xref: /freebsd-12.1/sys/vm/vm_map.c (revision 514bfd46)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  [email protected]
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151 
152 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155 
156 /*
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162 
163 /*
164  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
165  *
166  *	Asserts that the starting and ending region
167  *	addresses fall within the valid range of the map.
168  */
169 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
170 		{					\
171 		if (start < vm_map_min(map))		\
172 			start = vm_map_min(map);	\
173 		if (end > vm_map_max(map))		\
174 			end = vm_map_max(map);		\
175 		if (start > end)			\
176 			start = end;			\
177 		}
178 
179 /*
180  *	vm_map_startup:
181  *
182  *	Initialize the vm_map module.  Must be called before
183  *	any other vm_map routines.
184  *
185  *	Map and entry structures are allocated from the general
186  *	purpose memory pool with some exceptions:
187  *
188  *	- The kernel map and kmem submap are allocated statically.
189  *	- Kernel map entries are allocated out of a static pool.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  */
194 
195 void
196 vm_map_startup(void)
197 {
198 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201 	    vm_map_zdtor,
202 #else
203 	    NULL,
204 #endif
205 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uma_prealloc(mapzone, MAX_KMAP);
207 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214 	    vmspace_zdtor,
215 #else
216 	    NULL,
217 #endif
218 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220 
221 static int
222 vmspace_zinit(void *mem, int size, int flags)
223 {
224 	struct vmspace *vm;
225 
226 	vm = (struct vmspace *)mem;
227 
228 	vm->vm_map.pmap = NULL;
229 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230 	PMAP_LOCK_INIT(vmspace_pmap(vm));
231 	return (0);
232 }
233 
234 static int
235 vm_map_zinit(void *mem, int size, int flags)
236 {
237 	vm_map_t map;
238 
239 	map = (vm_map_t)mem;
240 	memset(map, 0, sizeof(*map));
241 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242 	sx_init(&map->lock, "vm map (user)");
243 	return (0);
244 }
245 
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250 	struct vmspace *vm;
251 
252 	vm = (struct vmspace *)mem;
253 
254 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259 	vm_map_t map;
260 
261 	map = (vm_map_t)mem;
262 	KASSERT(map->nentries == 0,
263 	    ("map %p nentries == %d on free.",
264 	    map, map->nentries));
265 	KASSERT(map->size == 0,
266 	    ("map %p size == %lu on free.",
267 	    map, (unsigned long)map->size));
268 }
269 #endif	/* INVARIANTS */
270 
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280 	struct vmspace *vm;
281 
282 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
283 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
284 	if (!pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 #ifdef RACCT
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306 
307 	PROC_LOCK(p);
308 	racct_set(p, RACCT_DATA, 0);
309 	racct_set(p, RACCT_STACK, 0);
310 	racct_set(p, RACCT_RSS, 0);
311 	racct_set(p, RACCT_MEMLOCK, 0);
312 	racct_set(p, RACCT_VMEM, 0);
313 	PROC_UNLOCK(p);
314 }
315 #endif
316 
317 static inline void
318 vmspace_dofree(struct vmspace *vm)
319 {
320 
321 	CTR1(KTR_VM, "vmspace_free: %p", vm);
322 
323 	/*
324 	 * Make sure any SysV shm is freed, it might not have been in
325 	 * exit1().
326 	 */
327 	shmexit(vm);
328 
329 	/*
330 	 * Lock the map, to wait out all other references to it.
331 	 * Delete all of the mappings and pages they hold, then call
332 	 * the pmap module to reclaim anything left.
333 	 */
334 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
335 	    vm_map_max(&vm->vm_map));
336 
337 	pmap_release(vmspace_pmap(vm));
338 	vm->vm_map.pmap = NULL;
339 	uma_zfree(vmspace_zone, vm);
340 }
341 
342 void
343 vmspace_free(struct vmspace *vm)
344 {
345 
346 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
347 	    "vmspace_free() called");
348 
349 	if (vm->vm_refcnt == 0)
350 		panic("vmspace_free: attempt to free already freed vmspace");
351 
352 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
353 		vmspace_dofree(vm);
354 }
355 
356 void
357 vmspace_exitfree(struct proc *p)
358 {
359 	struct vmspace *vm;
360 
361 	PROC_VMSPACE_LOCK(p);
362 	vm = p->p_vmspace;
363 	p->p_vmspace = NULL;
364 	PROC_VMSPACE_UNLOCK(p);
365 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
366 	vmspace_free(vm);
367 }
368 
369 void
370 vmspace_exit(struct thread *td)
371 {
372 	int refcnt;
373 	struct vmspace *vm;
374 	struct proc *p;
375 
376 	/*
377 	 * Release user portion of address space.
378 	 * This releases references to vnodes,
379 	 * which could cause I/O if the file has been unlinked.
380 	 * Need to do this early enough that we can still sleep.
381 	 *
382 	 * The last exiting process to reach this point releases as
383 	 * much of the environment as it can. vmspace_dofree() is the
384 	 * slower fallback in case another process had a temporary
385 	 * reference to the vmspace.
386 	 */
387 
388 	p = td->td_proc;
389 	vm = p->p_vmspace;
390 	atomic_add_int(&vmspace0.vm_refcnt, 1);
391 	do {
392 		refcnt = vm->vm_refcnt;
393 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
394 			/* Switch now since other proc might free vmspace */
395 			PROC_VMSPACE_LOCK(p);
396 			p->p_vmspace = &vmspace0;
397 			PROC_VMSPACE_UNLOCK(p);
398 			pmap_activate(td);
399 		}
400 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
401 	if (refcnt == 1) {
402 		if (p->p_vmspace != vm) {
403 			/* vmspace not yet freed, switch back */
404 			PROC_VMSPACE_LOCK(p);
405 			p->p_vmspace = vm;
406 			PROC_VMSPACE_UNLOCK(p);
407 			pmap_activate(td);
408 		}
409 		pmap_remove_pages(vmspace_pmap(vm));
410 		/* Switch now since this proc will free vmspace */
411 		PROC_VMSPACE_LOCK(p);
412 		p->p_vmspace = &vmspace0;
413 		PROC_VMSPACE_UNLOCK(p);
414 		pmap_activate(td);
415 		vmspace_dofree(vm);
416 	}
417 #ifdef RACCT
418 	if (racct_enable)
419 		vmspace_container_reset(p);
420 #endif
421 }
422 
423 /* Acquire reference to vmspace owned by another process. */
424 
425 struct vmspace *
426 vmspace_acquire_ref(struct proc *p)
427 {
428 	struct vmspace *vm;
429 	int refcnt;
430 
431 	PROC_VMSPACE_LOCK(p);
432 	vm = p->p_vmspace;
433 	if (vm == NULL) {
434 		PROC_VMSPACE_UNLOCK(p);
435 		return (NULL);
436 	}
437 	do {
438 		refcnt = vm->vm_refcnt;
439 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
440 			PROC_VMSPACE_UNLOCK(p);
441 			return (NULL);
442 		}
443 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
444 	if (vm != p->p_vmspace) {
445 		PROC_VMSPACE_UNLOCK(p);
446 		vmspace_free(vm);
447 		return (NULL);
448 	}
449 	PROC_VMSPACE_UNLOCK(p);
450 	return (vm);
451 }
452 
453 /*
454  * Switch between vmspaces in an AIO kernel process.
455  *
456  * The new vmspace is either the vmspace of a user process obtained
457  * from an active AIO request or the initial vmspace of the AIO kernel
458  * process (when it is idling).  Because user processes will block to
459  * drain any active AIO requests before proceeding in exit() or
460  * execve(), the reference count for vmspaces from AIO requests can
461  * never be 0.  Similarly, AIO kernel processes hold an extra
462  * reference on their initial vmspace for the life of the process.  As
463  * a result, the 'newvm' vmspace always has a non-zero reference
464  * count.  This permits an additional reference on 'newvm' to be
465  * acquired via a simple atomic increment rather than the loop in
466  * vmspace_acquire_ref() above.
467  */
468 void
469 vmspace_switch_aio(struct vmspace *newvm)
470 {
471 	struct vmspace *oldvm;
472 
473 	/* XXX: Need some way to assert that this is an aio daemon. */
474 
475 	KASSERT(newvm->vm_refcnt > 0,
476 	    ("vmspace_switch_aio: newvm unreferenced"));
477 
478 	oldvm = curproc->p_vmspace;
479 	if (oldvm == newvm)
480 		return;
481 
482 	/*
483 	 * Point to the new address space and refer to it.
484 	 */
485 	curproc->p_vmspace = newvm;
486 	atomic_add_int(&newvm->vm_refcnt, 1);
487 
488 	/* Activate the new mapping. */
489 	pmap_activate(curthread);
490 
491 	vmspace_free(oldvm);
492 }
493 
494 void
495 _vm_map_lock(vm_map_t map, const char *file, int line)
496 {
497 
498 	if (map->system_map)
499 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
500 	else
501 		sx_xlock_(&map->lock, file, line);
502 	map->timestamp++;
503 }
504 
505 void
506 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
507 {
508 	vm_object_t object, object1;
509 	struct vnode *vp;
510 
511 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
512 		return;
513 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
514 	    ("Submap with execs"));
515 	object = entry->object.vm_object;
516 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
517 	VM_OBJECT_RLOCK(object);
518 	while ((object1 = object->backing_object) != NULL) {
519 		VM_OBJECT_RLOCK(object1);
520 		VM_OBJECT_RUNLOCK(object);
521 		object = object1;
522 	}
523 
524 	vp = NULL;
525 	if (object->type == OBJT_DEAD) {
526 		/*
527 		 * For OBJT_DEAD objects, v_writecount was handled in
528 		 * vnode_pager_dealloc().
529 		 */
530 	} else if (object->type == OBJT_VNODE) {
531 		vp = object->handle;
532 	} else if (object->type == OBJT_SWAP) {
533 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
534 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
535 		    "entry %p, object %p, add %d", entry, object, add));
536 		/*
537 		 * Tmpfs VREG node, which was reclaimed, has
538 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
539 		 * this case there is no v_writecount to adjust.
540 		 */
541 		if ((object->flags & OBJ_TMPFS) != 0)
542 			vp = object->un_pager.swp.swp_tmpfs;
543 	} else {
544 		KASSERT(0,
545 		    ("vm_map_entry_set_vnode_text: wrong object type, "
546 		    "entry %p, object %p, add %d", entry, object, add));
547 	}
548 	if (vp != NULL) {
549 		if (add) {
550 			VOP_SET_TEXT_CHECKED(vp);
551 			VM_OBJECT_RUNLOCK(object);
552 		} else {
553 			vhold(vp);
554 			VM_OBJECT_RUNLOCK(object);
555 			vn_lock(vp, LK_SHARED | LK_RETRY);
556 			VOP_UNSET_TEXT_CHECKED(vp);
557 			VOP_UNLOCK(vp, 0);
558 			vdrop(vp);
559 		}
560 	} else {
561 		VM_OBJECT_RUNLOCK(object);
562 	}
563 }
564 
565 static void
566 vm_map_process_deferred(void)
567 {
568 	struct thread *td;
569 	vm_map_entry_t entry, next;
570 	vm_object_t object;
571 
572 	td = curthread;
573 	entry = td->td_map_def_user;
574 	td->td_map_def_user = NULL;
575 	while (entry != NULL) {
576 		next = entry->next;
577 		MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
578 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
579 		    MAP_ENTRY_VN_EXEC));
580 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
581 			/*
582 			 * Decrement the object's writemappings and
583 			 * possibly the vnode's v_writecount.
584 			 */
585 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
586 			    ("Submap with writecount"));
587 			object = entry->object.vm_object;
588 			KASSERT(object != NULL, ("No object for writecount"));
589 			vnode_pager_release_writecount(object, entry->start,
590 			    entry->end);
591 		}
592 		vm_map_entry_set_vnode_text(entry, false);
593 		vm_map_entry_deallocate(entry, FALSE);
594 		entry = next;
595 	}
596 }
597 
598 void
599 _vm_map_unlock(vm_map_t map, const char *file, int line)
600 {
601 
602 	if (map->system_map)
603 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
604 	else {
605 		sx_xunlock_(&map->lock, file, line);
606 		vm_map_process_deferred();
607 	}
608 }
609 
610 void
611 _vm_map_lock_read(vm_map_t map, const char *file, int line)
612 {
613 
614 	if (map->system_map)
615 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
616 	else
617 		sx_slock_(&map->lock, file, line);
618 }
619 
620 void
621 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
622 {
623 
624 	if (map->system_map)
625 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
626 	else {
627 		sx_sunlock_(&map->lock, file, line);
628 		vm_map_process_deferred();
629 	}
630 }
631 
632 int
633 _vm_map_trylock(vm_map_t map, const char *file, int line)
634 {
635 	int error;
636 
637 	error = map->system_map ?
638 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
639 	    !sx_try_xlock_(&map->lock, file, line);
640 	if (error == 0)
641 		map->timestamp++;
642 	return (error == 0);
643 }
644 
645 int
646 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
647 {
648 	int error;
649 
650 	error = map->system_map ?
651 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
652 	    !sx_try_slock_(&map->lock, file, line);
653 	return (error == 0);
654 }
655 
656 /*
657  *	_vm_map_lock_upgrade:	[ internal use only ]
658  *
659  *	Tries to upgrade a read (shared) lock on the specified map to a write
660  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
661  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
662  *	returned without a read or write lock held.
663  *
664  *	Requires that the map be read locked.
665  */
666 int
667 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
668 {
669 	unsigned int last_timestamp;
670 
671 	if (map->system_map) {
672 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
673 	} else {
674 		if (!sx_try_upgrade_(&map->lock, file, line)) {
675 			last_timestamp = map->timestamp;
676 			sx_sunlock_(&map->lock, file, line);
677 			vm_map_process_deferred();
678 			/*
679 			 * If the map's timestamp does not change while the
680 			 * map is unlocked, then the upgrade succeeds.
681 			 */
682 			sx_xlock_(&map->lock, file, line);
683 			if (last_timestamp != map->timestamp) {
684 				sx_xunlock_(&map->lock, file, line);
685 				return (1);
686 			}
687 		}
688 	}
689 	map->timestamp++;
690 	return (0);
691 }
692 
693 void
694 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
695 {
696 
697 	if (map->system_map) {
698 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
699 	} else
700 		sx_downgrade_(&map->lock, file, line);
701 }
702 
703 /*
704  *	vm_map_locked:
705  *
706  *	Returns a non-zero value if the caller holds a write (exclusive) lock
707  *	on the specified map and the value "0" otherwise.
708  */
709 int
710 vm_map_locked(vm_map_t map)
711 {
712 
713 	if (map->system_map)
714 		return (mtx_owned(&map->system_mtx));
715 	else
716 		return (sx_xlocked(&map->lock));
717 }
718 
719 #ifdef INVARIANTS
720 static void
721 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
722 {
723 
724 	if (map->system_map)
725 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
726 	else
727 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
728 }
729 
730 #define	VM_MAP_ASSERT_LOCKED(map) \
731     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
732 
733 #ifdef DIAGNOSTIC
734 static int enable_vmmap_check = 1;
735 #else
736 static int enable_vmmap_check = 0;
737 #endif
738 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
739     &enable_vmmap_check, 0, "Enable vm map consistency checking");
740 
741 static void
742 _vm_map_assert_consistent(vm_map_t map)
743 {
744 	vm_map_entry_t entry;
745 	vm_map_entry_t child;
746 	vm_size_t max_left, max_right;
747 
748 	if (!enable_vmmap_check)
749 		return;
750 
751 	for (entry = map->header.next; entry != &map->header;
752 	    entry = entry->next) {
753 		KASSERT(entry->prev->end <= entry->start,
754 		    ("map %p prev->end = %jx, start = %jx", map,
755 		    (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
756 		KASSERT(entry->start < entry->end,
757 		    ("map %p start = %jx, end = %jx", map,
758 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
759 		KASSERT(entry->end <= entry->next->start,
760 		    ("map %p end = %jx, next->start = %jx", map,
761 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
762 		KASSERT(entry->left == NULL ||
763 		    entry->left->start < entry->start,
764 		    ("map %p left->start = %jx, start = %jx", map,
765 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
766 		KASSERT(entry->right == NULL ||
767 		    entry->start < entry->right->start,
768 		    ("map %p start = %jx, right->start = %jx", map,
769 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
770 		child = entry->left;
771 		max_left = (child != NULL) ? child->max_free :
772 			entry->start - entry->prev->end;
773 		child = entry->right;
774 		max_right = (child != NULL) ? child->max_free :
775 			entry->next->start - entry->end;
776 		KASSERT(entry->max_free == MAX(max_left, max_right),
777 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
778 		     (uintmax_t)entry->max_free,
779 		     (uintmax_t)max_left, (uintmax_t)max_right));
780 	}
781 }
782 
783 #define VM_MAP_ASSERT_CONSISTENT(map) \
784     _vm_map_assert_consistent(map)
785 #else
786 #define	VM_MAP_ASSERT_LOCKED(map)
787 #define VM_MAP_ASSERT_CONSISTENT(map)
788 #endif /* INVARIANTS */
789 
790 /*
791  *	_vm_map_unlock_and_wait:
792  *
793  *	Atomically releases the lock on the specified map and puts the calling
794  *	thread to sleep.  The calling thread will remain asleep until either
795  *	vm_map_wakeup() is performed on the map or the specified timeout is
796  *	exceeded.
797  *
798  *	WARNING!  This function does not perform deferred deallocations of
799  *	objects and map	entries.  Therefore, the calling thread is expected to
800  *	reacquire the map lock after reawakening and later perform an ordinary
801  *	unlock operation, such as vm_map_unlock(), before completing its
802  *	operation on the map.
803  */
804 int
805 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
806 {
807 
808 	mtx_lock(&map_sleep_mtx);
809 	if (map->system_map)
810 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
811 	else
812 		sx_xunlock_(&map->lock, file, line);
813 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
814 	    timo));
815 }
816 
817 /*
818  *	vm_map_wakeup:
819  *
820  *	Awaken any threads that have slept on the map using
821  *	vm_map_unlock_and_wait().
822  */
823 void
824 vm_map_wakeup(vm_map_t map)
825 {
826 
827 	/*
828 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
829 	 * from being performed (and lost) between the map unlock
830 	 * and the msleep() in _vm_map_unlock_and_wait().
831 	 */
832 	mtx_lock(&map_sleep_mtx);
833 	mtx_unlock(&map_sleep_mtx);
834 	wakeup(&map->root);
835 }
836 
837 void
838 vm_map_busy(vm_map_t map)
839 {
840 
841 	VM_MAP_ASSERT_LOCKED(map);
842 	map->busy++;
843 }
844 
845 void
846 vm_map_unbusy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
851 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
852 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
853 		wakeup(&map->busy);
854 	}
855 }
856 
857 void
858 vm_map_wait_busy(vm_map_t map)
859 {
860 
861 	VM_MAP_ASSERT_LOCKED(map);
862 	while (map->busy) {
863 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
864 		if (map->system_map)
865 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
866 		else
867 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
868 	}
869 	map->timestamp++;
870 }
871 
872 long
873 vmspace_resident_count(struct vmspace *vmspace)
874 {
875 	return pmap_resident_count(vmspace_pmap(vmspace));
876 }
877 
878 /*
879  *	vm_map_create:
880  *
881  *	Creates and returns a new empty VM map with
882  *	the given physical map structure, and having
883  *	the given lower and upper address bounds.
884  */
885 vm_map_t
886 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 	vm_map_t result;
889 
890 	result = uma_zalloc(mapzone, M_WAITOK);
891 	CTR1(KTR_VM, "vm_map_create: %p", result);
892 	_vm_map_init(result, pmap, min, max);
893 	return (result);
894 }
895 
896 /*
897  * Initialize an existing vm_map structure
898  * such as that in the vmspace structure.
899  */
900 static void
901 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
902 {
903 
904 	map->header.next = map->header.prev = &map->header;
905 	map->header.eflags = MAP_ENTRY_HEADER;
906 	map->needs_wakeup = FALSE;
907 	map->system_map = 0;
908 	map->pmap = pmap;
909 	map->header.end = min;
910 	map->header.start = max;
911 	map->flags = 0;
912 	map->root = NULL;
913 	map->timestamp = 0;
914 	map->busy = 0;
915 	map->anon_loc = 0;
916 }
917 
918 void
919 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
920 {
921 
922 	_vm_map_init(map, pmap, min, max);
923 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
924 	sx_init(&map->lock, "user map");
925 }
926 
927 /*
928  *	vm_map_entry_dispose:	[ internal use only ]
929  *
930  *	Inverse of vm_map_entry_create.
931  */
932 static void
933 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
934 {
935 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
936 }
937 
938 /*
939  *	vm_map_entry_create:	[ internal use only ]
940  *
941  *	Allocates a VM map entry for insertion.
942  *	No entry fields are filled in.
943  */
944 static vm_map_entry_t
945 vm_map_entry_create(vm_map_t map)
946 {
947 	vm_map_entry_t new_entry;
948 
949 	if (map->system_map)
950 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
951 	else
952 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
953 	if (new_entry == NULL)
954 		panic("vm_map_entry_create: kernel resources exhausted");
955 	return (new_entry);
956 }
957 
958 /*
959  *	vm_map_entry_set_behavior:
960  *
961  *	Set the expected access behavior, either normal, random, or
962  *	sequential.
963  */
964 static inline void
965 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
966 {
967 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
968 	    (behavior & MAP_ENTRY_BEHAV_MASK);
969 }
970 
971 /*
972  *	vm_map_entry_max_free_{left,right}:
973  *
974  *	Compute the size of the largest free gap between two entries,
975  *	one the root of a tree and the other the ancestor of that root
976  *	that is the least or greatest ancestor found on the search path.
977  */
978 static inline vm_size_t
979 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
980 {
981 
982 	return (root->left != NULL ?
983 	    root->left->max_free : root->start - left_ancestor->end);
984 }
985 
986 static inline vm_size_t
987 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
988 {
989 
990 	return (root->right != NULL ?
991 	    root->right->max_free : right_ancestor->start - root->end);
992 }
993 
994 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
995 	vm_size_t max_free;						\
996 									\
997 	/*								\
998 	 * Infer root->right->max_free == root->max_free when		\
999 	 * y->max_free < root->max_free || root->max_free == 0.		\
1000 	 * Otherwise, look right to find it.				\
1001 	 */								\
1002 	y = root->left;							\
1003 	max_free = root->max_free;					\
1004 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
1005 	    ("%s: max_free invariant fails", __func__));		\
1006 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1007 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1008 	if (y != NULL && (test)) {					\
1009 		/* Rotate right and make y root. */			\
1010 		root->left = y->right;					\
1011 		y->right = root;					\
1012 		if (max_free < y->max_free)				\
1013 			root->max_free = max_free = MAX(max_free,	\
1014 			    vm_map_entry_max_free_left(root, y));	\
1015 		root = y;						\
1016 		y = root->left;						\
1017 	}								\
1018 	/* Copy right->max_free.  Put root on rlist. */			\
1019 	root->max_free = max_free;					\
1020 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1021 	    ("%s: max_free not copied from right", __func__));		\
1022 	root->left = rlist;						\
1023 	rlist = root;							\
1024 	root = y;							\
1025 } while (0)
1026 
1027 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1028 	vm_size_t max_free;						\
1029 									\
1030 	/*								\
1031 	 * Infer root->left->max_free == root->max_free when		\
1032 	 * y->max_free < root->max_free || root->max_free == 0.		\
1033 	 * Otherwise, look left to find it.				\
1034 	 */								\
1035 	y = root->right;						\
1036 	max_free = root->max_free;					\
1037 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1038 	    ("%s: max_free invariant fails", __func__));		\
1039 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1040 		max_free = vm_map_entry_max_free_left(root, llist);	\
1041 	if (y != NULL && (test)) {					\
1042 		/* Rotate left and make y root. */			\
1043 		root->right = y->left;					\
1044 		y->left = root;						\
1045 		if (max_free < y->max_free)				\
1046 			root->max_free = max_free = MAX(max_free,	\
1047 			    vm_map_entry_max_free_right(root, y));	\
1048 		root = y;						\
1049 		y = root->right;					\
1050 	}								\
1051 	/* Copy left->max_free.  Put root on llist. */			\
1052 	root->max_free = max_free;					\
1053 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1054 	    ("%s: max_free not copied from left", __func__));		\
1055 	root->right = llist;						\
1056 	llist = root;							\
1057 	root = y;							\
1058 } while (0)
1059 
1060 /*
1061  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1062  * breaking off left and right subtrees of nodes less than, or greater than
1063  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1064  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1065  * linked by the right pointer and rlist linked by the left pointer in the
1066  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1067  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1068  * values in &map->header.
1069  */
1070 static vm_map_entry_t
1071 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1072     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1073 {
1074 	vm_map_entry_t llist, rlist, root, y;
1075 
1076 	llist = rlist = &map->header;
1077 	root = map->root;
1078 	while (root != NULL && root->max_free >= length) {
1079 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1080 		    ("%s: root not within tree bounds", __func__));
1081 		if (addr < root->start) {
1082 			SPLAY_LEFT_STEP(root, y, rlist,
1083 			    y->max_free >= length && addr < y->start);
1084 		} else if (addr >= root->end) {
1085 			SPLAY_RIGHT_STEP(root, y, llist,
1086 			    y->max_free >= length && addr >= y->end);
1087 		} else
1088 			break;
1089 	}
1090 	*out_llist = llist;
1091 	*out_rlist = rlist;
1092 	return (root);
1093 }
1094 
1095 static void
1096 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1097 {
1098 	vm_map_entry_t rlist, y;
1099 
1100 	root = root->right;
1101 	rlist = *iolist;
1102 	while (root != NULL)
1103 		SPLAY_LEFT_STEP(root, y, rlist, true);
1104 	*iolist = rlist;
1105 }
1106 
1107 static void
1108 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1109 {
1110 	vm_map_entry_t llist, y;
1111 
1112 	root = root->left;
1113 	llist = *iolist;
1114 	while (root != NULL)
1115 		SPLAY_RIGHT_STEP(root, y, llist, true);
1116 	*iolist = llist;
1117 }
1118 
1119 static inline void
1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1121 {
1122 	vm_map_entry_t tmp;
1123 
1124 	tmp = *b;
1125 	*b = *a;
1126 	*a = tmp;
1127 }
1128 
1129 /*
1130  * Walk back up the two spines, flip the pointers and set max_free.  The
1131  * subtrees of the root go at the bottom of llist and rlist.
1132  */
1133 static void
1134 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1135     vm_map_entry_t llist, vm_map_entry_t rlist)
1136 {
1137 	vm_map_entry_t prev;
1138 	vm_size_t max_free_left, max_free_right;
1139 
1140 	max_free_left = vm_map_entry_max_free_left(root, llist);
1141 	if (llist != &map->header) {
1142 		prev = root->left;
1143 		do {
1144 			/*
1145 			 * The max_free values of the children of llist are in
1146 			 * llist->max_free and max_free_left.  Update with the
1147 			 * max value.
1148 			 */
1149 			llist->max_free = max_free_left =
1150 			    MAX(llist->max_free, max_free_left);
1151 			vm_map_entry_swap(&llist->right, &prev);
1152 			vm_map_entry_swap(&prev, &llist);
1153 		} while (llist != &map->header);
1154 		root->left = prev;
1155 	}
1156 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1157 	if (rlist != &map->header) {
1158 		prev = root->right;
1159 		do {
1160 			/*
1161 			 * The max_free values of the children of rlist are in
1162 			 * rlist->max_free and max_free_right.  Update with the
1163 			 * max value.
1164 			 */
1165 			rlist->max_free = max_free_right =
1166 			    MAX(rlist->max_free, max_free_right);
1167 			vm_map_entry_swap(&rlist->left, &prev);
1168 			vm_map_entry_swap(&prev, &rlist);
1169 		} while (rlist != &map->header);
1170 		root->right = prev;
1171 	}
1172 	root->max_free = MAX(max_free_left, max_free_right);
1173 	map->root = root;
1174 }
1175 
1176 /*
1177  *	vm_map_splay:
1178  *
1179  *	The Sleator and Tarjan top-down splay algorithm with the
1180  *	following variation.  Max_free must be computed bottom-up, so
1181  *	on the downward pass, maintain the left and right spines in
1182  *	reverse order.  Then, make a second pass up each side to fix
1183  *	the pointers and compute max_free.  The time bound is O(log n)
1184  *	amortized.
1185  *
1186  *	The new root is the vm_map_entry containing "addr", or else an
1187  *	adjacent entry (lower if possible) if addr is not in the tree.
1188  *
1189  *	The map must be locked, and leaves it so.
1190  *
1191  *	Returns: the new root.
1192  */
1193 static vm_map_entry_t
1194 vm_map_splay(vm_map_t map, vm_offset_t addr)
1195 {
1196 	vm_map_entry_t llist, rlist, root;
1197 
1198 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1199 	if (root != NULL) {
1200 		/* do nothing */
1201 	} else if (llist != &map->header) {
1202 		/*
1203 		 * Recover the greatest node in the left
1204 		 * subtree and make it the root.
1205 		 */
1206 		root = llist;
1207 		llist = root->right;
1208 		root->right = NULL;
1209 	} else if (rlist != &map->header) {
1210 		/*
1211 		 * Recover the least node in the right
1212 		 * subtree and make it the root.
1213 		 */
1214 		root = rlist;
1215 		rlist = root->left;
1216 		root->left = NULL;
1217 	} else {
1218 		/* There is no root. */
1219 		return (NULL);
1220 	}
1221 	vm_map_splay_merge(map, root, llist, rlist);
1222 	VM_MAP_ASSERT_CONSISTENT(map);
1223 	return (root);
1224 }
1225 
1226 /*
1227  *	vm_map_entry_{un,}link:
1228  *
1229  *	Insert/remove entries from maps.
1230  */
1231 static void
1232 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1233 {
1234 	vm_map_entry_t llist, rlist, root;
1235 
1236 	CTR3(KTR_VM,
1237 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1238 	    map->nentries, entry);
1239 	VM_MAP_ASSERT_LOCKED(map);
1240 	map->nentries++;
1241 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1242 	KASSERT(root == NULL,
1243 	    ("vm_map_entry_link: link object already mapped"));
1244 	entry->prev = llist;
1245 	entry->next = rlist;
1246 	llist->next = rlist->prev = entry;
1247 	entry->left = entry->right = NULL;
1248 	vm_map_splay_merge(map, entry, llist, rlist);
1249 	VM_MAP_ASSERT_CONSISTENT(map);
1250 }
1251 
1252 enum unlink_merge_type {
1253 	UNLINK_MERGE_PREV,
1254 	UNLINK_MERGE_NONE,
1255 	UNLINK_MERGE_NEXT
1256 };
1257 
1258 static void
1259 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1260     enum unlink_merge_type op)
1261 {
1262 	vm_map_entry_t llist, rlist, root, y;
1263 
1264 	VM_MAP_ASSERT_LOCKED(map);
1265 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1266 	KASSERT(root != NULL,
1267 	    ("vm_map_entry_unlink: unlink object not mapped"));
1268 
1269 	switch (op) {
1270 	case UNLINK_MERGE_PREV:
1271 		vm_map_splay_findprev(root, &llist);
1272 		llist->end = root->end;
1273 		y = root->right;
1274 		root = llist;
1275 		llist = root->right;
1276 		root->right = y;
1277 		break;
1278 	case UNLINK_MERGE_NEXT:
1279 		vm_map_splay_findnext(root, &rlist);
1280 		rlist->start = root->start;
1281 		rlist->offset = root->offset;
1282 		y = root->left;
1283 		root = rlist;
1284 		rlist = root->left;
1285 		root->left = y;
1286 		break;
1287 	case UNLINK_MERGE_NONE:
1288 		vm_map_splay_findprev(root, &llist);
1289 		vm_map_splay_findnext(root, &rlist);
1290 		if (llist != &map->header) {
1291 			root = llist;
1292 			llist = root->right;
1293 			root->right = NULL;
1294 		} else if (rlist != &map->header) {
1295 			root = rlist;
1296 			rlist = root->left;
1297 			root->left = NULL;
1298 		} else
1299 			root = NULL;
1300 		break;
1301 	}
1302 	y = entry->next;
1303 	y->prev = entry->prev;
1304 	y->prev->next = y;
1305 	if (root != NULL)
1306 		vm_map_splay_merge(map, root, llist, rlist);
1307 	else
1308 		map->root = NULL;
1309 	VM_MAP_ASSERT_CONSISTENT(map);
1310 	map->nentries--;
1311 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1312 	    map->nentries, entry);
1313 }
1314 
1315 /*
1316  *	vm_map_entry_resize_free:
1317  *
1318  *	Recompute the amount of free space following a modified vm_map_entry
1319  *	and propagate those values up the tree.  Call this function after
1320  *	resizing a map entry in-place by changing the end value, without a
1321  *	call to vm_map_entry_link() or _unlink().
1322  *
1323  *	The map must be locked, and leaves it so.
1324  */
1325 static void
1326 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1327 {
1328 	vm_map_entry_t llist, rlist, root;
1329 
1330 	VM_MAP_ASSERT_LOCKED(map);
1331 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1332 	KASSERT(root != NULL,
1333 	    ("vm_map_entry_resize_free: resize_free object not mapped"));
1334 	vm_map_splay_findnext(root, &rlist);
1335 	root->right = NULL;
1336 	vm_map_splay_merge(map, root, llist, rlist);
1337 	VM_MAP_ASSERT_CONSISTENT(map);
1338 	CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map,
1339 	    map->nentries, entry);
1340 }
1341 
1342 /*
1343  *	vm_map_lookup_entry:	[ internal use only ]
1344  *
1345  *	Finds the map entry containing (or
1346  *	immediately preceding) the specified address
1347  *	in the given map; the entry is returned
1348  *	in the "entry" parameter.  The boolean
1349  *	result indicates whether the address is
1350  *	actually contained in the map.
1351  */
1352 boolean_t
1353 vm_map_lookup_entry(
1354 	vm_map_t map,
1355 	vm_offset_t address,
1356 	vm_map_entry_t *entry)	/* OUT */
1357 {
1358 	vm_map_entry_t cur, lbound;
1359 	boolean_t locked;
1360 
1361 	/*
1362 	 * If the map is empty, then the map entry immediately preceding
1363 	 * "address" is the map's header.
1364 	 */
1365 	cur = map->root;
1366 	if (cur == NULL) {
1367 		*entry = &map->header;
1368 		return (FALSE);
1369 	}
1370 	if (address >= cur->start && cur->end > address) {
1371 		*entry = cur;
1372 		return (TRUE);
1373 	}
1374 	if ((locked = vm_map_locked(map)) ||
1375 	    sx_try_upgrade(&map->lock)) {
1376 		/*
1377 		 * Splay requires a write lock on the map.  However, it only
1378 		 * restructures the binary search tree; it does not otherwise
1379 		 * change the map.  Thus, the map's timestamp need not change
1380 		 * on a temporary upgrade.
1381 		 */
1382 		cur = vm_map_splay(map, address);
1383 		if (!locked)
1384 			sx_downgrade(&map->lock);
1385 
1386 		/*
1387 		 * If "address" is contained within a map entry, the new root
1388 		 * is that map entry.  Otherwise, the new root is a map entry
1389 		 * immediately before or after "address".
1390 		 */
1391 		if (address < cur->start) {
1392 			*entry = &map->header;
1393 			return (FALSE);
1394 		}
1395 		*entry = cur;
1396 		return (address < cur->end);
1397 	}
1398 	/*
1399 	 * Since the map is only locked for read access, perform a
1400 	 * standard binary search tree lookup for "address".
1401 	 */
1402 	lbound = &map->header;
1403 	do {
1404 		if (address < cur->start) {
1405 			cur = cur->left;
1406 		} else if (cur->end <= address) {
1407 			lbound = cur;
1408 			cur = cur->right;
1409 		} else {
1410 			*entry = cur;
1411 			return (TRUE);
1412 		}
1413 	} while (cur != NULL);
1414 	*entry = lbound;
1415 	return (FALSE);
1416 }
1417 
1418 /*
1419  *	vm_map_insert:
1420  *
1421  *	Inserts the given whole VM object into the target
1422  *	map at the specified address range.  The object's
1423  *	size should match that of the address range.
1424  *
1425  *	Requires that the map be locked, and leaves it so.
1426  *
1427  *	If object is non-NULL, ref count must be bumped by caller
1428  *	prior to making call to account for the new entry.
1429  */
1430 int
1431 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1432     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1433 {
1434 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1435 	struct ucred *cred;
1436 	vm_eflags_t protoeflags;
1437 	vm_inherit_t inheritance;
1438 
1439 	VM_MAP_ASSERT_LOCKED(map);
1440 	KASSERT(object != kernel_object ||
1441 	    (cow & MAP_COPY_ON_WRITE) == 0,
1442 	    ("vm_map_insert: kernel object and COW"));
1443 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1444 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1445 	KASSERT((prot & ~max) == 0,
1446 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1447 
1448 	/*
1449 	 * Check that the start and end points are not bogus.
1450 	 */
1451 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1452 	    start >= end)
1453 		return (KERN_INVALID_ADDRESS);
1454 
1455 	/*
1456 	 * Find the entry prior to the proposed starting address; if it's part
1457 	 * of an existing entry, this range is bogus.
1458 	 */
1459 	if (vm_map_lookup_entry(map, start, &temp_entry))
1460 		return (KERN_NO_SPACE);
1461 
1462 	prev_entry = temp_entry;
1463 
1464 	/*
1465 	 * Assert that the next entry doesn't overlap the end point.
1466 	 */
1467 	if (prev_entry->next->start < end)
1468 		return (KERN_NO_SPACE);
1469 
1470 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1471 	    max != VM_PROT_NONE))
1472 		return (KERN_INVALID_ARGUMENT);
1473 
1474 	protoeflags = 0;
1475 	if (cow & MAP_COPY_ON_WRITE)
1476 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1477 	if (cow & MAP_NOFAULT)
1478 		protoeflags |= MAP_ENTRY_NOFAULT;
1479 	if (cow & MAP_DISABLE_SYNCER)
1480 		protoeflags |= MAP_ENTRY_NOSYNC;
1481 	if (cow & MAP_DISABLE_COREDUMP)
1482 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1483 	if (cow & MAP_STACK_GROWS_DOWN)
1484 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1485 	if (cow & MAP_STACK_GROWS_UP)
1486 		protoeflags |= MAP_ENTRY_GROWS_UP;
1487 	if (cow & MAP_VN_WRITECOUNT)
1488 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1489 	if (cow & MAP_VN_EXEC)
1490 		protoeflags |= MAP_ENTRY_VN_EXEC;
1491 	if ((cow & MAP_CREATE_GUARD) != 0)
1492 		protoeflags |= MAP_ENTRY_GUARD;
1493 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1494 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1495 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1496 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1497 	if (cow & MAP_INHERIT_SHARE)
1498 		inheritance = VM_INHERIT_SHARE;
1499 	else
1500 		inheritance = VM_INHERIT_DEFAULT;
1501 
1502 	cred = NULL;
1503 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1504 		goto charged;
1505 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1506 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1507 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1508 			return (KERN_RESOURCE_SHORTAGE);
1509 		KASSERT(object == NULL ||
1510 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1511 		    object->cred == NULL,
1512 		    ("overcommit: vm_map_insert o %p", object));
1513 		cred = curthread->td_ucred;
1514 	}
1515 
1516 charged:
1517 	/* Expand the kernel pmap, if necessary. */
1518 	if (map == kernel_map && end > kernel_vm_end)
1519 		pmap_growkernel(end);
1520 	if (object != NULL) {
1521 		/*
1522 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1523 		 * is trivially proven to be the only mapping for any
1524 		 * of the object's pages.  (Object granularity
1525 		 * reference counting is insufficient to recognize
1526 		 * aliases with precision.)
1527 		 */
1528 		VM_OBJECT_WLOCK(object);
1529 		if (object->ref_count > 1 || object->shadow_count != 0)
1530 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1531 		VM_OBJECT_WUNLOCK(object);
1532 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1533 	    protoeflags &&
1534 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1535 	    MAP_VN_EXEC)) == 0 &&
1536 	    prev_entry->end == start && (prev_entry->cred == cred ||
1537 	    (prev_entry->object.vm_object != NULL &&
1538 	    prev_entry->object.vm_object->cred == cred)) &&
1539 	    vm_object_coalesce(prev_entry->object.vm_object,
1540 	    prev_entry->offset,
1541 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1542 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1543 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1544 		/*
1545 		 * We were able to extend the object.  Determine if we
1546 		 * can extend the previous map entry to include the
1547 		 * new range as well.
1548 		 */
1549 		if (prev_entry->inheritance == inheritance &&
1550 		    prev_entry->protection == prot &&
1551 		    prev_entry->max_protection == max &&
1552 		    prev_entry->wired_count == 0) {
1553 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1554 			    0, ("prev_entry %p has incoherent wiring",
1555 			    prev_entry));
1556 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1557 				map->size += end - prev_entry->end;
1558 			prev_entry->end = end;
1559 			vm_map_entry_resize_free(map, prev_entry);
1560 			vm_map_simplify_entry(map, prev_entry);
1561 			return (KERN_SUCCESS);
1562 		}
1563 
1564 		/*
1565 		 * If we can extend the object but cannot extend the
1566 		 * map entry, we have to create a new map entry.  We
1567 		 * must bump the ref count on the extended object to
1568 		 * account for it.  object may be NULL.
1569 		 */
1570 		object = prev_entry->object.vm_object;
1571 		offset = prev_entry->offset +
1572 		    (prev_entry->end - prev_entry->start);
1573 		vm_object_reference(object);
1574 		if (cred != NULL && object != NULL && object->cred != NULL &&
1575 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1576 			/* Object already accounts for this uid. */
1577 			cred = NULL;
1578 		}
1579 	}
1580 	if (cred != NULL)
1581 		crhold(cred);
1582 
1583 	/*
1584 	 * Create a new entry
1585 	 */
1586 	new_entry = vm_map_entry_create(map);
1587 	new_entry->start = start;
1588 	new_entry->end = end;
1589 	new_entry->cred = NULL;
1590 
1591 	new_entry->eflags = protoeflags;
1592 	new_entry->object.vm_object = object;
1593 	new_entry->offset = offset;
1594 
1595 	new_entry->inheritance = inheritance;
1596 	new_entry->protection = prot;
1597 	new_entry->max_protection = max;
1598 	new_entry->wired_count = 0;
1599 	new_entry->wiring_thread = NULL;
1600 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1601 	new_entry->next_read = start;
1602 
1603 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1604 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1605 	new_entry->cred = cred;
1606 
1607 	/*
1608 	 * Insert the new entry into the list
1609 	 */
1610 	vm_map_entry_link(map, new_entry);
1611 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1612 		map->size += new_entry->end - new_entry->start;
1613 
1614 	/*
1615 	 * Try to coalesce the new entry with both the previous and next
1616 	 * entries in the list.  Previously, we only attempted to coalesce
1617 	 * with the previous entry when object is NULL.  Here, we handle the
1618 	 * other cases, which are less common.
1619 	 */
1620 	vm_map_simplify_entry(map, new_entry);
1621 
1622 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1623 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1624 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1625 	}
1626 
1627 	return (KERN_SUCCESS);
1628 }
1629 
1630 /*
1631  *	vm_map_findspace:
1632  *
1633  *	Find the first fit (lowest VM address) for "length" free bytes
1634  *	beginning at address >= start in the given map.
1635  *
1636  *	In a vm_map_entry, "max_free" is the maximum amount of
1637  *	contiguous free space between an entry in its subtree and a
1638  *	neighbor of that entry.  This allows finding a free region in
1639  *	one path down the tree, so O(log n) amortized with splay
1640  *	trees.
1641  *
1642  *	The map must be locked, and leaves it so.
1643  *
1644  *	Returns: starting address if sufficient space,
1645  *		 vm_map_max(map)-length+1 if insufficient space.
1646  */
1647 vm_offset_t
1648 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1649 {
1650 	vm_map_entry_t llist, rlist, root, y;
1651 	vm_size_t left_length;
1652 	vm_offset_t gap_end;
1653 
1654 	/*
1655 	 * Request must fit within min/max VM address and must avoid
1656 	 * address wrap.
1657 	 */
1658 	start = MAX(start, vm_map_min(map));
1659 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1660 		return (vm_map_max(map) - length + 1);
1661 
1662 	/* Empty tree means wide open address space. */
1663 	if (map->root == NULL)
1664 		return (start);
1665 
1666 	/*
1667 	 * After splay_split, if start is within an entry, push it to the start
1668 	 * of the following gap.  If rlist is at the end of the gap containing
1669 	 * start, save the end of that gap in gap_end to see if the gap is big
1670 	 * enough; otherwise set gap_end to start skip gap-checking and move
1671 	 * directly to a search of the right subtree.
1672 	 */
1673 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1674 	gap_end = rlist->start;
1675 	if (root != NULL) {
1676 		start = root->end;
1677 		if (root->right != NULL)
1678 			gap_end = start;
1679 	} else if (rlist != &map->header) {
1680 		root = rlist;
1681 		rlist = root->left;
1682 		root->left = NULL;
1683 	} else {
1684 		root = llist;
1685 		llist = root->right;
1686 		root->right = NULL;
1687 	}
1688 	vm_map_splay_merge(map, root, llist, rlist);
1689 	VM_MAP_ASSERT_CONSISTENT(map);
1690 	if (length <= gap_end - start)
1691 		return (start);
1692 
1693 	/* With max_free, can immediately tell if no solution. */
1694 	if (root->right == NULL || length > root->right->max_free)
1695 		return (vm_map_max(map) - length + 1);
1696 
1697 	/*
1698 	 * Splay for the least large-enough gap in the right subtree.
1699 	 */
1700 	llist = rlist = &map->header;
1701 	for (left_length = 0;;
1702 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1703 		if (length <= left_length)
1704 			SPLAY_LEFT_STEP(root, y, rlist,
1705 			    length <= vm_map_entry_max_free_left(y, llist));
1706 		else
1707 			SPLAY_RIGHT_STEP(root, y, llist,
1708 			    length > vm_map_entry_max_free_left(y, root));
1709 		if (root == NULL)
1710 			break;
1711 	}
1712 	root = llist;
1713 	llist = root->right;
1714 	root->right = NULL;
1715 	if (rlist != &map->header) {
1716 		y = rlist;
1717 		rlist = y->left;
1718 		y->left = NULL;
1719 		vm_map_splay_merge(map, y, &map->header, rlist);
1720 		y->max_free = MAX(
1721 		    vm_map_entry_max_free_left(y, root),
1722 		    vm_map_entry_max_free_right(y, &map->header));
1723 		root->right = y;
1724 	}
1725 	vm_map_splay_merge(map, root, llist, &map->header);
1726 	VM_MAP_ASSERT_CONSISTENT(map);
1727 	return (root->end);
1728 }
1729 
1730 int
1731 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1732     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1733     vm_prot_t max, int cow)
1734 {
1735 	vm_offset_t end;
1736 	int result;
1737 
1738 	end = start + length;
1739 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1740 	    object == NULL,
1741 	    ("vm_map_fixed: non-NULL backing object for stack"));
1742 	vm_map_lock(map);
1743 	VM_MAP_RANGE_CHECK(map, start, end);
1744 	if ((cow & MAP_CHECK_EXCL) == 0)
1745 		vm_map_delete(map, start, end);
1746 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1747 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1748 		    prot, max, cow);
1749 	} else {
1750 		result = vm_map_insert(map, object, offset, start, end,
1751 		    prot, max, cow);
1752 	}
1753 	vm_map_unlock(map);
1754 	return (result);
1755 }
1756 
1757 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1758 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1759 
1760 static int cluster_anon = 1;
1761 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1762     &cluster_anon, 0,
1763     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1764 
1765 static bool
1766 clustering_anon_allowed(vm_offset_t addr)
1767 {
1768 
1769 	switch (cluster_anon) {
1770 	case 0:
1771 		return (false);
1772 	case 1:
1773 		return (addr == 0);
1774 	case 2:
1775 	default:
1776 		return (true);
1777 	}
1778 }
1779 
1780 static long aslr_restarts;
1781 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1782     &aslr_restarts, 0,
1783     "Number of aslr failures");
1784 
1785 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1786 
1787 /*
1788  * Searches for the specified amount of free space in the given map with the
1789  * specified alignment.  Performs an address-ordered, first-fit search from
1790  * the given address "*addr", with an optional upper bound "max_addr".  If the
1791  * parameter "alignment" is zero, then the alignment is computed from the
1792  * given (object, offset) pair so as to enable the greatest possible use of
1793  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1794  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1795  *
1796  * The map must be locked.  Initially, there must be at least "length" bytes
1797  * of free space at the given address.
1798  */
1799 static int
1800 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1801     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1802     vm_offset_t alignment)
1803 {
1804 	vm_offset_t aligned_addr, free_addr;
1805 
1806 	VM_MAP_ASSERT_LOCKED(map);
1807 	free_addr = *addr;
1808 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1809 	    ("caller failed to provide space %#jx at address %p",
1810 	     (uintmax_t)length, (void *)free_addr));
1811 	for (;;) {
1812 		/*
1813 		 * At the start of every iteration, the free space at address
1814 		 * "*addr" is at least "length" bytes.
1815 		 */
1816 		if (alignment == 0)
1817 			pmap_align_superpage(object, offset, addr, length);
1818 		else if ((*addr & (alignment - 1)) != 0) {
1819 			*addr &= ~(alignment - 1);
1820 			*addr += alignment;
1821 		}
1822 		aligned_addr = *addr;
1823 		if (aligned_addr == free_addr) {
1824 			/*
1825 			 * Alignment did not change "*addr", so "*addr" must
1826 			 * still provide sufficient free space.
1827 			 */
1828 			return (KERN_SUCCESS);
1829 		}
1830 
1831 		/*
1832 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1833 		 * be a valid address, in which case vm_map_findspace() cannot
1834 		 * be relied upon to fail.
1835 		 */
1836 		if (aligned_addr < free_addr)
1837 			return (KERN_NO_SPACE);
1838 		*addr = vm_map_findspace(map, aligned_addr, length);
1839 		if (*addr + length > vm_map_max(map) ||
1840 		    (max_addr != 0 && *addr + length > max_addr))
1841 			return (KERN_NO_SPACE);
1842 		free_addr = *addr;
1843 		if (free_addr == aligned_addr) {
1844 			/*
1845 			 * If a successful call to vm_map_findspace() did not
1846 			 * change "*addr", then "*addr" must still be aligned
1847 			 * and provide sufficient free space.
1848 			 */
1849 			return (KERN_SUCCESS);
1850 		}
1851 	}
1852 }
1853 
1854 /*
1855  *	vm_map_find finds an unallocated region in the target address
1856  *	map with the given length.  The search is defined to be
1857  *	first-fit from the specified address; the region found is
1858  *	returned in the same parameter.
1859  *
1860  *	If object is non-NULL, ref count must be bumped by caller
1861  *	prior to making call to account for the new entry.
1862  */
1863 int
1864 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1865 	    vm_offset_t *addr,	/* IN/OUT */
1866 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1867 	    vm_prot_t prot, vm_prot_t max, int cow)
1868 {
1869 	vm_offset_t alignment, curr_min_addr, min_addr;
1870 	int gap, pidx, rv, try;
1871 	bool cluster, en_aslr, update_anon;
1872 
1873 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1874 	    object == NULL,
1875 	    ("vm_map_find: non-NULL backing object for stack"));
1876 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1877 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1878 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1879 	    (object->flags & OBJ_COLORED) == 0))
1880 		find_space = VMFS_ANY_SPACE;
1881 	if (find_space >> 8 != 0) {
1882 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1883 		alignment = (vm_offset_t)1 << (find_space >> 8);
1884 	} else
1885 		alignment = 0;
1886 	en_aslr = (map->flags & MAP_ASLR) != 0;
1887 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1888 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1889 	    find_space != VMFS_NO_SPACE && object == NULL &&
1890 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1891 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1892 	curr_min_addr = min_addr = *addr;
1893 	if (en_aslr && min_addr == 0 && !cluster &&
1894 	    find_space != VMFS_NO_SPACE &&
1895 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1896 		curr_min_addr = min_addr = vm_map_min(map);
1897 	try = 0;
1898 	vm_map_lock(map);
1899 	if (cluster) {
1900 		curr_min_addr = map->anon_loc;
1901 		if (curr_min_addr == 0)
1902 			cluster = false;
1903 	}
1904 	if (find_space != VMFS_NO_SPACE) {
1905 		KASSERT(find_space == VMFS_ANY_SPACE ||
1906 		    find_space == VMFS_OPTIMAL_SPACE ||
1907 		    find_space == VMFS_SUPER_SPACE ||
1908 		    alignment != 0, ("unexpected VMFS flag"));
1909 again:
1910 		/*
1911 		 * When creating an anonymous mapping, try clustering
1912 		 * with an existing anonymous mapping first.
1913 		 *
1914 		 * We make up to two attempts to find address space
1915 		 * for a given find_space value. The first attempt may
1916 		 * apply randomization or may cluster with an existing
1917 		 * anonymous mapping. If this first attempt fails,
1918 		 * perform a first-fit search of the available address
1919 		 * space.
1920 		 *
1921 		 * If all tries failed, and find_space is
1922 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1923 		 * Again enable clustering and randomization.
1924 		 */
1925 		try++;
1926 		MPASS(try <= 2);
1927 
1928 		if (try == 2) {
1929 			/*
1930 			 * Second try: we failed either to find a
1931 			 * suitable region for randomizing the
1932 			 * allocation, or to cluster with an existing
1933 			 * mapping.  Retry with free run.
1934 			 */
1935 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1936 			    vm_map_min(map) : min_addr;
1937 			atomic_add_long(&aslr_restarts, 1);
1938 		}
1939 
1940 		if (try == 1 && en_aslr && !cluster) {
1941 			/*
1942 			 * Find space for allocation, including
1943 			 * gap needed for later randomization.
1944 			 */
1945 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1946 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1947 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1948 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1949 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1950 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1951 			*addr = vm_map_findspace(map, curr_min_addr,
1952 			    length + gap * pagesizes[pidx]);
1953 			if (*addr + length + gap * pagesizes[pidx] >
1954 			    vm_map_max(map))
1955 				goto again;
1956 			/* And randomize the start address. */
1957 			*addr += (arc4random() % gap) * pagesizes[pidx];
1958 			if (max_addr != 0 && *addr + length > max_addr)
1959 				goto again;
1960 		} else {
1961 			*addr = vm_map_findspace(map, curr_min_addr, length);
1962 			if (*addr + length > vm_map_max(map) ||
1963 			    (max_addr != 0 && *addr + length > max_addr)) {
1964 				if (cluster) {
1965 					cluster = false;
1966 					MPASS(try == 1);
1967 					goto again;
1968 				}
1969 				rv = KERN_NO_SPACE;
1970 				goto done;
1971 			}
1972 		}
1973 
1974 		if (find_space != VMFS_ANY_SPACE &&
1975 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1976 		    max_addr, alignment)) != KERN_SUCCESS) {
1977 			if (find_space == VMFS_OPTIMAL_SPACE) {
1978 				find_space = VMFS_ANY_SPACE;
1979 				curr_min_addr = min_addr;
1980 				cluster = update_anon;
1981 				try = 0;
1982 				goto again;
1983 			}
1984 			goto done;
1985 		}
1986 	} else if ((cow & MAP_REMAP) != 0) {
1987 		if (*addr < vm_map_min(map) ||
1988 		    *addr + length > vm_map_max(map) ||
1989 		    *addr + length <= length) {
1990 			rv = KERN_INVALID_ADDRESS;
1991 			goto done;
1992 		}
1993 		vm_map_delete(map, *addr, *addr + length);
1994 	}
1995 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1996 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1997 		    max, cow);
1998 	} else {
1999 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2000 		    prot, max, cow);
2001 	}
2002 	if (rv == KERN_SUCCESS && update_anon)
2003 		map->anon_loc = *addr + length;
2004 done:
2005 	vm_map_unlock(map);
2006 	return (rv);
2007 }
2008 
2009 /*
2010  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2011  *	additional parameter (min_addr) and treats the given address
2012  *	(*addr) differently.  Specifically, it treats *addr as a hint
2013  *	and not as the minimum address where the mapping is created.
2014  *
2015  *	This function works in two phases.  First, it tries to
2016  *	allocate above the hint.  If that fails and the hint is
2017  *	greater than min_addr, it performs a second pass, replacing
2018  *	the hint with min_addr as the minimum address for the
2019  *	allocation.
2020  */
2021 int
2022 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2023     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2024     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2025     int cow)
2026 {
2027 	vm_offset_t hint;
2028 	int rv;
2029 
2030 	hint = *addr;
2031 	for (;;) {
2032 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2033 		    find_space, prot, max, cow);
2034 		if (rv == KERN_SUCCESS || min_addr >= hint)
2035 			return (rv);
2036 		*addr = hint = min_addr;
2037 	}
2038 }
2039 
2040 /*
2041  * A map entry with any of the following flags set must not be merged with
2042  * another entry.
2043  */
2044 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2045 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2046 
2047 static bool
2048 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2049 {
2050 
2051 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2052 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2053 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2054 	    prev, entry));
2055 	return (prev->end == entry->start &&
2056 	    prev->object.vm_object == entry->object.vm_object &&
2057 	    (prev->object.vm_object == NULL ||
2058 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2059 	    prev->eflags == entry->eflags &&
2060 	    prev->protection == entry->protection &&
2061 	    prev->max_protection == entry->max_protection &&
2062 	    prev->inheritance == entry->inheritance &&
2063 	    prev->wired_count == entry->wired_count &&
2064 	    prev->cred == entry->cred);
2065 }
2066 
2067 static void
2068 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2069 {
2070 
2071 	/*
2072 	 * If the backing object is a vnode object, vm_object_deallocate()
2073 	 * calls vrele().  However, vrele() does not lock the vnode because
2074 	 * the vnode has additional references.  Thus, the map lock can be
2075 	 * kept without causing a lock-order reversal with the vnode lock.
2076 	 *
2077 	 * Since we count the number of virtual page mappings in
2078 	 * object->un_pager.vnp.writemappings, the writemappings value
2079 	 * should not be adjusted when the entry is disposed of.
2080 	 */
2081 	if (entry->object.vm_object != NULL)
2082 		vm_object_deallocate(entry->object.vm_object);
2083 	if (entry->cred != NULL)
2084 		crfree(entry->cred);
2085 	vm_map_entry_dispose(map, entry);
2086 }
2087 
2088 /*
2089  *	vm_map_simplify_entry:
2090  *
2091  *	Simplify the given map entry by merging with either neighbor.  This
2092  *	routine also has the ability to merge with both neighbors.
2093  *
2094  *	The map must be locked.
2095  *
2096  *	This routine guarantees that the passed entry remains valid (though
2097  *	possibly extended).  When merging, this routine may delete one or
2098  *	both neighbors.
2099  */
2100 void
2101 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2102 {
2103 	vm_map_entry_t next, prev;
2104 
2105 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2106 		return;
2107 	prev = entry->prev;
2108 	if (vm_map_mergeable_neighbors(prev, entry)) {
2109 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2110 		vm_map_merged_neighbor_dispose(map, prev);
2111 	}
2112 	next = entry->next;
2113 	if (vm_map_mergeable_neighbors(entry, next)) {
2114 		vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2115 		vm_map_merged_neighbor_dispose(map, next);
2116 	}
2117 }
2118 
2119 /*
2120  *	vm_map_clip_start:	[ internal use only ]
2121  *
2122  *	Asserts that the given entry begins at or after
2123  *	the specified address; if necessary,
2124  *	it splits the entry into two.
2125  */
2126 #define vm_map_clip_start(map, entry, startaddr) \
2127 { \
2128 	if (startaddr > entry->start) \
2129 		_vm_map_clip_start(map, entry, startaddr); \
2130 }
2131 
2132 /*
2133  *	This routine is called only when it is known that
2134  *	the entry must be split.
2135  */
2136 static void
2137 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2138 {
2139 	vm_map_entry_t new_entry;
2140 
2141 	VM_MAP_ASSERT_LOCKED(map);
2142 	KASSERT(entry->end > start && entry->start < start,
2143 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2144 
2145 	/*
2146 	 * Split off the front portion -- note that we must insert the new
2147 	 * entry BEFORE this one, so that this entry has the specified
2148 	 * starting address.
2149 	 */
2150 	vm_map_simplify_entry(map, entry);
2151 
2152 	/*
2153 	 * If there is no object backing this entry, we might as well create
2154 	 * one now.  If we defer it, an object can get created after the map
2155 	 * is clipped, and individual objects will be created for the split-up
2156 	 * map.  This is a bit of a hack, but is also about the best place to
2157 	 * put this improvement.
2158 	 */
2159 	if (entry->object.vm_object == NULL && !map->system_map &&
2160 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2161 		vm_object_t object;
2162 		object = vm_object_allocate(OBJT_DEFAULT,
2163 				atop(entry->end - entry->start));
2164 		entry->object.vm_object = object;
2165 		entry->offset = 0;
2166 		if (entry->cred != NULL) {
2167 			object->cred = entry->cred;
2168 			object->charge = entry->end - entry->start;
2169 			entry->cred = NULL;
2170 		}
2171 	} else if (entry->object.vm_object != NULL &&
2172 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2173 		   entry->cred != NULL) {
2174 		VM_OBJECT_WLOCK(entry->object.vm_object);
2175 		KASSERT(entry->object.vm_object->cred == NULL,
2176 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2177 		entry->object.vm_object->cred = entry->cred;
2178 		entry->object.vm_object->charge = entry->end - entry->start;
2179 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2180 		entry->cred = NULL;
2181 	}
2182 
2183 	new_entry = vm_map_entry_create(map);
2184 	*new_entry = *entry;
2185 
2186 	new_entry->end = start;
2187 	entry->offset += (start - entry->start);
2188 	entry->start = start;
2189 	if (new_entry->cred != NULL)
2190 		crhold(entry->cred);
2191 
2192 	vm_map_entry_link(map, new_entry);
2193 
2194 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2195 		vm_object_reference(new_entry->object.vm_object);
2196 		vm_map_entry_set_vnode_text(new_entry, true);
2197 		/*
2198 		 * The object->un_pager.vnp.writemappings for the
2199 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2200 		 * kept as is here.  The virtual pages are
2201 		 * re-distributed among the clipped entries, so the sum is
2202 		 * left the same.
2203 		 */
2204 	}
2205 }
2206 
2207 /*
2208  *	vm_map_clip_end:	[ internal use only ]
2209  *
2210  *	Asserts that the given entry ends at or before
2211  *	the specified address; if necessary,
2212  *	it splits the entry into two.
2213  */
2214 #define vm_map_clip_end(map, entry, endaddr) \
2215 { \
2216 	if ((endaddr) < (entry->end)) \
2217 		_vm_map_clip_end((map), (entry), (endaddr)); \
2218 }
2219 
2220 /*
2221  *	This routine is called only when it is known that
2222  *	the entry must be split.
2223  */
2224 static void
2225 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2226 {
2227 	vm_map_entry_t new_entry;
2228 
2229 	VM_MAP_ASSERT_LOCKED(map);
2230 	KASSERT(entry->start < end && entry->end > end,
2231 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2232 
2233 	/*
2234 	 * If there is no object backing this entry, we might as well create
2235 	 * one now.  If we defer it, an object can get created after the map
2236 	 * is clipped, and individual objects will be created for the split-up
2237 	 * map.  This is a bit of a hack, but is also about the best place to
2238 	 * put this improvement.
2239 	 */
2240 	if (entry->object.vm_object == NULL && !map->system_map &&
2241 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2242 		vm_object_t object;
2243 		object = vm_object_allocate(OBJT_DEFAULT,
2244 				atop(entry->end - entry->start));
2245 		entry->object.vm_object = object;
2246 		entry->offset = 0;
2247 		if (entry->cred != NULL) {
2248 			object->cred = entry->cred;
2249 			object->charge = entry->end - entry->start;
2250 			entry->cred = NULL;
2251 		}
2252 	} else if (entry->object.vm_object != NULL &&
2253 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2254 		   entry->cred != NULL) {
2255 		VM_OBJECT_WLOCK(entry->object.vm_object);
2256 		KASSERT(entry->object.vm_object->cred == NULL,
2257 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2258 		entry->object.vm_object->cred = entry->cred;
2259 		entry->object.vm_object->charge = entry->end - entry->start;
2260 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2261 		entry->cred = NULL;
2262 	}
2263 
2264 	/*
2265 	 * Create a new entry and insert it AFTER the specified entry
2266 	 */
2267 	new_entry = vm_map_entry_create(map);
2268 	*new_entry = *entry;
2269 
2270 	new_entry->start = entry->end = end;
2271 	new_entry->offset += (end - entry->start);
2272 	if (new_entry->cred != NULL)
2273 		crhold(entry->cred);
2274 
2275 	vm_map_entry_link(map, new_entry);
2276 
2277 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2278 		vm_object_reference(new_entry->object.vm_object);
2279 		vm_map_entry_set_vnode_text(new_entry, true);
2280 	}
2281 }
2282 
2283 /*
2284  *	vm_map_submap:		[ kernel use only ]
2285  *
2286  *	Mark the given range as handled by a subordinate map.
2287  *
2288  *	This range must have been created with vm_map_find,
2289  *	and no other operations may have been performed on this
2290  *	range prior to calling vm_map_submap.
2291  *
2292  *	Only a limited number of operations can be performed
2293  *	within this rage after calling vm_map_submap:
2294  *		vm_fault
2295  *	[Don't try vm_map_copy!]
2296  *
2297  *	To remove a submapping, one must first remove the
2298  *	range from the superior map, and then destroy the
2299  *	submap (if desired).  [Better yet, don't try it.]
2300  */
2301 int
2302 vm_map_submap(
2303 	vm_map_t map,
2304 	vm_offset_t start,
2305 	vm_offset_t end,
2306 	vm_map_t submap)
2307 {
2308 	vm_map_entry_t entry;
2309 	int result;
2310 
2311 	result = KERN_INVALID_ARGUMENT;
2312 
2313 	vm_map_lock(submap);
2314 	submap->flags |= MAP_IS_SUB_MAP;
2315 	vm_map_unlock(submap);
2316 
2317 	vm_map_lock(map);
2318 
2319 	VM_MAP_RANGE_CHECK(map, start, end);
2320 
2321 	if (vm_map_lookup_entry(map, start, &entry)) {
2322 		vm_map_clip_start(map, entry, start);
2323 	} else
2324 		entry = entry->next;
2325 
2326 	vm_map_clip_end(map, entry, end);
2327 
2328 	if ((entry->start == start) && (entry->end == end) &&
2329 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2330 	    (entry->object.vm_object == NULL)) {
2331 		entry->object.sub_map = submap;
2332 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2333 		result = KERN_SUCCESS;
2334 	}
2335 	vm_map_unlock(map);
2336 
2337 	if (result != KERN_SUCCESS) {
2338 		vm_map_lock(submap);
2339 		submap->flags &= ~MAP_IS_SUB_MAP;
2340 		vm_map_unlock(submap);
2341 	}
2342 	return (result);
2343 }
2344 
2345 /*
2346  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2347  */
2348 #define	MAX_INIT_PT	96
2349 
2350 /*
2351  *	vm_map_pmap_enter:
2352  *
2353  *	Preload the specified map's pmap with mappings to the specified
2354  *	object's memory-resident pages.  No further physical pages are
2355  *	allocated, and no further virtual pages are retrieved from secondary
2356  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2357  *	limited number of page mappings are created at the low-end of the
2358  *	specified address range.  (For this purpose, a superpage mapping
2359  *	counts as one page mapping.)  Otherwise, all resident pages within
2360  *	the specified address range are mapped.
2361  */
2362 static void
2363 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2364     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2365 {
2366 	vm_offset_t start;
2367 	vm_page_t p, p_start;
2368 	vm_pindex_t mask, psize, threshold, tmpidx;
2369 
2370 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2371 		return;
2372 	VM_OBJECT_RLOCK(object);
2373 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2374 		VM_OBJECT_RUNLOCK(object);
2375 		VM_OBJECT_WLOCK(object);
2376 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2377 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2378 			    size);
2379 			VM_OBJECT_WUNLOCK(object);
2380 			return;
2381 		}
2382 		VM_OBJECT_LOCK_DOWNGRADE(object);
2383 	}
2384 
2385 	psize = atop(size);
2386 	if (psize + pindex > object->size) {
2387 		if (object->size < pindex) {
2388 			VM_OBJECT_RUNLOCK(object);
2389 			return;
2390 		}
2391 		psize = object->size - pindex;
2392 	}
2393 
2394 	start = 0;
2395 	p_start = NULL;
2396 	threshold = MAX_INIT_PT;
2397 
2398 	p = vm_page_find_least(object, pindex);
2399 	/*
2400 	 * Assert: the variable p is either (1) the page with the
2401 	 * least pindex greater than or equal to the parameter pindex
2402 	 * or (2) NULL.
2403 	 */
2404 	for (;
2405 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2406 	     p = TAILQ_NEXT(p, listq)) {
2407 		/*
2408 		 * don't allow an madvise to blow away our really
2409 		 * free pages allocating pv entries.
2410 		 */
2411 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2412 		    vm_page_count_severe()) ||
2413 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2414 		    tmpidx >= threshold)) {
2415 			psize = tmpidx;
2416 			break;
2417 		}
2418 		if (p->valid == VM_PAGE_BITS_ALL) {
2419 			if (p_start == NULL) {
2420 				start = addr + ptoa(tmpidx);
2421 				p_start = p;
2422 			}
2423 			/* Jump ahead if a superpage mapping is possible. */
2424 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2425 			    (pagesizes[p->psind] - 1)) == 0) {
2426 				mask = atop(pagesizes[p->psind]) - 1;
2427 				if (tmpidx + mask < psize &&
2428 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2429 					p += mask;
2430 					threshold += mask;
2431 				}
2432 			}
2433 		} else if (p_start != NULL) {
2434 			pmap_enter_object(map->pmap, start, addr +
2435 			    ptoa(tmpidx), p_start, prot);
2436 			p_start = NULL;
2437 		}
2438 	}
2439 	if (p_start != NULL)
2440 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2441 		    p_start, prot);
2442 	VM_OBJECT_RUNLOCK(object);
2443 }
2444 
2445 /*
2446  *	vm_map_protect:
2447  *
2448  *	Sets the protection of the specified address
2449  *	region in the target map.  If "set_max" is
2450  *	specified, the maximum protection is to be set;
2451  *	otherwise, only the current protection is affected.
2452  */
2453 int
2454 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2455 	       vm_prot_t new_prot, boolean_t set_max)
2456 {
2457 	vm_map_entry_t current, entry, in_tran;
2458 	vm_object_t obj;
2459 	struct ucred *cred;
2460 	vm_prot_t old_prot;
2461 
2462 	if (start == end)
2463 		return (KERN_SUCCESS);
2464 
2465 again:
2466 	in_tran = NULL;
2467 	vm_map_lock(map);
2468 
2469 	/*
2470 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2471 	 * need to fault pages into the map and will drop the map lock while
2472 	 * doing so, and the VM object may end up in an inconsistent state if we
2473 	 * update the protection on the map entry in between faults.
2474 	 */
2475 	vm_map_wait_busy(map);
2476 
2477 	VM_MAP_RANGE_CHECK(map, start, end);
2478 
2479 	if (vm_map_lookup_entry(map, start, &entry)) {
2480 		vm_map_clip_start(map, entry, start);
2481 	} else {
2482 		entry = entry->next;
2483 	}
2484 
2485 	/*
2486 	 * Make a first pass to check for protection violations.
2487 	 */
2488 	for (current = entry; current->start < end; current = current->next) {
2489 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2490 			continue;
2491 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2492 			vm_map_unlock(map);
2493 			return (KERN_INVALID_ARGUMENT);
2494 		}
2495 		if ((new_prot & current->max_protection) != new_prot) {
2496 			vm_map_unlock(map);
2497 			return (KERN_PROTECTION_FAILURE);
2498 		}
2499 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2500 			in_tran = entry;
2501 	}
2502 
2503 	/*
2504 	 * Postpone the operation until all in transition map entries
2505 	 * are stabilized.  In-transition entry might already have its
2506 	 * pages wired and wired_count incremented, but
2507 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2508 	 * threads because the map lock is dropped.  In this case we
2509 	 * would miss our call to vm_fault_copy_entry().
2510 	 */
2511 	if (in_tran != NULL) {
2512 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2513 		vm_map_unlock_and_wait(map, 0);
2514 		goto again;
2515 	}
2516 
2517 	/*
2518 	 * Do an accounting pass for private read-only mappings that
2519 	 * now will do cow due to allowed write (e.g. debugger sets
2520 	 * breakpoint on text segment)
2521 	 */
2522 	for (current = entry; current->start < end; current = current->next) {
2523 
2524 		vm_map_clip_end(map, current, end);
2525 
2526 		if (set_max ||
2527 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2528 		    ENTRY_CHARGED(current) ||
2529 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2530 			continue;
2531 		}
2532 
2533 		cred = curthread->td_ucred;
2534 		obj = current->object.vm_object;
2535 
2536 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2537 			if (!swap_reserve(current->end - current->start)) {
2538 				vm_map_unlock(map);
2539 				return (KERN_RESOURCE_SHORTAGE);
2540 			}
2541 			crhold(cred);
2542 			current->cred = cred;
2543 			continue;
2544 		}
2545 
2546 		VM_OBJECT_WLOCK(obj);
2547 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2548 			VM_OBJECT_WUNLOCK(obj);
2549 			continue;
2550 		}
2551 
2552 		/*
2553 		 * Charge for the whole object allocation now, since
2554 		 * we cannot distinguish between non-charged and
2555 		 * charged clipped mapping of the same object later.
2556 		 */
2557 		KASSERT(obj->charge == 0,
2558 		    ("vm_map_protect: object %p overcharged (entry %p)",
2559 		    obj, current));
2560 		if (!swap_reserve(ptoa(obj->size))) {
2561 			VM_OBJECT_WUNLOCK(obj);
2562 			vm_map_unlock(map);
2563 			return (KERN_RESOURCE_SHORTAGE);
2564 		}
2565 
2566 		crhold(cred);
2567 		obj->cred = cred;
2568 		obj->charge = ptoa(obj->size);
2569 		VM_OBJECT_WUNLOCK(obj);
2570 	}
2571 
2572 	/*
2573 	 * Go back and fix up protections. [Note that clipping is not
2574 	 * necessary the second time.]
2575 	 */
2576 	for (current = entry; current->start < end; current = current->next) {
2577 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2578 			continue;
2579 
2580 		old_prot = current->protection;
2581 
2582 		if (set_max)
2583 			current->protection =
2584 			    (current->max_protection = new_prot) &
2585 			    old_prot;
2586 		else
2587 			current->protection = new_prot;
2588 
2589 		/*
2590 		 * For user wired map entries, the normal lazy evaluation of
2591 		 * write access upgrades through soft page faults is
2592 		 * undesirable.  Instead, immediately copy any pages that are
2593 		 * copy-on-write and enable write access in the physical map.
2594 		 */
2595 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2596 		    (current->protection & VM_PROT_WRITE) != 0 &&
2597 		    (old_prot & VM_PROT_WRITE) == 0)
2598 			vm_fault_copy_entry(map, map, current, current, NULL);
2599 
2600 		/*
2601 		 * When restricting access, update the physical map.  Worry
2602 		 * about copy-on-write here.
2603 		 */
2604 		if ((old_prot & ~current->protection) != 0) {
2605 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2606 							VM_PROT_ALL)
2607 			pmap_protect(map->pmap, current->start,
2608 			    current->end,
2609 			    current->protection & MASK(current));
2610 #undef	MASK
2611 		}
2612 		vm_map_simplify_entry(map, current);
2613 	}
2614 	vm_map_unlock(map);
2615 	return (KERN_SUCCESS);
2616 }
2617 
2618 /*
2619  *	vm_map_madvise:
2620  *
2621  *	This routine traverses a processes map handling the madvise
2622  *	system call.  Advisories are classified as either those effecting
2623  *	the vm_map_entry structure, or those effecting the underlying
2624  *	objects.
2625  */
2626 int
2627 vm_map_madvise(
2628 	vm_map_t map,
2629 	vm_offset_t start,
2630 	vm_offset_t end,
2631 	int behav)
2632 {
2633 	vm_map_entry_t current, entry;
2634 	bool modify_map;
2635 
2636 	/*
2637 	 * Some madvise calls directly modify the vm_map_entry, in which case
2638 	 * we need to use an exclusive lock on the map and we need to perform
2639 	 * various clipping operations.  Otherwise we only need a read-lock
2640 	 * on the map.
2641 	 */
2642 	switch(behav) {
2643 	case MADV_NORMAL:
2644 	case MADV_SEQUENTIAL:
2645 	case MADV_RANDOM:
2646 	case MADV_NOSYNC:
2647 	case MADV_AUTOSYNC:
2648 	case MADV_NOCORE:
2649 	case MADV_CORE:
2650 		if (start == end)
2651 			return (0);
2652 		modify_map = true;
2653 		vm_map_lock(map);
2654 		break;
2655 	case MADV_WILLNEED:
2656 	case MADV_DONTNEED:
2657 	case MADV_FREE:
2658 		if (start == end)
2659 			return (0);
2660 		modify_map = false;
2661 		vm_map_lock_read(map);
2662 		break;
2663 	default:
2664 		return (EINVAL);
2665 	}
2666 
2667 	/*
2668 	 * Locate starting entry and clip if necessary.
2669 	 */
2670 	VM_MAP_RANGE_CHECK(map, start, end);
2671 
2672 	if (vm_map_lookup_entry(map, start, &entry)) {
2673 		if (modify_map)
2674 			vm_map_clip_start(map, entry, start);
2675 	} else {
2676 		entry = entry->next;
2677 	}
2678 
2679 	if (modify_map) {
2680 		/*
2681 		 * madvise behaviors that are implemented in the vm_map_entry.
2682 		 *
2683 		 * We clip the vm_map_entry so that behavioral changes are
2684 		 * limited to the specified address range.
2685 		 */
2686 		for (current = entry; current->start < end;
2687 		    current = current->next) {
2688 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2689 				continue;
2690 
2691 			vm_map_clip_end(map, current, end);
2692 
2693 			switch (behav) {
2694 			case MADV_NORMAL:
2695 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2696 				break;
2697 			case MADV_SEQUENTIAL:
2698 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2699 				break;
2700 			case MADV_RANDOM:
2701 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2702 				break;
2703 			case MADV_NOSYNC:
2704 				current->eflags |= MAP_ENTRY_NOSYNC;
2705 				break;
2706 			case MADV_AUTOSYNC:
2707 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2708 				break;
2709 			case MADV_NOCORE:
2710 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2711 				break;
2712 			case MADV_CORE:
2713 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2714 				break;
2715 			default:
2716 				break;
2717 			}
2718 			vm_map_simplify_entry(map, current);
2719 		}
2720 		vm_map_unlock(map);
2721 	} else {
2722 		vm_pindex_t pstart, pend;
2723 
2724 		/*
2725 		 * madvise behaviors that are implemented in the underlying
2726 		 * vm_object.
2727 		 *
2728 		 * Since we don't clip the vm_map_entry, we have to clip
2729 		 * the vm_object pindex and count.
2730 		 */
2731 		for (current = entry; current->start < end;
2732 		    current = current->next) {
2733 			vm_offset_t useEnd, useStart;
2734 
2735 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2736 				continue;
2737 
2738 			pstart = OFF_TO_IDX(current->offset);
2739 			pend = pstart + atop(current->end - current->start);
2740 			useStart = current->start;
2741 			useEnd = current->end;
2742 
2743 			if (current->start < start) {
2744 				pstart += atop(start - current->start);
2745 				useStart = start;
2746 			}
2747 			if (current->end > end) {
2748 				pend -= atop(current->end - end);
2749 				useEnd = end;
2750 			}
2751 
2752 			if (pstart >= pend)
2753 				continue;
2754 
2755 			/*
2756 			 * Perform the pmap_advise() before clearing
2757 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2758 			 * concurrent pmap operation, such as pmap_remove(),
2759 			 * could clear a reference in the pmap and set
2760 			 * PGA_REFERENCED on the page before the pmap_advise()
2761 			 * had completed.  Consequently, the page would appear
2762 			 * referenced based upon an old reference that
2763 			 * occurred before this pmap_advise() ran.
2764 			 */
2765 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2766 				pmap_advise(map->pmap, useStart, useEnd,
2767 				    behav);
2768 
2769 			vm_object_madvise(current->object.vm_object, pstart,
2770 			    pend, behav);
2771 
2772 			/*
2773 			 * Pre-populate paging structures in the
2774 			 * WILLNEED case.  For wired entries, the
2775 			 * paging structures are already populated.
2776 			 */
2777 			if (behav == MADV_WILLNEED &&
2778 			    current->wired_count == 0) {
2779 				vm_map_pmap_enter(map,
2780 				    useStart,
2781 				    current->protection,
2782 				    current->object.vm_object,
2783 				    pstart,
2784 				    ptoa(pend - pstart),
2785 				    MAP_PREFAULT_MADVISE
2786 				);
2787 			}
2788 		}
2789 		vm_map_unlock_read(map);
2790 	}
2791 	return (0);
2792 }
2793 
2794 
2795 /*
2796  *	vm_map_inherit:
2797  *
2798  *	Sets the inheritance of the specified address
2799  *	range in the target map.  Inheritance
2800  *	affects how the map will be shared with
2801  *	child maps at the time of vmspace_fork.
2802  */
2803 int
2804 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2805 	       vm_inherit_t new_inheritance)
2806 {
2807 	vm_map_entry_t entry;
2808 	vm_map_entry_t temp_entry;
2809 
2810 	switch (new_inheritance) {
2811 	case VM_INHERIT_NONE:
2812 	case VM_INHERIT_COPY:
2813 	case VM_INHERIT_SHARE:
2814 	case VM_INHERIT_ZERO:
2815 		break;
2816 	default:
2817 		return (KERN_INVALID_ARGUMENT);
2818 	}
2819 	if (start == end)
2820 		return (KERN_SUCCESS);
2821 	vm_map_lock(map);
2822 	VM_MAP_RANGE_CHECK(map, start, end);
2823 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2824 		entry = temp_entry;
2825 		vm_map_clip_start(map, entry, start);
2826 	} else
2827 		entry = temp_entry->next;
2828 	while (entry->start < end) {
2829 		vm_map_clip_end(map, entry, end);
2830 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2831 		    new_inheritance != VM_INHERIT_ZERO)
2832 			entry->inheritance = new_inheritance;
2833 		vm_map_simplify_entry(map, entry);
2834 		entry = entry->next;
2835 	}
2836 	vm_map_unlock(map);
2837 	return (KERN_SUCCESS);
2838 }
2839 
2840 /*
2841  *	vm_map_unwire:
2842  *
2843  *	Implements both kernel and user unwiring.
2844  */
2845 int
2846 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2847     int flags)
2848 {
2849 	vm_map_entry_t entry, first_entry, tmp_entry;
2850 	vm_offset_t saved_start;
2851 	unsigned int last_timestamp;
2852 	int rv;
2853 	boolean_t need_wakeup, result, user_unwire;
2854 
2855 	if (start == end)
2856 		return (KERN_SUCCESS);
2857 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2858 	vm_map_lock(map);
2859 	VM_MAP_RANGE_CHECK(map, start, end);
2860 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2861 		if (flags & VM_MAP_WIRE_HOLESOK)
2862 			first_entry = first_entry->next;
2863 		else {
2864 			vm_map_unlock(map);
2865 			return (KERN_INVALID_ADDRESS);
2866 		}
2867 	}
2868 	last_timestamp = map->timestamp;
2869 	entry = first_entry;
2870 	while (entry->start < end) {
2871 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2872 			/*
2873 			 * We have not yet clipped the entry.
2874 			 */
2875 			saved_start = (start >= entry->start) ? start :
2876 			    entry->start;
2877 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2878 			if (vm_map_unlock_and_wait(map, 0)) {
2879 				/*
2880 				 * Allow interruption of user unwiring?
2881 				 */
2882 			}
2883 			vm_map_lock(map);
2884 			if (last_timestamp+1 != map->timestamp) {
2885 				/*
2886 				 * Look again for the entry because the map was
2887 				 * modified while it was unlocked.
2888 				 * Specifically, the entry may have been
2889 				 * clipped, merged, or deleted.
2890 				 */
2891 				if (!vm_map_lookup_entry(map, saved_start,
2892 				    &tmp_entry)) {
2893 					if (flags & VM_MAP_WIRE_HOLESOK)
2894 						tmp_entry = tmp_entry->next;
2895 					else {
2896 						if (saved_start == start) {
2897 							/*
2898 							 * First_entry has been deleted.
2899 							 */
2900 							vm_map_unlock(map);
2901 							return (KERN_INVALID_ADDRESS);
2902 						}
2903 						end = saved_start;
2904 						rv = KERN_INVALID_ADDRESS;
2905 						goto done;
2906 					}
2907 				}
2908 				if (entry == first_entry)
2909 					first_entry = tmp_entry;
2910 				else
2911 					first_entry = NULL;
2912 				entry = tmp_entry;
2913 			}
2914 			last_timestamp = map->timestamp;
2915 			continue;
2916 		}
2917 		vm_map_clip_start(map, entry, start);
2918 		vm_map_clip_end(map, entry, end);
2919 		/*
2920 		 * Mark the entry in case the map lock is released.  (See
2921 		 * above.)
2922 		 */
2923 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2924 		    entry->wiring_thread == NULL,
2925 		    ("owned map entry %p", entry));
2926 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2927 		entry->wiring_thread = curthread;
2928 		/*
2929 		 * Check the map for holes in the specified region.
2930 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2931 		 */
2932 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2933 		    (entry->end < end && entry->next->start > entry->end)) {
2934 			end = entry->end;
2935 			rv = KERN_INVALID_ADDRESS;
2936 			goto done;
2937 		}
2938 		/*
2939 		 * If system unwiring, require that the entry is system wired.
2940 		 */
2941 		if (!user_unwire &&
2942 		    vm_map_entry_system_wired_count(entry) == 0) {
2943 			end = entry->end;
2944 			rv = KERN_INVALID_ARGUMENT;
2945 			goto done;
2946 		}
2947 		entry = entry->next;
2948 	}
2949 	rv = KERN_SUCCESS;
2950 done:
2951 	need_wakeup = FALSE;
2952 	if (first_entry == NULL) {
2953 		result = vm_map_lookup_entry(map, start, &first_entry);
2954 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2955 			first_entry = first_entry->next;
2956 		else
2957 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2958 	}
2959 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2960 		/*
2961 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2962 		 * space in the unwired region could have been mapped
2963 		 * while the map lock was dropped for draining
2964 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2965 		 * could be simultaneously wiring this new mapping
2966 		 * entry.  Detect these cases and skip any entries
2967 		 * marked as in transition by us.
2968 		 */
2969 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2970 		    entry->wiring_thread != curthread) {
2971 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2972 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2973 			continue;
2974 		}
2975 
2976 		if (rv == KERN_SUCCESS && (!user_unwire ||
2977 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2978 			if (user_unwire)
2979 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2980 			if (entry->wired_count == 1)
2981 				vm_map_entry_unwire(map, entry);
2982 			else
2983 				entry->wired_count--;
2984 		}
2985 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2986 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2987 		KASSERT(entry->wiring_thread == curthread,
2988 		    ("vm_map_unwire: alien wire %p", entry));
2989 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2990 		entry->wiring_thread = NULL;
2991 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2992 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2993 			need_wakeup = TRUE;
2994 		}
2995 		vm_map_simplify_entry(map, entry);
2996 	}
2997 	vm_map_unlock(map);
2998 	if (need_wakeup)
2999 		vm_map_wakeup(map);
3000 	return (rv);
3001 }
3002 
3003 /*
3004  *	vm_map_wire_entry_failure:
3005  *
3006  *	Handle a wiring failure on the given entry.
3007  *
3008  *	The map should be locked.
3009  */
3010 static void
3011 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3012     vm_offset_t failed_addr)
3013 {
3014 
3015 	VM_MAP_ASSERT_LOCKED(map);
3016 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3017 	    entry->wired_count == 1,
3018 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3019 	KASSERT(failed_addr < entry->end,
3020 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3021 
3022 	/*
3023 	 * If any pages at the start of this entry were successfully wired,
3024 	 * then unwire them.
3025 	 */
3026 	if (failed_addr > entry->start) {
3027 		pmap_unwire(map->pmap, entry->start, failed_addr);
3028 		vm_object_unwire(entry->object.vm_object, entry->offset,
3029 		    failed_addr - entry->start, PQ_ACTIVE);
3030 	}
3031 
3032 	/*
3033 	 * Assign an out-of-range value to represent the failure to wire this
3034 	 * entry.
3035 	 */
3036 	entry->wired_count = -1;
3037 }
3038 
3039 /*
3040  *	vm_map_wire:
3041  *
3042  *	Implements both kernel and user wiring.
3043  */
3044 int
3045 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3046     int flags)
3047 {
3048 	vm_map_entry_t entry, first_entry, tmp_entry;
3049 	vm_offset_t faddr, saved_end, saved_start;
3050 	unsigned int last_timestamp;
3051 	int rv;
3052 	boolean_t need_wakeup, result, user_wire;
3053 	vm_prot_t prot;
3054 
3055 	if (start == end)
3056 		return (KERN_SUCCESS);
3057 	prot = 0;
3058 	if (flags & VM_MAP_WIRE_WRITE)
3059 		prot |= VM_PROT_WRITE;
3060 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3061 	vm_map_lock(map);
3062 	VM_MAP_RANGE_CHECK(map, start, end);
3063 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3064 		if (flags & VM_MAP_WIRE_HOLESOK)
3065 			first_entry = first_entry->next;
3066 		else {
3067 			vm_map_unlock(map);
3068 			return (KERN_INVALID_ADDRESS);
3069 		}
3070 	}
3071 	last_timestamp = map->timestamp;
3072 	entry = first_entry;
3073 	while (entry->start < end) {
3074 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3075 			/*
3076 			 * We have not yet clipped the entry.
3077 			 */
3078 			saved_start = (start >= entry->start) ? start :
3079 			    entry->start;
3080 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3081 			if (vm_map_unlock_and_wait(map, 0)) {
3082 				/*
3083 				 * Allow interruption of user wiring?
3084 				 */
3085 			}
3086 			vm_map_lock(map);
3087 			if (last_timestamp + 1 != map->timestamp) {
3088 				/*
3089 				 * Look again for the entry because the map was
3090 				 * modified while it was unlocked.
3091 				 * Specifically, the entry may have been
3092 				 * clipped, merged, or deleted.
3093 				 */
3094 				if (!vm_map_lookup_entry(map, saved_start,
3095 				    &tmp_entry)) {
3096 					if (flags & VM_MAP_WIRE_HOLESOK)
3097 						tmp_entry = tmp_entry->next;
3098 					else {
3099 						if (saved_start == start) {
3100 							/*
3101 							 * first_entry has been deleted.
3102 							 */
3103 							vm_map_unlock(map);
3104 							return (KERN_INVALID_ADDRESS);
3105 						}
3106 						end = saved_start;
3107 						rv = KERN_INVALID_ADDRESS;
3108 						goto done;
3109 					}
3110 				}
3111 				if (entry == first_entry)
3112 					first_entry = tmp_entry;
3113 				else
3114 					first_entry = NULL;
3115 				entry = tmp_entry;
3116 			}
3117 			last_timestamp = map->timestamp;
3118 			continue;
3119 		}
3120 		vm_map_clip_start(map, entry, start);
3121 		vm_map_clip_end(map, entry, end);
3122 		/*
3123 		 * Mark the entry in case the map lock is released.  (See
3124 		 * above.)
3125 		 */
3126 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3127 		    entry->wiring_thread == NULL,
3128 		    ("owned map entry %p", entry));
3129 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3130 		entry->wiring_thread = curthread;
3131 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3132 		    || (entry->protection & prot) != prot) {
3133 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3134 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3135 				end = entry->end;
3136 				rv = KERN_INVALID_ADDRESS;
3137 				goto done;
3138 			}
3139 			goto next_entry;
3140 		}
3141 		if (entry->wired_count == 0) {
3142 			entry->wired_count++;
3143 			saved_start = entry->start;
3144 			saved_end = entry->end;
3145 
3146 			/*
3147 			 * Release the map lock, relying on the in-transition
3148 			 * mark.  Mark the map busy for fork.
3149 			 */
3150 			vm_map_busy(map);
3151 			vm_map_unlock(map);
3152 
3153 			faddr = saved_start;
3154 			do {
3155 				/*
3156 				 * Simulate a fault to get the page and enter
3157 				 * it into the physical map.
3158 				 */
3159 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3160 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
3161 					break;
3162 			} while ((faddr += PAGE_SIZE) < saved_end);
3163 			vm_map_lock(map);
3164 			vm_map_unbusy(map);
3165 			if (last_timestamp + 1 != map->timestamp) {
3166 				/*
3167 				 * Look again for the entry because the map was
3168 				 * modified while it was unlocked.  The entry
3169 				 * may have been clipped, but NOT merged or
3170 				 * deleted.
3171 				 */
3172 				result = vm_map_lookup_entry(map, saved_start,
3173 				    &tmp_entry);
3174 				KASSERT(result, ("vm_map_wire: lookup failed"));
3175 				if (entry == first_entry)
3176 					first_entry = tmp_entry;
3177 				else
3178 					first_entry = NULL;
3179 				entry = tmp_entry;
3180 				while (entry->end < saved_end) {
3181 					/*
3182 					 * In case of failure, handle entries
3183 					 * that were not fully wired here;
3184 					 * fully wired entries are handled
3185 					 * later.
3186 					 */
3187 					if (rv != KERN_SUCCESS &&
3188 					    faddr < entry->end)
3189 						vm_map_wire_entry_failure(map,
3190 						    entry, faddr);
3191 					entry = entry->next;
3192 				}
3193 			}
3194 			last_timestamp = map->timestamp;
3195 			if (rv != KERN_SUCCESS) {
3196 				vm_map_wire_entry_failure(map, entry, faddr);
3197 				end = entry->end;
3198 				goto done;
3199 			}
3200 		} else if (!user_wire ||
3201 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3202 			entry->wired_count++;
3203 		}
3204 		/*
3205 		 * Check the map for holes in the specified region.
3206 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3207 		 */
3208 	next_entry:
3209 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3210 		    entry->end < end && entry->next->start > entry->end) {
3211 			end = entry->end;
3212 			rv = KERN_INVALID_ADDRESS;
3213 			goto done;
3214 		}
3215 		entry = entry->next;
3216 	}
3217 	rv = KERN_SUCCESS;
3218 done:
3219 	need_wakeup = FALSE;
3220 	if (first_entry == NULL) {
3221 		result = vm_map_lookup_entry(map, start, &first_entry);
3222 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3223 			first_entry = first_entry->next;
3224 		else
3225 			KASSERT(result, ("vm_map_wire: lookup failed"));
3226 	}
3227 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3228 		/*
3229 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
3230 		 * space in the unwired region could have been mapped
3231 		 * while the map lock was dropped for faulting in the
3232 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3233 		 * Moreover, another thread could be simultaneously
3234 		 * wiring this new mapping entry.  Detect these cases
3235 		 * and skip any entries marked as in transition not by us.
3236 		 */
3237 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3238 		    entry->wiring_thread != curthread) {
3239 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3240 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3241 			continue;
3242 		}
3243 
3244 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3245 			goto next_entry_done;
3246 
3247 		if (rv == KERN_SUCCESS) {
3248 			if (user_wire)
3249 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3250 		} else if (entry->wired_count == -1) {
3251 			/*
3252 			 * Wiring failed on this entry.  Thus, unwiring is
3253 			 * unnecessary.
3254 			 */
3255 			entry->wired_count = 0;
3256 		} else if (!user_wire ||
3257 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3258 			/*
3259 			 * Undo the wiring.  Wiring succeeded on this entry
3260 			 * but failed on a later entry.
3261 			 */
3262 			if (entry->wired_count == 1)
3263 				vm_map_entry_unwire(map, entry);
3264 			else
3265 				entry->wired_count--;
3266 		}
3267 	next_entry_done:
3268 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3269 		    ("vm_map_wire: in-transition flag missing %p", entry));
3270 		KASSERT(entry->wiring_thread == curthread,
3271 		    ("vm_map_wire: alien wire %p", entry));
3272 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3273 		    MAP_ENTRY_WIRE_SKIPPED);
3274 		entry->wiring_thread = NULL;
3275 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3276 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3277 			need_wakeup = TRUE;
3278 		}
3279 		vm_map_simplify_entry(map, entry);
3280 	}
3281 	vm_map_unlock(map);
3282 	if (need_wakeup)
3283 		vm_map_wakeup(map);
3284 	return (rv);
3285 }
3286 
3287 /*
3288  * vm_map_sync
3289  *
3290  * Push any dirty cached pages in the address range to their pager.
3291  * If syncio is TRUE, dirty pages are written synchronously.
3292  * If invalidate is TRUE, any cached pages are freed as well.
3293  *
3294  * If the size of the region from start to end is zero, we are
3295  * supposed to flush all modified pages within the region containing
3296  * start.  Unfortunately, a region can be split or coalesced with
3297  * neighboring regions, making it difficult to determine what the
3298  * original region was.  Therefore, we approximate this requirement by
3299  * flushing the current region containing start.
3300  *
3301  * Returns an error if any part of the specified range is not mapped.
3302  */
3303 int
3304 vm_map_sync(
3305 	vm_map_t map,
3306 	vm_offset_t start,
3307 	vm_offset_t end,
3308 	boolean_t syncio,
3309 	boolean_t invalidate)
3310 {
3311 	vm_map_entry_t current;
3312 	vm_map_entry_t entry;
3313 	vm_size_t size;
3314 	vm_object_t object;
3315 	vm_ooffset_t offset;
3316 	unsigned int last_timestamp;
3317 	boolean_t failed;
3318 
3319 	vm_map_lock_read(map);
3320 	VM_MAP_RANGE_CHECK(map, start, end);
3321 	if (!vm_map_lookup_entry(map, start, &entry)) {
3322 		vm_map_unlock_read(map);
3323 		return (KERN_INVALID_ADDRESS);
3324 	} else if (start == end) {
3325 		start = entry->start;
3326 		end = entry->end;
3327 	}
3328 	/*
3329 	 * Make a first pass to check for user-wired memory and holes.
3330 	 */
3331 	for (current = entry; current->start < end; current = current->next) {
3332 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3333 			vm_map_unlock_read(map);
3334 			return (KERN_INVALID_ARGUMENT);
3335 		}
3336 		if (end > current->end &&
3337 		    current->end != current->next->start) {
3338 			vm_map_unlock_read(map);
3339 			return (KERN_INVALID_ADDRESS);
3340 		}
3341 	}
3342 
3343 	if (invalidate)
3344 		pmap_remove(map->pmap, start, end);
3345 	failed = FALSE;
3346 
3347 	/*
3348 	 * Make a second pass, cleaning/uncaching pages from the indicated
3349 	 * objects as we go.
3350 	 */
3351 	for (current = entry; current->start < end;) {
3352 		offset = current->offset + (start - current->start);
3353 		size = (end <= current->end ? end : current->end) - start;
3354 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3355 			vm_map_t smap;
3356 			vm_map_entry_t tentry;
3357 			vm_size_t tsize;
3358 
3359 			smap = current->object.sub_map;
3360 			vm_map_lock_read(smap);
3361 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3362 			tsize = tentry->end - offset;
3363 			if (tsize < size)
3364 				size = tsize;
3365 			object = tentry->object.vm_object;
3366 			offset = tentry->offset + (offset - tentry->start);
3367 			vm_map_unlock_read(smap);
3368 		} else {
3369 			object = current->object.vm_object;
3370 		}
3371 		vm_object_reference(object);
3372 		last_timestamp = map->timestamp;
3373 		vm_map_unlock_read(map);
3374 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3375 			failed = TRUE;
3376 		start += size;
3377 		vm_object_deallocate(object);
3378 		vm_map_lock_read(map);
3379 		if (last_timestamp == map->timestamp ||
3380 		    !vm_map_lookup_entry(map, start, &current))
3381 			current = current->next;
3382 	}
3383 
3384 	vm_map_unlock_read(map);
3385 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3386 }
3387 
3388 /*
3389  *	vm_map_entry_unwire:	[ internal use only ]
3390  *
3391  *	Make the region specified by this entry pageable.
3392  *
3393  *	The map in question should be locked.
3394  *	[This is the reason for this routine's existence.]
3395  */
3396 static void
3397 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3398 {
3399 
3400 	VM_MAP_ASSERT_LOCKED(map);
3401 	KASSERT(entry->wired_count > 0,
3402 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3403 	pmap_unwire(map->pmap, entry->start, entry->end);
3404 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3405 	    entry->start, PQ_ACTIVE);
3406 	entry->wired_count = 0;
3407 }
3408 
3409 static void
3410 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3411 {
3412 
3413 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3414 		vm_object_deallocate(entry->object.vm_object);
3415 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3416 }
3417 
3418 /*
3419  *	vm_map_entry_delete:	[ internal use only ]
3420  *
3421  *	Deallocate the given entry from the target map.
3422  */
3423 static void
3424 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3425 {
3426 	vm_object_t object;
3427 	vm_pindex_t offidxstart, offidxend, count, size1;
3428 	vm_size_t size;
3429 
3430 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3431 	object = entry->object.vm_object;
3432 
3433 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3434 		MPASS(entry->cred == NULL);
3435 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3436 		MPASS(object == NULL);
3437 		vm_map_entry_deallocate(entry, map->system_map);
3438 		return;
3439 	}
3440 
3441 	size = entry->end - entry->start;
3442 	map->size -= size;
3443 
3444 	if (entry->cred != NULL) {
3445 		swap_release_by_cred(size, entry->cred);
3446 		crfree(entry->cred);
3447 	}
3448 
3449 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3450 	    (object != NULL)) {
3451 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3452 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3453 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3454 		count = atop(size);
3455 		offidxstart = OFF_TO_IDX(entry->offset);
3456 		offidxend = offidxstart + count;
3457 		VM_OBJECT_WLOCK(object);
3458 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3459 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3460 		    object == kernel_object)) {
3461 			vm_object_collapse(object);
3462 
3463 			/*
3464 			 * The option OBJPR_NOTMAPPED can be passed here
3465 			 * because vm_map_delete() already performed
3466 			 * pmap_remove() on the only mapping to this range
3467 			 * of pages.
3468 			 */
3469 			vm_object_page_remove(object, offidxstart, offidxend,
3470 			    OBJPR_NOTMAPPED);
3471 			if (object->type == OBJT_SWAP)
3472 				swap_pager_freespace(object, offidxstart,
3473 				    count);
3474 			if (offidxend >= object->size &&
3475 			    offidxstart < object->size) {
3476 				size1 = object->size;
3477 				object->size = offidxstart;
3478 				if (object->cred != NULL) {
3479 					size1 -= object->size;
3480 					KASSERT(object->charge >= ptoa(size1),
3481 					    ("object %p charge < 0", object));
3482 					swap_release_by_cred(ptoa(size1),
3483 					    object->cred);
3484 					object->charge -= ptoa(size1);
3485 				}
3486 			}
3487 		}
3488 		VM_OBJECT_WUNLOCK(object);
3489 	} else
3490 		entry->object.vm_object = NULL;
3491 	if (map->system_map)
3492 		vm_map_entry_deallocate(entry, TRUE);
3493 	else {
3494 		entry->next = curthread->td_map_def_user;
3495 		curthread->td_map_def_user = entry;
3496 	}
3497 }
3498 
3499 /*
3500  *	vm_map_delete:	[ internal use only ]
3501  *
3502  *	Deallocates the given address range from the target
3503  *	map.
3504  */
3505 int
3506 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3507 {
3508 	vm_map_entry_t entry;
3509 	vm_map_entry_t first_entry;
3510 
3511 	VM_MAP_ASSERT_LOCKED(map);
3512 	if (start == end)
3513 		return (KERN_SUCCESS);
3514 
3515 	/*
3516 	 * Find the start of the region, and clip it
3517 	 */
3518 	if (!vm_map_lookup_entry(map, start, &first_entry))
3519 		entry = first_entry->next;
3520 	else {
3521 		entry = first_entry;
3522 		vm_map_clip_start(map, entry, start);
3523 	}
3524 
3525 	/*
3526 	 * Step through all entries in this region
3527 	 */
3528 	while (entry->start < end) {
3529 		vm_map_entry_t next;
3530 
3531 		/*
3532 		 * Wait for wiring or unwiring of an entry to complete.
3533 		 * Also wait for any system wirings to disappear on
3534 		 * user maps.
3535 		 */
3536 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3537 		    (vm_map_pmap(map) != kernel_pmap &&
3538 		    vm_map_entry_system_wired_count(entry) != 0)) {
3539 			unsigned int last_timestamp;
3540 			vm_offset_t saved_start;
3541 			vm_map_entry_t tmp_entry;
3542 
3543 			saved_start = entry->start;
3544 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3545 			last_timestamp = map->timestamp;
3546 			(void) vm_map_unlock_and_wait(map, 0);
3547 			vm_map_lock(map);
3548 			if (last_timestamp + 1 != map->timestamp) {
3549 				/*
3550 				 * Look again for the entry because the map was
3551 				 * modified while it was unlocked.
3552 				 * Specifically, the entry may have been
3553 				 * clipped, merged, or deleted.
3554 				 */
3555 				if (!vm_map_lookup_entry(map, saved_start,
3556 							 &tmp_entry))
3557 					entry = tmp_entry->next;
3558 				else {
3559 					entry = tmp_entry;
3560 					vm_map_clip_start(map, entry,
3561 							  saved_start);
3562 				}
3563 			}
3564 			continue;
3565 		}
3566 		vm_map_clip_end(map, entry, end);
3567 
3568 		next = entry->next;
3569 
3570 		/*
3571 		 * Unwire before removing addresses from the pmap; otherwise,
3572 		 * unwiring will put the entries back in the pmap.
3573 		 */
3574 		if (entry->wired_count != 0)
3575 			vm_map_entry_unwire(map, entry);
3576 
3577 		/*
3578 		 * Remove mappings for the pages, but only if the
3579 		 * mappings could exist.  For instance, it does not
3580 		 * make sense to call pmap_remove() for guard entries.
3581 		 */
3582 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3583 		    entry->object.vm_object != NULL)
3584 			pmap_remove(map->pmap, entry->start, entry->end);
3585 
3586 		if (entry->end == map->anon_loc)
3587 			map->anon_loc = entry->start;
3588 
3589 		/*
3590 		 * Delete the entry only after removing all pmap
3591 		 * entries pointing to its pages.  (Otherwise, its
3592 		 * page frames may be reallocated, and any modify bits
3593 		 * will be set in the wrong object!)
3594 		 */
3595 		vm_map_entry_delete(map, entry);
3596 		entry = next;
3597 	}
3598 	return (KERN_SUCCESS);
3599 }
3600 
3601 /*
3602  *	vm_map_remove:
3603  *
3604  *	Remove the given address range from the target map.
3605  *	This is the exported form of vm_map_delete.
3606  */
3607 int
3608 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3609 {
3610 	int result;
3611 
3612 	vm_map_lock(map);
3613 	VM_MAP_RANGE_CHECK(map, start, end);
3614 	result = vm_map_delete(map, start, end);
3615 	vm_map_unlock(map);
3616 	return (result);
3617 }
3618 
3619 /*
3620  *	vm_map_check_protection:
3621  *
3622  *	Assert that the target map allows the specified privilege on the
3623  *	entire address region given.  The entire region must be allocated.
3624  *
3625  *	WARNING!  This code does not and should not check whether the
3626  *	contents of the region is accessible.  For example a smaller file
3627  *	might be mapped into a larger address space.
3628  *
3629  *	NOTE!  This code is also called by munmap().
3630  *
3631  *	The map must be locked.  A read lock is sufficient.
3632  */
3633 boolean_t
3634 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3635 			vm_prot_t protection)
3636 {
3637 	vm_map_entry_t entry;
3638 	vm_map_entry_t tmp_entry;
3639 
3640 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3641 		return (FALSE);
3642 	entry = tmp_entry;
3643 
3644 	while (start < end) {
3645 		/*
3646 		 * No holes allowed!
3647 		 */
3648 		if (start < entry->start)
3649 			return (FALSE);
3650 		/*
3651 		 * Check protection associated with entry.
3652 		 */
3653 		if ((entry->protection & protection) != protection)
3654 			return (FALSE);
3655 		/* go to next entry */
3656 		start = entry->end;
3657 		entry = entry->next;
3658 	}
3659 	return (TRUE);
3660 }
3661 
3662 /*
3663  *	vm_map_copy_entry:
3664  *
3665  *	Copies the contents of the source entry to the destination
3666  *	entry.  The entries *must* be aligned properly.
3667  */
3668 static void
3669 vm_map_copy_entry(
3670 	vm_map_t src_map,
3671 	vm_map_t dst_map,
3672 	vm_map_entry_t src_entry,
3673 	vm_map_entry_t dst_entry,
3674 	vm_ooffset_t *fork_charge)
3675 {
3676 	vm_object_t src_object;
3677 	vm_map_entry_t fake_entry;
3678 	vm_offset_t size;
3679 	struct ucred *cred;
3680 	int charged;
3681 
3682 	VM_MAP_ASSERT_LOCKED(dst_map);
3683 
3684 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3685 		return;
3686 
3687 	if (src_entry->wired_count == 0 ||
3688 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3689 		/*
3690 		 * If the source entry is marked needs_copy, it is already
3691 		 * write-protected.
3692 		 */
3693 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3694 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3695 			pmap_protect(src_map->pmap,
3696 			    src_entry->start,
3697 			    src_entry->end,
3698 			    src_entry->protection & ~VM_PROT_WRITE);
3699 		}
3700 
3701 		/*
3702 		 * Make a copy of the object.
3703 		 */
3704 		size = src_entry->end - src_entry->start;
3705 		if ((src_object = src_entry->object.vm_object) != NULL) {
3706 			VM_OBJECT_WLOCK(src_object);
3707 			charged = ENTRY_CHARGED(src_entry);
3708 			if (src_object->handle == NULL &&
3709 			    (src_object->type == OBJT_DEFAULT ||
3710 			    src_object->type == OBJT_SWAP)) {
3711 				vm_object_collapse(src_object);
3712 				if ((src_object->flags & (OBJ_NOSPLIT |
3713 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3714 					vm_object_split(src_entry);
3715 					src_object =
3716 					    src_entry->object.vm_object;
3717 				}
3718 			}
3719 			vm_object_reference_locked(src_object);
3720 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3721 			if (src_entry->cred != NULL &&
3722 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3723 				KASSERT(src_object->cred == NULL,
3724 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3725 				     src_object));
3726 				src_object->cred = src_entry->cred;
3727 				src_object->charge = size;
3728 			}
3729 			VM_OBJECT_WUNLOCK(src_object);
3730 			dst_entry->object.vm_object = src_object;
3731 			if (charged) {
3732 				cred = curthread->td_ucred;
3733 				crhold(cred);
3734 				dst_entry->cred = cred;
3735 				*fork_charge += size;
3736 				if (!(src_entry->eflags &
3737 				      MAP_ENTRY_NEEDS_COPY)) {
3738 					crhold(cred);
3739 					src_entry->cred = cred;
3740 					*fork_charge += size;
3741 				}
3742 			}
3743 			src_entry->eflags |= MAP_ENTRY_COW |
3744 			    MAP_ENTRY_NEEDS_COPY;
3745 			dst_entry->eflags |= MAP_ENTRY_COW |
3746 			    MAP_ENTRY_NEEDS_COPY;
3747 			dst_entry->offset = src_entry->offset;
3748 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3749 				/*
3750 				 * MAP_ENTRY_VN_WRITECNT cannot
3751 				 * indicate write reference from
3752 				 * src_entry, since the entry is
3753 				 * marked as needs copy.  Allocate a
3754 				 * fake entry that is used to
3755 				 * decrement object->un_pager.vnp.writecount
3756 				 * at the appropriate time.  Attach
3757 				 * fake_entry to the deferred list.
3758 				 */
3759 				fake_entry = vm_map_entry_create(dst_map);
3760 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3761 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3762 				vm_object_reference(src_object);
3763 				fake_entry->object.vm_object = src_object;
3764 				fake_entry->start = src_entry->start;
3765 				fake_entry->end = src_entry->end;
3766 				fake_entry->next = curthread->td_map_def_user;
3767 				curthread->td_map_def_user = fake_entry;
3768 			}
3769 
3770 			pmap_copy(dst_map->pmap, src_map->pmap,
3771 			    dst_entry->start, dst_entry->end - dst_entry->start,
3772 			    src_entry->start);
3773 		} else {
3774 			dst_entry->object.vm_object = NULL;
3775 			dst_entry->offset = 0;
3776 			if (src_entry->cred != NULL) {
3777 				dst_entry->cred = curthread->td_ucred;
3778 				crhold(dst_entry->cred);
3779 				*fork_charge += size;
3780 			}
3781 		}
3782 	} else {
3783 		/*
3784 		 * We don't want to make writeable wired pages copy-on-write.
3785 		 * Immediately copy these pages into the new map by simulating
3786 		 * page faults.  The new pages are pageable.
3787 		 */
3788 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3789 		    fork_charge);
3790 	}
3791 }
3792 
3793 /*
3794  * vmspace_map_entry_forked:
3795  * Update the newly-forked vmspace each time a map entry is inherited
3796  * or copied.  The values for vm_dsize and vm_tsize are approximate
3797  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3798  */
3799 static void
3800 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3801     vm_map_entry_t entry)
3802 {
3803 	vm_size_t entrysize;
3804 	vm_offset_t newend;
3805 
3806 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3807 		return;
3808 	entrysize = entry->end - entry->start;
3809 	vm2->vm_map.size += entrysize;
3810 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3811 		vm2->vm_ssize += btoc(entrysize);
3812 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3813 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3814 		newend = MIN(entry->end,
3815 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3816 		vm2->vm_dsize += btoc(newend - entry->start);
3817 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3818 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3819 		newend = MIN(entry->end,
3820 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3821 		vm2->vm_tsize += btoc(newend - entry->start);
3822 	}
3823 }
3824 
3825 /*
3826  * vmspace_fork:
3827  * Create a new process vmspace structure and vm_map
3828  * based on those of an existing process.  The new map
3829  * is based on the old map, according to the inheritance
3830  * values on the regions in that map.
3831  *
3832  * XXX It might be worth coalescing the entries added to the new vmspace.
3833  *
3834  * The source map must not be locked.
3835  */
3836 struct vmspace *
3837 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3838 {
3839 	struct vmspace *vm2;
3840 	vm_map_t new_map, old_map;
3841 	vm_map_entry_t new_entry, old_entry;
3842 	vm_object_t object;
3843 	int error, locked;
3844 	vm_inherit_t inh;
3845 
3846 	old_map = &vm1->vm_map;
3847 	/* Copy immutable fields of vm1 to vm2. */
3848 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3849 	    pmap_pinit);
3850 	if (vm2 == NULL)
3851 		return (NULL);
3852 
3853 	vm2->vm_taddr = vm1->vm_taddr;
3854 	vm2->vm_daddr = vm1->vm_daddr;
3855 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3856 	vm_map_lock(old_map);
3857 	if (old_map->busy)
3858 		vm_map_wait_busy(old_map);
3859 	new_map = &vm2->vm_map;
3860 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3861 	KASSERT(locked, ("vmspace_fork: lock failed"));
3862 
3863 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3864 	if (error != 0) {
3865 		sx_xunlock(&old_map->lock);
3866 		sx_xunlock(&new_map->lock);
3867 		vm_map_process_deferred();
3868 		vmspace_free(vm2);
3869 		return (NULL);
3870 	}
3871 
3872 	new_map->anon_loc = old_map->anon_loc;
3873 
3874 	old_entry = old_map->header.next;
3875 
3876 	while (old_entry != &old_map->header) {
3877 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3878 			panic("vm_map_fork: encountered a submap");
3879 
3880 		inh = old_entry->inheritance;
3881 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3882 		    inh != VM_INHERIT_NONE)
3883 			inh = VM_INHERIT_COPY;
3884 
3885 		switch (inh) {
3886 		case VM_INHERIT_NONE:
3887 			break;
3888 
3889 		case VM_INHERIT_SHARE:
3890 			/*
3891 			 * Clone the entry, creating the shared object if necessary.
3892 			 */
3893 			object = old_entry->object.vm_object;
3894 			if (object == NULL) {
3895 				object = vm_object_allocate(OBJT_DEFAULT,
3896 					atop(old_entry->end - old_entry->start));
3897 				old_entry->object.vm_object = object;
3898 				old_entry->offset = 0;
3899 				if (old_entry->cred != NULL) {
3900 					object->cred = old_entry->cred;
3901 					object->charge = old_entry->end -
3902 					    old_entry->start;
3903 					old_entry->cred = NULL;
3904 				}
3905 			}
3906 
3907 			/*
3908 			 * Add the reference before calling vm_object_shadow
3909 			 * to insure that a shadow object is created.
3910 			 */
3911 			vm_object_reference(object);
3912 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3913 				vm_object_shadow(&old_entry->object.vm_object,
3914 				    &old_entry->offset,
3915 				    old_entry->end - old_entry->start);
3916 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3917 				/* Transfer the second reference too. */
3918 				vm_object_reference(
3919 				    old_entry->object.vm_object);
3920 
3921 				/*
3922 				 * As in vm_map_simplify_entry(), the
3923 				 * vnode lock will not be acquired in
3924 				 * this call to vm_object_deallocate().
3925 				 */
3926 				vm_object_deallocate(object);
3927 				object = old_entry->object.vm_object;
3928 			}
3929 			VM_OBJECT_WLOCK(object);
3930 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3931 			if (old_entry->cred != NULL) {
3932 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3933 				object->cred = old_entry->cred;
3934 				object->charge = old_entry->end - old_entry->start;
3935 				old_entry->cred = NULL;
3936 			}
3937 
3938 			/*
3939 			 * Assert the correct state of the vnode
3940 			 * v_writecount while the object is locked, to
3941 			 * not relock it later for the assertion
3942 			 * correctness.
3943 			 */
3944 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3945 			    object->type == OBJT_VNODE) {
3946 				KASSERT(((struct vnode *)object->handle)->
3947 				    v_writecount > 0,
3948 				    ("vmspace_fork: v_writecount %p", object));
3949 				KASSERT(object->un_pager.vnp.writemappings > 0,
3950 				    ("vmspace_fork: vnp.writecount %p",
3951 				    object));
3952 			}
3953 			VM_OBJECT_WUNLOCK(object);
3954 
3955 			/*
3956 			 * Clone the entry, referencing the shared object.
3957 			 */
3958 			new_entry = vm_map_entry_create(new_map);
3959 			*new_entry = *old_entry;
3960 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3961 			    MAP_ENTRY_IN_TRANSITION);
3962 			new_entry->wiring_thread = NULL;
3963 			new_entry->wired_count = 0;
3964 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3965 				vnode_pager_update_writecount(object,
3966 				    new_entry->start, new_entry->end);
3967 			}
3968 			vm_map_entry_set_vnode_text(new_entry, true);
3969 
3970 			/*
3971 			 * Insert the entry into the new map -- we know we're
3972 			 * inserting at the end of the new map.
3973 			 */
3974 			vm_map_entry_link(new_map, new_entry);
3975 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3976 
3977 			/*
3978 			 * Update the physical map
3979 			 */
3980 			pmap_copy(new_map->pmap, old_map->pmap,
3981 			    new_entry->start,
3982 			    (old_entry->end - old_entry->start),
3983 			    old_entry->start);
3984 			break;
3985 
3986 		case VM_INHERIT_COPY:
3987 			/*
3988 			 * Clone the entry and link into the map.
3989 			 */
3990 			new_entry = vm_map_entry_create(new_map);
3991 			*new_entry = *old_entry;
3992 			/*
3993 			 * Copied entry is COW over the old object.
3994 			 */
3995 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3996 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3997 			new_entry->wiring_thread = NULL;
3998 			new_entry->wired_count = 0;
3999 			new_entry->object.vm_object = NULL;
4000 			new_entry->cred = NULL;
4001 			vm_map_entry_link(new_map, new_entry);
4002 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4003 			vm_map_copy_entry(old_map, new_map, old_entry,
4004 			    new_entry, fork_charge);
4005 			vm_map_entry_set_vnode_text(new_entry, true);
4006 			break;
4007 
4008 		case VM_INHERIT_ZERO:
4009 			/*
4010 			 * Create a new anonymous mapping entry modelled from
4011 			 * the old one.
4012 			 */
4013 			new_entry = vm_map_entry_create(new_map);
4014 			memset(new_entry, 0, sizeof(*new_entry));
4015 
4016 			new_entry->start = old_entry->start;
4017 			new_entry->end = old_entry->end;
4018 			new_entry->eflags = old_entry->eflags &
4019 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4020 			    MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4021 			new_entry->protection = old_entry->protection;
4022 			new_entry->max_protection = old_entry->max_protection;
4023 			new_entry->inheritance = VM_INHERIT_ZERO;
4024 
4025 			vm_map_entry_link(new_map, new_entry);
4026 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4027 
4028 			new_entry->cred = curthread->td_ucred;
4029 			crhold(new_entry->cred);
4030 			*fork_charge += (new_entry->end - new_entry->start);
4031 
4032 			break;
4033 		}
4034 		old_entry = old_entry->next;
4035 	}
4036 	/*
4037 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4038 	 * map entries, which cannot be done until both old_map and
4039 	 * new_map locks are released.
4040 	 */
4041 	sx_xunlock(&old_map->lock);
4042 	sx_xunlock(&new_map->lock);
4043 	vm_map_process_deferred();
4044 
4045 	return (vm2);
4046 }
4047 
4048 /*
4049  * Create a process's stack for exec_new_vmspace().  This function is never
4050  * asked to wire the newly created stack.
4051  */
4052 int
4053 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4054     vm_prot_t prot, vm_prot_t max, int cow)
4055 {
4056 	vm_size_t growsize, init_ssize;
4057 	rlim_t vmemlim;
4058 	int rv;
4059 
4060 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4061 	growsize = sgrowsiz;
4062 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4063 	vm_map_lock(map);
4064 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4065 	/* If we would blow our VMEM resource limit, no go */
4066 	if (map->size + init_ssize > vmemlim) {
4067 		rv = KERN_NO_SPACE;
4068 		goto out;
4069 	}
4070 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4071 	    max, cow);
4072 out:
4073 	vm_map_unlock(map);
4074 	return (rv);
4075 }
4076 
4077 static int stack_guard_page = 1;
4078 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4079     &stack_guard_page, 0,
4080     "Specifies the number of guard pages for a stack that grows");
4081 
4082 static int
4083 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4084     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4085 {
4086 	vm_map_entry_t new_entry, prev_entry;
4087 	vm_offset_t bot, gap_bot, gap_top, top;
4088 	vm_size_t init_ssize, sgp;
4089 	int orient, rv;
4090 
4091 	/*
4092 	 * The stack orientation is piggybacked with the cow argument.
4093 	 * Extract it into orient and mask the cow argument so that we
4094 	 * don't pass it around further.
4095 	 */
4096 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4097 	KASSERT(orient != 0, ("No stack grow direction"));
4098 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4099 	    ("bi-dir stack"));
4100 
4101 	if (addrbos < vm_map_min(map) ||
4102 	    addrbos + max_ssize > vm_map_max(map) ||
4103 	    addrbos + max_ssize <= addrbos)
4104 		return (KERN_INVALID_ADDRESS);
4105 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4106 	if (sgp >= max_ssize)
4107 		return (KERN_INVALID_ARGUMENT);
4108 
4109 	init_ssize = growsize;
4110 	if (max_ssize < init_ssize + sgp)
4111 		init_ssize = max_ssize - sgp;
4112 
4113 	/* If addr is already mapped, no go */
4114 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4115 		return (KERN_NO_SPACE);
4116 
4117 	/*
4118 	 * If we can't accommodate max_ssize in the current mapping, no go.
4119 	 */
4120 	if (prev_entry->next->start < addrbos + max_ssize)
4121 		return (KERN_NO_SPACE);
4122 
4123 	/*
4124 	 * We initially map a stack of only init_ssize.  We will grow as
4125 	 * needed later.  Depending on the orientation of the stack (i.e.
4126 	 * the grow direction) we either map at the top of the range, the
4127 	 * bottom of the range or in the middle.
4128 	 *
4129 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4130 	 * and cow to be 0.  Possibly we should eliminate these as input
4131 	 * parameters, and just pass these values here in the insert call.
4132 	 */
4133 	if (orient == MAP_STACK_GROWS_DOWN) {
4134 		bot = addrbos + max_ssize - init_ssize;
4135 		top = bot + init_ssize;
4136 		gap_bot = addrbos;
4137 		gap_top = bot;
4138 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4139 		bot = addrbos;
4140 		top = bot + init_ssize;
4141 		gap_bot = top;
4142 		gap_top = addrbos + max_ssize;
4143 	}
4144 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4145 	if (rv != KERN_SUCCESS)
4146 		return (rv);
4147 	new_entry = prev_entry->next;
4148 	KASSERT(new_entry->end == top || new_entry->start == bot,
4149 	    ("Bad entry start/end for new stack entry"));
4150 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4151 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4152 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4153 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4154 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4155 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4156 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4157 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4158 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4159 	if (rv != KERN_SUCCESS)
4160 		(void)vm_map_delete(map, bot, top);
4161 	return (rv);
4162 }
4163 
4164 /*
4165  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4166  * successfully grow the stack.
4167  */
4168 static int
4169 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4170 {
4171 	vm_map_entry_t stack_entry;
4172 	struct proc *p;
4173 	struct vmspace *vm;
4174 	struct ucred *cred;
4175 	vm_offset_t gap_end, gap_start, grow_start;
4176 	size_t grow_amount, guard, max_grow;
4177 	rlim_t lmemlim, stacklim, vmemlim;
4178 	int rv, rv1;
4179 	bool gap_deleted, grow_down, is_procstack;
4180 #ifdef notyet
4181 	uint64_t limit;
4182 #endif
4183 #ifdef RACCT
4184 	int error;
4185 #endif
4186 
4187 	p = curproc;
4188 	vm = p->p_vmspace;
4189 
4190 	/*
4191 	 * Disallow stack growth when the access is performed by a
4192 	 * debugger or AIO daemon.  The reason is that the wrong
4193 	 * resource limits are applied.
4194 	 */
4195 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4196 	    p->p_textvp == NULL))
4197 		return (KERN_FAILURE);
4198 
4199 	MPASS(!map->system_map);
4200 
4201 	guard = stack_guard_page * PAGE_SIZE;
4202 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4203 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4204 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4205 retry:
4206 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4207 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4208 		return (KERN_FAILURE);
4209 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4210 		return (KERN_SUCCESS);
4211 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4212 		stack_entry = gap_entry->next;
4213 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4214 		    stack_entry->start != gap_entry->end)
4215 			return (KERN_FAILURE);
4216 		grow_amount = round_page(stack_entry->start - addr);
4217 		grow_down = true;
4218 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4219 		stack_entry = gap_entry->prev;
4220 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4221 		    stack_entry->end != gap_entry->start)
4222 			return (KERN_FAILURE);
4223 		grow_amount = round_page(addr + 1 - stack_entry->end);
4224 		grow_down = false;
4225 	} else {
4226 		return (KERN_FAILURE);
4227 	}
4228 	max_grow = gap_entry->end - gap_entry->start;
4229 	if (guard > max_grow)
4230 		return (KERN_NO_SPACE);
4231 	max_grow -= guard;
4232 	if (grow_amount > max_grow)
4233 		return (KERN_NO_SPACE);
4234 
4235 	/*
4236 	 * If this is the main process stack, see if we're over the stack
4237 	 * limit.
4238 	 */
4239 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4240 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4241 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4242 		return (KERN_NO_SPACE);
4243 
4244 #ifdef RACCT
4245 	if (racct_enable) {
4246 		PROC_LOCK(p);
4247 		if (is_procstack && racct_set(p, RACCT_STACK,
4248 		    ctob(vm->vm_ssize) + grow_amount)) {
4249 			PROC_UNLOCK(p);
4250 			return (KERN_NO_SPACE);
4251 		}
4252 		PROC_UNLOCK(p);
4253 	}
4254 #endif
4255 
4256 	grow_amount = roundup(grow_amount, sgrowsiz);
4257 	if (grow_amount > max_grow)
4258 		grow_amount = max_grow;
4259 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4260 		grow_amount = trunc_page((vm_size_t)stacklim) -
4261 		    ctob(vm->vm_ssize);
4262 	}
4263 
4264 #ifdef notyet
4265 	PROC_LOCK(p);
4266 	limit = racct_get_available(p, RACCT_STACK);
4267 	PROC_UNLOCK(p);
4268 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4269 		grow_amount = limit - ctob(vm->vm_ssize);
4270 #endif
4271 
4272 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4273 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4274 			rv = KERN_NO_SPACE;
4275 			goto out;
4276 		}
4277 #ifdef RACCT
4278 		if (racct_enable) {
4279 			PROC_LOCK(p);
4280 			if (racct_set(p, RACCT_MEMLOCK,
4281 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4282 				PROC_UNLOCK(p);
4283 				rv = KERN_NO_SPACE;
4284 				goto out;
4285 			}
4286 			PROC_UNLOCK(p);
4287 		}
4288 #endif
4289 	}
4290 
4291 	/* If we would blow our VMEM resource limit, no go */
4292 	if (map->size + grow_amount > vmemlim) {
4293 		rv = KERN_NO_SPACE;
4294 		goto out;
4295 	}
4296 #ifdef RACCT
4297 	if (racct_enable) {
4298 		PROC_LOCK(p);
4299 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4300 			PROC_UNLOCK(p);
4301 			rv = KERN_NO_SPACE;
4302 			goto out;
4303 		}
4304 		PROC_UNLOCK(p);
4305 	}
4306 #endif
4307 
4308 	if (vm_map_lock_upgrade(map)) {
4309 		gap_entry = NULL;
4310 		vm_map_lock_read(map);
4311 		goto retry;
4312 	}
4313 
4314 	if (grow_down) {
4315 		grow_start = gap_entry->end - grow_amount;
4316 		if (gap_entry->start + grow_amount == gap_entry->end) {
4317 			gap_start = gap_entry->start;
4318 			gap_end = gap_entry->end;
4319 			vm_map_entry_delete(map, gap_entry);
4320 			gap_deleted = true;
4321 		} else {
4322 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4323 			gap_entry->end -= grow_amount;
4324 			vm_map_entry_resize_free(map, gap_entry);
4325 			gap_deleted = false;
4326 		}
4327 		rv = vm_map_insert(map, NULL, 0, grow_start,
4328 		    grow_start + grow_amount,
4329 		    stack_entry->protection, stack_entry->max_protection,
4330 		    MAP_STACK_GROWS_DOWN);
4331 		if (rv != KERN_SUCCESS) {
4332 			if (gap_deleted) {
4333 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4334 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4335 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4336 				MPASS(rv1 == KERN_SUCCESS);
4337 			} else {
4338 				gap_entry->end += grow_amount;
4339 				vm_map_entry_resize_free(map, gap_entry);
4340 			}
4341 		}
4342 	} else {
4343 		grow_start = stack_entry->end;
4344 		cred = stack_entry->cred;
4345 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4346 			cred = stack_entry->object.vm_object->cred;
4347 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4348 			rv = KERN_NO_SPACE;
4349 		/* Grow the underlying object if applicable. */
4350 		else if (stack_entry->object.vm_object == NULL ||
4351 		    vm_object_coalesce(stack_entry->object.vm_object,
4352 		    stack_entry->offset,
4353 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4354 		    (vm_size_t)grow_amount, cred != NULL)) {
4355 			if (gap_entry->start + grow_amount == gap_entry->end)
4356 				vm_map_entry_delete(map, gap_entry);
4357 			else
4358 				gap_entry->start += grow_amount;
4359 			stack_entry->end += grow_amount;
4360 			map->size += grow_amount;
4361 			vm_map_entry_resize_free(map, stack_entry);
4362 			rv = KERN_SUCCESS;
4363 		} else
4364 			rv = KERN_FAILURE;
4365 	}
4366 	if (rv == KERN_SUCCESS && is_procstack)
4367 		vm->vm_ssize += btoc(grow_amount);
4368 
4369 	/*
4370 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4371 	 */
4372 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4373 		vm_map_unlock(map);
4374 		vm_map_wire(map, grow_start, grow_start + grow_amount,
4375 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4376 		vm_map_lock_read(map);
4377 	} else
4378 		vm_map_lock_downgrade(map);
4379 
4380 out:
4381 #ifdef RACCT
4382 	if (racct_enable && rv != KERN_SUCCESS) {
4383 		PROC_LOCK(p);
4384 		error = racct_set(p, RACCT_VMEM, map->size);
4385 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4386 		if (!old_mlock) {
4387 			error = racct_set(p, RACCT_MEMLOCK,
4388 			    ptoa(pmap_wired_count(map->pmap)));
4389 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4390 		}
4391 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4392 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4393 		PROC_UNLOCK(p);
4394 	}
4395 #endif
4396 
4397 	return (rv);
4398 }
4399 
4400 /*
4401  * Unshare the specified VM space for exec.  If other processes are
4402  * mapped to it, then create a new one.  The new vmspace is null.
4403  */
4404 int
4405 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4406 {
4407 	struct vmspace *oldvmspace = p->p_vmspace;
4408 	struct vmspace *newvmspace;
4409 
4410 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4411 	    ("vmspace_exec recursed"));
4412 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4413 	if (newvmspace == NULL)
4414 		return (ENOMEM);
4415 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4416 	/*
4417 	 * This code is written like this for prototype purposes.  The
4418 	 * goal is to avoid running down the vmspace here, but let the
4419 	 * other process's that are still using the vmspace to finally
4420 	 * run it down.  Even though there is little or no chance of blocking
4421 	 * here, it is a good idea to keep this form for future mods.
4422 	 */
4423 	PROC_VMSPACE_LOCK(p);
4424 	p->p_vmspace = newvmspace;
4425 	PROC_VMSPACE_UNLOCK(p);
4426 	if (p == curthread->td_proc)
4427 		pmap_activate(curthread);
4428 	curthread->td_pflags |= TDP_EXECVMSPC;
4429 	return (0);
4430 }
4431 
4432 /*
4433  * Unshare the specified VM space for forcing COW.  This
4434  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4435  */
4436 int
4437 vmspace_unshare(struct proc *p)
4438 {
4439 	struct vmspace *oldvmspace = p->p_vmspace;
4440 	struct vmspace *newvmspace;
4441 	vm_ooffset_t fork_charge;
4442 
4443 	if (oldvmspace->vm_refcnt == 1)
4444 		return (0);
4445 	fork_charge = 0;
4446 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4447 	if (newvmspace == NULL)
4448 		return (ENOMEM);
4449 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4450 		vmspace_free(newvmspace);
4451 		return (ENOMEM);
4452 	}
4453 	PROC_VMSPACE_LOCK(p);
4454 	p->p_vmspace = newvmspace;
4455 	PROC_VMSPACE_UNLOCK(p);
4456 	if (p == curthread->td_proc)
4457 		pmap_activate(curthread);
4458 	vmspace_free(oldvmspace);
4459 	return (0);
4460 }
4461 
4462 /*
4463  *	vm_map_lookup:
4464  *
4465  *	Finds the VM object, offset, and
4466  *	protection for a given virtual address in the
4467  *	specified map, assuming a page fault of the
4468  *	type specified.
4469  *
4470  *	Leaves the map in question locked for read; return
4471  *	values are guaranteed until a vm_map_lookup_done
4472  *	call is performed.  Note that the map argument
4473  *	is in/out; the returned map must be used in
4474  *	the call to vm_map_lookup_done.
4475  *
4476  *	A handle (out_entry) is returned for use in
4477  *	vm_map_lookup_done, to make that fast.
4478  *
4479  *	If a lookup is requested with "write protection"
4480  *	specified, the map may be changed to perform virtual
4481  *	copying operations, although the data referenced will
4482  *	remain the same.
4483  */
4484 int
4485 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4486 	      vm_offset_t vaddr,
4487 	      vm_prot_t fault_typea,
4488 	      vm_map_entry_t *out_entry,	/* OUT */
4489 	      vm_object_t *object,		/* OUT */
4490 	      vm_pindex_t *pindex,		/* OUT */
4491 	      vm_prot_t *out_prot,		/* OUT */
4492 	      boolean_t *wired)			/* OUT */
4493 {
4494 	vm_map_entry_t entry;
4495 	vm_map_t map = *var_map;
4496 	vm_prot_t prot;
4497 	vm_prot_t fault_type = fault_typea;
4498 	vm_object_t eobject;
4499 	vm_size_t size;
4500 	struct ucred *cred;
4501 
4502 RetryLookup:
4503 
4504 	vm_map_lock_read(map);
4505 
4506 RetryLookupLocked:
4507 	/*
4508 	 * Lookup the faulting address.
4509 	 */
4510 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4511 		vm_map_unlock_read(map);
4512 		return (KERN_INVALID_ADDRESS);
4513 	}
4514 
4515 	entry = *out_entry;
4516 
4517 	/*
4518 	 * Handle submaps.
4519 	 */
4520 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4521 		vm_map_t old_map = map;
4522 
4523 		*var_map = map = entry->object.sub_map;
4524 		vm_map_unlock_read(old_map);
4525 		goto RetryLookup;
4526 	}
4527 
4528 	/*
4529 	 * Check whether this task is allowed to have this page.
4530 	 */
4531 	prot = entry->protection;
4532 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4533 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4534 		if (prot == VM_PROT_NONE && map != kernel_map &&
4535 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4536 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4537 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4538 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4539 			goto RetryLookupLocked;
4540 	}
4541 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4542 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4543 		vm_map_unlock_read(map);
4544 		return (KERN_PROTECTION_FAILURE);
4545 	}
4546 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4547 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4548 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4549 	    ("entry %p flags %x", entry, entry->eflags));
4550 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4551 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4552 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4553 		vm_map_unlock_read(map);
4554 		return (KERN_PROTECTION_FAILURE);
4555 	}
4556 
4557 	/*
4558 	 * If this page is not pageable, we have to get it for all possible
4559 	 * accesses.
4560 	 */
4561 	*wired = (entry->wired_count != 0);
4562 	if (*wired)
4563 		fault_type = entry->protection;
4564 	size = entry->end - entry->start;
4565 	/*
4566 	 * If the entry was copy-on-write, we either ...
4567 	 */
4568 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4569 		/*
4570 		 * If we want to write the page, we may as well handle that
4571 		 * now since we've got the map locked.
4572 		 *
4573 		 * If we don't need to write the page, we just demote the
4574 		 * permissions allowed.
4575 		 */
4576 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4577 		    (fault_typea & VM_PROT_COPY) != 0) {
4578 			/*
4579 			 * Make a new object, and place it in the object
4580 			 * chain.  Note that no new references have appeared
4581 			 * -- one just moved from the map to the new
4582 			 * object.
4583 			 */
4584 			if (vm_map_lock_upgrade(map))
4585 				goto RetryLookup;
4586 
4587 			if (entry->cred == NULL) {
4588 				/*
4589 				 * The debugger owner is charged for
4590 				 * the memory.
4591 				 */
4592 				cred = curthread->td_ucred;
4593 				crhold(cred);
4594 				if (!swap_reserve_by_cred(size, cred)) {
4595 					crfree(cred);
4596 					vm_map_unlock(map);
4597 					return (KERN_RESOURCE_SHORTAGE);
4598 				}
4599 				entry->cred = cred;
4600 			}
4601 			vm_object_shadow(&entry->object.vm_object,
4602 			    &entry->offset, size);
4603 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4604 			eobject = entry->object.vm_object;
4605 			if (eobject->cred != NULL) {
4606 				/*
4607 				 * The object was not shadowed.
4608 				 */
4609 				swap_release_by_cred(size, entry->cred);
4610 				crfree(entry->cred);
4611 				entry->cred = NULL;
4612 			} else if (entry->cred != NULL) {
4613 				VM_OBJECT_WLOCK(eobject);
4614 				eobject->cred = entry->cred;
4615 				eobject->charge = size;
4616 				VM_OBJECT_WUNLOCK(eobject);
4617 				entry->cred = NULL;
4618 			}
4619 
4620 			vm_map_lock_downgrade(map);
4621 		} else {
4622 			/*
4623 			 * We're attempting to read a copy-on-write page --
4624 			 * don't allow writes.
4625 			 */
4626 			prot &= ~VM_PROT_WRITE;
4627 		}
4628 	}
4629 
4630 	/*
4631 	 * Create an object if necessary.
4632 	 */
4633 	if (entry->object.vm_object == NULL &&
4634 	    !map->system_map) {
4635 		if (vm_map_lock_upgrade(map))
4636 			goto RetryLookup;
4637 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4638 		    atop(size));
4639 		entry->offset = 0;
4640 		if (entry->cred != NULL) {
4641 			VM_OBJECT_WLOCK(entry->object.vm_object);
4642 			entry->object.vm_object->cred = entry->cred;
4643 			entry->object.vm_object->charge = size;
4644 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4645 			entry->cred = NULL;
4646 		}
4647 		vm_map_lock_downgrade(map);
4648 	}
4649 
4650 	/*
4651 	 * Return the object/offset from this entry.  If the entry was
4652 	 * copy-on-write or empty, it has been fixed up.
4653 	 */
4654 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4655 	*object = entry->object.vm_object;
4656 
4657 	*out_prot = prot;
4658 	return (KERN_SUCCESS);
4659 }
4660 
4661 /*
4662  *	vm_map_lookup_locked:
4663  *
4664  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4665  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4666  */
4667 int
4668 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4669 		     vm_offset_t vaddr,
4670 		     vm_prot_t fault_typea,
4671 		     vm_map_entry_t *out_entry,	/* OUT */
4672 		     vm_object_t *object,	/* OUT */
4673 		     vm_pindex_t *pindex,	/* OUT */
4674 		     vm_prot_t *out_prot,	/* OUT */
4675 		     boolean_t *wired)		/* OUT */
4676 {
4677 	vm_map_entry_t entry;
4678 	vm_map_t map = *var_map;
4679 	vm_prot_t prot;
4680 	vm_prot_t fault_type = fault_typea;
4681 
4682 	/*
4683 	 * Lookup the faulting address.
4684 	 */
4685 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4686 		return (KERN_INVALID_ADDRESS);
4687 
4688 	entry = *out_entry;
4689 
4690 	/*
4691 	 * Fail if the entry refers to a submap.
4692 	 */
4693 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4694 		return (KERN_FAILURE);
4695 
4696 	/*
4697 	 * Check whether this task is allowed to have this page.
4698 	 */
4699 	prot = entry->protection;
4700 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4701 	if ((fault_type & prot) != fault_type)
4702 		return (KERN_PROTECTION_FAILURE);
4703 
4704 	/*
4705 	 * If this page is not pageable, we have to get it for all possible
4706 	 * accesses.
4707 	 */
4708 	*wired = (entry->wired_count != 0);
4709 	if (*wired)
4710 		fault_type = entry->protection;
4711 
4712 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4713 		/*
4714 		 * Fail if the entry was copy-on-write for a write fault.
4715 		 */
4716 		if (fault_type & VM_PROT_WRITE)
4717 			return (KERN_FAILURE);
4718 		/*
4719 		 * We're attempting to read a copy-on-write page --
4720 		 * don't allow writes.
4721 		 */
4722 		prot &= ~VM_PROT_WRITE;
4723 	}
4724 
4725 	/*
4726 	 * Fail if an object should be created.
4727 	 */
4728 	if (entry->object.vm_object == NULL && !map->system_map)
4729 		return (KERN_FAILURE);
4730 
4731 	/*
4732 	 * Return the object/offset from this entry.  If the entry was
4733 	 * copy-on-write or empty, it has been fixed up.
4734 	 */
4735 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4736 	*object = entry->object.vm_object;
4737 
4738 	*out_prot = prot;
4739 	return (KERN_SUCCESS);
4740 }
4741 
4742 /*
4743  *	vm_map_lookup_done:
4744  *
4745  *	Releases locks acquired by a vm_map_lookup
4746  *	(according to the handle returned by that lookup).
4747  */
4748 void
4749 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4750 {
4751 	/*
4752 	 * Unlock the main-level map
4753 	 */
4754 	vm_map_unlock_read(map);
4755 }
4756 
4757 vm_offset_t
4758 vm_map_max_KBI(const struct vm_map *map)
4759 {
4760 
4761 	return (vm_map_max(map));
4762 }
4763 
4764 vm_offset_t
4765 vm_map_min_KBI(const struct vm_map *map)
4766 {
4767 
4768 	return (vm_map_min(map));
4769 }
4770 
4771 pmap_t
4772 vm_map_pmap_KBI(vm_map_t map)
4773 {
4774 
4775 	return (map->pmap);
4776 }
4777 
4778 #include "opt_ddb.h"
4779 #ifdef DDB
4780 #include <sys/kernel.h>
4781 
4782 #include <ddb/ddb.h>
4783 
4784 static void
4785 vm_map_print(vm_map_t map)
4786 {
4787 	vm_map_entry_t entry;
4788 
4789 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4790 	    (void *)map,
4791 	    (void *)map->pmap, map->nentries, map->timestamp);
4792 
4793 	db_indent += 2;
4794 	for (entry = map->header.next; entry != &map->header;
4795 	    entry = entry->next) {
4796 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4797 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4798 		    entry->eflags);
4799 		{
4800 			static char *inheritance_name[4] =
4801 			{"share", "copy", "none", "donate_copy"};
4802 
4803 			db_iprintf(" prot=%x/%x/%s",
4804 			    entry->protection,
4805 			    entry->max_protection,
4806 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4807 			if (entry->wired_count != 0)
4808 				db_printf(", wired");
4809 		}
4810 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4811 			db_printf(", share=%p, offset=0x%jx\n",
4812 			    (void *)entry->object.sub_map,
4813 			    (uintmax_t)entry->offset);
4814 			if ((entry->prev == &map->header) ||
4815 			    (entry->prev->object.sub_map !=
4816 				entry->object.sub_map)) {
4817 				db_indent += 2;
4818 				vm_map_print((vm_map_t)entry->object.sub_map);
4819 				db_indent -= 2;
4820 			}
4821 		} else {
4822 			if (entry->cred != NULL)
4823 				db_printf(", ruid %d", entry->cred->cr_ruid);
4824 			db_printf(", object=%p, offset=0x%jx",
4825 			    (void *)entry->object.vm_object,
4826 			    (uintmax_t)entry->offset);
4827 			if (entry->object.vm_object && entry->object.vm_object->cred)
4828 				db_printf(", obj ruid %d charge %jx",
4829 				    entry->object.vm_object->cred->cr_ruid,
4830 				    (uintmax_t)entry->object.vm_object->charge);
4831 			if (entry->eflags & MAP_ENTRY_COW)
4832 				db_printf(", copy (%s)",
4833 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4834 			db_printf("\n");
4835 
4836 			if ((entry->prev == &map->header) ||
4837 			    (entry->prev->object.vm_object !=
4838 				entry->object.vm_object)) {
4839 				db_indent += 2;
4840 				vm_object_print((db_expr_t)(intptr_t)
4841 						entry->object.vm_object,
4842 						0, 0, (char *)0);
4843 				db_indent -= 2;
4844 			}
4845 		}
4846 	}
4847 	db_indent -= 2;
4848 }
4849 
4850 DB_SHOW_COMMAND(map, map)
4851 {
4852 
4853 	if (!have_addr) {
4854 		db_printf("usage: show map <addr>\n");
4855 		return;
4856 	}
4857 	vm_map_print((vm_map_t)addr);
4858 }
4859 
4860 DB_SHOW_COMMAND(procvm, procvm)
4861 {
4862 	struct proc *p;
4863 
4864 	if (have_addr) {
4865 		p = db_lookup_proc(addr);
4866 	} else {
4867 		p = curproc;
4868 	}
4869 
4870 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4871 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4872 	    (void *)vmspace_pmap(p->p_vmspace));
4873 
4874 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4875 }
4876 
4877 #endif /* DDB */
4878