1 /*-
2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
62 */
63
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66
67 #include "opt_quota.h"
68
69 #include <sys/param.h>
70 #include <sys/capsicum.h>
71 #include <sys/systm.h>
72 #include <sys/bio.h>
73 #include <sys/buf.h>
74 #include <sys/conf.h>
75 #include <sys/fcntl.h>
76 #include <sys/file.h>
77 #include <sys/filedesc.h>
78 #include <sys/priv.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/mount.h>
82 #include <sys/kernel.h>
83 #include <sys/syscallsubr.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/taskqueue.h>
87
88 #include <security/audit/audit.h>
89
90 #include <geom/geom.h>
91 #include <geom/geom_vfs.h>
92
93 #include <ufs/ufs/dir.h>
94 #include <ufs/ufs/extattr.h>
95 #include <ufs/ufs/quota.h>
96 #include <ufs/ufs/inode.h>
97 #include <ufs/ufs/ufs_extern.h>
98 #include <ufs/ufs/ufsmount.h>
99
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102 #include <ufs/ffs/softdep.h>
103
104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
105 int size, int rsize);
106
107 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
108 static ufs2_daddr_t
109 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
110 static void ffs_blkfree_cg(struct ufsmount *, struct fs *,
111 struct vnode *, ufs2_daddr_t, long, ino_t,
112 struct workhead *);
113 #ifdef INVARIANTS
114 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long);
115 #endif
116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
117 static ino_t ffs_dirpref(struct inode *);
118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
119 int, int);
120 static ufs2_daddr_t ffs_hashalloc
121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
123 int);
124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
127 static void ffs_ckhash_cg(struct buf *);
128
129 /*
130 * Allocate a block in the filesystem.
131 *
132 * The size of the requested block is given, which must be some
133 * multiple of fs_fsize and <= fs_bsize.
134 * A preference may be optionally specified. If a preference is given
135 * the following hierarchy is used to allocate a block:
136 * 1) allocate the requested block.
137 * 2) allocate a rotationally optimal block in the same cylinder.
138 * 3) allocate a block in the same cylinder group.
139 * 4) quadradically rehash into other cylinder groups, until an
140 * available block is located.
141 * If no block preference is given the following hierarchy is used
142 * to allocate a block:
143 * 1) allocate a block in the cylinder group that contains the
144 * inode for the file.
145 * 2) quadradically rehash into other cylinder groups, until an
146 * available block is located.
147 */
148 int
ffs_alloc(ip,lbn,bpref,size,flags,cred,bnp)149 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
150 struct inode *ip;
151 ufs2_daddr_t lbn, bpref;
152 int size, flags;
153 struct ucred *cred;
154 ufs2_daddr_t *bnp;
155 {
156 struct fs *fs;
157 struct ufsmount *ump;
158 ufs2_daddr_t bno;
159 u_int cg, reclaimed;
160 int64_t delta;
161 #ifdef QUOTA
162 int error;
163 #endif
164
165 *bnp = 0;
166 ump = ITOUMP(ip);
167 fs = ump->um_fs;
168 mtx_assert(UFS_MTX(ump), MA_OWNED);
169 #ifdef INVARIANTS
170 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172 devtoname(ump->um_dev), (long)fs->fs_bsize, size,
173 fs->fs_fsmnt);
174 panic("ffs_alloc: bad size");
175 }
176 if (cred == NOCRED)
177 panic("ffs_alloc: missing credential");
178 #endif /* INVARIANTS */
179 reclaimed = 0;
180 retry:
181 #ifdef QUOTA
182 UFS_UNLOCK(ump);
183 error = chkdq(ip, btodb(size), cred, 0);
184 if (error)
185 return (error);
186 UFS_LOCK(ump);
187 #endif
188 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189 goto nospace;
190 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192 goto nospace;
193 if (bpref >= fs->fs_size)
194 bpref = 0;
195 if (bpref == 0)
196 cg = ino_to_cg(fs, ip->i_number);
197 else
198 cg = dtog(fs, bpref);
199 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200 if (bno > 0) {
201 delta = btodb(size);
202 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203 if (flags & IO_EXT)
204 ip->i_flag |= IN_CHANGE;
205 else
206 ip->i_flag |= IN_CHANGE | IN_UPDATE;
207 *bnp = bno;
208 return (0);
209 }
210 nospace:
211 #ifdef QUOTA
212 UFS_UNLOCK(ump);
213 /*
214 * Restore user's disk quota because allocation failed.
215 */
216 (void) chkdq(ip, -btodb(size), cred, FORCE);
217 UFS_LOCK(ump);
218 #endif
219 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220 reclaimed = 1;
221 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222 goto retry;
223 }
224 if (reclaimed > 0 &&
225 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
226 UFS_UNLOCK(ump);
227 ffs_fserr(fs, ip->i_number, "filesystem full");
228 uprintf("\n%s: write failed, filesystem is full\n",
229 fs->fs_fsmnt);
230 } else {
231 UFS_UNLOCK(ump);
232 }
233 return (ENOSPC);
234 }
235
236 /*
237 * Reallocate a fragment to a bigger size
238 *
239 * The number and size of the old block is given, and a preference
240 * and new size is also specified. The allocator attempts to extend
241 * the original block. Failing that, the regular block allocator is
242 * invoked to get an appropriate block.
243 */
244 int
ffs_realloccg(ip,lbprev,bprev,bpref,osize,nsize,flags,cred,bpp)245 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
246 struct inode *ip;
247 ufs2_daddr_t lbprev;
248 ufs2_daddr_t bprev;
249 ufs2_daddr_t bpref;
250 int osize, nsize, flags;
251 struct ucred *cred;
252 struct buf **bpp;
253 {
254 struct vnode *vp;
255 struct fs *fs;
256 struct buf *bp;
257 struct ufsmount *ump;
258 u_int cg, request, reclaimed;
259 int error, gbflags;
260 ufs2_daddr_t bno;
261 int64_t delta;
262
263 vp = ITOV(ip);
264 ump = ITOUMP(ip);
265 fs = ump->um_fs;
266 bp = NULL;
267 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
268
269 mtx_assert(UFS_MTX(ump), MA_OWNED);
270 #ifdef INVARIANTS
271 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
272 panic("ffs_realloccg: allocation on suspended filesystem");
273 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
274 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
275 printf(
276 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
277 devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
278 nsize, fs->fs_fsmnt);
279 panic("ffs_realloccg: bad size");
280 }
281 if (cred == NOCRED)
282 panic("ffs_realloccg: missing credential");
283 #endif /* INVARIANTS */
284 reclaimed = 0;
285 retry:
286 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
287 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) {
288 goto nospace;
289 }
290 if (bprev == 0) {
291 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
292 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
293 fs->fs_fsmnt);
294 panic("ffs_realloccg: bad bprev");
295 }
296 UFS_UNLOCK(ump);
297 /*
298 * Allocate the extra space in the buffer.
299 */
300 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
301 if (error) {
302 brelse(bp);
303 return (error);
304 }
305
306 if (bp->b_blkno == bp->b_lblkno) {
307 if (lbprev >= UFS_NDADDR)
308 panic("ffs_realloccg: lbprev out of range");
309 bp->b_blkno = fsbtodb(fs, bprev);
310 }
311
312 #ifdef QUOTA
313 error = chkdq(ip, btodb(nsize - osize), cred, 0);
314 if (error) {
315 brelse(bp);
316 return (error);
317 }
318 #endif
319 /*
320 * Check for extension in the existing location.
321 */
322 *bpp = NULL;
323 cg = dtog(fs, bprev);
324 UFS_LOCK(ump);
325 bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
326 if (bno) {
327 if (bp->b_blkno != fsbtodb(fs, bno))
328 panic("ffs_realloccg: bad blockno");
329 delta = btodb(nsize - osize);
330 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
331 if (flags & IO_EXT)
332 ip->i_flag |= IN_CHANGE;
333 else
334 ip->i_flag |= IN_CHANGE | IN_UPDATE;
335 allocbuf(bp, nsize);
336 bp->b_flags |= B_DONE;
337 vfs_bio_bzero_buf(bp, osize, nsize - osize);
338 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
339 vfs_bio_set_valid(bp, osize, nsize - osize);
340 *bpp = bp;
341 return (0);
342 }
343 /*
344 * Allocate a new disk location.
345 */
346 if (bpref >= fs->fs_size)
347 bpref = 0;
348 switch ((int)fs->fs_optim) {
349 case FS_OPTSPACE:
350 /*
351 * Allocate an exact sized fragment. Although this makes
352 * best use of space, we will waste time relocating it if
353 * the file continues to grow. If the fragmentation is
354 * less than half of the minimum free reserve, we choose
355 * to begin optimizing for time.
356 */
357 request = nsize;
358 if (fs->fs_minfree <= 5 ||
359 fs->fs_cstotal.cs_nffree >
360 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
361 break;
362 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
363 fs->fs_fsmnt);
364 fs->fs_optim = FS_OPTTIME;
365 break;
366 case FS_OPTTIME:
367 /*
368 * At this point we have discovered a file that is trying to
369 * grow a small fragment to a larger fragment. To save time,
370 * we allocate a full sized block, then free the unused portion.
371 * If the file continues to grow, the `ffs_fragextend' call
372 * above will be able to grow it in place without further
373 * copying. If aberrant programs cause disk fragmentation to
374 * grow within 2% of the free reserve, we choose to begin
375 * optimizing for space.
376 */
377 request = fs->fs_bsize;
378 if (fs->fs_cstotal.cs_nffree <
379 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
380 break;
381 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
382 fs->fs_fsmnt);
383 fs->fs_optim = FS_OPTSPACE;
384 break;
385 default:
386 printf("dev = %s, optim = %ld, fs = %s\n",
387 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
388 panic("ffs_realloccg: bad optim");
389 /* NOTREACHED */
390 }
391 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
392 if (bno > 0) {
393 bp->b_blkno = fsbtodb(fs, bno);
394 if (!DOINGSOFTDEP(vp))
395 /*
396 * The usual case is that a smaller fragment that
397 * was just allocated has been replaced with a bigger
398 * fragment or a full-size block. If it is marked as
399 * B_DELWRI, the current contents have not been written
400 * to disk. It is possible that the block was written
401 * earlier, but very uncommon. If the block has never
402 * been written, there is no need to send a BIO_DELETE
403 * for it when it is freed. The gain from avoiding the
404 * TRIMs for the common case of unwritten blocks far
405 * exceeds the cost of the write amplification for the
406 * uncommon case of failing to send a TRIM for a block
407 * that had been written.
408 */
409 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
410 ip->i_number, vp->v_type, NULL,
411 (bp->b_flags & B_DELWRI) != 0 ?
412 NOTRIM_KEY : SINGLETON_KEY);
413 delta = btodb(nsize - osize);
414 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
415 if (flags & IO_EXT)
416 ip->i_flag |= IN_CHANGE;
417 else
418 ip->i_flag |= IN_CHANGE | IN_UPDATE;
419 allocbuf(bp, nsize);
420 bp->b_flags |= B_DONE;
421 vfs_bio_bzero_buf(bp, osize, nsize - osize);
422 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
423 vfs_bio_set_valid(bp, osize, nsize - osize);
424 *bpp = bp;
425 return (0);
426 }
427 #ifdef QUOTA
428 UFS_UNLOCK(ump);
429 /*
430 * Restore user's disk quota because allocation failed.
431 */
432 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
433 UFS_LOCK(ump);
434 #endif
435 nospace:
436 /*
437 * no space available
438 */
439 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
440 reclaimed = 1;
441 UFS_UNLOCK(ump);
442 if (bp) {
443 brelse(bp);
444 bp = NULL;
445 }
446 UFS_LOCK(ump);
447 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
448 goto retry;
449 }
450 if (reclaimed > 0 &&
451 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
452 UFS_UNLOCK(ump);
453 ffs_fserr(fs, ip->i_number, "filesystem full");
454 uprintf("\n%s: write failed, filesystem is full\n",
455 fs->fs_fsmnt);
456 } else {
457 UFS_UNLOCK(ump);
458 }
459 if (bp)
460 brelse(bp);
461 return (ENOSPC);
462 }
463
464 /*
465 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
466 *
467 * The vnode and an array of buffer pointers for a range of sequential
468 * logical blocks to be made contiguous is given. The allocator attempts
469 * to find a range of sequential blocks starting as close as possible
470 * from the end of the allocation for the logical block immediately
471 * preceding the current range. If successful, the physical block numbers
472 * in the buffer pointers and in the inode are changed to reflect the new
473 * allocation. If unsuccessful, the allocation is left unchanged. The
474 * success in doing the reallocation is returned. Note that the error
475 * return is not reflected back to the user. Rather the previous block
476 * allocation will be used.
477 */
478
479 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
480
481 static int doasyncfree = 1;
482 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
483 "do not force synchronous writes when blocks are reallocated");
484
485 static int doreallocblks = 1;
486 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
487 "enable block reallocation");
488
489 static int dotrimcons = 1;
490 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
491 "enable BIO_DELETE / TRIM consolidation");
492
493 static int maxclustersearch = 10;
494 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
495 0, "max number of cylinder group to search for contigous blocks");
496
497 #ifdef DEBUG
498 static volatile int prtrealloc = 0;
499 #endif
500
501 int
ffs_reallocblks(ap)502 ffs_reallocblks(ap)
503 struct vop_reallocblks_args /* {
504 struct vnode *a_vp;
505 struct cluster_save *a_buflist;
506 } */ *ap;
507 {
508 struct ufsmount *ump;
509
510 /*
511 * We used to skip reallocating the blocks of a file into a
512 * contiguous sequence if the underlying flash device requested
513 * BIO_DELETE notifications, because devices that benefit from
514 * BIO_DELETE also benefit from not moving the data. However,
515 * the destination for the data is usually moved before the data
516 * is written to the initially allocated location, so we rarely
517 * suffer the penalty of extra writes. With the addition of the
518 * consolidation of contiguous blocks into single BIO_DELETE
519 * operations, having fewer but larger contiguous blocks reduces
520 * the number of (slow and expensive) BIO_DELETE operations. So
521 * when doing BIO_DELETE consolidation, we do block reallocation.
522 *
523 * Skip if reallocblks has been disabled globally.
524 */
525 ump = ap->a_vp->v_mount->mnt_data;
526 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
527 doreallocblks == 0)
528 return (ENOSPC);
529
530 /*
531 * We can't wait in softdep prealloc as it may fsync and recurse
532 * here. Instead we simply fail to reallocate blocks if this
533 * rare condition arises.
534 */
535 if (DOINGSOFTDEP(ap->a_vp))
536 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
537 return (ENOSPC);
538 if (ump->um_fstype == UFS1)
539 return (ffs_reallocblks_ufs1(ap));
540 return (ffs_reallocblks_ufs2(ap));
541 }
542
543 static int
ffs_reallocblks_ufs1(ap)544 ffs_reallocblks_ufs1(ap)
545 struct vop_reallocblks_args /* {
546 struct vnode *a_vp;
547 struct cluster_save *a_buflist;
548 } */ *ap;
549 {
550 struct fs *fs;
551 struct inode *ip;
552 struct vnode *vp;
553 struct buf *sbp, *ebp, *bp;
554 ufs1_daddr_t *bap, *sbap, *ebap;
555 struct cluster_save *buflist;
556 struct ufsmount *ump;
557 ufs_lbn_t start_lbn, end_lbn;
558 ufs1_daddr_t soff, newblk, blkno;
559 ufs2_daddr_t pref;
560 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
561 int i, cg, len, start_lvl, end_lvl, ssize;
562
563 vp = ap->a_vp;
564 ip = VTOI(vp);
565 ump = ITOUMP(ip);
566 fs = ump->um_fs;
567 /*
568 * If we are not tracking block clusters or if we have less than 4%
569 * free blocks left, then do not attempt to cluster. Running with
570 * less than 5% free block reserve is not recommended and those that
571 * choose to do so do not expect to have good file layout.
572 */
573 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
574 return (ENOSPC);
575 buflist = ap->a_buflist;
576 len = buflist->bs_nchildren;
577 start_lbn = buflist->bs_children[0]->b_lblkno;
578 end_lbn = start_lbn + len - 1;
579 #ifdef INVARIANTS
580 for (i = 0; i < len; i++)
581 if (!ffs_checkblk(ip,
582 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
583 panic("ffs_reallocblks: unallocated block 1");
584 for (i = 1; i < len; i++)
585 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
586 panic("ffs_reallocblks: non-logical cluster");
587 blkno = buflist->bs_children[0]->b_blkno;
588 ssize = fsbtodb(fs, fs->fs_frag);
589 for (i = 1; i < len - 1; i++)
590 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
591 panic("ffs_reallocblks: non-physical cluster %d", i);
592 #endif
593 /*
594 * If the cluster crosses the boundary for the first indirect
595 * block, leave space for the indirect block. Indirect blocks
596 * are initially laid out in a position after the last direct
597 * block. Block reallocation would usually destroy locality by
598 * moving the indirect block out of the way to make room for
599 * data blocks if we didn't compensate here. We should also do
600 * this for other indirect block boundaries, but it is only
601 * important for the first one.
602 */
603 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
604 return (ENOSPC);
605 /*
606 * If the latest allocation is in a new cylinder group, assume that
607 * the filesystem has decided to move and do not force it back to
608 * the previous cylinder group.
609 */
610 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
611 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
612 return (ENOSPC);
613 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
614 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
615 return (ENOSPC);
616 /*
617 * Get the starting offset and block map for the first block.
618 */
619 if (start_lvl == 0) {
620 sbap = &ip->i_din1->di_db[0];
621 soff = start_lbn;
622 } else {
623 idp = &start_ap[start_lvl - 1];
624 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
625 brelse(sbp);
626 return (ENOSPC);
627 }
628 sbap = (ufs1_daddr_t *)sbp->b_data;
629 soff = idp->in_off;
630 }
631 /*
632 * If the block range spans two block maps, get the second map.
633 */
634 ebap = NULL;
635 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
636 ssize = len;
637 } else {
638 #ifdef INVARIANTS
639 if (start_lvl > 0 &&
640 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
641 panic("ffs_reallocblk: start == end");
642 #endif
643 ssize = len - (idp->in_off + 1);
644 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
645 goto fail;
646 ebap = (ufs1_daddr_t *)ebp->b_data;
647 }
648 /*
649 * Find the preferred location for the cluster. If we have not
650 * previously failed at this endeavor, then follow our standard
651 * preference calculation. If we have failed at it, then pick up
652 * where we last ended our search.
653 */
654 UFS_LOCK(ump);
655 if (ip->i_nextclustercg == -1)
656 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
657 else
658 pref = cgdata(fs, ip->i_nextclustercg);
659 /*
660 * Search the block map looking for an allocation of the desired size.
661 * To avoid wasting too much time, we limit the number of cylinder
662 * groups that we will search.
663 */
664 cg = dtog(fs, pref);
665 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
666 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
667 break;
668 cg += 1;
669 if (cg >= fs->fs_ncg)
670 cg = 0;
671 }
672 /*
673 * If we have failed in our search, record where we gave up for
674 * next time. Otherwise, fall back to our usual search citerion.
675 */
676 if (newblk == 0) {
677 ip->i_nextclustercg = cg;
678 UFS_UNLOCK(ump);
679 goto fail;
680 }
681 ip->i_nextclustercg = -1;
682 /*
683 * We have found a new contiguous block.
684 *
685 * First we have to replace the old block pointers with the new
686 * block pointers in the inode and indirect blocks associated
687 * with the file.
688 */
689 #ifdef DEBUG
690 if (prtrealloc)
691 printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
692 (uintmax_t)ip->i_number,
693 (intmax_t)start_lbn, (intmax_t)end_lbn);
694 #endif
695 blkno = newblk;
696 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
697 if (i == ssize) {
698 bap = ebap;
699 soff = -i;
700 }
701 #ifdef INVARIANTS
702 if (!ffs_checkblk(ip,
703 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
704 panic("ffs_reallocblks: unallocated block 2");
705 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
706 panic("ffs_reallocblks: alloc mismatch");
707 #endif
708 #ifdef DEBUG
709 if (prtrealloc)
710 printf(" %d,", *bap);
711 #endif
712 if (DOINGSOFTDEP(vp)) {
713 if (sbap == &ip->i_din1->di_db[0] && i < ssize)
714 softdep_setup_allocdirect(ip, start_lbn + i,
715 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
716 buflist->bs_children[i]);
717 else
718 softdep_setup_allocindir_page(ip, start_lbn + i,
719 i < ssize ? sbp : ebp, soff + i, blkno,
720 *bap, buflist->bs_children[i]);
721 }
722 *bap++ = blkno;
723 }
724 /*
725 * Next we must write out the modified inode and indirect blocks.
726 * For strict correctness, the writes should be synchronous since
727 * the old block values may have been written to disk. In practise
728 * they are almost never written, but if we are concerned about
729 * strict correctness, the `doasyncfree' flag should be set to zero.
730 *
731 * The test on `doasyncfree' should be changed to test a flag
732 * that shows whether the associated buffers and inodes have
733 * been written. The flag should be set when the cluster is
734 * started and cleared whenever the buffer or inode is flushed.
735 * We can then check below to see if it is set, and do the
736 * synchronous write only when it has been cleared.
737 */
738 if (sbap != &ip->i_din1->di_db[0]) {
739 if (doasyncfree)
740 bdwrite(sbp);
741 else
742 bwrite(sbp);
743 } else {
744 ip->i_flag |= IN_CHANGE | IN_UPDATE;
745 if (!doasyncfree)
746 ffs_update(vp, 1);
747 }
748 if (ssize < len) {
749 if (doasyncfree)
750 bdwrite(ebp);
751 else
752 bwrite(ebp);
753 }
754 /*
755 * Last, free the old blocks and assign the new blocks to the buffers.
756 */
757 #ifdef DEBUG
758 if (prtrealloc)
759 printf("\n\tnew:");
760 #endif
761 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
762 bp = buflist->bs_children[i];
763 if (!DOINGSOFTDEP(vp))
764 /*
765 * The usual case is that a set of N-contiguous blocks
766 * that was just allocated has been replaced with a
767 * set of N+1-contiguous blocks. If they are marked as
768 * B_DELWRI, the current contents have not been written
769 * to disk. It is possible that the blocks were written
770 * earlier, but very uncommon. If the blocks have never
771 * been written, there is no need to send a BIO_DELETE
772 * for them when they are freed. The gain from avoiding
773 * the TRIMs for the common case of unwritten blocks
774 * far exceeds the cost of the write amplification for
775 * the uncommon case of failing to send a TRIM for the
776 * blocks that had been written.
777 */
778 ffs_blkfree(ump, fs, ump->um_devvp,
779 dbtofsb(fs, bp->b_blkno),
780 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
781 (bp->b_flags & B_DELWRI) != 0 ?
782 NOTRIM_KEY : SINGLETON_KEY);
783 bp->b_blkno = fsbtodb(fs, blkno);
784 #ifdef INVARIANTS
785 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
786 panic("ffs_reallocblks: unallocated block 3");
787 #endif
788 #ifdef DEBUG
789 if (prtrealloc)
790 printf(" %d,", blkno);
791 #endif
792 }
793 #ifdef DEBUG
794 if (prtrealloc) {
795 prtrealloc--;
796 printf("\n");
797 }
798 #endif
799 return (0);
800
801 fail:
802 if (ssize < len)
803 brelse(ebp);
804 if (sbap != &ip->i_din1->di_db[0])
805 brelse(sbp);
806 return (ENOSPC);
807 }
808
809 static int
ffs_reallocblks_ufs2(ap)810 ffs_reallocblks_ufs2(ap)
811 struct vop_reallocblks_args /* {
812 struct vnode *a_vp;
813 struct cluster_save *a_buflist;
814 } */ *ap;
815 {
816 struct fs *fs;
817 struct inode *ip;
818 struct vnode *vp;
819 struct buf *sbp, *ebp, *bp;
820 ufs2_daddr_t *bap, *sbap, *ebap;
821 struct cluster_save *buflist;
822 struct ufsmount *ump;
823 ufs_lbn_t start_lbn, end_lbn;
824 ufs2_daddr_t soff, newblk, blkno, pref;
825 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
826 int i, cg, len, start_lvl, end_lvl, ssize;
827
828 vp = ap->a_vp;
829 ip = VTOI(vp);
830 ump = ITOUMP(ip);
831 fs = ump->um_fs;
832 /*
833 * If we are not tracking block clusters or if we have less than 4%
834 * free blocks left, then do not attempt to cluster. Running with
835 * less than 5% free block reserve is not recommended and those that
836 * choose to do so do not expect to have good file layout.
837 */
838 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
839 return (ENOSPC);
840 buflist = ap->a_buflist;
841 len = buflist->bs_nchildren;
842 start_lbn = buflist->bs_children[0]->b_lblkno;
843 end_lbn = start_lbn + len - 1;
844 #ifdef INVARIANTS
845 for (i = 0; i < len; i++)
846 if (!ffs_checkblk(ip,
847 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
848 panic("ffs_reallocblks: unallocated block 1");
849 for (i = 1; i < len; i++)
850 if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
851 panic("ffs_reallocblks: non-logical cluster");
852 blkno = buflist->bs_children[0]->b_blkno;
853 ssize = fsbtodb(fs, fs->fs_frag);
854 for (i = 1; i < len - 1; i++)
855 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
856 panic("ffs_reallocblks: non-physical cluster %d", i);
857 #endif
858 /*
859 * If the cluster crosses the boundary for the first indirect
860 * block, do not move anything in it. Indirect blocks are
861 * usually initially laid out in a position between the data
862 * blocks. Block reallocation would usually destroy locality by
863 * moving the indirect block out of the way to make room for
864 * data blocks if we didn't compensate here. We should also do
865 * this for other indirect block boundaries, but it is only
866 * important for the first one.
867 */
868 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
869 return (ENOSPC);
870 /*
871 * If the latest allocation is in a new cylinder group, assume that
872 * the filesystem has decided to move and do not force it back to
873 * the previous cylinder group.
874 */
875 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
876 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
877 return (ENOSPC);
878 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
879 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
880 return (ENOSPC);
881 /*
882 * Get the starting offset and block map for the first block.
883 */
884 if (start_lvl == 0) {
885 sbap = &ip->i_din2->di_db[0];
886 soff = start_lbn;
887 } else {
888 idp = &start_ap[start_lvl - 1];
889 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
890 brelse(sbp);
891 return (ENOSPC);
892 }
893 sbap = (ufs2_daddr_t *)sbp->b_data;
894 soff = idp->in_off;
895 }
896 /*
897 * If the block range spans two block maps, get the second map.
898 */
899 ebap = NULL;
900 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
901 ssize = len;
902 } else {
903 #ifdef INVARIANTS
904 if (start_lvl > 0 &&
905 start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
906 panic("ffs_reallocblk: start == end");
907 #endif
908 ssize = len - (idp->in_off + 1);
909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
910 goto fail;
911 ebap = (ufs2_daddr_t *)ebp->b_data;
912 }
913 /*
914 * Find the preferred location for the cluster. If we have not
915 * previously failed at this endeavor, then follow our standard
916 * preference calculation. If we have failed at it, then pick up
917 * where we last ended our search.
918 */
919 UFS_LOCK(ump);
920 if (ip->i_nextclustercg == -1)
921 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
922 else
923 pref = cgdata(fs, ip->i_nextclustercg);
924 /*
925 * Search the block map looking for an allocation of the desired size.
926 * To avoid wasting too much time, we limit the number of cylinder
927 * groups that we will search.
928 */
929 cg = dtog(fs, pref);
930 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
931 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
932 break;
933 cg += 1;
934 if (cg >= fs->fs_ncg)
935 cg = 0;
936 }
937 /*
938 * If we have failed in our search, record where we gave up for
939 * next time. Otherwise, fall back to our usual search citerion.
940 */
941 if (newblk == 0) {
942 ip->i_nextclustercg = cg;
943 UFS_UNLOCK(ump);
944 goto fail;
945 }
946 ip->i_nextclustercg = -1;
947 /*
948 * We have found a new contiguous block.
949 *
950 * First we have to replace the old block pointers with the new
951 * block pointers in the inode and indirect blocks associated
952 * with the file.
953 */
954 #ifdef DEBUG
955 if (prtrealloc)
956 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
957 (intmax_t)start_lbn, (intmax_t)end_lbn);
958 #endif
959 blkno = newblk;
960 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
961 if (i == ssize) {
962 bap = ebap;
963 soff = -i;
964 }
965 #ifdef INVARIANTS
966 if (!ffs_checkblk(ip,
967 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
968 panic("ffs_reallocblks: unallocated block 2");
969 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
970 panic("ffs_reallocblks: alloc mismatch");
971 #endif
972 #ifdef DEBUG
973 if (prtrealloc)
974 printf(" %jd,", (intmax_t)*bap);
975 #endif
976 if (DOINGSOFTDEP(vp)) {
977 if (sbap == &ip->i_din2->di_db[0] && i < ssize)
978 softdep_setup_allocdirect(ip, start_lbn + i,
979 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
980 buflist->bs_children[i]);
981 else
982 softdep_setup_allocindir_page(ip, start_lbn + i,
983 i < ssize ? sbp : ebp, soff + i, blkno,
984 *bap, buflist->bs_children[i]);
985 }
986 *bap++ = blkno;
987 }
988 /*
989 * Next we must write out the modified inode and indirect blocks.
990 * For strict correctness, the writes should be synchronous since
991 * the old block values may have been written to disk. In practise
992 * they are almost never written, but if we are concerned about
993 * strict correctness, the `doasyncfree' flag should be set to zero.
994 *
995 * The test on `doasyncfree' should be changed to test a flag
996 * that shows whether the associated buffers and inodes have
997 * been written. The flag should be set when the cluster is
998 * started and cleared whenever the buffer or inode is flushed.
999 * We can then check below to see if it is set, and do the
1000 * synchronous write only when it has been cleared.
1001 */
1002 if (sbap != &ip->i_din2->di_db[0]) {
1003 if (doasyncfree)
1004 bdwrite(sbp);
1005 else
1006 bwrite(sbp);
1007 } else {
1008 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1009 if (!doasyncfree)
1010 ffs_update(vp, 1);
1011 }
1012 if (ssize < len) {
1013 if (doasyncfree)
1014 bdwrite(ebp);
1015 else
1016 bwrite(ebp);
1017 }
1018 /*
1019 * Last, free the old blocks and assign the new blocks to the buffers.
1020 */
1021 #ifdef DEBUG
1022 if (prtrealloc)
1023 printf("\n\tnew:");
1024 #endif
1025 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1026 bp = buflist->bs_children[i];
1027 if (!DOINGSOFTDEP(vp))
1028 /*
1029 * The usual case is that a set of N-contiguous blocks
1030 * that was just allocated has been replaced with a
1031 * set of N+1-contiguous blocks. If they are marked as
1032 * B_DELWRI, the current contents have not been written
1033 * to disk. It is possible that the blocks were written
1034 * earlier, but very uncommon. If the blocks have never
1035 * been written, there is no need to send a BIO_DELETE
1036 * for them when they are freed. The gain from avoiding
1037 * the TRIMs for the common case of unwritten blocks
1038 * far exceeds the cost of the write amplification for
1039 * the uncommon case of failing to send a TRIM for the
1040 * blocks that had been written.
1041 */
1042 ffs_blkfree(ump, fs, ump->um_devvp,
1043 dbtofsb(fs, bp->b_blkno),
1044 fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1045 (bp->b_flags & B_DELWRI) != 0 ?
1046 NOTRIM_KEY : SINGLETON_KEY);
1047 bp->b_blkno = fsbtodb(fs, blkno);
1048 #ifdef INVARIANTS
1049 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
1050 panic("ffs_reallocblks: unallocated block 3");
1051 #endif
1052 #ifdef DEBUG
1053 if (prtrealloc)
1054 printf(" %jd,", (intmax_t)blkno);
1055 #endif
1056 }
1057 #ifdef DEBUG
1058 if (prtrealloc) {
1059 prtrealloc--;
1060 printf("\n");
1061 }
1062 #endif
1063 return (0);
1064
1065 fail:
1066 if (ssize < len)
1067 brelse(ebp);
1068 if (sbap != &ip->i_din2->di_db[0])
1069 brelse(sbp);
1070 return (ENOSPC);
1071 }
1072
1073 /*
1074 * Allocate an inode in the filesystem.
1075 *
1076 * If allocating a directory, use ffs_dirpref to select the inode.
1077 * If allocating in a directory, the following hierarchy is followed:
1078 * 1) allocate the preferred inode.
1079 * 2) allocate an inode in the same cylinder group.
1080 * 3) quadradically rehash into other cylinder groups, until an
1081 * available inode is located.
1082 * If no inode preference is given the following hierarchy is used
1083 * to allocate an inode:
1084 * 1) allocate an inode in cylinder group 0.
1085 * 2) quadradically rehash into other cylinder groups, until an
1086 * available inode is located.
1087 */
1088 int
ffs_valloc(pvp,mode,cred,vpp)1089 ffs_valloc(pvp, mode, cred, vpp)
1090 struct vnode *pvp;
1091 int mode;
1092 struct ucred *cred;
1093 struct vnode **vpp;
1094 {
1095 struct inode *pip;
1096 struct fs *fs;
1097 struct inode *ip;
1098 struct timespec ts;
1099 struct ufsmount *ump;
1100 ino_t ino, ipref;
1101 u_int cg;
1102 int error, error1, reclaimed;
1103
1104 *vpp = NULL;
1105 pip = VTOI(pvp);
1106 ump = ITOUMP(pip);
1107 fs = ump->um_fs;
1108
1109 UFS_LOCK(ump);
1110 reclaimed = 0;
1111 retry:
1112 if (fs->fs_cstotal.cs_nifree == 0)
1113 goto noinodes;
1114
1115 if ((mode & IFMT) == IFDIR)
1116 ipref = ffs_dirpref(pip);
1117 else
1118 ipref = pip->i_number;
1119 if (ipref >= fs->fs_ncg * fs->fs_ipg)
1120 ipref = 0;
1121 cg = ino_to_cg(fs, ipref);
1122 /*
1123 * Track number of dirs created one after another
1124 * in a same cg without intervening by files.
1125 */
1126 if ((mode & IFMT) == IFDIR) {
1127 if (fs->fs_contigdirs[cg] < 255)
1128 fs->fs_contigdirs[cg]++;
1129 } else {
1130 if (fs->fs_contigdirs[cg] > 0)
1131 fs->fs_contigdirs[cg]--;
1132 }
1133 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1134 (allocfcn_t *)ffs_nodealloccg);
1135 if (ino == 0)
1136 goto noinodes;
1137 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1138 if (error) {
1139 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1140 FFSV_FORCEINSMQ);
1141 ffs_vfree(pvp, ino, mode);
1142 if (error1 == 0) {
1143 ip = VTOI(*vpp);
1144 if (ip->i_mode)
1145 goto dup_alloc;
1146 ip->i_flag |= IN_MODIFIED;
1147 vput(*vpp);
1148 }
1149 return (error);
1150 }
1151 ip = VTOI(*vpp);
1152 if (ip->i_mode) {
1153 dup_alloc:
1154 printf("mode = 0%o, inum = %ju, fs = %s\n",
1155 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1156 panic("ffs_valloc: dup alloc");
1157 }
1158 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */
1159 printf("free inode %s/%lu had %ld blocks\n",
1160 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1161 DIP_SET(ip, i_blocks, 0);
1162 }
1163 ip->i_flags = 0;
1164 DIP_SET(ip, i_flags, 0);
1165 /*
1166 * Set up a new generation number for this inode.
1167 */
1168 while (ip->i_gen == 0 || ++ip->i_gen == 0)
1169 ip->i_gen = arc4random();
1170 DIP_SET(ip, i_gen, ip->i_gen);
1171 if (fs->fs_magic == FS_UFS2_MAGIC) {
1172 vfs_timestamp(&ts);
1173 ip->i_din2->di_birthtime = ts.tv_sec;
1174 ip->i_din2->di_birthnsec = ts.tv_nsec;
1175 }
1176 ufs_prepare_reclaim(*vpp);
1177 ip->i_flag = 0;
1178 (*vpp)->v_vflag = 0;
1179 (*vpp)->v_type = VNON;
1180 if (fs->fs_magic == FS_UFS2_MAGIC) {
1181 (*vpp)->v_op = &ffs_vnodeops2;
1182 ip->i_flag |= IN_UFS2;
1183 } else {
1184 (*vpp)->v_op = &ffs_vnodeops1;
1185 }
1186 return (0);
1187 noinodes:
1188 if (reclaimed == 0) {
1189 reclaimed = 1;
1190 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1191 goto retry;
1192 }
1193 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1194 UFS_UNLOCK(ump);
1195 ffs_fserr(fs, pip->i_number, "out of inodes");
1196 uprintf("\n%s: create/symlink failed, no inodes free\n",
1197 fs->fs_fsmnt);
1198 } else {
1199 UFS_UNLOCK(ump);
1200 }
1201 return (ENOSPC);
1202 }
1203
1204 /*
1205 * Find a cylinder group to place a directory.
1206 *
1207 * The policy implemented by this algorithm is to allocate a
1208 * directory inode in the same cylinder group as its parent
1209 * directory, but also to reserve space for its files inodes
1210 * and data. Restrict the number of directories which may be
1211 * allocated one after another in the same cylinder group
1212 * without intervening allocation of files.
1213 *
1214 * If we allocate a first level directory then force allocation
1215 * in another cylinder group.
1216 */
1217 static ino_t
ffs_dirpref(pip)1218 ffs_dirpref(pip)
1219 struct inode *pip;
1220 {
1221 struct fs *fs;
1222 int cg, prefcg, dirsize, cgsize;
1223 u_int avgifree, avgbfree, avgndir, curdirsize;
1224 u_int minifree, minbfree, maxndir;
1225 u_int mincg, minndir;
1226 u_int maxcontigdirs;
1227
1228 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1229 fs = ITOFS(pip);
1230
1231 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1232 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1233 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1234
1235 /*
1236 * Force allocation in another cg if creating a first level dir.
1237 */
1238 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1239 if (ITOV(pip)->v_vflag & VV_ROOT) {
1240 prefcg = arc4random() % fs->fs_ncg;
1241 mincg = prefcg;
1242 minndir = fs->fs_ipg;
1243 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1244 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1245 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1246 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1247 mincg = cg;
1248 minndir = fs->fs_cs(fs, cg).cs_ndir;
1249 }
1250 for (cg = 0; cg < prefcg; cg++)
1251 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1252 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1253 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1254 mincg = cg;
1255 minndir = fs->fs_cs(fs, cg).cs_ndir;
1256 }
1257 return ((ino_t)(fs->fs_ipg * mincg));
1258 }
1259
1260 /*
1261 * Count various limits which used for
1262 * optimal allocation of a directory inode.
1263 */
1264 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1265 minifree = avgifree - avgifree / 4;
1266 if (minifree < 1)
1267 minifree = 1;
1268 minbfree = avgbfree - avgbfree / 4;
1269 if (minbfree < 1)
1270 minbfree = 1;
1271 cgsize = fs->fs_fsize * fs->fs_fpg;
1272 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1273 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1274 if (dirsize < curdirsize)
1275 dirsize = curdirsize;
1276 if (dirsize <= 0)
1277 maxcontigdirs = 0; /* dirsize overflowed */
1278 else
1279 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1280 if (fs->fs_avgfpdir > 0)
1281 maxcontigdirs = min(maxcontigdirs,
1282 fs->fs_ipg / fs->fs_avgfpdir);
1283 if (maxcontigdirs == 0)
1284 maxcontigdirs = 1;
1285
1286 /*
1287 * Limit number of dirs in one cg and reserve space for
1288 * regular files, but only if we have no deficit in
1289 * inodes or space.
1290 *
1291 * We are trying to find a suitable cylinder group nearby
1292 * our preferred cylinder group to place a new directory.
1293 * We scan from our preferred cylinder group forward looking
1294 * for a cylinder group that meets our criterion. If we get
1295 * to the final cylinder group and do not find anything,
1296 * we start scanning forwards from the beginning of the
1297 * filesystem. While it might seem sensible to start scanning
1298 * backwards or even to alternate looking forward and backward,
1299 * this approach fails badly when the filesystem is nearly full.
1300 * Specifically, we first search all the areas that have no space
1301 * and finally try the one preceding that. We repeat this on
1302 * every request and in the case of the final block end up
1303 * searching the entire filesystem. By jumping to the front
1304 * of the filesystem, our future forward searches always look
1305 * in new cylinder groups so finds every possible block after
1306 * one pass over the filesystem.
1307 */
1308 prefcg = ino_to_cg(fs, pip->i_number);
1309 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1310 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1311 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1312 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1313 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1314 return ((ino_t)(fs->fs_ipg * cg));
1315 }
1316 for (cg = 0; cg < prefcg; cg++)
1317 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1318 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1319 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1320 if (fs->fs_contigdirs[cg] < maxcontigdirs)
1321 return ((ino_t)(fs->fs_ipg * cg));
1322 }
1323 /*
1324 * This is a backstop when we have deficit in space.
1325 */
1326 for (cg = prefcg; cg < fs->fs_ncg; cg++)
1327 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1328 return ((ino_t)(fs->fs_ipg * cg));
1329 for (cg = 0; cg < prefcg; cg++)
1330 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1331 break;
1332 return ((ino_t)(fs->fs_ipg * cg));
1333 }
1334
1335 /*
1336 * Select the desired position for the next block in a file. The file is
1337 * logically divided into sections. The first section is composed of the
1338 * direct blocks and the next fs_maxbpg blocks. Each additional section
1339 * contains fs_maxbpg blocks.
1340 *
1341 * If no blocks have been allocated in the first section, the policy is to
1342 * request a block in the same cylinder group as the inode that describes
1343 * the file. The first indirect is allocated immediately following the last
1344 * direct block and the data blocks for the first indirect immediately
1345 * follow it.
1346 *
1347 * If no blocks have been allocated in any other section, the indirect
1348 * block(s) are allocated in the same cylinder group as its inode in an
1349 * area reserved immediately following the inode blocks. The policy for
1350 * the data blocks is to place them in a cylinder group with a greater than
1351 * average number of free blocks. An appropriate cylinder group is found
1352 * by using a rotor that sweeps the cylinder groups. When a new group of
1353 * blocks is needed, the sweep begins in the cylinder group following the
1354 * cylinder group from which the previous allocation was made. The sweep
1355 * continues until a cylinder group with greater than the average number
1356 * of free blocks is found. If the allocation is for the first block in an
1357 * indirect block or the previous block is a hole, then the information on
1358 * the previous allocation is unavailable; here a best guess is made based
1359 * on the logical block number being allocated.
1360 *
1361 * If a section is already partially allocated, the policy is to
1362 * allocate blocks contiguously within the section if possible.
1363 */
1364 ufs2_daddr_t
ffs_blkpref_ufs1(ip,lbn,indx,bap)1365 ffs_blkpref_ufs1(ip, lbn, indx, bap)
1366 struct inode *ip;
1367 ufs_lbn_t lbn;
1368 int indx;
1369 ufs1_daddr_t *bap;
1370 {
1371 struct fs *fs;
1372 u_int cg, inocg;
1373 u_int avgbfree, startcg;
1374 ufs2_daddr_t pref, prevbn;
1375
1376 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1377 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1378 fs = ITOFS(ip);
1379 /*
1380 * Allocation of indirect blocks is indicated by passing negative
1381 * values in indx: -1 for single indirect, -2 for double indirect,
1382 * -3 for triple indirect. As noted below, we attempt to allocate
1383 * the first indirect inline with the file data. For all later
1384 * indirect blocks, the data is often allocated in other cylinder
1385 * groups. However to speed random file access and to speed up
1386 * fsck, the filesystem reserves the first fs_metaspace blocks
1387 * (typically half of fs_minfree) of the data area of each cylinder
1388 * group to hold these later indirect blocks.
1389 */
1390 inocg = ino_to_cg(fs, ip->i_number);
1391 if (indx < 0) {
1392 /*
1393 * Our preference for indirect blocks is the zone at the
1394 * beginning of the inode's cylinder group data area that
1395 * we try to reserve for indirect blocks.
1396 */
1397 pref = cgmeta(fs, inocg);
1398 /*
1399 * If we are allocating the first indirect block, try to
1400 * place it immediately following the last direct block.
1401 */
1402 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1403 ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1404 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1405 return (pref);
1406 }
1407 /*
1408 * If we are allocating the first data block in the first indirect
1409 * block and the indirect has been allocated in the data block area,
1410 * try to place it immediately following the indirect block.
1411 */
1412 if (lbn == UFS_NDADDR) {
1413 pref = ip->i_din1->di_ib[0];
1414 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1415 pref < cgbase(fs, inocg + 1))
1416 return (pref + fs->fs_frag);
1417 }
1418 /*
1419 * If we are at the beginning of a file, or we have already allocated
1420 * the maximum number of blocks per cylinder group, or we do not
1421 * have a block allocated immediately preceding us, then we need
1422 * to decide where to start allocating new blocks.
1423 */
1424 if (indx == 0) {
1425 prevbn = 0;
1426 } else {
1427 prevbn = bap[indx - 1];
1428 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1429 fs->fs_bsize) != 0)
1430 prevbn = 0;
1431 }
1432 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1433 /*
1434 * If we are allocating a directory data block, we want
1435 * to place it in the metadata area.
1436 */
1437 if ((ip->i_mode & IFMT) == IFDIR)
1438 return (cgmeta(fs, inocg));
1439 /*
1440 * Until we fill all the direct and all the first indirect's
1441 * blocks, we try to allocate in the data area of the inode's
1442 * cylinder group.
1443 */
1444 if (lbn < UFS_NDADDR + NINDIR(fs))
1445 return (cgdata(fs, inocg));
1446 /*
1447 * Find a cylinder with greater than average number of
1448 * unused data blocks.
1449 */
1450 if (indx == 0 || prevbn == 0)
1451 startcg = inocg + lbn / fs->fs_maxbpg;
1452 else
1453 startcg = dtog(fs, prevbn) + 1;
1454 startcg %= fs->fs_ncg;
1455 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1456 for (cg = startcg; cg < fs->fs_ncg; cg++)
1457 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1458 fs->fs_cgrotor = cg;
1459 return (cgdata(fs, cg));
1460 }
1461 for (cg = 0; cg <= startcg; cg++)
1462 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1463 fs->fs_cgrotor = cg;
1464 return (cgdata(fs, cg));
1465 }
1466 return (0);
1467 }
1468 /*
1469 * Otherwise, we just always try to lay things out contiguously.
1470 */
1471 return (prevbn + fs->fs_frag);
1472 }
1473
1474 /*
1475 * Same as above, but for UFS2
1476 */
1477 ufs2_daddr_t
ffs_blkpref_ufs2(ip,lbn,indx,bap)1478 ffs_blkpref_ufs2(ip, lbn, indx, bap)
1479 struct inode *ip;
1480 ufs_lbn_t lbn;
1481 int indx;
1482 ufs2_daddr_t *bap;
1483 {
1484 struct fs *fs;
1485 u_int cg, inocg;
1486 u_int avgbfree, startcg;
1487 ufs2_daddr_t pref, prevbn;
1488
1489 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1490 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1491 fs = ITOFS(ip);
1492 /*
1493 * Allocation of indirect blocks is indicated by passing negative
1494 * values in indx: -1 for single indirect, -2 for double indirect,
1495 * -3 for triple indirect. As noted below, we attempt to allocate
1496 * the first indirect inline with the file data. For all later
1497 * indirect blocks, the data is often allocated in other cylinder
1498 * groups. However to speed random file access and to speed up
1499 * fsck, the filesystem reserves the first fs_metaspace blocks
1500 * (typically half of fs_minfree) of the data area of each cylinder
1501 * group to hold these later indirect blocks.
1502 */
1503 inocg = ino_to_cg(fs, ip->i_number);
1504 if (indx < 0) {
1505 /*
1506 * Our preference for indirect blocks is the zone at the
1507 * beginning of the inode's cylinder group data area that
1508 * we try to reserve for indirect blocks.
1509 */
1510 pref = cgmeta(fs, inocg);
1511 /*
1512 * If we are allocating the first indirect block, try to
1513 * place it immediately following the last direct block.
1514 */
1515 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1516 ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1517 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1518 return (pref);
1519 }
1520 /*
1521 * If we are allocating the first data block in the first indirect
1522 * block and the indirect has been allocated in the data block area,
1523 * try to place it immediately following the indirect block.
1524 */
1525 if (lbn == UFS_NDADDR) {
1526 pref = ip->i_din2->di_ib[0];
1527 if (pref != 0 && pref >= cgdata(fs, inocg) &&
1528 pref < cgbase(fs, inocg + 1))
1529 return (pref + fs->fs_frag);
1530 }
1531 /*
1532 * If we are at the beginning of a file, or we have already allocated
1533 * the maximum number of blocks per cylinder group, or we do not
1534 * have a block allocated immediately preceding us, then we need
1535 * to decide where to start allocating new blocks.
1536 */
1537 if (indx == 0) {
1538 prevbn = 0;
1539 } else {
1540 prevbn = bap[indx - 1];
1541 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1542 fs->fs_bsize) != 0)
1543 prevbn = 0;
1544 }
1545 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1546 /*
1547 * If we are allocating a directory data block, we want
1548 * to place it in the metadata area.
1549 */
1550 if ((ip->i_mode & IFMT) == IFDIR)
1551 return (cgmeta(fs, inocg));
1552 /*
1553 * Until we fill all the direct and all the first indirect's
1554 * blocks, we try to allocate in the data area of the inode's
1555 * cylinder group.
1556 */
1557 if (lbn < UFS_NDADDR + NINDIR(fs))
1558 return (cgdata(fs, inocg));
1559 /*
1560 * Find a cylinder with greater than average number of
1561 * unused data blocks.
1562 */
1563 if (indx == 0 || prevbn == 0)
1564 startcg = inocg + lbn / fs->fs_maxbpg;
1565 else
1566 startcg = dtog(fs, prevbn) + 1;
1567 startcg %= fs->fs_ncg;
1568 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1569 for (cg = startcg; cg < fs->fs_ncg; cg++)
1570 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1571 fs->fs_cgrotor = cg;
1572 return (cgdata(fs, cg));
1573 }
1574 for (cg = 0; cg <= startcg; cg++)
1575 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1576 fs->fs_cgrotor = cg;
1577 return (cgdata(fs, cg));
1578 }
1579 return (0);
1580 }
1581 /*
1582 * Otherwise, we just always try to lay things out contiguously.
1583 */
1584 return (prevbn + fs->fs_frag);
1585 }
1586
1587 /*
1588 * Implement the cylinder overflow algorithm.
1589 *
1590 * The policy implemented by this algorithm is:
1591 * 1) allocate the block in its requested cylinder group.
1592 * 2) quadradically rehash on the cylinder group number.
1593 * 3) brute force search for a free block.
1594 *
1595 * Must be called with the UFS lock held. Will release the lock on success
1596 * and return with it held on failure.
1597 */
1598 /*VARARGS5*/
1599 static ufs2_daddr_t
ffs_hashalloc(ip,cg,pref,size,rsize,allocator)1600 ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1601 struct inode *ip;
1602 u_int cg;
1603 ufs2_daddr_t pref;
1604 int size; /* Search size for data blocks, mode for inodes */
1605 int rsize; /* Real allocated size. */
1606 allocfcn_t *allocator;
1607 {
1608 struct fs *fs;
1609 ufs2_daddr_t result;
1610 u_int i, icg = cg;
1611
1612 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1613 #ifdef INVARIANTS
1614 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1615 panic("ffs_hashalloc: allocation on suspended filesystem");
1616 #endif
1617 fs = ITOFS(ip);
1618 /*
1619 * 1: preferred cylinder group
1620 */
1621 result = (*allocator)(ip, cg, pref, size, rsize);
1622 if (result)
1623 return (result);
1624 /*
1625 * 2: quadratic rehash
1626 */
1627 for (i = 1; i < fs->fs_ncg; i *= 2) {
1628 cg += i;
1629 if (cg >= fs->fs_ncg)
1630 cg -= fs->fs_ncg;
1631 result = (*allocator)(ip, cg, 0, size, rsize);
1632 if (result)
1633 return (result);
1634 }
1635 /*
1636 * 3: brute force search
1637 * Note that we start at i == 2, since 0 was checked initially,
1638 * and 1 is always checked in the quadratic rehash.
1639 */
1640 cg = (icg + 2) % fs->fs_ncg;
1641 for (i = 2; i < fs->fs_ncg; i++) {
1642 result = (*allocator)(ip, cg, 0, size, rsize);
1643 if (result)
1644 return (result);
1645 cg++;
1646 if (cg == fs->fs_ncg)
1647 cg = 0;
1648 }
1649 return (0);
1650 }
1651
1652 /*
1653 * Determine whether a fragment can be extended.
1654 *
1655 * Check to see if the necessary fragments are available, and
1656 * if they are, allocate them.
1657 */
1658 static ufs2_daddr_t
ffs_fragextend(ip,cg,bprev,osize,nsize)1659 ffs_fragextend(ip, cg, bprev, osize, nsize)
1660 struct inode *ip;
1661 u_int cg;
1662 ufs2_daddr_t bprev;
1663 int osize, nsize;
1664 {
1665 struct fs *fs;
1666 struct cg *cgp;
1667 struct buf *bp;
1668 struct ufsmount *ump;
1669 int nffree;
1670 long bno;
1671 int frags, bbase;
1672 int i, error;
1673 u_int8_t *blksfree;
1674
1675 ump = ITOUMP(ip);
1676 fs = ump->um_fs;
1677 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1678 return (0);
1679 frags = numfrags(fs, nsize);
1680 bbase = fragnum(fs, bprev);
1681 if (bbase > fragnum(fs, (bprev + frags - 1))) {
1682 /* cannot extend across a block boundary */
1683 return (0);
1684 }
1685 UFS_UNLOCK(ump);
1686 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0)
1687 goto fail;
1688 bno = dtogd(fs, bprev);
1689 blksfree = cg_blksfree(cgp);
1690 for (i = numfrags(fs, osize); i < frags; i++)
1691 if (isclr(blksfree, bno + i))
1692 goto fail;
1693 /*
1694 * the current fragment can be extended
1695 * deduct the count on fragment being extended into
1696 * increase the count on the remaining fragment (if any)
1697 * allocate the extended piece
1698 */
1699 for (i = frags; i < fs->fs_frag - bbase; i++)
1700 if (isclr(blksfree, bno + i))
1701 break;
1702 cgp->cg_frsum[i - numfrags(fs, osize)]--;
1703 if (i != frags)
1704 cgp->cg_frsum[i - frags]++;
1705 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1706 clrbit(blksfree, bno + i);
1707 cgp->cg_cs.cs_nffree--;
1708 nffree++;
1709 }
1710 UFS_LOCK(ump);
1711 fs->fs_cstotal.cs_nffree -= nffree;
1712 fs->fs_cs(fs, cg).cs_nffree -= nffree;
1713 fs->fs_fmod = 1;
1714 ACTIVECLEAR(fs, cg);
1715 UFS_UNLOCK(ump);
1716 if (DOINGSOFTDEP(ITOV(ip)))
1717 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1718 frags, numfrags(fs, osize));
1719 bdwrite(bp);
1720 return (bprev);
1721
1722 fail:
1723 brelse(bp);
1724 UFS_LOCK(ump);
1725 return (0);
1726
1727 }
1728
1729 /*
1730 * Determine whether a block can be allocated.
1731 *
1732 * Check to see if a block of the appropriate size is available,
1733 * and if it is, allocate it.
1734 */
1735 static ufs2_daddr_t
ffs_alloccg(ip,cg,bpref,size,rsize)1736 ffs_alloccg(ip, cg, bpref, size, rsize)
1737 struct inode *ip;
1738 u_int cg;
1739 ufs2_daddr_t bpref;
1740 int size;
1741 int rsize;
1742 {
1743 struct fs *fs;
1744 struct cg *cgp;
1745 struct buf *bp;
1746 struct ufsmount *ump;
1747 ufs1_daddr_t bno;
1748 ufs2_daddr_t blkno;
1749 int i, allocsiz, error, frags;
1750 u_int8_t *blksfree;
1751
1752 ump = ITOUMP(ip);
1753 fs = ump->um_fs;
1754 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1755 return (0);
1756 UFS_UNLOCK(ump);
1757 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 ||
1758 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1759 goto fail;
1760 if (size == fs->fs_bsize) {
1761 UFS_LOCK(ump);
1762 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1763 ACTIVECLEAR(fs, cg);
1764 UFS_UNLOCK(ump);
1765 bdwrite(bp);
1766 return (blkno);
1767 }
1768 /*
1769 * check to see if any fragments are already available
1770 * allocsiz is the size which will be allocated, hacking
1771 * it down to a smaller size if necessary
1772 */
1773 blksfree = cg_blksfree(cgp);
1774 frags = numfrags(fs, size);
1775 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1776 if (cgp->cg_frsum[allocsiz] != 0)
1777 break;
1778 if (allocsiz == fs->fs_frag) {
1779 /*
1780 * no fragments were available, so a block will be
1781 * allocated, and hacked up
1782 */
1783 if (cgp->cg_cs.cs_nbfree == 0)
1784 goto fail;
1785 UFS_LOCK(ump);
1786 blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1787 ACTIVECLEAR(fs, cg);
1788 UFS_UNLOCK(ump);
1789 bdwrite(bp);
1790 return (blkno);
1791 }
1792 KASSERT(size == rsize,
1793 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1794 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1795 if (bno < 0)
1796 goto fail;
1797 for (i = 0; i < frags; i++)
1798 clrbit(blksfree, bno + i);
1799 cgp->cg_cs.cs_nffree -= frags;
1800 cgp->cg_frsum[allocsiz]--;
1801 if (frags != allocsiz)
1802 cgp->cg_frsum[allocsiz - frags]++;
1803 UFS_LOCK(ump);
1804 fs->fs_cstotal.cs_nffree -= frags;
1805 fs->fs_cs(fs, cg).cs_nffree -= frags;
1806 fs->fs_fmod = 1;
1807 blkno = cgbase(fs, cg) + bno;
1808 ACTIVECLEAR(fs, cg);
1809 UFS_UNLOCK(ump);
1810 if (DOINGSOFTDEP(ITOV(ip)))
1811 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1812 bdwrite(bp);
1813 return (blkno);
1814
1815 fail:
1816 brelse(bp);
1817 UFS_LOCK(ump);
1818 return (0);
1819 }
1820
1821 /*
1822 * Allocate a block in a cylinder group.
1823 *
1824 * This algorithm implements the following policy:
1825 * 1) allocate the requested block.
1826 * 2) allocate a rotationally optimal block in the same cylinder.
1827 * 3) allocate the next available block on the block rotor for the
1828 * specified cylinder group.
1829 * Note that this routine only allocates fs_bsize blocks; these
1830 * blocks may be fragmented by the routine that allocates them.
1831 */
1832 static ufs2_daddr_t
ffs_alloccgblk(ip,bp,bpref,size)1833 ffs_alloccgblk(ip, bp, bpref, size)
1834 struct inode *ip;
1835 struct buf *bp;
1836 ufs2_daddr_t bpref;
1837 int size;
1838 {
1839 struct fs *fs;
1840 struct cg *cgp;
1841 struct ufsmount *ump;
1842 ufs1_daddr_t bno;
1843 ufs2_daddr_t blkno;
1844 u_int8_t *blksfree;
1845 int i, cgbpref;
1846
1847 ump = ITOUMP(ip);
1848 fs = ump->um_fs;
1849 mtx_assert(UFS_MTX(ump), MA_OWNED);
1850 cgp = (struct cg *)bp->b_data;
1851 blksfree = cg_blksfree(cgp);
1852 if (bpref == 0) {
1853 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1854 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1855 /* map bpref to correct zone in this cg */
1856 if (bpref < cgdata(fs, cgbpref))
1857 bpref = cgmeta(fs, cgp->cg_cgx);
1858 else
1859 bpref = cgdata(fs, cgp->cg_cgx);
1860 }
1861 /*
1862 * if the requested block is available, use it
1863 */
1864 bno = dtogd(fs, blknum(fs, bpref));
1865 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1866 goto gotit;
1867 /*
1868 * Take the next available block in this cylinder group.
1869 */
1870 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1871 if (bno < 0)
1872 return (0);
1873 /* Update cg_rotor only if allocated from the data zone */
1874 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1875 cgp->cg_rotor = bno;
1876 gotit:
1877 blkno = fragstoblks(fs, bno);
1878 ffs_clrblock(fs, blksfree, (long)blkno);
1879 ffs_clusteracct(fs, cgp, blkno, -1);
1880 cgp->cg_cs.cs_nbfree--;
1881 fs->fs_cstotal.cs_nbfree--;
1882 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1883 fs->fs_fmod = 1;
1884 blkno = cgbase(fs, cgp->cg_cgx) + bno;
1885 /*
1886 * If the caller didn't want the whole block free the frags here.
1887 */
1888 size = numfrags(fs, size);
1889 if (size != fs->fs_frag) {
1890 bno = dtogd(fs, blkno);
1891 for (i = size; i < fs->fs_frag; i++)
1892 setbit(blksfree, bno + i);
1893 i = fs->fs_frag - size;
1894 cgp->cg_cs.cs_nffree += i;
1895 fs->fs_cstotal.cs_nffree += i;
1896 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1897 fs->fs_fmod = 1;
1898 cgp->cg_frsum[i]++;
1899 }
1900 /* XXX Fixme. */
1901 UFS_UNLOCK(ump);
1902 if (DOINGSOFTDEP(ITOV(ip)))
1903 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1904 UFS_LOCK(ump);
1905 return (blkno);
1906 }
1907
1908 /*
1909 * Determine whether a cluster can be allocated.
1910 *
1911 * We do not currently check for optimal rotational layout if there
1912 * are multiple choices in the same cylinder group. Instead we just
1913 * take the first one that we find following bpref.
1914 */
1915 static ufs2_daddr_t
ffs_clusteralloc(ip,cg,bpref,len)1916 ffs_clusteralloc(ip, cg, bpref, len)
1917 struct inode *ip;
1918 u_int cg;
1919 ufs2_daddr_t bpref;
1920 int len;
1921 {
1922 struct fs *fs;
1923 struct cg *cgp;
1924 struct buf *bp;
1925 struct ufsmount *ump;
1926 int i, run, bit, map, got, error;
1927 ufs2_daddr_t bno;
1928 u_char *mapp;
1929 int32_t *lp;
1930 u_int8_t *blksfree;
1931
1932 ump = ITOUMP(ip);
1933 fs = ump->um_fs;
1934 if (fs->fs_maxcluster[cg] < len)
1935 return (0);
1936 UFS_UNLOCK(ump);
1937 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) {
1938 UFS_LOCK(ump);
1939 return (0);
1940 }
1941 /*
1942 * Check to see if a cluster of the needed size (or bigger) is
1943 * available in this cylinder group.
1944 */
1945 lp = &cg_clustersum(cgp)[len];
1946 for (i = len; i <= fs->fs_contigsumsize; i++)
1947 if (*lp++ > 0)
1948 break;
1949 if (i > fs->fs_contigsumsize) {
1950 /*
1951 * This is the first time looking for a cluster in this
1952 * cylinder group. Update the cluster summary information
1953 * to reflect the true maximum sized cluster so that
1954 * future cluster allocation requests can avoid reading
1955 * the cylinder group map only to find no clusters.
1956 */
1957 lp = &cg_clustersum(cgp)[len - 1];
1958 for (i = len - 1; i > 0; i--)
1959 if (*lp-- > 0)
1960 break;
1961 UFS_LOCK(ump);
1962 fs->fs_maxcluster[cg] = i;
1963 brelse(bp);
1964 return (0);
1965 }
1966 /*
1967 * Search the cluster map to find a big enough cluster.
1968 * We take the first one that we find, even if it is larger
1969 * than we need as we prefer to get one close to the previous
1970 * block allocation. We do not search before the current
1971 * preference point as we do not want to allocate a block
1972 * that is allocated before the previous one (as we will
1973 * then have to wait for another pass of the elevator
1974 * algorithm before it will be read). We prefer to fail and
1975 * be recalled to try an allocation in the next cylinder group.
1976 */
1977 if (dtog(fs, bpref) != cg)
1978 bpref = cgdata(fs, cg);
1979 else
1980 bpref = blknum(fs, bpref);
1981 bpref = fragstoblks(fs, dtogd(fs, bpref));
1982 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1983 map = *mapp++;
1984 bit = 1 << (bpref % NBBY);
1985 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1986 if ((map & bit) == 0) {
1987 run = 0;
1988 } else {
1989 run++;
1990 if (run == len)
1991 break;
1992 }
1993 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1994 bit <<= 1;
1995 } else {
1996 map = *mapp++;
1997 bit = 1;
1998 }
1999 }
2000 if (got >= cgp->cg_nclusterblks) {
2001 UFS_LOCK(ump);
2002 brelse(bp);
2003 return (0);
2004 }
2005 /*
2006 * Allocate the cluster that we have found.
2007 */
2008 blksfree = cg_blksfree(cgp);
2009 for (i = 1; i <= len; i++)
2010 if (!ffs_isblock(fs, blksfree, got - run + i))
2011 panic("ffs_clusteralloc: map mismatch");
2012 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2013 if (dtog(fs, bno) != cg)
2014 panic("ffs_clusteralloc: allocated out of group");
2015 len = blkstofrags(fs, len);
2016 UFS_LOCK(ump);
2017 for (i = 0; i < len; i += fs->fs_frag)
2018 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2019 panic("ffs_clusteralloc: lost block");
2020 ACTIVECLEAR(fs, cg);
2021 UFS_UNLOCK(ump);
2022 bdwrite(bp);
2023 return (bno);
2024 }
2025
2026 static inline struct buf *
getinobuf(struct inode * ip,u_int cg,u_int32_t cginoblk,int gbflags)2027 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
2028 {
2029 struct fs *fs;
2030
2031 fs = ITOFS(ip);
2032 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2033 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2034 gbflags));
2035 }
2036
2037 /*
2038 * Synchronous inode initialization is needed only when barrier writes do not
2039 * work as advertised, and will impose a heavy cost on file creation in a newly
2040 * created filesystem.
2041 */
2042 static int doasyncinodeinit = 1;
2043 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2044 &doasyncinodeinit, 0,
2045 "Perform inode block initialization using asynchronous writes");
2046
2047 /*
2048 * Determine whether an inode can be allocated.
2049 *
2050 * Check to see if an inode is available, and if it is,
2051 * allocate it using the following policy:
2052 * 1) allocate the requested inode.
2053 * 2) allocate the next available inode after the requested
2054 * inode in the specified cylinder group.
2055 */
2056 static ufs2_daddr_t
ffs_nodealloccg(ip,cg,ipref,mode,unused)2057 ffs_nodealloccg(ip, cg, ipref, mode, unused)
2058 struct inode *ip;
2059 u_int cg;
2060 ufs2_daddr_t ipref;
2061 int mode;
2062 int unused;
2063 {
2064 struct fs *fs;
2065 struct cg *cgp;
2066 struct buf *bp, *ibp;
2067 struct ufsmount *ump;
2068 u_int8_t *inosused, *loc;
2069 struct ufs2_dinode *dp2;
2070 int error, start, len, i;
2071 u_int32_t old_initediblk;
2072
2073 ump = ITOUMP(ip);
2074 fs = ump->um_fs;
2075 check_nifree:
2076 if (fs->fs_cs(fs, cg).cs_nifree == 0)
2077 return (0);
2078 UFS_UNLOCK(ump);
2079 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) {
2080 UFS_LOCK(ump);
2081 return (0);
2082 }
2083 restart:
2084 if (cgp->cg_cs.cs_nifree == 0) {
2085 brelse(bp);
2086 UFS_LOCK(ump);
2087 return (0);
2088 }
2089 inosused = cg_inosused(cgp);
2090 if (ipref) {
2091 ipref %= fs->fs_ipg;
2092 if (isclr(inosused, ipref))
2093 goto gotit;
2094 }
2095 start = cgp->cg_irotor / NBBY;
2096 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2097 loc = memcchr(&inosused[start], 0xff, len);
2098 if (loc == NULL) {
2099 len = start + 1;
2100 start = 0;
2101 loc = memcchr(&inosused[start], 0xff, len);
2102 if (loc == NULL) {
2103 printf("cg = %d, irotor = %ld, fs = %s\n",
2104 cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2105 panic("ffs_nodealloccg: map corrupted");
2106 /* NOTREACHED */
2107 }
2108 }
2109 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2110 gotit:
2111 /*
2112 * Check to see if we need to initialize more inodes.
2113 */
2114 if (fs->fs_magic == FS_UFS2_MAGIC &&
2115 ipref + INOPB(fs) > cgp->cg_initediblk &&
2116 cgp->cg_initediblk < cgp->cg_niblk) {
2117 old_initediblk = cgp->cg_initediblk;
2118
2119 /*
2120 * Free the cylinder group lock before writing the
2121 * initialized inode block. Entering the
2122 * babarrierwrite() with the cylinder group lock
2123 * causes lock order violation between the lock and
2124 * snaplk.
2125 *
2126 * Another thread can decide to initialize the same
2127 * inode block, but whichever thread first gets the
2128 * cylinder group lock after writing the newly
2129 * allocated inode block will update it and the other
2130 * will realize that it has lost and leave the
2131 * cylinder group unchanged.
2132 */
2133 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2134 brelse(bp);
2135 if (ibp == NULL) {
2136 /*
2137 * The inode block buffer is already owned by
2138 * another thread, which must initialize it.
2139 * Wait on the buffer to allow another thread
2140 * to finish the updates, with dropped cg
2141 * buffer lock, then retry.
2142 */
2143 ibp = getinobuf(ip, cg, old_initediblk, 0);
2144 brelse(ibp);
2145 UFS_LOCK(ump);
2146 goto check_nifree;
2147 }
2148 bzero(ibp->b_data, (int)fs->fs_bsize);
2149 dp2 = (struct ufs2_dinode *)(ibp->b_data);
2150 for (i = 0; i < INOPB(fs); i++) {
2151 while (dp2->di_gen == 0)
2152 dp2->di_gen = arc4random();
2153 dp2++;
2154 }
2155
2156 /*
2157 * Rather than adding a soft updates dependency to ensure
2158 * that the new inode block is written before it is claimed
2159 * by the cylinder group map, we just do a barrier write
2160 * here. The barrier write will ensure that the inode block
2161 * gets written before the updated cylinder group map can be
2162 * written. The barrier write should only slow down bulk
2163 * loading of newly created filesystems.
2164 */
2165 if (doasyncinodeinit)
2166 babarrierwrite(ibp);
2167 else
2168 bwrite(ibp);
2169
2170 /*
2171 * After the inode block is written, try to update the
2172 * cg initediblk pointer. If another thread beat us
2173 * to it, then leave it unchanged as the other thread
2174 * has already set it correctly.
2175 */
2176 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp);
2177 UFS_LOCK(ump);
2178 ACTIVECLEAR(fs, cg);
2179 UFS_UNLOCK(ump);
2180 if (error != 0)
2181 return (error);
2182 if (cgp->cg_initediblk == old_initediblk)
2183 cgp->cg_initediblk += INOPB(fs);
2184 goto restart;
2185 }
2186 cgp->cg_irotor = ipref;
2187 UFS_LOCK(ump);
2188 ACTIVECLEAR(fs, cg);
2189 setbit(inosused, ipref);
2190 cgp->cg_cs.cs_nifree--;
2191 fs->fs_cstotal.cs_nifree--;
2192 fs->fs_cs(fs, cg).cs_nifree--;
2193 fs->fs_fmod = 1;
2194 if ((mode & IFMT) == IFDIR) {
2195 cgp->cg_cs.cs_ndir++;
2196 fs->fs_cstotal.cs_ndir++;
2197 fs->fs_cs(fs, cg).cs_ndir++;
2198 }
2199 UFS_UNLOCK(ump);
2200 if (DOINGSOFTDEP(ITOV(ip)))
2201 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2202 bdwrite(bp);
2203 return ((ino_t)(cg * fs->fs_ipg + ipref));
2204 }
2205
2206 /*
2207 * Free a block or fragment.
2208 *
2209 * The specified block or fragment is placed back in the
2210 * free map. If a fragment is deallocated, a possible
2211 * block reassembly is checked.
2212 */
2213 static void
ffs_blkfree_cg(ump,fs,devvp,bno,size,inum,dephd)2214 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2215 struct ufsmount *ump;
2216 struct fs *fs;
2217 struct vnode *devvp;
2218 ufs2_daddr_t bno;
2219 long size;
2220 ino_t inum;
2221 struct workhead *dephd;
2222 {
2223 struct mount *mp;
2224 struct cg *cgp;
2225 struct buf *bp;
2226 ufs1_daddr_t fragno, cgbno;
2227 int i, blk, frags, bbase, error;
2228 u_int cg;
2229 u_int8_t *blksfree;
2230 struct cdev *dev;
2231
2232 cg = dtog(fs, bno);
2233 if (devvp->v_type == VREG) {
2234 /* devvp is a snapshot */
2235 MPASS(devvp->v_mount->mnt_data == ump);
2236 dev = ump->um_devvp->v_rdev;
2237 } else if (devvp->v_type == VCHR) {
2238 /* devvp is a normal disk device */
2239 dev = devvp->v_rdev;
2240 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2241 } else
2242 return;
2243 #ifdef INVARIANTS
2244 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2245 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2246 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2247 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2248 size, fs->fs_fsmnt);
2249 panic("ffs_blkfree_cg: bad size");
2250 }
2251 #endif
2252 if ((u_int)bno >= fs->fs_size) {
2253 printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2254 (u_long)inum);
2255 ffs_fserr(fs, inum, "bad block");
2256 return;
2257 }
2258 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2259 return;
2260 cgbno = dtogd(fs, bno);
2261 blksfree = cg_blksfree(cgp);
2262 UFS_LOCK(ump);
2263 if (size == fs->fs_bsize) {
2264 fragno = fragstoblks(fs, cgbno);
2265 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2266 if (devvp->v_type == VREG) {
2267 UFS_UNLOCK(ump);
2268 /* devvp is a snapshot */
2269 brelse(bp);
2270 return;
2271 }
2272 printf("dev = %s, block = %jd, fs = %s\n",
2273 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2274 panic("ffs_blkfree_cg: freeing free block");
2275 }
2276 ffs_setblock(fs, blksfree, fragno);
2277 ffs_clusteracct(fs, cgp, fragno, 1);
2278 cgp->cg_cs.cs_nbfree++;
2279 fs->fs_cstotal.cs_nbfree++;
2280 fs->fs_cs(fs, cg).cs_nbfree++;
2281 } else {
2282 bbase = cgbno - fragnum(fs, cgbno);
2283 /*
2284 * decrement the counts associated with the old frags
2285 */
2286 blk = blkmap(fs, blksfree, bbase);
2287 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2288 /*
2289 * deallocate the fragment
2290 */
2291 frags = numfrags(fs, size);
2292 for (i = 0; i < frags; i++) {
2293 if (isset(blksfree, cgbno + i)) {
2294 printf("dev = %s, block = %jd, fs = %s\n",
2295 devtoname(dev), (intmax_t)(bno + i),
2296 fs->fs_fsmnt);
2297 panic("ffs_blkfree_cg: freeing free frag");
2298 }
2299 setbit(blksfree, cgbno + i);
2300 }
2301 cgp->cg_cs.cs_nffree += i;
2302 fs->fs_cstotal.cs_nffree += i;
2303 fs->fs_cs(fs, cg).cs_nffree += i;
2304 /*
2305 * add back in counts associated with the new frags
2306 */
2307 blk = blkmap(fs, blksfree, bbase);
2308 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2309 /*
2310 * if a complete block has been reassembled, account for it
2311 */
2312 fragno = fragstoblks(fs, bbase);
2313 if (ffs_isblock(fs, blksfree, fragno)) {
2314 cgp->cg_cs.cs_nffree -= fs->fs_frag;
2315 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2316 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2317 ffs_clusteracct(fs, cgp, fragno, 1);
2318 cgp->cg_cs.cs_nbfree++;
2319 fs->fs_cstotal.cs_nbfree++;
2320 fs->fs_cs(fs, cg).cs_nbfree++;
2321 }
2322 }
2323 fs->fs_fmod = 1;
2324 ACTIVECLEAR(fs, cg);
2325 UFS_UNLOCK(ump);
2326 mp = UFSTOVFS(ump);
2327 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2328 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2329 numfrags(fs, size), dephd);
2330 bdwrite(bp);
2331 }
2332
2333 /*
2334 * Structures and routines associated with trim management.
2335 *
2336 * The following requests are passed to trim_lookup to indicate
2337 * the actions that should be taken.
2338 */
2339 #define NEW 1 /* if found, error else allocate and hash it */
2340 #define OLD 2 /* if not found, error, else return it */
2341 #define REPLACE 3 /* if not found, error else unhash and reallocate it */
2342 #define DONE 4 /* if not found, error else unhash and return it */
2343 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */
2344
2345 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2346
2347 #define TRIMLIST_HASH(ump, key) \
2348 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2349
2350 /*
2351 * These structures describe each of the block free requests aggregated
2352 * together to make up a trim request.
2353 */
2354 struct trim_blkreq {
2355 TAILQ_ENTRY(trim_blkreq) blkreqlist;
2356 ufs2_daddr_t bno;
2357 long size;
2358 struct workhead *pdephd;
2359 struct workhead dephd;
2360 };
2361
2362 /*
2363 * Description of a trim request.
2364 */
2365 struct ffs_blkfree_trim_params {
2366 TAILQ_HEAD(, trim_blkreq) blklist;
2367 LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2368 struct task task;
2369 struct ufsmount *ump;
2370 struct vnode *devvp;
2371 ino_t inum;
2372 ufs2_daddr_t bno;
2373 long size;
2374 long key;
2375 };
2376
2377 static void ffs_blkfree_trim_completed(struct buf *);
2378 static void ffs_blkfree_trim_task(void *ctx, int pending __unused);
2379 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2380 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int);
2381 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2382
2383 /*
2384 * Called on trim completion to start a task to free the associated block(s).
2385 */
2386 static void
ffs_blkfree_trim_completed(bp)2387 ffs_blkfree_trim_completed(bp)
2388 struct buf *bp;
2389 {
2390 struct ffs_blkfree_trim_params *tp;
2391
2392 tp = bp->b_fsprivate1;
2393 free(bp, M_TRIM);
2394 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2395 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2396 }
2397
2398 /*
2399 * Trim completion task that free associated block(s).
2400 */
2401 static void
ffs_blkfree_trim_task(ctx,pending)2402 ffs_blkfree_trim_task(ctx, pending)
2403 void *ctx;
2404 int pending;
2405 {
2406 struct ffs_blkfree_trim_params *tp;
2407 struct trim_blkreq *blkelm;
2408 struct ufsmount *ump;
2409
2410 tp = ctx;
2411 ump = tp->ump;
2412 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2413 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2414 blkelm->size, tp->inum, blkelm->pdephd);
2415 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2416 free(blkelm, M_TRIM);
2417 }
2418 vn_finished_secondary_write(UFSTOVFS(ump));
2419 UFS_LOCK(ump);
2420 ump->um_trim_inflight -= 1;
2421 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2422 UFS_UNLOCK(ump);
2423 free(tp, M_TRIM);
2424 }
2425
2426 /*
2427 * Lookup a trim request by inode number.
2428 * Allocate if requested (NEW, REPLACE, SINGLE).
2429 */
2430 static struct ffs_blkfree_trim_params *
trim_lookup(ump,devvp,bno,size,inum,key,alloctype)2431 trim_lookup(ump, devvp, bno, size, inum, key, alloctype)
2432 struct ufsmount *ump;
2433 struct vnode *devvp;
2434 ufs2_daddr_t bno;
2435 long size;
2436 ino_t inum;
2437 u_long key;
2438 int alloctype;
2439 {
2440 struct trimlist_hashhead *tphashhead;
2441 struct ffs_blkfree_trim_params *tp, *ntp;
2442
2443 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2444 if (alloctype != SINGLE) {
2445 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2446 UFS_LOCK(ump);
2447 tphashhead = TRIMLIST_HASH(ump, key);
2448 LIST_FOREACH(tp, tphashhead, hashlist)
2449 if (key == tp->key)
2450 break;
2451 }
2452 switch (alloctype) {
2453 case NEW:
2454 KASSERT(tp == NULL, ("trim_lookup: found trim"));
2455 break;
2456 case OLD:
2457 KASSERT(tp != NULL,
2458 ("trim_lookup: missing call to ffs_blkrelease_start()"));
2459 UFS_UNLOCK(ump);
2460 free(ntp, M_TRIM);
2461 return (tp);
2462 case REPLACE:
2463 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2464 LIST_REMOVE(tp, hashlist);
2465 /* tp will be freed by caller */
2466 break;
2467 case DONE:
2468 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2469 LIST_REMOVE(tp, hashlist);
2470 UFS_UNLOCK(ump);
2471 free(ntp, M_TRIM);
2472 return (tp);
2473 }
2474 TAILQ_INIT(&ntp->blklist);
2475 ntp->ump = ump;
2476 ntp->devvp = devvp;
2477 ntp->bno = bno;
2478 ntp->size = size;
2479 ntp->inum = inum;
2480 ntp->key = key;
2481 if (alloctype != SINGLE) {
2482 LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2483 UFS_UNLOCK(ump);
2484 }
2485 return (ntp);
2486 }
2487
2488 /*
2489 * Dispatch a trim request.
2490 */
2491 static void
ffs_blkfree_sendtrim(tp)2492 ffs_blkfree_sendtrim(tp)
2493 struct ffs_blkfree_trim_params *tp;
2494 {
2495 struct ufsmount *ump;
2496 struct mount *mp;
2497 struct buf *bp;
2498
2499 /*
2500 * Postpone the set of the free bit in the cg bitmap until the
2501 * BIO_DELETE is completed. Otherwise, due to disk queue
2502 * reordering, TRIM might be issued after we reuse the block
2503 * and write some new data into it.
2504 */
2505 ump = tp->ump;
2506 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2507 bp->b_iocmd = BIO_DELETE;
2508 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2509 bp->b_iodone = ffs_blkfree_trim_completed;
2510 bp->b_bcount = tp->size;
2511 bp->b_fsprivate1 = tp;
2512 UFS_LOCK(ump);
2513 ump->um_trim_total += 1;
2514 ump->um_trim_inflight += 1;
2515 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2516 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2517 UFS_UNLOCK(ump);
2518
2519 mp = UFSTOVFS(ump);
2520 vn_start_secondary_write(NULL, &mp, 0);
2521 g_vfs_strategy(ump->um_bo, bp);
2522 }
2523
2524 /*
2525 * Allocate a new key to use to identify a range of blocks.
2526 */
2527 u_long
ffs_blkrelease_start(ump,devvp,inum)2528 ffs_blkrelease_start(ump, devvp, inum)
2529 struct ufsmount *ump;
2530 struct vnode *devvp;
2531 ino_t inum;
2532 {
2533 static u_long masterkey;
2534 u_long key;
2535
2536 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2537 return (SINGLETON_KEY);
2538 do {
2539 key = atomic_fetchadd_long(&masterkey, 1);
2540 } while (key < FIRST_VALID_KEY);
2541 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2542 return (key);
2543 }
2544
2545 /*
2546 * Deallocate a key that has been used to identify a range of blocks.
2547 */
2548 void
ffs_blkrelease_finish(ump,key)2549 ffs_blkrelease_finish(ump, key)
2550 struct ufsmount *ump;
2551 u_long key;
2552 {
2553 struct ffs_blkfree_trim_params *tp;
2554
2555 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2556 return;
2557 /*
2558 * We are done with sending blocks using this key. Look up the key
2559 * using the DONE alloctype (in tp) to request that it be unhashed
2560 * as we will not be adding to it. If the key has never been used,
2561 * tp->size will be zero, so we can just free tp. Otherwise the call
2562 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2563 * tp to be issued (and then tp to be freed).
2564 */
2565 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2566 if (tp->size == 0)
2567 free(tp, M_TRIM);
2568 else
2569 ffs_blkfree_sendtrim(tp);
2570 }
2571
2572 /*
2573 * Setup to free a block or fragment.
2574 *
2575 * Check for snapshots that might want to claim the block.
2576 * If trims are requested, prepare a trim request. Attempt to
2577 * aggregate consecutive blocks into a single trim request.
2578 */
2579 void
ffs_blkfree(ump,fs,devvp,bno,size,inum,vtype,dephd,key)2580 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key)
2581 struct ufsmount *ump;
2582 struct fs *fs;
2583 struct vnode *devvp;
2584 ufs2_daddr_t bno;
2585 long size;
2586 ino_t inum;
2587 enum vtype vtype;
2588 struct workhead *dephd;
2589 u_long key;
2590 {
2591 struct ffs_blkfree_trim_params *tp, *ntp;
2592 struct trim_blkreq *blkelm;
2593
2594 /*
2595 * Check to see if a snapshot wants to claim the block.
2596 * Check that devvp is a normal disk device, not a snapshot,
2597 * it has a snapshot(s) associated with it, and one of the
2598 * snapshots wants to claim the block.
2599 */
2600 if (devvp->v_type == VCHR &&
2601 (devvp->v_vflag & VV_COPYONWRITE) &&
2602 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2603 return;
2604 }
2605 /*
2606 * Nothing to delay if TRIM is not required for this block or TRIM
2607 * is disabled or the operation is performed on a snapshot.
2608 */
2609 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2610 devvp->v_type == VREG) {
2611 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2612 return;
2613 }
2614 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2615 blkelm->bno = bno;
2616 blkelm->size = size;
2617 if (dephd == NULL) {
2618 blkelm->pdephd = NULL;
2619 } else {
2620 LIST_INIT(&blkelm->dephd);
2621 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2622 blkelm->pdephd = &blkelm->dephd;
2623 }
2624 if (key == SINGLETON_KEY) {
2625 /*
2626 * Just a single non-contiguous piece. Use the SINGLE
2627 * alloctype to return a trim request that will not be
2628 * hashed for future lookup.
2629 */
2630 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2631 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2632 ffs_blkfree_sendtrim(tp);
2633 return;
2634 }
2635 /*
2636 * The callers of this function are not tracking whether or not
2637 * the blocks are contiguous. They are just saying that they
2638 * are freeing a set of blocks. It is this code that determines
2639 * the pieces of that range that are actually contiguous.
2640 *
2641 * Calling ffs_blkrelease_start() will have created an entry
2642 * that we will use.
2643 */
2644 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2645 if (tp->size == 0) {
2646 /*
2647 * First block of a potential range, set block and size
2648 * for the trim block.
2649 */
2650 tp->bno = bno;
2651 tp->size = size;
2652 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2653 return;
2654 }
2655 /*
2656 * If this block is a continuation of the range (either
2657 * follows at the end or preceeds in the front) then we
2658 * add it to the front or back of the list and return.
2659 *
2660 * If it is not a continuation of the trim that we were
2661 * building, using the REPLACE alloctype, we request that
2662 * the old trim request (still in tp) be unhashed and a
2663 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2664 * call causes the block range described by tp to be issued
2665 * (and then tp to be freed).
2666 */
2667 if (bno + numfrags(fs, size) == tp->bno) {
2668 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2669 tp->bno = bno;
2670 tp->size += size;
2671 return;
2672 } else if (bno == tp->bno + numfrags(fs, tp->size)) {
2673 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2674 tp->size += size;
2675 return;
2676 }
2677 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2678 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2679 ffs_blkfree_sendtrim(tp);
2680 }
2681
2682 #ifdef INVARIANTS
2683 /*
2684 * Verify allocation of a block or fragment. Returns true if block or
2685 * fragment is allocated, false if it is free.
2686 */
2687 static int
ffs_checkblk(ip,bno,size)2688 ffs_checkblk(ip, bno, size)
2689 struct inode *ip;
2690 ufs2_daddr_t bno;
2691 long size;
2692 {
2693 struct fs *fs;
2694 struct cg *cgp;
2695 struct buf *bp;
2696 ufs1_daddr_t cgbno;
2697 int i, error, frags, free;
2698 u_int8_t *blksfree;
2699
2700 fs = ITOFS(ip);
2701 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2702 printf("bsize = %ld, size = %ld, fs = %s\n",
2703 (long)fs->fs_bsize, size, fs->fs_fsmnt);
2704 panic("ffs_checkblk: bad size");
2705 }
2706 if ((u_int)bno >= fs->fs_size)
2707 panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2708 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp);
2709 if (error)
2710 panic("ffs_checkblk: cylinder group read failed");
2711 blksfree = cg_blksfree(cgp);
2712 cgbno = dtogd(fs, bno);
2713 if (size == fs->fs_bsize) {
2714 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2715 } else {
2716 frags = numfrags(fs, size);
2717 for (free = 0, i = 0; i < frags; i++)
2718 if (isset(blksfree, cgbno + i))
2719 free++;
2720 if (free != 0 && free != frags)
2721 panic("ffs_checkblk: partially free fragment");
2722 }
2723 brelse(bp);
2724 return (!free);
2725 }
2726 #endif /* INVARIANTS */
2727
2728 /*
2729 * Free an inode.
2730 */
2731 int
ffs_vfree(pvp,ino,mode)2732 ffs_vfree(pvp, ino, mode)
2733 struct vnode *pvp;
2734 ino_t ino;
2735 int mode;
2736 {
2737 struct ufsmount *ump;
2738
2739 if (DOINGSOFTDEP(pvp)) {
2740 softdep_freefile(pvp, ino, mode);
2741 return (0);
2742 }
2743 ump = VFSTOUFS(pvp->v_mount);
2744 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2745 }
2746
2747 /*
2748 * Do the actual free operation.
2749 * The specified inode is placed back in the free map.
2750 */
2751 int
ffs_freefile(ump,fs,devvp,ino,mode,wkhd)2752 ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2753 struct ufsmount *ump;
2754 struct fs *fs;
2755 struct vnode *devvp;
2756 ino_t ino;
2757 int mode;
2758 struct workhead *wkhd;
2759 {
2760 struct cg *cgp;
2761 struct buf *bp;
2762 int error;
2763 u_int cg;
2764 u_int8_t *inosused;
2765 struct cdev *dev;
2766
2767 cg = ino_to_cg(fs, ino);
2768 if (devvp->v_type == VREG) {
2769 /* devvp is a snapshot */
2770 MPASS(devvp->v_mount->mnt_data == ump);
2771 dev = ump->um_devvp->v_rdev;
2772 } else if (devvp->v_type == VCHR) {
2773 /* devvp is a normal disk device */
2774 dev = devvp->v_rdev;
2775 } else {
2776 bp = NULL;
2777 return (0);
2778 }
2779 if (ino >= fs->fs_ipg * fs->fs_ncg)
2780 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2781 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2782 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2783 return (error);
2784 inosused = cg_inosused(cgp);
2785 ino %= fs->fs_ipg;
2786 if (isclr(inosused, ino)) {
2787 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2788 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2789 if (fs->fs_ronly == 0)
2790 panic("ffs_freefile: freeing free inode");
2791 }
2792 clrbit(inosused, ino);
2793 if (ino < cgp->cg_irotor)
2794 cgp->cg_irotor = ino;
2795 cgp->cg_cs.cs_nifree++;
2796 UFS_LOCK(ump);
2797 fs->fs_cstotal.cs_nifree++;
2798 fs->fs_cs(fs, cg).cs_nifree++;
2799 if ((mode & IFMT) == IFDIR) {
2800 cgp->cg_cs.cs_ndir--;
2801 fs->fs_cstotal.cs_ndir--;
2802 fs->fs_cs(fs, cg).cs_ndir--;
2803 }
2804 fs->fs_fmod = 1;
2805 ACTIVECLEAR(fs, cg);
2806 UFS_UNLOCK(ump);
2807 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2808 softdep_setup_inofree(UFSTOVFS(ump), bp,
2809 ino + cg * fs->fs_ipg, wkhd);
2810 bdwrite(bp);
2811 return (0);
2812 }
2813
2814 /*
2815 * Check to see if a file is free.
2816 * Used to check for allocated files in snapshots.
2817 */
2818 int
ffs_checkfreefile(fs,devvp,ino)2819 ffs_checkfreefile(fs, devvp, ino)
2820 struct fs *fs;
2821 struct vnode *devvp;
2822 ino_t ino;
2823 {
2824 struct cg *cgp;
2825 struct buf *bp;
2826 int ret, error;
2827 u_int cg;
2828 u_int8_t *inosused;
2829
2830 cg = ino_to_cg(fs, ino);
2831 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2832 return (1);
2833 if (ino >= fs->fs_ipg * fs->fs_ncg)
2834 return (1);
2835 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2836 return (1);
2837 inosused = cg_inosused(cgp);
2838 ino %= fs->fs_ipg;
2839 ret = isclr(inosused, ino);
2840 brelse(bp);
2841 return (ret);
2842 }
2843
2844 /*
2845 * Find a block of the specified size in the specified cylinder group.
2846 *
2847 * It is a panic if a request is made to find a block if none are
2848 * available.
2849 */
2850 static ufs1_daddr_t
ffs_mapsearch(fs,cgp,bpref,allocsiz)2851 ffs_mapsearch(fs, cgp, bpref, allocsiz)
2852 struct fs *fs;
2853 struct cg *cgp;
2854 ufs2_daddr_t bpref;
2855 int allocsiz;
2856 {
2857 ufs1_daddr_t bno;
2858 int start, len, loc, i;
2859 int blk, field, subfield, pos;
2860 u_int8_t *blksfree;
2861
2862 /*
2863 * find the fragment by searching through the free block
2864 * map for an appropriate bit pattern
2865 */
2866 if (bpref)
2867 start = dtogd(fs, bpref) / NBBY;
2868 else
2869 start = cgp->cg_frotor / NBBY;
2870 blksfree = cg_blksfree(cgp);
2871 len = howmany(fs->fs_fpg, NBBY) - start;
2872 loc = scanc((u_int)len, (u_char *)&blksfree[start],
2873 fragtbl[fs->fs_frag],
2874 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2875 if (loc == 0) {
2876 len = start + 1;
2877 start = 0;
2878 loc = scanc((u_int)len, (u_char *)&blksfree[0],
2879 fragtbl[fs->fs_frag],
2880 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2881 if (loc == 0) {
2882 printf("start = %d, len = %d, fs = %s\n",
2883 start, len, fs->fs_fsmnt);
2884 panic("ffs_alloccg: map corrupted");
2885 /* NOTREACHED */
2886 }
2887 }
2888 bno = (start + len - loc) * NBBY;
2889 cgp->cg_frotor = bno;
2890 /*
2891 * found the byte in the map
2892 * sift through the bits to find the selected frag
2893 */
2894 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2895 blk = blkmap(fs, blksfree, bno);
2896 blk <<= 1;
2897 field = around[allocsiz];
2898 subfield = inside[allocsiz];
2899 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2900 if ((blk & field) == subfield)
2901 return (bno + pos);
2902 field <<= 1;
2903 subfield <<= 1;
2904 }
2905 }
2906 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2907 panic("ffs_alloccg: block not in map");
2908 return (-1);
2909 }
2910
2911 static const struct statfs *
ffs_getmntstat(struct vnode * devvp)2912 ffs_getmntstat(struct vnode *devvp)
2913 {
2914
2915 if (devvp->v_type == VCHR)
2916 return (&devvp->v_rdev->si_mountpt->mnt_stat);
2917 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp));
2918 }
2919
2920 /*
2921 * Fetch and verify a cylinder group.
2922 */
2923 int
ffs_getcg(fs,devvp,cg,bpp,cgpp)2924 ffs_getcg(fs, devvp, cg, bpp, cgpp)
2925 struct fs *fs;
2926 struct vnode *devvp;
2927 u_int cg;
2928 struct buf **bpp;
2929 struct cg **cgpp;
2930 {
2931 struct buf *bp;
2932 struct cg *cgp;
2933 const struct statfs *sfs;
2934 int flags, error;
2935
2936 *bpp = NULL;
2937 *cgpp = NULL;
2938 flags = 0;
2939 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2940 flags |= GB_CKHASH;
2941 error = breadn_flags(devvp, devvp->v_type == VREG ?
2942 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)),
2943 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags,
2944 ffs_ckhash_cg, &bp);
2945 if (error != 0)
2946 return (error);
2947 cgp = (struct cg *)bp->b_data;
2948 if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
2949 (bp->b_flags & B_CKHASH) != 0 &&
2950 cgp->cg_ckhash != bp->b_ckhash) {
2951 sfs = ffs_getmntstat(devvp);
2952 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: "
2953 "0x%x != bp: 0x%jx\n",
2954 devvp->v_type == VCHR ? "" : "snapshot of ",
2955 sfs->f_mntfromname, sfs->f_mntonname,
2956 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
2957 bp->b_flags &= ~B_CKHASH;
2958 bp->b_flags |= B_INVAL | B_NOCACHE;
2959 brelse(bp);
2960 return (EIO);
2961 }
2962 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
2963 sfs = ffs_getmntstat(devvp);
2964 printf("UFS %s%s (%s)",
2965 devvp->v_type == VCHR ? "" : "snapshot of ",
2966 sfs->f_mntfromname, sfs->f_mntonname);
2967 if (!cg_chkmagic(cgp))
2968 printf(" cg %u: bad magic number 0x%x should be 0x%x\n",
2969 cg, cgp->cg_magic, CG_MAGIC);
2970 else
2971 printf(": wrong cylinder group cg %u != cgx %u\n", cg,
2972 cgp->cg_cgx);
2973 bp->b_flags &= ~B_CKHASH;
2974 bp->b_flags |= B_INVAL | B_NOCACHE;
2975 brelse(bp);
2976 return (EIO);
2977 }
2978 bp->b_flags &= ~B_CKHASH;
2979 bp->b_xflags |= BX_BKGRDWRITE;
2980 /*
2981 * If we are using check hashes on the cylinder group then we want
2982 * to limit changing the cylinder group time to when we are actually
2983 * going to write it to disk so that its check hash remains correct
2984 * in memory. If the CK_CYLGRP flag is set the time is updated in
2985 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
2986 * update the time here as we have done historically.
2987 */
2988 if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2989 bp->b_xflags |= BX_CYLGRP;
2990 else
2991 cgp->cg_old_time = cgp->cg_time = time_second;
2992 *bpp = bp;
2993 *cgpp = cgp;
2994 return (0);
2995 }
2996
2997 static void
ffs_ckhash_cg(bp)2998 ffs_ckhash_cg(bp)
2999 struct buf *bp;
3000 {
3001 uint32_t ckhash;
3002 struct cg *cgp;
3003
3004 cgp = (struct cg *)bp->b_data;
3005 ckhash = cgp->cg_ckhash;
3006 cgp->cg_ckhash = 0;
3007 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3008 cgp->cg_ckhash = ckhash;
3009 }
3010
3011 /*
3012 * Fserr prints the name of a filesystem with an error diagnostic.
3013 *
3014 * The form of the error message is:
3015 * fs: error message
3016 */
3017 void
ffs_fserr(fs,inum,cp)3018 ffs_fserr(fs, inum, cp)
3019 struct fs *fs;
3020 ino_t inum;
3021 char *cp;
3022 {
3023 struct thread *td = curthread; /* XXX */
3024 struct proc *p = td->td_proc;
3025
3026 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3027 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3028 fs->fs_fsmnt, cp);
3029 }
3030
3031 /*
3032 * This function provides the capability for the fsck program to
3033 * update an active filesystem. Fourteen operations are provided:
3034 *
3035 * adjrefcnt(inode, amt) - adjusts the reference count on the
3036 * specified inode by the specified amount. Under normal
3037 * operation the count should always go down. Decrementing
3038 * the count to zero will cause the inode to be freed.
3039 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3040 * inode by the specified amount.
3041 * adjsize(inode, size) - set the size of the inode to the
3042 * specified size.
3043 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3044 * adjust the superblock summary.
3045 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3046 * are marked as free. Inodes should never have to be marked
3047 * as in use.
3048 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3049 * are marked as free. Inodes should never have to be marked
3050 * as in use.
3051 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3052 * are marked as free. Blocks should never have to be marked
3053 * as in use.
3054 * setflags(flags, set/clear) - the fs_flags field has the specified
3055 * flags set (second parameter +1) or cleared (second parameter -1).
3056 * setcwd(dirinode) - set the current directory to dirinode in the
3057 * filesystem associated with the snapshot.
3058 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3059 * in the current directory is oldvalue then change it to newvalue.
3060 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3061 * with nameptr in the current directory is oldvalue then unlink it.
3062 *
3063 * The following functions may only be used on a quiescent filesystem
3064 * by the soft updates journal. They are not safe to be run on an active
3065 * filesystem.
3066 *
3067 * setinode(inode, dip) - the specified disk inode is replaced with the
3068 * contents pointed to by dip.
3069 * setbufoutput(fd, flags) - output associated with the specified file
3070 * descriptor (which must reference the character device supporting
3071 * the filesystem) switches from using physio to running through the
3072 * buffer cache when flags is set to 1. The descriptor reverts to
3073 * physio for output when flags is set to zero.
3074 */
3075
3076 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3077
3078 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
3079 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
3080
3081 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
3082 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
3083
3084 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR,
3085 sysctl_ffs_fsck, "Set the inode size");
3086
3087 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
3088 sysctl_ffs_fsck, "Adjust number of directories");
3089
3090 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
3091 sysctl_ffs_fsck, "Adjust number of free blocks");
3092
3093 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
3094 sysctl_ffs_fsck, "Adjust number of free inodes");
3095
3096 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
3097 sysctl_ffs_fsck, "Adjust number of free frags");
3098
3099 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
3100 sysctl_ffs_fsck, "Adjust number of free clusters");
3101
3102 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
3103 sysctl_ffs_fsck, "Free Range of Directory Inodes");
3104
3105 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
3106 sysctl_ffs_fsck, "Free Range of File Inodes");
3107
3108 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
3109 sysctl_ffs_fsck, "Free Range of Blocks");
3110
3111 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
3112 sysctl_ffs_fsck, "Change Filesystem Flags");
3113
3114 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
3115 sysctl_ffs_fsck, "Set Current Working Directory");
3116
3117 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
3118 sysctl_ffs_fsck, "Change Value of .. Entry");
3119
3120 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
3121 sysctl_ffs_fsck, "Unlink a Duplicate Name");
3122
3123 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
3124 sysctl_ffs_fsck, "Update an On-Disk Inode");
3125
3126 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
3127 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
3128
3129 #define DEBUG 1
3130 #ifdef DEBUG
3131 static int fsckcmds = 0;
3132 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
3133 #endif /* DEBUG */
3134
3135 static int buffered_write(struct file *, struct uio *, struct ucred *,
3136 int, struct thread *);
3137
3138 static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)3139 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3140 {
3141 struct thread *td = curthread;
3142 struct fsck_cmd cmd;
3143 struct ufsmount *ump;
3144 struct vnode *vp, *dvp, *fdvp;
3145 struct inode *ip, *dp;
3146 struct mount *mp;
3147 struct fs *fs;
3148 ufs2_daddr_t blkno;
3149 long blkcnt, blksize;
3150 u_long key;
3151 struct file *fp, *vfp;
3152 cap_rights_t rights;
3153 int filetype, error;
3154 static struct fileops *origops, bufferedops;
3155
3156 if (req->newlen > sizeof cmd)
3157 return (EBADRPC);
3158 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
3159 return (error);
3160 if (cmd.version != FFS_CMD_VERSION)
3161 return (ERPCMISMATCH);
3162 if ((error = getvnode(td, cmd.handle,
3163 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
3164 return (error);
3165 vp = fp->f_data;
3166 if (vp->v_type != VREG && vp->v_type != VDIR) {
3167 fdrop(fp, td);
3168 return (EINVAL);
3169 }
3170 vn_start_write(vp, &mp, V_WAIT);
3171 if (mp == NULL ||
3172 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3173 vn_finished_write(mp);
3174 fdrop(fp, td);
3175 return (EINVAL);
3176 }
3177 ump = VFSTOUFS(mp);
3178 if ((mp->mnt_flag & MNT_RDONLY) &&
3179 ump->um_fsckpid != td->td_proc->p_pid) {
3180 vn_finished_write(mp);
3181 fdrop(fp, td);
3182 return (EROFS);
3183 }
3184 fs = ump->um_fs;
3185 filetype = IFREG;
3186
3187 switch (oidp->oid_number) {
3188
3189 case FFS_SET_FLAGS:
3190 #ifdef DEBUG
3191 if (fsckcmds)
3192 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3193 cmd.size > 0 ? "set" : "clear");
3194 #endif /* DEBUG */
3195 if (cmd.size > 0)
3196 fs->fs_flags |= (long)cmd.value;
3197 else
3198 fs->fs_flags &= ~(long)cmd.value;
3199 break;
3200
3201 case FFS_ADJ_REFCNT:
3202 #ifdef DEBUG
3203 if (fsckcmds) {
3204 printf("%s: adjust inode %jd link count by %jd\n",
3205 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3206 (intmax_t)cmd.size);
3207 }
3208 #endif /* DEBUG */
3209 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3210 break;
3211 ip = VTOI(vp);
3212 ip->i_nlink += cmd.size;
3213 DIP_SET(ip, i_nlink, ip->i_nlink);
3214 ip->i_effnlink += cmd.size;
3215 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3216 error = ffs_update(vp, 1);
3217 if (DOINGSOFTDEP(vp))
3218 softdep_change_linkcnt(ip);
3219 vput(vp);
3220 break;
3221
3222 case FFS_ADJ_BLKCNT:
3223 #ifdef DEBUG
3224 if (fsckcmds) {
3225 printf("%s: adjust inode %jd block count by %jd\n",
3226 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3227 (intmax_t)cmd.size);
3228 }
3229 #endif /* DEBUG */
3230 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3231 break;
3232 ip = VTOI(vp);
3233 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3234 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3235 error = ffs_update(vp, 1);
3236 vput(vp);
3237 break;
3238
3239 case FFS_SET_SIZE:
3240 #ifdef DEBUG
3241 if (fsckcmds) {
3242 printf("%s: set inode %jd size to %jd\n",
3243 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3244 (intmax_t)cmd.size);
3245 }
3246 #endif /* DEBUG */
3247 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3248 break;
3249 ip = VTOI(vp);
3250 DIP_SET(ip, i_size, cmd.size);
3251 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3252 error = ffs_update(vp, 1);
3253 vput(vp);
3254 break;
3255
3256 case FFS_DIR_FREE:
3257 filetype = IFDIR;
3258 /* fall through */
3259
3260 case FFS_FILE_FREE:
3261 #ifdef DEBUG
3262 if (fsckcmds) {
3263 if (cmd.size == 1)
3264 printf("%s: free %s inode %ju\n",
3265 mp->mnt_stat.f_mntonname,
3266 filetype == IFDIR ? "directory" : "file",
3267 (uintmax_t)cmd.value);
3268 else
3269 printf("%s: free %s inodes %ju-%ju\n",
3270 mp->mnt_stat.f_mntonname,
3271 filetype == IFDIR ? "directory" : "file",
3272 (uintmax_t)cmd.value,
3273 (uintmax_t)(cmd.value + cmd.size - 1));
3274 }
3275 #endif /* DEBUG */
3276 while (cmd.size > 0) {
3277 if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3278 cmd.value, filetype, NULL)))
3279 break;
3280 cmd.size -= 1;
3281 cmd.value += 1;
3282 }
3283 break;
3284
3285 case FFS_BLK_FREE:
3286 #ifdef DEBUG
3287 if (fsckcmds) {
3288 if (cmd.size == 1)
3289 printf("%s: free block %jd\n",
3290 mp->mnt_stat.f_mntonname,
3291 (intmax_t)cmd.value);
3292 else
3293 printf("%s: free blocks %jd-%jd\n",
3294 mp->mnt_stat.f_mntonname,
3295 (intmax_t)cmd.value,
3296 (intmax_t)cmd.value + cmd.size - 1);
3297 }
3298 #endif /* DEBUG */
3299 blkno = cmd.value;
3300 blkcnt = cmd.size;
3301 blksize = fs->fs_frag - (blkno % fs->fs_frag);
3302 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3303 while (blkcnt > 0) {
3304 if (blkcnt < blksize)
3305 blksize = blkcnt;
3306 ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3307 blksize * fs->fs_fsize, UFS_ROOTINO,
3308 VDIR, NULL, key);
3309 blkno += blksize;
3310 blkcnt -= blksize;
3311 blksize = fs->fs_frag;
3312 }
3313 ffs_blkrelease_finish(ump, key);
3314 break;
3315
3316 /*
3317 * Adjust superblock summaries. fsck(8) is expected to
3318 * submit deltas when necessary.
3319 */
3320 case FFS_ADJ_NDIR:
3321 #ifdef DEBUG
3322 if (fsckcmds) {
3323 printf("%s: adjust number of directories by %jd\n",
3324 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3325 }
3326 #endif /* DEBUG */
3327 fs->fs_cstotal.cs_ndir += cmd.value;
3328 break;
3329
3330 case FFS_ADJ_NBFREE:
3331 #ifdef DEBUG
3332 if (fsckcmds) {
3333 printf("%s: adjust number of free blocks by %+jd\n",
3334 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3335 }
3336 #endif /* DEBUG */
3337 fs->fs_cstotal.cs_nbfree += cmd.value;
3338 break;
3339
3340 case FFS_ADJ_NIFREE:
3341 #ifdef DEBUG
3342 if (fsckcmds) {
3343 printf("%s: adjust number of free inodes by %+jd\n",
3344 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3345 }
3346 #endif /* DEBUG */
3347 fs->fs_cstotal.cs_nifree += cmd.value;
3348 break;
3349
3350 case FFS_ADJ_NFFREE:
3351 #ifdef DEBUG
3352 if (fsckcmds) {
3353 printf("%s: adjust number of free frags by %+jd\n",
3354 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3355 }
3356 #endif /* DEBUG */
3357 fs->fs_cstotal.cs_nffree += cmd.value;
3358 break;
3359
3360 case FFS_ADJ_NUMCLUSTERS:
3361 #ifdef DEBUG
3362 if (fsckcmds) {
3363 printf("%s: adjust number of free clusters by %+jd\n",
3364 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3365 }
3366 #endif /* DEBUG */
3367 fs->fs_cstotal.cs_numclusters += cmd.value;
3368 break;
3369
3370 case FFS_SET_CWD:
3371 #ifdef DEBUG
3372 if (fsckcmds) {
3373 printf("%s: set current directory to inode %jd\n",
3374 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3375 }
3376 #endif /* DEBUG */
3377 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3378 break;
3379 AUDIT_ARG_VNODE1(vp);
3380 if ((error = change_dir(vp, td)) != 0) {
3381 vput(vp);
3382 break;
3383 }
3384 VOP_UNLOCK(vp, 0);
3385 pwd_chdir(td, vp);
3386 break;
3387
3388 case FFS_SET_DOTDOT:
3389 #ifdef DEBUG
3390 if (fsckcmds) {
3391 printf("%s: change .. in cwd from %jd to %jd\n",
3392 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3393 (intmax_t)cmd.size);
3394 }
3395 #endif /* DEBUG */
3396 /*
3397 * First we have to get and lock the parent directory
3398 * to which ".." points.
3399 */
3400 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3401 if (error)
3402 break;
3403 /*
3404 * Now we get and lock the child directory containing "..".
3405 */
3406 FILEDESC_SLOCK(td->td_proc->p_fd);
3407 dvp = td->td_proc->p_fd->fd_cdir;
3408 FILEDESC_SUNLOCK(td->td_proc->p_fd);
3409 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3410 vput(fdvp);
3411 break;
3412 }
3413 dp = VTOI(dvp);
3414 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */
3415 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3416 DT_DIR, 0);
3417 cache_purge(fdvp);
3418 cache_purge(dvp);
3419 vput(dvp);
3420 vput(fdvp);
3421 break;
3422
3423 case FFS_UNLINK:
3424 #ifdef DEBUG
3425 if (fsckcmds) {
3426 char buf[32];
3427
3428 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3429 strncpy(buf, "Name_too_long", 32);
3430 printf("%s: unlink %s (inode %jd)\n",
3431 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3432 }
3433 #endif /* DEBUG */
3434 /*
3435 * kern_unlinkat will do its own start/finish writes and
3436 * they do not nest, so drop ours here. Setting mp == NULL
3437 * indicates that vn_finished_write is not needed down below.
3438 */
3439 vn_finished_write(mp);
3440 mp = NULL;
3441 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3442 UIO_USERSPACE, (ino_t)cmd.size);
3443 break;
3444
3445 case FFS_SET_INODE:
3446 if (ump->um_fsckpid != td->td_proc->p_pid) {
3447 error = EPERM;
3448 break;
3449 }
3450 #ifdef DEBUG
3451 if (fsckcmds) {
3452 printf("%s: update inode %jd\n",
3453 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3454 }
3455 #endif /* DEBUG */
3456 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3457 break;
3458 AUDIT_ARG_VNODE1(vp);
3459 ip = VTOI(vp);
3460 if (I_IS_UFS1(ip))
3461 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3462 sizeof(struct ufs1_dinode));
3463 else
3464 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3465 sizeof(struct ufs2_dinode));
3466 if (error) {
3467 vput(vp);
3468 break;
3469 }
3470 ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3471 error = ffs_update(vp, 1);
3472 vput(vp);
3473 break;
3474
3475 case FFS_SET_BUFOUTPUT:
3476 if (ump->um_fsckpid != td->td_proc->p_pid) {
3477 error = EPERM;
3478 break;
3479 }
3480 if (ITOUMP(VTOI(vp)) != ump) {
3481 error = EINVAL;
3482 break;
3483 }
3484 #ifdef DEBUG
3485 if (fsckcmds) {
3486 printf("%s: %s buffered output for descriptor %jd\n",
3487 mp->mnt_stat.f_mntonname,
3488 cmd.size == 1 ? "enable" : "disable",
3489 (intmax_t)cmd.value);
3490 }
3491 #endif /* DEBUG */
3492 if ((error = getvnode(td, cmd.value,
3493 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3494 break;
3495 if (vfp->f_vnode->v_type != VCHR) {
3496 fdrop(vfp, td);
3497 error = EINVAL;
3498 break;
3499 }
3500 if (origops == NULL) {
3501 origops = vfp->f_ops;
3502 bcopy((void *)origops, (void *)&bufferedops,
3503 sizeof(bufferedops));
3504 bufferedops.fo_write = buffered_write;
3505 }
3506 if (cmd.size == 1)
3507 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3508 (uintptr_t)&bufferedops);
3509 else
3510 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3511 (uintptr_t)origops);
3512 fdrop(vfp, td);
3513 break;
3514
3515 default:
3516 #ifdef DEBUG
3517 if (fsckcmds) {
3518 printf("Invalid request %d from fsck\n",
3519 oidp->oid_number);
3520 }
3521 #endif /* DEBUG */
3522 error = EINVAL;
3523 break;
3524
3525 }
3526 fdrop(fp, td);
3527 vn_finished_write(mp);
3528 return (error);
3529 }
3530
3531 /*
3532 * Function to switch a descriptor to use the buffer cache to stage
3533 * its I/O. This is needed so that writes to the filesystem device
3534 * will give snapshots a chance to copy modified blocks for which it
3535 * needs to retain copies.
3536 */
3537 static int
buffered_write(fp,uio,active_cred,flags,td)3538 buffered_write(fp, uio, active_cred, flags, td)
3539 struct file *fp;
3540 struct uio *uio;
3541 struct ucred *active_cred;
3542 int flags;
3543 struct thread *td;
3544 {
3545 struct vnode *devvp, *vp;
3546 struct inode *ip;
3547 struct buf *bp;
3548 struct fs *fs;
3549 struct filedesc *fdp;
3550 int error;
3551 daddr_t lbn;
3552
3553 /*
3554 * The devvp is associated with the /dev filesystem. To discover
3555 * the filesystem with which the device is associated, we depend
3556 * on the application setting the current directory to a location
3557 * within the filesystem being written. Yes, this is an ugly hack.
3558 */
3559 devvp = fp->f_vnode;
3560 if (!vn_isdisk(devvp, NULL))
3561 return (EINVAL);
3562 fdp = td->td_proc->p_fd;
3563 FILEDESC_SLOCK(fdp);
3564 vp = fdp->fd_cdir;
3565 vref(vp);
3566 FILEDESC_SUNLOCK(fdp);
3567 vn_lock(vp, LK_SHARED | LK_RETRY);
3568 /*
3569 * Check that the current directory vnode indeed belongs to
3570 * UFS before trying to dereference UFS-specific v_data fields.
3571 */
3572 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3573 vput(vp);
3574 return (EINVAL);
3575 }
3576 ip = VTOI(vp);
3577 if (ITODEVVP(ip) != devvp) {
3578 vput(vp);
3579 return (EINVAL);
3580 }
3581 fs = ITOFS(ip);
3582 vput(vp);
3583 foffset_lock_uio(fp, uio, flags);
3584 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3585 #ifdef DEBUG
3586 if (fsckcmds) {
3587 printf("%s: buffered write for block %jd\n",
3588 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3589 }
3590 #endif /* DEBUG */
3591 /*
3592 * All I/O must be contained within a filesystem block, start on
3593 * a fragment boundary, and be a multiple of fragments in length.
3594 */
3595 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3596 fragoff(fs, uio->uio_offset) != 0 ||
3597 fragoff(fs, uio->uio_resid) != 0) {
3598 error = EINVAL;
3599 goto out;
3600 }
3601 lbn = numfrags(fs, uio->uio_offset);
3602 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3603 bp->b_flags |= B_RELBUF;
3604 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3605 brelse(bp);
3606 goto out;
3607 }
3608 error = bwrite(bp);
3609 out:
3610 VOP_UNLOCK(devvp, 0);
3611 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3612 return (error);
3613 }
3614