new_object, shadow_list);
1357 		source->shadow_count++;
1358 		vm_object_reference_locked(source);	/* for new_object */
1359 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1360 		VM_OBJECT_WUNLOCK(source);
1361 		new_object->backing_object_offset =
1362 			orig_object->backing_object_offset + entry->offset;
1363 		new_object->backing_object = source;
1364 	}
1365 	if (orig_object->cred != NULL) {
1366 		new_object->cred = orig_object->cred;
1367 		crhold(orig_object->cred);
1368 		new_object->charge = ptoa(size);
1369 		KASSERT(orig_object->charge >= ptoa(size),
1370 		    ("orig_object->charge < 0"));
1371 		orig_object->charge -= ptoa(size);
1372 	}
1373 retry:
1374 	m = vm_page_find_least(orig_object, offidxstart);
1375 	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1376 	    m = m_next) {
1377 		m_next = TAILQ_NEXT(m, listq);
1378 
1379 		/*
1380 		 * We must wait for pending I/O to complete before we can
1381 		 * rename the page.
1382 		 *
1383 		 * We do not have to VM_PROT_NONE the page as mappings should
1384 		 * not be changed by this operation.
1385 		 */
1386 		if (vm_page_busied(m)) {
1387 			VM_OBJECT_WUNLOCK(new_object);
1388 			vm_page_lock(m);
1389 			VM_OBJECT_WUNLOCK(orig_object);
1390 			vm_page_busy_sleep(m, "spltwt", false);
1391 			VM_OBJECT_WLOCK(orig_object);
1392 			VM_OBJECT_WLOCK(new_object);
1393 			goto retry;
1394 		}
1395 
1396 		/* vm_page_rename() will dirty the page. */
1397 		if (vm_page_rename(m, new_object, idx)) {
1398 			VM_OBJECT_WUNLOCK(new_object);
1399 			VM_OBJECT_WUNLOCK(orig_object);
1400 			vm_radix_wait();
1401 			VM_OBJECT_WLOCK(orig_object);
1402 			VM_OBJECT_WLOCK(new_object);
1403 			goto retry;
1404 		}
1405 #if VM_NRESERVLEVEL > 0
1406 		/*
1407 		 * If some of the reservation's allocated pages remain with
1408 		 * the original object, then transferring the reservation to
1409 		 * the new object is neither particularly beneficial nor
1410 		 * particularly harmful as compared to leaving the reservation
1411 		 * with the original object.  If, however, all of the
1412 		 * reservation's allocated pages are transferred to the new
1413 		 * object, then transferring the reservation is typically
1414 		 * beneficial.  Determining which of these two cases applies
1415 		 * would be more costly than unconditionally renaming the
1416 		 * reservation.
1417 		 */
1418 		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1419 #endif
1420 		if (orig_object->type == OBJT_SWAP)
1421 			vm_page_xbusy(m);
1422 	}
1423 	if (orig_object->type == OBJT_SWAP) {
1424 		/*
1425 		 * swap_pager_copy() can sleep, in which case the orig_object's
1426 		 * and new_object's locks are released and reacquired.
1427 		 */
1428 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1429 		TAILQ_FOREACH(m, &new_object->memq, listq)
1430 			vm_page_xunbusy(m);
1431 	}
1432 	VM_OBJECT_WUNLOCK(orig_object);
1433 	VM_OBJECT_WUNLOCK(new_object);
1434 	entry->object.vm_object = new_object;
1435 	entry->offset = 0LL;
1436 	vm_object_deallocate(orig_object);
1437 	VM_OBJECT_WLOCK(new_object);
1438 }
1439 
1440 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1441 #define	OBSC_COLLAPSE_WAIT	0x0004
1442 
1443 static vm_page_t
vm_object_collapse_scan_wait(vm_object_t object,vm_page_t p,vm_page_t next,int op)1444 vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1445     int op)
1446 {
1447 	vm_object_t backing_object;
1448 
1449 	VM_OBJECT_ASSERT_WLOCKED(object);
1450 	backing_object = object->backing_object;
1451 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1452 
1453 	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1454 	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1455 	    ("invalid ownership %p %p %p", p, object, backing_object));
1456 	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1457 		return (next);
1458 	if (p != NULL)
1459 		vm_page_lock(p);
1460 	VM_OBJECT_WUNLOCK(object);
1461 	VM_OBJECT_WUNLOCK(backing_object);
1462 	/* The page is only NULL when rename fails. */
1463 	if (p == NULL)
1464 		vm_radix_wait();
1465 	else
1466 		vm_page_busy_sleep(p, "vmocol", false);
1467 	VM_OBJECT_WLOCK(object);
1468 	VM_OBJECT_WLOCK(backing_object);
1469 	return (TAILQ_FIRST(&backing_object->memq));
1470 }
1471 
1472 static bool
vm_object_scan_all_shadowed(vm_object_t object)1473 vm_object_scan_all_shadowed(vm_object_t object)
1474 {
1475 	vm_object_t backing_object;
1476 	vm_page_t p, pp;
1477 	vm_pindex_t backing_offset_index, new_pindex, pi, ps;
1478 
1479 	VM_OBJECT_ASSERT_WLOCKED(object);
1480 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1481 
1482 	backing_object = object->backing_object;
1483 
1484 	if (backing_object->type != OBJT_DEFAULT &&
1485 	    backing_object->type != OBJT_SWAP)
1486 		return (false);
1487 
1488 	pi = backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1489 	p = vm_page_find_least(backing_object, pi);
1490 	ps = swap_pager_find_least(backing_object, pi);
1491 
1492 	/*
1493 	 * Only check pages inside the parent object's range and
1494 	 * inside the parent object's mapping of the backing object.
1495 	 */
1496 	for (;; pi++) {
1497 		if (p != NULL && p->pindex < pi)
1498 			p = TAILQ_NEXT(p, listq);
1499 		if (ps < pi)
1500 			ps = swap_pager_find_least(backing_object, pi);
1501 		if (p == NULL && ps >= backing_object->size)
1502 			break;
1503 		else if (p == NULL)
1504 			pi = ps;
1505 		else
1506 			pi = MIN(p->pindex, ps);
1507 
1508 		new_pindex = pi - backing_offset_index;
1509 		if (new_pindex >= object->size)
1510 			break;
1511 
1512 		/*
1513 		 * See if the parent has the page or if the parent's object
1514 		 * pager has the page.  If the parent has the page but the page
1515 		 * is not valid, the parent's object pager must have the page.
1516 		 *
1517 		 * If this fails, the parent does not completely shadow the
1518 		 * object and we might as well give up now.
1519 		 */
1520 		pp = vm_page_lookup(object, new_pindex);
1521 		if ((pp == NULL || pp->valid == 0) &&
1522 		    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1523 			return (false);
1524 	}
1525 	return (true);
1526 }
1527 
1528 static bool
vm_object_collapse_scan(vm_object_t object,int op)1529 vm_object_collapse_scan(vm_object_t object, int op)
1530 {
1531 	vm_object_t backing_object;
1532 	vm_page_t next, p, pp;
1533 	vm_pindex_t backing_offset_index, new_pindex;
1534 
1535 	VM_OBJECT_ASSERT_WLOCKED(object);
1536 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1537 
1538 	backing_object = object->backing_object;
1539 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1540 
1541 	/*
1542 	 * Initial conditions
1543 	 */
1544 	if ((op & OBSC_COLLAPSE_WAIT) != 0)
1545 		vm_object_set_flag(backing_object, OBJ_DEAD);
1546 
1547 	/*
1548 	 * Our scan
1549 	 */
1550 	for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) {
1551 		next = TAILQ_NEXT(p, listq);
1552 		new_pindex = p->pindex - backing_offset_index;
1553 
1554 		/*
1555 		 * Check for busy page
1556 		 */
1557 		if (vm_page_busied(p)) {
1558 			next = vm_object_collapse_scan_wait(object, p, next, op);
1559 			continue;
1560 		}
1561 
1562 		KASSERT(p->object == backing_object,
1563 		    ("vm_object_collapse_scan: object mismatch"));
1564 
1565 		if (p->pindex < backing_offset_index ||
1566 		    new_pindex >= object->size) {
1567 			if (backing_object->type == OBJT_SWAP)
1568 				swap_pager_freespace(backing_object, p->pindex,
1569 				    1);
1570 
1571 			/*
1572 			 * Page is out of the parent object's range, we can
1573 			 * simply destroy it.
1574 			 */
1575 			vm_page_lock(p);
1576 			KASSERT(!pmap_page_is_mapped(p),
1577 			    ("freeing mapped page %p", p));
1578 			if (vm_page_remove(p))
1579 				vm_page_free(p);
1580 			vm_page_unlock(p);
1581 			continue;
1582 		}
1583 
1584 		pp = vm_page_lookup(object, new_pindex);
1585 		if (pp != NULL && vm_page_busied(pp)) {
1586 			/*
1587 			 * The page in the parent is busy and possibly not
1588 			 * (yet) valid.  Until its state is finalized by the
1589 			 * busy bit owner, we can't tell whether it shadows the
1590 			 * original page.  Therefore, we must either skip it
1591 			 * and the original (backing_object) page or wait for
1592 			 * its state to be finalized.
1593 			 *
1594 			 * This is due to a race with vm_fault() where we must
1595 			 * unbusy the original (backing_obj) page before we can
1596 			 * (re)lock the parent.  Hence we can get here.
1597 			 */
1598 			next = vm_object_collapse_scan_wait(object, pp, next,
1599 			    op);
1600 			continue;
1601 		}
1602 
1603 		KASSERT(pp == NULL || pp->valid != 0,
1604 		    ("unbusy invalid page %p", pp));
1605 
1606 		if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL,
1607 			NULL)) {
1608 			/*
1609 			 * The page already exists in the parent OR swap exists
1610 			 * for this location in the parent.  Leave the parent's
1611 			 * page alone.  Destroy the original page from the
1612 			 * backing object.
1613 			 */
1614 			if (backing_object->type == OBJT_SWAP)
1615 				swap_pager_freespace(backing_object, p->pindex,
1616 				    1);
1617 			vm_page_lock(p);
1618 			KASSERT(!pmap_page_is_mapped(p),
1619 			    ("freeing mapped page %p", p));
1620 			if (vm_page_remove(p))
1621 				vm_page_free(p);
1622 			vm_page_unlock(p);
1623 			continue;
1624 		}
1625 
1626 		/*
1627 		 * Page does not exist in parent, rename the page from the
1628 		 * backing object to the main object.
1629 		 *
1630 		 * If the page was mapped to a process, it can remain mapped
1631 		 * through the rename.  vm_page_rename() will dirty the page.
1632 		 */
1633 		if (vm_page_rename(p, object, new_pindex)) {
1634 			next = vm_object_collapse_scan_wait(object, NULL, next,
1635 			    op);
1636 			continue;
1637 		}
1638 
1639 		/* Use the old pindex to free the right page. */
1640 		if (backing_object->type == OBJT_SWAP)
1641 			swap_pager_freespace(backing_object,
1642 			    new_pindex + backing_offset_index, 1);
1643 
1644 #if VM_NRESERVLEVEL > 0
1645 		/*
1646 		 * Rename the reservation.
1647 		 */
1648 		vm_reserv_rename(p, object, backing_object,
1649 		    backing_offset_index);
1650 #endif
1651 	}
1652 	return (true);
1653 }
1654 
1655 
1656 /*
1657  * this version of collapse allows the operation to occur earlier and
1658  * when paging_in_progress is true for an object...  This is not a complete
1659  * operation, but should plug 99.9% of the rest of the leaks.
1660  */
1661 static void
vm_object_qcollapse(vm_object_t object)1662 vm_object_qcollapse(vm_object_t object)
1663 {
1664 	vm_object_t backing_object = object->backing_object;
1665 
1666 	VM_OBJECT_ASSERT_WLOCKED(object);
1667 	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1668 
1669 	if (backing_object->ref_count != 1)
1670 		return;
1671 
1672 	vm_object_collapse_scan(object, OBSC_COLLAPSE_NOWAIT);
1673 }
1674 
1675 /*
1676  *	vm_object_collapse:
1677  *
1678  *	Collapse an object with the object backing it.
1679  *	Pages in the backing object are moved into the
1680  *	parent, and the backing object is deallocated.
1681  */
1682 void
vm_object_collapse(vm_object_t object)1683 vm_object_collapse(vm_object_t object)
1684 {
1685 	vm_object_t backing_object, new_backing_object;
1686 
1687 	VM_OBJECT_ASSERT_WLOCKED(object);
1688 
1689 	while (TRUE) {
1690 		/*
1691 		 * Verify that the conditions are right for collapse:
1692 		 *
1693 		 * The object exists and the backing object exists.
1694 		 */
1695 		if ((backing_object = object->backing_object) == NULL)
1696 			break;
1697 
1698 		/*
1699 		 * we check the backing object first, because it is most likely
1700 		 * not collapsable.
1701 		 */
1702 		VM_OBJECT_WLOCK(backing_object);
1703 		if (backing_object->handle != NULL ||
1704 		    (backing_object->type != OBJT_DEFAULT &&
1705 		    backing_object->type != OBJT_SWAP) ||
1706 		    (backing_object->flags & (OBJ_DEAD | OBJ_NOSPLIT)) != 0 ||
1707 		    object->handle != NULL ||
1708 		    (object->type != OBJT_DEFAULT &&
1709 		     object->type != OBJT_SWAP) ||
1710 		    (object->flags & OBJ_DEAD)) {
1711 			VM_OBJECT_WUNLOCK(backing_object);
1712 			break;
1713 		}
1714 
1715 		if (object->paging_in_progress != 0 ||
1716 		    backing_object->paging_in_progress != 0) {
1717 			vm_object_qcollapse(object);
1718 			VM_OBJECT_WUNLOCK(backing_object);
1719 			break;
1720 		}
1721 
1722 		/*
1723 		 * We know that we can either collapse the backing object (if
1724 		 * the parent is the only reference to it) or (perhaps) have
1725 		 * the parent bypass the object if the parent happens to shadow
1726 		 * all the resident pages in the entire backing object.
1727 		 *
1728 		 * This is ignoring pager-backed pages such as swap pages.
1729 		 * vm_object_collapse_scan fails the shadowing test in this
1730 		 * case.
1731 		 */
1732 		if (backing_object->ref_count == 1) {
1733 			vm_object_pip_add(object, 1);
1734 			vm_object_pip_add(backing_object, 1);
1735 
1736 			/*
1737 			 * If there is exactly one reference to the backing
1738 			 * object, we can collapse it into the parent.
1739 			 */
1740 			vm_object_collapse_scan(object, OBSC_COLLAPSE_WAIT);
1741 
1742 #if VM_NRESERVLEVEL > 0
1743 			/*
1744 			 * Break any reservations from backing_object.
1745 			 */
1746 			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1747 				vm_reserv_break_all(backing_object);
1748 #endif
1749 
1750 			/*
1751 			 * Move the pager from backing_object to object.
1752 			 */
1753 			if (backing_object->type == OBJT_SWAP) {
1754 				/*
1755 				 * swap_pager_copy() can sleep, in which case
1756 				 * the backing_object's and object's locks are
1757 				 * released and reacquired.
1758 				 * Since swap_pager_copy() is being asked to
1759 				 * destroy the source, it will change the
1760 				 * backing_object's type to OBJT_DEFAULT.
1761 				 */
1762 				swap_pager_copy(
1763 				    backing_object,
1764 				    object,
1765 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1766 			}
1767 			/*
1768 			 * Object now shadows whatever backing_object did.
1769 			 * Note that the reference to
1770 			 * backing_object->backing_object moves from within
1771 			 * backing_object to within object.
1772 			 */
1773 			LIST_REMOVE(object, shadow_list);
1774 			backing_object->shadow_count--;
1775 			if (backing_object->backing_object) {
1776 				VM_OBJECT_WLOCK(backing_object->backing_object);
1777 				LIST_REMOVE(backing_object, shadow_list);
1778 				LIST_INSERT_HEAD(
1779 				    &backing_object->backing_object->shadow_head,
1780 				    object, shadow_list);
1781 				/*
1782 				 * The shadow_count has not changed.
1783 				 */
1784 				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1785 			}
1786 			object->backing_object = backing_object->backing_object;
1787 			object->backing_object_offset +=
1788 			    backing_object->backing_object_offset;
1789 
1790 			/*
1791 			 * Discard backing_object.
1792 			 *
1793 			 * Since the backing object has no pages, no pager left,
1794 			 * and no object references within it, all that is
1795 			 * necessary is to dispose of it.
1796 			 */
1797 			KASSERT(backing_object->ref_count == 1, (
1798 "backing_object %p was somehow re-referenced during collapse!",
1799 			    backing_object));
1800 			vm_object_pip_wakeup(backing_object);
1801 			backing_object->type = OBJT_DEAD;
1802 			backing_object->ref_count = 0;
1803 			VM_OBJECT_WUNLOCK(backing_object);
1804 			vm_object_destroy(backing_object);
1805 
1806 			vm_object_pip_wakeup(object);
1807 			counter_u64_add(object_collapses, 1);
1808 		} else {
1809 			/*
1810 			 * If we do not entirely shadow the backing object,
1811 			 * there is nothing we can do so we give up.
1812 			 */
1813 			if (object->resident_page_count != object->size &&
1814 			    !vm_object_scan_all_shadowed(object)) {
1815 				VM_OBJECT_WUNLOCK(backing_object);
1816 				break;
1817 			}
1818 
1819 			/*
1820 			 * Make the parent shadow the next object in the
1821 			 * chain.  Deallocating backing_object will not remove
1822 			 * it, since its reference count is at least 2.
1823 			 */
1824 			LIST_REMOVE(object, shadow_list);
1825 			backing_object->shadow_count--;
1826 
1827 			new_backing_object = backing_object->backing_object;
1828 			if ((object->backing_object = new_backing_object) != NULL) {
1829 				VM_OBJECT_WLOCK(new_backing_object);
1830 				LIST_INSERT_HEAD(
1831 				    &new_backing_object->shadow_head,
1832 				    object,
1833 				    shadow_list
1834 				);
1835 				new_backing_object->shadow_count++;
1836 				vm_object_reference_locked(new_backing_object);
1837 				VM_OBJECT_WUNLOCK(new_backing_object);
1838 				object->backing_object_offset +=
1839 					backing_object->backing_object_offset;
1840 			}
1841 
1842 			/*
1843 			 * Drop the reference count on backing_object. Since
1844 			 * its ref_count was at least 2, it will not vanish.
1845 			 */
1846 			backing_object->ref_count--;
1847 			VM_OBJECT_WUNLOCK(backing_object);
1848 			counter_u64_add(object_bypasses, 1);
1849 		}
1850 
1851 		/*
1852 		 * Try again with this object's new backing object.
1853 		 */
1854 	}
1855 }
1856 
1857 /*
1858  *	vm_object_page_remove:
1859  *
1860  *	For the given object, either frees or invalidates each of the
1861  *	specified pages.  In general, a page is freed.  However, if a page is
1862  *	wired for any reason other than the existence of a managed, wired
1863  *	mapping, then it may be invalidated but not removed from the object.
1864  *	Pages are specified by the given range ["start", "end") and the option
1865  *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1866  *	extends from "start" to the end of the object.  If the option
1867  *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1868  *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1869  *	specified, then the pages within the specified range must have no
1870  *	mappings.  Otherwise, if this option is not specified, any mappings to
1871  *	the specified pages are removed before the pages are freed or
1872  *	invalidated.
1873  *
1874  *	In general, this operation should only be performed on objects that
1875  *	contain managed pages.  There are, however, two exceptions.  First, it
1876  *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1877  *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1878  *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1879  *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1880  *
1881  *	The object must be locked.
1882  */
1883 void
vm_object_page_remove(vm_object_t object,vm_pindex_t start,vm_pindex_t end,int options)1884 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1885     int options)
1886 {
1887 	vm_page_t p, next;
1888 	struct mtx *mtx;
1889 
1890 	VM_OBJECT_ASSERT_WLOCKED(object);
1891 	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1892 	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1893 	    ("vm_object_page_remove: illegal options for object %p", object));
1894 	if (object->resident_page_count == 0)
1895 		return;
1896 	vm_object_pip_add(object, 1);
1897 again:
1898 	p = vm_page_find_least(object, start);
1899 	mtx = NULL;
1900 
1901 	/*
1902 	 * Here, the variable "p" is either (1) the page with the least pindex
1903 	 * greater than or equal to the parameter "start" or (2) NULL.
1904 	 */
1905 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1906 		next = TAILQ_NEXT(p, listq);
1907 
1908 		/*
1909 		 * If the page is wired for any reason besides the existence
1910 		 * of managed, wired mappings, then it cannot be freed.  For
1911 		 * example, fictitious pages, which represent device memory,
1912 		 * are inherently wired and cannot be freed.  They can,
1913 		 * however, be invalidated if the option OBJPR_CLEANONLY is
1914 		 * not specified.
1915 		 */
1916 		vm_page_change_lock(p, &mtx);
1917 		if (vm_page_xbusied(p)) {
1918 			VM_OBJECT_WUNLOCK(object);
1919 			vm_page_busy_sleep(p, "vmopax", true);
1920 			VM_OBJECT_WLOCK(object);
1921 			goto again;
1922 		}
1923 		if (vm_page_wired(p)) {
1924 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1925 			    object->ref_count != 0)
1926 				pmap_remove_all(p);
1927 			if ((options & OBJPR_CLEANONLY) == 0) {
1928 				p->valid = 0;
1929 				vm_page_undirty(p);
1930 			}
1931 			continue;
1932 		}
1933 		if (vm_page_busied(p)) {
1934 			VM_OBJECT_WUNLOCK(object);
1935 			vm_page_busy_sleep(p, "vmopar", false);
1936 			VM_OBJECT_WLOCK(object);
1937 			goto again;
1938 		}
1939 		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1940 		    ("vm_object_page_remove: page %p is fictitious", p));
1941 		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1942 			if ((options & OBJPR_NOTMAPPED) == 0 &&
1943 			    object->ref_count != 0)
1944 				pmap_remove_write(p);
1945 			if (p->dirty != 0)
1946 				continue;
1947 		}
1948 		if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0)
1949 			pmap_remove_all(p);
1950 		vm_page_free(p);
1951 	}
1952 	if (mtx != NULL)
1953 		mtx_unlock(mtx);
1954 	vm_object_pip_wakeup(object);
1955 }
1956 
1957 /*
1958  *	vm_object_page_noreuse:
1959  *
1960  *	For the given object, attempt to move the specified pages to
1961  *	the head of the inactive queue.  This bypasses regular LRU
1962  *	operation and allows the pages to be reused quickly under memory
1963  *	pressure.  If a page is wired for any reason, then it will not
1964  *	be queued.  Pages are specified by the range ["start", "end").
1965  *	As a special case, if "end" is zero, then the range extends from
1966  *	"start" to the end of the object.
1967  *
1968  *	This operation should only be performed on objects that
1969  *	contain non-fictitious, managed pages.
1970  *
1971  *	The object must be locked.
1972  */
1973 void
vm_object_page_noreuse(vm_object_t object,vm_pindex_t start,vm_pindex_t end)1974 vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1975 {
1976 	struct mtx *mtx;
1977 	vm_page_t p, next;
1978 
1979 	VM_OBJECT_ASSERT_LOCKED(object);
1980 	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1981 	    ("vm_object_page_noreuse: illegal object %p", object));
1982 	if (object->resident_page_count == 0)
1983 		return;
1984 	p = vm_page_find_least(object, start);
1985 
1986 	/*
1987 	 * Here, the variable "p" is either (1) the page with the least pindex
1988 	 * greater than or equal to the parameter "start" or (2) NULL.
1989 	 */
1990 	mtx = NULL;
1991 	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1992 		next = TAILQ_NEXT(p, listq);
1993 		vm_page_change_lock(p, &mtx);
1994 		vm_page_deactivate_noreuse(p);
1995 	}
1996 	if (mtx != NULL)
1997 		mtx_unlock(mtx);
1998 }
1999 
2000 /*
2001  *	Populate the specified range of the object with valid pages.  Returns
2002  *	TRUE if the range is successfully populated and FALSE otherwise.
2003  *
2004  *	Note: This function should be optimized to pass a larger array of
2005  *	pages to vm_pager_get_pages() before it is applied to a non-
2006  *	OBJT_DEVICE object.
2007  *
2008  *	The object must be locked.
2009  */
2010 boolean_t
vm_object_populate(vm_object_t object,vm_pindex_t start,vm_pindex_t end)2011 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2012 {
2013 	vm_page_t m;
2014 	vm_pindex_t pindex;
2015 	int rv;
2016 
2017 	VM_OBJECT_ASSERT_WLOCKED(object);
2018 	for (pindex = start; pindex < end; pindex++) {
2019 		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2020 		if (m->valid != VM_PAGE_BITS_ALL) {
2021 			rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
2022 			if (rv != VM_PAGER_OK) {
2023 				vm_page_lock(m);
2024 				vm_page_free(m);
2025 				vm_page_unlock(m);
2026 				break;
2027 			}
2028 		}
2029 		/*
2030 		 * Keep "m" busy because a subsequent iteration may unlock
2031 		 * the object.
2032 		 */
2033 	}
2034 	if (pindex > start) {
2035 		m = vm_page_lookup(object, start);
2036 		while (m != NULL && m->pindex < pindex) {
2037 			vm_page_xunbusy(m);
2038 			m = TAILQ_NEXT(m, listq);
2039 		}
2040 	}
2041 	return (pindex == end);
2042 }
2043 
2044 /*
2045  *	Routine:	vm_object_coalesce
2046  *	Function:	Coalesces two objects backing up adjoining
2047  *			regions of memory into a single object.
2048  *
2049  *	returns TRUE if objects were combined.
2050  *
2051  *	NOTE:	Only works at the moment if the second object is NULL -
2052  *		if it's not, which object do we lock first?
2053  *
2054  *	Parameters:
2055  *		prev_object	First object to coalesce
2056  *		prev_offset	Offset into prev_object
2057  *		prev_size	Size of reference to prev_object
2058  *		next_size	Size of reference to the second object
2059  *		reserved	Indicator that extension region has
2060  *				swap accounted for
2061  *
2062  *	Conditions:
2063  *	The object must *not* be locked.
2064  */
2065 boolean_t
vm_object_coalesce(vm_object_t prev_object,vm_ooffset_t prev_offset,vm_size_t prev_size,vm_size_t next_size,boolean_t reserved)2066 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2067     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2068 {
2069 	vm_pindex_t next_pindex;
2070 
2071 	if (prev_object == NULL)
2072 		return (TRUE);
2073 	VM_OBJECT_WLOCK(prev_object);
2074 	if ((prev_object->type != OBJT_DEFAULT &&
2075 	    prev_object->type != OBJT_SWAP) ||
2076 	    (prev_object->flags & OBJ_NOSPLIT) != 0) {
2077 		VM_OBJECT_WUNLOCK(prev_object);
2078 		return (FALSE);
2079 	}
2080 
2081 	/*
2082 	 * Try to collapse the object first
2083 	 */
2084 	vm_object_collapse(prev_object);
2085 
2086 	/*
2087 	 * Can't coalesce if: . more than one reference . paged out . shadows
2088 	 * another object . has a copy elsewhere (any of which mean that the
2089 	 * pages not mapped to prev_entry may be in use anyway)
2090 	 */
2091 	if (prev_object->backing_object != NULL) {
2092 		VM_OBJECT_WUNLOCK(prev_object);
2093 		return (FALSE);
2094 	}
2095 
2096 	prev_size >>= PAGE_SHIFT;
2097 	next_size >>= PAGE_SHIFT;
2098 	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2099 
2100 	if (prev_object->ref_count > 1 &&
2101 	    prev_object->size != next_pindex &&
2102 	    (prev_object->flags & OBJ_ONEMAPPING) == 0) {
2103 		VM_OBJECT_WUNLOCK(prev_object);
2104 		return (FALSE);
2105 	}
2106 
2107 	/*
2108 	 * Account for the charge.
2109 	 */
2110 	if (prev_object->cred != NULL) {
2111 
2112 		/*
2113 		 * If prev_object was charged, then this mapping,
2114 		 * although not charged now, may become writable
2115 		 * later. Non-NULL cred in the object would prevent
2116 		 * swap reservation during enabling of the write
2117 		 * access, so reserve swap now. Failed reservation
2118 		 * cause allocation of the separate object for the map
2119 		 * entry, and swap reservation for this entry is
2120 		 * managed in appropriate time.
2121 		 */
2122 		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2123 		    prev_object->cred)) {
2124 			VM_OBJECT_WUNLOCK(prev_object);
2125 			return (FALSE);
2126 		}
2127 		prev_object->charge += ptoa(next_size);
2128 	}
2129 
2130 	/*
2131 	 * Remove any pages that may still be in the object from a previous
2132 	 * deallocation.
2133 	 */
2134 	if (next_pindex < prev_object->size) {
2135 		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2136 		    next_size, 0);
2137 		if (prev_object->type == OBJT_SWAP)
2138 			swap_pager_freespace(prev_object,
2139 					     next_pindex, next_size);
2140 #if 0
2141 		if (prev_object->cred != NULL) {
2142 			KASSERT(prev_object->charge >=
2143 			    ptoa(prev_object->size - next_pindex),
2144 			    ("object %p overcharged 1 %jx %jx", prev_object,
2145 				(uintmax_t)next_pindex, (uintmax_t)next_size));
2146 			prev_object->charge -= ptoa(prev_object->size -
2147 			    next_pindex);
2148 		}
2149 #endif
2150 	}
2151 
2152 	/*
2153 	 * Extend the object if necessary.
2154 	 */
2155 	if (next_pindex + next_size > prev_object->size)
2156 		prev_object->size = next_pindex + next_size;
2157 
2158 	VM_OBJECT_WUNLOCK(prev_object);
2159 	return (TRUE);
2160 }
2161 
2162 void
vm_object_set_writeable_dirty(vm_object_t object)2163 vm_object_set_writeable_dirty(vm_object_t object)
2164 {
2165 
2166 	VM_OBJECT_ASSERT_WLOCKED(object);
2167 	if (object->type != OBJT_VNODE) {
2168 		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2169 			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2170 			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2171 		}
2172 		return;
2173 	}
2174 	object->generation++;
2175 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2176 		return;
2177 	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2178 }
2179 
2180 /*
2181  *	vm_object_unwire:
2182  *
2183  *	For each page offset within the specified range of the given object,
2184  *	find the highest-level page in the shadow chain and unwire it.  A page
2185  *	must exist at every page offset, and the highest-level page must be
2186  *	wired.
2187  */
2188 void
vm_object_unwire(vm_object_t object,vm_ooffset_t offset,vm_size_t length,uint8_t queue)2189 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2190     uint8_t queue)
2191 {
2192 	vm_object_t tobject, t1object;
2193 	vm_page_t m, tm;
2194 	vm_pindex_t end_pindex, pindex, tpindex;
2195 	int depth, locked_depth;
2196 
2197 	KASSERT((offset & PAGE_MASK) == 0,
2198 	    ("vm_object_unwire: offset is not page aligned"));
2199 	KASSERT((length & PAGE_MASK) == 0,
2200 	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2201 	/* The wired count of a fictitious page never changes. */
2202 	if ((object->flags & OBJ_FICTITIOUS) != 0)
2203 		return;
2204 	pindex = OFF_TO_IDX(offset);
2205 	end_pindex = pindex + atop(length);
2206 again:
2207 	locked_depth = 1;
2208 	VM_OBJECT_RLOCK(object);
2209 	m = vm_page_find_least(object, pindex);
2210 	while (pindex < end_pindex) {
2211 		if (m == NULL || pindex < m->pindex) {
2212 			/*
2213 			 * The first object in the shadow chain doesn't
2214 			 * contain a page at the current index.  Therefore,
2215 			 * the page must exist in a backing object.
2216 			 */
2217 			tobject = object;
2218 			tpindex = pindex;
2219 			depth = 0;
2220 			do {
2221 				tpindex +=
2222 				    OFF_TO_IDX(tobject->backing_object_offset);
2223 				tobject = tobject->backing_object;
2224 				KASSERT(tobject != NULL,
2225 				    ("vm_object_unwire: missing page"));
2226 				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2227 					goto next_page;
2228 				depth++;
2229 				if (depth == locked_depth) {
2230 					locked_depth++;
2231 					VM_OBJECT_RLOCK(tobject);
2232 				}
2233 			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2234 			    NULL);
2235 		} else {
2236 			tm = m;
2237 			m = TAILQ_NEXT(m, listq);
2238 		}
2239 		vm_page_lock(tm);
2240 		if (vm_page_xbusied(tm)) {
2241 			for (tobject = object; locked_depth >= 1;
2242 			    locked_depth--) {
2243 				t1object = tobject->backing_object;
2244 				VM_OBJECT_RUNLOCK(tobject);
2245 				tobject = t1object;
2246 			}
2247 			vm_page_busy_sleep(tm, "unwbo", true);
2248 			goto again;
2249 		}
2250 		vm_page_unwire(tm, queue);
2251 		vm_page_unlock(tm);
2252 next_page:
2253 		pindex++;
2254 	}
2255 	/* Release the accumulated object locks. */
2256 	for (tobject = object; locked_depth >= 1; locked_depth--) {
2257 		t1object = tobject->backing_object;
2258 		VM_OBJECT_RUNLOCK(tobject);
2259 		tobject = t1object;
2260 	}
2261 }
2262 
2263 struct vnode *
vm_object_vnode(vm_object_t object)2264 vm_object_vnode(vm_object_t object)
2265 {
2266 
2267 	VM_OBJECT_ASSERT_LOCKED(object);
2268 	if (object->type == OBJT_VNODE)
2269 		return (object->handle);
2270 	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2271 		return (object->un_pager.swp.swp_tmpfs);
2272 	return (NULL);
2273 }
2274 
2275 static int
sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)2276 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2277 {
2278 	struct kinfo_vmobject *kvo;
2279 	char *fullpath, *freepath;
2280 	struct vnode *vp;
2281 	struct vattr va;
2282 	vm_object_t obj;
2283 	vm_page_t m;
2284 	int count, error;
2285 
2286 	if (req->oldptr == NULL) {
2287 		/*
2288 		 * If an old buffer has not been provided, generate an
2289 		 * estimate of the space needed for a subsequent call.
2290 		 */
2291 		mtx_lock(&vm_object_list_mtx);
2292 		count = 0;
2293 		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2294 			if (obj->type == OBJT_DEAD)
2295 				continue;
2296 			count++;
2297 		}
2298 		mtx_unlock(&vm_object_list_mtx);
2299 		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2300 		    count * 11 / 10));
2301 	}
2302 
2303 	kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK);
2304 	error = 0;
2305 
2306 	/*
2307 	 * VM objects are type stable and are never removed from the
2308 	 * list once added.  This allows us to safely read obj->object_list
2309 	 * after reacquiring the VM object lock.
2310 	 */
2311 	mtx_lock(&vm_object_list_mtx);
2312 	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2313 		if (obj->type == OBJT_DEAD)
2314 			continue;
2315 		VM_OBJECT_RLOCK(obj);
2316 		if (obj->type == OBJT_DEAD) {
2317 			VM_OBJECT_RUNLOCK(obj);
2318 			continue;
2319 		}
2320 		mtx_unlock(&vm_object_list_mtx);
2321 		kvo->kvo_size = ptoa(obj->size);
2322 		kvo->kvo_resident = obj->resident_page_count;
2323 		kvo->kvo_ref_count = obj->ref_count;
2324 		kvo->kvo_shadow_count = obj->shadow_count;
2325 		kvo->kvo_memattr = obj->memattr;
2326 		kvo->kvo_active = 0;
2327 		kvo->kvo_inactive = 0;
2328 		TAILQ_FOREACH(m, &obj->memq, listq) {
2329 			/*
2330 			 * A page may belong to the object but be
2331 			 * dequeued and set to PQ_NONE while the
2332 			 * object lock is not held.  This makes the
2333 			 * reads of m->queue below racy, and we do not
2334 			 * count pages set to PQ_NONE.  However, this
2335 			 * sysctl is only meant to give an
2336 			 * approximation of the system anyway.
2337 			 */
2338 			if (m->queue == PQ_ACTIVE)
2339 				kvo->kvo_active++;
2340 			else if (m->queue == PQ_INACTIVE)
2341 				kvo->kvo_inactive++;
2342 		}
2343 
2344 		kvo->kvo_vn_fileid = 0;
2345 		kvo->kvo_vn_fsid = 0;
2346 		kvo->kvo_vn_fsid_freebsd11 = 0;
2347 		freepath = NULL;
2348 		fullpath = "";
2349 		vp = NULL;
2350 		switch (obj->type) {
2351 		case OBJT_DEFAULT:
2352 			kvo->kvo_type = KVME_TYPE_DEFAULT;
2353 			break;
2354 		case OBJT_VNODE:
2355 			kvo->kvo_type = KVME_TYPE_VNODE;
2356 			vp = obj->handle;
2357 			vref(vp);
2358 			break;
2359 		case OBJT_SWAP:
2360 			kvo->kvo_type = KVME_TYPE_SWAP;
2361 			break;
2362 		case OBJT_DEVICE:
2363 			kvo->kvo_type = KVME_TYPE_DEVICE;
2364 			break;
2365 		case OBJT_PHYS:
2366 			kvo->kvo_type = KVME_TYPE_PHYS;
2367 			break;
2368 		case OBJT_DEAD:
2369 			kvo->kvo_type = KVME_TYPE_DEAD;
2370 			break;
2371 		case OBJT_SG:
2372 			kvo->kvo_type = KVME_TYPE_SG;
2373 			break;
2374 		case OBJT_MGTDEVICE:
2375 			kvo->kvo_type = KVME_TYPE_MGTDEVICE;
2376 			break;
2377 		default:
2378 			kvo->kvo_type = KVME_TYPE_UNKNOWN;
2379 			break;
2380 		}
2381 		VM_OBJECT_RUNLOCK(obj);
2382 		if (vp != NULL) {
2383 			vn_fullpath(curthread, vp, &fullpath, &freepath);
2384 			vn_lock(vp, LK_SHARED | LK_RETRY);
2385 			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2386 				kvo->kvo_vn_fileid = va.va_fileid;
2387 				kvo->kvo_vn_fsid = va.va_fsid;
2388 				kvo->kvo_vn_fsid_freebsd11 = va.va_fsid;
2389 								/* truncate */
2390 			}
2391 			vput(vp);
2392 		}
2393 
2394 		strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path));
2395 		if (freepath != NULL)
2396 			free(freepath, M_TEMP);
2397 
2398 		/* Pack record size down */
2399 		kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path)
2400 		    + strlen(kvo->kvo_path) + 1;
2401 		kvo->kvo_structsize = roundup(kvo->kvo_structsize,
2402 		    sizeof(uint64_t));
2403 		error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize);
2404 		mtx_lock(&vm_object_list_mtx);
2405 		if (error)
2406 			break;
2407 	}
2408 	mtx_unlock(&vm_object_list_mtx);
2409 	free(kvo, M_TEMP);
2410 	return (error);
2411 }
2412 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2413     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2414     "List of VM objects");
2415 
2416 #include "opt_ddb.h"
2417 #ifdef DDB
2418 #include <sys/kernel.h>
2419 
2420 #include <sys/cons.h>
2421 
2422 #include <ddb/ddb.h>
2423 
2424 static int
_vm_object_in_map(vm_map_t map,vm_object_t object,vm_map_entry_t entry)2425 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2426 {
2427 	vm_map_t tmpm;
2428 	vm_map_entry_t tmpe;
2429 	vm_object_t obj;
2430 	int entcount;
2431 
2432 	if (map == 0)
2433 		return 0;
2434 
2435 	if (entry == 0) {
2436 		tmpe = map->header.next;
2437 		entcount = map->nentries;
2438 		while (entcount-- && (tmpe != &map->header)) {
2439 			if (_vm_object_in_map(map, object, tmpe)) {
2440 				return 1;
2441 			}
2442 			tmpe = tmpe->next;
2443 		}
2444 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2445 		tmpm = entry->object.sub_map;
2446 		tmpe = tmpm->header.next;
2447 		entcount = tmpm->nentries;
2448 		while (entcount-- && tmpe != &tmpm->header) {
2449 			if (_vm_object_in_map(tmpm, object, tmpe)) {
2450 				return 1;
2451 			}
2452 			tmpe = tmpe->next;
2453 		}
2454 	} else if ((obj = entry->object.vm_object) != NULL) {
2455 		for (; obj; obj = obj->backing_object)
2456 			if (obj == object) {
2457 				return 1;
2458 			}
2459 	}
2460 	return 0;
2461 }
2462 
2463 static int
vm_object_in_map(vm_object_t object)2464 vm_object_in_map(vm_object_t object)
2465 {
2466 	struct proc *p;
2467 
2468 	/* sx_slock(&allproc_lock); */
2469 	FOREACH_PROC_IN_SYSTEM(p) {
2470 		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2471 			continue;
2472 		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2473 			/* sx_sunlock(&allproc_lock); */
2474 			return 1;
2475 		}
2476 	}
2477 	/* sx_sunlock(&allproc_lock); */
2478 	if (_vm_object_in_map(kernel_map, object, 0))
2479 		return 1;
2480 	return 0;
2481 }
2482 
DB_SHOW_COMMAND(vmochk,vm_object_check)2483 DB_SHOW_COMMAND(vmochk, vm_object_check)
2484 {
2485 	vm_object_t object;
2486 
2487 	/*
2488 	 * make sure that internal objs are in a map somewhere
2489 	 * and none have zero ref counts.
2490 	 */
2491 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2492 		if (object->handle == NULL &&
2493 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2494 			if (object->ref_count == 0) {
2495 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2496 					(long)object->size);
2497 			}
2498 			if (!vm_object_in_map(object)) {
2499 				db_printf(
2500 			"vmochk: internal obj is not in a map: "
2501 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2502 				    object->ref_count, (u_long)object->size,
2503 				    (u_long)object->size,
2504 				    (void *)object->backing_object);
2505 			}
2506 		}
2507 	}
2508 }
2509 
2510 /*
2511  *	vm_object_print:	[ debug ]
2512  */
DB_SHOW_COMMAND(object,vm_object_print_static)2513 DB_SHOW_COMMAND(object, vm_object_print_static)
2514 {
2515 	/* XXX convert args. */
2516 	vm_object_t object = (vm_object_t)addr;
2517 	boolean_t full = have_addr;
2518 
2519 	vm_page_t p;
2520 
2521 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2522 #define	count	was_count
2523 
2524 	int count;
2525 
2526 	if (object == NULL)
2527 		return;
2528 
2529 	db_iprintf(
2530 	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2531 	    object, (int)object->type, (uintmax_t)object->size,
2532 	    object->resident_page_count, object->ref_count, object->flags,
2533 	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2534 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2535 	    object->shadow_count,
2536 	    object->backing_object ? object->backing_object->ref_count : 0,
2537 	    object->backing_object, (uintmax_t)object->backing_object_offset);
2538 
2539 	if (!full)
2540 		return;
2541 
2542 	db_indent += 2;
2543 	count = 0;
2544 	TAILQ_FOREACH(p, &object->memq, listq) {
2545 		if (count == 0)
2546 			db_iprintf("memory:=");
2547 		else if (count == 6) {
2548 			db_printf("\n");
2549 			db_iprintf(" ...");
2550 			count = 0;
2551 		} else
2552 			db_printf(",");
2553 		count++;
2554 
2555 		db_printf("(off=0x%jx,page=0x%jx)",
2556 		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2557 	}
2558 	if (count != 0)
2559 		db_printf("\n");
2560 	db_indent -= 2;
2561 }
2562 
2563 /* XXX. */
2564 #undef count
2565 
2566 /* XXX need this non-static entry for calling from vm_map_print. */
2567 void
vm_object_print(long addr,boolean_t have_addr,long count,char * modif)2568 vm_object_print(
2569         /* db_expr_t */ long addr,
2570 	boolean_t have_addr,
2571 	/* db_expr_t */ long count,
2572 	char *modif)
2573 {
2574 	vm_object_print_static(addr, have_addr, count, modif);
2575 }
2576 
DB_SHOW_COMMAND(vmopag,vm_object_print_pages)2577 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2578 {
2579 	vm_object_t object;
2580 	vm_pindex_t fidx;
2581 	vm_paddr_t pa;
2582 	vm_page_t m, prev_m;
2583 	int rcount, nl, c;
2584 
2585 	nl = 0;
2586 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2587 		db_printf("new object: %p\n", (void *)object);
2588 		if (nl > 18) {
2589 			c = cngetc();
2590 			if (c != ' ')
2591 				return;
2592 			nl = 0;
2593 		}
2594 		nl++;
2595 		rcount = 0;
2596 		fidx = 0;
2597 		pa = -1;
2598 		TAILQ_FOREACH(m, &object->memq, listq) {
2599 			if (m->pindex > 128)
2600 				break;
2601 			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2602 			    prev_m->pindex + 1 != m->pindex) {
2603 				if (rcount) {
2604 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2605 						(long)fidx, rcount, (long)pa);
2606 					if (nl > 18) {
2607 						c = cngetc();
2608 						if (c != ' ')
2609 							return;
2610 						nl = 0;
2611 					}
2612 					nl++;
2613 					rcount = 0;
2614 				}
2615 			}
2616 			if (rcount &&
2617 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2618 				++rcount;
2619 				continue;
2620 			}
2621 			if (rcount) {
2622 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2623 					(long)fidx, rcount, (long)pa);
2624 				if (nl > 18) {
2625 					c = cngetc();
2626 					if (c != ' ')
2627 						return;
2628 					nl = 0;
2629 				}
2630 				nl++;
2631 			}
2632 			fidx = m->pindex;
2633 			pa = VM_PAGE_TO_PHYS(m);
2634 			rcount = 1;
2635 		}
2636 		if (rcount) {
2637 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2638 				(long)fidx, rcount, (long)pa);
2639 			if (nl > 18) {
2640 				c = cngetc();
2641 				if (c != ' ')
2642 					return;
2643 				nl = 0;
2644 			}
2645 			nl++;
2646 		}
2647 	}
2648 }
2649 #endif /* DDB */
2650