xref: /freebsd-12.1/sys/vm/vm_map.c (revision 91bced2c)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  [email protected]
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151 
152 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155 
156 /*
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162 
163 /*
164  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
165  *
166  *	Asserts that the starting and ending region
167  *	addresses fall within the valid range of the map.
168  */
169 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
170 		{					\
171 		if (start < vm_map_min(map))		\
172 			start = vm_map_min(map);	\
173 		if (end > vm_map_max(map))		\
174 			end = vm_map_max(map);		\
175 		if (start > end)			\
176 			start = end;			\
177 		}
178 
179 /*
180  *	vm_map_startup:
181  *
182  *	Initialize the vm_map module.  Must be called before
183  *	any other vm_map routines.
184  *
185  *	Map and entry structures are allocated from the general
186  *	purpose memory pool with some exceptions:
187  *
188  *	- The kernel map and kmem submap are allocated statically.
189  *	- Kernel map entries are allocated out of a static pool.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  */
194 
195 void
vm_map_startup(void)196 vm_map_startup(void)
197 {
198 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201 	    vm_map_zdtor,
202 #else
203 	    NULL,
204 #endif
205 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uma_prealloc(mapzone, MAX_KMAP);
207 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214 	    vmspace_zdtor,
215 #else
216 	    NULL,
217 #endif
218 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220 
221 static int
vmspace_zinit(void * mem,int size,int flags)222 vmspace_zinit(void *mem, int size, int flags)
223 {
224 	struct vmspace *vm;
225 
226 	vm = (struct vmspace *)mem;
227 
228 	vm->vm_map.pmap = NULL;
229 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230 	PMAP_LOCK_INIT(vmspace_pmap(vm));
231 	return (0);
232 }
233 
234 static int
vm_map_zinit(void * mem,int size,int flags)235 vm_map_zinit(void *mem, int size, int flags)
236 {
237 	vm_map_t map;
238 
239 	map = (vm_map_t)mem;
240 	memset(map, 0, sizeof(*map));
241 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242 	sx_init(&map->lock, "vm map (user)");
243 	return (0);
244 }
245 
246 #ifdef INVARIANTS
247 static void
vmspace_zdtor(void * mem,int size,void * arg)248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250 	struct vmspace *vm;
251 
252 	vm = (struct vmspace *)mem;
253 
254 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
vm_map_zdtor(void * mem,int size,void * arg)257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259 	vm_map_t map;
260 
261 	map = (vm_map_t)mem;
262 	KASSERT(map->nentries == 0,
263 	    ("map %p nentries == %d on free.",
264 	    map, map->nentries));
265 	KASSERT(map->size == 0,
266 	    ("map %p size == %lu on free.",
267 	    map, (unsigned long)map->size));
268 }
269 #endif	/* INVARIANTS */
270 
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
vmspace_alloc(vm_offset_t min,vm_offset_t max,pmap_pinit_t pinit)278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280 	struct vmspace *vm;
281 
282 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
283 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
284 	if (!pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 #ifdef RACCT
303 static void
vmspace_container_reset(struct proc * p)304 vmspace_container_reset(struct proc *p)
305 {
306 
307 	PROC_LOCK(p);
308 	racct_set(p, RACCT_DATA, 0);
309 	racct_set(p, RACCT_STACK, 0);
310 	racct_set(p, RACCT_RSS, 0);
311 	racct_set(p, RACCT_MEMLOCK, 0);
312 	racct_set(p, RACCT_VMEM, 0);
313 	PROC_UNLOCK(p);
314 }
315 #endif
316 
317 static inline void
vmspace_dofree(struct vmspace * vm)318 vmspace_dofree(struct vmspace *vm)
319 {
320 
321 	CTR1(KTR_VM, "vmspace_free: %p", vm);
322 
323 	/*
324 	 * Make sure any SysV shm is freed, it might not have been in
325 	 * exit1().
326 	 */
327 	shmexit(vm);
328 
329 	/*
330 	 * Lock the map, to wait out all other references to it.
331 	 * Delete all of the mappings and pages they hold, then call
332 	 * the pmap module to reclaim anything left.
333 	 */
334 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
335 	    vm_map_max(&vm->vm_map));
336 
337 	pmap_release(vmspace_pmap(vm));
338 	vm->vm_map.pmap = NULL;
339 	uma_zfree(vmspace_zone, vm);
340 }
341 
342 void
vmspace_free(struct vmspace * vm)343 vmspace_free(struct vmspace *vm)
344 {
345 
346 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
347 	    "vmspace_free() called");
348 
349 	if (vm->vm_refcnt == 0)
350 		panic("vmspace_free: attempt to free already freed vmspace");
351 
352 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
353 		vmspace_dofree(vm);
354 }
355 
356 void
vmspace_exitfree(struct proc * p)357 vmspace_exitfree(struct proc *p)
358 {
359 	struct vmspace *vm;
360 
361 	PROC_VMSPACE_LOCK(p);
362 	vm = p->p_vmspace;
363 	p->p_vmspace = NULL;
364 	PROC_VMSPACE_UNLOCK(p);
365 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
366 	vmspace_free(vm);
367 }
368 
369 void
vmspace_exit(struct thread * td)370 vmspace_exit(struct thread *td)
371 {
372 	int refcnt;
373 	struct vmspace *vm;
374 	struct proc *p;
375 
376 	/*
377 	 * Release user portion of address space.
378 	 * This releases references to vnodes,
379 	 * which could cause I/O if the file has been unlinked.
380 	 * Need to do this early enough that we can still sleep.
381 	 *
382 	 * The last exiting process to reach this point releases as
383 	 * much of the environment as it can. vmspace_dofree() is the
384 	 * slower fallback in case another process had a temporary
385 	 * reference to the vmspace.
386 	 */
387 
388 	p = td->td_proc;
389 	vm = p->p_vmspace;
390 	atomic_add_int(&vmspace0.vm_refcnt, 1);
391 	do {
392 		refcnt = vm->vm_refcnt;
393 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
394 			/* Switch now since other proc might free vmspace */
395 			PROC_VMSPACE_LOCK(p);
396 			p->p_vmspace = &vmspace0;
397 			PROC_VMSPACE_UNLOCK(p);
398 			pmap_activate(td);
399 		}
400 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
401 	if (refcnt == 1) {
402 		if (p->p_vmspace != vm) {
403 			/* vmspace not yet freed, switch back */
404 			PROC_VMSPACE_LOCK(p);
405 			p->p_vmspace = vm;
406 			PROC_VMSPACE_UNLOCK(p);
407 			pmap_activate(td);
408 		}
409 		pmap_remove_pages(vmspace_pmap(vm));
410 		/* Switch now since this proc will free vmspace */
411 		PROC_VMSPACE_LOCK(p);
412 		p->p_vmspace = &vmspace0;
413 		PROC_VMSPACE_UNLOCK(p);
414 		pmap_activate(td);
415 		vmspace_dofree(vm);
416 	}
417 #ifdef RACCT
418 	if (racct_enable)
419 		vmspace_container_reset(p);
420 #endif
421 }
422 
423 /* Acquire reference to vmspace owned by another process. */
424 
425 struct vmspace *
vmspace_acquire_ref(struct proc * p)426 vmspace_acquire_ref(struct proc *p)
427 {
428 	struct vmspace *vm;
429 	int refcnt;
430 
431 	PROC_VMSPACE_LOCK(p);
432 	vm = p->p_vmspace;
433 	if (vm == NULL) {
434 		PROC_VMSPACE_UNLOCK(p);
435 		return (NULL);
436 	}
437 	do {
438 		refcnt = vm->vm_refcnt;
439 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
440 			PROC_VMSPACE_UNLOCK(p);
441 			return (NULL);
442 		}
443 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
444 	if (vm != p->p_vmspace) {
445 		PROC_VMSPACE_UNLOCK(p);
446 		vmspace_free(vm);
447 		return (NULL);
448 	}
449 	PROC_VMSPACE_UNLOCK(p);
450 	return (vm);
451 }
452 
453 /*
454  * Switch between vmspaces in an AIO kernel process.
455  *
456  * The new vmspace is either the vmspace of a user process obtained
457  * from an active AIO request or the initial vmspace of the AIO kernel
458  * process (when it is idling).  Because user processes will block to
459  * drain any active AIO requests before proceeding in exit() or
460  * execve(), the reference count for vmspaces from AIO requests can
461  * never be 0.  Similarly, AIO kernel processes hold an extra
462  * reference on their initial vmspace for the life of the process.  As
463  * a result, the 'newvm' vmspace always has a non-zero reference
464  * count.  This permits an additional reference on 'newvm' to be
465  * acquired via a simple atomic increment rather than the loop in
466  * vmspace_acquire_ref() above.
467  */
468 void
vmspace_switch_aio(struct vmspace * newvm)469 vmspace_switch_aio(struct vmspace *newvm)
470 {
471 	struct vmspace *oldvm;
472 
473 	/* XXX: Need some way to assert that this is an aio daemon. */
474 
475 	KASSERT(newvm->vm_refcnt > 0,
476 	    ("vmspace_switch_aio: newvm unreferenced"));
477 
478 	oldvm = curproc->p_vmspace;
479 	if (oldvm == newvm)
480 		return;
481 
482 	/*
483 	 * Point to the new address space and refer to it.
484 	 */
485 	curproc->p_vmspace = newvm;
486 	atomic_add_int(&newvm->vm_refcnt, 1);
487 
488 	/* Activate the new mapping. */
489 	pmap_activate(curthread);
490 
491 	vmspace_free(oldvm);
492 }
493 
494 void
_vm_map_lock(vm_map_t map,const char * file,int line)495 _vm_map_lock(vm_map_t map, const char *file, int line)
496 {
497 
498 	if (map->system_map)
499 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
500 	else
501 		sx_xlock_(&map->lock, file, line);
502 	map->timestamp++;
503 }
504 
505 void
vm_map_entry_set_vnode_text(vm_map_entry_t entry,bool add)506 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
507 {
508 	vm_object_t object, object1;
509 	struct vnode *vp;
510 
511 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
512 		return;
513 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
514 	    ("Submap with execs"));
515 	object = entry->object.vm_object;
516 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
517 	VM_OBJECT_RLOCK(object);
518 	while ((object1 = object->backing_object) != NULL) {
519 		VM_OBJECT_RLOCK(object1);
520 		VM_OBJECT_RUNLOCK(object);
521 		object = object1;
522 	}
523 
524 	vp = NULL;
525 	if (object->type == OBJT_DEAD) {
526 		/*
527 		 * For OBJT_DEAD objects, v_writecount was handled in
528 		 * vnode_pager_dealloc().
529 		 */
530 	} else if (object->type == OBJT_VNODE) {
531 		vp = object->handle;
532 	} else if (object->type == OBJT_SWAP) {
533 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
534 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
535 		    "entry %p, object %p, add %d", entry, object, add));
536 		/*
537 		 * Tmpfs VREG node, which was reclaimed, has
538 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
539 		 * this case there is no v_writecount to adjust.
540 		 */
541 		if ((object->flags & OBJ_TMPFS) != 0)
542 			vp = object->un_pager.swp.swp_tmpfs;
543 	} else {
544 		KASSERT(0,
545 		    ("vm_map_entry_set_vnode_text: wrong object type, "
546 		    "entry %p, object %p, add %d", entry, object, add));
547 	}
548 	if (vp != NULL) {
549 		if (add) {
550 			VOP_SET_TEXT_CHECKED(vp);
551 			VM_OBJECT_RUNLOCK(object);
552 		} else {
553 			vhold(vp);
554 			VM_OBJECT_RUNLOCK(object);
555 			vn_lock(vp, LK_SHARED | LK_RETRY);
556 			VOP_UNSET_TEXT_CHECKED(vp);
557 			VOP_UNLOCK(vp, 0);
558 			vdrop(vp);
559 		}
560 	} else {
561 		VM_OBJECT_RUNLOCK(object);
562 	}
563 }
564 
565 static void
vm_map_process_deferred(void)566 vm_map_process_deferred(void)
567 {
568 	struct thread *td;
569 	vm_map_entry_t entry, next;
570 	vm_object_t object;
571 
572 	td = curthread;
573 	entry = td->td_map_def_user;
574 	td->td_map_def_user = NULL;
575 	while (entry != NULL) {
576 		next = entry->next;
577 		MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
578 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
579 		    MAP_ENTRY_VN_EXEC));
580 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
581 			/*
582 			 * Decrement the object's writemappings and
583 			 * possibly the vnode's v_writecount.
584 			 */
585 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
586 			    ("Submap with writecount"));
587 			object = entry->object.vm_object;
588 			KASSERT(object != NULL, ("No object for writecount"));
589 			vnode_pager_release_writecount(object, entry->start,
590 			    entry->end);
591 		}
592 		vm_map_entry_set_vnode_text(entry, false);
593 		vm_map_entry_deallocate(entry, FALSE);
594 		entry = next;
595 	}
596 }
597 
598 void
_vm_map_unlock(vm_map_t map,const char * file,int line)599 _vm_map_unlock(vm_map_t map, const char *file, int line)
600 {
601 
602 	if (map->system_map)
603 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
604 	else {
605 		sx_xunlock_(&map->lock, file, line);
606 		vm_map_process_deferred();
607 	}
608 }
609 
610 void
_vm_map_lock_read(vm_map_t map,const char * file,int line)611 _vm_map_lock_read(vm_map_t map, const char *file, int line)
612 {
613 
614 	if (map->system_map)
615 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
616 	else
617 		sx_slock_(&map->lock, file, line);
618 }
619 
620 void
_vm_map_unlock_read(vm_map_t map,const char * file,int line)621 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
622 {
623 
624 	if (map->system_map)
625 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
626 	else {
627 		sx_sunlock_(&map->lock, file, line);
628 		vm_map_process_deferred();
629 	}
630 }
631 
632 int
_vm_map_trylock(vm_map_t map,const char * file,int line)633 _vm_map_trylock(vm_map_t map, const char *file, int line)
634 {
635 	int error;
636 
637 	error = map->system_map ?
638 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
639 	    !sx_try_xlock_(&map->lock, file, line);
640 	if (error == 0)
641 		map->timestamp++;
642 	return (error == 0);
643 }
644 
645 int
_vm_map_trylock_read(vm_map_t map,const char * file,int line)646 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
647 {
648 	int error;
649 
650 	error = map->system_map ?
651 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
652 	    !sx_try_slock_(&map->lock, file, line);
653 	return (error == 0);
654 }
655 
656 /*
657  *	_vm_map_lock_upgrade:	[ internal use only ]
658  *
659  *	Tries to upgrade a read (shared) lock on the specified map to a write
660  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
661  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
662  *	returned without a read or write lock held.
663  *
664  *	Requires that the map be read locked.
665  */
666 int
_vm_map_lock_upgrade(vm_map_t map,const char * file,int line)667 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
668 {
669 	unsigned int last_timestamp;
670 
671 	if (map->system_map) {
672 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
673 	} else {
674 		if (!sx_try_upgrade_(&map->lock, file, line)) {
675 			last_timestamp = map->timestamp;
676 			sx_sunlock_(&map->lock, file, line);
677 			vm_map_process_deferred();
678 			/*
679 			 * If the map's timestamp does not change while the
680 			 * map is unlocked, then the upgrade succeeds.
681 			 */
682 			sx_xlock_(&map->lock, file, line);
683 			if (last_timestamp != map->timestamp) {
684 				sx_xunlock_(&map->lock, file, line);
685 				return (1);
686 			}
687 		}
688 	}
689 	map->timestamp++;
690 	return (0);
691 }
692 
693 void
_vm_map_lock_downgrade(vm_map_t map,const char * file,int line)694 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
695 {
696 
697 	if (map->system_map) {
698 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
699 	} else
700 		sx_downgrade_(&map->lock, file, line);
701 }
702 
703 /*
704  *	vm_map_locked:
705  *
706  *	Returns a non-zero value if the caller holds a write (exclusive) lock
707  *	on the specified map and the value "0" otherwise.
708  */
709 int
vm_map_locked(vm_map_t map)710 vm_map_locked(vm_map_t map)
711 {
712 
713 	if (map->system_map)
714 		return (mtx_owned(&map->system_mtx));
715 	else
716 		return (sx_xlocked(&map->lock));
717 }
718 
719 #ifdef INVARIANTS
720 static void
_vm_map_assert_locked(vm_map_t map,const char * file,int line)721 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
722 {
723 
724 	if (map->system_map)
725 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
726 	else
727 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
728 }
729 
730 #define	VM_MAP_ASSERT_LOCKED(map) \
731     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
732 
733 #ifdef DIAGNOSTIC
734 static int enable_vmmap_check = 1;
735 #else
736 static int enable_vmmap_check = 0;
737 #endif
738 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
739     &enable_vmmap_check, 0, "Enable vm map consistency checking");
740 
741 static void
_vm_map_assert_consistent(vm_map_t map)742 _vm_map_assert_consistent(vm_map_t map)
743 {
744 	vm_map_entry_t entry;
745 	vm_map_entry_t child;
746 	vm_size_t max_left, max_right;
747 
748 	if (!enable_vmmap_check)
749 		return;
750 
751 	for (entry = map->header.next; entry != &map->header;
752 	    entry = entry->next) {
753 		KASSERT(entry->prev->end <= entry->start,
754 		    ("map %p prev->end = %jx, start = %jx", map,
755 		    (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
756 		KASSERT(entry->start < entry->end,
757 		    ("map %p start = %jx, end = %jx", map,
758 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
759 		KASSERT(entry->end <= entry->next->start,
760 		    ("map %p end = %jx, next->start = %jx", map,
761 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
762 		KASSERT(entry->left == NULL ||
763 		    entry->left->start < entry->start,
764 		    ("map %p left->start = %jx, start = %jx", map,
765 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
766 		KASSERT(entry->right == NULL ||
767 		    entry->start < entry->right->start,
768 		    ("map %p start = %jx, right->start = %jx", map,
769 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
770 		child = entry->left;
771 		max_left = (child != NULL) ? child->max_free :
772 			entry->start - entry->prev->end;
773 		child = entry->right;
774 		max_right = (child != NULL) ? child->max_free :
775 			entry->next->start - entry->end;
776 		KASSERT(entry->max_free == MAX(max_left, max_right),
777 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
778 		     (uintmax_t)entry->max_free,
779 		     (uintmax_t)max_left, (uintmax_t)max_right));
780 	}
781 }
782 
783 #define VM_MAP_ASSERT_CONSISTENT(map) \
784     _vm_map_assert_consistent(map)
785 #else
786 #define	VM_MAP_ASSERT_LOCKED(map)
787 #define VM_MAP_ASSERT_CONSISTENT(map)
788 #endif /* INVARIANTS */
789 
790 /*
791  *	_vm_map_unlock_and_wait:
792  *
793  *	Atomically releases the lock on the specified map and puts the calling
794  *	thread to sleep.  The calling thread will remain asleep until either
795  *	vm_map_wakeup() is performed on the map or the specified timeout is
796  *	exceeded.
797  *
798  *	WARNING!  This function does not perform deferred deallocations of
799  *	objects and map	entries.  Therefore, the calling thread is expected to
800  *	reacquire the map lock after reawakening and later perform an ordinary
801  *	unlock operation, such as vm_map_unlock(), before completing its
802  *	operation on the map.
803  */
804 int
_vm_map_unlock_and_wait(vm_map_t map,int timo,const char * file,int line)805 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
806 {
807 
808 	mtx_lock(&map_sleep_mtx);
809 	if (map->system_map)
810 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
811 	else
812 		sx_xunlock_(&map->lock, file, line);
813 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
814 	    timo));
815 }
816 
817 /*
818  *	vm_map_wakeup:
819  *
820  *	Awaken any threads that have slept on the map using
821  *	vm_map_unlock_and_wait().
822  */
823 void
vm_map_wakeup(vm_map_t map)824 vm_map_wakeup(vm_map_t map)
825 {
826 
827 	/*
828 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
829 	 * from being performed (and lost) between the map unlock
830 	 * and the msleep() in _vm_map_unlock_and_wait().
831 	 */
832 	mtx_lock(&map_sleep_mtx);
833 	mtx_unlock(&map_sleep_mtx);
834 	wakeup(&map->root);
835 }
836 
837 void
vm_map_busy(vm_map_t map)838 vm_map_busy(vm_map_t map)
839 {
840 
841 	VM_MAP_ASSERT_LOCKED(map);
842 	map->busy++;
843 }
844 
845 void
vm_map_unbusy(vm_map_t map)846 vm_map_unbusy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
851 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
852 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
853 		wakeup(&map->busy);
854 	}
855 }
856 
857 void
vm_map_wait_busy(vm_map_t map)858 vm_map_wait_busy(vm_map_t map)
859 {
860 
861 	VM_MAP_ASSERT_LOCKED(map);
862 	while (map->busy) {
863 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
864 		if (map->system_map)
865 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
866 		else
867 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
868 	}
869 	map->timestamp++;
870 }
871 
872 long
vmspace_resident_count(struct vmspace * vmspace)873 vmspace_resident_count(struct vmspace *vmspace)
874 {
875 	return pmap_resident_count(vmspace_pmap(vmspace));
876 }
877 
878 /*
879  *	vm_map_create:
880  *
881  *	Creates and returns a new empty VM map with
882  *	the given physical map structure, and having
883  *	the given lower and upper address bounds.
884  */
885 vm_map_t
vm_map_create(pmap_t pmap,vm_offset_t min,vm_offset_t max)886 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 	vm_map_t result;
889 
890 	result = uma_zalloc(mapzone, M_WAITOK);
891 	CTR1(KTR_VM, "vm_map_create: %p", result);
892 	_vm_map_init(result, pmap, min, max);
893 	return (result);
894 }
895 
896 /*
897  * Initialize an existing vm_map structure
898  * such as that in the vmspace structure.
899  */
900 static void
_vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)901 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
902 {
903 
904 	map->header.next = map->header.prev = &map->header;
905 	map->header.eflags = MAP_ENTRY_HEADER;
906 	map->needs_wakeup = FALSE;
907 	map->system_map = 0;
908 	map->pmap = pmap;
909 	map->header.end = min;
910 	map->header.start = max;
911 	map->flags = 0;
912 	map->root = NULL;
913 	map->timestamp = 0;
914 	map->busy = 0;
915 	map->anon_loc = 0;
916 }
917 
918 void
vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)919 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
920 {
921 
922 	_vm_map_init(map, pmap, min, max);
923 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
924 	sx_init(&map->lock, "user map");
925 }
926 
927 /*
928  *	vm_map_entry_dispose:	[ internal use only ]
929  *
930  *	Inverse of vm_map_entry_create.
931  */
932 static void
vm_map_entry_dispose(vm_map_t map,vm_map_entry_t entry)933 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
934 {
935 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
936 }
937 
938 /*
939  *	vm_map_entry_create:	[ internal use only ]
940  *
941  *	Allocates a VM map entry for insertion.
942  *	No entry fields are filled in.
943  */
944 static vm_map_entry_t
vm_map_entry_create(vm_map_t map)945 vm_map_entry_create(vm_map_t map)
946 {
947 	vm_map_entry_t new_entry;
948 
949 	if (map->system_map)
950 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
951 	else
952 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
953 	if (new_entry == NULL)
954 		panic("vm_map_entry_create: kernel resources exhausted");
955 	return (new_entry);
956 }
957 
958 /*
959  *	vm_map_entry_set_behavior:
960  *
961  *	Set the expected access behavior, either normal, random, or
962  *	sequential.
963  */
964 static inline void
vm_map_entry_set_behavior(vm_map_entry_t entry,u_char behavior)965 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
966 {
967 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
968 	    (behavior & MAP_ENTRY_BEHAV_MASK);
969 }
970 
971 /*
972  *	vm_map_entry_max_free_{left,right}:
973  *
974  *	Compute the size of the largest free gap between two entries,
975  *	one the root of a tree and the other the ancestor of that root
976  *	that is the least or greatest ancestor found on the search path.
977  */
978 static inline vm_size_t
vm_map_entry_max_free_left(vm_map_entry_t root,vm_map_entry_t left_ancestor)979 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
980 {
981 
982 	return (root->left != NULL ?
983 	    root->left->max_free : root->start - left_ancestor->end);
984 }
985 
986 static inline vm_size_t
vm_map_entry_max_free_right(vm_map_entry_t root,vm_map_entry_t right_ancestor)987 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
988 {
989 
990 	return (root->right != NULL ?
991 	    root->right->max_free : right_ancestor->start - root->end);
992 }
993 
994 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
995 	vm_size_t max_free;						\
996 									\
997 	/*								\
998 	 * Infer root->right->max_free == root->max_free when		\
999 	 * y->max_free < root->max_free || root->max_free == 0.		\
1000 	 * Otherwise, look right to find it.				\
1001 	 */								\
1002 	y = root->left;							\
1003 	max_free = root->max_free;					\
1004 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
1005 	    ("%s: max_free invariant fails", __func__));		\
1006 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1007 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1008 	if (y != NULL && (test)) {					\
1009 		/* Rotate right and make y root. */			\
1010 		root->left = y->right;					\
1011 		y->right = root;					\
1012 		if (max_free < y->max_free)				\
1013 			root->max_free = max_free = MAX(max_free,	\
1014 			    vm_map_entry_max_free_left(root, y));	\
1015 		root = y;						\
1016 		y = root->left;						\
1017 	}								\
1018 	/* Copy right->max_free.  Put root on rlist. */			\
1019 	root->max_free = max_free;					\
1020 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1021 	    ("%s: max_free not copied from right", __func__));		\
1022 	root->left = rlist;						\
1023 	rlist = root;							\
1024 	root = y;							\
1025 } while (0)
1026 
1027 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1028 	vm_size_t max_free;						\
1029 									\
1030 	/*								\
1031 	 * Infer root->left->max_free == root->max_free when		\
1032 	 * y->max_free < root->max_free || root->max_free == 0.		\
1033 	 * Otherwise, look left to find it.				\
1034 	 */								\
1035 	y = root->right;						\
1036 	max_free = root->max_free;					\
1037 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1038 	    ("%s: max_free invariant fails", __func__));		\
1039 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1040 		max_free = vm_map_entry_max_free_left(root, llist);	\
1041 	if (y != NULL && (test)) {					\
1042 		/* Rotate left and make y root. */			\
1043 		root->right = y->left;					\
1044 		y->left = root;						\
1045 		if (max_free < y->max_free)				\
1046 			root->max_free = max_free = MAX(max_free,	\
1047 			    vm_map_entry_max_free_right(root, y));	\
1048 		root = y;						\
1049 		y = root->right;					\
1050 	}								\
1051 	/* Copy left->max_free.  Put root on llist. */			\
1052 	root->max_free = max_free;					\
1053 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1054 	    ("%s: max_free not copied from left", __func__));		\
1055 	root->right = llist;						\
1056 	llist = root;							\
1057 	root = y;							\
1058 } while (0)
1059 
1060 /*
1061  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1062  * breaking off left and right subtrees of nodes less than, or greater than
1063  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1064  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1065  * linked by the right pointer and rlist linked by the left pointer in the
1066  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1067  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1068  * values in &map->header.
1069  */
1070 static vm_map_entry_t
vm_map_splay_split(vm_map_t map,vm_offset_t addr,vm_size_t length,vm_map_entry_t * out_llist,vm_map_entry_t * out_rlist)1071 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1072     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1073 {
1074 	vm_map_entry_t llist, rlist, root, y;
1075 
1076 	llist = rlist = &map->header;
1077 	root = map->root;
1078 	while (root != NULL && root->max_free >= length) {
1079 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1080 		    ("%s: root not within tree bounds", __func__));
1081 		if (addr < root->start) {
1082 			SPLAY_LEFT_STEP(root, y, rlist,
1083 			    y->max_free >= length && addr < y->start);
1084 		} else if (addr >= root->end) {
1085 			SPLAY_RIGHT_STEP(root, y, llist,
1086 			    y->max_free >= length && addr >= y->end);
1087 		} else
1088 			break;
1089 	}
1090 	*out_llist = llist;
1091 	*out_rlist = rlist;
1092 	return (root);
1093 }
1094 
1095 static void
vm_map_splay_findnext(vm_map_entry_t root,vm_map_entry_t * iolist)1096 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1097 {
1098 	vm_map_entry_t rlist, y;
1099 
1100 	root = root->right;
1101 	rlist = *iolist;
1102 	while (root != NULL)
1103 		SPLAY_LEFT_STEP(root, y, rlist, true);
1104 	*iolist = rlist;
1105 }
1106 
1107 static void
vm_map_splay_findprev(vm_map_entry_t root,vm_map_entry_t * iolist)1108 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1109 {
1110 	vm_map_entry_t llist, y;
1111 
1112 	root = root->left;
1113 	llist = *iolist;
1114 	while (root != NULL)
1115 		SPLAY_RIGHT_STEP(root, y, llist, true);
1116 	*iolist = llist;
1117 }
1118 
1119 static inline void
vm_map_entry_swap(vm_map_entry_t * a,vm_map_entry_t * b)1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1121 {
1122 	vm_map_entry_t tmp;
1123 
1124 	tmp = *b;
1125 	*b = *a;
1126 	*a = tmp;
1127 }
1128 
1129 /*
1130  * Walk back up the two spines, flip the pointers and set max_free.  The
1131  * subtrees of the root go at the bottom of llist and rlist.
1132  */
1133 static void
vm_map_splay_merge(vm_map_t map,vm_map_entry_t root,vm_map_entry_t llist,vm_map_entry_t rlist)1134 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1135     vm_map_entry_t llist, vm_map_entry_t rlist)
1136 {
1137 	vm_map_entry_t prev;
1138 	vm_size_t max_free_left, max_free_right;
1139 
1140 	max_free_left = vm_map_entry_max_free_left(root, llist);
1141 	if (llist != &map->header) {
1142 		prev = root->left;
1143 		do {
1144 			/*
1145 			 * The max_free values of the children of llist are in
1146 			 * llist->max_free and max_free_left.  Update with the
1147 			 * max value.
1148 			 */
1149 			llist->max_free = max_free_left =
1150 			    MAX(llist->max_free, max_free_left);
1151 			vm_map_entry_swap(&llist->right, &prev);
1152 			vm_map_entry_swap(&prev, &llist);
1153 		} while (llist != &map->header);
1154 		root->left = prev;
1155 	}
1156 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1157 	if (rlist != &map->header) {
1158 		prev = root->right;
1159 		do {
1160 			/*
1161 			 * The max_free values of the children of rlist are in
1162 			 * rlist->max_free and max_free_right.  Update with the
1163 			 * max value.
1164 			 */
1165 			rlist->max_free = max_free_right =
1166 			    MAX(rlist->max_free, max_free_right);
1167 			vm_map_entry_swap(&rlist->left, &prev);
1168 			vm_map_entry_swap(&prev, &rlist);
1169 		} while (rlist != &map->header);
1170 		root->right = prev;
1171 	}
1172 	root->max_free = MAX(max_free_left, max_free_right);
1173 	map->root = root;
1174 }
1175 
1176 /*
1177  *	vm_map_splay:
1178  *
1179  *	The Sleator and Tarjan top-down splay algorithm with the
1180  *	following variation.  Max_free must be computed bottom-up, so
1181  *	on the downward pass, maintain the left and right spines in
1182  *	reverse order.  Then, make a second pass up each side to fix
1183  *	the pointers and compute max_free.  The time bound is O(log n)
1184  *	amortized.
1185  *
1186  *	The new root is the vm_map_entry containing "addr", or else an
1187  *	adjacent entry (lower if possible) if addr is not in the tree.
1188  *
1189  *	The map must be locked, and leaves it so.
1190  *
1191  *	Returns: the new root.
1192  */
1193 static vm_map_entry_t
vm_map_splay(vm_map_t map,vm_offset_t addr)1194 vm_map_splay(vm_map_t map, vm_offset_t addr)
1195 {
1196 	vm_map_entry_t llist, rlist, root;
1197 
1198 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1199 	if (root != NULL) {
1200 		/* do nothing */
1201 	} else if (llist != &map->header) {
1202 		/*
1203 		 * Recover the greatest node in the left
1204 		 * subtree and make it the root.
1205 		 */
1206 		root = llist;
1207 		llist = root->right;
1208 		root->right = NULL;
1209 	} else if (rlist != &map->header) {
1210 		/*
1211 		 * Recover the least node in the right
1212 		 * subtree and make it the root.
1213 		 */
1214 		root = rlist;
1215 		rlist = root->left;
1216 		root->left = NULL;
1217 	} else {
1218 		/* There is no root. */
1219 		return (NULL);
1220 	}
1221 	vm_map_splay_merge(map, root, llist, rlist);
1222 	VM_MAP_ASSERT_CONSISTENT(map);
1223 	return (root);
1224 }
1225 
1226 /*
1227  *	vm_map_entry_{un,}link:
1228  *
1229  *	Insert/remove entries from maps.
1230  */
1231 static void
vm_map_entry_link(vm_map_t map,vm_map_entry_t entry)1232 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1233 {
1234 	vm_map_entry_t llist, rlist, root;
1235 
1236 	CTR3(KTR_VM,
1237 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1238 	    map->nentries, entry);
1239 	VM_MAP_ASSERT_LOCKED(map);
1240 	map->nentries++;
1241 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1242 	KASSERT(root == NULL,
1243 	    ("vm_map_entry_link: link object already mapped"));
1244 	entry->prev = llist;
1245 	entry->next = rlist;
1246 	llist->next = rlist->prev = entry;
1247 	entry->left = entry->right = NULL;
1248 	vm_map_splay_merge(map, entry, llist, rlist);
1249 	VM_MAP_ASSERT_CONSISTENT(map);
1250 }
1251 
1252 enum unlink_merge_type {
1253 	UNLINK_MERGE_PREV,
1254 	UNLINK_MERGE_NONE,
1255 	UNLINK_MERGE_NEXT
1256 };
1257 
1258 static void
vm_map_entry_unlink(vm_map_t map,vm_map_entry_t entry,enum unlink_merge_type op)1259 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1260     enum unlink_merge_type op)
1261 {
1262 	vm_map_entry_t llist, rlist, root, y;
1263 
1264 	VM_MAP_ASSERT_LOCKED(map);
1265 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1266 	KASSERT(root != NULL,
1267 	    ("vm_map_entry_unlink: unlink object not mapped"));
1268 
1269 	switch (op) {
1270 	case UNLINK_MERGE_PREV:
1271 		vm_map_splay_findprev(root, &llist);
1272 		llist->end = root->end;
1273 		y = root->right;
1274 		root = llist;
1275 		llist = root->right;
1276 		root->right = y;
1277 		break;
1278 	case UNLINK_MERGE_NEXT:
1279 		vm_map_splay_findnext(root, &rlist);
1280 		rlist->start = root->start;
1281 		rlist->offset = root->offset;
1282 		y = root->left;
1283 		root = rlist;
1284 		rlist = root->left;
1285 		root->left = y;
1286 		break;
1287 	case UNLINK_MERGE_NONE:
1288 		vm_map_splay_findprev(root, &llist);
1289 		vm_map_splay_findnext(root, &rlist);
1290 		if (llist != &map->header) {
1291 			root = llist;
1292 			llist = root->right;
1293 			root->right = NULL;
1294 		} else if (rlist != &map->header) {
1295 			root = rlist;
1296 			rlist = root->left;
1297 			root->left = NULL;
1298 		} else
1299 			root = NULL;
1300 		break;
1301 	}
1302 	y = entry->next;
1303 	y->prev = entry->prev;
1304 	y->prev->next = y;
1305 	if (root != NULL)
1306 		vm_map_splay_merge(map, root, llist, rlist);
1307 	else
1308 		map->root = NULL;
1309 	VM_MAP_ASSERT_CONSISTENT(map);
1310 	map->nentries--;
1311 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1312 	    map->nentries, entry);
1313 }
1314 
1315 /*
1316  *	vm_map_entry_resize_free:
1317  *
1318  *	Recompute the amount of free space following a modified vm_map_entry
1319  *	and propagate those values up the tree.  Call this function after
1320  *	resizing a map entry in-place by changing the end value, without a
1321  *	call to vm_map_entry_link() or _unlink().
1322  *
1323  *	The map must be locked, and leaves it so.
1324  */
1325 static void
vm_map_entry_resize_free(vm_map_t map,vm_map_entry_t entry)1326 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1327 {
1328 	vm_map_entry_t llist, rlist, root;
1329 
1330 	VM_MAP_ASSERT_LOCKED(map);
1331 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1332 	KASSERT(root != NULL,
1333 	    ("vm_map_entry_resize_free: resize_free object not mapped"));
1334 	vm_map_splay_findnext(root, &rlist);
1335 	root->right = NULL;
1336 	vm_map_splay_merge(map, root, llist, rlist);
1337 	VM_MAP_ASSERT_CONSISTENT(map);
1338 	CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map,
1339 	    map->nentries, entry);
1340 }
1341 
1342 /*
1343  *	vm_map_lookup_entry:	[ internal use only ]
1344  *
1345  *	Finds the map entry containing (or
1346  *	immediately preceding) the specified address
1347  *	in the given map; the entry is returned
1348  *	in the "entry" parameter.  The boolean
1349  *	result indicates whether the address is
1350  *	actually contained in the map.
1351  */
1352 boolean_t
vm_map_lookup_entry(vm_map_t map,vm_offset_t address,vm_map_entry_t * entry)1353 vm_map_lookup_entry(
1354 	vm_map_t map,
1355 	vm_offset_t address,
1356 	vm_map_entry_t *entry)	/* OUT */
1357 {
1358 	vm_map_entry_t cur, lbound;
1359 	boolean_t locked;
1360 
1361 	/*
1362 	 * If the map is empty, then the map entry immediately preceding
1363 	 * "address" is the map's header.
1364 	 */
1365 	cur = map->root;
1366 	if (cur == NULL) {
1367 		*entry = &map->header;
1368 		return (FALSE);
1369 	}
1370 	if (address >= cur->start && cur->end > address) {
1371 		*entry = cur;
1372 		return (TRUE);
1373 	}
1374 	if ((locked = vm_map_locked(map)) ||
1375 	    sx_try_upgrade(&map->lock)) {
1376 		/*
1377 		 * Splay requires a write lock on the map.  However, it only
1378 		 * restructures the binary search tree; it does not otherwise
1379 		 * change the map.  Thus, the map's timestamp need not change
1380 		 * on a temporary upgrade.
1381 		 */
1382 		cur = vm_map_splay(map, address);
1383 		if (!locked)
1384 			sx_downgrade(&map->lock);
1385 
1386 		/*
1387 		 * If "address" is contained within a map entry, the new root
1388 		 * is that map entry.  Otherwise, the new root is a map entry
1389 		 * immediately before or after "address".
1390 		 */
1391 		if (address < cur->start) {
1392 			*entry = &map->header;
1393 			return (FALSE);
1394 		}
1395 		*entry = cur;
1396 		return (address < cur->end);
1397 	}
1398 	/*
1399 	 * Since the map is only locked for read access, perform a
1400 	 * standard binary search tree lookup for "address".
1401 	 */
1402 	lbound = &map->header;
1403 	do {
1404 		if (address < cur->start) {
1405 			cur = cur->left;
1406 		} else if (cur->end <= address) {
1407 			lbound = cur;
1408 			cur = cur->right;
1409 		} else {
1410 			*entry = cur;
1411 			return (TRUE);
1412 		}
1413 	} while (cur != NULL);
1414 	*entry = lbound;
1415 	return (FALSE);
1416 }
1417 
1418 /*
1419  *	vm_map_insert:
1420  *
1421  *	Inserts the given whole VM object into the target
1422  *	map at the specified address range.  The object's
1423  *	size should match that of the address range.
1424  *
1425  *	Requires that the map be locked, and leaves it so.
1426  *
1427  *	If object is non-NULL, ref count must be bumped by caller
1428  *	prior to making call to account for the new entry.
1429  */
1430 int
vm_map_insert(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow)1431 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1432     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1433 {
1434 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1435 	struct ucred *cred;
1436 	vm_eflags_t protoeflags;
1437 	vm_inherit_t inheritance;
1438 
1439 	VM_MAP_ASSERT_LOCKED(map);
1440 	KASSERT(object != kernel_object ||
1441 	    (cow & MAP_COPY_ON_WRITE) == 0,
1442 	    ("vm_map_insert: kernel object and COW"));
1443 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1444 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1445 	KASSERT((prot & ~max) == 0,
1446 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1447 
1448 	/*
1449 	 * Check that the start and end points are not bogus.
1450 	 */
1451 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1452 	    start >= end)
1453 		return (KERN_INVALID_ADDRESS);
1454 
1455 	/*
1456 	 * Find the entry prior to the proposed starting address; if it's part
1457 	 * of an existing entry, this range is bogus.
1458 	 */
1459 	if (vm_map_lookup_entry(map, start, &temp_entry))
1460 		return (KERN_NO_SPACE);
1461 
1462 	prev_entry = temp_entry;
1463 
1464 	/*
1465 	 * Assert that the next entry doesn't overlap the end point.
1466 	 */
1467 	if (prev_entry->next->start < end)
1468 		return (KERN_NO_SPACE);
1469 
1470 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1471 	    max != VM_PROT_NONE))
1472 		return (KERN_INVALID_ARGUMENT);
1473 
1474 	protoeflags = 0;
1475 	if (cow & MAP_COPY_ON_WRITE)
1476 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1477 	if (cow & MAP_NOFAULT)
1478 		protoeflags |= MAP_ENTRY_NOFAULT;
1479 	if (cow & MAP_DISABLE_SYNCER)
1480 		protoeflags |= MAP_ENTRY_NOSYNC;
1481 	if (cow & MAP_DISABLE_COREDUMP)
1482 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1483 	if (cow & MAP_STACK_GROWS_DOWN)
1484 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1485 	if (cow & MAP_STACK_GROWS_UP)
1486 		protoeflags |= MAP_ENTRY_GROWS_UP;
1487 	if (cow & MAP_VN_WRITECOUNT)
1488 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1489 	if (cow & MAP_VN_EXEC)
1490 		protoeflags |= MAP_ENTRY_VN_EXEC;
1491 	if ((cow & MAP_CREATE_GUARD) != 0)
1492 		protoeflags |= MAP_ENTRY_GUARD;
1493 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1494 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1495 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1496 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1497 	if (cow & MAP_INHERIT_SHARE)
1498 		inheritance = VM_INHERIT_SHARE;
1499 	else
1500 		inheritance = VM_INHERIT_DEFAULT;
1501 
1502 	cred = NULL;
1503 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1504 		goto charged;
1505 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1506 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1507 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1508 			return (KERN_RESOURCE_SHORTAGE);
1509 		KASSERT(object == NULL ||
1510 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1511 		    object->cred == NULL,
1512 		    ("overcommit: vm_map_insert o %p", object));
1513 		cred = curthread->td_ucred;
1514 	}
1515 
1516 charged:
1517 	/* Expand the kernel pmap, if necessary. */
1518 	if (map == kernel_map && end > kernel_vm_end)
1519 		pmap_growkernel(end);
1520 	if (object != NULL) {
1521 		/*
1522 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1523 		 * is trivially proven to be the only mapping for any
1524 		 * of the object's pages.  (Object granularity
1525 		 * reference counting is insufficient to recognize
1526 		 * aliases with precision.)
1527 		 */
1528 		VM_OBJECT_WLOCK(object);
1529 		if (object->ref_count > 1 || object->shadow_count != 0)
1530 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1531 		VM_OBJECT_WUNLOCK(object);
1532 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1533 	    protoeflags &&
1534 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1535 	    MAP_VN_EXEC)) == 0 &&
1536 	    prev_entry->end == start && (prev_entry->cred == cred ||
1537 	    (prev_entry->object.vm_object != NULL &&
1538 	    prev_entry->object.vm_object->cred == cred)) &&
1539 	    vm_object_coalesce(prev_entry->object.vm_object,
1540 	    prev_entry->offset,
1541 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1542 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1543 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1544 		/*
1545 		 * We were able to extend the object.  Determine if we
1546 		 * can extend the previous map entry to include the
1547 		 * new range as well.
1548 		 */
1549 		if (prev_entry->inheritance == inheritance &&
1550 		    prev_entry->protection == prot &&
1551 		    prev_entry->max_protection == max &&
1552 		    prev_entry->wired_count == 0) {
1553 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1554 			    0, ("prev_entry %p has incoherent wiring",
1555 			    prev_entry));
1556 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1557 				map->size += end - prev_entry->end;
1558 			prev_entry->end = end;
1559 			vm_map_entry_resize_free(map, prev_entry);
1560 			vm_map_simplify_entry(map, prev_entry);
1561 			return (KERN_SUCCESS);
1562 		}
1563 
1564 		/*
1565 		 * If we can extend the object but cannot extend the
1566 		 * map entry, we have to create a new map entry.  We
1567 		 * must bump the ref count on the extended object to
1568 		 * account for it.  object may be NULL.
1569 		 */
1570 		object = prev_entry->object.vm_object;
1571 		offset = prev_entry->offset +
1572 		    (prev_entry->end - prev_entry->start);
1573 		vm_object_reference(object);
1574 		if (cred != NULL && object != NULL && object->cred != NULL &&
1575 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1576 			/* Object already accounts for this uid. */
1577 			cred = NULL;
1578 		}
1579 	}
1580 	if (cred != NULL)
1581 		crhold(cred);
1582 
1583 	/*
1584 	 * Create a new entry
1585 	 */
1586 	new_entry = vm_map_entry_create(map);
1587 	new_entry->start = start;
1588 	new_entry->end = end;
1589 	new_entry->cred = NULL;
1590 
1591 	new_entry->eflags = protoeflags;
1592 	new_entry->object.vm_object = object;
1593 	new_entry->offset = offset;
1594 
1595 	new_entry->inheritance = inheritance;
1596 	new_entry->protection = prot;
1597 	new_entry->max_protection = max;
1598 	new_entry->wired_count = 0;
1599 	new_entry->wiring_thread = NULL;
1600 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1601 	new_entry->next_read = start;
1602 
1603 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1604 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1605 	new_entry->cred = cred;
1606 
1607 	/*
1608 	 * Insert the new entry into the list
1609 	 */
1610 	vm_map_entry_link(map, new_entry);
1611 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1612 		map->size += new_entry->end - new_entry->start;
1613 
1614 	/*
1615 	 * Try to coalesce the new entry with both the previous and next
1616 	 * entries in the list.  Previously, we only attempted to coalesce
1617 	 * with the previous entry when object is NULL.  Here, we handle the
1618 	 * other cases, which are less common.
1619 	 */
1620 	vm_map_simplify_entry(map, new_entry);
1621 
1622 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1623 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1624 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1625 	}
1626 
1627 	return (KERN_SUCCESS);
1628 }
1629 
1630 /*
1631  *	vm_map_findspace:
1632  *
1633  *	Find the first fit (lowest VM address) for "length" free bytes
1634  *	beginning at address >= start in the given map.
1635  *
1636  *	In a vm_map_entry, "max_free" is the maximum amount of
1637  *	contiguous free space between an entry in its subtree and a
1638  *	neighbor of that entry.  This allows finding a free region in
1639  *	one path down the tree, so O(log n) amortized with splay
1640  *	trees.
1641  *
1642  *	The map must be locked, and leaves it so.
1643  *
1644  *	Returns: starting address if sufficient space,
1645  *		 vm_map_max(map)-length+1 if insufficient space.
1646  */
1647 vm_offset_t
vm_map_findspace(vm_map_t map,vm_offset_t start,vm_size_t length)1648 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1649 {
1650 	vm_map_entry_t llist, rlist, root, y;
1651 	vm_size_t left_length;
1652 	vm_offset_t gap_end;
1653 
1654 	/*
1655 	 * Request must fit within min/max VM address and must avoid
1656 	 * address wrap.
1657 	 */
1658 	start = MAX(start, vm_map_min(map));
1659 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1660 		return (vm_map_max(map) - length + 1);
1661 
1662 	/* Empty tree means wide open address space. */
1663 	if (map->root == NULL)
1664 		return (start);
1665 
1666 	/*
1667 	 * After splay_split, if start is within an entry, push it to the start
1668 	 * of the following gap.  If rlist is at the end of the gap containing
1669 	 * start, save the end of that gap in gap_end to see if the gap is big
1670 	 * enough; otherwise set gap_end to start skip gap-checking and move
1671 	 * directly to a search of the right subtree.
1672 	 */
1673 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1674 	gap_end = rlist->start;
1675 	if (root != NULL) {
1676 		start = root->end;
1677 		if (root->right != NULL)
1678 			gap_end = start;
1679 	} else if (rlist != &map->header) {
1680 		root = rlist;
1681 		rlist = root->left;
1682 		root->left = NULL;
1683 	} else {
1684 		root = llist;
1685 		llist = root->right;
1686 		root->right = NULL;
1687 	}
1688 	vm_map_splay_merge(map, root, llist, rlist);
1689 	VM_MAP_ASSERT_CONSISTENT(map);
1690 	if (length <= gap_end - start)
1691 		return (start);
1692 
1693 	/* With max_free, can immediately tell if no solution. */
1694 	if (root->right == NULL || length > root->right->max_free)
1695 		return (vm_map_max(map) - length + 1);
1696 
1697 	/*
1698 	 * Splay for the least large-enough gap in the right subtree.
1699 	 */
1700 	llist = rlist = &map->header;
1701 	for (left_length = 0;;
1702 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1703 		if (length <= left_length)
1704 			SPLAY_LEFT_STEP(root, y, rlist,
1705 			    length <= vm_map_entry_max_free_left(y, llist));
1706 		else
1707 			SPLAY_RIGHT_STEP(root, y, llist,
1708 			    length > vm_map_entry_max_free_left(y, root));
1709 		if (root == NULL)
1710 			break;
1711 	}
1712 	root = llist;
1713 	llist = root->right;
1714 	root->right = NULL;
1715 	if (rlist != &map->header) {
1716 		y = rlist;
1717 		rlist = y->left;
1718 		y->left = NULL;
1719 		vm_map_splay_merge(map, y, &map->header, rlist);
1720 		y->max_free = MAX(
1721 		    vm_map_entry_max_free_left(y, root),
1722 		    vm_map_entry_max_free_right(y, &map->header));
1723 		root->right = y;
1724 	}
1725 	vm_map_splay_merge(map, root, llist, &map->header);
1726 	VM_MAP_ASSERT_CONSISTENT(map);
1727 	return (root->end);
1728 }
1729 
1730 int
vm_map_fixed(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_size_t length,vm_prot_t prot,vm_prot_t max,int cow)1731 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1732     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1733     vm_prot_t max, int cow)
1734 {
1735 	vm_offset_t end;
1736 	int result;
1737 
1738 	end = start + length;
1739 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1740 	    object == NULL,
1741 	    ("vm_map_fixed: non-NULL backing object for stack"));
1742 	vm_map_lock(map);
1743 	VM_MAP_RANGE_CHECK(map, start, end);
1744 	if ((cow & MAP_CHECK_EXCL) == 0)
1745 		vm_map_delete(map, start, end);
1746 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1747 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1748 		    prot, max, cow);
1749 	} else {
1750 		result = vm_map_insert(map, object, offset, start, end,
1751 		    prot, max, cow);
1752 	}
1753 	vm_map_unlock(map);
1754 	return (result);
1755 }
1756 
1757 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1758 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1759 
1760 static int cluster_anon = 1;
1761 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1762     &cluster_anon, 0,
1763     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1764 
1765 static bool
clustering_anon_allowed(vm_offset_t addr)1766 clustering_anon_allowed(vm_offset_t addr)
1767 {
1768 
1769 	switch (cluster_anon) {
1770 	case 0:
1771 		return (false);
1772 	case 1:
1773 		return (addr == 0);
1774 	case 2:
1775 	default:
1776 		return (true);
1777 	}
1778 }
1779 
1780 static long aslr_restarts;
1781 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1782     &aslr_restarts, 0,
1783     "Number of aslr failures");
1784 
1785 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1786 
1787 /*
1788  * Searches for the specified amount of free space in the given map with the
1789  * specified alignment.  Performs an address-ordered, first-fit search from
1790  * the given address "*addr", with an optional upper bound "max_addr".  If the
1791  * parameter "alignment" is zero, then the alignment is computed from the
1792  * given (object, offset) pair so as to enable the greatest possible use of
1793  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1794  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1795  *
1796  * The map must be locked.  Initially, there must be at least "length" bytes
1797  * of free space at the given address.
1798  */
1799 static int
vm_map_alignspace(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)1800 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1801     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1802     vm_offset_t alignment)
1803 {
1804 	vm_offset_t aligned_addr, free_addr;
1805 
1806 	VM_MAP_ASSERT_LOCKED(map);
1807 	free_addr = *addr;
1808 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1809 	    ("caller failed to provide space %#jx at address %p",
1810 	     (uintmax_t)length, (void *)free_addr));
1811 	for (;;) {
1812 		/*
1813 		 * At the start of every iteration, the free space at address
1814 		 * "*addr" is at least "length" bytes.
1815 		 */
1816 		if (alignment == 0)
1817 			pmap_align_superpage(object, offset, addr, length);
1818 		else if ((*addr & (alignment - 1)) != 0) {
1819 			*addr &= ~(alignment - 1);
1820 			*addr += alignment;
1821 		}
1822 		aligned_addr = *addr;
1823 		if (aligned_addr == free_addr) {
1824 			/*
1825 			 * Alignment did not change "*addr", so "*addr" must
1826 			 * still provide sufficient free space.
1827 			 */
1828 			return (KERN_SUCCESS);
1829 		}
1830 
1831 		/*
1832 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1833 		 * be a valid address, in which case vm_map_findspace() cannot
1834 		 * be relied upon to fail.
1835 		 */
1836 		if (aligned_addr < free_addr)
1837 			return (KERN_NO_SPACE);
1838 		*addr = vm_map_findspace(map, aligned_addr, length);
1839 		if (*addr + length > vm_map_max(map) ||
1840 		    (max_addr != 0 && *addr + length > max_addr))
1841 			return (KERN_NO_SPACE);
1842 		free_addr = *addr;
1843 		if (free_addr == aligned_addr) {
1844 			/*
1845 			 * If a successful call to vm_map_findspace() did not
1846 			 * change "*addr", then "*addr" must still be aligned
1847 			 * and provide sufficient free space.
1848 			 */
1849 			return (KERN_SUCCESS);
1850 		}
1851 	}
1852 }
1853 
1854 /*
1855  *	vm_map_find finds an unallocated region in the target address
1856  *	map with the given length.  The search is defined to be
1857  *	first-fit from the specified address; the region found is
1858  *	returned in the same parameter.
1859  *
1860  *	If object is non-NULL, ref count must be bumped by caller
1861  *	prior to making call to account for the new entry.
1862  */
1863 int
vm_map_find(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)1864 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1865 	    vm_offset_t *addr,	/* IN/OUT */
1866 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1867 	    vm_prot_t prot, vm_prot_t max, int cow)
1868 {
1869 	vm_offset_t alignment, curr_min_addr, min_addr;
1870 	int gap, pidx, rv, try;
1871 	bool cluster, en_aslr, update_anon;
1872 
1873 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1874 	    object == NULL,
1875 	    ("vm_map_find: non-NULL backing object for stack"));
1876 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1877 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1878 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1879 	    (object->flags & OBJ_COLORED) == 0))
1880 		find_space = VMFS_ANY_SPACE;
1881 	if (find_space >> 8 != 0) {
1882 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1883 		alignment = (vm_offset_t)1 << (find_space >> 8);
1884 	} else
1885 		alignment = 0;
1886 	en_aslr = (map->flags & MAP_ASLR) != 0;
1887 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1888 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1889 	    find_space != VMFS_NO_SPACE && object == NULL &&
1890 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1891 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1892 	curr_min_addr = min_addr = *addr;
1893 	if (en_aslr && min_addr == 0 && !cluster &&
1894 	    find_space != VMFS_NO_SPACE &&
1895 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1896 		curr_min_addr = min_addr = vm_map_min(map);
1897 	try = 0;
1898 	vm_map_lock(map);
1899 	if (cluster) {
1900 		curr_min_addr = map->anon_loc;
1901 		if (curr_min_addr == 0)
1902 			cluster = false;
1903 	}
1904 	if (find_space != VMFS_NO_SPACE) {
1905 		KASSERT(find_space == VMFS_ANY_SPACE ||
1906 		    find_space == VMFS_OPTIMAL_SPACE ||
1907 		    find_space == VMFS_SUPER_SPACE ||
1908 		    alignment != 0, ("unexpected VMFS flag"));
1909 again:
1910 		/*
1911 		 * When creating an anonymous mapping, try clustering
1912 		 * with an existing anonymous mapping first.
1913 		 *
1914 		 * We make up to two attempts to find address space
1915 		 * for a given find_space value. The first attempt may
1916 		 * apply randomization or may cluster with an existing
1917 		 * anonymous mapping. If this first attempt fails,
1918 		 * perform a first-fit search of the available address
1919 		 * space.
1920 		 *
1921 		 * If all tries failed, and find_space is
1922 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1923 		 * Again enable clustering and randomization.
1924 		 */
1925 		try++;
1926 		MPASS(try <= 2);
1927 
1928 		if (try == 2) {
1929 			/*
1930 			 * Second try: we failed either to find a
1931 			 * suitable region for randomizing the
1932 			 * allocation, or to cluster with an existing
1933 			 * mapping.  Retry with free run.
1934 			 */
1935 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1936 			    vm_map_min(map) : min_addr;
1937 			atomic_add_long(&aslr_restarts, 1);
1938 		}
1939 
1940 		if (try == 1 && en_aslr && !cluster) {
1941 			/*
1942 			 * Find space for allocation, including
1943 			 * gap needed for later randomization.
1944 			 */
1945 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1946 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1947 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1948 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1949 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1950 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1951 			*addr = vm_map_findspace(map, curr_min_addr,
1952 			    length + gap * pagesizes[pidx]);
1953 			if (*addr + length + gap * pagesizes[pidx] >
1954 			    vm_map_max(map))
1955 				goto again;
1956 			/* And randomize the start address. */
1957 			*addr += (arc4random() % gap) * pagesizes[pidx];
1958 			if (max_addr != 0 && *addr + length > max_addr)
1959 				goto again;
1960 		} else {
1961 			*addr = vm_map_findspace(map, curr_min_addr, length);
1962 			if (*addr + length > vm_map_max(map) ||
1963 			    (max_addr != 0 && *addr + length > max_addr)) {
1964 				if (cluster) {
1965 					cluster = false;
1966 					MPASS(try == 1);
1967 					goto again;
1968 				}
1969 				rv = KERN_NO_SPACE;
1970 				goto done;
1971 			}
1972 		}
1973 
1974 		if (find_space != VMFS_ANY_SPACE &&
1975 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1976 		    max_addr, alignment)) != KERN_SUCCESS) {
1977 			if (find_space == VMFS_OPTIMAL_SPACE) {
1978 				find_space = VMFS_ANY_SPACE;
1979 				curr_min_addr = min_addr;
1980 				cluster = update_anon;
1981 				try = 0;
1982 				goto again;
1983 			}
1984 			goto done;
1985 		}
1986 	} else if ((cow & MAP_REMAP) != 0) {
1987 		if (*addr < vm_map_min(map) ||
1988 		    *addr + length > vm_map_max(map) ||
1989 		    *addr + length <= length) {
1990 			rv = KERN_INVALID_ADDRESS;
1991 			goto done;
1992 		}
1993 		vm_map_delete(map, *addr, *addr + length);
1994 	}
1995 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1996 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1997 		    max, cow);
1998 	} else {
1999 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2000 		    prot, max, cow);
2001 	}
2002 	if (rv == KERN_SUCCESS && update_anon)
2003 		map->anon_loc = *addr + length;
2004 done:
2005 	vm_map_unlock(map);
2006 	return (rv);
2007 }
2008 
2009 /*
2010  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2011  *	additional parameter (min_addr) and treats the given address
2012  *	(*addr) differently.  Specifically, it treats *addr as a hint
2013  *	and not as the minimum address where the mapping is created.
2014  *
2015  *	This function works in two phases.  First, it tries to
2016  *	allocate above the hint.  If that fails and the hint is
2017  *	greater than min_addr, it performs a second pass, replacing
2018  *	the hint with min_addr as the minimum address for the
2019  *	allocation.
2020  */
2021 int
vm_map_find_min(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t min_addr,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2022 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2023     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2024     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2025     int cow)
2026 {
2027 	vm_offset_t hint;
2028 	int rv;
2029 
2030 	hint = *addr;
2031 	for (;;) {
2032 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2033 		    find_space, prot, max, cow);
2034 		if (rv == KERN_SUCCESS || min_addr >= hint)
2035 			return (rv);
2036 		*addr = hint = min_addr;
2037 	}
2038 }
2039 
2040 /*
2041  * A map entry with any of the following flags set must not be merged with
2042  * another entry.
2043  */
2044 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2045 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2046 
2047 static bool
vm_map_mergeable_neighbors(vm_map_entry_t prev,vm_map_entry_t entry)2048 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2049 {
2050 
2051 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2052 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2053 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2054 	    prev, entry));
2055 	return (prev->end == entry->start &&
2056 	    prev->object.vm_object == entry->object.vm_object &&
2057 	    (prev->object.vm_object == NULL ||
2058 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2059 	    prev->eflags == entry->eflags &&
2060 	    prev->protection == entry->protection &&
2061 	    prev->max_protection == entry->max_protection &&
2062 	    prev->inheritance == entry->inheritance &&
2063 	    prev->wired_count == entry->wired_count &&
2064 	    prev->cred == entry->cred);
2065 }
2066 
2067 static void
vm_map_merged_neighbor_dispose(vm_map_t map,vm_map_entry_t entry)2068 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2069 {
2070 
2071 	/*
2072 	 * If the backing object is a vnode object, vm_object_deallocate()
2073 	 * calls vrele().  However, vrele() does not lock the vnode because
2074 	 * the vnode has additional references.  Thus, the map lock can be
2075 	 * kept without causing a lock-order reversal with the vnode lock.
2076 	 *
2077 	 * Since we count the number of virtual page mappings in
2078 	 * object->un_pager.vnp.writemappings, the writemappings value
2079 	 * should not be adjusted when the entry is disposed of.
2080 	 */
2081 	if (entry->object.vm_object != NULL)
2082 		vm_object_deallocate(entry->object.vm_object);
2083 	if (entry->cred != NULL)
2084 		crfree(entry->cred);
2085 	vm_map_entry_dispose(map, entry);
2086 }
2087 
2088 /*
2089  *	vm_map_simplify_entry:
2090  *
2091  *	Simplify the given map entry by merging with either neighbor.  This
2092  *	routine also has the ability to merge with both neighbors.
2093  *
2094  *	The map must be locked.
2095  *
2096  *	This routine guarantees that the passed entry remains valid (though
2097  *	possibly extended).  When merging, this routine may delete one or
2098  *	both neighbors.
2099  */
2100 void
vm_map_simplify_entry(vm_map_t map,vm_map_entry_t entry)2101 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2102 {
2103 	vm_map_entry_t next, prev;
2104 
2105 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2106 		return;
2107 	prev = entry->prev;
2108 	if (vm_map_mergeable_neighbors(prev, entry)) {
2109 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2110 		vm_map_merged_neighbor_dispose(map, prev);
2111 	}
2112 	next = entry->next;
2113 	if (vm_map_mergeable_neighbors(entry, next)) {
2114 		vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2115 		vm_map_merged_neighbor_dispose(map, next);
2116 	}
2117 }
2118 
2119 /*
2120  *	vm_map_clip_start:	[ internal use only ]
2121  *
2122  *	Asserts that the given entry begins at or after
2123  *	the specified address; if necessary,
2124  *	it splits the entry into two.
2125  */
2126 #define vm_map_clip_start(map, entry, startaddr) \
2127 { \
2128 	if (startaddr > entry->start) \
2129 		_vm_map_clip_start(map, entry, startaddr); \
2130 }
2131 
2132 /*
2133  *	This routine is called only when it is known that
2134  *	the entry must be split.
2135  */
2136 static void
_vm_map_clip_start(vm_map_t map,vm_map_entry_t entry,vm_offset_t start)2137 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2138 {
2139 	vm_map_entry_t new_entry;
2140 
2141 	VM_MAP_ASSERT_LOCKED(map);
2142 	KASSERT(entry->end > start && entry->start < start,
2143 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2144 
2145 	/*
2146 	 * Split off the front portion -- note that we must insert the new
2147 	 * entry BEFORE this one, so that this entry has the specified
2148 	 * starting address.
2149 	 */
2150 	vm_map_simplify_entry(map, entry);
2151 
2152 	/*
2153 	 * If there is no object backing this entry, we might as well create
2154 	 * one now.  If we defer it, an object can get created after the map
2155 	 * is clipped, and individual objects will be created for the split-up
2156 	 * map.  This is a bit of a hack, but is also about the best place to
2157 	 * put this improvement.
2158 	 */
2159 	if (entry->object.vm_object == NULL && !map->system_map &&
2160 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2161 		vm_object_t object;
2162 		object = vm_object_allocate(OBJT_DEFAULT,
2163 				atop(entry->end - entry->start));
2164 		entry->object.vm_object = object;
2165 		entry->offset = 0;
2166 		if (entry->cred != NULL) {
2167 			object->cred = entry->cred;
2168 			object->charge = entry->end - entry->start;
2169 			entry->cred = NULL;
2170 		}
2171 	} else if (entry->object.vm_object != NULL &&
2172 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2173 		   entry->cred != NULL) {
2174 		VM_OBJECT_WLOCK(entry->object.vm_object);
2175 		KASSERT(entry->object.vm_object->cred == NULL,
2176 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2177 		entry->object.vm_object->cred = entry->cred;
2178 		entry->object.vm_object->charge = entry->end - entry->start;
2179 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2180 		entry->cred = NULL;
2181 	}
2182 
2183 	new_entry = vm_map_entry_create(map);
2184 	*new_entry = *entry;
2185 
2186 	new_entry->end = start;
2187 	entry->offset += (start - entry->start);
2188 	entry->start = start;
2189 	if (new_entry->cred != NULL)
2190 		crhold(entry->cred);
2191 
2192 	vm_map_entry_link(map, new_entry);
2193 
2194 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2195 		vm_object_reference(new_entry->object.vm_object);
2196 		vm_map_entry_set_vnode_text(new_entry, true);
2197 		/*
2198 		 * The object->un_pager.vnp.writemappings for the
2199 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2200 		 * kept as is here.  The virtual pages are
2201 		 * re-distributed among the clipped entries, so the sum is
2202 		 * left the same.
2203 		 */
2204 	}
2205 }
2206 
2207 /*
2208  *	vm_map_clip_end:	[ internal use only ]
2209  *
2210  *	Asserts that the given entry ends at or before
2211  *	the specified address; if necessary,
2212  *	it splits the entry into two.
2213  */
2214 #define vm_map_clip_end(map, entry, endaddr) \
2215 { \
2216 	if ((endaddr) < (entry->end)) \
2217 		_vm_map_clip_end((map), (entry), (endaddr)); \
2218 }
2219 
2220 /*
2221  *	This routine is called only when it is known that
2222  *	the entry must be split.
2223  */
2224 static void
_vm_map_clip_end(vm_map_t map,vm_map_entry_t entry,vm_offset_t end)2225 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2226 {
2227 	vm_map_entry_t new_entry;
2228 
2229 	VM_MAP_ASSERT_LOCKED(map);
2230 	KASSERT(entry->start < end && entry->end > end,
2231 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2232 
2233 	/*
2234 	 * If there is no object backing this entry, we might as well create
2235 	 * one now.  If we defer it, an object can get created after the map
2236 	 * is clipped, and individual objects will be created for the split-up
2237 	 * map.  This is a bit of a hack, but is also about the best place to
2238 	 * put this improvement.
2239 	 */
2240 	if (entry->object.vm_object == NULL && !map->system_map &&
2241 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2242 		vm_object_t object;
2243 		object = vm_object_allocate(OBJT_DEFAULT,
2244 				atop(entry->end - entry->start));
2245 		entry->object.vm_object = object;
2246 		entry->offset = 0;
2247 		if (entry->cred != NULL) {
2248 			object->cred = entry->cred;
2249 			object->charge = entry->end - entry->start;
2250 			entry->cred = NULL;
2251 		}
2252 	} else if (entry->object.vm_object != NULL &&
2253 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2254 		   entry->cred != NULL) {
2255 		VM_OBJECT_WLOCK(entry->object.vm_object);
2256 		KASSERT(entry->object.vm_object->cred == NULL,
2257 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2258 		entry->object.vm_object->cred = entry->cred;
2259 		entry->object.vm_object->charge = entry->end - entry->start;
2260 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2261 		entry->cred = NULL;
2262 	}
2263 
2264 	/*
2265 	 * Create a new entry and insert it AFTER the specified entry
2266 	 */
2267 	new_entry = vm_map_entry_create(map);
2268 	*new_entry = *entry;
2269 
2270 	new_entry->start = entry->end = end;
2271 	new_entry->offset += (end - entry->start);
2272 	if (new_entry->cred != NULL)
2273 		crhold(entry->cred);
2274 
2275 	vm_map_entry_link(map, new_entry);
2276 
2277 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2278 		vm_object_reference(new_entry->object.vm_object);
2279 		vm_map_entry_set_vnode_text(new_entry, true);
2280 	}
2281 }
2282 
2283 /*
2284  *	vm_map_submap:		[ kernel use only ]
2285  *
2286  *	Mark the given range as handled by a subordinate map.
2287  *
2288  *	This range must have been created with vm_map_find,
2289  *	and no other operations may have been performed on this
2290  *	range prior to calling vm_map_submap.
2291  *
2292  *	Only a limited number of operations can be performed
2293  *	within this rage after calling vm_map_submap:
2294  *		vm_fault
2295  *	[Don't try vm_map_copy!]
2296  *
2297  *	To remove a submapping, one must first remove the
2298  *	range from the superior map, and then destroy the
2299  *	submap (if desired).  [Better yet, don't try it.]
2300  */
2301 int
vm_map_submap(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_map_t submap)2302 vm_map_submap(
2303 	vm_map_t map,
2304 	vm_offset_t start,
2305 	vm_offset_t end,
2306 	vm_map_t submap)
2307 {
2308 	vm_map_entry_t entry;
2309 	int result;
2310 
2311 	result = KERN_INVALID_ARGUMENT;
2312 
2313 	vm_map_lock(submap);
2314 	submap->flags |= MAP_IS_SUB_MAP;
2315 	vm_map_unlock(submap);
2316 
2317 	vm_map_lock(map);
2318 
2319 	VM_MAP_RANGE_CHECK(map, start, end);
2320 
2321 	if (vm_map_lookup_entry(map, start, &entry)) {
2322 		vm_map_clip_start(map, entry, start);
2323 	} else
2324 		entry = entry->next;
2325 
2326 	vm_map_clip_end(map, entry, end);
2327 
2328 	if ((entry->start == start) && (entry->end == end) &&
2329 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2330 	    (entry->object.vm_object == NULL)) {
2331 		entry->object.sub_map = submap;
2332 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2333 		result = KERN_SUCCESS;
2334 	}
2335 	vm_map_unlock(map);
2336 
2337 	if (result != KERN_SUCCESS) {
2338 		vm_map_lock(submap);
2339 		submap->flags &= ~MAP_IS_SUB_MAP;
2340 		vm_map_unlock(submap);
2341 	}
2342 	return (result);
2343 }
2344 
2345 /*
2346  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2347  */
2348 #define	MAX_INIT_PT	96
2349 
2350 /*
2351  *	vm_map_pmap_enter:
2352  *
2353  *	Preload the specified map's pmap with mappings to the specified
2354  *	object's memory-resident pages.  No further physical pages are
2355  *	allocated, and no further virtual pages are retrieved from secondary
2356  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2357  *	limited number of page mappings are created at the low-end of the
2358  *	specified address range.  (For this purpose, a superpage mapping
2359  *	counts as one page mapping.)  Otherwise, all resident pages within
2360  *	the specified address range are mapped.
2361  */
2362 static void
vm_map_pmap_enter(vm_map_t map,vm_offset_t addr,vm_prot_t prot,vm_object_t object,vm_pindex_t pindex,vm_size_t size,int flags)2363 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2364     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2365 {
2366 	vm_offset_t start;
2367 	vm_page_t p, p_start;
2368 	vm_pindex_t mask, psize, threshold, tmpidx;
2369 
2370 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2371 		return;
2372 	VM_OBJECT_RLOCK(object);
2373 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2374 		VM_OBJECT_RUNLOCK(object);
2375 		VM_OBJECT_WLOCK(object);
2376 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2377 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2378 			    size);
2379 			VM_OBJECT_WUNLOCK(object);
2380 			return;
2381 		}
2382 		VM_OBJECT_LOCK_DOWNGRADE(object);
2383 	}
2384 
2385 	psize = atop(size);
2386 	if (psize + pindex > object->size) {
2387 		if (object->size < pindex) {
2388 			VM_OBJECT_RUNLOCK(object);
2389 			return;
2390 		}
2391 		psize = object->size - pindex;
2392 	}
2393 
2394 	start = 0;
2395 	p_start = NULL;
2396 	threshold = MAX_INIT_PT;
2397 
2398 	p = vm_page_find_least(object, pindex);
2399 	/*
2400 	 * Assert: the variable p is either (1) the page with the
2401 	 * least pindex greater than or equal to the parameter pindex
2402 	 * or (2) NULL.
2403 	 */
2404 	for (;
2405 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2406 	     p = TAILQ_NEXT(p, listq)) {
2407 		/*
2408 		 * don't allow an madvise to blow away our really
2409 		 * free pages allocating pv entries.
2410 		 */
2411 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2412 		    vm_page_count_severe()) ||
2413 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2414 		    tmpidx >= threshold)) {
2415 			psize = tmpidx;
2416 			break;
2417 		}
2418 		if (p->valid == VM_PAGE_BITS_ALL) {
2419 			if (p_start == NULL) {
2420 				start = addr + ptoa(tmpidx);
2421 				p_start = p;
2422 			}
2423 			/* Jump ahead if a superpage mapping is possible. */
2424 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2425 			    (pagesizes[p->psind] - 1)) == 0) {
2426 				mask = atop(pagesizes[p->psind]) - 1;
2427 				if (tmpidx + mask < psize &&
2428 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2429 					p += mask;
2430 					threshold += mask;
2431 				}
2432 			}
2433 		} else if (p_start != NULL) {
2434 			pmap_enter_object(map->pmap, start, addr +
2435 			    ptoa(tmpidx), p_start, prot);
2436 			p_start = NULL;
2437 		}
2438 	}
2439 	if (p_start != NULL)
2440 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2441 		    p_start, prot);
2442 	VM_OBJECT_RUNLOCK(object);
2443 }
2444 
2445 /*
2446  *	vm_map_protect:
2447  *
2448  *	Sets the protection of the specified address
2449  *	region in the target map.  If "set_max" is
2450  *	specified, the maximum protection is to be set;
2451  *	otherwise, only the current protection is affected.
2452  */
2453 int
vm_map_protect(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t new_prot,boolean_t set_max)2454 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2455 	       vm_prot_t new_prot, boolean_t set_max)
2456 {
2457 	vm_map_entry_t current, entry, in_tran;
2458 	vm_object_t obj;
2459 	struct ucred *cred;
2460 	vm_prot_t old_prot;
2461 
2462 	if (start == end)
2463 		return (KERN_SUCCESS);
2464 
2465 again:
2466 	in_tran = NULL;
2467 	vm_map_lock(map);
2468 
2469 	/*
2470 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2471 	 * need to fault pages into the map and will drop the map lock while
2472 	 * doing so, and the VM object may end up in an inconsistent state if we
2473 	 * update the protection on the map entry in between faults.
2474 	 */
2475 	vm_map_wait_busy(map);
2476 
2477 	VM_MAP_RANGE_CHECK(map, start, end);
2478 
2479 	if (vm_map_lookup_entry(map, start, &entry)) {
2480 		vm_map_clip_start(map, entry, start);
2481 	} else {
2482 		entry = entry->next;
2483 	}
2484 
2485 	/*
2486 	 * Make a first pass to check for protection violations.
2487 	 */
2488 	for (current = entry; current->start < end; current = current->next) {
2489 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2490 			continue;
2491 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2492 			vm_map_unlock(map);
2493 			return (KERN_INVALID_ARGUMENT);
2494 		}
2495 		if ((new_prot & current->max_protection) != new_prot) {
2496 			vm_map_unlock(map);
2497 			return (KERN_PROTECTION_FAILURE);
2498 		}
2499 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2500 			in_tran = entry;
2501 	}
2502 
2503 	/*
2504 	 * Postpone the operation until all in transition map entries
2505 	 * are stabilized.  In-transition entry might already have its
2506 	 * pages wired and wired_count incremented, but
2507 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2508 	 * threads because the map lock is dropped.  In this case we
2509 	 * would miss our call to vm_fault_copy_entry().
2510 	 */
2511 	if (in_tran != NULL) {
2512 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2513 		vm_map_unlock_and_wait(map, 0);
2514 		goto again;
2515 	}
2516 
2517 	/*
2518 	 * Do an accounting pass for private read-only mappings that
2519 	 * now will do cow due to allowed write (e.g. debugger sets
2520 	 * breakpoint on text segment)
2521 	 */
2522 	for (current = entry; current->start < end; current = current->next) {
2523 
2524 		vm_map_clip_end(map, current, end);
2525 
2526 		if (set_max ||
2527 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2528 		    ENTRY_CHARGED(current) ||
2529 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2530 			continue;
2531 		}
2532 
2533 		cred = curthread->td_ucred;
2534 		obj = current->object.vm_object;
2535 
2536 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2537 			if (!swap_reserve(current->end - current->start)) {
2538 				vm_map_unlock(map);
2539 				return (KERN_RESOURCE_SHORTAGE);
2540 			}
2541 			crhold(cred);
2542 			current->cred = cred;
2543 			continue;
2544 		}
2545 
2546 		VM_OBJECT_WLOCK(obj);
2547 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2548 			VM_OBJECT_WUNLOCK(obj);
2549 			continue;
2550 		}
2551 
2552 		/*
2553 		 * Charge for the whole object allocation now, since
2554 		 * we cannot distinguish between non-charged and
2555 		 * charged clipped mapping of the same object later.
2556 		 */
2557 		KASSERT(obj->charge == 0,
2558 		    ("vm_map_protect: object %p overcharged (entry %p)",
2559 		    obj, current));
2560 		if (!swap_reserve(ptoa(obj->size))) {
2561 			VM_OBJECT_WUNLOCK(obj);
2562 			vm_map_unlock(map);
2563 			return (KERN_RESOURCE_SHORTAGE);
2564 		}
2565 
2566 		crhold(cred);
2567 		obj->cred = cred;
2568 		obj->charge = ptoa(obj->size);
2569 		VM_OBJECT_WUNLOCK(obj);
2570 	}
2571 
2572 	/*
2573 	 * Go back and fix up protections. [Note that clipping is not
2574 	 * necessary the second time.]
2575 	 */
2576 	for (current = entry; current->start < end; current = current->next) {
2577 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2578 			continue;
2579 
2580 		old_prot = current->protection;
2581 
2582 		if (set_max)
2583 			current->protection =
2584 			    (current->max_protection = new_prot) &
2585 			    old_prot;
2586 		else
2587 			current->protection = new_prot;
2588 
2589 		/*
2590 		 * For user wired map entries, the normal lazy evaluation of
2591 		 * write access upgrades through soft page faults is
2592 		 * undesirable.  Instead, immediately copy any pages that are
2593 		 * copy-on-write and enable write access in the physical map.
2594 		 */
2595 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2596 		    (current->protection & VM_PROT_WRITE) != 0 &&
2597 		    (old_prot & VM_PROT_WRITE) == 0)
2598 			vm_fault_copy_entry(map, map, current, current, NULL);
2599 
2600 		/*
2601 		 * When restricting access, update the physical map.  Worry
2602 		 * about copy-on-write here.
2603 		 */
2604 		if ((old_prot & ~current->protection) != 0) {
2605 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2606 							VM_PROT_ALL)
2607 			pmap_protect(map->pmap, current->start,
2608 			    current->end,
2609 			    current->protection & MASK(current));
2610 #undef	MASK
2611 		}
2612 		vm_map_simplify_entry(map, current);
2613 	}
2614 	vm_map_unlock(map);
2615 	return (KERN_SUCCESS);
2616 }
2617 
2618 /*
2619  *	vm_map_madvise:
2620  *
2621  *	This routine traverses a processes map handling the madvise
2622  *	system call.  Advisories are classified as either those effecting
2623  *	the vm_map_entry structure, or those effecting the underlying
2624  *	objects.
2625  */
2626 int
vm_map_madvise(vm_map_t map,vm_offset_t start,vm_offset_t end,int behav)2627 vm_map_madvise(
2628 	vm_map_t map,
2629 	vm_offset_t start,
2630 	vm_offset_t end,
2631 	int behav)
2632 {
2633 	vm_map_entry_t current, entry;
2634 	bool modify_map;
2635 
2636 	/*
2637 	 * Some madvise calls directly modify the vm_map_entry, in which case
2638 	 * we need to use an exclusive lock on the map and we need to perform
2639 	 * various clipping operations.  Otherwise we only need a read-lock
2640 	 * on the map.
2641 	 */
2642 	switch(behav) {
2643 	case MADV_NORMAL:
2644 	case MADV_SEQUENTIAL:
2645 	case MADV_RANDOM:
2646 	case MADV_NOSYNC:
2647 	case MADV_AUTOSYNC:
2648 	case MADV_NOCORE:
2649 	case MADV_CORE:
2650 		if (start == end)
2651 			return (0);
2652 		modify_map = true;
2653 		vm_map_lock(map);
2654 		break;
2655 	case MADV_WILLNEED:
2656 	case MADV_DONTNEED:
2657 	case MADV_FREE:
2658 		if (start == end)
2659 			return (0);
2660 		modify_map = false;
2661 		vm_map_lock_read(map);
2662 		break;
2663 	default:
2664 		return (EINVAL);
2665 	}
2666 
2667 	/*
2668 	 * Locate starting entry and clip if necessary.
2669 	 */
2670 	VM_MAP_RANGE_CHECK(map, start, end);
2671 
2672 	if (vm_map_lookup_entry(map, start, &entry)) {
2673 		if (modify_map)
2674 			vm_map_clip_start(map, entry, start);
2675 	} else {
2676 		entry = entry->next;
2677 	}
2678 
2679 	if (modify_map) {
2680 		/*
2681 		 * madvise behaviors that are implemented in the vm_map_entry.
2682 		 *
2683 		 * We clip the vm_map_entry so that behavioral changes are
2684 		 * limited to the specified address range.
2685 		 */
2686 		for (current = entry; current->start < end;
2687 		    current = current->next) {
2688 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2689 				continue;
2690 
2691 			vm_map_clip_end(map, current, end);
2692 
2693 			switch (behav) {
2694 			case MADV_NORMAL:
2695 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2696 				break;
2697 			case MADV_SEQUENTIAL:
2698 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2699 				break;
2700 			case MADV_RANDOM:
2701 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2702 				break;
2703 			case MADV_NOSYNC:
2704 				current->eflags |= MAP_ENTRY_NOSYNC;
2705 				break;
2706 			case MADV_AUTOSYNC:
2707 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2708 				break;
2709 			case MADV_NOCORE:
2710 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2711 				break;
2712 			case MADV_CORE:
2713 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2714 				break;
2715 			default:
2716 				break;
2717 			}
2718 			vm_map_simplify_entry(map, current);
2719 		}
2720 		vm_map_unlock(map);
2721 	} else {
2722 		vm_pindex_t pstart, pend;
2723 
2724 		/*
2725 		 * madvise behaviors that are implemented in the underlying
2726 		 * vm_object.
2727 		 *
2728 		 * Since we don't clip the vm_map_entry, we have to clip
2729 		 * the vm_object pindex and count.
2730 		 */
2731 		for (current = entry; current->start < end;
2732 		    current = current->next) {
2733 			vm_offset_t useEnd, useStart;
2734 
2735 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2736 				continue;
2737 
2738 			/*
2739 			 * MADV_FREE would otherwise rewind time to
2740 			 * the creation of the shadow object.  Because
2741 			 * we hold the VM map read-locked, neither the
2742 			 * entry's object nor the presence of a
2743 			 * backing object can change.
2744 			 */
2745 			if (behav == MADV_FREE &&
2746 			    current->object.vm_object != NULL &&
2747 			    current->object.vm_object->backing_object != NULL)
2748 				continue;
2749 
2750 			pstart = OFF_TO_IDX(current->offset);
2751 			pend = pstart + atop(current->end - current->start);
2752 			useStart = current->start;
2753 			useEnd = current->end;
2754 
2755 			if (current->start < start) {
2756 				pstart += atop(start - current->start);
2757 				useStart = start;
2758 			}
2759 			if (current->end > end) {
2760 				pend -= atop(current->end - end);
2761 				useEnd = end;
2762 			}
2763 
2764 			if (pstart >= pend)
2765 				continue;
2766 
2767 			/*
2768 			 * Perform the pmap_advise() before clearing
2769 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2770 			 * concurrent pmap operation, such as pmap_remove(),
2771 			 * could clear a reference in the pmap and set
2772 			 * PGA_REFERENCED on the page before the pmap_advise()
2773 			 * had completed.  Consequently, the page would appear
2774 			 * referenced based upon an old reference that
2775 			 * occurred before this pmap_advise() ran.
2776 			 */
2777 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2778 				pmap_advise(map->pmap, useStart, useEnd,
2779 				    behav);
2780 
2781 			vm_object_madvise(current->object.vm_object, pstart,
2782 			    pend, behav);
2783 
2784 			/*
2785 			 * Pre-populate paging structures in the
2786 			 * WILLNEED case.  For wired entries, the
2787 			 * paging structures are already populated.
2788 			 */
2789 			if (behav == MADV_WILLNEED &&
2790 			    current->wired_count == 0) {
2791 				vm_map_pmap_enter(map,
2792 				    useStart,
2793 				    current->protection,
2794 				    current->object.vm_object,
2795 				    pstart,
2796 				    ptoa(pend - pstart),
2797 				    MAP_PREFAULT_MADVISE
2798 				);
2799 			}
2800 		}
2801 		vm_map_unlock_read(map);
2802 	}
2803 	return (0);
2804 }
2805 
2806 
2807 /*
2808  *	vm_map_inherit:
2809  *
2810  *	Sets the inheritance of the specified address
2811  *	range in the target map.  Inheritance
2812  *	affects how the map will be shared with
2813  *	child maps at the time of vmspace_fork.
2814  */
2815 int
vm_map_inherit(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_inherit_t new_inheritance)2816 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2817 	       vm_inherit_t new_inheritance)
2818 {
2819 	vm_map_entry_t entry;
2820 	vm_map_entry_t temp_entry;
2821 
2822 	switch (new_inheritance) {
2823 	case VM_INHERIT_NONE:
2824 	case VM_INHERIT_COPY:
2825 	case VM_INHERIT_SHARE:
2826 	case VM_INHERIT_ZERO:
2827 		break;
2828 	default:
2829 		return (KERN_INVALID_ARGUMENT);
2830 	}
2831 	if (start == end)
2832 		return (KERN_SUCCESS);
2833 	vm_map_lock(map);
2834 	VM_MAP_RANGE_CHECK(map, start, end);
2835 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2836 		entry = temp_entry;
2837 		vm_map_clip_start(map, entry, start);
2838 	} else
2839 		entry = temp_entry->next;
2840 	while (entry->start < end) {
2841 		vm_map_clip_end(map, entry, end);
2842 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2843 		    new_inheritance != VM_INHERIT_ZERO)
2844 			entry->inheritance = new_inheritance;
2845 		vm_map_simplify_entry(map, entry);
2846 		entry = entry->next;
2847 	}
2848 	vm_map_unlock(map);
2849 	return (KERN_SUCCESS);
2850 }
2851 
2852 /*
2853  *	vm_map_unwire:
2854  *
2855  *	Implements both kernel and user unwiring.
2856  */
2857 int
vm_map_unwire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)2858 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2859     int flags)
2860 {
2861 	vm_map_entry_t entry, first_entry, tmp_entry;
2862 	vm_offset_t saved_start;
2863 	unsigned int last_timestamp;
2864 	int rv;
2865 	boolean_t need_wakeup, result, user_unwire;
2866 
2867 	if (start == end)
2868 		return (KERN_SUCCESS);
2869 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2870 	vm_map_lock(map);
2871 	VM_MAP_RANGE_CHECK(map, start, end);
2872 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2873 		if (flags & VM_MAP_WIRE_HOLESOK)
2874 			first_entry = first_entry->next;
2875 		else {
2876 			vm_map_unlock(map);
2877 			return (KERN_INVALID_ADDRESS);
2878 		}
2879 	}
2880 	last_timestamp = map->timestamp;
2881 	entry = first_entry;
2882 	while (entry->start < end) {
2883 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2884 			/*
2885 			 * We have not yet clipped the entry.
2886 			 */
2887 			saved_start = (start >= entry->start) ? start :
2888 			    entry->start;
2889 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2890 			if (vm_map_unlock_and_wait(map, 0)) {
2891 				/*
2892 				 * Allow interruption of user unwiring?
2893 				 */
2894 			}
2895 			vm_map_lock(map);
2896 			if (last_timestamp+1 != map->timestamp) {
2897 				/*
2898 				 * Look again for the entry because the map was
2899 				 * modified while it was unlocked.
2900 				 * Specifically, the entry may have been
2901 				 * clipped, merged, or deleted.
2902 				 */
2903 				if (!vm_map_lookup_entry(map, saved_start,
2904 				    &tmp_entry)) {
2905 					if (flags & VM_MAP_WIRE_HOLESOK)
2906 						tmp_entry = tmp_entry->next;
2907 					else {
2908 						if (saved_start == start) {
2909 							/*
2910 							 * First_entry has been deleted.
2911 							 */
2912 							vm_map_unlock(map);
2913 							return (KERN_INVALID_ADDRESS);
2914 						}
2915 						end = saved_start;
2916 						rv = KERN_INVALID_ADDRESS;
2917 						goto done;
2918 					}
2919 				}
2920 				if (entry == first_entry)
2921 					first_entry = tmp_entry;
2922 				else
2923 					first_entry = NULL;
2924 				entry = tmp_entry;
2925 			}
2926 			last_timestamp = map->timestamp;
2927 			continue;
2928 		}
2929 		vm_map_clip_start(map, entry, start);
2930 		vm_map_clip_end(map, entry, end);
2931 		/*
2932 		 * Mark the entry in case the map lock is released.  (See
2933 		 * above.)
2934 		 */
2935 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2936 		    entry->wiring_thread == NULL,
2937 		    ("owned map entry %p", entry));
2938 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2939 		entry->wiring_thread = curthread;
2940 		/*
2941 		 * Check the map for holes in the specified region.
2942 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2943 		 */
2944 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2945 		    (entry->end < end && entry->next->start > entry->end)) {
2946 			end = entry->end;
2947 			rv = KERN_INVALID_ADDRESS;
2948 			goto done;
2949 		}
2950 		/*
2951 		 * If system unwiring, require that the entry is system wired.
2952 		 */
2953 		if (!user_unwire &&
2954 		    vm_map_entry_system_wired_count(entry) == 0) {
2955 			end = entry->end;
2956 			rv = KERN_INVALID_ARGUMENT;
2957 			goto done;
2958 		}
2959 		entry = entry->next;
2960 	}
2961 	rv = KERN_SUCCESS;
2962 done:
2963 	need_wakeup = FALSE;
2964 	if (first_entry == NULL) {
2965 		result = vm_map_lookup_entry(map, start, &first_entry);
2966 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2967 			first_entry = first_entry->next;
2968 		else
2969 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2970 	}
2971 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2972 		/*
2973 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2974 		 * space in the unwired region could have been mapped
2975 		 * while the map lock was dropped for draining
2976 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2977 		 * could be simultaneously wiring this new mapping
2978 		 * entry.  Detect these cases and skip any entries
2979 		 * marked as in transition by us.
2980 		 */
2981 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2982 		    entry->wiring_thread != curthread) {
2983 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2984 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2985 			continue;
2986 		}
2987 
2988 		if (rv == KERN_SUCCESS && (!user_unwire ||
2989 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2990 			if (user_unwire)
2991 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2992 			if (entry->wired_count == 1)
2993 				vm_map_entry_unwire(map, entry);
2994 			else
2995 				entry->wired_count--;
2996 		}
2997 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2998 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2999 		KASSERT(entry->wiring_thread == curthread,
3000 		    ("vm_map_unwire: alien wire %p", entry));
3001 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3002 		entry->wiring_thread = NULL;
3003 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3004 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3005 			need_wakeup = TRUE;
3006 		}
3007 		vm_map_simplify_entry(map, entry);
3008 	}
3009 	vm_map_unlock(map);
3010 	if (need_wakeup)
3011 		vm_map_wakeup(map);
3012 	return (rv);
3013 }
3014 
3015 /*
3016  *	vm_map_wire_entry_failure:
3017  *
3018  *	Handle a wiring failure on the given entry.
3019  *
3020  *	The map should be locked.
3021  */
3022 static void
vm_map_wire_entry_failure(vm_map_t map,vm_map_entry_t entry,vm_offset_t failed_addr)3023 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3024     vm_offset_t failed_addr)
3025 {
3026 
3027 	VM_MAP_ASSERT_LOCKED(map);
3028 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3029 	    entry->wired_count == 1,
3030 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3031 	KASSERT(failed_addr < entry->end,
3032 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3033 
3034 	/*
3035 	 * If any pages at the start of this entry were successfully wired,
3036 	 * then unwire them.
3037 	 */
3038 	if (failed_addr > entry->start) {
3039 		pmap_unwire(map->pmap, entry->start, failed_addr);
3040 		vm_object_unwire(entry->object.vm_object, entry->offset,
3041 		    failed_addr - entry->start, PQ_ACTIVE);
3042 	}
3043 
3044 	/*
3045 	 * Assign an out-of-range value to represent the failure to wire this
3046 	 * entry.
3047 	 */
3048 	entry->wired_count = -1;
3049 }
3050 
3051 /*
3052  *	vm_map_wire:
3053  *
3054  *	Implements both kernel and user wiring.
3055  */
3056 int
vm_map_wire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3057 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3058     int flags)
3059 {
3060 	vm_map_entry_t entry, first_entry, tmp_entry;
3061 	vm_offset_t faddr, saved_end, saved_start;
3062 	unsigned int last_timestamp;
3063 	int rv;
3064 	boolean_t need_wakeup, result, user_wire;
3065 	vm_prot_t prot;
3066 
3067 	if (start == end)
3068 		return (KERN_SUCCESS);
3069 	prot = 0;
3070 	if (flags & VM_MAP_WIRE_WRITE)
3071 		prot |= VM_PROT_WRITE;
3072 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3073 	vm_map_lock(map);
3074 	VM_MAP_RANGE_CHECK(map, start, end);
3075 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3076 		if (flags & VM_MAP_WIRE_HOLESOK)
3077 			first_entry = first_entry->next;
3078 		else {
3079 			vm_map_unlock(map);
3080 			return (KERN_INVALID_ADDRESS);
3081 		}
3082 	}
3083 	last_timestamp = map->timestamp;
3084 	entry = first_entry;
3085 	while (entry->start < end) {
3086 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3087 			/*
3088 			 * We have not yet clipped the entry.
3089 			 */
3090 			saved_start = (start >= entry->start) ? start :
3091 			    entry->start;
3092 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3093 			if (vm_map_unlock_and_wait(map, 0)) {
3094 				/*
3095 				 * Allow interruption of user wiring?
3096 				 */
3097 			}
3098 			vm_map_lock(map);
3099 			if (last_timestamp + 1 != map->timestamp) {
3100 				/*
3101 				 * Look again for the entry because the map was
3102 				 * modified while it was unlocked.
3103 				 * Specifically, the entry may have been
3104 				 * clipped, merged, or deleted.
3105 				 */
3106 				if (!vm_map_lookup_entry(map, saved_start,
3107 				    &tmp_entry)) {
3108 					if (flags & VM_MAP_WIRE_HOLESOK)
3109 						tmp_entry = tmp_entry->next;
3110 					else {
3111 						if (saved_start == start) {
3112 							/*
3113 							 * first_entry has been deleted.
3114 							 */
3115 							vm_map_unlock(map);
3116 							return (KERN_INVALID_ADDRESS);
3117 						}
3118 						end = saved_start;
3119 						rv = KERN_INVALID_ADDRESS;
3120 						goto done;
3121 					}
3122 				}
3123 				if (entry == first_entry)
3124 					first_entry = tmp_entry;
3125 				else
3126 					first_entry = NULL;
3127 				entry = tmp_entry;
3128 			}
3129 			last_timestamp = map->timestamp;
3130 			continue;
3131 		}
3132 		vm_map_clip_start(map, entry, start);
3133 		vm_map_clip_end(map, entry, end);
3134 		/*
3135 		 * Mark the entry in case the map lock is released.  (See
3136 		 * above.)
3137 		 */
3138 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3139 		    entry->wiring_thread == NULL,
3140 		    ("owned map entry %p", entry));
3141 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3142 		entry->wiring_thread = curthread;
3143 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3144 		    || (entry->protection & prot) != prot) {
3145 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3146 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3147 				end = entry->end;
3148 				rv = KERN_INVALID_ADDRESS;
3149 				goto done;
3150 			}
3151 			goto next_entry;
3152 		}
3153 		if (entry->wired_count == 0) {
3154 			entry->wired_count++;
3155 			saved_start = entry->start;
3156 			saved_end = entry->end;
3157 
3158 			/*
3159 			 * Release the map lock, relying on the in-transition
3160 			 * mark.  Mark the map busy for fork.
3161 			 */
3162 			vm_map_busy(map);
3163 			vm_map_unlock(map);
3164 
3165 			faddr = saved_start;
3166 			do {
3167 				/*
3168 				 * Simulate a fault to get the page and enter
3169 				 * it into the physical map.
3170 				 */
3171 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3172 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
3173 					break;
3174 			} while ((faddr += PAGE_SIZE) < saved_end);
3175 			vm_map_lock(map);
3176 			vm_map_unbusy(map);
3177 			if (last_timestamp + 1 != map->timestamp) {
3178 				/*
3179 				 * Look again for the entry because the map was
3180 				 * modified while it was unlocked.  The entry
3181 				 * may have been clipped, but NOT merged or
3182 				 * deleted.
3183 				 */
3184 				result = vm_map_lookup_entry(map, saved_start,
3185 				    &tmp_entry);
3186 				KASSERT(result, ("vm_map_wire: lookup failed"));
3187 				if (entry == first_entry)
3188 					first_entry = tmp_entry;
3189 				else
3190 					first_entry = NULL;
3191 				entry = tmp_entry;
3192 				while (entry->end < saved_end) {
3193 					/*
3194 					 * In case of failure, handle entries
3195 					 * that were not fully wired here;
3196 					 * fully wired entries are handled
3197 					 * later.
3198 					 */
3199 					if (rv != KERN_SUCCESS &&
3200 					    faddr < entry->end)
3201 						vm_map_wire_entry_failure(map,
3202 						    entry, faddr);
3203 					entry = entry->next;
3204 				}
3205 			}
3206 			last_timestamp = map->timestamp;
3207 			if (rv != KERN_SUCCESS) {
3208 				vm_map_wire_entry_failure(map, entry, faddr);
3209 				end = entry->end;
3210 				goto done;
3211 			}
3212 		} else if (!user_wire ||
3213 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3214 			entry->wired_count++;
3215 		}
3216 		/*
3217 		 * Check the map for holes in the specified region.
3218 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3219 		 */
3220 	next_entry:
3221 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3222 		    entry->end < end && entry->next->start > entry->end) {
3223 			end = entry->end;
3224 			rv = KERN_INVALID_ADDRESS;
3225 			goto done;
3226 		}
3227 		entry = entry->next;
3228 	}
3229 	rv = KERN_SUCCESS;
3230 done:
3231 	need_wakeup = FALSE;
3232 	if (first_entry == NULL) {
3233 		result = vm_map_lookup_entry(map, start, &first_entry);
3234 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3235 			first_entry = first_entry->next;
3236 		else
3237 			KASSERT(result, ("vm_map_wire: lookup failed"));
3238 	}
3239 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3240 		/*
3241 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
3242 		 * space in the unwired region could have been mapped
3243 		 * while the map lock was dropped for faulting in the
3244 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3245 		 * Moreover, another thread could be simultaneously
3246 		 * wiring this new mapping entry.  Detect these cases
3247 		 * and skip any entries marked as in transition not by us.
3248 		 */
3249 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3250 		    entry->wiring_thread != curthread) {
3251 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3252 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3253 			continue;
3254 		}
3255 
3256 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3257 			goto next_entry_done;
3258 
3259 		if (rv == KERN_SUCCESS) {
3260 			if (user_wire)
3261 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3262 		} else if (entry->wired_count == -1) {
3263 			/*
3264 			 * Wiring failed on this entry.  Thus, unwiring is
3265 			 * unnecessary.
3266 			 */
3267 			entry->wired_count = 0;
3268 		} else if (!user_wire ||
3269 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3270 			/*
3271 			 * Undo the wiring.  Wiring succeeded on this entry
3272 			 * but failed on a later entry.
3273 			 */
3274 			if (entry->wired_count == 1)
3275 				vm_map_entry_unwire(map, entry);
3276 			else
3277 				entry->wired_count--;
3278 		}
3279 	next_entry_done:
3280 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3281 		    ("vm_map_wire: in-transition flag missing %p", entry));
3282 		KASSERT(entry->wiring_thread == curthread,
3283 		    ("vm_map_wire: alien wire %p", entry));
3284 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3285 		    MAP_ENTRY_WIRE_SKIPPED);
3286 		entry->wiring_thread = NULL;
3287 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3288 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3289 			need_wakeup = TRUE;
3290 		}
3291 		vm_map_simplify_entry(map, entry);
3292 	}
3293 	vm_map_unlock(map);
3294 	if (need_wakeup)
3295 		vm_map_wakeup(map);
3296 	return (rv);
3297 }
3298 
3299 /*
3300  * vm_map_sync
3301  *
3302  * Push any dirty cached pages in the address range to their pager.
3303  * If syncio is TRUE, dirty pages are written synchronously.
3304  * If invalidate is TRUE, any cached pages are freed as well.
3305  *
3306  * If the size of the region from start to end is zero, we are
3307  * supposed to flush all modified pages within the region containing
3308  * start.  Unfortunately, a region can be split or coalesced with
3309  * neighboring regions, making it difficult to determine what the
3310  * original region was.  Therefore, we approximate this requirement by
3311  * flushing the current region containing start.
3312  *
3313  * Returns an error if any part of the specified range is not mapped.
3314  */
3315 int
vm_map_sync(vm_map_t map,vm_offset_t start,vm_offset_t end,boolean_t syncio,boolean_t invalidate)3316 vm_map_sync(
3317 	vm_map_t map,
3318 	vm_offset_t start,
3319 	vm_offset_t end,
3320 	boolean_t syncio,
3321 	boolean_t invalidate)
3322 {
3323 	vm_map_entry_t current;
3324 	vm_map_entry_t entry;
3325 	vm_size_t size;
3326 	vm_object_t object;
3327 	vm_ooffset_t offset;
3328 	unsigned int last_timestamp;
3329 	boolean_t failed;
3330 
3331 	vm_map_lock_read(map);
3332 	VM_MAP_RANGE_CHECK(map, start, end);
3333 	if (!vm_map_lookup_entry(map, start, &entry)) {
3334 		vm_map_unlock_read(map);
3335 		return (KERN_INVALID_ADDRESS);
3336 	} else if (start == end) {
3337 		start = entry->start;
3338 		end = entry->end;
3339 	}
3340 	/*
3341 	 * Make a first pass to check for user-wired memory and holes.
3342 	 */
3343 	for (current = entry; current->start < end; current = current->next) {
3344 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3345 			vm_map_unlock_read(map);
3346 			return (KERN_INVALID_ARGUMENT);
3347 		}
3348 		if (end > current->end &&
3349 		    current->end != current->next->start) {
3350 			vm_map_unlock_read(map);
3351 			return (KERN_INVALID_ADDRESS);
3352 		}
3353 	}
3354 
3355 	if (invalidate)
3356 		pmap_remove(map->pmap, start, end);
3357 	failed = FALSE;
3358 
3359 	/*
3360 	 * Make a second pass, cleaning/uncaching pages from the indicated
3361 	 * objects as we go.
3362 	 */
3363 	for (current = entry; current->start < end;) {
3364 		offset = current->offset + (start - current->start);
3365 		size = (end <= current->end ? end : current->end) - start;
3366 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3367 			vm_map_t smap;
3368 			vm_map_entry_t tentry;
3369 			vm_size_t tsize;
3370 
3371 			smap = current->object.sub_map;
3372 			vm_map_lock_read(smap);
3373 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3374 			tsize = tentry->end - offset;
3375 			if (tsize < size)
3376 				size = tsize;
3377 			object = tentry->object.vm_object;
3378 			offset = tentry->offset + (offset - tentry->start);
3379 			vm_map_unlock_read(smap);
3380 		} else {
3381 			object = current->object.vm_object;
3382 		}
3383 		vm_object_reference(object);
3384 		last_timestamp = map->timestamp;
3385 		vm_map_unlock_read(map);
3386 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3387 			failed = TRUE;
3388 		start += size;
3389 		vm_object_deallocate(object);
3390 		vm_map_lock_read(map);
3391 		if (last_timestamp == map->timestamp ||
3392 		    !vm_map_lookup_entry(map, start, &current))
3393 			current = current->next;
3394 	}
3395 
3396 	vm_map_unlock_read(map);
3397 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3398 }
3399 
3400 /*
3401  *	vm_map_entry_unwire:	[ internal use only ]
3402  *
3403  *	Make the region specified by this entry pageable.
3404  *
3405  *	The map in question should be locked.
3406  *	[This is the reason for this routine's existence.]
3407  */
3408 static void
vm_map_entry_unwire(vm_map_t map,vm_map_entry_t entry)3409 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3410 {
3411 
3412 	VM_MAP_ASSERT_LOCKED(map);
3413 	KASSERT(entry->wired_count > 0,
3414 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3415 	pmap_unwire(map->pmap, entry->start, entry->end);
3416 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3417 	    entry->start, PQ_ACTIVE);
3418 	entry->wired_count = 0;
3419 }
3420 
3421 static void
vm_map_entry_deallocate(vm_map_entry_t entry,boolean_t system_map)3422 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3423 {
3424 
3425 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3426 		vm_object_deallocate(entry->object.vm_object);
3427 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3428 }
3429 
3430 /*
3431  *	vm_map_entry_delete:	[ internal use only ]
3432  *
3433  *	Deallocate the given entry from the target map.
3434  */
3435 static void
vm_map_entry_delete(vm_map_t map,vm_map_entry_t entry)3436 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3437 {
3438 	vm_object_t object;
3439 	vm_pindex_t offidxstart, offidxend, count, size1;
3440 	vm_size_t size;
3441 
3442 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3443 	object = entry->object.vm_object;
3444 
3445 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3446 		MPASS(entry->cred == NULL);
3447 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3448 		MPASS(object == NULL);
3449 		vm_map_entry_deallocate(entry, map->system_map);
3450 		return;
3451 	}
3452 
3453 	size = entry->end - entry->start;
3454 	map->size -= size;
3455 
3456 	if (entry->cred != NULL) {
3457 		swap_release_by_cred(size, entry->cred);
3458 		crfree(entry->cred);
3459 	}
3460 
3461 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3462 	    (object != NULL)) {
3463 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3464 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3465 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3466 		count = atop(size);
3467 		offidxstart = OFF_TO_IDX(entry->offset);
3468 		offidxend = offidxstart + count;
3469 		VM_OBJECT_WLOCK(object);
3470 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3471 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3472 		    object == kernel_object)) {
3473 			vm_object_collapse(object);
3474 
3475 			/*
3476 			 * The option OBJPR_NOTMAPPED can be passed here
3477 			 * because vm_map_delete() already performed
3478 			 * pmap_remove() on the only mapping to this range
3479 			 * of pages.
3480 			 */
3481 			vm_object_page_remove(object, offidxstart, offidxend,
3482 			    OBJPR_NOTMAPPED);
3483 			if (object->type == OBJT_SWAP)
3484 				swap_pager_freespace(object, offidxstart,
3485 				    count);
3486 			if (offidxend >= object->size &&
3487 			    offidxstart < object->size) {
3488 				size1 = object->size;
3489 				object->size = offidxstart;
3490 				if (object->cred != NULL) {
3491 					size1 -= object->size;
3492 					KASSERT(object->charge >= ptoa(size1),
3493 					    ("object %p charge < 0", object));
3494 					swap_release_by_cred(ptoa(size1),
3495 					    object->cred);
3496 					object->charge -= ptoa(size1);
3497 				}
3498 			}
3499 		}
3500 		VM_OBJECT_WUNLOCK(object);
3501 	} else
3502 		entry->object.vm_object = NULL;
3503 	if (map->system_map)
3504 		vm_map_entry_deallocate(entry, TRUE);
3505 	else {
3506 		entry->next = curthread->td_map_def_user;
3507 		curthread->td_map_def_user = entry;
3508 	}
3509 }
3510 
3511 /*
3512  *	vm_map_delete:	[ internal use only ]
3513  *
3514  *	Deallocates the given address range from the target
3515  *	map.
3516  */
3517 int
vm_map_delete(vm_map_t map,vm_offset_t start,vm_offset_t end)3518 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3519 {
3520 	vm_map_entry_t entry;
3521 	vm_map_entry_t first_entry;
3522 
3523 	VM_MAP_ASSERT_LOCKED(map);
3524 	if (start == end)
3525 		return (KERN_SUCCESS);
3526 
3527 	/*
3528 	 * Find the start of the region, and clip it
3529 	 */
3530 	if (!vm_map_lookup_entry(map, start, &first_entry))
3531 		entry = first_entry->next;
3532 	else {
3533 		entry = first_entry;
3534 		vm_map_clip_start(map, entry, start);
3535 	}
3536 
3537 	/*
3538 	 * Step through all entries in this region
3539 	 */
3540 	while (entry->start < end) {
3541 		vm_map_entry_t next;
3542 
3543 		/*
3544 		 * Wait for wiring or unwiring of an entry to complete.
3545 		 * Also wait for any system wirings to disappear on
3546 		 * user maps.
3547 		 */
3548 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3549 		    (vm_map_pmap(map) != kernel_pmap &&
3550 		    vm_map_entry_system_wired_count(entry) != 0)) {
3551 			unsigned int last_timestamp;
3552 			vm_offset_t saved_start;
3553 			vm_map_entry_t tmp_entry;
3554 
3555 			saved_start = entry->start;
3556 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3557 			last_timestamp = map->timestamp;
3558 			(void) vm_map_unlock_and_wait(map, 0);
3559 			vm_map_lock(map);
3560 			if (last_timestamp + 1 != map->timestamp) {
3561 				/*
3562 				 * Look again for the entry because the map was
3563 				 * modified while it was unlocked.
3564 				 * Specifically, the entry may have been
3565 				 * clipped, merged, or deleted.
3566 				 */
3567 				if (!vm_map_lookup_entry(map, saved_start,
3568 							 &tmp_entry))
3569 					entry = tmp_entry->next;
3570 				else {
3571 					entry = tmp_entry;
3572 					vm_map_clip_start(map, entry,
3573 							  saved_start);
3574 				}
3575 			}
3576 			continue;
3577 		}
3578 		vm_map_clip_end(map, entry, end);
3579 
3580 		next = entry->next;
3581 
3582 		/*
3583 		 * Unwire before removing addresses from the pmap; otherwise,
3584 		 * unwiring will put the entries back in the pmap.
3585 		 */
3586 		if (entry->wired_count != 0)
3587 			vm_map_entry_unwire(map, entry);
3588 
3589 		/*
3590 		 * Remove mappings for the pages, but only if the
3591 		 * mappings could exist.  For instance, it does not
3592 		 * make sense to call pmap_remove() for guard entries.
3593 		 */
3594 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3595 		    entry->object.vm_object != NULL)
3596 			pmap_remove(map->pmap, entry->start, entry->end);
3597 
3598 		if (entry->end == map->anon_loc)
3599 			map->anon_loc = entry->start;
3600 
3601 		/*
3602 		 * Delete the entry only after removing all pmap
3603 		 * entries pointing to its pages.  (Otherwise, its
3604 		 * page frames may be reallocated, and any modify bits
3605 		 * will be set in the wrong object!)
3606 		 */
3607 		vm_map_entry_delete(map, entry);
3608 		entry = next;
3609 	}
3610 	return (KERN_SUCCESS);
3611 }
3612 
3613 /*
3614  *	vm_map_remove:
3615  *
3616  *	Remove the given address range from the target map.
3617  *	This is the exported form of vm_map_delete.
3618  */
3619 int
vm_map_remove(vm_map_t map,vm_offset_t start,vm_offset_t end)3620 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3621 {
3622 	int result;
3623 
3624 	vm_map_lock(map);
3625 	VM_MAP_RANGE_CHECK(map, start, end);
3626 	result = vm_map_delete(map, start, end);
3627 	vm_map_unlock(map);
3628 	return (result);
3629 }
3630 
3631 /*
3632  *	vm_map_check_protection:
3633  *
3634  *	Assert that the target map allows the specified privilege on the
3635  *	entire address region given.  The entire region must be allocated.
3636  *
3637  *	WARNING!  This code does not and should not check whether the
3638  *	contents of the region is accessible.  For example a smaller file
3639  *	might be mapped into a larger address space.
3640  *
3641  *	NOTE!  This code is also called by munmap().
3642  *
3643  *	The map must be locked.  A read lock is sufficient.
3644  */
3645 boolean_t
vm_map_check_protection(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t protection)3646 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3647 			vm_prot_t protection)
3648 {
3649 	vm_map_entry_t entry;
3650 	vm_map_entry_t tmp_entry;
3651 
3652 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3653 		return (FALSE);
3654 	entry = tmp_entry;
3655 
3656 	while (start < end) {
3657 		/*
3658 		 * No holes allowed!
3659 		 */
3660 		if (start < entry->start)
3661 			return (FALSE);
3662 		/*
3663 		 * Check protection associated with entry.
3664 		 */
3665 		if ((entry->protection & protection) != protection)
3666 			return (FALSE);
3667 		/* go to next entry */
3668 		start = entry->end;
3669 		entry = entry->next;
3670 	}
3671 	return (TRUE);
3672 }
3673 
3674 /*
3675  *	vm_map_copy_entry:
3676  *
3677  *	Copies the contents of the source entry to the destination
3678  *	entry.  The entries *must* be aligned properly.
3679  */
3680 static void
vm_map_copy_entry(vm_map_t src_map,vm_map_t dst_map,vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_ooffset_t * fork_charge)3681 vm_map_copy_entry(
3682 	vm_map_t src_map,
3683 	vm_map_t dst_map,
3684 	vm_map_entry_t src_entry,
3685 	vm_map_entry_t dst_entry,
3686 	vm_ooffset_t *fork_charge)
3687 {
3688 	vm_object_t src_object;
3689 	vm_map_entry_t fake_entry;
3690 	vm_offset_t size;
3691 	struct ucred *cred;
3692 	int charged;
3693 
3694 	VM_MAP_ASSERT_LOCKED(dst_map);
3695 
3696 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3697 		return;
3698 
3699 	if (src_entry->wired_count == 0 ||
3700 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3701 		/*
3702 		 * If the source entry is marked needs_copy, it is already
3703 		 * write-protected.
3704 		 */
3705 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3706 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3707 			pmap_protect(src_map->pmap,
3708 			    src_entry->start,
3709 			    src_entry->end,
3710 			    src_entry->protection & ~VM_PROT_WRITE);
3711 		}
3712 
3713 		/*
3714 		 * Make a copy of the object.
3715 		 */
3716 		size = src_entry->end - src_entry->start;
3717 		if ((src_object = src_entry->object.vm_object) != NULL) {
3718 			VM_OBJECT_WLOCK(src_object);
3719 			charged = ENTRY_CHARGED(src_entry);
3720 			if (src_object->handle == NULL &&
3721 			    (src_object->type == OBJT_DEFAULT ||
3722 			    src_object->type == OBJT_SWAP)) {
3723 				vm_object_collapse(src_object);
3724 				if ((src_object->flags & (OBJ_NOSPLIT |
3725 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3726 					vm_object_split(src_entry);
3727 					src_object =
3728 					    src_entry->object.vm_object;
3729 				}
3730 			}
3731 			vm_object_reference_locked(src_object);
3732 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3733 			if (src_entry->cred != NULL &&
3734 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3735 				KASSERT(src_object->cred == NULL,
3736 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3737 				     src_object));
3738 				src_object->cred = src_entry->cred;
3739 				src_object->charge = size;
3740 			}
3741 			VM_OBJECT_WUNLOCK(src_object);
3742 			dst_entry->object.vm_object = src_object;
3743 			if (charged) {
3744 				cred = curthread->td_ucred;
3745 				crhold(cred);
3746 				dst_entry->cred = cred;
3747 				*fork_charge += size;
3748 				if (!(src_entry->eflags &
3749 				      MAP_ENTRY_NEEDS_COPY)) {
3750 					crhold(cred);
3751 					src_entry->cred = cred;
3752 					*fork_charge += size;
3753 				}
3754 			}
3755 			src_entry->eflags |= MAP_ENTRY_COW |
3756 			    MAP_ENTRY_NEEDS_COPY;
3757 			dst_entry->eflags |= MAP_ENTRY_COW |
3758 			    MAP_ENTRY_NEEDS_COPY;
3759 			dst_entry->offset = src_entry->offset;
3760 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3761 				/*
3762 				 * MAP_ENTRY_VN_WRITECNT cannot
3763 				 * indicate write reference from
3764 				 * src_entry, since the entry is
3765 				 * marked as needs copy.  Allocate a
3766 				 * fake entry that is used to
3767 				 * decrement object->un_pager.vnp.writecount
3768 				 * at the appropriate time.  Attach
3769 				 * fake_entry to the deferred list.
3770 				 */
3771 				fake_entry = vm_map_entry_create(dst_map);
3772 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3773 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3774 				vm_object_reference(src_object);
3775 				fake_entry->object.vm_object = src_object;
3776 				fake_entry->start = src_entry->start;
3777 				fake_entry->end = src_entry->end;
3778 				fake_entry->next = curthread->td_map_def_user;
3779 				curthread->td_map_def_user = fake_entry;
3780 			}
3781 
3782 			pmap_copy(dst_map->pmap, src_map->pmap,
3783 			    dst_entry->start, dst_entry->end - dst_entry->start,
3784 			    src_entry->start);
3785 		} else {
3786 			dst_entry->object.vm_object = NULL;
3787 			dst_entry->offset = 0;
3788 			if (src_entry->cred != NULL) {
3789 				dst_entry->cred = curthread->td_ucred;
3790 				crhold(dst_entry->cred);
3791 				*fork_charge += size;
3792 			}
3793 		}
3794 	} else {
3795 		/*
3796 		 * We don't want to make writeable wired pages copy-on-write.
3797 		 * Immediately copy these pages into the new map by simulating
3798 		 * page faults.  The new pages are pageable.
3799 		 */
3800 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3801 		    fork_charge);
3802 	}
3803 }
3804 
3805 /*
3806  * vmspace_map_entry_forked:
3807  * Update the newly-forked vmspace each time a map entry is inherited
3808  * or copied.  The values for vm_dsize and vm_tsize are approximate
3809  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3810  */
3811 static void
vmspace_map_entry_forked(const struct vmspace * vm1,struct vmspace * vm2,vm_map_entry_t entry)3812 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3813     vm_map_entry_t entry)
3814 {
3815 	vm_size_t entrysize;
3816 	vm_offset_t newend;
3817 
3818 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3819 		return;
3820 	entrysize = entry->end - entry->start;
3821 	vm2->vm_map.size += entrysize;
3822 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3823 		vm2->vm_ssize += btoc(entrysize);
3824 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3825 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3826 		newend = MIN(entry->end,
3827 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3828 		vm2->vm_dsize += btoc(newend - entry->start);
3829 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3830 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3831 		newend = MIN(entry->end,
3832 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3833 		vm2->vm_tsize += btoc(newend - entry->start);
3834 	}
3835 }
3836 
3837 /*
3838  * vmspace_fork:
3839  * Create a new process vmspace structure and vm_map
3840  * based on those of an existing process.  The new map
3841  * is based on the old map, according to the inheritance
3842  * values on the regions in that map.
3843  *
3844  * XXX It might be worth coalescing the entries added to the new vmspace.
3845  *
3846  * The source map must not be locked.
3847  */
3848 struct vmspace *
vmspace_fork(struct vmspace * vm1,vm_ooffset_t * fork_charge)3849 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3850 {
3851 	struct vmspace *vm2;
3852 	vm_map_t new_map, old_map;
3853 	vm_map_entry_t new_entry, old_entry;
3854 	vm_object_t object;
3855 	int error, locked;
3856 	vm_inherit_t inh;
3857 
3858 	old_map = &vm1->vm_map;
3859 	/* Copy immutable fields of vm1 to vm2. */
3860 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3861 	    pmap_pinit);
3862 	if (vm2 == NULL)
3863 		return (NULL);
3864 
3865 	vm2->vm_taddr = vm1->vm_taddr;
3866 	vm2->vm_daddr = vm1->vm_daddr;
3867 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3868 	vm_map_lock(old_map);
3869 	if (old_map->busy)
3870 		vm_map_wait_busy(old_map);
3871 	new_map = &vm2->vm_map;
3872 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3873 	KASSERT(locked, ("vmspace_fork: lock failed"));
3874 
3875 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3876 	if (error != 0) {
3877 		sx_xunlock(&old_map->lock);
3878 		sx_xunlock(&new_map->lock);
3879 		vm_map_process_deferred();
3880 		vmspace_free(vm2);
3881 		return (NULL);
3882 	}
3883 
3884 	new_map->anon_loc = old_map->anon_loc;
3885 
3886 	old_entry = old_map->header.next;
3887 
3888 	while (old_entry != &old_map->header) {
3889 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3890 			panic("vm_map_fork: encountered a submap");
3891 
3892 		inh = old_entry->inheritance;
3893 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3894 		    inh != VM_INHERIT_NONE)
3895 			inh = VM_INHERIT_COPY;
3896 
3897 		switch (inh) {
3898 		case VM_INHERIT_NONE:
3899 			break;
3900 
3901 		case VM_INHERIT_SHARE:
3902 			/*
3903 			 * Clone the entry, creating the shared object if necessary.
3904 			 */
3905 			object = old_entry->object.vm_object;
3906 			if (object == NULL) {
3907 				object = vm_object_allocate(OBJT_DEFAULT,
3908 					atop(old_entry->end - old_entry->start));
3909 				old_entry->object.vm_object = object;
3910 				old_entry->offset = 0;
3911 				if (old_entry->cred != NULL) {
3912 					object->cred = old_entry->cred;
3913 					object->charge = old_entry->end -
3914 					    old_entry->start;
3915 					old_entry->cred = NULL;
3916 				}
3917 			}
3918 
3919 			/*
3920 			 * Add the reference before calling vm_object_shadow
3921 			 * to insure that a shadow object is created.
3922 			 */
3923 			vm_object_reference(object);
3924 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3925 				vm_object_shadow(&old_entry->object.vm_object,
3926 				    &old_entry->offset,
3927 				    old_entry->end - old_entry->start);
3928 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3929 				/* Transfer the second reference too. */
3930 				vm_object_reference(
3931 				    old_entry->object.vm_object);
3932 
3933 				/*
3934 				 * As in vm_map_simplify_entry(), the
3935 				 * vnode lock will not be acquired in
3936 				 * this call to vm_object_deallocate().
3937 				 */
3938 				vm_object_deallocate(object);
3939 				object = old_entry->object.vm_object;
3940 			}
3941 			VM_OBJECT_WLOCK(object);
3942 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3943 			if (old_entry->cred != NULL) {
3944 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3945 				object->cred = old_entry->cred;
3946 				object->charge = old_entry->end - old_entry->start;
3947 				old_entry->cred = NULL;
3948 			}
3949 
3950 			/*
3951 			 * Assert the correct state of the vnode
3952 			 * v_writecount while the object is locked, to
3953 			 * not relock it later for the assertion
3954 			 * correctness.
3955 			 */
3956 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3957 			    object->type == OBJT_VNODE) {
3958 				KASSERT(((struct vnode *)object->handle)->
3959 				    v_writecount > 0,
3960 				    ("vmspace_fork: v_writecount %p", object));
3961 				KASSERT(object->un_pager.vnp.writemappings > 0,
3962 				    ("vmspace_fork: vnp.writecount %p",
3963 				    object));
3964 			}
3965 			VM_OBJECT_WUNLOCK(object);
3966 
3967 			/*
3968 			 * Clone the entry, referencing the shared object.
3969 			 */
3970 			new_entry = vm_map_entry_create(new_map);
3971 			*new_entry = *old_entry;
3972 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3973 			    MAP_ENTRY_IN_TRANSITION);
3974 			new_entry->wiring_thread = NULL;
3975 			new_entry->wired_count = 0;
3976 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3977 				vnode_pager_update_writecount(object,
3978 				    new_entry->start, new_entry->end);
3979 			}
3980 			vm_map_entry_set_vnode_text(new_entry, true);
3981 
3982 			/*
3983 			 * Insert the entry into the new map -- we know we're
3984 			 * inserting at the end of the new map.
3985 			 */
3986 			vm_map_entry_link(new_map, new_entry);
3987 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3988 
3989 			/*
3990 			 * Update the physical map
3991 			 */
3992 			pmap_copy(new_map->pmap, old_map->pmap,
3993 			    new_entry->start,
3994 			    (old_entry->end - old_entry->start),
3995 			    old_entry->start);
3996 			break;
3997 
3998 		case VM_INHERIT_COPY:
3999 			/*
4000 			 * Clone the entry and link into the map.
4001 			 */
4002 			new_entry = vm_map_entry_create(new_map);
4003 			*new_entry = *old_entry;
4004 			/*
4005 			 * Copied entry is COW over the old object.
4006 			 */
4007 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4008 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
4009 			new_entry->wiring_thread = NULL;
4010 			new_entry->wired_count = 0;
4011 			new_entry->object.vm_object = NULL;
4012 			new_entry->cred = NULL;
4013 			vm_map_entry_link(new_map, new_entry);
4014 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4015 			vm_map_copy_entry(old_map, new_map, old_entry,
4016 			    new_entry, fork_charge);
4017 			vm_map_entry_set_vnode_text(new_entry, true);
4018 			break;
4019 
4020 		case VM_INHERIT_ZERO:
4021 			/*
4022 			 * Create a new anonymous mapping entry modelled from
4023 			 * the old one.
4024 			 */
4025 			new_entry = vm_map_entry_create(new_map);
4026 			memset(new_entry, 0, sizeof(*new_entry));
4027 
4028 			new_entry->start = old_entry->start;
4029 			new_entry->end = old_entry->end;
4030 			new_entry->eflags = old_entry->eflags &
4031 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4032 			    MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4033 			new_entry->protection = old_entry->protection;
4034 			new_entry->max_protection = old_entry->max_protection;
4035 			new_entry->inheritance = VM_INHERIT_ZERO;
4036 
4037 			vm_map_entry_link(new_map, new_entry);
4038 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4039 
4040 			new_entry->cred = curthread->td_ucred;
4041 			crhold(new_entry->cred);
4042 			*fork_charge += (new_entry->end - new_entry->start);
4043 
4044 			break;
4045 		}
4046 		old_entry = old_entry->next;
4047 	}
4048 	/*
4049 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4050 	 * map entries, which cannot be done until both old_map and
4051 	 * new_map locks are released.
4052 	 */
4053 	sx_xunlock(&old_map->lock);
4054 	sx_xunlock(&new_map->lock);
4055 	vm_map_process_deferred();
4056 
4057 	return (vm2);
4058 }
4059 
4060 /*
4061  * Create a process's stack for exec_new_vmspace().  This function is never
4062  * asked to wire the newly created stack.
4063  */
4064 int
vm_map_stack(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_prot_t prot,vm_prot_t max,int cow)4065 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4066     vm_prot_t prot, vm_prot_t max, int cow)
4067 {
4068 	vm_size_t growsize, init_ssize;
4069 	rlim_t vmemlim;
4070 	int rv;
4071 
4072 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4073 	growsize = sgrowsiz;
4074 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4075 	vm_map_lock(map);
4076 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4077 	/* If we would blow our VMEM resource limit, no go */
4078 	if (map->size + init_ssize > vmemlim) {
4079 		rv = KERN_NO_SPACE;
4080 		goto out;
4081 	}
4082 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4083 	    max, cow);
4084 out:
4085 	vm_map_unlock(map);
4086 	return (rv);
4087 }
4088 
4089 static int stack_guard_page = 1;
4090 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4091     &stack_guard_page, 0,
4092     "Specifies the number of guard pages for a stack that grows");
4093 
4094 static int
vm_map_stack_locked(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_size_t growsize,vm_prot_t prot,vm_prot_t max,int cow)4095 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4096     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4097 {
4098 	vm_map_entry_t new_entry, prev_entry;
4099 	vm_offset_t bot, gap_bot, gap_top, top;
4100 	vm_size_t init_ssize, sgp;
4101 	int orient, rv;
4102 
4103 	/*
4104 	 * The stack orientation is piggybacked with the cow argument.
4105 	 * Extract it into orient and mask the cow argument so that we
4106 	 * don't pass it around further.
4107 	 */
4108 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4109 	KASSERT(orient != 0, ("No stack grow direction"));
4110 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4111 	    ("bi-dir stack"));
4112 
4113 	if (addrbos < vm_map_min(map) ||
4114 	    addrbos + max_ssize > vm_map_max(map) ||
4115 	    addrbos + max_ssize <= addrbos)
4116 		return (KERN_INVALID_ADDRESS);
4117 	sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4118 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4119 	if (sgp >= max_ssize)
4120 		return (KERN_INVALID_ARGUMENT);
4121 
4122 	init_ssize = growsize;
4123 	if (max_ssize < init_ssize + sgp)
4124 		init_ssize = max_ssize - sgp;
4125 
4126 	/* If addr is already mapped, no go */
4127 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4128 		return (KERN_NO_SPACE);
4129 
4130 	/*
4131 	 * If we can't accommodate max_ssize in the current mapping, no go.
4132 	 */
4133 	if (prev_entry->next->start < addrbos + max_ssize)
4134 		return (KERN_NO_SPACE);
4135 
4136 	/*
4137 	 * We initially map a stack of only init_ssize.  We will grow as
4138 	 * needed later.  Depending on the orientation of the stack (i.e.
4139 	 * the grow direction) we either map at the top of the range, the
4140 	 * bottom of the range or in the middle.
4141 	 *
4142 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4143 	 * and cow to be 0.  Possibly we should eliminate these as input
4144 	 * parameters, and just pass these values here in the insert call.
4145 	 */
4146 	if (orient == MAP_STACK_GROWS_DOWN) {
4147 		bot = addrbos + max_ssize - init_ssize;
4148 		top = bot + init_ssize;
4149 		gap_bot = addrbos;
4150 		gap_top = bot;
4151 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4152 		bot = addrbos;
4153 		top = bot + init_ssize;
4154 		gap_bot = top;
4155 		gap_top = addrbos + max_ssize;
4156 	}
4157 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4158 	if (rv != KERN_SUCCESS)
4159 		return (rv);
4160 	new_entry = prev_entry->next;
4161 	KASSERT(new_entry->end == top || new_entry->start == bot,
4162 	    ("Bad entry start/end for new stack entry"));
4163 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4164 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4165 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4166 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4167 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4168 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4169 	if (gap_bot == gap_top)
4170 		return (KERN_SUCCESS);
4171 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4172 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4173 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4174 	if (rv == KERN_SUCCESS) {
4175 		/*
4176 		 * Gap can never successfully handle a fault, so
4177 		 * read-ahead logic is never used for it.  Re-use
4178 		 * next_read of the gap entry to store
4179 		 * stack_guard_page for vm_map_growstack().
4180 		 */
4181 		if (orient == MAP_STACK_GROWS_DOWN)
4182 			new_entry->prev->next_read = sgp;
4183 		else
4184 			new_entry->next->next_read = sgp;
4185 	} else {
4186 		(void)vm_map_delete(map, bot, top);
4187 	}
4188 	return (rv);
4189 }
4190 
4191 /*
4192  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4193  * successfully grow the stack.
4194  */
4195 static int
vm_map_growstack(vm_map_t map,vm_offset_t addr,vm_map_entry_t gap_entry)4196 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4197 {
4198 	vm_map_entry_t stack_entry;
4199 	struct proc *p;
4200 	struct vmspace *vm;
4201 	struct ucred *cred;
4202 	vm_offset_t gap_end, gap_start, grow_start;
4203 	size_t grow_amount, guard, max_grow;
4204 	rlim_t lmemlim, stacklim, vmemlim;
4205 	int rv, rv1;
4206 	bool gap_deleted, grow_down, is_procstack;
4207 #ifdef notyet
4208 	uint64_t limit;
4209 #endif
4210 #ifdef RACCT
4211 	int error;
4212 #endif
4213 
4214 	p = curproc;
4215 	vm = p->p_vmspace;
4216 
4217 	/*
4218 	 * Disallow stack growth when the access is performed by a
4219 	 * debugger or AIO daemon.  The reason is that the wrong
4220 	 * resource limits are applied.
4221 	 */
4222 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4223 	    p->p_textvp == NULL))
4224 		return (KERN_FAILURE);
4225 
4226 	MPASS(!map->system_map);
4227 
4228 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4229 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4230 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4231 retry:
4232 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4233 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4234 		return (KERN_FAILURE);
4235 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4236 		return (KERN_SUCCESS);
4237 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4238 		stack_entry = gap_entry->next;
4239 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4240 		    stack_entry->start != gap_entry->end)
4241 			return (KERN_FAILURE);
4242 		grow_amount = round_page(stack_entry->start - addr);
4243 		grow_down = true;
4244 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4245 		stack_entry = gap_entry->prev;
4246 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4247 		    stack_entry->end != gap_entry->start)
4248 			return (KERN_FAILURE);
4249 		grow_amount = round_page(addr + 1 - stack_entry->end);
4250 		grow_down = false;
4251 	} else {
4252 		return (KERN_FAILURE);
4253 	}
4254 	guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4255 	    gap_entry->next_read;
4256 	max_grow = gap_entry->end - gap_entry->start;
4257 	if (guard > max_grow)
4258 		return (KERN_NO_SPACE);
4259 	max_grow -= guard;
4260 	if (grow_amount > max_grow)
4261 		return (KERN_NO_SPACE);
4262 
4263 	/*
4264 	 * If this is the main process stack, see if we're over the stack
4265 	 * limit.
4266 	 */
4267 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4268 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4269 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4270 		return (KERN_NO_SPACE);
4271 
4272 #ifdef RACCT
4273 	if (racct_enable) {
4274 		PROC_LOCK(p);
4275 		if (is_procstack && racct_set(p, RACCT_STACK,
4276 		    ctob(vm->vm_ssize) + grow_amount)) {
4277 			PROC_UNLOCK(p);
4278 			return (KERN_NO_SPACE);
4279 		}
4280 		PROC_UNLOCK(p);
4281 	}
4282 #endif
4283 
4284 	grow_amount = roundup(grow_amount, sgrowsiz);
4285 	if (grow_amount > max_grow)
4286 		grow_amount = max_grow;
4287 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4288 		grow_amount = trunc_page((vm_size_t)stacklim) -
4289 		    ctob(vm->vm_ssize);
4290 	}
4291 
4292 #ifdef notyet
4293 	PROC_LOCK(p);
4294 	limit = racct_get_available(p, RACCT_STACK);
4295 	PROC_UNLOCK(p);
4296 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4297 		grow_amount = limit - ctob(vm->vm_ssize);
4298 #endif
4299 
4300 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4301 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4302 			rv = KERN_NO_SPACE;
4303 			goto out;
4304 		}
4305 #ifdef RACCT
4306 		if (racct_enable) {
4307 			PROC_LOCK(p);
4308 			if (racct_set(p, RACCT_MEMLOCK,
4309 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4310 				PROC_UNLOCK(p);
4311 				rv = KERN_NO_SPACE;
4312 				goto out;
4313 			}
4314 			PROC_UNLOCK(p);
4315 		}
4316 #endif
4317 	}
4318 
4319 	/* If we would blow our VMEM resource limit, no go */
4320 	if (map->size + grow_amount > vmemlim) {
4321 		rv = KERN_NO_SPACE;
4322 		goto out;
4323 	}
4324 #ifdef RACCT
4325 	if (racct_enable) {
4326 		PROC_LOCK(p);
4327 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4328 			PROC_UNLOCK(p);
4329 			rv = KERN_NO_SPACE;
4330 			goto out;
4331 		}
4332 		PROC_UNLOCK(p);
4333 	}
4334 #endif
4335 
4336 	if (vm_map_lock_upgrade(map)) {
4337 		gap_entry = NULL;
4338 		vm_map_lock_read(map);
4339 		goto retry;
4340 	}
4341 
4342 	if (grow_down) {
4343 		grow_start = gap_entry->end - grow_amount;
4344 		if (gap_entry->start + grow_amount == gap_entry->end) {
4345 			gap_start = gap_entry->start;
4346 			gap_end = gap_entry->end;
4347 			vm_map_entry_delete(map, gap_entry);
4348 			gap_deleted = true;
4349 		} else {
4350 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4351 			gap_entry->end -= grow_amount;
4352 			vm_map_entry_resize_free(map, gap_entry);
4353 			gap_deleted = false;
4354 		}
4355 		rv = vm_map_insert(map, NULL, 0, grow_start,
4356 		    grow_start + grow_amount,
4357 		    stack_entry->protection, stack_entry->max_protection,
4358 		    MAP_STACK_GROWS_DOWN);
4359 		if (rv != KERN_SUCCESS) {
4360 			if (gap_deleted) {
4361 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4362 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4363 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4364 				MPASS(rv1 == KERN_SUCCESS);
4365 			} else {
4366 				gap_entry->end += grow_amount;
4367 				vm_map_entry_resize_free(map, gap_entry);
4368 			}
4369 		}
4370 	} else {
4371 		grow_start = stack_entry->end;
4372 		cred = stack_entry->cred;
4373 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4374 			cred = stack_entry->object.vm_object->cred;
4375 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4376 			rv = KERN_NO_SPACE;
4377 		/* Grow the underlying object if applicable. */
4378 		else if (stack_entry->object.vm_object == NULL ||
4379 		    vm_object_coalesce(stack_entry->object.vm_object,
4380 		    stack_entry->offset,
4381 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4382 		    (vm_size_t)grow_amount, cred != NULL)) {
4383 			if (gap_entry->start + grow_amount == gap_entry->end)
4384 				vm_map_entry_delete(map, gap_entry);
4385 			else
4386 				gap_entry->start += grow_amount;
4387 			stack_entry->end += grow_amount;
4388 			map->size += grow_amount;
4389 			vm_map_entry_resize_free(map, stack_entry);
4390 			rv = KERN_SUCCESS;
4391 		} else
4392 			rv = KERN_FAILURE;
4393 	}
4394 	if (rv == KERN_SUCCESS && is_procstack)
4395 		vm->vm_ssize += btoc(grow_amount);
4396 
4397 	/*
4398 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4399 	 */
4400 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4401 		vm_map_unlock(map);
4402 		vm_map_wire(map, grow_start, grow_start + grow_amount,
4403 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4404 		vm_map_lock_read(map);
4405 	} else
4406 		vm_map_lock_downgrade(map);
4407 
4408 out:
4409 #ifdef RACCT
4410 	if (racct_enable && rv != KERN_SUCCESS) {
4411 		PROC_LOCK(p);
4412 		error = racct_set(p, RACCT_VMEM, map->size);
4413 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4414 		if (!old_mlock) {
4415 			error = racct_set(p, RACCT_MEMLOCK,
4416 			    ptoa(pmap_wired_count(map->pmap)));
4417 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4418 		}
4419 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4420 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4421 		PROC_UNLOCK(p);
4422 	}
4423 #endif
4424 
4425 	return (rv);
4426 }
4427 
4428 /*
4429  * Unshare the specified VM space for exec.  If other processes are
4430  * mapped to it, then create a new one.  The new vmspace is null.
4431  */
4432 int
vmspace_exec(struct proc * p,vm_offset_t minuser,vm_offset_t maxuser)4433 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4434 {
4435 	struct vmspace *oldvmspace = p->p_vmspace;
4436 	struct vmspace *newvmspace;
4437 
4438 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4439 	    ("vmspace_exec recursed"));
4440 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4441 	if (newvmspace == NULL)
4442 		return (ENOMEM);
4443 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4444 	/*
4445 	 * This code is written like this for prototype purposes.  The
4446 	 * goal is to avoid running down the vmspace here, but let the
4447 	 * other process's that are still using the vmspace to finally
4448 	 * run it down.  Even though there is little or no chance of blocking
4449 	 * here, it is a good idea to keep this form for future mods.
4450 	 */
4451 	PROC_VMSPACE_LOCK(p);
4452 	p->p_vmspace = newvmspace;
4453 	PROC_VMSPACE_UNLOCK(p);
4454 	if (p == curthread->td_proc)
4455 		pmap_activate(curthread);
4456 	curthread->td_pflags |= TDP_EXECVMSPC;
4457 	return (0);
4458 }
4459 
4460 /*
4461  * Unshare the specified VM space for forcing COW.  This
4462  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4463  */
4464 int
vmspace_unshare(struct proc * p)4465 vmspace_unshare(struct proc *p)
4466 {
4467 	struct vmspace *oldvmspace = p->p_vmspace;
4468 	struct vmspace *newvmspace;
4469 	vm_ooffset_t fork_charge;
4470 
4471 	if (oldvmspace->vm_refcnt == 1)
4472 		return (0);
4473 	fork_charge = 0;
4474 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4475 	if (newvmspace == NULL)
4476 		return (ENOMEM);
4477 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4478 		vmspace_free(newvmspace);
4479 		return (ENOMEM);
4480 	}
4481 	PROC_VMSPACE_LOCK(p);
4482 	p->p_vmspace = newvmspace;
4483 	PROC_VMSPACE_UNLOCK(p);
4484 	if (p == curthread->td_proc)
4485 		pmap_activate(curthread);
4486 	vmspace_free(oldvmspace);
4487 	return (0);
4488 }
4489 
4490 /*
4491  *	vm_map_lookup:
4492  *
4493  *	Finds the VM object, offset, and
4494  *	protection for a given virtual address in the
4495  *	specified map, assuming a page fault of the
4496  *	type specified.
4497  *
4498  *	Leaves the map in question locked for read; return
4499  *	values are guaranteed until a vm_map_lookup_done
4500  *	call is performed.  Note that the map argument
4501  *	is in/out; the returned map must be used in
4502  *	the call to vm_map_lookup_done.
4503  *
4504  *	A handle (out_entry) is returned for use in
4505  *	vm_map_lookup_done, to make that fast.
4506  *
4507  *	If a lookup is requested with "write protection"
4508  *	specified, the map may be changed to perform virtual
4509  *	copying operations, although the data referenced will
4510  *	remain the same.
4511  */
4512 int
vm_map_lookup(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)4513 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4514 	      vm_offset_t vaddr,
4515 	      vm_prot_t fault_typea,
4516 	      vm_map_entry_t *out_entry,	/* OUT */
4517 	      vm_object_t *object,		/* OUT */
4518 	      vm_pindex_t *pindex,		/* OUT */
4519 	      vm_prot_t *out_prot,		/* OUT */
4520 	      boolean_t *wired)			/* OUT */
4521 {
4522 	vm_map_entry_t entry;
4523 	vm_map_t map = *var_map;
4524 	vm_prot_t prot;
4525 	vm_prot_t fault_type = fault_typea;
4526 	vm_object_t eobject;
4527 	vm_size_t size;
4528 	struct ucred *cred;
4529 
4530 RetryLookup:
4531 
4532 	vm_map_lock_read(map);
4533 
4534 RetryLookupLocked:
4535 	/*
4536 	 * Lookup the faulting address.
4537 	 */
4538 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4539 		vm_map_unlock_read(map);
4540 		return (KERN_INVALID_ADDRESS);
4541 	}
4542 
4543 	entry = *out_entry;
4544 
4545 	/*
4546 	 * Handle submaps.
4547 	 */
4548 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4549 		vm_map_t old_map = map;
4550 
4551 		*var_map = map = entry->object.sub_map;
4552 		vm_map_unlock_read(old_map);
4553 		goto RetryLookup;
4554 	}
4555 
4556 	/*
4557 	 * Check whether this task is allowed to have this page.
4558 	 */
4559 	prot = entry->protection;
4560 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4561 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4562 		if (prot == VM_PROT_NONE && map != kernel_map &&
4563 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4564 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4565 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4566 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4567 			goto RetryLookupLocked;
4568 	}
4569 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4570 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4571 		vm_map_unlock_read(map);
4572 		return (KERN_PROTECTION_FAILURE);
4573 	}
4574 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4575 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4576 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4577 	    ("entry %p flags %x", entry, entry->eflags));
4578 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4579 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4580 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4581 		vm_map_unlock_read(map);
4582 		return (KERN_PROTECTION_FAILURE);
4583 	}
4584 
4585 	/*
4586 	 * If this page is not pageable, we have to get it for all possible
4587 	 * accesses.
4588 	 */
4589 	*wired = (entry->wired_count != 0);
4590 	if (*wired)
4591 		fault_type = entry->protection;
4592 	size = entry->end - entry->start;
4593 	/*
4594 	 * If the entry was copy-on-write, we either ...
4595 	 */
4596 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4597 		/*
4598 		 * If we want to write the page, we may as well handle that
4599 		 * now since we've got the map locked.
4600 		 *
4601 		 * If we don't need to write the page, we just demote the
4602 		 * permissions allowed.
4603 		 */
4604 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4605 		    (fault_typea & VM_PROT_COPY) != 0) {
4606 			/*
4607 			 * Make a new object, and place it in the object
4608 			 * chain.  Note that no new references have appeared
4609 			 * -- one just moved from the map to the new
4610 			 * object.
4611 			 */
4612 			if (vm_map_lock_upgrade(map))
4613 				goto RetryLookup;
4614 
4615 			if (entry->cred == NULL) {
4616 				/*
4617 				 * The debugger owner is charged for
4618 				 * the memory.
4619 				 */
4620 				cred = curthread->td_ucred;
4621 				crhold(cred);
4622 				if (!swap_reserve_by_cred(size, cred)) {
4623 					crfree(cred);
4624 					vm_map_unlock(map);
4625 					return (KERN_RESOURCE_SHORTAGE);
4626 				}
4627 				entry->cred = cred;
4628 			}
4629 			vm_object_shadow(&entry->object.vm_object,
4630 			    &entry->offset, size);
4631 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4632 			eobject = entry->object.vm_object;
4633 			if (eobject->cred != NULL) {
4634 				/*
4635 				 * The object was not shadowed.
4636 				 */
4637 				swap_release_by_cred(size, entry->cred);
4638 				crfree(entry->cred);
4639 				entry->cred = NULL;
4640 			} else if (entry->cred != NULL) {
4641 				VM_OBJECT_WLOCK(eobject);
4642 				eobject->cred = entry->cred;
4643 				eobject->charge = size;
4644 				VM_OBJECT_WUNLOCK(eobject);
4645 				entry->cred = NULL;
4646 			}
4647 
4648 			vm_map_lock_downgrade(map);
4649 		} else {
4650 			/*
4651 			 * We're attempting to read a copy-on-write page --
4652 			 * don't allow writes.
4653 			 */
4654 			prot &= ~VM_PROT_WRITE;
4655 		}
4656 	}
4657 
4658 	/*
4659 	 * Create an object if necessary.
4660 	 */
4661 	if (entry->object.vm_object == NULL &&
4662 	    !map->system_map) {
4663 		if (vm_map_lock_upgrade(map))
4664 			goto RetryLookup;
4665 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4666 		    atop(size));
4667 		entry->offset = 0;
4668 		if (entry->cred != NULL) {
4669 			VM_OBJECT_WLOCK(entry->object.vm_object);
4670 			entry->object.vm_object->cred = entry->cred;
4671 			entry->object.vm_object->charge = size;
4672 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4673 			entry->cred = NULL;
4674 		}
4675 		vm_map_lock_downgrade(map);
4676 	}
4677 
4678 	/*
4679 	 * Return the object/offset from this entry.  If the entry was
4680 	 * copy-on-write or empty, it has been fixed up.
4681 	 */
4682 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4683 	*object = entry->object.vm_object;
4684 
4685 	*out_prot = prot;
4686 	return (KERN_SUCCESS);
4687 }
4688 
4689 /*
4690  *	vm_map_lookup_locked:
4691  *
4692  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4693  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4694  */
4695 int
vm_map_lookup_locked(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)4696 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4697 		     vm_offset_t vaddr,
4698 		     vm_prot_t fault_typea,
4699 		     vm_map_entry_t *out_entry,	/* OUT */
4700 		     vm_object_t *object,	/* OUT */
4701 		     vm_pindex_t *pindex,	/* OUT */
4702 		     vm_prot_t *out_prot,	/* OUT */
4703 		     boolean_t *wired)		/* OUT */
4704 {
4705 	vm_map_entry_t entry;
4706 	vm_map_t map = *var_map;
4707 	vm_prot_t prot;
4708 	vm_prot_t fault_type = fault_typea;
4709 
4710 	/*
4711 	 * Lookup the faulting address.
4712 	 */
4713 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4714 		return (KERN_INVALID_ADDRESS);
4715 
4716 	entry = *out_entry;
4717 
4718 	/*
4719 	 * Fail if the entry refers to a submap.
4720 	 */
4721 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4722 		return (KERN_FAILURE);
4723 
4724 	/*
4725 	 * Check whether this task is allowed to have this page.
4726 	 */
4727 	prot = entry->protection;
4728 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4729 	if ((fault_type & prot) != fault_type)
4730 		return (KERN_PROTECTION_FAILURE);
4731 
4732 	/*
4733 	 * If this page is not pageable, we have to get it for all possible
4734 	 * accesses.
4735 	 */
4736 	*wired = (entry->wired_count != 0);
4737 	if (*wired)
4738 		fault_type = entry->protection;
4739 
4740 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4741 		/*
4742 		 * Fail if the entry was copy-on-write for a write fault.
4743 		 */
4744 		if (fault_type & VM_PROT_WRITE)
4745 			return (KERN_FAILURE);
4746 		/*
4747 		 * We're attempting to read a copy-on-write page --
4748 		 * don't allow writes.
4749 		 */
4750 		prot &= ~VM_PROT_WRITE;
4751 	}
4752 
4753 	/*
4754 	 * Fail if an object should be created.
4755 	 */
4756 	if (entry->object.vm_object == NULL && !map->system_map)
4757 		return (KERN_FAILURE);
4758 
4759 	/*
4760 	 * Return the object/offset from this entry.  If the entry was
4761 	 * copy-on-write or empty, it has been fixed up.
4762 	 */
4763 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4764 	*object = entry->object.vm_object;
4765 
4766 	*out_prot = prot;
4767 	return (KERN_SUCCESS);
4768 }
4769 
4770 /*
4771  *	vm_map_lookup_done:
4772  *
4773  *	Releases locks acquired by a vm_map_lookup
4774  *	(according to the handle returned by that lookup).
4775  */
4776 void
vm_map_lookup_done(vm_map_t map,vm_map_entry_t entry)4777 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4778 {
4779 	/*
4780 	 * Unlock the main-level map
4781 	 */
4782 	vm_map_unlock_read(map);
4783 }
4784 
4785 vm_offset_t
vm_map_max_KBI(const struct vm_map * map)4786 vm_map_max_KBI(const struct vm_map *map)
4787 {
4788 
4789 	return (vm_map_max(map));
4790 }
4791 
4792 vm_offset_t
vm_map_min_KBI(const struct vm_map * map)4793 vm_map_min_KBI(const struct vm_map *map)
4794 {
4795 
4796 	return (vm_map_min(map));
4797 }
4798 
4799 pmap_t
vm_map_pmap_KBI(vm_map_t map)4800 vm_map_pmap_KBI(vm_map_t map)
4801 {
4802 
4803 	return (map->pmap);
4804 }
4805 
4806 #include "opt_ddb.h"
4807 #ifdef DDB
4808 #include <sys/kernel.h>
4809 
4810 #include <ddb/ddb.h>
4811 
4812 static void
vm_map_print(vm_map_t map)4813 vm_map_print(vm_map_t map)
4814 {
4815 	vm_map_entry_t entry;
4816 
4817 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4818 	    (void *)map,
4819 	    (void *)map->pmap, map->nentries, map->timestamp);
4820 
4821 	db_indent += 2;
4822 	for (entry = map->header.next; entry != &map->header;
4823 	    entry = entry->next) {
4824 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4825 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4826 		    entry->eflags);
4827 		{
4828 			static char *inheritance_name[4] =
4829 			{"share", "copy", "none", "donate_copy"};
4830 
4831 			db_iprintf(" prot=%x/%x/%s",
4832 			    entry->protection,
4833 			    entry->max_protection,
4834 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4835 			if (entry->wired_count != 0)
4836 				db_printf(", wired");
4837 		}
4838 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4839 			db_printf(", share=%p, offset=0x%jx\n",
4840 			    (void *)entry->object.sub_map,
4841 			    (uintmax_t)entry->offset);
4842 			if ((entry->prev == &map->header) ||
4843 			    (entry->prev->object.sub_map !=
4844 				entry->object.sub_map)) {
4845 				db_indent += 2;
4846 				vm_map_print((vm_map_t)entry->object.sub_map);
4847 				db_indent -= 2;
4848 			}
4849 		} else {
4850 			if (entry->cred != NULL)
4851 				db_printf(", ruid %d", entry->cred->cr_ruid);
4852 			db_printf(", object=%p, offset=0x%jx",
4853 			    (void *)entry->object.vm_object,
4854 			    (uintmax_t)entry->offset);
4855 			if (entry->object.vm_object && entry->object.vm_object->cred)
4856 				db_printf(", obj ruid %d charge %jx",
4857 				    entry->object.vm_object->cred->cr_ruid,
4858 				    (uintmax_t)entry->object.vm_object->charge);
4859 			if (entry->eflags & MAP_ENTRY_COW)
4860 				db_printf(", copy (%s)",
4861 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4862 			db_printf("\n");
4863 
4864 			if ((entry->prev == &map->header) ||
4865 			    (entry->prev->object.vm_object !=
4866 				entry->object.vm_object)) {
4867 				db_indent += 2;
4868 				vm_object_print((db_expr_t)(intptr_t)
4869 						entry->object.vm_object,
4870 						0, 0, (char *)0);
4871 				db_indent -= 2;
4872 			}
4873 		}
4874 	}
4875 	db_indent -= 2;
4876 }
4877 
DB_SHOW_COMMAND(map,map)4878 DB_SHOW_COMMAND(map, map)
4879 {
4880 
4881 	if (!have_addr) {
4882 		db_printf("usage: show map <addr>\n");
4883 		return;
4884 	}
4885 	vm_map_print((vm_map_t)addr);
4886 }
4887 
DB_SHOW_COMMAND(procvm,procvm)4888 DB_SHOW_COMMAND(procvm, procvm)
4889 {
4890 	struct proc *p;
4891 
4892 	if (have_addr) {
4893 		p = db_lookup_proc(addr);
4894 	} else {
4895 		p = curproc;
4896 	}
4897 
4898 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4899 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4900 	    (void *)vmspace_pmap(p->p_vmspace));
4901 
4902 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4903 }
4904 
4905 #endif /* DDB */
4906