1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/malloc.h>
62 #include <sys/poll.h>
63 #include <sys/resourcevar.h>
64 #include <sys/selinfo.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/vnode.h>
70 #include <sys/bio.h>
71 #include <sys/buf.h>
72 #include <sys/condvar.h>
73 #ifdef KTRACE
74 #include <sys/ktrace.h>
75 #endif
76
77 #include <security/audit/audit.h>
78
79 /*
80 * The following macro defines how many bytes will be allocated from
81 * the stack instead of memory allocated when passing the IOCTL data
82 * structures from userspace and to the kernel. Some IOCTLs having
83 * small data structures are used very frequently and this small
84 * buffer on the stack gives a significant speedup improvement for
85 * those requests. The value of this define should be greater or equal
86 * to 64 bytes and should also be power of two. The data structure is
87 * currently hard-aligned to a 8-byte boundary on the stack. This
88 * should currently be sufficient for all supported platforms.
89 */
90 #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */
91 #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */
92
93 #ifdef __LP64__
94 static int iosize_max_clamp = 0;
95 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
96 &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
97 static int devfs_iosize_max_clamp = 1;
98 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
99 &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
100 #endif
101
102 /*
103 * Assert that the return value of read(2) and write(2) syscalls fits
104 * into a register. If not, an architecture will need to provide the
105 * usermode wrappers to reconstruct the result.
106 */
107 CTASSERT(sizeof(register_t) >= sizeof(size_t));
108
109 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
110 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
111 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
112
113 static int pollout(struct thread *, struct pollfd *, struct pollfd *,
114 u_int);
115 static int pollscan(struct thread *, struct pollfd *, u_int);
116 static int pollrescan(struct thread *);
117 static int selscan(struct thread *, fd_mask **, fd_mask **, int);
118 static int selrescan(struct thread *, fd_mask **, fd_mask **);
119 static void selfdalloc(struct thread *, void *);
120 static void selfdfree(struct seltd *, struct selfd *);
121 static int dofileread(struct thread *, int, struct file *, struct uio *,
122 off_t, int);
123 static int dofilewrite(struct thread *, int, struct file *, struct uio *,
124 off_t, int);
125 static void doselwakeup(struct selinfo *, int);
126 static void seltdinit(struct thread *);
127 static int seltdwait(struct thread *, sbintime_t, sbintime_t);
128 static void seltdclear(struct thread *);
129
130 /*
131 * One seltd per-thread allocated on demand as needed.
132 *
133 * t - protected by st_mtx
134 * k - Only accessed by curthread or read-only
135 */
136 struct seltd {
137 STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */
138 struct selfd *st_free1; /* (k) free fd for read set. */
139 struct selfd *st_free2; /* (k) free fd for write set. */
140 struct mtx st_mtx; /* Protects struct seltd */
141 struct cv st_wait; /* (t) Wait channel. */
142 int st_flags; /* (t) SELTD_ flags. */
143 };
144
145 #define SELTD_PENDING 0x0001 /* We have pending events. */
146 #define SELTD_RESCAN 0x0002 /* Doing a rescan. */
147
148 /*
149 * One selfd allocated per-thread per-file-descriptor.
150 * f - protected by sf_mtx
151 */
152 struct selfd {
153 STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */
154 TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */
155 struct selinfo *sf_si; /* (f) selinfo when linked. */
156 struct mtx *sf_mtx; /* Pointer to selinfo mtx. */
157 struct seltd *sf_td; /* (k) owning seltd. */
158 void *sf_cookie; /* (k) fd or pollfd. */
159 u_int sf_refs;
160 };
161
162 static uma_zone_t selfd_zone;
163 static struct mtx_pool *mtxpool_select;
164
165 #ifdef __LP64__
166 size_t
devfs_iosize_max(void)167 devfs_iosize_max(void)
168 {
169
170 return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
171 INT_MAX : SSIZE_MAX);
172 }
173
174 size_t
iosize_max(void)175 iosize_max(void)
176 {
177
178 return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
179 INT_MAX : SSIZE_MAX);
180 }
181 #endif
182
183 #ifndef _SYS_SYSPROTO_H_
184 struct read_args {
185 int fd;
186 void *buf;
187 size_t nbyte;
188 };
189 #endif
190 int
sys_read(struct thread * td,struct read_args * uap)191 sys_read(struct thread *td, struct read_args *uap)
192 {
193 struct uio auio;
194 struct iovec aiov;
195 int error;
196
197 if (uap->nbyte > IOSIZE_MAX)
198 return (EINVAL);
199 aiov.iov_base = uap->buf;
200 aiov.iov_len = uap->nbyte;
201 auio.uio_iov = &aiov;
202 auio.uio_iovcnt = 1;
203 auio.uio_resid = uap->nbyte;
204 auio.uio_segflg = UIO_USERSPACE;
205 error = kern_readv(td, uap->fd, &auio);
206 return (error);
207 }
208
209 /*
210 * Positioned read system call
211 */
212 #ifndef _SYS_SYSPROTO_H_
213 struct pread_args {
214 int fd;
215 void *buf;
216 size_t nbyte;
217 int pad;
218 off_t offset;
219 };
220 #endif
221 int
sys_pread(struct thread * td,struct pread_args * uap)222 sys_pread(struct thread *td, struct pread_args *uap)
223 {
224
225 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
226 }
227
228 int
kern_pread(struct thread * td,int fd,void * buf,size_t nbyte,off_t offset)229 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
230 {
231 struct uio auio;
232 struct iovec aiov;
233 int error;
234
235 if (nbyte > IOSIZE_MAX)
236 return (EINVAL);
237 aiov.iov_base = buf;
238 aiov.iov_len = nbyte;
239 auio.uio_iov = &aiov;
240 auio.uio_iovcnt = 1;
241 auio.uio_resid = nbyte;
242 auio.uio_segflg = UIO_USERSPACE;
243 error = kern_preadv(td, fd, &auio, offset);
244 return (error);
245 }
246
247 #if defined(COMPAT_FREEBSD6)
248 int
freebsd6_pread(struct thread * td,struct freebsd6_pread_args * uap)249 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
250 {
251
252 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
253 }
254 #endif
255
256 /*
257 * Scatter read system call.
258 */
259 #ifndef _SYS_SYSPROTO_H_
260 struct readv_args {
261 int fd;
262 struct iovec *iovp;
263 u_int iovcnt;
264 };
265 #endif
266 int
sys_readv(struct thread * td,struct readv_args * uap)267 sys_readv(struct thread *td, struct readv_args *uap)
268 {
269 struct uio *auio;
270 int error;
271
272 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
273 if (error)
274 return (error);
275 error = kern_readv(td, uap->fd, auio);
276 free(auio, M_IOV);
277 return (error);
278 }
279
280 int
kern_readv(struct thread * td,int fd,struct uio * auio)281 kern_readv(struct thread *td, int fd, struct uio *auio)
282 {
283 struct file *fp;
284 int error;
285
286 error = fget_read(td, fd, &cap_read_rights, &fp);
287 if (error)
288 return (error);
289 error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
290 fdrop(fp, td);
291 return (error);
292 }
293
294 /*
295 * Scatter positioned read system call.
296 */
297 #ifndef _SYS_SYSPROTO_H_
298 struct preadv_args {
299 int fd;
300 struct iovec *iovp;
301 u_int iovcnt;
302 off_t offset;
303 };
304 #endif
305 int
sys_preadv(struct thread * td,struct preadv_args * uap)306 sys_preadv(struct thread *td, struct preadv_args *uap)
307 {
308 struct uio *auio;
309 int error;
310
311 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
312 if (error)
313 return (error);
314 error = kern_preadv(td, uap->fd, auio, uap->offset);
315 free(auio, M_IOV);
316 return (error);
317 }
318
319 int
kern_preadv(struct thread * td,int fd,struct uio * auio,off_t offset)320 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
321 {
322 struct file *fp;
323 int error;
324
325 error = fget_read(td, fd, &cap_pread_rights, &fp);
326 if (error)
327 return (error);
328 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
329 error = ESPIPE;
330 else if (offset < 0 &&
331 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
332 error = EINVAL;
333 else
334 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
335 fdrop(fp, td);
336 return (error);
337 }
338
339 /*
340 * Common code for readv and preadv that reads data in
341 * from a file using the passed in uio, offset, and flags.
342 */
343 static int
dofileread(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)344 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
345 off_t offset, int flags)
346 {
347 ssize_t cnt;
348 int error;
349 #ifdef KTRACE
350 struct uio *ktruio = NULL;
351 #endif
352
353 AUDIT_ARG_FD(fd);
354
355 /* Finish zero length reads right here */
356 if (auio->uio_resid == 0) {
357 td->td_retval[0] = 0;
358 return (0);
359 }
360 auio->uio_rw = UIO_READ;
361 auio->uio_offset = offset;
362 auio->uio_td = td;
363 #ifdef KTRACE
364 if (KTRPOINT(td, KTR_GENIO))
365 ktruio = cloneuio(auio);
366 #endif
367 cnt = auio->uio_resid;
368 if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
369 if (auio->uio_resid != cnt && (error == ERESTART ||
370 error == EINTR || error == EWOULDBLOCK))
371 error = 0;
372 }
373 cnt -= auio->uio_resid;
374 #ifdef KTRACE
375 if (ktruio != NULL) {
376 ktruio->uio_resid = cnt;
377 ktrgenio(fd, UIO_READ, ktruio, error);
378 }
379 #endif
380 td->td_retval[0] = cnt;
381 return (error);
382 }
383
384 #ifndef _SYS_SYSPROTO_H_
385 struct write_args {
386 int fd;
387 const void *buf;
388 size_t nbyte;
389 };
390 #endif
391 int
sys_write(struct thread * td,struct write_args * uap)392 sys_write(struct thread *td, struct write_args *uap)
393 {
394 struct uio auio;
395 struct iovec aiov;
396 int error;
397
398 if (uap->nbyte > IOSIZE_MAX)
399 return (EINVAL);
400 aiov.iov_base = (void *)(uintptr_t)uap->buf;
401 aiov.iov_len = uap->nbyte;
402 auio.uio_iov = &aiov;
403 auio.uio_iovcnt = 1;
404 auio.uio_resid = uap->nbyte;
405 auio.uio_segflg = UIO_USERSPACE;
406 error = kern_writev(td, uap->fd, &auio);
407 return (error);
408 }
409
410 /*
411 * Positioned write system call.
412 */
413 #ifndef _SYS_SYSPROTO_H_
414 struct pwrite_args {
415 int fd;
416 const void *buf;
417 size_t nbyte;
418 int pad;
419 off_t offset;
420 };
421 #endif
422 int
sys_pwrite(struct thread * td,struct pwrite_args * uap)423 sys_pwrite(struct thread *td, struct pwrite_args *uap)
424 {
425
426 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
427 }
428
429 int
kern_pwrite(struct thread * td,int fd,const void * buf,size_t nbyte,off_t offset)430 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
431 off_t offset)
432 {
433 struct uio auio;
434 struct iovec aiov;
435 int error;
436
437 if (nbyte > IOSIZE_MAX)
438 return (EINVAL);
439 aiov.iov_base = (void *)(uintptr_t)buf;
440 aiov.iov_len = nbyte;
441 auio.uio_iov = &aiov;
442 auio.uio_iovcnt = 1;
443 auio.uio_resid = nbyte;
444 auio.uio_segflg = UIO_USERSPACE;
445 error = kern_pwritev(td, fd, &auio, offset);
446 return (error);
447 }
448
449 #if defined(COMPAT_FREEBSD6)
450 int
freebsd6_pwrite(struct thread * td,struct freebsd6_pwrite_args * uap)451 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
452 {
453
454 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
455 }
456 #endif
457
458 /*
459 * Gather write system call.
460 */
461 #ifndef _SYS_SYSPROTO_H_
462 struct writev_args {
463 int fd;
464 struct iovec *iovp;
465 u_int iovcnt;
466 };
467 #endif
468 int
sys_writev(struct thread * td,struct writev_args * uap)469 sys_writev(struct thread *td, struct writev_args *uap)
470 {
471 struct uio *auio;
472 int error;
473
474 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
475 if (error)
476 return (error);
477 error = kern_writev(td, uap->fd, auio);
478 free(auio, M_IOV);
479 return (error);
480 }
481
482 int
kern_writev(struct thread * td,int fd,struct uio * auio)483 kern_writev(struct thread *td, int fd, struct uio *auio)
484 {
485 struct file *fp;
486 int error;
487
488 error = fget_write(td, fd, &cap_write_rights, &fp);
489 if (error)
490 return (error);
491 error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
492 fdrop(fp, td);
493 return (error);
494 }
495
496 /*
497 * Gather positioned write system call.
498 */
499 #ifndef _SYS_SYSPROTO_H_
500 struct pwritev_args {
501 int fd;
502 struct iovec *iovp;
503 u_int iovcnt;
504 off_t offset;
505 };
506 #endif
507 int
sys_pwritev(struct thread * td,struct pwritev_args * uap)508 sys_pwritev(struct thread *td, struct pwritev_args *uap)
509 {
510 struct uio *auio;
511 int error;
512
513 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
514 if (error)
515 return (error);
516 error = kern_pwritev(td, uap->fd, auio, uap->offset);
517 free(auio, M_IOV);
518 return (error);
519 }
520
521 int
kern_pwritev(struct thread * td,int fd,struct uio * auio,off_t offset)522 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
523 {
524 struct file *fp;
525 int error;
526
527 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
528 if (error)
529 return (error);
530 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
531 error = ESPIPE;
532 else if (offset < 0 &&
533 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
534 error = EINVAL;
535 else
536 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
537 fdrop(fp, td);
538 return (error);
539 }
540
541 /*
542 * Common code for writev and pwritev that writes data to
543 * a file using the passed in uio, offset, and flags.
544 */
545 static int
dofilewrite(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)546 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
547 off_t offset, int flags)
548 {
549 ssize_t cnt;
550 int error;
551 #ifdef KTRACE
552 struct uio *ktruio = NULL;
553 #endif
554
555 AUDIT_ARG_FD(fd);
556 auio->uio_rw = UIO_WRITE;
557 auio->uio_td = td;
558 auio->uio_offset = offset;
559 #ifdef KTRACE
560 if (KTRPOINT(td, KTR_GENIO))
561 ktruio = cloneuio(auio);
562 #endif
563 cnt = auio->uio_resid;
564 if (fp->f_type == DTYPE_VNODE &&
565 (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
566 bwillwrite();
567 if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
568 if (auio->uio_resid != cnt && (error == ERESTART ||
569 error == EINTR || error == EWOULDBLOCK))
570 error = 0;
571 /* Socket layer is responsible for issuing SIGPIPE. */
572 if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
573 PROC_LOCK(td->td_proc);
574 tdsignal(td, SIGPIPE);
575 PROC_UNLOCK(td->td_proc);
576 }
577 }
578 cnt -= auio->uio_resid;
579 #ifdef KTRACE
580 if (ktruio != NULL) {
581 ktruio->uio_resid = cnt;
582 ktrgenio(fd, UIO_WRITE, ktruio, error);
583 }
584 #endif
585 td->td_retval[0] = cnt;
586 return (error);
587 }
588
589 /*
590 * Truncate a file given a file descriptor.
591 *
592 * Can't use fget_write() here, since must return EINVAL and not EBADF if the
593 * descriptor isn't writable.
594 */
595 int
kern_ftruncate(struct thread * td,int fd,off_t length)596 kern_ftruncate(struct thread *td, int fd, off_t length)
597 {
598 struct file *fp;
599 int error;
600
601 AUDIT_ARG_FD(fd);
602 if (length < 0)
603 return (EINVAL);
604 error = fget(td, fd, &cap_ftruncate_rights, &fp);
605 if (error)
606 return (error);
607 AUDIT_ARG_FILE(td->td_proc, fp);
608 if (!(fp->f_flag & FWRITE)) {
609 fdrop(fp, td);
610 return (EINVAL);
611 }
612 error = fo_truncate(fp, length, td->td_ucred, td);
613 fdrop(fp, td);
614 return (error);
615 }
616
617 #ifndef _SYS_SYSPROTO_H_
618 struct ftruncate_args {
619 int fd;
620 int pad;
621 off_t length;
622 };
623 #endif
624 int
sys_ftruncate(struct thread * td,struct ftruncate_args * uap)625 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
626 {
627
628 return (kern_ftruncate(td, uap->fd, uap->length));
629 }
630
631 #if defined(COMPAT_43)
632 #ifndef _SYS_SYSPROTO_H_
633 struct oftruncate_args {
634 int fd;
635 long length;
636 };
637 #endif
638 int
oftruncate(struct thread * td,struct oftruncate_args * uap)639 oftruncate(struct thread *td, struct oftruncate_args *uap)
640 {
641
642 return (kern_ftruncate(td, uap->fd, uap->length));
643 }
644 #endif /* COMPAT_43 */
645
646 #ifndef _SYS_SYSPROTO_H_
647 struct ioctl_args {
648 int fd;
649 u_long com;
650 caddr_t data;
651 };
652 #endif
653 /* ARGSUSED */
654 int
sys_ioctl(struct thread * td,struct ioctl_args * uap)655 sys_ioctl(struct thread *td, struct ioctl_args *uap)
656 {
657 u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
658 u_long com;
659 int arg, error;
660 u_int size;
661 caddr_t data;
662
663 if (uap->com > 0xffffffff) {
664 printf(
665 "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
666 td->td_proc->p_pid, td->td_name, uap->com);
667 uap->com &= 0xffffffff;
668 }
669 com = uap->com;
670
671 /*
672 * Interpret high order word to find amount of data to be
673 * copied to/from the user's address space.
674 */
675 size = IOCPARM_LEN(com);
676 if ((size > IOCPARM_MAX) ||
677 ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) ||
678 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
679 ((com & IOC_OUT) && size == 0) ||
680 #else
681 ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
682 #endif
683 ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
684 return (ENOTTY);
685
686 if (size > 0) {
687 if (com & IOC_VOID) {
688 /* Integer argument. */
689 arg = (intptr_t)uap->data;
690 data = (void *)&arg;
691 size = 0;
692 } else {
693 if (size > SYS_IOCTL_SMALL_SIZE)
694 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
695 else
696 data = smalldata;
697 }
698 } else
699 data = (void *)&uap->data;
700 if (com & IOC_IN) {
701 error = copyin(uap->data, data, (u_int)size);
702 if (error != 0)
703 goto out;
704 } else if (com & IOC_OUT) {
705 /*
706 * Zero the buffer so the user always
707 * gets back something deterministic.
708 */
709 bzero(data, size);
710 }
711
712 error = kern_ioctl(td, uap->fd, com, data);
713
714 if (error == 0 && (com & IOC_OUT))
715 error = copyout(data, uap->data, (u_int)size);
716
717 out:
718 if (size > SYS_IOCTL_SMALL_SIZE)
719 free(data, M_IOCTLOPS);
720 return (error);
721 }
722
723 int
kern_ioctl(struct thread * td,int fd,u_long com,caddr_t data)724 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
725 {
726 struct file *fp;
727 struct filedesc *fdp;
728 int error, tmp, locked;
729
730 AUDIT_ARG_FD(fd);
731 AUDIT_ARG_CMD(com);
732
733 fdp = td->td_proc->p_fd;
734
735 switch (com) {
736 case FIONCLEX:
737 case FIOCLEX:
738 FILEDESC_XLOCK(fdp);
739 locked = LA_XLOCKED;
740 break;
741 default:
742 #ifdef CAPABILITIES
743 FILEDESC_SLOCK(fdp);
744 locked = LA_SLOCKED;
745 #else
746 locked = LA_UNLOCKED;
747 #endif
748 break;
749 }
750
751 #ifdef CAPABILITIES
752 if ((fp = fget_locked(fdp, fd)) == NULL) {
753 error = EBADF;
754 goto out;
755 }
756 if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
757 fp = NULL; /* fhold() was not called yet */
758 goto out;
759 }
760 if (!fhold(fp)) {
761 error = EBADF;
762 fp = NULL;
763 goto out;
764 }
765 if (locked == LA_SLOCKED) {
766 FILEDESC_SUNLOCK(fdp);
767 locked = LA_UNLOCKED;
768 }
769 #else
770 error = fget(td, fd, &cap_ioctl_rights, &fp);
771 if (error != 0) {
772 fp = NULL;
773 goto out;
774 }
775 #endif
776 if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
777 error = EBADF;
778 goto out;
779 }
780
781 switch (com) {
782 case FIONCLEX:
783 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
784 goto out;
785 case FIOCLEX:
786 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
787 goto out;
788 case FIONBIO:
789 if ((tmp = *(int *)data))
790 atomic_set_int(&fp->f_flag, FNONBLOCK);
791 else
792 atomic_clear_int(&fp->f_flag, FNONBLOCK);
793 data = (void *)&tmp;
794 break;
795 case FIOASYNC:
796 if ((tmp = *(int *)data))
797 atomic_set_int(&fp->f_flag, FASYNC);
798 else
799 atomic_clear_int(&fp->f_flag, FASYNC);
800 data = (void *)&tmp;
801 break;
802 }
803
804 error = fo_ioctl(fp, com, data, td->td_ucred, td);
805 out:
806 switch (locked) {
807 case LA_XLOCKED:
808 FILEDESC_XUNLOCK(fdp);
809 break;
810 #ifdef CAPABILITIES
811 case LA_SLOCKED:
812 FILEDESC_SUNLOCK(fdp);
813 break;
814 #endif
815 default:
816 FILEDESC_UNLOCK_ASSERT(fdp);
817 break;
818 }
819 if (fp != NULL)
820 fdrop(fp, td);
821 return (error);
822 }
823
824 int
poll_no_poll(int events)825 poll_no_poll(int events)
826 {
827 /*
828 * Return true for read/write. If the user asked for something
829 * special, return POLLNVAL, so that clients have a way of
830 * determining reliably whether or not the extended
831 * functionality is present without hard-coding knowledge
832 * of specific filesystem implementations.
833 */
834 if (events & ~POLLSTANDARD)
835 return (POLLNVAL);
836
837 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
838 }
839
840 int
sys_pselect(struct thread * td,struct pselect_args * uap)841 sys_pselect(struct thread *td, struct pselect_args *uap)
842 {
843 struct timespec ts;
844 struct timeval tv, *tvp;
845 sigset_t set, *uset;
846 int error;
847
848 if (uap->ts != NULL) {
849 error = copyin(uap->ts, &ts, sizeof(ts));
850 if (error != 0)
851 return (error);
852 TIMESPEC_TO_TIMEVAL(&tv, &ts);
853 tvp = &tv;
854 } else
855 tvp = NULL;
856 if (uap->sm != NULL) {
857 error = copyin(uap->sm, &set, sizeof(set));
858 if (error != 0)
859 return (error);
860 uset = &set;
861 } else
862 uset = NULL;
863 return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
864 uset, NFDBITS));
865 }
866
867 int
kern_pselect(struct thread * td,int nd,fd_set * in,fd_set * ou,fd_set * ex,struct timeval * tvp,sigset_t * uset,int abi_nfdbits)868 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
869 struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
870 {
871 int error;
872
873 if (uset != NULL) {
874 error = kern_sigprocmask(td, SIG_SETMASK, uset,
875 &td->td_oldsigmask, 0);
876 if (error != 0)
877 return (error);
878 td->td_pflags |= TDP_OLDMASK;
879 /*
880 * Make sure that ast() is called on return to
881 * usermode and TDP_OLDMASK is cleared, restoring old
882 * sigmask.
883 */
884 thread_lock(td);
885 td->td_flags |= TDF_ASTPENDING;
886 thread_unlock(td);
887 }
888 error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
889 return (error);
890 }
891
892 #ifndef _SYS_SYSPROTO_H_
893 struct select_args {
894 int nd;
895 fd_set *in, *ou, *ex;
896 struct timeval *tv;
897 };
898 #endif
899 int
sys_select(struct thread * td,struct select_args * uap)900 sys_select(struct thread *td, struct select_args *uap)
901 {
902 struct timeval tv, *tvp;
903 int error;
904
905 if (uap->tv != NULL) {
906 error = copyin(uap->tv, &tv, sizeof(tv));
907 if (error)
908 return (error);
909 tvp = &tv;
910 } else
911 tvp = NULL;
912
913 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
914 NFDBITS));
915 }
916
917 /*
918 * In the unlikely case when user specified n greater then the last
919 * open file descriptor, check that no bits are set after the last
920 * valid fd. We must return EBADF if any is set.
921 *
922 * There are applications that rely on the behaviour.
923 *
924 * nd is fd_lastfile + 1.
925 */
926 static int
select_check_badfd(fd_set * fd_in,int nd,int ndu,int abi_nfdbits)927 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
928 {
929 char *addr, *oaddr;
930 int b, i, res;
931 uint8_t bits;
932
933 if (nd >= ndu || fd_in == NULL)
934 return (0);
935
936 oaddr = NULL;
937 bits = 0; /* silence gcc */
938 for (i = nd; i < ndu; i++) {
939 b = i / NBBY;
940 #if BYTE_ORDER == LITTLE_ENDIAN
941 addr = (char *)fd_in + b;
942 #else
943 addr = (char *)fd_in;
944 if (abi_nfdbits == NFDBITS) {
945 addr += rounddown(b, sizeof(fd_mask)) +
946 sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
947 } else {
948 addr += rounddown(b, sizeof(uint32_t)) +
949 sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
950 }
951 #endif
952 if (addr != oaddr) {
953 res = fubyte(addr);
954 if (res == -1)
955 return (EFAULT);
956 oaddr = addr;
957 bits = res;
958 }
959 if ((bits & (1 << (i % NBBY))) != 0)
960 return (EBADF);
961 }
962 return (0);
963 }
964
965 int
kern_select(struct thread * td,int nd,fd_set * fd_in,fd_set * fd_ou,fd_set * fd_ex,struct timeval * tvp,int abi_nfdbits)966 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
967 fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
968 {
969 struct filedesc *fdp;
970 /*
971 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
972 * infds with the new FD_SETSIZE of 1024, and more than enough for
973 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
974 * of 256.
975 */
976 fd_mask s_selbits[howmany(2048, NFDBITS)];
977 fd_mask *ibits[3], *obits[3], *selbits, *sbp;
978 struct timeval rtv;
979 sbintime_t asbt, precision, rsbt;
980 u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
981 int error, lf, ndu;
982
983 if (nd < 0)
984 return (EINVAL);
985 fdp = td->td_proc->p_fd;
986 ndu = nd;
987 lf = fdp->fd_lastfile;
988 if (nd > lf + 1)
989 nd = lf + 1;
990
991 error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
992 if (error != 0)
993 return (error);
994 error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
995 if (error != 0)
996 return (error);
997 error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
998 if (error != 0)
999 return (error);
1000
1001 /*
1002 * Allocate just enough bits for the non-null fd_sets. Use the
1003 * preallocated auto buffer if possible.
1004 */
1005 nfdbits = roundup(nd, NFDBITS);
1006 ncpbytes = nfdbits / NBBY;
1007 ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1008 nbufbytes = 0;
1009 if (fd_in != NULL)
1010 nbufbytes += 2 * ncpbytes;
1011 if (fd_ou != NULL)
1012 nbufbytes += 2 * ncpbytes;
1013 if (fd_ex != NULL)
1014 nbufbytes += 2 * ncpbytes;
1015 if (nbufbytes <= sizeof s_selbits)
1016 selbits = &s_selbits[0];
1017 else
1018 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1019
1020 /*
1021 * Assign pointers into the bit buffers and fetch the input bits.
1022 * Put the output buffers together so that they can be bzeroed
1023 * together.
1024 */
1025 sbp = selbits;
1026 #define getbits(name, x) \
1027 do { \
1028 if (name == NULL) { \
1029 ibits[x] = NULL; \
1030 obits[x] = NULL; \
1031 } else { \
1032 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \
1033 obits[x] = sbp; \
1034 sbp += ncpbytes / sizeof *sbp; \
1035 error = copyin(name, ibits[x], ncpubytes); \
1036 if (error != 0) \
1037 goto done; \
1038 if (ncpbytes != ncpubytes) \
1039 bzero((char *)ibits[x] + ncpubytes, \
1040 ncpbytes - ncpubytes); \
1041 } \
1042 } while (0)
1043 getbits(fd_in, 0);
1044 getbits(fd_ou, 1);
1045 getbits(fd_ex, 2);
1046 #undef getbits
1047
1048 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1049 /*
1050 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1051 * we are running under 32-bit emulation. This should be more
1052 * generic.
1053 */
1054 #define swizzle_fdset(bits) \
1055 if (abi_nfdbits != NFDBITS && bits != NULL) { \
1056 int i; \
1057 for (i = 0; i < ncpbytes / sizeof *sbp; i++) \
1058 bits[i] = (bits[i] >> 32) | (bits[i] << 32); \
1059 }
1060 #else
1061 #define swizzle_fdset(bits)
1062 #endif
1063
1064 /* Make sure the bit order makes it through an ABI transition */
1065 swizzle_fdset(ibits[0]);
1066 swizzle_fdset(ibits[1]);
1067 swizzle_fdset(ibits[2]);
1068
1069 if (nbufbytes != 0)
1070 bzero(selbits, nbufbytes / 2);
1071
1072 precision = 0;
1073 if (tvp != NULL) {
1074 rtv = *tvp;
1075 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1076 rtv.tv_usec >= 1000000) {
1077 error = EINVAL;
1078 goto done;
1079 }
1080 if (!timevalisset(&rtv))
1081 asbt = 0;
1082 else if (rtv.tv_sec <= INT32_MAX) {
1083 rsbt = tvtosbt(rtv);
1084 precision = rsbt;
1085 precision >>= tc_precexp;
1086 if (TIMESEL(&asbt, rsbt))
1087 asbt += tc_tick_sbt;
1088 if (asbt <= SBT_MAX - rsbt)
1089 asbt += rsbt;
1090 else
1091 asbt = -1;
1092 } else
1093 asbt = -1;
1094 } else
1095 asbt = -1;
1096 seltdinit(td);
1097 /* Iterate until the timeout expires or descriptors become ready. */
1098 for (;;) {
1099 error = selscan(td, ibits, obits, nd);
1100 if (error || td->td_retval[0] != 0)
1101 break;
1102 error = seltdwait(td, asbt, precision);
1103 if (error)
1104 break;
1105 error = selrescan(td, ibits, obits);
1106 if (error || td->td_retval[0] != 0)
1107 break;
1108 }
1109 seltdclear(td);
1110
1111 done:
1112 /* select is not restarted after signals... */
1113 if (error == ERESTART)
1114 error = EINTR;
1115 if (error == EWOULDBLOCK)
1116 error = 0;
1117
1118 /* swizzle bit order back, if necessary */
1119 swizzle_fdset(obits[0]);
1120 swizzle_fdset(obits[1]);
1121 swizzle_fdset(obits[2]);
1122 #undef swizzle_fdset
1123
1124 #define putbits(name, x) \
1125 if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1126 error = error2;
1127 if (error == 0) {
1128 int error2;
1129
1130 putbits(fd_in, 0);
1131 putbits(fd_ou, 1);
1132 putbits(fd_ex, 2);
1133 #undef putbits
1134 }
1135 if (selbits != &s_selbits[0])
1136 free(selbits, M_SELECT);
1137
1138 return (error);
1139 }
1140 /*
1141 * Convert a select bit set to poll flags.
1142 *
1143 * The backend always returns POLLHUP/POLLERR if appropriate and we
1144 * return this as a set bit in any set.
1145 */
1146 static int select_flags[3] = {
1147 POLLRDNORM | POLLHUP | POLLERR,
1148 POLLWRNORM | POLLHUP | POLLERR,
1149 POLLRDBAND | POLLERR
1150 };
1151
1152 /*
1153 * Compute the fo_poll flags required for a fd given by the index and
1154 * bit position in the fd_mask array.
1155 */
1156 static __inline int
selflags(fd_mask ** ibits,int idx,fd_mask bit)1157 selflags(fd_mask **ibits, int idx, fd_mask bit)
1158 {
1159 int flags;
1160 int msk;
1161
1162 flags = 0;
1163 for (msk = 0; msk < 3; msk++) {
1164 if (ibits[msk] == NULL)
1165 continue;
1166 if ((ibits[msk][idx] & bit) == 0)
1167 continue;
1168 flags |= select_flags[msk];
1169 }
1170 return (flags);
1171 }
1172
1173 /*
1174 * Set the appropriate output bits given a mask of fired events and the
1175 * input bits originally requested.
1176 */
1177 static __inline int
selsetbits(fd_mask ** ibits,fd_mask ** obits,int idx,fd_mask bit,int events)1178 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1179 {
1180 int msk;
1181 int n;
1182
1183 n = 0;
1184 for (msk = 0; msk < 3; msk++) {
1185 if ((events & select_flags[msk]) == 0)
1186 continue;
1187 if (ibits[msk] == NULL)
1188 continue;
1189 if ((ibits[msk][idx] & bit) == 0)
1190 continue;
1191 /*
1192 * XXX Check for a duplicate set. This can occur because a
1193 * socket calls selrecord() twice for each poll() call
1194 * resulting in two selfds per real fd. selrescan() will
1195 * call selsetbits twice as a result.
1196 */
1197 if ((obits[msk][idx] & bit) != 0)
1198 continue;
1199 obits[msk][idx] |= bit;
1200 n++;
1201 }
1202
1203 return (n);
1204 }
1205
1206 static __inline int
getselfd_cap(struct filedesc * fdp,int fd,struct file ** fpp)1207 getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1208 {
1209
1210 return (fget_unlocked(fdp, fd, &cap_event_rights, fpp, NULL));
1211 }
1212
1213 /*
1214 * Traverse the list of fds attached to this thread's seltd and check for
1215 * completion.
1216 */
1217 static int
selrescan(struct thread * td,fd_mask ** ibits,fd_mask ** obits)1218 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1219 {
1220 struct filedesc *fdp;
1221 struct selinfo *si;
1222 struct seltd *stp;
1223 struct selfd *sfp;
1224 struct selfd *sfn;
1225 struct file *fp;
1226 fd_mask bit;
1227 int fd, ev, n, idx;
1228 int error;
1229
1230 fdp = td->td_proc->p_fd;
1231 stp = td->td_sel;
1232 n = 0;
1233 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1234 fd = (int)(uintptr_t)sfp->sf_cookie;
1235 si = sfp->sf_si;
1236 selfdfree(stp, sfp);
1237 /* If the selinfo wasn't cleared the event didn't fire. */
1238 if (si != NULL)
1239 continue;
1240 error = getselfd_cap(fdp, fd, &fp);
1241 if (error)
1242 return (error);
1243 idx = fd / NFDBITS;
1244 bit = (fd_mask)1 << (fd % NFDBITS);
1245 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1246 fdrop(fp, td);
1247 if (ev != 0)
1248 n += selsetbits(ibits, obits, idx, bit, ev);
1249 }
1250 stp->st_flags = 0;
1251 td->td_retval[0] = n;
1252 return (0);
1253 }
1254
1255 /*
1256 * Perform the initial filedescriptor scan and register ourselves with
1257 * each selinfo.
1258 */
1259 static int
selscan(struct thread * td,fd_mask ** ibits,fd_mask ** obits,int nfd)1260 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1261 {
1262 struct filedesc *fdp;
1263 struct file *fp;
1264 fd_mask bit;
1265 int ev, flags, end, fd;
1266 int n, idx;
1267 int error;
1268
1269 fdp = td->td_proc->p_fd;
1270 n = 0;
1271 for (idx = 0, fd = 0; fd < nfd; idx++) {
1272 end = imin(fd + NFDBITS, nfd);
1273 for (bit = 1; fd < end; bit <<= 1, fd++) {
1274 /* Compute the list of events we're interested in. */
1275 flags = selflags(ibits, idx, bit);
1276 if (flags == 0)
1277 continue;
1278 error = getselfd_cap(fdp, fd, &fp);
1279 if (error)
1280 return (error);
1281 selfdalloc(td, (void *)(uintptr_t)fd);
1282 ev = fo_poll(fp, flags, td->td_ucred, td);
1283 fdrop(fp, td);
1284 if (ev != 0)
1285 n += selsetbits(ibits, obits, idx, bit, ev);
1286 }
1287 }
1288
1289 td->td_retval[0] = n;
1290 return (0);
1291 }
1292
1293 int
sys_poll(struct thread * td,struct poll_args * uap)1294 sys_poll(struct thread *td, struct poll_args *uap)
1295 {
1296 struct timespec ts, *tsp;
1297
1298 if (uap->timeout != INFTIM) {
1299 if (uap->timeout < 0)
1300 return (EINVAL);
1301 ts.tv_sec = uap->timeout / 1000;
1302 ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1303 tsp = &ts;
1304 } else
1305 tsp = NULL;
1306
1307 return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1308 }
1309
1310 int
kern_poll(struct thread * td,struct pollfd * fds,u_int nfds,struct timespec * tsp,sigset_t * uset)1311 kern_poll(struct thread *td, struct pollfd *fds, u_int nfds,
1312 struct timespec *tsp, sigset_t *uset)
1313 {
1314 struct pollfd *bits;
1315 struct pollfd smallbits[32];
1316 sbintime_t sbt, precision, tmp;
1317 time_t over;
1318 struct timespec ts;
1319 int error;
1320 size_t ni;
1321
1322 precision = 0;
1323 if (tsp != NULL) {
1324 if (tsp->tv_sec < 0)
1325 return (EINVAL);
1326 if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1327 return (EINVAL);
1328 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1329 sbt = 0;
1330 else {
1331 ts = *tsp;
1332 if (ts.tv_sec > INT32_MAX / 2) {
1333 over = ts.tv_sec - INT32_MAX / 2;
1334 ts.tv_sec -= over;
1335 } else
1336 over = 0;
1337 tmp = tstosbt(ts);
1338 precision = tmp;
1339 precision >>= tc_precexp;
1340 if (TIMESEL(&sbt, tmp))
1341 sbt += tc_tick_sbt;
1342 sbt += tmp;
1343 }
1344 } else
1345 sbt = -1;
1346
1347 if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1348 return (EINVAL);
1349 ni = nfds * sizeof(struct pollfd);
1350 if (ni > sizeof(smallbits))
1351 bits = malloc(ni, M_TEMP, M_WAITOK);
1352 else
1353 bits = smallbits;
1354 error = copyin(fds, bits, ni);
1355 if (error)
1356 goto done;
1357
1358 if (uset != NULL) {
1359 error = kern_sigprocmask(td, SIG_SETMASK, uset,
1360 &td->td_oldsigmask, 0);
1361 if (error)
1362 goto done;
1363 td->td_pflags |= TDP_OLDMASK;
1364 /*
1365 * Make sure that ast() is called on return to
1366 * usermode and TDP_OLDMASK is cleared, restoring old
1367 * sigmask.
1368 */
1369 thread_lock(td);
1370 td->td_flags |= TDF_ASTPENDING;
1371 thread_unlock(td);
1372 }
1373
1374 seltdinit(td);
1375 /* Iterate until the timeout expires or descriptors become ready. */
1376 for (;;) {
1377 error = pollscan(td, bits, nfds);
1378 if (error || td->td_retval[0] != 0)
1379 break;
1380 error = seltdwait(td, sbt, precision);
1381 if (error)
1382 break;
1383 error = pollrescan(td);
1384 if (error || td->td_retval[0] != 0)
1385 break;
1386 }
1387 seltdclear(td);
1388
1389 done:
1390 /* poll is not restarted after signals... */
1391 if (error == ERESTART)
1392 error = EINTR;
1393 if (error == EWOULDBLOCK)
1394 error = 0;
1395 if (error == 0) {
1396 error = pollout(td, bits, fds, nfds);
1397 if (error)
1398 goto out;
1399 }
1400 out:
1401 if (ni > sizeof(smallbits))
1402 free(bits, M_TEMP);
1403 return (error);
1404 }
1405
1406 int
sys_ppoll(struct thread * td,struct ppoll_args * uap)1407 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1408 {
1409 struct timespec ts, *tsp;
1410 sigset_t set, *ssp;
1411 int error;
1412
1413 if (uap->ts != NULL) {
1414 error = copyin(uap->ts, &ts, sizeof(ts));
1415 if (error)
1416 return (error);
1417 tsp = &ts;
1418 } else
1419 tsp = NULL;
1420 if (uap->set != NULL) {
1421 error = copyin(uap->set, &set, sizeof(set));
1422 if (error)
1423 return (error);
1424 ssp = &set;
1425 } else
1426 ssp = NULL;
1427 /*
1428 * fds is still a pointer to user space. kern_poll() will
1429 * take care of copyin that array to the kernel space.
1430 */
1431
1432 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1433 }
1434
1435 static int
pollrescan(struct thread * td)1436 pollrescan(struct thread *td)
1437 {
1438 struct seltd *stp;
1439 struct selfd *sfp;
1440 struct selfd *sfn;
1441 struct selinfo *si;
1442 struct filedesc *fdp;
1443 struct file *fp;
1444 struct pollfd *fd;
1445 int n;
1446
1447 n = 0;
1448 fdp = td->td_proc->p_fd;
1449 stp = td->td_sel;
1450 FILEDESC_SLOCK(fdp);
1451 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1452 fd = (struct pollfd *)sfp->sf_cookie;
1453 si = sfp->sf_si;
1454 selfdfree(stp, sfp);
1455 /* If the selinfo wasn't cleared the event didn't fire. */
1456 if (si != NULL)
1457 continue;
1458 fp = fdp->fd_ofiles[fd->fd].fde_file;
1459 #ifdef CAPABILITIES
1460 if (fp == NULL ||
1461 cap_check(cap_rights(fdp, fd->fd), &cap_event_rights) != 0)
1462 #else
1463 if (fp == NULL)
1464 #endif
1465 {
1466 fd->revents = POLLNVAL;
1467 n++;
1468 continue;
1469 }
1470
1471 /*
1472 * Note: backend also returns POLLHUP and
1473 * POLLERR if appropriate.
1474 */
1475 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1476 if (fd->revents != 0)
1477 n++;
1478 }
1479 FILEDESC_SUNLOCK(fdp);
1480 stp->st_flags = 0;
1481 td->td_retval[0] = n;
1482 return (0);
1483 }
1484
1485
1486 static int
pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)1487 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1488 {
1489 int error = 0;
1490 u_int i = 0;
1491 u_int n = 0;
1492
1493 for (i = 0; i < nfd; i++) {
1494 error = copyout(&fds->revents, &ufds->revents,
1495 sizeof(ufds->revents));
1496 if (error)
1497 return (error);
1498 if (fds->revents != 0)
1499 n++;
1500 fds++;
1501 ufds++;
1502 }
1503 td->td_retval[0] = n;
1504 return (0);
1505 }
1506
1507 static int
pollscan(struct thread * td,struct pollfd * fds,u_int nfd)1508 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1509 {
1510 struct filedesc *fdp = td->td_proc->p_fd;
1511 struct file *fp;
1512 int i, n = 0;
1513
1514 FILEDESC_SLOCK(fdp);
1515 for (i = 0; i < nfd; i++, fds++) {
1516 if (fds->fd > fdp->fd_lastfile) {
1517 fds->revents = POLLNVAL;
1518 n++;
1519 } else if (fds->fd < 0) {
1520 fds->revents = 0;
1521 } else {
1522 fp = fdp->fd_ofiles[fds->fd].fde_file;
1523 #ifdef CAPABILITIES
1524 if (fp == NULL ||
1525 cap_check(cap_rights(fdp, fds->fd), &cap_event_rights) != 0)
1526 #else
1527 if (fp == NULL)
1528 #endif
1529 {
1530 fds->revents = POLLNVAL;
1531 n++;
1532 } else {
1533 /*
1534 * Note: backend also returns POLLHUP and
1535 * POLLERR if appropriate.
1536 */
1537 selfdalloc(td, fds);
1538 fds->revents = fo_poll(fp, fds->events,
1539 td->td_ucred, td);
1540 /*
1541 * POSIX requires POLLOUT to be never
1542 * set simultaneously with POLLHUP.
1543 */
1544 if ((fds->revents & POLLHUP) != 0)
1545 fds->revents &= ~POLLOUT;
1546
1547 if (fds->revents != 0)
1548 n++;
1549 }
1550 }
1551 }
1552 FILEDESC_SUNLOCK(fdp);
1553 td->td_retval[0] = n;
1554 return (0);
1555 }
1556
1557 /*
1558 * XXX This was created specifically to support netncp and netsmb. This
1559 * allows the caller to specify a socket to wait for events on. It returns
1560 * 0 if any events matched and an error otherwise. There is no way to
1561 * determine which events fired.
1562 */
1563 int
selsocket(struct socket * so,int events,struct timeval * tvp,struct thread * td)1564 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1565 {
1566 struct timeval rtv;
1567 sbintime_t asbt, precision, rsbt;
1568 int error;
1569
1570 precision = 0; /* stupid gcc! */
1571 if (tvp != NULL) {
1572 rtv = *tvp;
1573 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1574 rtv.tv_usec >= 1000000)
1575 return (EINVAL);
1576 if (!timevalisset(&rtv))
1577 asbt = 0;
1578 else if (rtv.tv_sec <= INT32_MAX) {
1579 rsbt = tvtosbt(rtv);
1580 precision = rsbt;
1581 precision >>= tc_precexp;
1582 if (TIMESEL(&asbt, rsbt))
1583 asbt += tc_tick_sbt;
1584 if (asbt <= SBT_MAX - rsbt)
1585 asbt += rsbt;
1586 else
1587 asbt = -1;
1588 } else
1589 asbt = -1;
1590 } else
1591 asbt = -1;
1592 seltdinit(td);
1593 /*
1594 * Iterate until the timeout expires or the socket becomes ready.
1595 */
1596 for (;;) {
1597 selfdalloc(td, NULL);
1598 error = sopoll(so, events, NULL, td);
1599 /* error here is actually the ready events. */
1600 if (error)
1601 return (0);
1602 error = seltdwait(td, asbt, precision);
1603 if (error)
1604 break;
1605 }
1606 seltdclear(td);
1607 /* XXX Duplicates ncp/smb behavior. */
1608 if (error == ERESTART)
1609 error = 0;
1610 return (error);
1611 }
1612
1613 /*
1614 * Preallocate two selfds associated with 'cookie'. Some fo_poll routines
1615 * have two select sets, one for read and another for write.
1616 */
1617 static void
selfdalloc(struct thread * td,void * cookie)1618 selfdalloc(struct thread *td, void *cookie)
1619 {
1620 struct seltd *stp;
1621
1622 stp = td->td_sel;
1623 if (stp->st_free1 == NULL)
1624 stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1625 stp->st_free1->sf_td = stp;
1626 stp->st_free1->sf_cookie = cookie;
1627 if (stp->st_free2 == NULL)
1628 stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1629 stp->st_free2->sf_td = stp;
1630 stp->st_free2->sf_cookie = cookie;
1631 }
1632
1633 static void
selfdfree(struct seltd * stp,struct selfd * sfp)1634 selfdfree(struct seltd *stp, struct selfd *sfp)
1635 {
1636 STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1637 if (sfp->sf_si != NULL) {
1638 mtx_lock(sfp->sf_mtx);
1639 if (sfp->sf_si != NULL) {
1640 TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1641 refcount_release(&sfp->sf_refs);
1642 }
1643 mtx_unlock(sfp->sf_mtx);
1644 }
1645 if (refcount_release(&sfp->sf_refs))
1646 uma_zfree(selfd_zone, sfp);
1647 }
1648
1649 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1650 void
seldrain(struct selinfo * sip)1651 seldrain(struct selinfo *sip)
1652 {
1653
1654 /*
1655 * This feature is already provided by doselwakeup(), thus it is
1656 * enough to go for it.
1657 * Eventually, the context, should take care to avoid races
1658 * between thread calling select()/poll() and file descriptor
1659 * detaching, but, again, the races are just the same as
1660 * selwakeup().
1661 */
1662 doselwakeup(sip, -1);
1663 }
1664
1665 /*
1666 * Record a select request.
1667 */
1668 void
selrecord(struct thread * selector,struct selinfo * sip)1669 selrecord(struct thread *selector, struct selinfo *sip)
1670 {
1671 struct selfd *sfp;
1672 struct seltd *stp;
1673 struct mtx *mtxp;
1674
1675 stp = selector->td_sel;
1676 /*
1677 * Don't record when doing a rescan.
1678 */
1679 if (stp->st_flags & SELTD_RESCAN)
1680 return;
1681 /*
1682 * Grab one of the preallocated descriptors.
1683 */
1684 sfp = NULL;
1685 if ((sfp = stp->st_free1) != NULL)
1686 stp->st_free1 = NULL;
1687 else if ((sfp = stp->st_free2) != NULL)
1688 stp->st_free2 = NULL;
1689 else
1690 panic("selrecord: No free selfd on selq");
1691 mtxp = sip->si_mtx;
1692 if (mtxp == NULL)
1693 mtxp = mtx_pool_find(mtxpool_select, sip);
1694 /*
1695 * Initialize the sfp and queue it in the thread.
1696 */
1697 sfp->sf_si = sip;
1698 sfp->sf_mtx = mtxp;
1699 refcount_init(&sfp->sf_refs, 2);
1700 STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1701 /*
1702 * Now that we've locked the sip, check for initialization.
1703 */
1704 mtx_lock(mtxp);
1705 if (sip->si_mtx == NULL) {
1706 sip->si_mtx = mtxp;
1707 TAILQ_INIT(&sip->si_tdlist);
1708 }
1709 /*
1710 * Add this thread to the list of selfds listening on this selinfo.
1711 */
1712 TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1713 mtx_unlock(sip->si_mtx);
1714 }
1715
1716 /* Wake up a selecting thread. */
1717 void
selwakeup(struct selinfo * sip)1718 selwakeup(struct selinfo *sip)
1719 {
1720 doselwakeup(sip, -1);
1721 }
1722
1723 /* Wake up a selecting thread, and set its priority. */
1724 void
selwakeuppri(struct selinfo * sip,int pri)1725 selwakeuppri(struct selinfo *sip, int pri)
1726 {
1727 doselwakeup(sip, pri);
1728 }
1729
1730 /*
1731 * Do a wakeup when a selectable event occurs.
1732 */
1733 static void
doselwakeup(struct selinfo * sip,int pri)1734 doselwakeup(struct selinfo *sip, int pri)
1735 {
1736 struct selfd *sfp;
1737 struct selfd *sfn;
1738 struct seltd *stp;
1739
1740 /* If it's not initialized there can't be any waiters. */
1741 if (sip->si_mtx == NULL)
1742 return;
1743 /*
1744 * Locking the selinfo locks all selfds associated with it.
1745 */
1746 mtx_lock(sip->si_mtx);
1747 TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1748 /*
1749 * Once we remove this sfp from the list and clear the
1750 * sf_si seltdclear will know to ignore this si.
1751 */
1752 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1753 sfp->sf_si = NULL;
1754 stp = sfp->sf_td;
1755 mtx_lock(&stp->st_mtx);
1756 stp->st_flags |= SELTD_PENDING;
1757 cv_broadcastpri(&stp->st_wait, pri);
1758 mtx_unlock(&stp->st_mtx);
1759 if (refcount_release(&sfp->sf_refs))
1760 uma_zfree(selfd_zone, sfp);
1761 }
1762 mtx_unlock(sip->si_mtx);
1763 }
1764
1765 static void
seltdinit(struct thread * td)1766 seltdinit(struct thread *td)
1767 {
1768 struct seltd *stp;
1769
1770 if ((stp = td->td_sel) != NULL)
1771 goto out;
1772 td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1773 mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1774 cv_init(&stp->st_wait, "select");
1775 out:
1776 stp->st_flags = 0;
1777 STAILQ_INIT(&stp->st_selq);
1778 }
1779
1780 static int
seltdwait(struct thread * td,sbintime_t sbt,sbintime_t precision)1781 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1782 {
1783 struct seltd *stp;
1784 int error;
1785
1786 stp = td->td_sel;
1787 /*
1788 * An event of interest may occur while we do not hold the seltd
1789 * locked so check the pending flag before we sleep.
1790 */
1791 mtx_lock(&stp->st_mtx);
1792 /*
1793 * Any further calls to selrecord will be a rescan.
1794 */
1795 stp->st_flags |= SELTD_RESCAN;
1796 if (stp->st_flags & SELTD_PENDING) {
1797 mtx_unlock(&stp->st_mtx);
1798 return (0);
1799 }
1800 if (sbt == 0)
1801 error = EWOULDBLOCK;
1802 else if (sbt != -1)
1803 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1804 sbt, precision, C_ABSOLUTE);
1805 else
1806 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1807 mtx_unlock(&stp->st_mtx);
1808
1809 return (error);
1810 }
1811
1812 void
seltdfini(struct thread * td)1813 seltdfini(struct thread *td)
1814 {
1815 struct seltd *stp;
1816
1817 stp = td->td_sel;
1818 if (stp == NULL)
1819 return;
1820 if (stp->st_free1)
1821 uma_zfree(selfd_zone, stp->st_free1);
1822 if (stp->st_free2)
1823 uma_zfree(selfd_zone, stp->st_free2);
1824 td->td_sel = NULL;
1825 cv_destroy(&stp->st_wait);
1826 mtx_destroy(&stp->st_mtx);
1827 free(stp, M_SELECT);
1828 }
1829
1830 /*
1831 * Remove the references to the thread from all of the objects we were
1832 * polling.
1833 */
1834 static void
seltdclear(struct thread * td)1835 seltdclear(struct thread *td)
1836 {
1837 struct seltd *stp;
1838 struct selfd *sfp;
1839 struct selfd *sfn;
1840
1841 stp = td->td_sel;
1842 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1843 selfdfree(stp, sfp);
1844 stp->st_flags = 0;
1845 }
1846
1847 static void selectinit(void *);
1848 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1849 static void
selectinit(void * dummy __unused)1850 selectinit(void *dummy __unused)
1851 {
1852
1853 selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1854 NULL, NULL, UMA_ALIGN_PTR, 0);
1855 mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1856 }
1857
1858 /*
1859 * Set up a syscall return value that follows the convention specified for
1860 * posix_* functions.
1861 */
1862 int
kern_posix_error(struct thread * td,int error)1863 kern_posix_error(struct thread *td, int error)
1864 {
1865
1866 if (error <= 0)
1867 return (error);
1868 td->td_errno = error;
1869 td->td_pflags |= TDP_NERRNO;
1870 td->td_retval[0] = error;
1871 return (0);
1872 }
1873