1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5 * The Regents of the University of California.
6 * Copyright (c) 2008 Robert N. M. Watson
7 * Copyright (c) 2010-2011 Juniper Networks, Inc.
8 * Copyright (c) 2014 Kevin Lo
9 * All rights reserved.
10 *
11 * Portions of this software were developed by Robert N. M. Watson under
12 * contract to Juniper Networks, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
39 */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_rss.h"
48
49 #include <sys/param.h>
50 #include <sys/domain.h>
51 #include <sys/eventhandler.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/protosw.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/systm.h>
68
69 #include <vm/uma.h>
70
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip_options.h>
89 #ifdef INET6
90 #include <netinet6/ip6_var.h>
91 #endif
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/udplite.h>
95 #include <netinet/in_rss.h>
96
97 #include <netipsec/ipsec_support.h>
98
99 #include <machine/in_cksum.h>
100
101 #include <security/mac/mac_framework.h>
102
103 /*
104 * UDP and UDP-Lite protocols implementation.
105 * Per RFC 768, August, 1980.
106 * Per RFC 3828, July, 2004.
107 */
108
109 /*
110 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
111 * removes the only data integrity mechanism for packets and malformed
112 * packets that would otherwise be discarded due to bad checksums, and may
113 * cause problems (especially for NFS data blocks).
114 */
115 VNET_DEFINE(int, udp_cksum) = 1;
116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
117 &VNET_NAME(udp_cksum), 0, "compute udp checksum");
118
119 int udp_log_in_vain = 0;
120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
121 &udp_log_in_vain, 0, "Log all incoming UDP packets");
122
123 VNET_DEFINE(int, udp_blackhole) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
125 &VNET_NAME(udp_blackhole), 0,
126 "Do not send port unreachables for refused connects");
127
128 u_long udp_sendspace = 9216; /* really max datagram size */
129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130 &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131
132 u_long udp_recvspace = 40 * (1024 +
133 #ifdef INET6
134 sizeof(struct sockaddr_in6)
135 #else
136 sizeof(struct sockaddr_in)
137 #endif
138 ); /* 40 1K datagrams */
139
140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142
143 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
144 VNET_DEFINE(struct inpcbinfo, udbinfo);
145 VNET_DEFINE(struct inpcbhead, ulitecb);
146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone);
148 #define V_udpcb_zone VNET(udpcb_zone)
149
150 #ifndef UDBHASHSIZE
151 #define UDBHASHSIZE 128
152 #endif
153
154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
155 VNET_PCPUSTAT_SYSINIT(udpstat);
156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158
159 #ifdef VIMAGE
160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
161 #endif /* VIMAGE */
162 #ifdef INET
163 static void udp_detach(struct socket *so);
164 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165 struct mbuf *, struct thread *);
166 #endif
167
168 static void
udp_zone_change(void * tag)169 udp_zone_change(void *tag)
170 {
171
172 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
173 uma_zone_set_max(V_udpcb_zone, maxsockets);
174 }
175
176 static int
udp_inpcb_init(void * mem,int size,int flags)177 udp_inpcb_init(void *mem, int size, int flags)
178 {
179 struct inpcb *inp;
180
181 inp = mem;
182 INP_LOCK_INIT(inp, "inp", "udpinp");
183 return (0);
184 }
185
186 static int
udplite_inpcb_init(void * mem,int size,int flags)187 udplite_inpcb_init(void *mem, int size, int flags)
188 {
189 struct inpcb *inp;
190
191 inp = mem;
192 INP_LOCK_INIT(inp, "inp", "udpliteinp");
193 return (0);
194 }
195
196 void
udp_init(void)197 udp_init(void)
198 {
199
200 /*
201 * For now default to 2-tuple UDP hashing - until the fragment
202 * reassembly code can also update the flowid.
203 *
204 * Once we can calculate the flowid that way and re-establish
205 * a 4-tuple, flip this to 4-tuple.
206 */
207 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
208 "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
209 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 uma_zone_set_max(V_udpcb_zone, maxsockets);
212 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
213 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
214 EVENTHANDLER_PRI_ANY);
215 }
216
217 void
udplite_init(void)218 udplite_init(void)
219 {
220
221 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
222 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
223 IPI_HASHFIELDS_2TUPLE);
224 }
225
226 /*
227 * Kernel module interface for updating udpstat. The argument is an index
228 * into udpstat treated as an array of u_long. While this encodes the
229 * general layout of udpstat into the caller, it doesn't encode its location,
230 * so that future changes to add, for example, per-CPU stats support won't
231 * cause binary compatibility problems for kernel modules.
232 */
233 void
kmod_udpstat_inc(int statnum)234 kmod_udpstat_inc(int statnum)
235 {
236
237 counter_u64_add(VNET(udpstat)[statnum], 1);
238 }
239
240 int
udp_newudpcb(struct inpcb * inp)241 udp_newudpcb(struct inpcb *inp)
242 {
243 struct udpcb *up;
244
245 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
246 if (up == NULL)
247 return (ENOBUFS);
248 inp->inp_ppcb = up;
249 return (0);
250 }
251
252 void
udp_discardcb(struct udpcb * up)253 udp_discardcb(struct udpcb *up)
254 {
255
256 uma_zfree(V_udpcb_zone, up);
257 }
258
259 #ifdef VIMAGE
260 static void
udp_destroy(void * unused __unused)261 udp_destroy(void *unused __unused)
262 {
263
264 in_pcbinfo_destroy(&V_udbinfo);
265 uma_zdestroy(V_udpcb_zone);
266 }
267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
268
269 static void
udplite_destroy(void * unused __unused)270 udplite_destroy(void *unused __unused)
271 {
272
273 in_pcbinfo_destroy(&V_ulitecbinfo);
274 }
275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
276 NULL);
277 #endif
278
279 #ifdef INET
280 /*
281 * Subroutine of udp_input(), which appends the provided mbuf chain to the
282 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
283 * contains the source address. If the socket ends up being an IPv6 socket,
284 * udp_append() will convert to a sockaddr_in6 before passing the address
285 * into the socket code.
286 *
287 * In the normal case udp_append() will return 0, indicating that you
288 * must unlock the inp. However if a tunneling protocol is in place we increment
289 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
290 * then decrement the reference count. If the inp_rele returns 1, indicating the
291 * inp is gone, we return that to the caller to tell them *not* to unlock
292 * the inp. In the case of multi-cast this will cause the distribution
293 * to stop (though most tunneling protocols known currently do *not* use
294 * multicast).
295 */
296 static int
udp_append(struct inpcb * inp,struct ip * ip,struct mbuf * n,int off,struct sockaddr_in * udp_in)297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298 struct sockaddr_in *udp_in)
299 {
300 struct sockaddr *append_sa;
301 struct socket *so;
302 struct mbuf *tmpopts, *opts = NULL;
303 #ifdef INET6
304 struct sockaddr_in6 udp_in6;
305 #endif
306 struct udpcb *up;
307
308 INP_LOCK_ASSERT(inp);
309
310 /*
311 * Engage the tunneling protocol.
312 */
313 up = intoudpcb(inp);
314 if (up->u_tun_func != NULL) {
315 in_pcbref(inp);
316 INP_RUNLOCK(inp);
317 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
318 up->u_tun_ctx);
319 INP_RLOCK(inp);
320 return (in_pcbrele_rlocked(inp));
321 }
322
323 off += sizeof(struct udphdr);
324
325 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
326 /* Check AH/ESP integrity. */
327 if (IPSEC_ENABLED(ipv4) &&
328 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
329 m_freem(n);
330 return (0);
331 }
332 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
333 if (IPSEC_ENABLED(ipv4) &&
334 UDPENCAP_INPUT(n, off, AF_INET) != 0)
335 return (0); /* Consumed. */
336 }
337 #endif /* IPSEC */
338 #ifdef MAC
339 if (mac_inpcb_check_deliver(inp, n) != 0) {
340 m_freem(n);
341 return (0);
342 }
343 #endif /* MAC */
344 if (inp->inp_flags & INP_CONTROLOPTS ||
345 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 if (inp->inp_vflag & INP_IPV6)
348 (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 else
350 #endif /* INET6 */
351 ip_savecontrol(inp, &opts, ip, n);
352 }
353 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
354 tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
355 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
356 if (tmpopts) {
357 if (opts) {
358 tmpopts->m_next = opts;
359 opts = tmpopts;
360 } else
361 opts = tmpopts;
362 }
363 }
364 #ifdef INET6
365 if (inp->inp_vflag & INP_IPV6) {
366 bzero(&udp_in6, sizeof(udp_in6));
367 udp_in6.sin6_len = sizeof(udp_in6);
368 udp_in6.sin6_family = AF_INET6;
369 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
370 append_sa = (struct sockaddr *)&udp_in6;
371 } else
372 #endif /* INET6 */
373 append_sa = (struct sockaddr *)&udp_in[0];
374 m_adj(n, off);
375
376 so = inp->inp_socket;
377 SOCKBUF_LOCK(&so->so_rcv);
378 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
379 SOCKBUF_UNLOCK(&so->so_rcv);
380 m_freem(n);
381 if (opts)
382 m_freem(opts);
383 UDPSTAT_INC(udps_fullsock);
384 } else
385 sorwakeup_locked(so);
386 return (0);
387 }
388
389 int
udp_input(struct mbuf ** mp,int * offp,int proto)390 udp_input(struct mbuf **mp, int *offp, int proto)
391 {
392 struct ip *ip;
393 struct udphdr *uh;
394 struct ifnet *ifp;
395 struct inpcb *inp;
396 uint16_t len, ip_len;
397 struct inpcbinfo *pcbinfo;
398 struct ip save_ip;
399 struct sockaddr_in udp_in[2];
400 struct mbuf *m;
401 struct m_tag *fwd_tag;
402 struct epoch_tracker et;
403 int cscov_partial, iphlen;
404
405 m = *mp;
406 iphlen = *offp;
407 ifp = m->m_pkthdr.rcvif;
408 *mp = NULL;
409 UDPSTAT_INC(udps_ipackets);
410
411 /*
412 * Strip IP options, if any; should skip this, make available to
413 * user, and use on returned packets, but we don't yet have a way to
414 * check the checksum with options still present.
415 */
416 if (iphlen > sizeof (struct ip)) {
417 ip_stripoptions(m);
418 iphlen = sizeof(struct ip);
419 }
420
421 /*
422 * Get IP and UDP header together in first mbuf.
423 */
424 ip = mtod(m, struct ip *);
425 if (m->m_len < iphlen + sizeof(struct udphdr)) {
426 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
427 UDPSTAT_INC(udps_hdrops);
428 return (IPPROTO_DONE);
429 }
430 ip = mtod(m, struct ip *);
431 }
432 uh = (struct udphdr *)((caddr_t)ip + iphlen);
433 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
434
435 /*
436 * Destination port of 0 is illegal, based on RFC768.
437 */
438 if (uh->uh_dport == 0)
439 goto badunlocked;
440
441 /*
442 * Construct sockaddr format source address. Stuff source address
443 * and datagram in user buffer.
444 */
445 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
446 udp_in[0].sin_len = sizeof(struct sockaddr_in);
447 udp_in[0].sin_family = AF_INET;
448 udp_in[0].sin_port = uh->uh_sport;
449 udp_in[0].sin_addr = ip->ip_src;
450 udp_in[1].sin_len = sizeof(struct sockaddr_in);
451 udp_in[1].sin_family = AF_INET;
452 udp_in[1].sin_port = uh->uh_dport;
453 udp_in[1].sin_addr = ip->ip_dst;
454
455 /*
456 * Make mbuf data length reflect UDP length. If not enough data to
457 * reflect UDP length, drop.
458 */
459 len = ntohs((u_short)uh->uh_ulen);
460 ip_len = ntohs(ip->ip_len) - iphlen;
461 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
462 /* Zero means checksum over the complete packet. */
463 if (len == 0)
464 len = ip_len;
465 cscov_partial = 0;
466 }
467 if (ip_len != len) {
468 if (len > ip_len || len < sizeof(struct udphdr)) {
469 UDPSTAT_INC(udps_badlen);
470 goto badunlocked;
471 }
472 if (proto == IPPROTO_UDP)
473 m_adj(m, len - ip_len);
474 }
475
476 /*
477 * Save a copy of the IP header in case we want restore it for
478 * sending an ICMP error message in response.
479 */
480 if (!V_udp_blackhole)
481 save_ip = *ip;
482 else
483 memset(&save_ip, 0, sizeof(save_ip));
484
485 /*
486 * Checksum extended UDP header and data.
487 */
488 if (uh->uh_sum) {
489 u_short uh_sum;
490
491 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
492 !cscov_partial) {
493 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
494 uh_sum = m->m_pkthdr.csum_data;
495 else
496 uh_sum = in_pseudo(ip->ip_src.s_addr,
497 ip->ip_dst.s_addr, htonl((u_short)len +
498 m->m_pkthdr.csum_data + proto));
499 uh_sum ^= 0xffff;
500 } else {
501 char b[9];
502
503 bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
504 bzero(((struct ipovly *)ip)->ih_x1, 9);
505 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
506 uh->uh_ulen : htons(ip_len);
507 uh_sum = in_cksum(m, len + sizeof (struct ip));
508 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
509 }
510 if (uh_sum) {
511 UDPSTAT_INC(udps_badsum);
512 m_freem(m);
513 return (IPPROTO_DONE);
514 }
515 } else {
516 if (proto == IPPROTO_UDP) {
517 UDPSTAT_INC(udps_nosum);
518 } else {
519 /* UDPLite requires a checksum */
520 /* XXX: What is the right UDPLite MIB counter here? */
521 m_freem(m);
522 return (IPPROTO_DONE);
523 }
524 }
525
526 pcbinfo = udp_get_inpcbinfo(proto);
527 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
528 in_broadcast(ip->ip_dst, ifp)) {
529 struct inpcb *last;
530 struct inpcbhead *pcblist;
531
532 INP_INFO_RLOCK_ET(pcbinfo, et);
533 pcblist = udp_get_pcblist(proto);
534 last = NULL;
535 CK_LIST_FOREACH(inp, pcblist, inp_list) {
536 if (inp->inp_lport != uh->uh_dport)
537 continue;
538 #ifdef INET6
539 if ((inp->inp_vflag & INP_IPV4) == 0)
540 continue;
541 #endif
542 if (inp->inp_laddr.s_addr != INADDR_ANY &&
543 inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
544 continue;
545 if (inp->inp_faddr.s_addr != INADDR_ANY &&
546 inp->inp_faddr.s_addr != ip->ip_src.s_addr)
547 continue;
548 if (inp->inp_fport != 0 &&
549 inp->inp_fport != uh->uh_sport)
550 continue;
551
552 INP_RLOCK(inp);
553
554 if (__predict_false(inp->inp_flags2 & INP_FREED)) {
555 INP_RUNLOCK(inp);
556 continue;
557 }
558
559 /*
560 * XXXRW: Because we weren't holding either the inpcb
561 * or the hash lock when we checked for a match
562 * before, we should probably recheck now that the
563 * inpcb lock is held.
564 */
565
566 /*
567 * Handle socket delivery policy for any-source
568 * and source-specific multicast. [RFC3678]
569 */
570 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
571 struct ip_moptions *imo;
572 struct sockaddr_in group;
573 int blocked;
574
575 imo = inp->inp_moptions;
576 if (imo == NULL) {
577 INP_RUNLOCK(inp);
578 continue;
579 }
580 bzero(&group, sizeof(struct sockaddr_in));
581 group.sin_len = sizeof(struct sockaddr_in);
582 group.sin_family = AF_INET;
583 group.sin_addr = ip->ip_dst;
584
585 blocked = imo_multi_filter(imo, ifp,
586 (struct sockaddr *)&group,
587 (struct sockaddr *)&udp_in[0]);
588 if (blocked != MCAST_PASS) {
589 if (blocked == MCAST_NOTGMEMBER)
590 IPSTAT_INC(ips_notmember);
591 if (blocked == MCAST_NOTSMEMBER ||
592 blocked == MCAST_MUTED)
593 UDPSTAT_INC(udps_filtermcast);
594 INP_RUNLOCK(inp);
595 continue;
596 }
597 }
598 if (last != NULL) {
599 struct mbuf *n;
600
601 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
602 NULL) {
603 if (proto == IPPROTO_UDPLITE)
604 UDPLITE_PROBE(receive, NULL, last, ip,
605 last, uh);
606 else
607 UDP_PROBE(receive, NULL, last, ip, last,
608 uh);
609 if (udp_append(last, ip, n, iphlen,
610 udp_in)) {
611 goto inp_lost;
612 }
613 }
614 INP_RUNLOCK(last);
615 }
616 last = inp;
617 /*
618 * Don't look for additional matches if this one does
619 * not have either the SO_REUSEPORT or SO_REUSEADDR
620 * socket options set. This heuristic avoids
621 * searching through all pcbs in the common case of a
622 * non-shared port. It assumes that an application
623 * will never clear these options after setting them.
624 */
625 if ((last->inp_socket->so_options &
626 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0)
627 break;
628 }
629
630 if (last == NULL) {
631 /*
632 * No matching pcb found; discard datagram. (No need
633 * to send an ICMP Port Unreachable for a broadcast
634 * or multicast datgram.)
635 */
636 UDPSTAT_INC(udps_noportbcast);
637 if (inp)
638 INP_RUNLOCK(inp);
639 INP_INFO_RUNLOCK_ET(pcbinfo, et);
640 goto badunlocked;
641 }
642 if (proto == IPPROTO_UDPLITE)
643 UDPLITE_PROBE(receive, NULL, last, ip, last, uh);
644 else
645 UDP_PROBE(receive, NULL, last, ip, last, uh);
646 if (udp_append(last, ip, m, iphlen, udp_in) == 0)
647 INP_RUNLOCK(last);
648 inp_lost:
649 INP_INFO_RUNLOCK_ET(pcbinfo, et);
650 return (IPPROTO_DONE);
651 }
652
653 /*
654 * Locate pcb for datagram.
655 */
656
657 /*
658 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
659 */
660 if ((m->m_flags & M_IP_NEXTHOP) &&
661 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
662 struct sockaddr_in *next_hop;
663
664 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
665
666 /*
667 * Transparently forwarded. Pretend to be the destination.
668 * Already got one like this?
669 */
670 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
671 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
672 if (!inp) {
673 /*
674 * It's new. Try to find the ambushing socket.
675 * Because we've rewritten the destination address,
676 * any hardware-generated hash is ignored.
677 */
678 inp = in_pcblookup(pcbinfo, ip->ip_src,
679 uh->uh_sport, next_hop->sin_addr,
680 next_hop->sin_port ? htons(next_hop->sin_port) :
681 uh->uh_dport, INPLOOKUP_WILDCARD |
682 INPLOOKUP_RLOCKPCB, ifp);
683 }
684 /* Remove the tag from the packet. We don't need it anymore. */
685 m_tag_delete(m, fwd_tag);
686 m->m_flags &= ~M_IP_NEXTHOP;
687 } else
688 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
689 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
690 INPLOOKUP_RLOCKPCB, ifp, m);
691 if (inp == NULL) {
692 if (udp_log_in_vain) {
693 char src[INET_ADDRSTRLEN];
694 char dst[INET_ADDRSTRLEN];
695
696 log(LOG_INFO,
697 "Connection attempt to UDP %s:%d from %s:%d\n",
698 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
699 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
700 }
701 if (proto == IPPROTO_UDPLITE)
702 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh);
703 else
704 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh);
705 UDPSTAT_INC(udps_noport);
706 if (m->m_flags & (M_BCAST | M_MCAST)) {
707 UDPSTAT_INC(udps_noportbcast);
708 goto badunlocked;
709 }
710 if (V_udp_blackhole)
711 goto badunlocked;
712 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
713 goto badunlocked;
714 *ip = save_ip;
715 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
716 return (IPPROTO_DONE);
717 }
718
719 /*
720 * Check the minimum TTL for socket.
721 */
722 INP_RLOCK_ASSERT(inp);
723 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
724 if (proto == IPPROTO_UDPLITE)
725 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
726 else
727 UDP_PROBE(receive, NULL, inp, ip, inp, uh);
728 INP_RUNLOCK(inp);
729 m_freem(m);
730 return (IPPROTO_DONE);
731 }
732 if (cscov_partial) {
733 struct udpcb *up;
734
735 up = intoudpcb(inp);
736 if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
737 INP_RUNLOCK(inp);
738 m_freem(m);
739 return (IPPROTO_DONE);
740 }
741 }
742
743 if (proto == IPPROTO_UDPLITE)
744 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh);
745 else
746 UDP_PROBE(receive, NULL, inp, ip, inp, uh);
747 if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
748 INP_RUNLOCK(inp);
749 return (IPPROTO_DONE);
750
751 badunlocked:
752 m_freem(m);
753 return (IPPROTO_DONE);
754 }
755 #endif /* INET */
756
757 /*
758 * Notify a udp user of an asynchronous error; just wake up so that they can
759 * collect error status.
760 */
761 struct inpcb *
udp_notify(struct inpcb * inp,int errno)762 udp_notify(struct inpcb *inp, int errno)
763 {
764
765 INP_WLOCK_ASSERT(inp);
766 if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
767 errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
768 RTFREE(inp->inp_route.ro_rt);
769 inp->inp_route.ro_rt = (struct rtentry *)NULL;
770 }
771
772 inp->inp_socket->so_error = errno;
773 sorwakeup(inp->inp_socket);
774 sowwakeup(inp->inp_socket);
775 return (inp);
776 }
777
778 #ifdef INET
779 static void
udp_common_ctlinput(int cmd,struct sockaddr * sa,void * vip,struct inpcbinfo * pcbinfo)780 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
781 struct inpcbinfo *pcbinfo)
782 {
783 struct ip *ip = vip;
784 struct udphdr *uh;
785 struct in_addr faddr;
786 struct inpcb *inp;
787
788 faddr = ((struct sockaddr_in *)sa)->sin_addr;
789 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
790 return;
791
792 if (PRC_IS_REDIRECT(cmd)) {
793 /* signal EHOSTDOWN, as it flushes the cached route */
794 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
795 return;
796 }
797
798 /*
799 * Hostdead is ugly because it goes linearly through all PCBs.
800 *
801 * XXX: We never get this from ICMP, otherwise it makes an excellent
802 * DoS attack on machines with many connections.
803 */
804 if (cmd == PRC_HOSTDEAD)
805 ip = NULL;
806 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
807 return;
808 if (ip != NULL) {
809 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
810 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
811 ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL);
812 if (inp != NULL) {
813 INP_WLOCK_ASSERT(inp);
814 if (inp->inp_socket != NULL) {
815 udp_notify(inp, inetctlerrmap[cmd]);
816 }
817 INP_WUNLOCK(inp);
818 } else {
819 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
820 ip->ip_src, uh->uh_sport,
821 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
822 if (inp != NULL) {
823 struct udpcb *up;
824 void *ctx;
825 udp_tun_icmp_t func;
826
827 up = intoudpcb(inp);
828 ctx = up->u_tun_ctx;
829 func = up->u_icmp_func;
830 INP_RUNLOCK(inp);
831 if (func != NULL)
832 (*func)(cmd, sa, vip, ctx);
833 }
834 }
835 } else
836 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
837 udp_notify);
838 }
839 void
udp_ctlinput(int cmd,struct sockaddr * sa,void * vip)840 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
841 {
842
843 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
844 }
845
846 void
udplite_ctlinput(int cmd,struct sockaddr * sa,void * vip)847 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
848 {
849
850 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
851 }
852 #endif /* INET */
853
854 static int
udp_pcblist(SYSCTL_HANDLER_ARGS)855 udp_pcblist(SYSCTL_HANDLER_ARGS)
856 {
857 int error, i, n;
858 struct inpcb *inp, **inp_list;
859 inp_gen_t gencnt;
860 struct xinpgen xig;
861 struct epoch_tracker et;
862
863 /*
864 * The process of preparing the PCB list is too time-consuming and
865 * resource-intensive to repeat twice on every request.
866 */
867 if (req->oldptr == 0) {
868 n = V_udbinfo.ipi_count;
869 n += imax(n / 8, 10);
870 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
871 return (0);
872 }
873
874 if (req->newptr != 0)
875 return (EPERM);
876
877 /*
878 * OK, now we're committed to doing something.
879 */
880 INP_INFO_RLOCK_ET(&V_udbinfo, et);
881 gencnt = V_udbinfo.ipi_gencnt;
882 n = V_udbinfo.ipi_count;
883 INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
884
885 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
886 + n * sizeof(struct xinpcb));
887 if (error != 0)
888 return (error);
889
890 bzero(&xig, sizeof(xig));
891 xig.xig_len = sizeof xig;
892 xig.xig_count = n;
893 xig.xig_gen = gencnt;
894 xig.xig_sogen = so_gencnt;
895 error = SYSCTL_OUT(req, &xig, sizeof xig);
896 if (error)
897 return (error);
898
899 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
900 if (inp_list == NULL)
901 return (ENOMEM);
902
903 INP_INFO_RLOCK_ET(&V_udbinfo, et);
904 for (inp = CK_LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
905 inp = CK_LIST_NEXT(inp, inp_list)) {
906 INP_WLOCK(inp);
907 if (inp->inp_gencnt <= gencnt &&
908 cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
909 in_pcbref(inp);
910 inp_list[i++] = inp;
911 }
912 INP_WUNLOCK(inp);
913 }
914 INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
915 n = i;
916
917 error = 0;
918 for (i = 0; i < n; i++) {
919 inp = inp_list[i];
920 INP_RLOCK(inp);
921 if (inp->inp_gencnt <= gencnt) {
922 struct xinpcb xi;
923
924 in_pcbtoxinpcb(inp, &xi);
925 INP_RUNLOCK(inp);
926 error = SYSCTL_OUT(req, &xi, sizeof xi);
927 } else
928 INP_RUNLOCK(inp);
929 }
930 INP_INFO_WLOCK(&V_udbinfo);
931 for (i = 0; i < n; i++) {
932 inp = inp_list[i];
933 INP_RLOCK(inp);
934 if (!in_pcbrele_rlocked(inp))
935 INP_RUNLOCK(inp);
936 }
937 INP_INFO_WUNLOCK(&V_udbinfo);
938
939 if (!error) {
940 /*
941 * Give the user an updated idea of our state. If the
942 * generation differs from what we told her before, she knows
943 * that something happened while we were processing this
944 * request, and it might be necessary to retry.
945 */
946 INP_INFO_RLOCK_ET(&V_udbinfo, et);
947 xig.xig_gen = V_udbinfo.ipi_gencnt;
948 xig.xig_sogen = so_gencnt;
949 xig.xig_count = V_udbinfo.ipi_count;
950 INP_INFO_RUNLOCK_ET(&V_udbinfo, et);
951 error = SYSCTL_OUT(req, &xig, sizeof xig);
952 }
953 free(inp_list, M_TEMP);
954 return (error);
955 }
956
957 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
958 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
959 udp_pcblist, "S,xinpcb", "List of active UDP sockets");
960
961 #ifdef INET
962 static int
udp_getcred(SYSCTL_HANDLER_ARGS)963 udp_getcred(SYSCTL_HANDLER_ARGS)
964 {
965 struct xucred xuc;
966 struct sockaddr_in addrs[2];
967 struct inpcb *inp;
968 int error;
969
970 error = priv_check(req->td, PRIV_NETINET_GETCRED);
971 if (error)
972 return (error);
973 error = SYSCTL_IN(req, addrs, sizeof(addrs));
974 if (error)
975 return (error);
976 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
977 addrs[0].sin_addr, addrs[0].sin_port,
978 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
979 if (inp != NULL) {
980 INP_RLOCK_ASSERT(inp);
981 if (inp->inp_socket == NULL)
982 error = ENOENT;
983 if (error == 0)
984 error = cr_canseeinpcb(req->td->td_ucred, inp);
985 if (error == 0)
986 cru2x(inp->inp_cred, &xuc);
987 INP_RUNLOCK(inp);
988 } else
989 error = ENOENT;
990 if (error == 0)
991 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
992 return (error);
993 }
994
995 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
996 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
997 udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
998 #endif /* INET */
999
1000 int
udp_ctloutput(struct socket * so,struct sockopt * sopt)1001 udp_ctloutput(struct socket *so, struct sockopt *sopt)
1002 {
1003 struct inpcb *inp;
1004 struct udpcb *up;
1005 int isudplite, error, optval;
1006
1007 error = 0;
1008 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
1009 inp = sotoinpcb(so);
1010 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1011 INP_WLOCK(inp);
1012 if (sopt->sopt_level != so->so_proto->pr_protocol) {
1013 #ifdef INET6
1014 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
1015 INP_WUNLOCK(inp);
1016 error = ip6_ctloutput(so, sopt);
1017 }
1018 #endif
1019 #if defined(INET) && defined(INET6)
1020 else
1021 #endif
1022 #ifdef INET
1023 {
1024 INP_WUNLOCK(inp);
1025 error = ip_ctloutput(so, sopt);
1026 }
1027 #endif
1028 return (error);
1029 }
1030
1031 switch (sopt->sopt_dir) {
1032 case SOPT_SET:
1033 switch (sopt->sopt_name) {
1034 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1035 #ifdef INET
1036 case UDP_ENCAP:
1037 if (!IPSEC_ENABLED(ipv4)) {
1038 INP_WUNLOCK(inp);
1039 return (ENOPROTOOPT);
1040 }
1041 error = UDPENCAP_PCBCTL(inp, sopt);
1042 break;
1043 #endif /* INET */
1044 #endif /* IPSEC */
1045 case UDPLITE_SEND_CSCOV:
1046 case UDPLITE_RECV_CSCOV:
1047 if (!isudplite) {
1048 INP_WUNLOCK(inp);
1049 error = ENOPROTOOPT;
1050 break;
1051 }
1052 INP_WUNLOCK(inp);
1053 error = sooptcopyin(sopt, &optval, sizeof(optval),
1054 sizeof(optval));
1055 if (error != 0)
1056 break;
1057 inp = sotoinpcb(so);
1058 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1059 INP_WLOCK(inp);
1060 up = intoudpcb(inp);
1061 KASSERT(up != NULL, ("%s: up == NULL", __func__));
1062 if ((optval != 0 && optval < 8) || (optval > 65535)) {
1063 INP_WUNLOCK(inp);
1064 error = EINVAL;
1065 break;
1066 }
1067 if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1068 up->u_txcslen = optval;
1069 else
1070 up->u_rxcslen = optval;
1071 INP_WUNLOCK(inp);
1072 break;
1073 default:
1074 INP_WUNLOCK(inp);
1075 error = ENOPROTOOPT;
1076 break;
1077 }
1078 break;
1079 case SOPT_GET:
1080 switch (sopt->sopt_name) {
1081 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1082 #ifdef INET
1083 case UDP_ENCAP:
1084 if (!IPSEC_ENABLED(ipv4)) {
1085 INP_WUNLOCK(inp);
1086 return (ENOPROTOOPT);
1087 }
1088 error = UDPENCAP_PCBCTL(inp, sopt);
1089 break;
1090 #endif /* INET */
1091 #endif /* IPSEC */
1092 case UDPLITE_SEND_CSCOV:
1093 case UDPLITE_RECV_CSCOV:
1094 if (!isudplite) {
1095 INP_WUNLOCK(inp);
1096 error = ENOPROTOOPT;
1097 break;
1098 }
1099 up = intoudpcb(inp);
1100 KASSERT(up != NULL, ("%s: up == NULL", __func__));
1101 if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1102 optval = up->u_txcslen;
1103 else
1104 optval = up->u_rxcslen;
1105 INP_WUNLOCK(inp);
1106 error = sooptcopyout(sopt, &optval, sizeof(optval));
1107 break;
1108 default:
1109 INP_WUNLOCK(inp);
1110 error = ENOPROTOOPT;
1111 break;
1112 }
1113 break;
1114 }
1115 return (error);
1116 }
1117
1118 #ifdef INET
1119 #define UH_WLOCKED 2
1120 #define UH_RLOCKED 1
1121 #define UH_UNLOCKED 0
1122 static int
udp_output(struct inpcb * inp,struct mbuf * m,struct sockaddr * addr,struct mbuf * control,struct thread * td)1123 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1124 struct mbuf *control, struct thread *td)
1125 {
1126 struct udpiphdr *ui;
1127 int len = m->m_pkthdr.len;
1128 struct in_addr faddr, laddr;
1129 struct cmsghdr *cm;
1130 struct inpcbinfo *pcbinfo;
1131 struct sockaddr_in *sin, src;
1132 struct epoch_tracker et;
1133 int cscov_partial = 0;
1134 int error = 0;
1135 int ipflags;
1136 u_short fport, lport;
1137 int unlock_udbinfo, unlock_inp;
1138 u_char tos;
1139 uint8_t pr;
1140 uint16_t cscov = 0;
1141 uint32_t flowid = 0;
1142 uint8_t flowtype = M_HASHTYPE_NONE;
1143
1144 /*
1145 * udp_output() may need to temporarily bind or connect the current
1146 * inpcb. As such, we don't know up front whether we will need the
1147 * pcbinfo lock or not. Do any work to decide what is needed up
1148 * front before acquiring any locks.
1149 */
1150 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1151 if (control)
1152 m_freem(control);
1153 m_freem(m);
1154 return (EMSGSIZE);
1155 }
1156
1157 src.sin_family = 0;
1158 sin = (struct sockaddr_in *)addr;
1159 retry:
1160 if (sin == NULL ||
1161 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1162 INP_WLOCK(inp);
1163 /*
1164 * In case we lost a race and another thread bound addr/port
1165 * on the inp we cannot keep the wlock (which still would be
1166 * fine) as further down, based on these values we make
1167 * decisions for the pcbinfo lock. If the locks are not in
1168 * synch the assertions on unlock will fire, hence we go for
1169 * one retry loop.
1170 */
1171 if (sin != NULL && (inp->inp_laddr.s_addr != INADDR_ANY ||
1172 inp->inp_lport != 0)) {
1173 INP_WUNLOCK(inp);
1174 goto retry;
1175 }
1176 unlock_inp = UH_WLOCKED;
1177 } else {
1178 INP_RLOCK(inp);
1179 unlock_inp = UH_RLOCKED;
1180 }
1181 tos = inp->inp_ip_tos;
1182 if (control != NULL) {
1183 /*
1184 * XXX: Currently, we assume all the optional information is
1185 * stored in a single mbuf.
1186 */
1187 if (control->m_next) {
1188 if (unlock_inp == UH_WLOCKED)
1189 INP_WUNLOCK(inp);
1190 else
1191 INP_RUNLOCK(inp);
1192 m_freem(control);
1193 m_freem(m);
1194 return (EINVAL);
1195 }
1196 for (; control->m_len > 0;
1197 control->m_data += CMSG_ALIGN(cm->cmsg_len),
1198 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1199 cm = mtod(control, struct cmsghdr *);
1200 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1201 || cm->cmsg_len > control->m_len) {
1202 error = EINVAL;
1203 break;
1204 }
1205 if (cm->cmsg_level != IPPROTO_IP)
1206 continue;
1207
1208 switch (cm->cmsg_type) {
1209 case IP_SENDSRCADDR:
1210 if (cm->cmsg_len !=
1211 CMSG_LEN(sizeof(struct in_addr))) {
1212 error = EINVAL;
1213 break;
1214 }
1215 bzero(&src, sizeof(src));
1216 src.sin_family = AF_INET;
1217 src.sin_len = sizeof(src);
1218 src.sin_port = inp->inp_lport;
1219 src.sin_addr =
1220 *(struct in_addr *)CMSG_DATA(cm);
1221 break;
1222
1223 case IP_TOS:
1224 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1225 error = EINVAL;
1226 break;
1227 }
1228 tos = *(u_char *)CMSG_DATA(cm);
1229 break;
1230
1231 case IP_FLOWID:
1232 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1233 error = EINVAL;
1234 break;
1235 }
1236 flowid = *(uint32_t *) CMSG_DATA(cm);
1237 break;
1238
1239 case IP_FLOWTYPE:
1240 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1241 error = EINVAL;
1242 break;
1243 }
1244 flowtype = *(uint32_t *) CMSG_DATA(cm);
1245 break;
1246
1247 #ifdef RSS
1248 case IP_RSSBUCKETID:
1249 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1250 error = EINVAL;
1251 break;
1252 }
1253 /* This is just a placeholder for now */
1254 break;
1255 #endif /* RSS */
1256 default:
1257 error = ENOPROTOOPT;
1258 break;
1259 }
1260 if (error)
1261 break;
1262 }
1263 m_freem(control);
1264 }
1265 if (error) {
1266 if (unlock_inp == UH_WLOCKED)
1267 INP_WUNLOCK(inp);
1268 else
1269 INP_RUNLOCK(inp);
1270 m_freem(m);
1271 return (error);
1272 }
1273
1274 /*
1275 * In the old days, depending on whether or not the application had
1276 * bound or connected the socket, we had to do varying levels of work.
1277 * The optimal case was for a connected UDP socket, as a global lock
1278 * wasn't required at all.
1279 * In order to decide which we need, we required stability of the
1280 * inpcb binding, which we ensured by acquiring a read lock on the
1281 * inpcb. This didn't strictly follow the lock order, so we played
1282 * the trylock and retry game.
1283 * With the re-introduction of the route-cache in some cases, we started
1284 * to acquire an early inp wlock and a possible race during re-lock
1285 * went away. With the introduction of epoch(9) some read locking
1286 * became epoch(9) and the lock-order issues also went away.
1287 * Due to route-cache we may now hold more conservative locks than
1288 * otherwise required and have split up the 2nd case in case 2 and 3
1289 * in order to keep the udpinfo lock level in sync with the inp one
1290 * for the IP_SENDSRCADDR case below.
1291 */
1292 pr = inp->inp_socket->so_proto->pr_protocol;
1293 pcbinfo = udp_get_inpcbinfo(pr);
1294 if (sin != NULL &&
1295 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1296 INP_HASH_WLOCK(pcbinfo);
1297 unlock_udbinfo = UH_WLOCKED;
1298 } else if (sin != NULL &&
1299 (sin->sin_addr.s_addr == INADDR_ANY ||
1300 sin->sin_addr.s_addr == INADDR_BROADCAST ||
1301 inp->inp_laddr.s_addr == INADDR_ANY ||
1302 inp->inp_lport == 0)) {
1303 INP_HASH_RLOCK_ET(pcbinfo, et);
1304 unlock_udbinfo = UH_RLOCKED;
1305 } else if (src.sin_family == AF_INET) {
1306 if (unlock_inp == UH_WLOCKED) {
1307 INP_HASH_WLOCK(pcbinfo);
1308 unlock_udbinfo = UH_WLOCKED;
1309 } else {
1310 INP_HASH_RLOCK_ET(pcbinfo, et);
1311 unlock_udbinfo = UH_RLOCKED;
1312 }
1313 } else
1314 unlock_udbinfo = UH_UNLOCKED;
1315
1316 /*
1317 * If the IP_SENDSRCADDR control message was specified, override the
1318 * source address for this datagram. Its use is invalidated if the
1319 * address thus specified is incomplete or clobbers other inpcbs.
1320 */
1321 laddr = inp->inp_laddr;
1322 lport = inp->inp_lport;
1323 if (src.sin_family == AF_INET) {
1324 INP_HASH_LOCK_ASSERT(pcbinfo);
1325 if ((lport == 0) ||
1326 (laddr.s_addr == INADDR_ANY &&
1327 src.sin_addr.s_addr == INADDR_ANY)) {
1328 error = EINVAL;
1329 goto release;
1330 }
1331 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1332 &laddr.s_addr, &lport, td->td_ucred);
1333 if (error)
1334 goto release;
1335 }
1336
1337 /*
1338 * If a UDP socket has been connected, then a local address/port will
1339 * have been selected and bound.
1340 *
1341 * If a UDP socket has not been connected to, then an explicit
1342 * destination address must be used, in which case a local
1343 * address/port may not have been selected and bound.
1344 */
1345 if (sin != NULL) {
1346 INP_LOCK_ASSERT(inp);
1347 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1348 error = EISCONN;
1349 goto release;
1350 }
1351
1352 /*
1353 * Jail may rewrite the destination address, so let it do
1354 * that before we use it.
1355 */
1356 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1357 if (error)
1358 goto release;
1359
1360 /*
1361 * If a local address or port hasn't yet been selected, or if
1362 * the destination address needs to be rewritten due to using
1363 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1364 * to do the heavy lifting. Once a port is selected, we
1365 * commit the binding back to the socket; we also commit the
1366 * binding of the address if in jail.
1367 *
1368 * If we already have a valid binding and we're not
1369 * requesting a destination address rewrite, use a fast path.
1370 */
1371 if (inp->inp_laddr.s_addr == INADDR_ANY ||
1372 inp->inp_lport == 0 ||
1373 sin->sin_addr.s_addr == INADDR_ANY ||
1374 sin->sin_addr.s_addr == INADDR_BROADCAST) {
1375 INP_HASH_LOCK_ASSERT(pcbinfo);
1376 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1377 &lport, &faddr.s_addr, &fport, NULL,
1378 td->td_ucred);
1379 if (error)
1380 goto release;
1381
1382 /*
1383 * XXXRW: Why not commit the port if the address is
1384 * !INADDR_ANY?
1385 */
1386 /* Commit the local port if newly assigned. */
1387 if (inp->inp_laddr.s_addr == INADDR_ANY &&
1388 inp->inp_lport == 0) {
1389 INP_WLOCK_ASSERT(inp);
1390 INP_HASH_WLOCK_ASSERT(pcbinfo);
1391 /*
1392 * Remember addr if jailed, to prevent
1393 * rebinding.
1394 */
1395 if (prison_flag(td->td_ucred, PR_IP4))
1396 inp->inp_laddr = laddr;
1397 inp->inp_lport = lport;
1398 if (in_pcbinshash(inp) != 0) {
1399 inp->inp_lport = 0;
1400 error = EAGAIN;
1401 goto release;
1402 }
1403 inp->inp_flags |= INP_ANONPORT;
1404 }
1405 } else {
1406 faddr = sin->sin_addr;
1407 fport = sin->sin_port;
1408 }
1409 } else {
1410 INP_LOCK_ASSERT(inp);
1411 faddr = inp->inp_faddr;
1412 fport = inp->inp_fport;
1413 if (faddr.s_addr == INADDR_ANY) {
1414 error = ENOTCONN;
1415 goto release;
1416 }
1417 }
1418
1419 /*
1420 * Calculate data length and get a mbuf for UDP, IP, and possible
1421 * link-layer headers. Immediate slide the data pointer back forward
1422 * since we won't use that space at this layer.
1423 */
1424 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1425 if (m == NULL) {
1426 error = ENOBUFS;
1427 goto release;
1428 }
1429 m->m_data += max_linkhdr;
1430 m->m_len -= max_linkhdr;
1431 m->m_pkthdr.len -= max_linkhdr;
1432
1433 /*
1434 * Fill in mbuf with extended UDP header and addresses and length put
1435 * into network format.
1436 */
1437 ui = mtod(m, struct udpiphdr *);
1438 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
1439 ui->ui_v = IPVERSION << 4;
1440 ui->ui_pr = pr;
1441 ui->ui_src = laddr;
1442 ui->ui_dst = faddr;
1443 ui->ui_sport = lport;
1444 ui->ui_dport = fport;
1445 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1446 if (pr == IPPROTO_UDPLITE) {
1447 struct udpcb *up;
1448 uint16_t plen;
1449
1450 up = intoudpcb(inp);
1451 cscov = up->u_txcslen;
1452 plen = (u_short)len + sizeof(struct udphdr);
1453 if (cscov >= plen)
1454 cscov = 0;
1455 ui->ui_len = htons(plen);
1456 ui->ui_ulen = htons(cscov);
1457 /*
1458 * For UDP-Lite, checksum coverage length of zero means
1459 * the entire UDPLite packet is covered by the checksum.
1460 */
1461 cscov_partial = (cscov == 0) ? 0 : 1;
1462 }
1463
1464 /*
1465 * Set the Don't Fragment bit in the IP header.
1466 */
1467 if (inp->inp_flags & INP_DONTFRAG) {
1468 struct ip *ip;
1469
1470 ip = (struct ip *)&ui->ui_i;
1471 ip->ip_off |= htons(IP_DF);
1472 }
1473
1474 ipflags = 0;
1475 if (inp->inp_socket->so_options & SO_DONTROUTE)
1476 ipflags |= IP_ROUTETOIF;
1477 if (inp->inp_socket->so_options & SO_BROADCAST)
1478 ipflags |= IP_ALLOWBROADCAST;
1479 if (inp->inp_flags & INP_ONESBCAST)
1480 ipflags |= IP_SENDONES;
1481
1482 #ifdef MAC
1483 mac_inpcb_create_mbuf(inp, m);
1484 #endif
1485
1486 /*
1487 * Set up checksum and output datagram.
1488 */
1489 ui->ui_sum = 0;
1490 if (pr == IPPROTO_UDPLITE) {
1491 if (inp->inp_flags & INP_ONESBCAST)
1492 faddr.s_addr = INADDR_BROADCAST;
1493 if (cscov_partial) {
1494 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1495 ui->ui_sum = 0xffff;
1496 } else {
1497 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1498 ui->ui_sum = 0xffff;
1499 }
1500 } else if (V_udp_cksum) {
1501 if (inp->inp_flags & INP_ONESBCAST)
1502 faddr.s_addr = INADDR_BROADCAST;
1503 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1504 htons((u_short)len + sizeof(struct udphdr) + pr));
1505 m->m_pkthdr.csum_flags = CSUM_UDP;
1506 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1507 }
1508 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1509 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
1510 ((struct ip *)ui)->ip_tos = tos; /* XXX */
1511 UDPSTAT_INC(udps_opackets);
1512
1513 /*
1514 * Setup flowid / RSS information for outbound socket.
1515 *
1516 * Once the UDP code decides to set a flowid some other way,
1517 * this allows the flowid to be overridden by userland.
1518 */
1519 if (flowtype != M_HASHTYPE_NONE) {
1520 m->m_pkthdr.flowid = flowid;
1521 M_HASHTYPE_SET(m, flowtype);
1522 }
1523 #ifdef RSS
1524 else {
1525 uint32_t hash_val, hash_type;
1526 /*
1527 * Calculate an appropriate RSS hash for UDP and
1528 * UDP Lite.
1529 *
1530 * The called function will take care of figuring out
1531 * whether a 2-tuple or 4-tuple hash is required based
1532 * on the currently configured scheme.
1533 *
1534 * Later later on connected socket values should be
1535 * cached in the inpcb and reused, rather than constantly
1536 * re-calculating it.
1537 *
1538 * UDP Lite is a different protocol number and will
1539 * likely end up being hashed as a 2-tuple until
1540 * RSS / NICs grow UDP Lite protocol awareness.
1541 */
1542 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1543 pr, &hash_val, &hash_type) == 0) {
1544 m->m_pkthdr.flowid = hash_val;
1545 M_HASHTYPE_SET(m, hash_type);
1546 }
1547 }
1548
1549 /*
1550 * Don't override with the inp cached flowid value.
1551 *
1552 * Depending upon the kind of send being done, the inp
1553 * flowid/flowtype values may actually not be appropriate
1554 * for this particular socket send.
1555 *
1556 * We should either leave the flowid at zero (which is what is
1557 * currently done) or set it to some software generated
1558 * hash value based on the packet contents.
1559 */
1560 ipflags |= IP_NODEFAULTFLOWID;
1561 #endif /* RSS */
1562
1563 if (unlock_udbinfo == UH_WLOCKED)
1564 INP_HASH_WUNLOCK(pcbinfo);
1565 else if (unlock_udbinfo == UH_RLOCKED)
1566 INP_HASH_RUNLOCK_ET(pcbinfo, et);
1567 if (pr == IPPROTO_UDPLITE)
1568 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1569 else
1570 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1571 error = ip_output(m, inp->inp_options,
1572 (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1573 inp->inp_moptions, inp);
1574 if (unlock_inp == UH_WLOCKED)
1575 INP_WUNLOCK(inp);
1576 else
1577 INP_RUNLOCK(inp);
1578 return (error);
1579
1580 release:
1581 if (unlock_udbinfo == UH_WLOCKED) {
1582 KASSERT(unlock_inp == UH_WLOCKED,
1583 ("%s: excl udbinfo lock %#03x, shared inp lock %#03x, "
1584 "sin %p daddr %#010x inp %p laddr %#010x lport %#06x "
1585 "src fam %#04x",
1586 __func__, unlock_udbinfo, unlock_inp, sin,
1587 (sin != NULL) ? sin->sin_addr.s_addr : 0xfefefefe, inp,
1588 inp->inp_laddr.s_addr, inp->inp_lport, src.sin_family));
1589 INP_HASH_WUNLOCK(pcbinfo);
1590 INP_WUNLOCK(inp);
1591 } else if (unlock_udbinfo == UH_RLOCKED) {
1592 KASSERT(unlock_inp == UH_RLOCKED,
1593 ("%s: shared udbinfo lock %#03x, excl inp lock %#03x, "
1594 "sin %p daddr %#010x inp %p laddr %#010x lport %#06x "
1595 "src fam %#04x",
1596 __func__, unlock_udbinfo, unlock_inp, sin,
1597 (sin != NULL) ? sin->sin_addr.s_addr : 0xfefefefe, inp,
1598 inp->inp_laddr.s_addr, inp->inp_lport, src.sin_family));
1599 INP_HASH_RUNLOCK_ET(pcbinfo, et);
1600 INP_RUNLOCK(inp);
1601 } else if (unlock_inp == UH_WLOCKED)
1602 INP_WUNLOCK(inp);
1603 else
1604 INP_RUNLOCK(inp);
1605 m_freem(m);
1606 return (error);
1607 }
1608
1609 static void
udp_abort(struct socket * so)1610 udp_abort(struct socket *so)
1611 {
1612 struct inpcb *inp;
1613 struct inpcbinfo *pcbinfo;
1614
1615 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1616 inp = sotoinpcb(so);
1617 KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1618 INP_WLOCK(inp);
1619 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1620 INP_HASH_WLOCK(pcbinfo);
1621 in_pcbdisconnect(inp);
1622 inp->inp_laddr.s_addr = INADDR_ANY;
1623 INP_HASH_WUNLOCK(pcbinfo);
1624 soisdisconnected(so);
1625 }
1626 INP_WUNLOCK(inp);
1627 }
1628
1629 static int
udp_attach(struct socket * so,int proto,struct thread * td)1630 udp_attach(struct socket *so, int proto, struct thread *td)
1631 {
1632 static uint32_t udp_flowid;
1633 struct inpcb *inp;
1634 struct inpcbinfo *pcbinfo;
1635 int error;
1636
1637 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1638 inp = sotoinpcb(so);
1639 KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1640 error = soreserve(so, udp_sendspace, udp_recvspace);
1641 if (error)
1642 return (error);
1643 INP_INFO_WLOCK(pcbinfo);
1644 error = in_pcballoc(so, pcbinfo);
1645 if (error) {
1646 INP_INFO_WUNLOCK(pcbinfo);
1647 return (error);
1648 }
1649
1650 inp = sotoinpcb(so);
1651 inp->inp_vflag |= INP_IPV4;
1652 inp->inp_ip_ttl = V_ip_defttl;
1653 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1);
1654 inp->inp_flowtype = M_HASHTYPE_OPAQUE;
1655
1656 error = udp_newudpcb(inp);
1657 if (error) {
1658 in_pcbdetach(inp);
1659 in_pcbfree(inp);
1660 INP_INFO_WUNLOCK(pcbinfo);
1661 return (error);
1662 }
1663
1664 INP_WUNLOCK(inp);
1665 INP_INFO_WUNLOCK(pcbinfo);
1666 return (0);
1667 }
1668 #endif /* INET */
1669
1670 int
udp_set_kernel_tunneling(struct socket * so,udp_tun_func_t f,udp_tun_icmp_t i,void * ctx)1671 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1672 {
1673 struct inpcb *inp;
1674 struct udpcb *up;
1675
1676 KASSERT(so->so_type == SOCK_DGRAM,
1677 ("udp_set_kernel_tunneling: !dgram"));
1678 inp = sotoinpcb(so);
1679 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1680 INP_WLOCK(inp);
1681 up = intoudpcb(inp);
1682 if ((up->u_tun_func != NULL) ||
1683 (up->u_icmp_func != NULL)) {
1684 INP_WUNLOCK(inp);
1685 return (EBUSY);
1686 }
1687 up->u_tun_func = f;
1688 up->u_icmp_func = i;
1689 up->u_tun_ctx = ctx;
1690 INP_WUNLOCK(inp);
1691 return (0);
1692 }
1693
1694 #ifdef INET
1695 static int
udp_bind(struct socket * so,struct sockaddr * nam,struct thread * td)1696 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1697 {
1698 struct inpcb *inp;
1699 struct inpcbinfo *pcbinfo;
1700 int error;
1701
1702 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1703 inp = sotoinpcb(so);
1704 KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1705 INP_WLOCK(inp);
1706 INP_HASH_WLOCK(pcbinfo);
1707 error = in_pcbbind(inp, nam, td->td_ucred);
1708 INP_HASH_WUNLOCK(pcbinfo);
1709 INP_WUNLOCK(inp);
1710 return (error);
1711 }
1712
1713 static void
udp_close(struct socket * so)1714 udp_close(struct socket *so)
1715 {
1716 struct inpcb *inp;
1717 struct inpcbinfo *pcbinfo;
1718
1719 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1720 inp = sotoinpcb(so);
1721 KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1722 INP_WLOCK(inp);
1723 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1724 INP_HASH_WLOCK(pcbinfo);
1725 in_pcbdisconnect(inp);
1726 inp->inp_laddr.s_addr = INADDR_ANY;
1727 INP_HASH_WUNLOCK(pcbinfo);
1728 soisdisconnected(so);
1729 }
1730 INP_WUNLOCK(inp);
1731 }
1732
1733 static int
udp_connect(struct socket * so,struct sockaddr * nam,struct thread * td)1734 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1735 {
1736 struct inpcb *inp;
1737 struct inpcbinfo *pcbinfo;
1738 struct sockaddr_in *sin;
1739 int error;
1740
1741 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1742 inp = sotoinpcb(so);
1743 KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1744 INP_WLOCK(inp);
1745 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1746 INP_WUNLOCK(inp);
1747 return (EISCONN);
1748 }
1749 sin = (struct sockaddr_in *)nam;
1750 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1751 if (error != 0) {
1752 INP_WUNLOCK(inp);
1753 return (error);
1754 }
1755 INP_HASH_WLOCK(pcbinfo);
1756 error = in_pcbconnect(inp, nam, td->td_ucred);
1757 INP_HASH_WUNLOCK(pcbinfo);
1758 if (error == 0)
1759 soisconnected(so);
1760 INP_WUNLOCK(inp);
1761 return (error);
1762 }
1763
1764 static void
udp_detach(struct socket * so)1765 udp_detach(struct socket *so)
1766 {
1767 struct inpcb *inp;
1768 struct inpcbinfo *pcbinfo;
1769 struct udpcb *up;
1770
1771 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1772 inp = sotoinpcb(so);
1773 KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1774 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1775 ("udp_detach: not disconnected"));
1776 INP_INFO_WLOCK(pcbinfo);
1777 INP_WLOCK(inp);
1778 up = intoudpcb(inp);
1779 KASSERT(up != NULL, ("%s: up == NULL", __func__));
1780 inp->inp_ppcb = NULL;
1781 in_pcbdetach(inp);
1782 in_pcbfree(inp);
1783 INP_INFO_WUNLOCK(pcbinfo);
1784 udp_discardcb(up);
1785 }
1786
1787 static int
udp_disconnect(struct socket * so)1788 udp_disconnect(struct socket *so)
1789 {
1790 struct inpcb *inp;
1791 struct inpcbinfo *pcbinfo;
1792
1793 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1794 inp = sotoinpcb(so);
1795 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1796 INP_WLOCK(inp);
1797 if (inp->inp_faddr.s_addr == INADDR_ANY) {
1798 INP_WUNLOCK(inp);
1799 return (ENOTCONN);
1800 }
1801 INP_HASH_WLOCK(pcbinfo);
1802 in_pcbdisconnect(inp);
1803 inp->inp_laddr.s_addr = INADDR_ANY;
1804 INP_HASH_WUNLOCK(pcbinfo);
1805 SOCK_LOCK(so);
1806 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1807 SOCK_UNLOCK(so);
1808 INP_WUNLOCK(inp);
1809 return (0);
1810 }
1811
1812 static int
udp_send(struct socket * so,int flags,struct mbuf * m,struct sockaddr * addr,struct mbuf * control,struct thread * td)1813 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1814 struct mbuf *control, struct thread *td)
1815 {
1816 struct inpcb *inp;
1817
1818 inp = sotoinpcb(so);
1819 KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1820 return (udp_output(inp, m, addr, control, td));
1821 }
1822 #endif /* INET */
1823
1824 int
udp_shutdown(struct socket * so)1825 udp_shutdown(struct socket *so)
1826 {
1827 struct inpcb *inp;
1828
1829 inp = sotoinpcb(so);
1830 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1831 INP_WLOCK(inp);
1832 socantsendmore(so);
1833 INP_WUNLOCK(inp);
1834 return (0);
1835 }
1836
1837 #ifdef INET
1838 struct pr_usrreqs udp_usrreqs = {
1839 .pru_abort = udp_abort,
1840 .pru_attach = udp_attach,
1841 .pru_bind = udp_bind,
1842 .pru_connect = udp_connect,
1843 .pru_control = in_control,
1844 .pru_detach = udp_detach,
1845 .pru_disconnect = udp_disconnect,
1846 .pru_peeraddr = in_getpeeraddr,
1847 .pru_send = udp_send,
1848 .pru_soreceive = soreceive_dgram,
1849 .pru_sosend = sosend_dgram,
1850 .pru_shutdown = udp_shutdown,
1851 .pru_sockaddr = in_getsockaddr,
1852 .pru_sosetlabel = in_pcbsosetlabel,
1853 .pru_close = udp_close,
1854 };
1855 #endif /* INET */
1856