1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_dev.c
30 */
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "bcm_osal.h"
35 #include "reg_addr.h"
36 #include "ecore_gtt_reg_addr.h"
37 #include "ecore.h"
38 #include "ecore_chain.h"
39 #include "ecore_status.h"
40 #include "ecore_hw.h"
41 #include "ecore_rt_defs.h"
42 #include "ecore_init_ops.h"
43 #include "ecore_int.h"
44 #include "ecore_cxt.h"
45 #include "ecore_spq.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_sp_commands.h"
48 #include "ecore_dev_api.h"
49 #include "ecore_sriov.h"
50 #include "ecore_vf.h"
51 #include "ecore_ll2.h"
52 #include "ecore_fcoe.h"
53 #include "ecore_iscsi.h"
54 #include "ecore_ooo.h"
55 #include "ecore_mcp.h"
56 #include "ecore_hw_defs.h"
57 #include "mcp_public.h"
58 #include "ecore_rdma.h"
59 #include "ecore_iro.h"
60 #include "nvm_cfg.h"
61 #include "ecore_dev_api.h"
62 #include "ecore_dcbx.h"
63 #include "pcics_reg_driver.h"
64 #include "ecore_l2.h"
65 #ifndef LINUX_REMOVE
66 #include "ecore_tcp_ip.h"
67 #endif
68
69 #ifdef _NTDDK_
70 #pragma warning(push)
71 #pragma warning(disable : 28167)
72 #pragma warning(disable : 28123)
73 #endif
74
75 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
76 * registers involved are not split and thus configuration is a race where
77 * some of the PFs configuration might be lost.
78 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
79 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
80 * there's more than a single compiled ecore component in system].
81 */
82 static osal_spinlock_t qm_lock;
83 static u32 qm_lock_ref_cnt;
84
ecore_set_ilt_page_size(struct ecore_dev * p_dev,u8 ilt_page_size)85 void ecore_set_ilt_page_size(struct ecore_dev *p_dev, u8 ilt_page_size)
86 {
87 p_dev->ilt_page_size = ilt_page_size;
88 }
89
90 /******************** Doorbell Recovery *******************/
91 /* The doorbell recovery mechanism consists of a list of entries which represent
92 * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
93 * entity needs to register with the mechanism and provide the parameters
94 * describing it's doorbell, including a location where last used doorbell data
95 * can be found. The doorbell execute function will traverse the list and
96 * doorbell all of the registered entries.
97 */
98 struct ecore_db_recovery_entry {
99 osal_list_entry_t list_entry;
100 void OSAL_IOMEM *db_addr;
101 void *db_data;
102 enum ecore_db_rec_width db_width;
103 enum ecore_db_rec_space db_space;
104 u8 hwfn_idx;
105 };
106
107 /* display a single doorbell recovery entry */
ecore_db_recovery_dp_entry(struct ecore_hwfn * p_hwfn,struct ecore_db_recovery_entry * db_entry,char * action)108 static void ecore_db_recovery_dp_entry(struct ecore_hwfn *p_hwfn,
109 struct ecore_db_recovery_entry *db_entry,
110 char *action)
111 {
112 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
113 action, db_entry, db_entry->db_addr, db_entry->db_data,
114 db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
115 db_entry->db_space == DB_REC_USER ? "user" : "kernel",
116 db_entry->hwfn_idx);
117 }
118
119 /* doorbell address sanity (address within doorbell bar range) */
ecore_db_rec_sanity(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data)120 static bool ecore_db_rec_sanity(struct ecore_dev *p_dev, void OSAL_IOMEM *db_addr,
121 void *db_data)
122 {
123 /* make sure doorbell address is within the doorbell bar */
124 if (db_addr < p_dev->doorbells || (u8 *)db_addr >
125 (u8 *)p_dev->doorbells + p_dev->db_size) {
126 OSAL_WARN(true,
127 "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
128 db_addr, p_dev->doorbells,
129 (u8 *)p_dev->doorbells + p_dev->db_size);
130 return false;
131 }
132
133 /* make sure doorbell data pointer is not null */
134 if (!db_data) {
135 OSAL_WARN(true, "Illegal doorbell data pointer: %p", db_data);
136 return false;
137 }
138
139 return true;
140 }
141
142 /* find hwfn according to the doorbell address */
ecore_db_rec_find_hwfn(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr)143 static struct ecore_hwfn *ecore_db_rec_find_hwfn(struct ecore_dev *p_dev,
144 void OSAL_IOMEM *db_addr)
145 {
146 struct ecore_hwfn *p_hwfn;
147
148 /* in CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
149 if (ECORE_IS_CMT(p_dev))
150 p_hwfn = db_addr < p_dev->hwfns[1].doorbells ?
151 &p_dev->hwfns[0] : &p_dev->hwfns[1];
152 else
153 p_hwfn = ECORE_LEADING_HWFN(p_dev);
154
155 return p_hwfn;
156 }
157
158 /* add a new entry to the doorbell recovery mechanism */
ecore_db_recovery_add(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data,enum ecore_db_rec_width db_width,enum ecore_db_rec_space db_space)159 enum _ecore_status_t ecore_db_recovery_add(struct ecore_dev *p_dev,
160 void OSAL_IOMEM *db_addr,
161 void *db_data,
162 enum ecore_db_rec_width db_width,
163 enum ecore_db_rec_space db_space)
164 {
165 struct ecore_db_recovery_entry *db_entry;
166 struct ecore_hwfn *p_hwfn;
167
168 /* shortcircuit VFs, for now */
169 if (IS_VF(p_dev)) {
170 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
171 return ECORE_SUCCESS;
172 }
173
174 /* sanitize doorbell address */
175 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
176 return ECORE_INVAL;
177
178 /* obtain hwfn from doorbell address */
179 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
180
181 /* create entry */
182 db_entry = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*db_entry));
183 if (!db_entry) {
184 DP_NOTICE(p_dev, false, "Failed to allocate a db recovery entry\n");
185 return ECORE_NOMEM;
186 }
187
188 /* populate entry */
189 db_entry->db_addr = db_addr;
190 db_entry->db_data = db_data;
191 db_entry->db_width = db_width;
192 db_entry->db_space = db_space;
193 db_entry->hwfn_idx = p_hwfn->my_id;
194
195 /* display */
196 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
197
198 /* protect the list */
199 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
200 OSAL_LIST_PUSH_TAIL(&db_entry->list_entry,
201 &p_hwfn->db_recovery_info.list);
202 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
203
204 return ECORE_SUCCESS;
205 }
206
207 /* remove an entry from the doorbell recovery mechanism */
ecore_db_recovery_del(struct ecore_dev * p_dev,void OSAL_IOMEM * db_addr,void * db_data)208 enum _ecore_status_t ecore_db_recovery_del(struct ecore_dev *p_dev,
209 void OSAL_IOMEM *db_addr,
210 void *db_data)
211 {
212 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
213 enum _ecore_status_t rc = ECORE_INVAL;
214 struct ecore_hwfn *p_hwfn;
215
216 /* shortcircuit VFs, for now */
217 if (IS_VF(p_dev)) {
218 DP_VERBOSE(p_dev, ECORE_MSG_IOV, "db recovery - skipping VF doorbell\n");
219 return ECORE_SUCCESS;
220 }
221
222 /* sanitize doorbell address */
223 if (!ecore_db_rec_sanity(p_dev, db_addr, db_data))
224 return ECORE_INVAL;
225
226 /* obtain hwfn from doorbell address */
227 p_hwfn = ecore_db_rec_find_hwfn(p_dev, db_addr);
228
229 /* protect the list */
230 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
231 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
232 &p_hwfn->db_recovery_info.list,
233 list_entry,
234 struct ecore_db_recovery_entry) {
235
236 /* search according to db_data addr since db_addr is not unique (roce) */
237 if (db_entry->db_data == db_data) {
238 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
239 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
240 &p_hwfn->db_recovery_info.list);
241 rc = ECORE_SUCCESS;
242 break;
243 }
244 }
245
246 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
247
248 if (rc == ECORE_INVAL) {
249 /*OSAL_WARN(true,*/
250 DP_NOTICE(p_hwfn, false,
251 "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
252 db_data, db_addr);
253 } else
254 OSAL_FREE(p_dev, db_entry);
255
256 return rc;
257 }
258
259 /* initialize the doorbell recovery mechanism */
ecore_db_recovery_setup(struct ecore_hwfn * p_hwfn)260 static enum _ecore_status_t ecore_db_recovery_setup(struct ecore_hwfn *p_hwfn)
261 {
262 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Setting up db recovery\n");
263
264 /* make sure db_size was set in p_dev */
265 if (!p_hwfn->p_dev->db_size) {
266 DP_ERR(p_hwfn->p_dev, "db_size not set\n");
267 return ECORE_INVAL;
268 }
269
270 OSAL_LIST_INIT(&p_hwfn->db_recovery_info.list);
271 #ifdef CONFIG_ECORE_LOCK_ALLOC
272 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->db_recovery_info.lock))
273 return ECORE_NOMEM;
274 #endif
275 OSAL_SPIN_LOCK_INIT(&p_hwfn->db_recovery_info.lock);
276 p_hwfn->db_recovery_info.db_recovery_counter = 0;
277
278 return ECORE_SUCCESS;
279 }
280
281 /* destroy the doorbell recovery mechanism */
ecore_db_recovery_teardown(struct ecore_hwfn * p_hwfn)282 static void ecore_db_recovery_teardown(struct ecore_hwfn *p_hwfn)
283 {
284 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
285
286 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ, "Tearing down db recovery\n");
287 if (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
288 DP_VERBOSE(p_hwfn, false, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
289 while (!OSAL_LIST_IS_EMPTY(&p_hwfn->db_recovery_info.list)) {
290 db_entry = OSAL_LIST_FIRST_ENTRY(&p_hwfn->db_recovery_info.list,
291 struct ecore_db_recovery_entry,
292 list_entry);
293 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
294 OSAL_LIST_REMOVE_ENTRY(&db_entry->list_entry,
295 &p_hwfn->db_recovery_info.list);
296 OSAL_FREE(p_hwfn->p_dev, db_entry);
297 }
298 }
299 #ifdef CONFIG_ECORE_LOCK_ALLOC
300 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->db_recovery_info.lock);
301 #endif
302 p_hwfn->db_recovery_info.db_recovery_counter = 0;
303 }
304
305 /* print the content of the doorbell recovery mechanism */
ecore_db_recovery_dp(struct ecore_hwfn * p_hwfn)306 void ecore_db_recovery_dp(struct ecore_hwfn *p_hwfn)
307 {
308 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
309
310 DP_NOTICE(p_hwfn, false,
311 "Dispalying doorbell recovery database. Counter was %d\n",
312 p_hwfn->db_recovery_info.db_recovery_counter);
313
314 /* protect the list */
315 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
316 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
317 &p_hwfn->db_recovery_info.list,
318 list_entry,
319 struct ecore_db_recovery_entry) {
320 ecore_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
321 }
322
323 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
324 }
325
326 /* ring the doorbell of a single doorbell recovery entry */
ecore_db_recovery_ring(struct ecore_hwfn * p_hwfn,struct ecore_db_recovery_entry * db_entry,enum ecore_db_rec_exec db_exec)327 static void ecore_db_recovery_ring(struct ecore_hwfn *p_hwfn,
328 struct ecore_db_recovery_entry *db_entry,
329 enum ecore_db_rec_exec db_exec)
330 {
331 if (db_exec != DB_REC_ONCE) {
332 /* Print according to width */
333 if (db_entry->db_width == DB_REC_WIDTH_32B)
334 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
335 "%s doorbell address %p data %x\n",
336 db_exec == DB_REC_DRY_RUN ?
337 "would have rung" : "ringing",
338 db_entry->db_addr,
339 *(u32 *)db_entry->db_data);
340 else
341 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
342 "%s doorbell address %p data %llx\n",
343 db_exec == DB_REC_DRY_RUN ?
344 "would have rung" : "ringing",
345 db_entry->db_addr,
346 (unsigned long long)*(u64 *)(db_entry->db_data));
347 }
348
349 /* Sanity */
350 if (!ecore_db_rec_sanity(p_hwfn->p_dev, db_entry->db_addr,
351 db_entry->db_data))
352 return;
353
354 /* Flush the write combined buffer. Since there are multiple doorbelling
355 * entities using the same address, if we don't flush, a transaction
356 * could be lost.
357 */
358 OSAL_WMB(p_hwfn->p_dev);
359
360 /* Ring the doorbell */
361 if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
362 if (db_entry->db_width == DB_REC_WIDTH_32B)
363 DIRECT_REG_WR(p_hwfn, db_entry->db_addr, *(u32 *)(db_entry->db_data));
364 else
365 DIRECT_REG_WR64(p_hwfn, db_entry->db_addr, *(u64 *)(db_entry->db_data));
366 }
367
368 /* Flush the write combined buffer. Next doorbell may come from a
369 * different entity to the same address...
370 */
371 OSAL_WMB(p_hwfn->p_dev);
372 }
373
374 /* traverse the doorbell recovery entry list and ring all the doorbells */
ecore_db_recovery_execute(struct ecore_hwfn * p_hwfn,enum ecore_db_rec_exec db_exec)375 void ecore_db_recovery_execute(struct ecore_hwfn *p_hwfn,
376 enum ecore_db_rec_exec db_exec)
377 {
378 struct ecore_db_recovery_entry *db_entry = OSAL_NULL;
379
380 if (db_exec != DB_REC_ONCE) {
381 DP_NOTICE(p_hwfn, false, "Executing doorbell recovery. Counter was %d\n",
382 p_hwfn->db_recovery_info.db_recovery_counter);
383
384 /* track amount of times recovery was executed */
385 p_hwfn->db_recovery_info.db_recovery_counter++;
386 }
387
388 /* protect the list */
389 OSAL_SPIN_LOCK(&p_hwfn->db_recovery_info.lock);
390 OSAL_LIST_FOR_EACH_ENTRY(db_entry,
391 &p_hwfn->db_recovery_info.list,
392 list_entry,
393 struct ecore_db_recovery_entry) {
394 ecore_db_recovery_ring(p_hwfn, db_entry, db_exec);
395 if (db_exec == DB_REC_ONCE)
396 break;
397 }
398
399 OSAL_SPIN_UNLOCK(&p_hwfn->db_recovery_info.lock);
400 }
401 /******************** Doorbell Recovery end ****************/
402
403 /********************************** NIG LLH ***********************************/
404
405 enum ecore_llh_filter_type {
406 ECORE_LLH_FILTER_TYPE_MAC,
407 ECORE_LLH_FILTER_TYPE_PROTOCOL,
408 };
409
410 struct ecore_llh_mac_filter {
411 u8 addr[ETH_ALEN];
412 };
413
414 struct ecore_llh_protocol_filter {
415 enum ecore_llh_prot_filter_type_t type;
416 u16 source_port_or_eth_type;
417 u16 dest_port;
418 };
419
420 union ecore_llh_filter {
421 struct ecore_llh_mac_filter mac;
422 struct ecore_llh_protocol_filter protocol;
423 };
424
425 struct ecore_llh_filter_info {
426 bool b_enabled;
427 u32 ref_cnt;
428 enum ecore_llh_filter_type type;
429 union ecore_llh_filter filter;
430 };
431
432 struct ecore_llh_info {
433 /* Number of LLH filters banks */
434 u8 num_ppfid;
435
436 #define MAX_NUM_PPFID 8
437 u8 ppfid_array[MAX_NUM_PPFID];
438
439 /* Array of filters arrays:
440 * "num_ppfid" elements of filters banks, where each is an array of
441 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
442 */
443 struct ecore_llh_filter_info **pp_filters;
444 };
445
ecore_llh_free(struct ecore_dev * p_dev)446 static void ecore_llh_free(struct ecore_dev *p_dev)
447 {
448 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
449 u32 i;
450
451 if (p_llh_info != OSAL_NULL) {
452 if (p_llh_info->pp_filters != OSAL_NULL) {
453 for (i = 0; i < p_llh_info->num_ppfid; i++)
454 OSAL_FREE(p_dev, p_llh_info->pp_filters[i]);
455 }
456
457 OSAL_FREE(p_dev, p_llh_info->pp_filters);
458 }
459
460 OSAL_FREE(p_dev, p_llh_info);
461 p_dev->p_llh_info = OSAL_NULL;
462 }
463
ecore_llh_alloc(struct ecore_dev * p_dev)464 static enum _ecore_status_t ecore_llh_alloc(struct ecore_dev *p_dev)
465 {
466 struct ecore_llh_info *p_llh_info;
467 u32 size; u8 i;
468
469 p_llh_info = OSAL_ZALLOC(p_dev, GFP_KERNEL, sizeof(*p_llh_info));
470 if (!p_llh_info)
471 return ECORE_NOMEM;
472 p_dev->p_llh_info = p_llh_info;
473
474 for (i = 0; i < MAX_NUM_PPFID; i++) {
475 if (!(p_dev->ppfid_bitmap & (0x1 << i)))
476 continue;
477
478 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
479 DP_VERBOSE(p_dev, ECORE_MSG_SP, "ppfid_array[%d] = %hhd\n",
480 p_llh_info->num_ppfid, i);
481 p_llh_info->num_ppfid++;
482 }
483
484 size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
485 p_llh_info->pp_filters = OSAL_ZALLOC(p_dev, GFP_KERNEL, size);
486 if (!p_llh_info->pp_filters)
487 return ECORE_NOMEM;
488
489 size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
490 sizeof(**p_llh_info->pp_filters);
491 for (i = 0; i < p_llh_info->num_ppfid; i++) {
492 p_llh_info->pp_filters[i] = OSAL_ZALLOC(p_dev, GFP_KERNEL,
493 size);
494 if (!p_llh_info->pp_filters[i])
495 return ECORE_NOMEM;
496 }
497
498 return ECORE_SUCCESS;
499 }
500
ecore_llh_shadow_sanity(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,const char * action)501 static enum _ecore_status_t ecore_llh_shadow_sanity(struct ecore_dev *p_dev,
502 u8 ppfid, u8 filter_idx,
503 const char *action)
504 {
505 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
506
507 if (ppfid >= p_llh_info->num_ppfid) {
508 DP_NOTICE(p_dev, false,
509 "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
510 action, ppfid, p_llh_info->num_ppfid);
511 return ECORE_INVAL;
512 }
513
514 if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
515 DP_NOTICE(p_dev, false,
516 "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
517 action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
518 return ECORE_INVAL;
519 }
520
521 return ECORE_SUCCESS;
522 }
523
524 #define ECORE_LLH_INVALID_FILTER_IDX 0xff
525
526 static enum _ecore_status_t
ecore_llh_shadow_search_filter(struct ecore_dev * p_dev,u8 ppfid,union ecore_llh_filter * p_filter,u8 * p_filter_idx)527 ecore_llh_shadow_search_filter(struct ecore_dev *p_dev, u8 ppfid,
528 union ecore_llh_filter *p_filter,
529 u8 *p_filter_idx)
530 {
531 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
532 struct ecore_llh_filter_info *p_filters;
533 enum _ecore_status_t rc;
534 u8 i;
535
536 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "search");
537 if (rc != ECORE_SUCCESS)
538 return rc;
539
540 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
541
542 p_filters = p_llh_info->pp_filters[ppfid];
543 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
544 if (!OSAL_MEMCMP(p_filter, &p_filters[i].filter,
545 sizeof(*p_filter))) {
546 *p_filter_idx = i;
547 break;
548 }
549 }
550
551 return ECORE_SUCCESS;
552 }
553
554 static enum _ecore_status_t
ecore_llh_shadow_get_free_idx(struct ecore_dev * p_dev,u8 ppfid,u8 * p_filter_idx)555 ecore_llh_shadow_get_free_idx(struct ecore_dev *p_dev, u8 ppfid,
556 u8 *p_filter_idx)
557 {
558 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
559 struct ecore_llh_filter_info *p_filters;
560 enum _ecore_status_t rc;
561 u8 i;
562
563 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "get_free_idx");
564 if (rc != ECORE_SUCCESS)
565 return rc;
566
567 *p_filter_idx = ECORE_LLH_INVALID_FILTER_IDX;
568
569 p_filters = p_llh_info->pp_filters[ppfid];
570 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
571 if (!p_filters[i].b_enabled) {
572 *p_filter_idx = i;
573 break;
574 }
575 }
576
577 return ECORE_SUCCESS;
578 }
579
580 static enum _ecore_status_t
__ecore_llh_shadow_add_filter(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,enum ecore_llh_filter_type type,union ecore_llh_filter * p_filter,u32 * p_ref_cnt)581 __ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid, u8 filter_idx,
582 enum ecore_llh_filter_type type,
583 union ecore_llh_filter *p_filter, u32 *p_ref_cnt)
584 {
585 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
586 struct ecore_llh_filter_info *p_filters;
587 enum _ecore_status_t rc;
588
589 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "add");
590 if (rc != ECORE_SUCCESS)
591 return rc;
592
593 p_filters = p_llh_info->pp_filters[ppfid];
594 if (!p_filters[filter_idx].ref_cnt) {
595 p_filters[filter_idx].b_enabled = true;
596 p_filters[filter_idx].type = type;
597 OSAL_MEMCPY(&p_filters[filter_idx].filter, p_filter,
598 sizeof(p_filters[filter_idx].filter));
599 }
600
601 *p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
602
603 return ECORE_SUCCESS;
604 }
605
606 static enum _ecore_status_t
ecore_llh_shadow_add_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_filter_type type,union ecore_llh_filter * p_filter,u8 * p_filter_idx,u32 * p_ref_cnt)607 ecore_llh_shadow_add_filter(struct ecore_dev *p_dev, u8 ppfid,
608 enum ecore_llh_filter_type type,
609 union ecore_llh_filter *p_filter,
610 u8 *p_filter_idx, u32 *p_ref_cnt)
611 {
612 enum _ecore_status_t rc;
613
614 /* Check if the same filter already exist */
615 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
616 p_filter_idx);
617 if (rc != ECORE_SUCCESS)
618 return rc;
619
620 /* Find a new entry in case of a new filter */
621 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
622 rc = ecore_llh_shadow_get_free_idx(p_dev, ppfid, p_filter_idx);
623 if (rc != ECORE_SUCCESS)
624 return rc;
625 }
626
627 /* No free entry was found */
628 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
629 DP_NOTICE(p_dev, false,
630 "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
631 ppfid);
632 return ECORE_NORESOURCES;
633 }
634
635 return __ecore_llh_shadow_add_filter(p_dev, ppfid, *p_filter_idx, type,
636 p_filter, p_ref_cnt);
637 }
638
639 static enum _ecore_status_t
__ecore_llh_shadow_remove_filter(struct ecore_dev * p_dev,u8 ppfid,u8 filter_idx,u32 * p_ref_cnt)640 __ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
641 u8 filter_idx, u32 *p_ref_cnt)
642 {
643 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
644 struct ecore_llh_filter_info *p_filters;
645 enum _ecore_status_t rc;
646
647 rc = ecore_llh_shadow_sanity(p_dev, ppfid, filter_idx, "remove");
648 if (rc != ECORE_SUCCESS)
649 return rc;
650
651 p_filters = p_llh_info->pp_filters[ppfid];
652 if (!p_filters[filter_idx].ref_cnt) {
653 DP_NOTICE(p_dev, false,
654 "LLH shadow: trying to remove a filter with ref_cnt=0\n");
655 return ECORE_INVAL;
656 }
657
658 *p_ref_cnt = --p_filters[filter_idx].ref_cnt;
659 if (!p_filters[filter_idx].ref_cnt)
660 OSAL_MEM_ZERO(&p_filters[filter_idx],
661 sizeof(p_filters[filter_idx]));
662
663 return ECORE_SUCCESS;
664 }
665
666 static enum _ecore_status_t
ecore_llh_shadow_remove_filter(struct ecore_dev * p_dev,u8 ppfid,union ecore_llh_filter * p_filter,u8 * p_filter_idx,u32 * p_ref_cnt)667 ecore_llh_shadow_remove_filter(struct ecore_dev *p_dev, u8 ppfid,
668 union ecore_llh_filter *p_filter,
669 u8 *p_filter_idx, u32 *p_ref_cnt)
670 {
671 enum _ecore_status_t rc;
672
673 rc = ecore_llh_shadow_search_filter(p_dev, ppfid, p_filter,
674 p_filter_idx);
675 if (rc != ECORE_SUCCESS)
676 return rc;
677
678 /* No matching filter was found */
679 if (*p_filter_idx == ECORE_LLH_INVALID_FILTER_IDX) {
680 DP_NOTICE(p_dev, false,
681 "Failed to find a filter in the LLH shadow\n");
682 return ECORE_INVAL;
683 }
684
685 return __ecore_llh_shadow_remove_filter(p_dev, ppfid, *p_filter_idx,
686 p_ref_cnt);
687 }
688
689 static enum _ecore_status_t
ecore_llh_shadow_remove_all_filters(struct ecore_dev * p_dev,u8 ppfid)690 ecore_llh_shadow_remove_all_filters(struct ecore_dev *p_dev, u8 ppfid)
691 {
692 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
693 struct ecore_llh_filter_info *p_filters;
694 enum _ecore_status_t rc;
695
696 rc = ecore_llh_shadow_sanity(p_dev, ppfid, 0, "remove_all");
697 if (rc != ECORE_SUCCESS)
698 return rc;
699
700 p_filters = p_llh_info->pp_filters[ppfid];
701 OSAL_MEM_ZERO(p_filters,
702 NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters));
703
704 return ECORE_SUCCESS;
705 }
706
ecore_abs_ppfid(struct ecore_dev * p_dev,u8 rel_ppfid,u8 * p_abs_ppfid)707 static enum _ecore_status_t ecore_abs_ppfid(struct ecore_dev *p_dev,
708 u8 rel_ppfid, u8 *p_abs_ppfid)
709 {
710 struct ecore_llh_info *p_llh_info = p_dev->p_llh_info;
711
712 if (rel_ppfid >= p_llh_info->num_ppfid) {
713 DP_NOTICE(p_dev, false,
714 "rel_ppfid %d is not valid, available indices are 0..%hhd\n",
715 rel_ppfid, (u8)(p_llh_info->num_ppfid - 1));
716 return ECORE_INVAL;
717 }
718
719 *p_abs_ppfid = p_llh_info->ppfid_array[rel_ppfid];
720
721 return ECORE_SUCCESS;
722 }
723
724 static enum _ecore_status_t
__ecore_llh_set_engine_affin(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)725 __ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
726 {
727 struct ecore_dev *p_dev = p_hwfn->p_dev;
728 enum ecore_eng eng;
729 u8 ppfid;
730 enum _ecore_status_t rc;
731
732 rc = ecore_mcp_get_engine_config(p_hwfn, p_ptt);
733 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
734 DP_NOTICE(p_hwfn, false,
735 "Failed to get the engine affinity configuration\n");
736 return rc;
737 }
738
739 /* RoCE PF is bound to a single engine */
740 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
741 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
742 rc = ecore_llh_set_roce_affinity(p_dev, eng);
743 if (rc != ECORE_SUCCESS) {
744 DP_NOTICE(p_dev, false,
745 "Failed to set the RoCE engine affinity\n");
746 return rc;
747 }
748
749 DP_VERBOSE(p_dev, ECORE_MSG_SP,
750 "LLH: Set the engine affinity of RoCE packets as %d\n",
751 eng);
752 }
753
754 /* Storage PF is bound to a single engine while L2 PF uses both */
755 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
756 ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
757 eng = p_dev->fir_affin ? ECORE_ENG1 : ECORE_ENG0;
758 else /* L2_PERSONALITY */
759 eng = ECORE_BOTH_ENG;
760
761 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
762 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
763 if (rc != ECORE_SUCCESS) {
764 DP_NOTICE(p_dev, false,
765 "Failed to set the engine affinity of ppfid %d\n",
766 ppfid);
767 return rc;
768 }
769 }
770
771 DP_VERBOSE(p_dev, ECORE_MSG_SP,
772 "LLH: Set the engine affinity of non-RoCE packets as %d\n",
773 eng);
774
775 return ECORE_SUCCESS;
776 }
777
778 static enum _ecore_status_t
ecore_llh_set_engine_affin(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool avoid_eng_affin)779 ecore_llh_set_engine_affin(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
780 bool avoid_eng_affin)
781 {
782 struct ecore_dev *p_dev = p_hwfn->p_dev;
783 enum _ecore_status_t rc;
784
785 /* Backwards compatible mode:
786 * - RoCE packets - Use engine 0.
787 * - Non-RoCE packets - Use connection based classification for L2 PFs,
788 * and engine 0 otherwise.
789 */
790 if (avoid_eng_affin) {
791 enum ecore_eng eng;
792 u8 ppfid;
793
794 if (ECORE_IS_ROCE_PERSONALITY(p_hwfn)) {
795 eng = ECORE_ENG0;
796 rc = ecore_llh_set_roce_affinity(p_dev, eng);
797 if (rc != ECORE_SUCCESS) {
798 DP_NOTICE(p_dev, false,
799 "Failed to set the RoCE engine affinity\n");
800 return rc;
801 }
802
803 DP_VERBOSE(p_dev, ECORE_MSG_SP,
804 "LLH [backwards compatible mode]: Set the engine affinity of RoCE packets as %d\n",
805 eng);
806 }
807
808 eng = (ECORE_IS_FCOE_PERSONALITY(p_hwfn) ||
809 ECORE_IS_ISCSI_PERSONALITY(p_hwfn)) ? ECORE_ENG0
810 : ECORE_BOTH_ENG;
811 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
812 rc = ecore_llh_set_ppfid_affinity(p_dev, ppfid, eng);
813 if (rc != ECORE_SUCCESS) {
814 DP_NOTICE(p_dev, false,
815 "Failed to set the engine affinity of ppfid %d\n",
816 ppfid);
817 return rc;
818 }
819 }
820
821 DP_VERBOSE(p_dev, ECORE_MSG_SP,
822 "LLH [backwards compatible mode]: Set the engine affinity of non-RoCE packets as %d\n",
823 eng);
824
825 return ECORE_SUCCESS;
826 }
827
828 return __ecore_llh_set_engine_affin(p_hwfn, p_ptt);
829 }
830
ecore_llh_hw_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool avoid_eng_affin)831 static enum _ecore_status_t ecore_llh_hw_init_pf(struct ecore_hwfn *p_hwfn,
832 struct ecore_ptt *p_ptt,
833 bool avoid_eng_affin)
834 {
835 struct ecore_dev *p_dev = p_hwfn->p_dev;
836 u8 ppfid, abs_ppfid;
837 enum _ecore_status_t rc;
838
839 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
840 u32 addr;
841
842 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
843 if (rc != ECORE_SUCCESS)
844 return rc;
845
846 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
847 ecore_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
848 }
849
850 if (OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
851 !ECORE_IS_FCOE_PERSONALITY(p_hwfn)) {
852 rc = ecore_llh_add_mac_filter(p_dev, 0,
853 p_hwfn->hw_info.hw_mac_addr);
854 if (rc != ECORE_SUCCESS)
855 DP_NOTICE(p_dev, false,
856 "Failed to add an LLH filter with the primary MAC\n");
857 }
858
859 if (ECORE_IS_CMT(p_dev)) {
860 rc = ecore_llh_set_engine_affin(p_hwfn, p_ptt, avoid_eng_affin);
861 if (rc != ECORE_SUCCESS)
862 return rc;
863 }
864
865 return ECORE_SUCCESS;
866 }
867
ecore_llh_get_num_ppfid(struct ecore_dev * p_dev)868 u8 ecore_llh_get_num_ppfid(struct ecore_dev *p_dev)
869 {
870 return p_dev->p_llh_info->num_ppfid;
871 }
872
ecore_llh_get_l2_affinity_hint(struct ecore_dev * p_dev)873 enum ecore_eng ecore_llh_get_l2_affinity_hint(struct ecore_dev *p_dev)
874 {
875 return p_dev->l2_affin_hint ? ECORE_ENG1 : ECORE_ENG0;
876 }
877
878 /* TBD - should be removed when these definitions are available in reg_addr.h */
879 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3
880 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0
881 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3
882 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2
883
ecore_llh_set_ppfid_affinity(struct ecore_dev * p_dev,u8 ppfid,enum ecore_eng eng)884 enum _ecore_status_t ecore_llh_set_ppfid_affinity(struct ecore_dev *p_dev,
885 u8 ppfid, enum ecore_eng eng)
886 {
887 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
888 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
889 u32 addr, val, eng_sel;
890 enum _ecore_status_t rc = ECORE_SUCCESS;
891 u8 abs_ppfid;
892
893 if (p_ptt == OSAL_NULL)
894 return ECORE_AGAIN;
895
896 if (!ECORE_IS_CMT(p_dev))
897 goto out;
898
899 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
900 if (rc != ECORE_SUCCESS)
901 goto out;
902
903 switch (eng) {
904 case ECORE_ENG0:
905 eng_sel = 0;
906 break;
907 case ECORE_ENG1:
908 eng_sel = 1;
909 break;
910 case ECORE_BOTH_ENG:
911 eng_sel = 2;
912 break;
913 default:
914 DP_NOTICE(p_dev, false,
915 "Invalid affinity value for ppfid [%d]\n", eng);
916 rc = ECORE_INVAL;
917 goto out;
918 }
919
920 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
921 val = ecore_rd(p_hwfn, p_ptt, addr);
922 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
923 ecore_wr(p_hwfn, p_ptt, addr, val);
924
925 /* The iWARP affinity is set as the affinity of ppfid 0 */
926 if (!ppfid && ECORE_IS_IWARP_PERSONALITY(p_hwfn))
927 p_dev->iwarp_affin = (eng == ECORE_ENG1) ? 1 : 0;
928 out:
929 ecore_ptt_release(p_hwfn, p_ptt);
930
931 return rc;
932 }
933
ecore_llh_set_roce_affinity(struct ecore_dev * p_dev,enum ecore_eng eng)934 enum _ecore_status_t ecore_llh_set_roce_affinity(struct ecore_dev *p_dev,
935 enum ecore_eng eng)
936 {
937 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
938 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
939 u32 addr, val, eng_sel;
940 enum _ecore_status_t rc = ECORE_SUCCESS;
941 u8 ppfid, abs_ppfid;
942
943 if (p_ptt == OSAL_NULL)
944 return ECORE_AGAIN;
945
946 if (!ECORE_IS_CMT(p_dev))
947 goto out;
948
949 switch (eng) {
950 case ECORE_ENG0:
951 eng_sel = 0;
952 break;
953 case ECORE_ENG1:
954 eng_sel = 1;
955 break;
956 case ECORE_BOTH_ENG:
957 eng_sel = 2;
958 ecore_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
959 0xf /* QP bit 15 */);
960 break;
961 default:
962 DP_NOTICE(p_dev, false,
963 "Invalid affinity value for RoCE [%d]\n", eng);
964 rc = ECORE_INVAL;
965 goto out;
966 }
967
968 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
969 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
970 if (rc != ECORE_SUCCESS)
971 goto out;
972
973 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
974 val = ecore_rd(p_hwfn, p_ptt, addr);
975 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
976 ecore_wr(p_hwfn, p_ptt, addr, val);
977 }
978 out:
979 ecore_ptt_release(p_hwfn, p_ptt);
980
981 return rc;
982 }
983
984 struct ecore_llh_filter_e4_details {
985 u64 value;
986 u32 mode;
987 u32 protocol_type;
988 u32 hdr_sel;
989 u32 enable;
990 };
991
992 static enum _ecore_status_t
ecore_llh_access_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,struct ecore_llh_filter_e4_details * p_details,bool b_write_access)993 ecore_llh_access_filter_e4(struct ecore_hwfn *p_hwfn,
994 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx,
995 struct ecore_llh_filter_e4_details *p_details,
996 bool b_write_access)
997 {
998 u8 pfid = ECORE_PFID_BY_PPFID(p_hwfn, abs_ppfid);
999 struct ecore_dmae_params params;
1000 enum _ecore_status_t rc;
1001 u32 addr;
1002
1003 /* The NIG/LLH registers that are accessed in this function have only 16
1004 * rows which are exposed to a PF. I.e. only the 16 filters of its
1005 * default ppfid
1006 * Accessing filters of other ppfids requires pretending to other PFs,
1007 * and thus the usage of the ecore_ppfid_rd/wr() functions.
1008 */
1009
1010 /* Filter enable - should be done first when removing a filter */
1011 if (b_write_access && !p_details->enable) {
1012 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1013 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1014 p_details->enable);
1015 }
1016
1017 /* Filter value */
1018 addr = NIG_REG_LLH_FUNC_FILTER_VALUE_BB_K2 + 2 * filter_idx * 0x4;
1019 OSAL_MEMSET(¶ms, 0, sizeof(params));
1020
1021 if (b_write_access) {
1022 params.flags = ECORE_DMAE_FLAG_PF_DST;
1023 params.dst_pfid = pfid;
1024 rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
1025 (u64)(osal_uintptr_t)&p_details->value,
1026 addr, 2 /* size_in_dwords */, ¶ms);
1027 } else {
1028 params.flags = ECORE_DMAE_FLAG_PF_SRC |
1029 ECORE_DMAE_FLAG_COMPLETION_DST;
1030 params.src_pfid = pfid;
1031 rc = ecore_dmae_grc2host(p_hwfn, p_ptt, addr,
1032 (u64)(osal_uintptr_t)&p_details->value,
1033 2 /* size_in_dwords */, ¶ms);
1034 }
1035
1036 if (rc != ECORE_SUCCESS)
1037 return rc;
1038
1039 /* Filter mode */
1040 addr = NIG_REG_LLH_FUNC_FILTER_MODE_BB_K2 + filter_idx * 0x4;
1041 if (b_write_access)
1042 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, p_details->mode);
1043 else
1044 p_details->mode = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1045 addr);
1046
1047 /* Filter protocol type */
1048 addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE_BB_K2 + filter_idx * 0x4;
1049 if (b_write_access)
1050 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1051 p_details->protocol_type);
1052 else
1053 p_details->protocol_type = ecore_ppfid_rd(p_hwfn, p_ptt,
1054 abs_ppfid, addr);
1055
1056 /* Filter header select */
1057 addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL_BB_K2 + filter_idx * 0x4;
1058 if (b_write_access)
1059 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1060 p_details->hdr_sel);
1061 else
1062 p_details->hdr_sel = ecore_ppfid_rd(p_hwfn, p_ptt, abs_ppfid,
1063 addr);
1064
1065 /* Filter enable - should be done last when adding a filter */
1066 if (!b_write_access || p_details->enable) {
1067 addr = NIG_REG_LLH_FUNC_FILTER_EN_BB_K2 + filter_idx * 0x4;
1068 if (b_write_access)
1069 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr,
1070 p_details->enable);
1071 else
1072 p_details->enable = ecore_ppfid_rd(p_hwfn, p_ptt,
1073 abs_ppfid, addr);
1074 }
1075
1076 return ECORE_SUCCESS;
1077 }
1078
1079 static enum _ecore_status_t
ecore_llh_add_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,u8 filter_prot_type,u32 high,u32 low)1080 ecore_llh_add_filter_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1081 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type,
1082 u32 high, u32 low)
1083 {
1084 struct ecore_llh_filter_e4_details filter_details;
1085
1086 filter_details.enable = 1;
1087 filter_details.value = ((u64)high << 32) | low;
1088 filter_details.hdr_sel = 0;
1089 filter_details.protocol_type = filter_prot_type;
1090 filter_details.mode = filter_prot_type ?
1091 1 : /* protocol-based classification */
1092 0; /* MAC-address based classification */
1093
1094 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1095 &filter_details,
1096 true /* write access */);
1097 }
1098
1099 static enum _ecore_status_t
ecore_llh_remove_filter_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx)1100 ecore_llh_remove_filter_e4(struct ecore_hwfn *p_hwfn,
1101 struct ecore_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
1102 {
1103 struct ecore_llh_filter_e4_details filter_details;
1104
1105 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1106
1107 return ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1108 &filter_details,
1109 true /* write access */);
1110 }
1111
1112 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1113 * Should be removed when the function is implemented.
1114 */
1115 static enum _ecore_status_t
ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED abs_ppfid,u8 OSAL_UNUSED filter_idx,u8 OSAL_UNUSED filter_prot_type,u32 OSAL_UNUSED high,u32 OSAL_UNUSED low)1116 ecore_llh_add_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1117 struct ecore_ptt OSAL_UNUSED *p_ptt,
1118 u8 OSAL_UNUSED abs_ppfid, u8 OSAL_UNUSED filter_idx,
1119 u8 OSAL_UNUSED filter_prot_type, u32 OSAL_UNUSED high,
1120 u32 OSAL_UNUSED low)
1121 {
1122 ECORE_E5_MISSING_CODE;
1123
1124 return ECORE_NOTIMPL;
1125 }
1126
1127 /* OSAL_UNUSED is temporary used to avoid unused-parameter compilation warnings.
1128 * Should be removed when the function is implemented.
1129 */
1130 static enum _ecore_status_t
ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED abs_ppfid,u8 OSAL_UNUSED filter_idx)1131 ecore_llh_remove_filter_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1132 struct ecore_ptt OSAL_UNUSED *p_ptt,
1133 u8 OSAL_UNUSED abs_ppfid,
1134 u8 OSAL_UNUSED filter_idx)
1135 {
1136 ECORE_E5_MISSING_CODE;
1137
1138 return ECORE_NOTIMPL;
1139 }
1140
1141 static enum _ecore_status_t
ecore_llh_add_filter(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx,u8 filter_prot_type,u32 high,u32 low)1142 ecore_llh_add_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1143 u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high,
1144 u32 low)
1145 {
1146 if (ECORE_IS_E4(p_hwfn->p_dev))
1147 return ecore_llh_add_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1148 filter_idx, filter_prot_type,
1149 high, low);
1150 else /* E5 */
1151 return ecore_llh_add_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1152 filter_idx, filter_prot_type,
1153 high, low);
1154 }
1155
1156 static enum _ecore_status_t
ecore_llh_remove_filter(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 abs_ppfid,u8 filter_idx)1157 ecore_llh_remove_filter(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1158 u8 abs_ppfid, u8 filter_idx)
1159 {
1160 if (ECORE_IS_E4(p_hwfn->p_dev))
1161 return ecore_llh_remove_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1162 filter_idx);
1163 else /* E5 */
1164 return ecore_llh_remove_filter_e5(p_hwfn, p_ptt, abs_ppfid,
1165 filter_idx);
1166 }
1167
ecore_llh_add_mac_filter(struct ecore_dev * p_dev,u8 ppfid,u8 mac_addr[ETH_ALEN])1168 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1169 u8 mac_addr[ETH_ALEN])
1170 {
1171 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1172 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1173 union ecore_llh_filter filter;
1174 u8 filter_idx, abs_ppfid;
1175 u32 high, low, ref_cnt;
1176 enum _ecore_status_t rc = ECORE_SUCCESS;
1177
1178 if (p_ptt == OSAL_NULL)
1179 return ECORE_AGAIN;
1180
1181 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1182 goto out;
1183
1184 OSAL_MEM_ZERO(&filter, sizeof(filter));
1185 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1186 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1187 ECORE_LLH_FILTER_TYPE_MAC,
1188 &filter, &filter_idx, &ref_cnt);
1189 if (rc != ECORE_SUCCESS)
1190 goto err;
1191
1192 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1193 if (rc != ECORE_SUCCESS)
1194 goto err;
1195
1196 /* Configure the LLH only in case of a new the filter */
1197 if (ref_cnt == 1) {
1198 high = mac_addr[1] | (mac_addr[0] << 8);
1199 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1200 (mac_addr[2] << 24);
1201 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1202 0, high, low);
1203 if (rc != ECORE_SUCCESS)
1204 goto err;
1205 }
1206
1207 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1208 "LLH: Added MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1209 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1210 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1211 ref_cnt);
1212
1213 goto out;
1214
1215 err:
1216 DP_NOTICE(p_dev, false,
1217 "LLH: Failed to add MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] to ppfid %hhd\n",
1218 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1219 mac_addr[4], mac_addr[5], ppfid);
1220 out:
1221 ecore_ptt_release(p_hwfn, p_ptt);
1222
1223 return rc;
1224 }
1225
1226 static enum _ecore_status_t
ecore_llh_protocol_filter_stringify(struct ecore_dev * p_dev,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port,u8 * str,osal_size_t str_len)1227 ecore_llh_protocol_filter_stringify(struct ecore_dev *p_dev,
1228 enum ecore_llh_prot_filter_type_t type,
1229 u16 source_port_or_eth_type, u16 dest_port,
1230 u8 *str, osal_size_t str_len)
1231 {
1232 switch (type) {
1233 case ECORE_LLH_FILTER_ETHERTYPE:
1234 OSAL_SNPRINTF(str, str_len, "Ethertype 0x%04x",
1235 source_port_or_eth_type);
1236 break;
1237 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1238 OSAL_SNPRINTF(str, str_len, "TCP src port 0x%04x",
1239 source_port_or_eth_type);
1240 break;
1241 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1242 OSAL_SNPRINTF(str, str_len, "UDP src port 0x%04x",
1243 source_port_or_eth_type);
1244 break;
1245 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1246 OSAL_SNPRINTF(str, str_len, "TCP dst port 0x%04x", dest_port);
1247 break;
1248 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1249 OSAL_SNPRINTF(str, str_len, "UDP dst port 0x%04x", dest_port);
1250 break;
1251 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1252 OSAL_SNPRINTF(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1253 source_port_or_eth_type, dest_port);
1254 break;
1255 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1256 OSAL_SNPRINTF(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1257 source_port_or_eth_type, dest_port);
1258 break;
1259 default:
1260 DP_NOTICE(p_dev, true,
1261 "Non valid LLH protocol filter type %d\n", type);
1262 return ECORE_INVAL;
1263 }
1264
1265 return ECORE_SUCCESS;
1266 }
1267
1268 static enum _ecore_status_t
ecore_llh_protocol_filter_to_hilo(struct ecore_dev * p_dev,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port,u32 * p_high,u32 * p_low)1269 ecore_llh_protocol_filter_to_hilo(struct ecore_dev *p_dev,
1270 enum ecore_llh_prot_filter_type_t type,
1271 u16 source_port_or_eth_type, u16 dest_port,
1272 u32 *p_high, u32 *p_low)
1273 {
1274 *p_high = 0;
1275 *p_low = 0;
1276
1277 switch (type) {
1278 case ECORE_LLH_FILTER_ETHERTYPE:
1279 *p_high = source_port_or_eth_type;
1280 break;
1281 case ECORE_LLH_FILTER_TCP_SRC_PORT:
1282 case ECORE_LLH_FILTER_UDP_SRC_PORT:
1283 *p_low = source_port_or_eth_type << 16;
1284 break;
1285 case ECORE_LLH_FILTER_TCP_DEST_PORT:
1286 case ECORE_LLH_FILTER_UDP_DEST_PORT:
1287 *p_low = dest_port;
1288 break;
1289 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1290 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1291 *p_low = (source_port_or_eth_type << 16) | dest_port;
1292 break;
1293 default:
1294 DP_NOTICE(p_dev, true,
1295 "Non valid LLH protocol filter type %d\n", type);
1296 return ECORE_INVAL;
1297 }
1298
1299 return ECORE_SUCCESS;
1300 }
1301
1302 enum _ecore_status_t
ecore_llh_add_protocol_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port)1303 ecore_llh_add_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1304 enum ecore_llh_prot_filter_type_t type,
1305 u16 source_port_or_eth_type, u16 dest_port)
1306 {
1307 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1308 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1309 u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1310 union ecore_llh_filter filter;
1311 u32 high, low, ref_cnt;
1312 enum _ecore_status_t rc = ECORE_SUCCESS;
1313
1314 if (p_ptt == OSAL_NULL)
1315 return ECORE_AGAIN;
1316
1317 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1318 goto out;
1319
1320 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1321 source_port_or_eth_type,
1322 dest_port, str, sizeof(str));
1323 if (rc != ECORE_SUCCESS)
1324 goto err;
1325
1326 OSAL_MEM_ZERO(&filter, sizeof(filter));
1327 filter.protocol.type = type;
1328 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1329 filter.protocol.dest_port = dest_port;
1330 rc = ecore_llh_shadow_add_filter(p_dev, ppfid,
1331 ECORE_LLH_FILTER_TYPE_PROTOCOL,
1332 &filter, &filter_idx, &ref_cnt);
1333 if (rc != ECORE_SUCCESS)
1334 goto err;
1335
1336 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1337 if (rc != ECORE_SUCCESS)
1338 goto err;
1339
1340 /* Configure the LLH only in case of a new the filter */
1341 if (ref_cnt == 1) {
1342 rc = ecore_llh_protocol_filter_to_hilo(p_dev, type,
1343 source_port_or_eth_type,
1344 dest_port, &high, &low);
1345 if (rc != ECORE_SUCCESS)
1346 goto err;
1347
1348 type_bitmap = 0x1 << type;
1349 rc = ecore_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1350 type_bitmap, high, low);
1351 if (rc != ECORE_SUCCESS)
1352 goto err;
1353 }
1354
1355 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1356 "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1357 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1358
1359 goto out;
1360
1361 err:
1362 DP_NOTICE(p_hwfn, false,
1363 "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1364 str, ppfid);
1365 out:
1366 ecore_ptt_release(p_hwfn, p_ptt);
1367
1368 return rc;
1369 }
1370
ecore_llh_remove_mac_filter(struct ecore_dev * p_dev,u8 ppfid,u8 mac_addr[ETH_ALEN])1371 void ecore_llh_remove_mac_filter(struct ecore_dev *p_dev, u8 ppfid,
1372 u8 mac_addr[ETH_ALEN])
1373 {
1374 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1375 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1376 union ecore_llh_filter filter;
1377 u8 filter_idx, abs_ppfid;
1378 enum _ecore_status_t rc = ECORE_SUCCESS;
1379 u32 ref_cnt;
1380
1381 if (p_ptt == OSAL_NULL)
1382 return;
1383
1384 if (!OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1385 goto out;
1386
1387 OSAL_MEM_ZERO(&filter, sizeof(filter));
1388 OSAL_MEMCPY(filter.mac.addr, mac_addr, ETH_ALEN);
1389 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1390 &ref_cnt);
1391 if (rc != ECORE_SUCCESS)
1392 goto err;
1393
1394 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1395 if (rc != ECORE_SUCCESS)
1396 goto err;
1397
1398 /* Remove from the LLH in case the filter is not in use */
1399 if (!ref_cnt) {
1400 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1401 filter_idx);
1402 if (rc != ECORE_SUCCESS)
1403 goto err;
1404 }
1405
1406 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1407 "LLH: Removed MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1408 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1409 mac_addr[4], mac_addr[5], ppfid, abs_ppfid, filter_idx,
1410 ref_cnt);
1411
1412 goto out;
1413
1414 err:
1415 DP_NOTICE(p_dev, false,
1416 "LLH: Failed to remove MAC filter [%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx] from ppfid %hhd\n",
1417 mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
1418 mac_addr[4], mac_addr[5], ppfid);
1419 out:
1420 ecore_ptt_release(p_hwfn, p_ptt);
1421 }
1422
ecore_llh_remove_protocol_filter(struct ecore_dev * p_dev,u8 ppfid,enum ecore_llh_prot_filter_type_t type,u16 source_port_or_eth_type,u16 dest_port)1423 void ecore_llh_remove_protocol_filter(struct ecore_dev *p_dev, u8 ppfid,
1424 enum ecore_llh_prot_filter_type_t type,
1425 u16 source_port_or_eth_type,
1426 u16 dest_port)
1427 {
1428 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1429 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1430 u8 filter_idx, abs_ppfid, str[32];
1431 union ecore_llh_filter filter;
1432 enum _ecore_status_t rc = ECORE_SUCCESS;
1433 u32 ref_cnt;
1434
1435 if (p_ptt == OSAL_NULL)
1436 return;
1437
1438 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits))
1439 goto out;
1440
1441 rc = ecore_llh_protocol_filter_stringify(p_dev, type,
1442 source_port_or_eth_type,
1443 dest_port, str, sizeof(str));
1444 if (rc != ECORE_SUCCESS)
1445 goto err;
1446
1447 OSAL_MEM_ZERO(&filter, sizeof(filter));
1448 filter.protocol.type = type;
1449 filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1450 filter.protocol.dest_port = dest_port;
1451 rc = ecore_llh_shadow_remove_filter(p_dev, ppfid, &filter, &filter_idx,
1452 &ref_cnt);
1453 if (rc != ECORE_SUCCESS)
1454 goto err;
1455
1456 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1457 if (rc != ECORE_SUCCESS)
1458 goto err;
1459
1460 /* Remove from the LLH in case the filter is not in use */
1461 if (!ref_cnt) {
1462 rc = ecore_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1463 filter_idx);
1464 if (rc != ECORE_SUCCESS)
1465 goto err;
1466 }
1467
1468 DP_VERBOSE(p_dev, ECORE_MSG_SP,
1469 "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1470 str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1471
1472 goto out;
1473
1474 err:
1475 DP_NOTICE(p_dev, false,
1476 "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1477 str, ppfid);
1478 out:
1479 ecore_ptt_release(p_hwfn, p_ptt);
1480 }
1481
ecore_llh_clear_ppfid_filters(struct ecore_dev * p_dev,u8 ppfid)1482 void ecore_llh_clear_ppfid_filters(struct ecore_dev *p_dev, u8 ppfid)
1483 {
1484 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1485 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1486 u8 filter_idx, abs_ppfid;
1487 enum _ecore_status_t rc = ECORE_SUCCESS;
1488
1489 if (p_ptt == OSAL_NULL)
1490 return;
1491
1492 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1493 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1494 goto out;
1495
1496 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1497 if (rc != ECORE_SUCCESS)
1498 goto out;
1499
1500 rc = ecore_llh_shadow_remove_all_filters(p_dev, ppfid);
1501 if (rc != ECORE_SUCCESS)
1502 goto out;
1503
1504 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1505 filter_idx++) {
1506 if (ECORE_IS_E4(p_dev))
1507 rc = ecore_llh_remove_filter_e4(p_hwfn, p_ptt,
1508 abs_ppfid, filter_idx);
1509 else /* E5 */
1510 rc = ecore_llh_remove_filter_e5(p_hwfn, p_ptt,
1511 abs_ppfid, filter_idx);
1512 if (rc != ECORE_SUCCESS)
1513 goto out;
1514 }
1515 out:
1516 ecore_ptt_release(p_hwfn, p_ptt);
1517 }
1518
ecore_llh_clear_all_filters(struct ecore_dev * p_dev)1519 void ecore_llh_clear_all_filters(struct ecore_dev *p_dev)
1520 {
1521 u8 ppfid;
1522
1523 if (!OSAL_TEST_BIT(ECORE_MF_LLH_PROTO_CLSS, &p_dev->mf_bits) &&
1524 !OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits))
1525 return;
1526
1527 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++)
1528 ecore_llh_clear_ppfid_filters(p_dev, ppfid);
1529 }
1530
ecore_all_ppfids_wr(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u32 val)1531 enum _ecore_status_t ecore_all_ppfids_wr(struct ecore_hwfn *p_hwfn,
1532 struct ecore_ptt *p_ptt, u32 addr,
1533 u32 val)
1534 {
1535 struct ecore_dev *p_dev = p_hwfn->p_dev;
1536 u8 ppfid, abs_ppfid;
1537 enum _ecore_status_t rc;
1538
1539 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1540 rc = ecore_abs_ppfid(p_dev, ppfid, &abs_ppfid);
1541 if (rc != ECORE_SUCCESS)
1542 return rc;
1543
1544 ecore_ppfid_wr(p_hwfn, p_ptt, abs_ppfid, addr, val);
1545 }
1546
1547 return ECORE_SUCCESS;
1548 }
1549
1550 static enum _ecore_status_t
ecore_llh_dump_ppfid_e4(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 ppfid)1551 ecore_llh_dump_ppfid_e4(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1552 u8 ppfid)
1553 {
1554 struct ecore_llh_filter_e4_details filter_details;
1555 u8 abs_ppfid, filter_idx;
1556 u32 addr;
1557 enum _ecore_status_t rc;
1558
1559 rc = ecore_abs_ppfid(p_hwfn->p_dev, ppfid, &abs_ppfid);
1560 if (rc != ECORE_SUCCESS)
1561 return rc;
1562
1563 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
1564 DP_NOTICE(p_hwfn, false,
1565 "[rel_pf_id %hhd, ppfid={rel %hhd, abs %hhd}, engine_sel 0x%x]\n",
1566 p_hwfn->rel_pf_id, ppfid, abs_ppfid,
1567 ecore_rd(p_hwfn, p_ptt, addr));
1568
1569 for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE;
1570 filter_idx++) {
1571 OSAL_MEMSET(&filter_details, 0, sizeof(filter_details));
1572 rc = ecore_llh_access_filter_e4(p_hwfn, p_ptt, abs_ppfid,
1573 filter_idx, &filter_details,
1574 false /* read access */);
1575 if (rc != ECORE_SUCCESS)
1576 return rc;
1577
1578 DP_NOTICE(p_hwfn, false,
1579 "filter %2hhd: enable %d, value 0x%016llx, mode %d, protocol_type 0x%x, hdr_sel 0x%x\n",
1580 filter_idx, filter_details.enable,
1581 (unsigned long long)filter_details.value, filter_details.mode,
1582 filter_details.protocol_type, filter_details.hdr_sel);
1583 }
1584
1585 return ECORE_SUCCESS;
1586 }
1587
1588 static enum _ecore_status_t
ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED * p_hwfn,struct ecore_ptt OSAL_UNUSED * p_ptt,u8 OSAL_UNUSED ppfid)1589 ecore_llh_dump_ppfid_e5(struct ecore_hwfn OSAL_UNUSED *p_hwfn,
1590 struct ecore_ptt OSAL_UNUSED *p_ptt,
1591 u8 OSAL_UNUSED ppfid)
1592 {
1593 ECORE_E5_MISSING_CODE;
1594
1595 return ECORE_NOTIMPL;
1596 }
1597
ecore_llh_dump_ppfid(struct ecore_dev * p_dev,u8 ppfid)1598 enum _ecore_status_t ecore_llh_dump_ppfid(struct ecore_dev *p_dev, u8 ppfid)
1599 {
1600 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
1601 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
1602 enum _ecore_status_t rc;
1603
1604 if (p_ptt == OSAL_NULL)
1605 return ECORE_AGAIN;
1606
1607 if (ECORE_IS_E4(p_dev))
1608 rc = ecore_llh_dump_ppfid_e4(p_hwfn, p_ptt, ppfid);
1609 else /* E5 */
1610 rc = ecore_llh_dump_ppfid_e5(p_hwfn, p_ptt, ppfid);
1611
1612 ecore_ptt_release(p_hwfn, p_ptt);
1613
1614 return rc;
1615 }
1616
ecore_llh_dump_all(struct ecore_dev * p_dev)1617 enum _ecore_status_t ecore_llh_dump_all(struct ecore_dev *p_dev)
1618 {
1619 u8 ppfid;
1620 enum _ecore_status_t rc;
1621
1622 for (ppfid = 0; ppfid < p_dev->p_llh_info->num_ppfid; ppfid++) {
1623 rc = ecore_llh_dump_ppfid(p_dev, ppfid);
1624 if (rc != ECORE_SUCCESS)
1625 return rc;
1626 }
1627
1628 return ECORE_SUCCESS;
1629 }
1630
1631 /******************************* NIG LLH - End ********************************/
1632
1633 /* Configurable */
1634 #define ECORE_MIN_DPIS (4) /* The minimal number of DPIs required to
1635 * load the driver. The number was
1636 * arbitrarily set.
1637 */
1638
1639 /* Derived */
1640 #define ECORE_MIN_PWM_REGION (ECORE_WID_SIZE * ECORE_MIN_DPIS)
1641
ecore_hw_bar_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum BAR_ID bar_id)1642 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn,
1643 struct ecore_ptt *p_ptt,
1644 enum BAR_ID bar_id)
1645 {
1646 u32 bar_reg = (bar_id == BAR_ID_0 ?
1647 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1648 u32 val;
1649
1650 if (IS_VF(p_hwfn->p_dev))
1651 return ecore_vf_hw_bar_size(p_hwfn, bar_id);
1652
1653 val = ecore_rd(p_hwfn, p_ptt, bar_reg);
1654 if (val)
1655 return 1 << (val + 15);
1656
1657 /* The above registers were updated in the past only in CMT mode. Since
1658 * they were found to be useful MFW started updating them from 8.7.7.0.
1659 * In older MFW versions they are set to 0 which means disabled.
1660 */
1661 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
1662 DP_INFO(p_hwfn,
1663 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1664 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1665 } else {
1666 DP_INFO(p_hwfn,
1667 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1668 return 512 * 1024;
1669 }
1670 }
1671
ecore_init_dp(struct ecore_dev * p_dev,u32 dp_module,u8 dp_level,void * dp_ctx)1672 void ecore_init_dp(struct ecore_dev *p_dev,
1673 u32 dp_module,
1674 u8 dp_level,
1675 void *dp_ctx)
1676 {
1677 u32 i;
1678
1679 p_dev->dp_level = dp_level;
1680 p_dev->dp_module = dp_module;
1681 p_dev->dp_ctx = dp_ctx;
1682 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1683 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1684
1685 p_hwfn->dp_level = dp_level;
1686 p_hwfn->dp_module = dp_module;
1687 p_hwfn->dp_ctx = dp_ctx;
1688 }
1689 }
1690
ecore_init_struct(struct ecore_dev * p_dev)1691 enum _ecore_status_t ecore_init_struct(struct ecore_dev *p_dev)
1692 {
1693 u8 i;
1694
1695 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1696 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1697
1698 p_hwfn->p_dev = p_dev;
1699 p_hwfn->my_id = i;
1700 p_hwfn->b_active = false;
1701
1702 #ifdef CONFIG_ECORE_LOCK_ALLOC
1703 if (OSAL_SPIN_LOCK_ALLOC(p_hwfn, &p_hwfn->dmae_info.lock))
1704 goto handle_err;
1705 #endif
1706 OSAL_SPIN_LOCK_INIT(&p_hwfn->dmae_info.lock);
1707 }
1708
1709 /* hwfn 0 is always active */
1710 p_dev->hwfns[0].b_active = true;
1711
1712 /* set the default cache alignment to 128 (may be overridden later) */
1713 p_dev->cache_shift = 7;
1714
1715 p_dev->ilt_page_size = ECORE_DEFAULT_ILT_PAGE_SIZE;
1716
1717 return ECORE_SUCCESS;
1718 #ifdef CONFIG_ECORE_LOCK_ALLOC
1719 handle_err:
1720 while (--i) {
1721 struct ecore_hwfn *p_hwfn = OSAL_NULL;
1722
1723 p_hwfn = &p_dev->hwfns[i];
1724 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
1725 }
1726 return ECORE_NOMEM;
1727 #endif
1728 }
1729
ecore_qm_info_free(struct ecore_hwfn * p_hwfn)1730 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
1731 {
1732 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1733
1734 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
1735 qm_info->qm_pq_params = OSAL_NULL;
1736 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
1737 qm_info->qm_vport_params = OSAL_NULL;
1738 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
1739 qm_info->qm_port_params = OSAL_NULL;
1740 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
1741 qm_info->wfq_data = OSAL_NULL;
1742 }
1743
ecore_resc_free(struct ecore_dev * p_dev)1744 void ecore_resc_free(struct ecore_dev *p_dev)
1745 {
1746 int i;
1747
1748 if (IS_VF(p_dev)) {
1749 for_each_hwfn(p_dev, i)
1750 ecore_l2_free(&p_dev->hwfns[i]);
1751 return;
1752 }
1753
1754 OSAL_FREE(p_dev, p_dev->fw_data);
1755 p_dev->fw_data = OSAL_NULL;
1756
1757 OSAL_FREE(p_dev, p_dev->reset_stats);
1758 p_dev->reset_stats = OSAL_NULL;
1759
1760 ecore_llh_free(p_dev);
1761
1762 for_each_hwfn(p_dev, i) {
1763 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1764
1765 ecore_cxt_mngr_free(p_hwfn);
1766 ecore_qm_info_free(p_hwfn);
1767 ecore_spq_free(p_hwfn);
1768 ecore_eq_free(p_hwfn);
1769 ecore_consq_free(p_hwfn);
1770 ecore_int_free(p_hwfn);
1771 #ifdef CONFIG_ECORE_LL2
1772 ecore_ll2_free(p_hwfn);
1773 #endif
1774 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
1775 ecore_fcoe_free(p_hwfn);
1776
1777 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
1778 ecore_iscsi_free(p_hwfn);
1779 ecore_ooo_free(p_hwfn);
1780 }
1781
1782 #ifdef CONFIG_ECORE_ROCE
1783 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1784 ecore_rdma_info_free(p_hwfn);
1785 #endif
1786 ecore_iov_free(p_hwfn);
1787 ecore_l2_free(p_hwfn);
1788 ecore_dmae_info_free(p_hwfn);
1789 ecore_dcbx_info_free(p_hwfn);
1790 /* @@@TBD Flush work-queue ?*/
1791
1792 /* destroy doorbell recovery mechanism */
1793 ecore_db_recovery_teardown(p_hwfn);
1794 }
1795 }
1796
1797 /******************** QM initialization *******************/
1798 /* bitmaps for indicating active traffic classes. Special case for Arrowhead 4 port */
1799 #define ACTIVE_TCS_BMAP 0x9f /* 0..3 actualy used, 4 serves OOO, 7 serves high priority stuff (e.g. DCQCN) */
1800 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* 0..3 actually used, OOO and high priority stuff all use 3 */
1801
1802 /* determines the physical queue flags for a given PF. */
ecore_get_pq_flags(struct ecore_hwfn * p_hwfn)1803 static u32 ecore_get_pq_flags(struct ecore_hwfn *p_hwfn)
1804 {
1805 u32 flags;
1806
1807 /* common flags */
1808 flags = PQ_FLAGS_LB;
1809
1810 /* feature flags */
1811 if (IS_ECORE_SRIOV(p_hwfn->p_dev))
1812 flags |= PQ_FLAGS_VFS;
1813 if (IS_ECORE_DCQCN(p_hwfn))
1814 flags |= PQ_FLAGS_RLS;
1815
1816 /* protocol flags */
1817 switch (p_hwfn->hw_info.personality) {
1818 case ECORE_PCI_ETH:
1819 flags |= PQ_FLAGS_MCOS;
1820 break;
1821 case ECORE_PCI_FCOE:
1822 flags |= PQ_FLAGS_OFLD;
1823 break;
1824 case ECORE_PCI_ISCSI:
1825 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1826 break;
1827 case ECORE_PCI_ETH_ROCE:
1828 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1829 break;
1830 case ECORE_PCI_ETH_IWARP:
1831 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1832 break;
1833 default:
1834 DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality);
1835 return 0;
1836 }
1837
1838 return flags;
1839 }
1840
1841
1842 /* Getters for resource amounts necessary for qm initialization */
ecore_init_qm_get_num_tcs(struct ecore_hwfn * p_hwfn)1843 u8 ecore_init_qm_get_num_tcs(struct ecore_hwfn *p_hwfn)
1844 {
1845 return p_hwfn->hw_info.num_hw_tc;
1846 }
1847
ecore_init_qm_get_num_vfs(struct ecore_hwfn * p_hwfn)1848 u16 ecore_init_qm_get_num_vfs(struct ecore_hwfn *p_hwfn)
1849 {
1850 return IS_ECORE_SRIOV(p_hwfn->p_dev) ? p_hwfn->p_dev->p_iov_info->total_vfs : 0;
1851 }
1852
1853 #define NUM_DEFAULT_RLS 1
1854
ecore_init_qm_get_num_pf_rls(struct ecore_hwfn * p_hwfn)1855 u16 ecore_init_qm_get_num_pf_rls(struct ecore_hwfn *p_hwfn)
1856 {
1857 u16 num_pf_rls, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
1858
1859 /* num RLs can't exceed resource amount of rls or vports or the dcqcn qps */
1860 num_pf_rls = (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
1861 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_VPORT),
1862 ROCE_DCQCN_RP_MAX_QPS));
1863
1864 /* make sure after we reserve the default and VF rls we'll have something left */
1865 if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) {
1866 if (IS_ECORE_DCQCN(p_hwfn))
1867 DP_NOTICE(p_hwfn, false, "no rate limiters left for PF rate limiting [num_pf_rls %d num_vfs %d]\n", num_pf_rls, num_vfs);
1868 return 0;
1869 }
1870
1871 /* subtract rls necessary for VFs and one default one for the PF */
1872 num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1873
1874 return num_pf_rls;
1875 }
1876
ecore_init_qm_get_num_vports(struct ecore_hwfn * p_hwfn)1877 u16 ecore_init_qm_get_num_vports(struct ecore_hwfn *p_hwfn)
1878 {
1879 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1880
1881 /* all pqs share the same vport (hence the 1 below), except for vfs and pf_rl pqs */
1882 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1883 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn) + 1;
1884 }
1885
1886 /* calc amount of PQs according to the requested flags */
ecore_init_qm_get_num_pqs(struct ecore_hwfn * p_hwfn)1887 u16 ecore_init_qm_get_num_pqs(struct ecore_hwfn *p_hwfn)
1888 {
1889 u32 pq_flags = ecore_get_pq_flags(p_hwfn);
1890
1891 return (!!(PQ_FLAGS_RLS & pq_flags)) * ecore_init_qm_get_num_pf_rls(p_hwfn) +
1892 (!!(PQ_FLAGS_MCOS & pq_flags)) * ecore_init_qm_get_num_tcs(p_hwfn) +
1893 (!!(PQ_FLAGS_LB & pq_flags)) +
1894 (!!(PQ_FLAGS_OOO & pq_flags)) +
1895 (!!(PQ_FLAGS_ACK & pq_flags)) +
1896 (!!(PQ_FLAGS_OFLD & pq_flags)) +
1897 (!!(PQ_FLAGS_LLT & pq_flags)) +
1898 (!!(PQ_FLAGS_VFS & pq_flags)) * ecore_init_qm_get_num_vfs(p_hwfn);
1899 }
1900
1901 /* initialize the top level QM params */
ecore_init_qm_params(struct ecore_hwfn * p_hwfn)1902 static void ecore_init_qm_params(struct ecore_hwfn *p_hwfn)
1903 {
1904 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1905 bool four_port;
1906
1907 /* pq and vport bases for this PF */
1908 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
1909 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
1910
1911 /* rate limiting and weighted fair queueing are always enabled */
1912 qm_info->vport_rl_en = 1;
1913 qm_info->vport_wfq_en = 1;
1914
1915 /* TC config is different for AH 4 port */
1916 four_port = p_hwfn->p_dev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1917
1918 /* in AH 4 port we have fewer TCs per port */
1919 qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS;
1920
1921 /* unless MFW indicated otherwise, ooo_tc should be 3 for AH 4 port and 4 otherwise */
1922 if (!qm_info->ooo_tc)
1923 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC;
1924 }
1925
1926 /* initialize qm vport params */
ecore_init_qm_vport_params(struct ecore_hwfn * p_hwfn)1927 static void ecore_init_qm_vport_params(struct ecore_hwfn *p_hwfn)
1928 {
1929 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1930 u8 i;
1931
1932 /* all vports participate in weighted fair queueing */
1933 for (i = 0; i < ecore_init_qm_get_num_vports(p_hwfn); i++)
1934 qm_info->qm_vport_params[i].vport_wfq = 1;
1935 }
1936
1937 /* initialize qm port params */
ecore_init_qm_port_params(struct ecore_hwfn * p_hwfn)1938 static void ecore_init_qm_port_params(struct ecore_hwfn *p_hwfn)
1939 {
1940 /* Initialize qm port parameters */
1941 u8 i, active_phys_tcs, num_ports = p_hwfn->p_dev->num_ports_in_engine;
1942
1943 /* indicate how ooo and high pri traffic is dealt with */
1944 active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1945 ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP;
1946
1947 for (i = 0; i < num_ports; i++) {
1948 struct init_qm_port_params *p_qm_port =
1949 &p_hwfn->qm_info.qm_port_params[i];
1950
1951 p_qm_port->active = 1;
1952 p_qm_port->active_phys_tcs = active_phys_tcs;
1953 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES_E4 / num_ports;
1954 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
1955 }
1956 }
1957
1958 /* Reset the params which must be reset for qm init. QM init may be called as
1959 * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1960 * params may be affected by the init but would simply recalculate to the same
1961 * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1962 * affected as these amounts stay the same.
1963 */
ecore_init_qm_reset_params(struct ecore_hwfn * p_hwfn)1964 static void ecore_init_qm_reset_params(struct ecore_hwfn *p_hwfn)
1965 {
1966 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1967
1968 qm_info->num_pqs = 0;
1969 qm_info->num_vports = 0;
1970 qm_info->num_pf_rls = 0;
1971 qm_info->num_vf_pqs = 0;
1972 qm_info->first_vf_pq = 0;
1973 qm_info->first_mcos_pq = 0;
1974 qm_info->first_rl_pq = 0;
1975 }
1976
ecore_init_qm_advance_vport(struct ecore_hwfn * p_hwfn)1977 static void ecore_init_qm_advance_vport(struct ecore_hwfn *p_hwfn)
1978 {
1979 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1980
1981 qm_info->num_vports++;
1982
1983 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
1984 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
1985 }
1986
1987 /* initialize a single pq and manage qm_info resources accounting.
1988 * The pq_init_flags param determines whether the PQ is rate limited (for VF or PF)
1989 * and whether a new vport is allocated to the pq or not (i.e. vport will be shared)
1990 */
1991
1992 /* flags for pq init */
1993 #define PQ_INIT_SHARE_VPORT (1 << 0)
1994 #define PQ_INIT_PF_RL (1 << 1)
1995 #define PQ_INIT_VF_RL (1 << 2)
1996
1997 /* defines for pq init */
1998 #define PQ_INIT_DEFAULT_WRR_GROUP 1
1999 #define PQ_INIT_DEFAULT_TC 0
2000 #define PQ_INIT_OFLD_TC (p_hwfn->hw_info.offload_tc)
2001
ecore_init_qm_pq(struct ecore_hwfn * p_hwfn,struct ecore_qm_info * qm_info,u8 tc,u32 pq_init_flags)2002 static void ecore_init_qm_pq(struct ecore_hwfn *p_hwfn,
2003 struct ecore_qm_info *qm_info,
2004 u8 tc, u32 pq_init_flags)
2005 {
2006 u16 pq_idx = qm_info->num_pqs, max_pq = ecore_init_qm_get_num_pqs(p_hwfn);
2007
2008 if (pq_idx > max_pq)
2009 DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
2010
2011 /* init pq params */
2012 qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports;
2013 qm_info->qm_pq_params[pq_idx].tc_id = tc;
2014 qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
2015 qm_info->qm_pq_params[pq_idx].rl_valid =
2016 (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
2017
2018 /* qm params accounting */
2019 qm_info->num_pqs++;
2020 if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
2021 qm_info->num_vports++;
2022
2023 if (pq_init_flags & PQ_INIT_PF_RL)
2024 qm_info->num_pf_rls++;
2025
2026 if (qm_info->num_vports > ecore_init_qm_get_num_vports(p_hwfn))
2027 DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, ecore_init_qm_get_num_vports(p_hwfn));
2028
2029 if (qm_info->num_pf_rls > ecore_init_qm_get_num_pf_rls(p_hwfn))
2030 DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, ecore_init_qm_get_num_pf_rls(p_hwfn));
2031 }
2032
2033 /* get pq index according to PQ_FLAGS */
ecore_init_qm_get_idx_from_flags(struct ecore_hwfn * p_hwfn,u32 pq_flags)2034 static u16 *ecore_init_qm_get_idx_from_flags(struct ecore_hwfn *p_hwfn,
2035 u32 pq_flags)
2036 {
2037 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2038
2039 /* Can't have multiple flags set here */
2040 if (OSAL_BITMAP_WEIGHT((unsigned long *)&pq_flags, sizeof(pq_flags)) > 1)
2041 goto err;
2042
2043 switch (pq_flags) {
2044 case PQ_FLAGS_RLS:
2045 return &qm_info->first_rl_pq;
2046 case PQ_FLAGS_MCOS:
2047 return &qm_info->first_mcos_pq;
2048 case PQ_FLAGS_LB:
2049 return &qm_info->pure_lb_pq;
2050 case PQ_FLAGS_OOO:
2051 return &qm_info->ooo_pq;
2052 case PQ_FLAGS_ACK:
2053 return &qm_info->pure_ack_pq;
2054 case PQ_FLAGS_OFLD:
2055 return &qm_info->offload_pq;
2056 case PQ_FLAGS_LLT:
2057 return &qm_info->low_latency_pq;
2058 case PQ_FLAGS_VFS:
2059 return &qm_info->first_vf_pq;
2060 default:
2061 goto err;
2062 }
2063
2064 err:
2065 DP_ERR(p_hwfn, "BAD pq flags %d\n", pq_flags);
2066 return OSAL_NULL;
2067 }
2068
2069 /* save pq index in qm info */
ecore_init_qm_set_idx(struct ecore_hwfn * p_hwfn,u32 pq_flags,u16 pq_val)2070 static void ecore_init_qm_set_idx(struct ecore_hwfn *p_hwfn,
2071 u32 pq_flags, u16 pq_val)
2072 {
2073 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2074
2075 *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
2076 }
2077
2078 /* get tx pq index, with the PQ TX base already set (ready for context init) */
ecore_get_cm_pq_idx(struct ecore_hwfn * p_hwfn,u32 pq_flags)2079 u16 ecore_get_cm_pq_idx(struct ecore_hwfn *p_hwfn, u32 pq_flags)
2080 {
2081 u16 *base_pq_idx = ecore_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
2082
2083 return *base_pq_idx + CM_TX_PQ_BASE;
2084 }
2085
ecore_get_cm_pq_idx_mcos(struct ecore_hwfn * p_hwfn,u8 tc)2086 u16 ecore_get_cm_pq_idx_mcos(struct ecore_hwfn *p_hwfn, u8 tc)
2087 {
2088 u8 max_tc = ecore_init_qm_get_num_tcs(p_hwfn);
2089
2090 if (tc > max_tc)
2091 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
2092
2093 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + tc;
2094 }
2095
ecore_get_cm_pq_idx_vf(struct ecore_hwfn * p_hwfn,u16 vf)2096 u16 ecore_get_cm_pq_idx_vf(struct ecore_hwfn *p_hwfn, u16 vf)
2097 {
2098 u16 max_vf = ecore_init_qm_get_num_vfs(p_hwfn);
2099
2100 if (vf > max_vf)
2101 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
2102
2103 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + vf;
2104 }
2105
ecore_get_cm_pq_idx_rl(struct ecore_hwfn * p_hwfn,u8 rl)2106 u16 ecore_get_cm_pq_idx_rl(struct ecore_hwfn *p_hwfn, u8 rl)
2107 {
2108 u16 max_rl = ecore_init_qm_get_num_pf_rls(p_hwfn);
2109
2110 if (rl > max_rl)
2111 DP_ERR(p_hwfn, "rl %d must be smaller than %d\n", rl, max_rl);
2112
2113 return ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_RLS) + rl;
2114 }
2115
2116 /* Functions for creating specific types of pqs */
ecore_init_qm_lb_pq(struct ecore_hwfn * p_hwfn)2117 static void ecore_init_qm_lb_pq(struct ecore_hwfn *p_hwfn)
2118 {
2119 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2120
2121 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
2122 return;
2123
2124 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
2125 ecore_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
2126 }
2127
ecore_init_qm_ooo_pq(struct ecore_hwfn * p_hwfn)2128 static void ecore_init_qm_ooo_pq(struct ecore_hwfn *p_hwfn)
2129 {
2130 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2131
2132 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
2133 return;
2134
2135 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
2136 ecore_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
2137 }
2138
ecore_init_qm_pure_ack_pq(struct ecore_hwfn * p_hwfn)2139 static void ecore_init_qm_pure_ack_pq(struct ecore_hwfn *p_hwfn)
2140 {
2141 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2142
2143 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
2144 return;
2145
2146 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
2147 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2148 }
2149
ecore_init_qm_offload_pq(struct ecore_hwfn * p_hwfn)2150 static void ecore_init_qm_offload_pq(struct ecore_hwfn *p_hwfn)
2151 {
2152 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2153
2154 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
2155 return;
2156
2157 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
2158 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2159 }
2160
ecore_init_qm_low_latency_pq(struct ecore_hwfn * p_hwfn)2161 static void ecore_init_qm_low_latency_pq(struct ecore_hwfn *p_hwfn)
2162 {
2163 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2164
2165 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
2166 return;
2167
2168 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
2169 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_SHARE_VPORT);
2170 }
2171
ecore_init_qm_mcos_pqs(struct ecore_hwfn * p_hwfn)2172 static void ecore_init_qm_mcos_pqs(struct ecore_hwfn *p_hwfn)
2173 {
2174 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2175 u8 tc_idx;
2176
2177 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
2178 return;
2179
2180 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
2181 for (tc_idx = 0; tc_idx < ecore_init_qm_get_num_tcs(p_hwfn); tc_idx++)
2182 ecore_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
2183 }
2184
ecore_init_qm_vf_pqs(struct ecore_hwfn * p_hwfn)2185 static void ecore_init_qm_vf_pqs(struct ecore_hwfn *p_hwfn)
2186 {
2187 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2188 u16 vf_idx, num_vfs = ecore_init_qm_get_num_vfs(p_hwfn);
2189
2190 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
2191 return;
2192
2193 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
2194 qm_info->num_vf_pqs = num_vfs;
2195 for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
2196 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
2197 }
2198
ecore_init_qm_rl_pqs(struct ecore_hwfn * p_hwfn)2199 static void ecore_init_qm_rl_pqs(struct ecore_hwfn *p_hwfn)
2200 {
2201 u16 pf_rls_idx, num_pf_rls = ecore_init_qm_get_num_pf_rls(p_hwfn);
2202 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2203
2204 if (!(ecore_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
2205 return;
2206
2207 ecore_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
2208 for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
2209 ecore_init_qm_pq(p_hwfn, qm_info, PQ_INIT_OFLD_TC, PQ_INIT_PF_RL);
2210 }
2211
ecore_init_qm_pq_params(struct ecore_hwfn * p_hwfn)2212 static void ecore_init_qm_pq_params(struct ecore_hwfn *p_hwfn)
2213 {
2214 /* rate limited pqs, must come first (FW assumption) */
2215 ecore_init_qm_rl_pqs(p_hwfn);
2216
2217 /* pqs for multi cos */
2218 ecore_init_qm_mcos_pqs(p_hwfn);
2219
2220 /* pure loopback pq */
2221 ecore_init_qm_lb_pq(p_hwfn);
2222
2223 /* out of order pq */
2224 ecore_init_qm_ooo_pq(p_hwfn);
2225
2226 /* pure ack pq */
2227 ecore_init_qm_pure_ack_pq(p_hwfn);
2228
2229 /* pq for offloaded protocol */
2230 ecore_init_qm_offload_pq(p_hwfn);
2231
2232 /* low latency pq */
2233 ecore_init_qm_low_latency_pq(p_hwfn);
2234
2235 /* done sharing vports */
2236 ecore_init_qm_advance_vport(p_hwfn);
2237
2238 /* pqs for vfs */
2239 ecore_init_qm_vf_pqs(p_hwfn);
2240 }
2241
2242 /* compare values of getters against resources amounts */
ecore_init_qm_sanity(struct ecore_hwfn * p_hwfn)2243 static enum _ecore_status_t ecore_init_qm_sanity(struct ecore_hwfn *p_hwfn)
2244 {
2245 if (ecore_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, ECORE_VPORT)) {
2246 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
2247 return ECORE_INVAL;
2248 }
2249
2250 if (ecore_init_qm_get_num_pqs(p_hwfn) > RESC_NUM(p_hwfn, ECORE_PQ)) {
2251 DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
2252 return ECORE_INVAL;
2253 }
2254
2255 return ECORE_SUCCESS;
2256 }
2257
2258 /*
2259 * Function for verbose printing of the qm initialization results
2260 */
ecore_dp_init_qm_params(struct ecore_hwfn * p_hwfn)2261 static void ecore_dp_init_qm_params(struct ecore_hwfn *p_hwfn)
2262 {
2263 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2264 struct init_qm_vport_params *vport;
2265 struct init_qm_port_params *port;
2266 struct init_qm_pq_params *pq;
2267 int i, tc;
2268
2269 /* top level params */
2270 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, pure_ack_pq %d\n",
2271 qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->offload_pq, qm_info->pure_ack_pq);
2272 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2273 qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2274 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2275 qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, ecore_get_pq_flags(p_hwfn));
2276
2277 /* port table */
2278 for (i = 0; i < p_hwfn->p_dev->num_ports_in_engine; i++) {
2279 port = &(qm_info->qm_port_params[i]);
2280 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2281 i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved);
2282 }
2283
2284 /* vport table */
2285 for (i = 0; i < qm_info->num_vports; i++) {
2286 vport = &(qm_info->qm_vport_params[i]);
2287 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
2288 qm_info->start_vport + i, vport->vport_rl, vport->vport_wfq);
2289 for (tc = 0; tc < NUM_OF_TCS; tc++)
2290 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "%d ", vport->first_tx_pq_id[tc]);
2291 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "]\n");
2292 }
2293
2294 /* pq table */
2295 for (i = 0; i < qm_info->num_pqs; i++) {
2296 pq = &(qm_info->qm_pq_params[i]);
2297 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "pq idx %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
2298 qm_info->start_pq + i, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid);
2299 }
2300 }
2301
ecore_init_qm_info(struct ecore_hwfn * p_hwfn)2302 static void ecore_init_qm_info(struct ecore_hwfn *p_hwfn)
2303 {
2304 /* reset params required for init run */
2305 ecore_init_qm_reset_params(p_hwfn);
2306
2307 /* init QM top level params */
2308 ecore_init_qm_params(p_hwfn);
2309
2310 /* init QM port params */
2311 ecore_init_qm_port_params(p_hwfn);
2312
2313 /* init QM vport params */
2314 ecore_init_qm_vport_params(p_hwfn);
2315
2316 /* init QM physical queue params */
2317 ecore_init_qm_pq_params(p_hwfn);
2318
2319 /* display all that init */
2320 ecore_dp_init_qm_params(p_hwfn);
2321 }
2322
2323 /* This function reconfigures the QM pf on the fly.
2324 * For this purpose we:
2325 * 1. reconfigure the QM database
2326 * 2. set new values to runtime array
2327 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2328 * 4. activate init tool in QM_PF stage
2329 * 5. send an sdm_qm_cmd through rbc interface to release the QM
2330 */
ecore_qm_reconf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2331 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
2332 struct ecore_ptt *p_ptt)
2333 {
2334 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2335 bool b_rc;
2336 enum _ecore_status_t rc;
2337
2338 /* initialize ecore's qm data structure */
2339 ecore_init_qm_info(p_hwfn);
2340
2341 /* stop PF's qm queues */
2342 OSAL_SPIN_LOCK(&qm_lock);
2343 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2344 qm_info->start_pq, qm_info->num_pqs);
2345 OSAL_SPIN_UNLOCK(&qm_lock);
2346 if (!b_rc)
2347 return ECORE_INVAL;
2348
2349 /* clear the QM_PF runtime phase leftovers from previous init */
2350 ecore_init_clear_rt_data(p_hwfn);
2351
2352 /* prepare QM portion of runtime array */
2353 ecore_qm_init_pf(p_hwfn, p_ptt, false);
2354
2355 /* activate init tool on runtime array */
2356 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2357 p_hwfn->hw_info.hw_mode);
2358 if (rc != ECORE_SUCCESS)
2359 return rc;
2360
2361 /* start PF's qm queues */
2362 OSAL_SPIN_LOCK(&qm_lock);
2363 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2364 qm_info->start_pq, qm_info->num_pqs);
2365 OSAL_SPIN_UNLOCK(&qm_lock);
2366 if (!b_rc)
2367 return ECORE_INVAL;
2368
2369 return ECORE_SUCCESS;
2370 }
2371
ecore_alloc_qm_data(struct ecore_hwfn * p_hwfn)2372 static enum _ecore_status_t ecore_alloc_qm_data(struct ecore_hwfn *p_hwfn)
2373 {
2374 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2375 enum _ecore_status_t rc;
2376
2377 rc = ecore_init_qm_sanity(p_hwfn);
2378 if (rc != ECORE_SUCCESS)
2379 goto alloc_err;
2380
2381 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2382 sizeof(struct init_qm_pq_params) *
2383 ecore_init_qm_get_num_pqs(p_hwfn));
2384 if (!qm_info->qm_pq_params)
2385 goto alloc_err;
2386
2387 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2388 sizeof(struct init_qm_vport_params) *
2389 ecore_init_qm_get_num_vports(p_hwfn));
2390 if (!qm_info->qm_vport_params)
2391 goto alloc_err;
2392
2393 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2394 sizeof(struct init_qm_port_params) *
2395 p_hwfn->p_dev->num_ports_in_engine);
2396 if (!qm_info->qm_port_params)
2397 goto alloc_err;
2398
2399 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
2400 sizeof(struct ecore_wfq_data) *
2401 ecore_init_qm_get_num_vports(p_hwfn));
2402 if (!qm_info->wfq_data)
2403 goto alloc_err;
2404
2405 return ECORE_SUCCESS;
2406
2407 alloc_err:
2408 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
2409 ecore_qm_info_free(p_hwfn);
2410 return ECORE_NOMEM;
2411 }
2412 /******************** End QM initialization ***************/
2413
ecore_resc_alloc(struct ecore_dev * p_dev)2414 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
2415 {
2416 u32 rdma_tasks, excess_tasks;
2417 u32 line_count;
2418 enum _ecore_status_t rc = ECORE_SUCCESS;
2419 int i;
2420
2421 if (IS_VF(p_dev)) {
2422 for_each_hwfn(p_dev, i) {
2423 rc = ecore_l2_alloc(&p_dev->hwfns[i]);
2424 if (rc != ECORE_SUCCESS)
2425 return rc;
2426 }
2427 return rc;
2428 }
2429
2430 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2431 sizeof(*p_dev->fw_data));
2432 if (!p_dev->fw_data)
2433 return ECORE_NOMEM;
2434
2435 for_each_hwfn(p_dev, i) {
2436 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2437 u32 n_eqes, num_cons;
2438
2439 /* initialize the doorbell recovery mechanism */
2440 rc = ecore_db_recovery_setup(p_hwfn);
2441 if (rc)
2442 goto alloc_err;
2443
2444 /* First allocate the context manager structure */
2445 rc = ecore_cxt_mngr_alloc(p_hwfn);
2446 if (rc)
2447 goto alloc_err;
2448
2449 /* Set the HW cid/tid numbers (in the context manager)
2450 * Must be done prior to any further computations.
2451 */
2452 rc = ecore_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2453 if (rc)
2454 goto alloc_err;
2455
2456 rc = ecore_alloc_qm_data(p_hwfn);
2457 if (rc)
2458 goto alloc_err;
2459
2460 /* init qm info */
2461 ecore_init_qm_info(p_hwfn);
2462
2463 /* Compute the ILT client partition */
2464 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2465 if (rc) {
2466 DP_NOTICE(p_hwfn, false, "too many ILT lines; re-computing with less lines\n");
2467 /* In case there are not enough ILT lines we reduce the
2468 * number of RDMA tasks and re-compute.
2469 */
2470 excess_tasks = ecore_cxt_cfg_ilt_compute_excess(
2471 p_hwfn, line_count);
2472 if (!excess_tasks)
2473 goto alloc_err;
2474
2475 rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2476 rc = ecore_cxt_set_pf_params(p_hwfn, rdma_tasks);
2477 if (rc)
2478 goto alloc_err;
2479
2480 rc = ecore_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2481 if (rc) {
2482 DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n",
2483 line_count);
2484
2485 goto alloc_err;
2486 }
2487 }
2488
2489 /* CID map / ILT shadow table / T2
2490 * The talbes sizes are determined by the computations above
2491 */
2492 rc = ecore_cxt_tables_alloc(p_hwfn);
2493 if (rc)
2494 goto alloc_err;
2495
2496 /* SPQ, must follow ILT because initializes SPQ context */
2497 rc = ecore_spq_alloc(p_hwfn);
2498 if (rc)
2499 goto alloc_err;
2500
2501 /* SP status block allocation */
2502 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
2503 RESERVED_PTT_DPC);
2504
2505 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2506 if (rc)
2507 goto alloc_err;
2508
2509 rc = ecore_iov_alloc(p_hwfn);
2510 if (rc)
2511 goto alloc_err;
2512
2513 /* EQ */
2514 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
2515 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2516 u32 n_srq = ecore_cxt_get_total_srq_count(p_hwfn);
2517
2518 /* Calculate the EQ size
2519 * ---------------------
2520 * Each ICID may generate up to one event at a time i.e.
2521 * the event must be handled/cleared before a new one
2522 * can be generated. We calculate the sum of events per
2523 * protocol and create an EQ deep enough to handle the
2524 * worst case:
2525 * - Core - according to SPQ.
2526 * - RoCE - per QP there are a couple of ICIDs, one
2527 * responder and one requester, each can
2528 * generate max 2 EQE (err+qp_destroyed) =>
2529 * n_eqes_qp = 4 * n_qp.
2530 * Each CQ can generate an EQE. There are 2 CQs
2531 * per QP => n_eqes_cq = 2 * n_qp.
2532 * Hence the RoCE total is 6 * n_qp or
2533 * 3 * num_cons.
2534 * On top of that one eqe shoule be added for
2535 * each XRC SRQ and SRQ.
2536 * - iWARP - can generate three async per QP (error
2537 * detected and qp in error) and an
2538 additional error per CQ. 4* num_cons.
2539 On top of that one eqe shoule be added for
2540 * each SRQ and XRC SRQ.
2541 * - ENet - There can be up to two events per VF. One
2542 * for VF-PF channel and another for VF FLR
2543 * initial cleanup. The number of VFs is
2544 * bounded by MAX_NUM_VFS_BB, and is much
2545 * smaller than RoCE's so we avoid exact
2546 * calculation.
2547 */
2548 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
2549 num_cons = ecore_cxt_get_proto_cid_count(
2550 p_hwfn, PROTOCOLID_ROCE, OSAL_NULL);
2551 num_cons *= 3;
2552 } else {
2553 num_cons = ecore_cxt_get_proto_cid_count(
2554 p_hwfn, PROTOCOLID_IWARP,
2555 OSAL_NULL);
2556 num_cons *= 4;
2557 }
2558 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2559 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2560 num_cons = ecore_cxt_get_proto_cid_count(
2561 p_hwfn, PROTOCOLID_ISCSI, OSAL_NULL);
2562 n_eqes += 2 * num_cons;
2563 }
2564
2565 if (n_eqes > 0xFF00) {
2566 DP_ERR(p_hwfn, "EQs maxing out at 0xFF00 elements\n");
2567 n_eqes = 0xFF00;
2568 }
2569
2570 rc = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
2571 if (rc)
2572 goto alloc_err;
2573
2574 rc = ecore_consq_alloc(p_hwfn);
2575 if (rc)
2576 goto alloc_err;
2577
2578 rc = ecore_l2_alloc(p_hwfn);
2579 if (rc != ECORE_SUCCESS)
2580 goto alloc_err;
2581
2582 #ifdef CONFIG_ECORE_LL2
2583 if (p_hwfn->using_ll2) {
2584 rc = ecore_ll2_alloc(p_hwfn);
2585 if (rc)
2586 goto alloc_err;
2587 }
2588 #endif
2589 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
2590 rc = ecore_fcoe_alloc(p_hwfn);
2591 if (rc)
2592 goto alloc_err;
2593 }
2594
2595 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2596 rc = ecore_iscsi_alloc(p_hwfn);
2597 if (rc)
2598 goto alloc_err;
2599
2600 rc = ecore_ooo_alloc(p_hwfn);
2601 if (rc)
2602 goto alloc_err;
2603 }
2604 #ifdef CONFIG_ECORE_ROCE
2605 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
2606 rc = ecore_rdma_info_alloc(p_hwfn);
2607 if (rc)
2608 goto alloc_err;
2609 }
2610 #endif
2611
2612 /* DMA info initialization */
2613 rc = ecore_dmae_info_alloc(p_hwfn);
2614 if (rc) {
2615 DP_NOTICE(p_hwfn, false,
2616 "Failed to allocate memory for dmae_info structure\n");
2617 goto alloc_err;
2618 }
2619
2620 /* DCBX initialization */
2621 rc = ecore_dcbx_info_alloc(p_hwfn);
2622 if (rc) {
2623 DP_NOTICE(p_hwfn, false,
2624 "Failed to allocate memory for dcbx structure\n");
2625 goto alloc_err;
2626 }
2627 }
2628
2629 rc = ecore_llh_alloc(p_dev);
2630 if (rc != ECORE_SUCCESS) {
2631 DP_NOTICE(p_dev, false,
2632 "Failed to allocate memory for the llh_info structure\n");
2633 goto alloc_err;
2634 }
2635
2636 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
2637 sizeof(*p_dev->reset_stats));
2638 if (!p_dev->reset_stats) {
2639 DP_NOTICE(p_dev, false,
2640 "Failed to allocate reset statistics\n");
2641 goto alloc_no_mem;
2642 }
2643
2644 return ECORE_SUCCESS;
2645
2646 alloc_no_mem:
2647 rc = ECORE_NOMEM;
2648 alloc_err:
2649 ecore_resc_free(p_dev);
2650 return rc;
2651 }
2652
ecore_resc_setup(struct ecore_dev * p_dev)2653 void ecore_resc_setup(struct ecore_dev *p_dev)
2654 {
2655 int i;
2656
2657 if (IS_VF(p_dev)) {
2658 for_each_hwfn(p_dev, i)
2659 ecore_l2_setup(&p_dev->hwfns[i]);
2660 return;
2661 }
2662
2663 for_each_hwfn(p_dev, i) {
2664 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2665
2666 ecore_cxt_mngr_setup(p_hwfn);
2667 ecore_spq_setup(p_hwfn);
2668 ecore_eq_setup(p_hwfn);
2669 ecore_consq_setup(p_hwfn);
2670
2671 /* Read shadow of current MFW mailbox */
2672 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2673 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
2674 p_hwfn->mcp_info->mfw_mb_cur,
2675 p_hwfn->mcp_info->mfw_mb_length);
2676
2677 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2678
2679 ecore_l2_setup(p_hwfn);
2680 ecore_iov_setup(p_hwfn);
2681 #ifdef CONFIG_ECORE_LL2
2682 if (p_hwfn->using_ll2)
2683 ecore_ll2_setup(p_hwfn);
2684 #endif
2685 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
2686 ecore_fcoe_setup(p_hwfn);
2687
2688 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
2689 ecore_iscsi_setup(p_hwfn);
2690 ecore_ooo_setup(p_hwfn);
2691 }
2692 }
2693 }
2694
2695 #define FINAL_CLEANUP_POLL_CNT (100)
2696 #define FINAL_CLEANUP_POLL_TIME (10)
ecore_final_cleanup(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 id,bool is_vf)2697 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
2698 struct ecore_ptt *p_ptt,
2699 u16 id, bool is_vf)
2700 {
2701 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2702 enum _ecore_status_t rc = ECORE_TIMEOUT;
2703
2704 #ifndef ASIC_ONLY
2705 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
2706 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2707 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
2708 return ECORE_SUCCESS;
2709 }
2710 #endif
2711
2712 addr = GTT_BAR0_MAP_REG_USDM_RAM +
2713 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2714
2715 if (is_vf)
2716 id += 0x10;
2717
2718 command |= X_FINAL_CLEANUP_AGG_INT <<
2719 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2720 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2721 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2722 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2723
2724 /* Make sure notification is not set before initiating final cleanup */
2725 if (REG_RD(p_hwfn, addr)) {
2726 DP_NOTICE(p_hwfn, false,
2727 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2728 REG_WR(p_hwfn, addr, 0);
2729 }
2730
2731 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
2732 "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2733 id, command);
2734
2735 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2736
2737 /* Poll until completion */
2738 while (!REG_RD(p_hwfn, addr) && count--)
2739 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
2740
2741 if (REG_RD(p_hwfn, addr))
2742 rc = ECORE_SUCCESS;
2743 else
2744 DP_NOTICE(p_hwfn, true, "Failed to receive FW final cleanup notification\n");
2745
2746 /* Cleanup afterwards */
2747 REG_WR(p_hwfn, addr, 0);
2748
2749 return rc;
2750 }
2751
ecore_calc_hw_mode(struct ecore_hwfn * p_hwfn)2752 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
2753 {
2754 int hw_mode = 0;
2755
2756 if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
2757 hw_mode |= 1 << MODE_BB;
2758 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
2759 hw_mode |= 1 << MODE_K2;
2760 } else if (ECORE_IS_E5(p_hwfn->p_dev)) {
2761 hw_mode |= 1 << MODE_E5;
2762 } else {
2763 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
2764 p_hwfn->p_dev->type);
2765 return ECORE_INVAL;
2766 }
2767
2768 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE*/
2769 switch (p_hwfn->p_dev->num_ports_in_engine) {
2770 case 1:
2771 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2772 break;
2773 case 2:
2774 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2775 break;
2776 case 4:
2777 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2778 break;
2779 default:
2780 DP_NOTICE(p_hwfn, true, "num_ports_in_engine = %d not supported\n",
2781 p_hwfn->p_dev->num_ports_in_engine);
2782 return ECORE_INVAL;
2783 }
2784
2785 if (OSAL_TEST_BIT(ECORE_MF_OVLAN_CLSS,
2786 &p_hwfn->p_dev->mf_bits))
2787 hw_mode |= 1 << MODE_MF_SD;
2788 else
2789 hw_mode |= 1 << MODE_MF_SI;
2790
2791 #ifndef ASIC_ONLY
2792 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2793 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
2794 hw_mode |= 1 << MODE_FPGA;
2795 } else {
2796 if (p_hwfn->p_dev->b_is_emul_full)
2797 hw_mode |= 1 << MODE_EMUL_FULL;
2798 else
2799 hw_mode |= 1 << MODE_EMUL_REDUCED;
2800 }
2801 } else
2802 #endif
2803 hw_mode |= 1 << MODE_ASIC;
2804
2805 if (ECORE_IS_CMT(p_hwfn->p_dev))
2806 hw_mode |= 1 << MODE_100G;
2807
2808 p_hwfn->hw_info.hw_mode = hw_mode;
2809
2810 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
2811 "Configuring function for hw_mode: 0x%08x\n",
2812 p_hwfn->hw_info.hw_mode);
2813
2814 return ECORE_SUCCESS;
2815 }
2816
2817 #ifndef ASIC_ONLY
2818 /* MFW-replacement initializations for non-ASIC */
ecore_hw_init_chip(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2819 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
2820 struct ecore_ptt *p_ptt)
2821 {
2822 struct ecore_dev *p_dev = p_hwfn->p_dev;
2823 u32 pl_hv = 1;
2824 int i;
2825
2826 if (CHIP_REV_IS_EMUL(p_dev)) {
2827 if (ECORE_IS_AH(p_dev))
2828 pl_hv |= 0x600;
2829 else if (ECORE_IS_E5(p_dev))
2830 ECORE_E5_MISSING_CODE;
2831 }
2832
2833 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
2834
2835 if (CHIP_REV_IS_EMUL(p_dev) &&
2836 (ECORE_IS_AH(p_dev) || ECORE_IS_E5(p_dev)))
2837 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2_K2_E5,
2838 0x3ffffff);
2839
2840 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
2841 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
2842 if (!CHIP_REV_IS_EMUL(p_dev) || ECORE_IS_BB(p_dev))
2843 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB, 4);
2844
2845 if (CHIP_REV_IS_EMUL(p_dev)) {
2846 if (ECORE_IS_AH(p_dev)) {
2847 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
2848 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
2849 (p_dev->num_ports_in_engine >> 1));
2850
2851 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
2852 p_dev->num_ports_in_engine == 4 ? 0 : 3);
2853 } else if (ECORE_IS_E5(p_dev)) {
2854 ECORE_E5_MISSING_CODE;
2855 }
2856
2857 /* Poll on RBC */
2858 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
2859 for (i = 0; i < 100; i++) {
2860 OSAL_UDELAY(50);
2861 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
2862 break;
2863 }
2864 if (i == 100)
2865 DP_NOTICE(p_hwfn, true,
2866 "RBC done failed to complete in PSWRQ2\n");
2867 }
2868
2869 return ECORE_SUCCESS;
2870 }
2871 #endif
2872
2873 /* Init run time data for all PFs and their VFs on an engine.
2874 * TBD - for VFs - Once we have parent PF info for each VF in
2875 * shmem available as CAU requires knowledge of parent PF for each VF.
2876 */
ecore_init_cau_rt_data(struct ecore_dev * p_dev)2877 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
2878 {
2879 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2880 int i, igu_sb_id;
2881
2882 for_each_hwfn(p_dev, i) {
2883 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
2884 struct ecore_igu_info *p_igu_info;
2885 struct ecore_igu_block *p_block;
2886 struct cau_sb_entry sb_entry;
2887
2888 p_igu_info = p_hwfn->hw_info.p_igu_info;
2889
2890 for (igu_sb_id = 0;
2891 igu_sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
2892 igu_sb_id++) {
2893 p_block = &p_igu_info->entry[igu_sb_id];
2894
2895 if (!p_block->is_pf)
2896 continue;
2897
2898 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
2899 p_block->function_id,
2900 0, 0);
2901 STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2902 sb_entry);
2903 }
2904 }
2905 }
2906
ecore_init_cache_line_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)2907 static void ecore_init_cache_line_size(struct ecore_hwfn *p_hwfn,
2908 struct ecore_ptt *p_ptt)
2909 {
2910 u32 val, wr_mbs, cache_line_size;
2911
2912 val = ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2913 switch (val) {
2914 case 0:
2915 wr_mbs = 128;
2916 break;
2917 case 1:
2918 wr_mbs = 256;
2919 break;
2920 case 2:
2921 wr_mbs = 512;
2922 break;
2923 default:
2924 DP_INFO(p_hwfn,
2925 "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2926 val);
2927 return;
2928 }
2929
2930 cache_line_size = OSAL_MIN_T(u32, OSAL_CACHE_LINE_SIZE, wr_mbs);
2931 switch (cache_line_size) {
2932 case 32:
2933 val = 0;
2934 break;
2935 case 64:
2936 val = 1;
2937 break;
2938 case 128:
2939 val = 2;
2940 break;
2941 case 256:
2942 val = 3;
2943 break;
2944 default:
2945 DP_INFO(p_hwfn,
2946 "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2947 cache_line_size);
2948 }
2949
2950 if (OSAL_CACHE_LINE_SIZE > wr_mbs)
2951 DP_INFO(p_hwfn,
2952 "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2953 OSAL_CACHE_LINE_SIZE, wr_mbs);
2954
2955 STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2956 if (val > 0) {
2957 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2958 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2959 }
2960 }
2961
ecore_hw_init_common(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode)2962 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
2963 struct ecore_ptt *p_ptt,
2964 int hw_mode)
2965 {
2966 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
2967 struct ecore_dev *p_dev = p_hwfn->p_dev;
2968 u8 vf_id, max_num_vfs;
2969 u16 num_pfs, pf_id;
2970 u32 concrete_fid;
2971 enum _ecore_status_t rc = ECORE_SUCCESS;
2972
2973 ecore_init_cau_rt_data(p_dev);
2974
2975 /* Program GTT windows */
2976 ecore_gtt_init(p_hwfn, p_ptt);
2977
2978 #ifndef ASIC_ONLY
2979 if (CHIP_REV_IS_EMUL(p_dev)) {
2980 rc = ecore_hw_init_chip(p_hwfn, p_ptt);
2981 if (rc != ECORE_SUCCESS)
2982 return rc;
2983 }
2984 #endif
2985
2986 if (p_hwfn->mcp_info) {
2987 if (p_hwfn->mcp_info->func_info.bandwidth_max)
2988 qm_info->pf_rl_en = 1;
2989 if (p_hwfn->mcp_info->func_info.bandwidth_min)
2990 qm_info->pf_wfq_en = 1;
2991 }
2992
2993 ecore_qm_common_rt_init(p_hwfn,
2994 p_dev->num_ports_in_engine,
2995 qm_info->max_phys_tcs_per_port,
2996 qm_info->pf_rl_en, qm_info->pf_wfq_en,
2997 qm_info->vport_rl_en, qm_info->vport_wfq_en,
2998 qm_info->qm_port_params);
2999
3000 ecore_cxt_hw_init_common(p_hwfn);
3001
3002 ecore_init_cache_line_size(p_hwfn, p_ptt);
3003
3004 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ECORE_PATH_ID(p_hwfn),
3005 hw_mode);
3006 if (rc != ECORE_SUCCESS)
3007 return rc;
3008
3009 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
3010 * need to decide with which value, maybe runtime
3011 */
3012 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
3013 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
3014
3015 if (ECORE_IS_BB(p_dev)) {
3016 /* Workaround clears ROCE search for all functions to prevent
3017 * involving non initialized function in processing ROCE packet.
3018 */
3019 num_pfs = NUM_OF_ENG_PFS(p_dev);
3020 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
3021 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
3022 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3023 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3024 }
3025 /* pretend to original PF */
3026 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3027 }
3028
3029 /* Workaround for avoiding CCFC execution error when getting packets
3030 * with CRC errors, and allowing instead the invoking of the FW error
3031 * handler.
3032 * This is not done inside the init tool since it currently can't
3033 * perform a pretending to VFs.
3034 */
3035 max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
3036 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
3037 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
3038 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
3039 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
3040 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
3041 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
3042 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
3043 }
3044 /* pretend to original PF */
3045 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
3046
3047 return rc;
3048 }
3049
3050 #ifndef ASIC_ONLY
3051 #define MISC_REG_RESET_REG_2_XMAC_BIT (1<<4)
3052 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1<<5)
3053
3054 #define PMEG_IF_BYTE_COUNT 8
3055
ecore_wr_nw_port(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u64 data,u8 reg_type,u8 port)3056 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
3057 struct ecore_ptt *p_ptt,
3058 u32 addr,
3059 u64 data,
3060 u8 reg_type,
3061 u8 port)
3062 {
3063 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3064 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
3065 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) |
3066 (8 << PMEG_IF_BYTE_COUNT),
3067 (reg_type << 25) | (addr << 8) | port,
3068 (u32)((data >> 32) & 0xffffffff),
3069 (u32)(data & 0xffffffff));
3070
3071 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB,
3072 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB) &
3073 0xffff00fe) |
3074 (8 << PMEG_IF_BYTE_COUNT));
3075 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB,
3076 (reg_type << 25) | (addr << 8) | port);
3077 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB, data & 0xffffffff);
3078 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB,
3079 (data >> 32) & 0xffffffff);
3080 }
3081
3082 #define XLPORT_MODE_REG (0x20a)
3083 #define XLPORT_MAC_CONTROL (0x210)
3084 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
3085 #define XLPORT_ENABLE_REG (0x20b)
3086
3087 #define XLMAC_CTRL (0x600)
3088 #define XLMAC_MODE (0x601)
3089 #define XLMAC_RX_MAX_SIZE (0x608)
3090 #define XLMAC_TX_CTRL (0x604)
3091 #define XLMAC_PAUSE_CTRL (0x60d)
3092 #define XLMAC_PFC_CTRL (0x60e)
3093
ecore_emul_link_init_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3094 static void ecore_emul_link_init_bb(struct ecore_hwfn *p_hwfn,
3095 struct ecore_ptt *p_ptt)
3096 {
3097 u8 loopback = 0, port = p_hwfn->port_id * 2;
3098
3099 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3100
3101 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG,
3102 (0x4 << 4) | 0x4, 1, port); /* XLPORT MAC MODE */ /* 0 Quad, 4 Single... */
3103 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
3104 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
3105 0x40, 0, port); /*XLMAC: SOFT RESET */
3106 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE,
3107 0x40, 0, port); /*XLMAC: Port Speed >= 10Gbps */
3108 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE,
3109 0x3fff, 0, port); /* XLMAC: Max Size */
3110 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
3111 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
3112 0, port);
3113 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL,
3114 0x7c000, 0, port);
3115 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
3116 0x30ffffc000ULL, 0, port);
3117 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2),
3118 0, port); /* XLMAC: TX_EN, RX_EN */
3119 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x1003 | (loopback << 2),
3120 0, port); /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
3121 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG,
3122 1, 0, port); /* Enabled Parallel PFC interface */
3123 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG,
3124 0xf, 1, port); /* XLPORT port enable */
3125 }
3126
ecore_emul_link_init_ah_e5(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3127 static void ecore_emul_link_init_ah_e5(struct ecore_hwfn *p_hwfn,
3128 struct ecore_ptt *p_ptt)
3129 {
3130 u8 port = p_hwfn->port_id;
3131 u32 mac_base = NWM_REG_MAC0_K2_E5 + (port << 2) * NWM_REG_MAC0_SIZE;
3132
3133 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
3134
3135 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2_E5 + (port << 2),
3136 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_K2_E5_SHIFT) |
3137 (port <<
3138 CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_K2_E5_SHIFT) |
3139 (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_K2_E5_SHIFT));
3140
3141 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE_K2_E5,
3142 1 << ETH_MAC_REG_XIF_MODE_XGMII_K2_E5_SHIFT);
3143
3144 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH_K2_E5,
3145 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_K2_E5_SHIFT);
3146
3147 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH_K2_E5,
3148 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_K2_E5_SHIFT);
3149
3150 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS_K2_E5,
3151 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_K2_E5_SHIFT);
3152
3153 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS_K2_E5,
3154 (0xA <<
3155 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_K2_E5_SHIFT) |
3156 (8 <<
3157 ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_K2_E5_SHIFT));
3158
3159 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG_K2_E5,
3160 0xa853);
3161 }
3162
ecore_emul_link_init(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3163 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
3164 struct ecore_ptt *p_ptt)
3165 {
3166 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev))
3167 ecore_emul_link_init_ah_e5(p_hwfn, p_ptt);
3168 else /* BB */
3169 ecore_emul_link_init_bb(p_hwfn, p_ptt);
3170
3171 return;
3172 }
3173
ecore_link_init_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u8 port)3174 static void ecore_link_init_bb(struct ecore_hwfn *p_hwfn,
3175 struct ecore_ptt *p_ptt, u8 port)
3176 {
3177 int port_offset = port ? 0x800 : 0;
3178 u32 xmac_rxctrl = 0;
3179
3180 /* Reset of XMAC */
3181 /* FIXME: move to common start */
3182 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2*sizeof(u32),
3183 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
3184 OSAL_MSLEEP(1);
3185 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3186 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
3187
3188 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE_BB, 1);
3189
3190 /* Set the number of ports on the Warp Core to 10G */
3191 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE_BB, 3);
3192
3193 /* Soft reset of XMAC */
3194 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
3195 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3196 OSAL_MSLEEP(1);
3197 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
3198 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
3199
3200 /* FIXME: move to common end */
3201 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
3202 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE_BB + port_offset, 0x20);
3203
3204 /* Set Max packet size: initialize XMAC block register for port 0 */
3205 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE_BB + port_offset, 0x2710);
3206
3207 /* CRC append for Tx packets: init XMAC block register for port 1 */
3208 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO_BB + port_offset, 0xC800);
3209
3210 /* Enable TX and RX: initialize XMAC block register for port 1 */
3211 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL_BB + port_offset,
3212 XMAC_REG_CTRL_TX_EN_BB | XMAC_REG_CTRL_RX_EN_BB);
3213 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt,
3214 XMAC_REG_RX_CTRL_BB + port_offset);
3215 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE_BB;
3216 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL_BB + port_offset, xmac_rxctrl);
3217 }
3218 #endif
3219
3220 static enum _ecore_status_t
ecore_hw_init_dpi_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 pwm_region_size,u32 n_cpus)3221 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
3222 struct ecore_ptt *p_ptt,
3223 u32 pwm_region_size,
3224 u32 n_cpus)
3225 {
3226 u32 dpi_bit_shift, dpi_count, dpi_page_size;
3227 u32 min_dpis;
3228 u32 n_wids;
3229
3230 /* Calculate DPI size
3231 * ------------------
3232 * The PWM region contains Doorbell Pages. The first is reserverd for
3233 * the kernel for, e.g, L2. The others are free to be used by non-
3234 * trusted applications, typically from user space. Each page, called a
3235 * doorbell page is sectioned into windows that allow doorbells to be
3236 * issued in parallel by the kernel/application. The size of such a
3237 * window (a.k.a. WID) is 1kB.
3238 * Summary:
3239 * 1kB WID x N WIDS = DPI page size
3240 * DPI page size x N DPIs = PWM region size
3241 * Notes:
3242 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
3243 * in order to ensure that two applications won't share the same page.
3244 * It also must contain at least one WID per CPU to allow parallelism.
3245 * It also must be a power of 2, since it is stored as a bit shift.
3246 *
3247 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
3248 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
3249 * containing 4 WIDs.
3250 */
3251 n_wids = OSAL_MAX_T(u32, ECORE_MIN_WIDS, n_cpus);
3252 dpi_page_size = ECORE_WID_SIZE * OSAL_ROUNDUP_POW_OF_TWO(n_wids);
3253 dpi_page_size = (dpi_page_size + OSAL_PAGE_SIZE - 1) & ~(OSAL_PAGE_SIZE - 1);
3254 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
3255 dpi_count = pwm_region_size / dpi_page_size;
3256
3257 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
3258 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
3259
3260 /* Update hwfn */
3261 p_hwfn->dpi_size = dpi_page_size;
3262 p_hwfn->dpi_count = dpi_count;
3263
3264 /* Update registers */
3265 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
3266
3267 if (dpi_count < min_dpis)
3268 return ECORE_NORESOURCES;
3269
3270 return ECORE_SUCCESS;
3271 }
3272
3273 enum ECORE_ROCE_EDPM_MODE {
3274 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
3275 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
3276 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
3277 };
3278
3279 static enum _ecore_status_t
ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3280 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
3281 struct ecore_ptt *p_ptt)
3282 {
3283 struct ecore_rdma_pf_params *p_rdma_pf_params;
3284 u32 pwm_regsize, norm_regsize;
3285 u32 non_pwm_conn, min_addr_reg1;
3286 u32 db_bar_size, n_cpus = 1;
3287 u32 roce_edpm_mode;
3288 u32 pf_dems_shift;
3289 enum _ecore_status_t rc = ECORE_SUCCESS;
3290 u8 cond;
3291
3292 db_bar_size = ecore_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
3293 if (ECORE_IS_CMT(p_hwfn->p_dev))
3294 db_bar_size /= 2;
3295
3296 /* Calculate doorbell regions
3297 * -----------------------------------
3298 * The doorbell BAR is made of two regions. The first is called normal
3299 * region and the second is called PWM region. In the normal region
3300 * each ICID has its own set of addresses so that writing to that
3301 * specific address identifies the ICID. In the Process Window Mode
3302 * region the ICID is given in the data written to the doorbell. The
3303 * above per PF register denotes the offset in the doorbell BAR in which
3304 * the PWM region begins.
3305 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
3306 * non-PWM connection. The calculation below computes the total non-PWM
3307 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
3308 * in units of 4,096 bytes.
3309 */
3310 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
3311 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
3312 OSAL_NULL) +
3313 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
3314 OSAL_NULL);
3315 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, OSAL_PAGE_SIZE);
3316 min_addr_reg1 = norm_regsize / 4096;
3317 pwm_regsize = db_bar_size - norm_regsize;
3318
3319 /* Check that the normal and PWM sizes are valid */
3320 if (db_bar_size < norm_regsize) {
3321 DP_ERR(p_hwfn->p_dev,
3322 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
3323 db_bar_size, norm_regsize);
3324 return ECORE_NORESOURCES;
3325 }
3326 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
3327 DP_ERR(p_hwfn->p_dev,
3328 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
3329 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
3330 norm_regsize);
3331 return ECORE_NORESOURCES;
3332 }
3333
3334 p_rdma_pf_params = &p_hwfn->pf_params.rdma_pf_params;
3335
3336 /* Calculate number of DPIs */
3337 if (ECORE_IS_IWARP_PERSONALITY(p_hwfn))
3338 p_rdma_pf_params->roce_edpm_mode = ECORE_ROCE_EDPM_MODE_DISABLE;
3339
3340 if (p_rdma_pf_params->roce_edpm_mode <= ECORE_ROCE_EDPM_MODE_DISABLE) {
3341 roce_edpm_mode = p_rdma_pf_params->roce_edpm_mode;
3342 } else {
3343 DP_ERR(p_hwfn->p_dev,
3344 "roce edpm mode was configured to an illegal value of %u. Resetting it to 0-Enable EDPM if BAR size is adequate\n",
3345 p_rdma_pf_params->roce_edpm_mode);
3346 roce_edpm_mode = 0;
3347 }
3348
3349 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
3350 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
3351 /* Either EDPM is mandatory, or we are attempting to allocate a
3352 * WID per CPU.
3353 */
3354 n_cpus = OSAL_NUM_CPUS();
3355 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3356 }
3357
3358 cond = ((rc != ECORE_SUCCESS) &&
3359 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
3360 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
3361 if (cond || p_hwfn->dcbx_no_edpm) {
3362 /* Either EDPM is disabled from user configuration, or it is
3363 * disabled via DCBx, or it is not mandatory and we failed to
3364 * allocated a WID per CPU.
3365 */
3366 n_cpus = 1;
3367 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
3368
3369 #ifdef CONFIG_ECORE_ROCE
3370 /* If we entered this flow due to DCBX then the DPM register is
3371 * already configured.
3372 */
3373 if (cond)
3374 ecore_rdma_dpm_bar(p_hwfn, p_ptt);
3375 #endif
3376 }
3377
3378 p_hwfn->wid_count = (u16)n_cpus;
3379
3380 /* Check return codes from above calls */
3381 if (rc != ECORE_SUCCESS) {
3382 #ifndef LINUX_REMOVE
3383 DP_ERR(p_hwfn,
3384 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via user configuration min_dpis or by disabling EDPM via user configuration roce_edpm_mode\n",
3385 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3386 ECORE_MIN_DPIS);
3387 #else
3388 DP_ERR(p_hwfn,
3389 "Failed to allocate enough DPIs. Allocated %d but the current minimum is set to %d. You can reduce this minimum down to %d via the module parameter min_rdma_dpis or by disabling EDPM by setting the module parameter roce_edpm to 2\n",
3390 p_hwfn->dpi_count, p_rdma_pf_params->min_dpis,
3391 ECORE_MIN_DPIS);
3392 #endif
3393 DP_ERR(p_hwfn,
3394 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3395 norm_regsize, pwm_regsize, p_hwfn->dpi_size,
3396 p_hwfn->dpi_count,
3397 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3398 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3399
3400 return ECORE_NORESOURCES;
3401 }
3402
3403 DP_INFO(p_hwfn,
3404 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
3405 norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count,
3406 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
3407 "disabled" : "enabled", (unsigned long)OSAL_PAGE_SIZE);
3408
3409 /* Update hwfn */
3410 p_hwfn->dpi_start_offset = norm_regsize; /* this is later used to
3411 * calculate the doorbell
3412 * address
3413 */
3414
3415 /* Update registers */
3416 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
3417 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
3418 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
3419 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
3420
3421 return ECORE_SUCCESS;
3422 }
3423
ecore_hw_init_port(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode)3424 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
3425 struct ecore_ptt *p_ptt,
3426 int hw_mode)
3427 {
3428 enum _ecore_status_t rc = ECORE_SUCCESS;
3429
3430 /* In CMT the gate should be cleared by the 2nd hwfn */
3431 if (!ECORE_IS_CMT(p_hwfn->p_dev) || !IS_LEAD_HWFN(p_hwfn))
3432 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
3433
3434 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
3435 hw_mode);
3436 if (rc != ECORE_SUCCESS)
3437 return rc;
3438
3439 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
3440
3441 #ifndef ASIC_ONLY
3442 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
3443 return ECORE_SUCCESS;
3444
3445 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
3446 if (ECORE_IS_AH(p_hwfn->p_dev))
3447 return ECORE_SUCCESS;
3448 else if (ECORE_IS_BB(p_hwfn->p_dev))
3449 ecore_link_init_bb(p_hwfn, p_ptt, p_hwfn->port_id);
3450 else /* E5 */
3451 ECORE_E5_MISSING_CODE;
3452 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
3453 if (ECORE_IS_CMT(p_hwfn->p_dev)) {
3454 /* Activate OPTE in CMT */
3455 u32 val;
3456
3457 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
3458 val |= 0x10;
3459 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
3460 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
3461 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
3462 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
3463 ecore_wr(p_hwfn, p_ptt,
3464 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
3465 ecore_wr(p_hwfn, p_ptt,
3466 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
3467 ecore_wr(p_hwfn, p_ptt,
3468 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
3469 0x55555555);
3470 }
3471
3472 ecore_emul_link_init(p_hwfn, p_ptt);
3473 } else {
3474 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
3475 }
3476 #endif
3477
3478 return rc;
3479 }
3480
3481 static enum _ecore_status_t
ecore_hw_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,int hw_mode,struct ecore_hw_init_params * p_params)3482 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
3483 int hw_mode, struct ecore_hw_init_params *p_params)
3484 {
3485 u8 rel_pf_id = p_hwfn->rel_pf_id;
3486 u32 prs_reg;
3487 enum _ecore_status_t rc = ECORE_SUCCESS;
3488 u16 ctrl;
3489 int pos;
3490
3491 if (p_hwfn->mcp_info) {
3492 struct ecore_mcp_function_info *p_info;
3493
3494 p_info = &p_hwfn->mcp_info->func_info;
3495 if (p_info->bandwidth_min)
3496 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
3497
3498 /* Update rate limit once we'll actually have a link */
3499 p_hwfn->qm_info.pf_rl = 100000;
3500 }
3501 ecore_cxt_hw_init_pf(p_hwfn, p_ptt);
3502
3503 ecore_int_igu_init_rt(p_hwfn);
3504
3505 /* Set VLAN in NIG if needed */
3506 if (hw_mode & (1 << MODE_MF_SD)) {
3507 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
3508 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
3509 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
3510 p_hwfn->hw_info.ovlan);
3511
3512 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3513 "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
3514 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
3515 1);
3516 }
3517
3518 /* Enable classification by MAC if needed */
3519 if (hw_mode & (1 << MODE_MF_SI)) {
3520 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n");
3521 STORE_RT_REG(p_hwfn,
3522 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
3523 }
3524
3525 /* Protocl Configuration - @@@TBD - should we set 0 otherwise?*/
3526 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
3527 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
3528 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
3529 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
3530 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
3531
3532 /* perform debug configuration when chip is out of reset */
3533 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
3534
3535 /* Sanity check before the PF init sequence that uses DMAE */
3536 rc = ecore_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
3537 if (rc)
3538 return rc;
3539
3540 /* PF Init sequence */
3541 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
3542 if (rc)
3543 return rc;
3544
3545 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
3546 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
3547 if (rc)
3548 return rc;
3549
3550 /* Pure runtime initializations - directly to the HW */
3551 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
3552
3553 /* PCI relaxed ordering is generally beneficial for performance,
3554 * but can hurt performance or lead to instability on some setups.
3555 * If management FW is taking care of it go with that, otherwise
3556 * disable to be on the safe side.
3557 */
3558 pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
3559 if (!pos) {
3560 DP_NOTICE(p_hwfn, true,
3561 "Failed to find the PCI Express Capability structure in the PCI config space\n");
3562 return ECORE_IO;
3563 }
3564
3565 OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
3566
3567 if (p_params->pci_rlx_odr_mode == ECORE_ENABLE_RLX_ODR) {
3568 ctrl |= PCI_EXP_DEVCTL_RELAX_EN;
3569 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3570 pos + PCI_EXP_DEVCTL, ctrl);
3571 } else if (p_params->pci_rlx_odr_mode == ECORE_DISABLE_RLX_ODR) {
3572 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3573 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3574 pos + PCI_EXP_DEVCTL, ctrl);
3575 } else if (ecore_mcp_rlx_odr_supported(p_hwfn)) {
3576 DP_INFO(p_hwfn, "PCI relax ordering configured by MFW\n");
3577 } else {
3578 ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
3579 OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev,
3580 pos + PCI_EXP_DEVCTL, ctrl);
3581 }
3582
3583 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
3584 if (rc != ECORE_SUCCESS)
3585 return rc;
3586
3587 /* Use the leading hwfn since in CMT only NIG #0 is operational */
3588 if (IS_LEAD_HWFN(p_hwfn)) {
3589 rc = ecore_llh_hw_init_pf(p_hwfn, p_ptt,
3590 p_params->avoid_eng_affin);
3591 if (rc != ECORE_SUCCESS)
3592 return rc;
3593 }
3594
3595 if (p_params->b_hw_start) {
3596 /* enable interrupts */
3597 rc = ecore_int_igu_enable(p_hwfn, p_ptt, p_params->int_mode);
3598 if (rc != ECORE_SUCCESS)
3599 return rc;
3600
3601 /* send function start command */
3602 rc = ecore_sp_pf_start(p_hwfn, p_ptt, p_params->p_tunn,
3603 p_params->allow_npar_tx_switch);
3604 if (rc) {
3605 DP_NOTICE(p_hwfn, true, "Function start ramrod failed\n");
3606 return rc;
3607 }
3608 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3609 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3610 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3611
3612 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
3613 {
3614 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
3615 (1 << 2));
3616 ecore_wr(p_hwfn, p_ptt,
3617 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
3618 0x100);
3619 }
3620 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3621 "PRS_REG_SEARCH registers after start PFn\n");
3622 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
3623 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3624 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
3625 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
3626 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3627 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
3628 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
3629 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3630 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
3631 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
3632 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3633 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
3634 prs_reg = ecore_rd(p_hwfn, p_ptt,
3635 PRS_REG_SEARCH_TCP_FIRST_FRAG);
3636 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3637 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
3638 prs_reg);
3639 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
3640 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
3641 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
3642 }
3643 return ECORE_SUCCESS;
3644 }
3645
ecore_pglueb_set_pfid_enable(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool b_enable)3646 enum _ecore_status_t ecore_pglueb_set_pfid_enable(struct ecore_hwfn *p_hwfn,
3647 struct ecore_ptt *p_ptt,
3648 bool b_enable)
3649 {
3650 u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
3651
3652 /* Configure the PF's internal FID_enable for master transactions */
3653 ecore_wr(p_hwfn, p_ptt,
3654 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
3655
3656 /* Wait until value is set - try for 1 second every 50us */
3657 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
3658 val = ecore_rd(p_hwfn, p_ptt,
3659 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
3660 if (val == set_val)
3661 break;
3662
3663 OSAL_UDELAY(50);
3664 }
3665
3666 if (val != set_val) {
3667 DP_NOTICE(p_hwfn, true,
3668 "PFID_ENABLE_MASTER wasn't changed after a second\n");
3669 return ECORE_UNKNOWN_ERROR;
3670 }
3671
3672 return ECORE_SUCCESS;
3673 }
3674
ecore_reset_mb_shadow(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_main_ptt)3675 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
3676 struct ecore_ptt *p_main_ptt)
3677 {
3678 /* Read shadow of current MFW mailbox */
3679 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
3680 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
3681 p_hwfn->mcp_info->mfw_mb_cur,
3682 p_hwfn->mcp_info->mfw_mb_length);
3683 }
3684
3685 static enum _ecore_status_t
ecore_fill_load_req_params(struct ecore_hwfn * p_hwfn,struct ecore_load_req_params * p_load_req,struct ecore_drv_load_params * p_drv_load)3686 ecore_fill_load_req_params(struct ecore_hwfn *p_hwfn,
3687 struct ecore_load_req_params *p_load_req,
3688 struct ecore_drv_load_params *p_drv_load)
3689 {
3690 /* Make sure that if ecore-client didn't provide inputs, all the
3691 * expected defaults are indeed zero.
3692 */
3693 OSAL_BUILD_BUG_ON(ECORE_DRV_ROLE_OS != 0);
3694 OSAL_BUILD_BUG_ON(ECORE_LOAD_REQ_LOCK_TO_DEFAULT != 0);
3695 OSAL_BUILD_BUG_ON(ECORE_OVERRIDE_FORCE_LOAD_NONE != 0);
3696
3697 OSAL_MEM_ZERO(p_load_req, sizeof(*p_load_req));
3698
3699 if (p_drv_load == OSAL_NULL)
3700 goto out;
3701
3702 p_load_req->drv_role = p_drv_load->is_crash_kernel ?
3703 ECORE_DRV_ROLE_KDUMP :
3704 ECORE_DRV_ROLE_OS;
3705 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
3706 p_load_req->override_force_load = p_drv_load->override_force_load;
3707
3708 /* Old MFW versions don't support timeout values other than default and
3709 * none, so these values are replaced according to the fall-back action.
3710 */
3711
3712 if (p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT ||
3713 p_drv_load->mfw_timeout_val == ECORE_LOAD_REQ_LOCK_TO_NONE ||
3714 (p_hwfn->mcp_info->capabilities &
3715 FW_MB_PARAM_FEATURE_SUPPORT_DRV_LOAD_TO)) {
3716 p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
3717 goto out;
3718 }
3719
3720 switch (p_drv_load->mfw_timeout_fallback) {
3721 case ECORE_TO_FALLBACK_TO_NONE:
3722 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_NONE;
3723 break;
3724 case ECORE_TO_FALLBACK_TO_DEFAULT:
3725 p_load_req->timeout_val = ECORE_LOAD_REQ_LOCK_TO_DEFAULT;
3726 break;
3727 case ECORE_TO_FALLBACK_FAIL_LOAD:
3728 DP_NOTICE(p_hwfn, false,
3729 "Received %d as a value for MFW timeout while the MFW supports only default [%d] or none [%d]. Abort.\n",
3730 p_drv_load->mfw_timeout_val,
3731 ECORE_LOAD_REQ_LOCK_TO_DEFAULT,
3732 ECORE_LOAD_REQ_LOCK_TO_NONE);
3733 return ECORE_ABORTED;
3734 }
3735
3736 DP_INFO(p_hwfn,
3737 "Modified the MFW timeout value from %d to %s [%d] due to lack of MFW support\n",
3738 p_drv_load->mfw_timeout_val,
3739 (p_load_req->timeout_val == ECORE_LOAD_REQ_LOCK_TO_DEFAULT) ?
3740 "default" : "none",
3741 p_load_req->timeout_val);
3742 out:
3743 return ECORE_SUCCESS;
3744 }
3745
ecore_vf_start(struct ecore_hwfn * p_hwfn,struct ecore_hw_init_params * p_params)3746 static enum _ecore_status_t ecore_vf_start(struct ecore_hwfn *p_hwfn,
3747 struct ecore_hw_init_params *p_params)
3748 {
3749 if (p_params->p_tunn) {
3750 ecore_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
3751 ecore_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
3752 }
3753
3754 p_hwfn->b_int_enabled = 1;
3755
3756 return ECORE_SUCCESS;
3757 }
3758
ecore_pglueb_clear_err(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)3759 static void ecore_pglueb_clear_err(struct ecore_hwfn *p_hwfn,
3760 struct ecore_ptt *p_ptt)
3761 {
3762 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3763 1 << p_hwfn->abs_pf_id);
3764 }
3765
ecore_hw_init(struct ecore_dev * p_dev,struct ecore_hw_init_params * p_params)3766 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
3767 struct ecore_hw_init_params *p_params)
3768 {
3769 struct ecore_load_req_params load_req_params;
3770 u32 load_code, resp, param, drv_mb_param;
3771 bool b_default_mtu = true;
3772 struct ecore_hwfn *p_hwfn;
3773 enum _ecore_status_t rc = ECORE_SUCCESS, cancel_load;
3774 u16 ether_type;
3775 int i;
3776
3777 if ((p_params->int_mode == ECORE_INT_MODE_MSI) && ECORE_IS_CMT(p_dev)) {
3778 DP_NOTICE(p_dev, false,
3779 "MSI mode is not supported for CMT devices\n");
3780 return ECORE_INVAL;
3781 }
3782
3783 if (IS_PF(p_dev)) {
3784 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
3785 if (rc != ECORE_SUCCESS)
3786 return rc;
3787 }
3788
3789 for_each_hwfn(p_dev, i) {
3790 p_hwfn = &p_dev->hwfns[i];
3791
3792 /* If management didn't provide a default, set one of our own */
3793 if (!p_hwfn->hw_info.mtu) {
3794 p_hwfn->hw_info.mtu = 1500;
3795 b_default_mtu = false;
3796 }
3797
3798 if (IS_VF(p_dev)) {
3799 ecore_vf_start(p_hwfn, p_params);
3800 continue;
3801 }
3802
3803 rc = ecore_calc_hw_mode(p_hwfn);
3804 if (rc != ECORE_SUCCESS)
3805 return rc;
3806
3807 if (IS_PF(p_dev) && (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3808 &p_dev->mf_bits) ||
3809 OSAL_TEST_BIT(ECORE_MF_8021AD_TAGGING,
3810 &p_dev->mf_bits))) {
3811 if (OSAL_TEST_BIT(ECORE_MF_8021Q_TAGGING,
3812 &p_dev->mf_bits))
3813 ether_type = ETH_P_8021Q;
3814 else
3815 ether_type = ETH_P_8021AD;
3816 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3817 ether_type);
3818 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3819 ether_type);
3820 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3821 ether_type);
3822 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3823 ether_type);
3824 }
3825
3826 rc = ecore_fill_load_req_params(p_hwfn, &load_req_params,
3827 p_params->p_drv_load_params);
3828 if (rc != ECORE_SUCCESS)
3829 return rc;
3830
3831 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3832 &load_req_params);
3833 if (rc != ECORE_SUCCESS) {
3834 DP_NOTICE(p_hwfn, false,
3835 "Failed sending a LOAD_REQ command\n");
3836 return rc;
3837 }
3838
3839 load_code = load_req_params.load_code;
3840 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
3841 "Load request was sent. Load code: 0x%x\n",
3842 load_code);
3843
3844 ecore_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3845
3846 /* CQ75580:
3847 * When coming back from hibernate state, the registers from
3848 * which shadow is read initially are not initialized. It turns
3849 * out that these registers get initialized during the call to
3850 * ecore_mcp_load_req request. So we need to reread them here
3851 * to get the proper shadow register value.
3852 * Note: This is a workaround for the missing MFW
3853 * initialization. It may be removed once the implementation
3854 * is done.
3855 */
3856 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3857
3858 /* Only relevant for recovery:
3859 * Clear the indication after the LOAD_REQ command is responded
3860 * by the MFW.
3861 */
3862 p_dev->recov_in_prog = false;
3863
3864 if (!qm_lock_ref_cnt) {
3865 #ifdef CONFIG_ECORE_LOCK_ALLOC
3866 rc = OSAL_SPIN_LOCK_ALLOC(p_hwfn, &qm_lock);
3867 if (rc) {
3868 DP_ERR(p_hwfn, "qm_lock allocation failed\n");
3869 goto qm_lock_fail;
3870 }
3871 #endif
3872 OSAL_SPIN_LOCK_INIT(&qm_lock);
3873 }
3874 ++qm_lock_ref_cnt;
3875
3876 /* Clean up chip from previous driver if such remains exist.
3877 * This is not needed when the PF is the first one on the
3878 * engine, since afterwards we are going to init the FW.
3879 */
3880 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3881 rc = ecore_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3882 p_hwfn->rel_pf_id, false);
3883 if (rc != ECORE_SUCCESS) {
3884 ecore_hw_err_notify(p_hwfn,
3885 ECORE_HW_ERR_RAMROD_FAIL);
3886 goto load_err;
3887 }
3888 }
3889
3890 /* Log and clear previous pglue_b errors if such exist */
3891 ecore_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3892
3893 /* Enable the PF's internal FID_enable in the PXP */
3894 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3895 true);
3896 if (rc != ECORE_SUCCESS)
3897 goto load_err;
3898
3899 /* Clear the pglue_b was_error indication.
3900 * In E4 it must be done after the BME and the internal
3901 * FID_enable for the PF are set, since VDMs may cause the
3902 * indication to be set again.
3903 */
3904 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3905
3906 switch (load_code) {
3907 case FW_MSG_CODE_DRV_LOAD_ENGINE:
3908 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3909 p_hwfn->hw_info.hw_mode);
3910 if (rc != ECORE_SUCCESS)
3911 break;
3912 /* Fall into */
3913 case FW_MSG_CODE_DRV_LOAD_PORT:
3914 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3915 p_hwfn->hw_info.hw_mode);
3916 if (rc != ECORE_SUCCESS)
3917 break;
3918 /* Fall into */
3919 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3920 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3921 p_hwfn->hw_info.hw_mode,
3922 p_params);
3923 break;
3924 default:
3925 DP_NOTICE(p_hwfn, false,
3926 "Unexpected load code [0x%08x]", load_code);
3927 rc = ECORE_NOTIMPL;
3928 break;
3929 }
3930
3931 if (rc != ECORE_SUCCESS) {
3932 DP_NOTICE(p_hwfn, false,
3933 "init phase failed for loadcode 0x%x (rc %d)\n",
3934 load_code, rc);
3935 goto load_err;
3936 }
3937
3938 rc = ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3939 if (rc != ECORE_SUCCESS) {
3940 DP_NOTICE(p_hwfn, false, "Sending load done failed, rc = %d\n", rc);
3941 if (rc == ECORE_NOMEM) {
3942 DP_NOTICE(p_hwfn, false,
3943 "Sending load done was failed due to memory allocation failure\n");
3944 goto load_err;
3945 }
3946 return rc;
3947 }
3948
3949 /* send DCBX attention request command */
3950 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
3951 "sending phony dcbx set command to trigger DCBx attention handling\n");
3952 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3953 DRV_MSG_CODE_SET_DCBX,
3954 1 << DRV_MB_PARAM_DCBX_NOTIFY_OFFSET, &resp,
3955 ¶m);
3956 if (rc != ECORE_SUCCESS) {
3957 DP_NOTICE(p_hwfn, false,
3958 "Failed to send DCBX attention request\n");
3959 return rc;
3960 }
3961
3962 p_hwfn->hw_init_done = true;
3963 }
3964
3965 if (IS_PF(p_dev)) {
3966 /* Get pre-negotiated values for stag, bandwidth etc. */
3967 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3968 DP_VERBOSE(p_hwfn, ECORE_MSG_SPQ,
3969 "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3970 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3971 DRV_MSG_CODE_GET_OEM_UPDATES,
3972 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET,
3973 &resp, ¶m);
3974 if (rc != ECORE_SUCCESS)
3975 DP_NOTICE(p_hwfn, false,
3976 "Failed to send GET_OEM_UPDATES attention request\n");
3977 }
3978
3979 if (IS_PF(p_dev)) {
3980 p_hwfn = ECORE_LEADING_HWFN(p_dev);
3981 drv_mb_param = STORM_FW_VERSION;
3982 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3983 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3984 drv_mb_param, &resp, ¶m);
3985 if (rc != ECORE_SUCCESS)
3986 DP_INFO(p_hwfn, "Failed to update firmware version\n");
3987
3988 if (!b_default_mtu) {
3989 rc = ecore_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3990 p_hwfn->hw_info.mtu);
3991 if (rc != ECORE_SUCCESS)
3992 DP_INFO(p_hwfn, "Failed to update default mtu\n");
3993 }
3994
3995 rc = ecore_mcp_ov_update_driver_state(p_hwfn,
3996 p_hwfn->p_main_ptt,
3997 ECORE_OV_DRIVER_STATE_DISABLED);
3998 if (rc != ECORE_SUCCESS)
3999 DP_INFO(p_hwfn, "Failed to update driver state\n");
4000
4001 rc = ecore_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
4002 ECORE_OV_ESWITCH_VEB);
4003 if (rc != ECORE_SUCCESS)
4004 DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
4005 }
4006
4007 return rc;
4008
4009 load_err:
4010 --qm_lock_ref_cnt;
4011 #ifdef CONFIG_ECORE_LOCK_ALLOC
4012 if (!qm_lock_ref_cnt)
4013 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4014 qm_lock_fail:
4015 #endif
4016 /* The MFW load lock should be released also when initialization fails.
4017 * If supported, use a cancel_load request to update the MFW with the
4018 * load failure.
4019 */
4020 cancel_load = ecore_mcp_cancel_load_req(p_hwfn, p_hwfn->p_main_ptt);
4021 if (cancel_load == ECORE_NOTIMPL) {
4022 DP_INFO(p_hwfn,
4023 "Send a load done request instead of cancel load\n");
4024 ecore_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
4025 }
4026 return rc;
4027 }
4028
4029 #define ECORE_HW_STOP_RETRY_LIMIT (10)
ecore_hw_timers_stop(struct ecore_dev * p_dev,struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4030 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
4031 struct ecore_hwfn *p_hwfn,
4032 struct ecore_ptt *p_ptt)
4033 {
4034 int i;
4035
4036 /* close timers */
4037 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
4038 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
4039 for (i = 0;
4040 i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
4041 i++) {
4042 if ((!ecore_rd(p_hwfn, p_ptt,
4043 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
4044 (!ecore_rd(p_hwfn, p_ptt,
4045 TM_REG_PF_SCAN_ACTIVE_TASK)))
4046 break;
4047
4048 /* Dependent on number of connection/tasks, possibly
4049 * 1ms sleep is required between polls
4050 */
4051 OSAL_MSLEEP(1);
4052 }
4053
4054 if (i < ECORE_HW_STOP_RETRY_LIMIT)
4055 return;
4056
4057 DP_NOTICE(p_hwfn, false,
4058 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
4059 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
4060 (u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
4061 }
4062
ecore_hw_timers_stop_all(struct ecore_dev * p_dev)4063 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
4064 {
4065 int j;
4066
4067 for_each_hwfn(p_dev, j) {
4068 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4069 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
4070
4071 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4072 }
4073 }
4074
ecore_verify_reg_val(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 addr,u32 expected_val)4075 static enum _ecore_status_t ecore_verify_reg_val(struct ecore_hwfn *p_hwfn,
4076 struct ecore_ptt *p_ptt,
4077 u32 addr, u32 expected_val)
4078 {
4079 u32 val = ecore_rd(p_hwfn, p_ptt, addr);
4080
4081 if (val != expected_val) {
4082 DP_NOTICE(p_hwfn, true,
4083 "Value at address 0x%08x is 0x%08x while the expected value is 0x%08x\n",
4084 addr, val, expected_val);
4085 return ECORE_UNKNOWN_ERROR;
4086 }
4087
4088 return ECORE_SUCCESS;
4089 }
4090
ecore_hw_stop(struct ecore_dev * p_dev)4091 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
4092 {
4093 struct ecore_hwfn *p_hwfn;
4094 struct ecore_ptt *p_ptt;
4095 enum _ecore_status_t rc, rc2 = ECORE_SUCCESS;
4096 int j;
4097
4098 for_each_hwfn(p_dev, j) {
4099 p_hwfn = &p_dev->hwfns[j];
4100 p_ptt = p_hwfn->p_main_ptt;
4101
4102 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
4103
4104 if (IS_VF(p_dev)) {
4105 ecore_vf_pf_int_cleanup(p_hwfn);
4106 rc = ecore_vf_pf_reset(p_hwfn);
4107 if (rc != ECORE_SUCCESS) {
4108 DP_NOTICE(p_hwfn, true,
4109 "ecore_vf_pf_reset failed. rc = %d.\n",
4110 rc);
4111 rc2 = ECORE_UNKNOWN_ERROR;
4112 }
4113 continue;
4114 }
4115
4116 /* mark the hw as uninitialized... */
4117 p_hwfn->hw_init_done = false;
4118
4119 /* Send unload command to MCP */
4120 if (!p_dev->recov_in_prog) {
4121 rc = ecore_mcp_unload_req(p_hwfn, p_ptt);
4122 if (rc != ECORE_SUCCESS) {
4123 DP_NOTICE(p_hwfn, false,
4124 "Failed sending a UNLOAD_REQ command. rc = %d.\n",
4125 rc);
4126 rc2 = ECORE_UNKNOWN_ERROR;
4127 }
4128 }
4129
4130 OSAL_DPC_SYNC(p_hwfn);
4131
4132 /* After this point no MFW attentions are expected, e.g. prevent
4133 * race between pf stop and dcbx pf update.
4134 */
4135
4136 rc = ecore_sp_pf_stop(p_hwfn);
4137 if (rc != ECORE_SUCCESS) {
4138 DP_NOTICE(p_hwfn, false,
4139 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
4140 rc);
4141 rc2 = ECORE_UNKNOWN_ERROR;
4142 }
4143
4144 /* perform debug action after PF stop was sent */
4145 OSAL_AFTER_PF_STOP((void *)p_dev, p_hwfn->my_id);
4146
4147 /* close NIG to BRB gate */
4148 ecore_wr(p_hwfn, p_ptt,
4149 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4150
4151 /* close parser */
4152 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4153 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4154 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4155 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4156 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4157
4158 /* @@@TBD - clean transmission queues (5.b) */
4159 /* @@@TBD - clean BTB (5.c) */
4160
4161 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
4162
4163 /* @@@TBD - verify DMAE requests are done (8) */
4164
4165 /* Disable Attention Generation */
4166 ecore_int_igu_disable_int(p_hwfn, p_ptt);
4167 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
4168 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
4169 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
4170 rc = ecore_int_igu_reset_cam_default(p_hwfn, p_ptt);
4171 if (rc != ECORE_SUCCESS) {
4172 DP_NOTICE(p_hwfn, true,
4173 "Failed to return IGU CAM to default\n");
4174 rc2 = ECORE_UNKNOWN_ERROR;
4175 }
4176
4177 /* Need to wait 1ms to guarantee SBs are cleared */
4178 OSAL_MSLEEP(1);
4179
4180 if (!p_dev->recov_in_prog) {
4181 ecore_verify_reg_val(p_hwfn, p_ptt,
4182 QM_REG_USG_CNT_PF_TX, 0);
4183 ecore_verify_reg_val(p_hwfn, p_ptt,
4184 QM_REG_USG_CNT_PF_OTHER, 0);
4185 /* @@@TBD - assert on incorrect xCFC values (10.b) */
4186 }
4187
4188 /* Disable PF in HW blocks */
4189 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
4190 ecore_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
4191
4192 if (IS_LEAD_HWFN(p_hwfn) &&
4193 OSAL_TEST_BIT(ECORE_MF_LLH_MAC_CLSS, &p_dev->mf_bits) &&
4194 !ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4195 ecore_llh_remove_mac_filter(p_dev, 0,
4196 p_hwfn->hw_info.hw_mac_addr);
4197
4198 --qm_lock_ref_cnt;
4199 #ifdef CONFIG_ECORE_LOCK_ALLOC
4200 if (!qm_lock_ref_cnt)
4201 OSAL_SPIN_LOCK_DEALLOC(&qm_lock);
4202 #endif
4203
4204 if (!p_dev->recov_in_prog) {
4205 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4206 if (rc == ECORE_NOMEM) {
4207 DP_NOTICE(p_hwfn, false,
4208 "Failed sending an UNLOAD_DONE command due to a memory allocation failure. Resending.\n");
4209 rc = ecore_mcp_unload_done(p_hwfn, p_ptt);
4210 }
4211 if (rc != ECORE_SUCCESS) {
4212 DP_NOTICE(p_hwfn, false,
4213 "Failed sending a UNLOAD_DONE command. rc = %d.\n",
4214 rc);
4215 rc2 = ECORE_UNKNOWN_ERROR;
4216 }
4217 }
4218 } /* hwfn loop */
4219
4220 if (IS_PF(p_dev) && !p_dev->recov_in_prog) {
4221 p_hwfn = ECORE_LEADING_HWFN(p_dev);
4222 p_ptt = ECORE_LEADING_HWFN(p_dev)->p_main_ptt;
4223
4224 /* Clear the PF's internal FID_enable in the PXP.
4225 * In CMT this should only be done for first hw-function, and
4226 * only after all transactions have stopped for all active
4227 * hw-functions.
4228 */
4229 rc = ecore_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
4230 false);
4231 if (rc != ECORE_SUCCESS) {
4232 DP_NOTICE(p_hwfn, true,
4233 "ecore_pglueb_set_pfid_enable() failed. rc = %d.\n",
4234 rc);
4235 rc2 = ECORE_UNKNOWN_ERROR;
4236 }
4237 }
4238
4239 return rc2;
4240 }
4241
ecore_hw_stop_fastpath(struct ecore_dev * p_dev)4242 enum _ecore_status_t ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
4243 {
4244 int j;
4245
4246 for_each_hwfn(p_dev, j) {
4247 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
4248 struct ecore_ptt *p_ptt;
4249
4250 if (IS_VF(p_dev)) {
4251 ecore_vf_pf_int_cleanup(p_hwfn);
4252 continue;
4253 }
4254 p_ptt = ecore_ptt_acquire(p_hwfn);
4255 if (!p_ptt)
4256 return ECORE_AGAIN;
4257
4258 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Shutting down the fastpath\n");
4259
4260 ecore_wr(p_hwfn, p_ptt,
4261 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
4262
4263 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
4264 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
4265 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
4266 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
4267 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
4268
4269 /* @@@TBD - clean transmission queues (5.b) */
4270 /* @@@TBD - clean BTB (5.c) */
4271
4272 /* @@@TBD - verify DMAE requests are done (8) */
4273
4274 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
4275 /* Need to wait 1ms to guarantee SBs are cleared */
4276 OSAL_MSLEEP(1);
4277 ecore_ptt_release(p_hwfn, p_ptt);
4278 }
4279
4280 return ECORE_SUCCESS;
4281 }
4282
ecore_hw_start_fastpath(struct ecore_hwfn * p_hwfn)4283 enum _ecore_status_t ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
4284 {
4285 struct ecore_ptt *p_ptt;
4286
4287 if (IS_VF(p_hwfn->p_dev))
4288 return ECORE_SUCCESS;
4289
4290 p_ptt = ecore_ptt_acquire(p_hwfn);
4291 if (!p_ptt)
4292 return ECORE_AGAIN;
4293
4294 /* If roce info is allocated it means roce is initialized and should
4295 * be enabled in searcher.
4296 */
4297 if (p_hwfn->p_rdma_info &&
4298 p_hwfn->p_rdma_info->active &&
4299 p_hwfn->b_rdma_enabled_in_prs)
4300 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
4301
4302 /* Re-open incoming traffic */
4303 ecore_wr(p_hwfn, p_ptt,
4304 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
4305 ecore_ptt_release(p_hwfn, p_ptt);
4306
4307 return ECORE_SUCCESS;
4308 }
4309
ecore_set_nwuf_reg(struct ecore_dev * p_dev,u32 reg_idx,u32 pattern_size,u32 crc)4310 enum _ecore_status_t ecore_set_nwuf_reg(struct ecore_dev *p_dev, u32 reg_idx,
4311 u32 pattern_size, u32 crc)
4312 {
4313 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
4314 enum _ecore_status_t rc = ECORE_SUCCESS;
4315 struct ecore_ptt *p_ptt;
4316 u32 reg_len = 0;
4317 u32 reg_crc = 0;
4318
4319 p_ptt = ecore_ptt_acquire(p_hwfn);
4320 if (!p_ptt)
4321 return ECORE_AGAIN;
4322
4323 /* Get length and CRC register offsets */
4324 switch (reg_idx)
4325 {
4326 case 0:
4327 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_LEN_BB :
4328 WOL_REG_ACPI_PAT_0_LEN_K2_E5;
4329 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_0_CRC_BB :
4330 WOL_REG_ACPI_PAT_0_CRC_K2_E5;
4331 break;
4332 case 1:
4333 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_LEN_BB :
4334 WOL_REG_ACPI_PAT_1_LEN_K2_E5;
4335 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_1_CRC_BB :
4336 WOL_REG_ACPI_PAT_1_CRC_K2_E5;
4337 break;
4338 case 2:
4339 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_LEN_BB :
4340 WOL_REG_ACPI_PAT_2_LEN_K2_E5;
4341 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_2_CRC_BB :
4342 WOL_REG_ACPI_PAT_2_CRC_K2_E5;
4343 break;
4344 case 3:
4345 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_LEN_BB :
4346 WOL_REG_ACPI_PAT_3_LEN_K2_E5;
4347 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_3_CRC_BB :
4348 WOL_REG_ACPI_PAT_3_CRC_K2_E5;
4349 break;
4350 case 4:
4351 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_LEN_BB :
4352 WOL_REG_ACPI_PAT_4_LEN_K2_E5;
4353 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_4_CRC_BB :
4354 WOL_REG_ACPI_PAT_4_CRC_K2_E5;
4355 break;
4356 case 5:
4357 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_LEN_BB :
4358 WOL_REG_ACPI_PAT_5_LEN_K2_E5;
4359 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_5_CRC_BB :
4360 WOL_REG_ACPI_PAT_5_CRC_K2_E5;
4361 break;
4362 case 6:
4363 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_LEN_BB :
4364 WOL_REG_ACPI_PAT_6_LEN_K2_E5;
4365 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_6_CRC_BB :
4366 WOL_REG_ACPI_PAT_6_CRC_K2_E5;
4367 break;
4368 case 7:
4369 reg_len = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_LEN_BB :
4370 WOL_REG_ACPI_PAT_7_LEN_K2_E5;
4371 reg_crc = ECORE_IS_BB(p_dev) ? NIG_REG_ACPI_PAT_7_CRC_BB :
4372 WOL_REG_ACPI_PAT_7_CRC_K2_E5;
4373 break;
4374 default:
4375 rc = ECORE_UNKNOWN_ERROR;
4376 goto out;
4377 }
4378
4379 /* Allign pattern size to 4 */
4380 while (pattern_size % 4)
4381 pattern_size++;
4382
4383 /* Write pattern length and crc value */
4384 if (ECORE_IS_BB(p_dev)) {
4385 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4386 if (rc != ECORE_SUCCESS) {
4387 DP_NOTICE(p_hwfn, false,
4388 "Failed to update the ACPI pattern length\n");
4389 return rc;
4390 }
4391
4392 rc = ecore_all_ppfids_wr(p_hwfn, p_ptt, reg_crc, crc);
4393 if (rc != ECORE_SUCCESS) {
4394 DP_NOTICE(p_hwfn, false,
4395 "Failed to update the ACPI pattern crc value\n");
4396 return rc;
4397 }
4398 } else {
4399 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_len, pattern_size);
4400 ecore_mcp_wol_wr(p_hwfn, p_ptt, reg_crc, crc);
4401 }
4402
4403 DP_INFO(p_dev,
4404 "ecore_set_nwuf_reg: idx[%d] reg_crc[0x%x=0x%08x] "
4405 "reg_len[0x%x=0x%x]\n",
4406 reg_idx, reg_crc, crc, reg_len, pattern_size);
4407 out:
4408 ecore_ptt_release(p_hwfn, p_ptt);
4409
4410 return rc;
4411 }
4412
ecore_wol_buffer_clear(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4413 void ecore_wol_buffer_clear(struct ecore_hwfn *p_hwfn,
4414 struct ecore_ptt *p_ptt)
4415 {
4416 const u32 wake_buffer_clear_offset =
4417 ECORE_IS_BB(p_hwfn->p_dev) ?
4418 NIG_REG_WAKE_BUFFER_CLEAR_BB : WOL_REG_WAKE_BUFFER_CLEAR_K2_E5;
4419
4420 DP_INFO(p_hwfn->p_dev,
4421 "ecore_wol_buffer_clear: reset "
4422 "REG_WAKE_BUFFER_CLEAR offset=0x%08x\n",
4423 wake_buffer_clear_offset);
4424
4425 if (ECORE_IS_BB(p_hwfn->p_dev)) {
4426 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4427 ecore_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4428 } else {
4429 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 1);
4430 ecore_mcp_wol_wr(p_hwfn, p_ptt, wake_buffer_clear_offset, 0);
4431 }
4432 }
4433
ecore_get_wake_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_wake_info * wake_info)4434 enum _ecore_status_t ecore_get_wake_info(struct ecore_hwfn *p_hwfn,
4435 struct ecore_ptt *p_ptt,
4436 struct ecore_wake_info *wake_info)
4437 {
4438 struct ecore_dev *p_dev = p_hwfn->p_dev;
4439 u32 *buf = OSAL_NULL;
4440 u32 i = 0;
4441 const u32 reg_wake_buffer_offest =
4442 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_BUFFER_BB :
4443 WOL_REG_WAKE_BUFFER_K2_E5;
4444
4445 wake_info->wk_info = ecore_rd(p_hwfn, p_ptt,
4446 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_INFO_BB :
4447 WOL_REG_WAKE_INFO_K2_E5);
4448 wake_info->wk_details = ecore_rd(p_hwfn, p_ptt,
4449 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_DETAILS_BB :
4450 WOL_REG_WAKE_DETAILS_K2_E5);
4451 wake_info->wk_pkt_len = ecore_rd(p_hwfn, p_ptt,
4452 ECORE_IS_BB(p_dev) ? NIG_REG_WAKE_PKT_LEN_BB :
4453 WOL_REG_WAKE_PKT_LEN_K2_E5);
4454
4455 DP_INFO(p_dev,
4456 "ecore_get_wake_info: REG_WAKE_INFO=0x%08x "
4457 "REG_WAKE_DETAILS=0x%08x "
4458 "REG_WAKE_PKT_LEN=0x%08x\n",
4459 wake_info->wk_info,
4460 wake_info->wk_details,
4461 wake_info->wk_pkt_len);
4462
4463 buf = (u32 *)wake_info->wk_buffer;
4464
4465 for (i = 0; i < (wake_info->wk_pkt_len / sizeof(u32)); i++)
4466 {
4467 if ((i*sizeof(u32)) >= sizeof(wake_info->wk_buffer))
4468 {
4469 DP_INFO(p_dev,
4470 "ecore_get_wake_info: i index to 0 high=%d\n",
4471 i);
4472 break;
4473 }
4474 buf[i] = ecore_rd(p_hwfn, p_ptt,
4475 reg_wake_buffer_offest + (i * sizeof(u32)));
4476 DP_INFO(p_dev, "ecore_get_wake_info: wk_buffer[%u]: 0x%08x\n",
4477 i, buf[i]);
4478 }
4479
4480 ecore_wol_buffer_clear(p_hwfn, p_ptt);
4481
4482 return ECORE_SUCCESS;
4483 }
4484
4485 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
ecore_hw_hwfn_free(struct ecore_hwfn * p_hwfn)4486 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
4487 {
4488 ecore_ptt_pool_free(p_hwfn);
4489 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
4490 p_hwfn->hw_info.p_igu_info = OSAL_NULL;
4491 }
4492
4493 /* Setup bar access */
ecore_hw_hwfn_prepare(struct ecore_hwfn * p_hwfn)4494 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
4495 {
4496 /* clear indirect access */
4497 if (ECORE_IS_AH(p_hwfn->p_dev) || ECORE_IS_E5(p_hwfn->p_dev)) {
4498 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4499 PGLUE_B_REG_PGL_ADDR_E8_F0_K2_E5, 0);
4500 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4501 PGLUE_B_REG_PGL_ADDR_EC_F0_K2_E5, 0);
4502 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4503 PGLUE_B_REG_PGL_ADDR_F0_F0_K2_E5, 0);
4504 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4505 PGLUE_B_REG_PGL_ADDR_F4_F0_K2_E5, 0);
4506 } else {
4507 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4508 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
4509 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4510 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
4511 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4512 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
4513 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4514 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
4515 }
4516
4517 /* Clean previous pglue_b errors if such exist */
4518 ecore_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
4519
4520 /* enable internal target-read */
4521 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
4522 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
4523 }
4524
get_function_id(struct ecore_hwfn * p_hwfn)4525 static void get_function_id(struct ecore_hwfn *p_hwfn)
4526 {
4527 /* ME Register */
4528 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
4529 PXP_PF_ME_OPAQUE_ADDR);
4530
4531 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
4532
4533 /* Bits 16-19 from the ME registers are the pf_num */
4534 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
4535 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4536 PXP_CONCRETE_FID_PFID);
4537 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
4538 PXP_CONCRETE_FID_PORT);
4539
4540 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4541 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
4542 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
4543 }
4544
ecore_hw_set_feat(struct ecore_hwfn * p_hwfn)4545 void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
4546 {
4547 u32 *feat_num = p_hwfn->hw_info.feat_num;
4548 struct ecore_sb_cnt_info sb_cnt;
4549 u32 non_l2_sbs = 0;
4550
4551 OSAL_MEM_ZERO(&sb_cnt, sizeof(sb_cnt));
4552 ecore_int_get_num_sbs(p_hwfn, &sb_cnt);
4553
4554 #ifdef CONFIG_ECORE_ROCE
4555 /* Roce CNQ require each: 1 status block. 1 CNQ, we divide the
4556 * status blocks equally between L2 / RoCE but with consideration as
4557 * to how many l2 queues / cnqs we have
4558 */
4559 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) {
4560 #ifndef __EXTRACT__LINUX__THROW__
4561 u32 max_cnqs;
4562 #endif
4563
4564 feat_num[ECORE_RDMA_CNQ] =
4565 OSAL_MIN_T(u32,
4566 sb_cnt.cnt / 2,
4567 RESC_NUM(p_hwfn, ECORE_RDMA_CNQ_RAM));
4568
4569 #ifndef __EXTRACT__LINUX__THROW__
4570 /* Upper layer might require less */
4571 max_cnqs = (u32)p_hwfn->pf_params.rdma_pf_params.max_cnqs;
4572 if (max_cnqs) {
4573 if (max_cnqs == ECORE_RDMA_PF_PARAMS_CNQS_NONE)
4574 max_cnqs = 0;
4575 feat_num[ECORE_RDMA_CNQ] =
4576 OSAL_MIN_T(u32,
4577 feat_num[ECORE_RDMA_CNQ],
4578 max_cnqs);
4579 }
4580 #endif
4581
4582 non_l2_sbs = feat_num[ECORE_RDMA_CNQ];
4583 }
4584 #endif
4585
4586 /* L2 Queues require each: 1 status block. 1 L2 queue */
4587 if (ECORE_IS_L2_PERSONALITY(p_hwfn)) {
4588 /* Start by allocating VF queues, then PF's */
4589 feat_num[ECORE_VF_L2_QUE] =
4590 OSAL_MIN_T(u32,
4591 RESC_NUM(p_hwfn, ECORE_L2_QUEUE),
4592 sb_cnt.iov_cnt);
4593 feat_num[ECORE_PF_L2_QUE] =
4594 OSAL_MIN_T(u32,
4595 sb_cnt.cnt - non_l2_sbs,
4596 RESC_NUM(p_hwfn, ECORE_L2_QUEUE) -
4597 FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE));
4598 }
4599
4600 if (ECORE_IS_FCOE_PERSONALITY(p_hwfn))
4601 feat_num[ECORE_FCOE_CQ] =
4602 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4603 ECORE_CMDQS_CQS));
4604
4605 if (ECORE_IS_ISCSI_PERSONALITY(p_hwfn))
4606 feat_num[ECORE_ISCSI_CQ] =
4607 OSAL_MIN_T(u32, sb_cnt.cnt, RESC_NUM(p_hwfn,
4608 ECORE_CMDQS_CQS));
4609
4610 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
4611 "#PF_L2_QUEUE=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #FCOE_CQ=%d #ISCSI_CQ=%d #SB=%d\n",
4612 (int)FEAT_NUM(p_hwfn, ECORE_PF_L2_QUE),
4613 (int)FEAT_NUM(p_hwfn, ECORE_VF_L2_QUE),
4614 (int)FEAT_NUM(p_hwfn, ECORE_RDMA_CNQ),
4615 (int)FEAT_NUM(p_hwfn, ECORE_FCOE_CQ),
4616 (int)FEAT_NUM(p_hwfn, ECORE_ISCSI_CQ),
4617 (int)sb_cnt.cnt);
4618 }
4619
ecore_hw_get_resc_name(enum ecore_resources res_id)4620 const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
4621 {
4622 switch (res_id) {
4623 case ECORE_L2_QUEUE:
4624 return "L2_QUEUE";
4625 case ECORE_VPORT:
4626 return "VPORT";
4627 case ECORE_RSS_ENG:
4628 return "RSS_ENG";
4629 case ECORE_PQ:
4630 return "PQ";
4631 case ECORE_RL:
4632 return "RL";
4633 case ECORE_MAC:
4634 return "MAC";
4635 case ECORE_VLAN:
4636 return "VLAN";
4637 case ECORE_RDMA_CNQ_RAM:
4638 return "RDMA_CNQ_RAM";
4639 case ECORE_ILT:
4640 return "ILT";
4641 case ECORE_LL2_QUEUE:
4642 return "LL2_QUEUE";
4643 case ECORE_CMDQS_CQS:
4644 return "CMDQS_CQS";
4645 case ECORE_RDMA_STATS_QUEUE:
4646 return "RDMA_STATS_QUEUE";
4647 case ECORE_BDQ:
4648 return "BDQ";
4649 case ECORE_SB:
4650 return "SB";
4651 default:
4652 return "UNKNOWN_RESOURCE";
4653 }
4654 }
4655
4656 static enum _ecore_status_t
__ecore_hw_set_soft_resc_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_resources res_id,u32 resc_max_val,u32 * p_mcp_resp)4657 __ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4658 struct ecore_ptt *p_ptt,
4659 enum ecore_resources res_id,
4660 u32 resc_max_val,
4661 u32 *p_mcp_resp)
4662 {
4663 enum _ecore_status_t rc;
4664
4665 rc = ecore_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
4666 resc_max_val, p_mcp_resp);
4667 if (rc != ECORE_SUCCESS) {
4668 DP_NOTICE(p_hwfn, false,
4669 "MFW response failure for a max value setting of resource %d [%s]\n",
4670 res_id, ecore_hw_get_resc_name(res_id));
4671 return rc;
4672 }
4673
4674 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
4675 DP_INFO(p_hwfn,
4676 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
4677 res_id, ecore_hw_get_resc_name(res_id), *p_mcp_resp);
4678
4679 return ECORE_SUCCESS;
4680 }
4681
4682 static enum _ecore_status_t
ecore_hw_set_soft_resc_size(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4683 ecore_hw_set_soft_resc_size(struct ecore_hwfn *p_hwfn,
4684 struct ecore_ptt *p_ptt)
4685 {
4686 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4687 u32 resc_max_val, mcp_resp;
4688 u8 res_id;
4689 enum _ecore_status_t rc;
4690
4691 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4692 switch (res_id) {
4693 case ECORE_LL2_QUEUE:
4694 resc_max_val = MAX_NUM_LL2_RX_QUEUES;
4695 break;
4696 case ECORE_RDMA_CNQ_RAM:
4697 /* No need for a case for ECORE_CMDQS_CQS since
4698 * CNQ/CMDQS are the same resource.
4699 */
4700 resc_max_val = NUM_OF_GLOBAL_QUEUES;
4701 break;
4702 case ECORE_RDMA_STATS_QUEUE:
4703 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
4704 : RDMA_NUM_STATISTIC_COUNTERS_BB;
4705 break;
4706 case ECORE_BDQ:
4707 resc_max_val = BDQ_NUM_RESOURCES;
4708 break;
4709 default:
4710 continue;
4711 }
4712
4713 rc = __ecore_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
4714 resc_max_val, &mcp_resp);
4715 if (rc != ECORE_SUCCESS)
4716 return rc;
4717
4718 /* There's no point to continue to the next resource if the
4719 * command is not supported by the MFW.
4720 * We do continue if the command is supported but the resource
4721 * is unknown to the MFW. Such a resource will be later
4722 * configured with the default allocation values.
4723 */
4724 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
4725 return ECORE_NOTIMPL;
4726 }
4727
4728 return ECORE_SUCCESS;
4729 }
4730
4731 static
ecore_hw_get_dflt_resc(struct ecore_hwfn * p_hwfn,enum ecore_resources res_id,u32 * p_resc_num,u32 * p_resc_start)4732 enum _ecore_status_t ecore_hw_get_dflt_resc(struct ecore_hwfn *p_hwfn,
4733 enum ecore_resources res_id,
4734 u32 *p_resc_num, u32 *p_resc_start)
4735 {
4736 u8 num_funcs = p_hwfn->num_funcs_on_engine;
4737 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4738
4739 switch (res_id) {
4740 case ECORE_L2_QUEUE:
4741 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
4742 MAX_NUM_L2_QUEUES_BB) / num_funcs;
4743 break;
4744 case ECORE_VPORT:
4745 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
4746 MAX_NUM_VPORTS_BB) / num_funcs;
4747 break;
4748 case ECORE_RSS_ENG:
4749 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
4750 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
4751 break;
4752 case ECORE_PQ:
4753 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
4754 MAX_QM_TX_QUEUES_BB) / num_funcs;
4755 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
4756 break;
4757 case ECORE_RL:
4758 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
4759 break;
4760 case ECORE_MAC:
4761 case ECORE_VLAN:
4762 /* Each VFC resource can accommodate both a MAC and a VLAN */
4763 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
4764 break;
4765 case ECORE_ILT:
4766 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
4767 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
4768 break;
4769 case ECORE_LL2_QUEUE:
4770 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
4771 break;
4772 case ECORE_RDMA_CNQ_RAM:
4773 case ECORE_CMDQS_CQS:
4774 /* CNQ/CMDQS are the same resource */
4775 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
4776 break;
4777 case ECORE_RDMA_STATS_QUEUE:
4778 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
4779 RDMA_NUM_STATISTIC_COUNTERS_BB) /
4780 num_funcs;
4781 break;
4782 case ECORE_BDQ:
4783 if (p_hwfn->hw_info.personality != ECORE_PCI_ISCSI &&
4784 p_hwfn->hw_info.personality != ECORE_PCI_FCOE)
4785 *p_resc_num = 0;
4786 else
4787 *p_resc_num = 1;
4788 break;
4789 case ECORE_SB:
4790 /* Since we want its value to reflect whether MFW supports
4791 * the new scheme, have a default of 0.
4792 */
4793 *p_resc_num = 0;
4794 break;
4795 default:
4796 return ECORE_INVAL;
4797 }
4798
4799 switch (res_id) {
4800 case ECORE_BDQ:
4801 if (!*p_resc_num)
4802 *p_resc_start = 0;
4803 else if (p_hwfn->p_dev->num_ports_in_engine == 4)
4804 *p_resc_start = p_hwfn->port_id;
4805 else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI)
4806 *p_resc_start = p_hwfn->port_id;
4807 else if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE)
4808 *p_resc_start = p_hwfn->port_id + 2;
4809 break;
4810 default:
4811 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
4812 break;
4813 }
4814
4815 return ECORE_SUCCESS;
4816 }
4817
4818 static enum _ecore_status_t
__ecore_hw_set_resc_info(struct ecore_hwfn * p_hwfn,enum ecore_resources res_id,bool drv_resc_alloc)4819 __ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn, enum ecore_resources res_id,
4820 bool drv_resc_alloc)
4821 {
4822 u32 dflt_resc_num = 0, dflt_resc_start = 0;
4823 u32 mcp_resp, *p_resc_num, *p_resc_start;
4824 enum _ecore_status_t rc;
4825
4826 p_resc_num = &RESC_NUM(p_hwfn, res_id);
4827 p_resc_start = &RESC_START(p_hwfn, res_id);
4828
4829 rc = ecore_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
4830 &dflt_resc_start);
4831 if (rc != ECORE_SUCCESS) {
4832 DP_ERR(p_hwfn,
4833 "Failed to get default amount for resource %d [%s]\n",
4834 res_id, ecore_hw_get_resc_name(res_id));
4835 return rc;
4836 }
4837
4838 #ifndef ASIC_ONLY
4839 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
4840 *p_resc_num = dflt_resc_num;
4841 *p_resc_start = dflt_resc_start;
4842 goto out;
4843 }
4844 #endif
4845
4846 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
4847 &mcp_resp, p_resc_num, p_resc_start);
4848 if (rc != ECORE_SUCCESS) {
4849 DP_NOTICE(p_hwfn, false,
4850 "MFW response failure for an allocation request for resource %d [%s]\n",
4851 res_id, ecore_hw_get_resc_name(res_id));
4852 return rc;
4853 }
4854
4855 /* Default driver values are applied in the following cases:
4856 * - The resource allocation MB command is not supported by the MFW
4857 * - There is an internal error in the MFW while processing the request
4858 * - The resource ID is unknown to the MFW
4859 */
4860 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
4861 DP_INFO(p_hwfn,
4862 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
4863 res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
4864 dflt_resc_num, dflt_resc_start);
4865 *p_resc_num = dflt_resc_num;
4866 *p_resc_start = dflt_resc_start;
4867 goto out;
4868 }
4869
4870 if ((*p_resc_num != dflt_resc_num ||
4871 *p_resc_start != dflt_resc_start) &&
4872 res_id != ECORE_SB) {
4873 DP_INFO(p_hwfn,
4874 "MFW allocation for resource %d [%s] differs from default values [%d,%d vs. %d,%d]%s\n",
4875 res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
4876 *p_resc_start, dflt_resc_num, dflt_resc_start,
4877 drv_resc_alloc ? " - Applying default values" : "");
4878 if (drv_resc_alloc) {
4879 *p_resc_num = dflt_resc_num;
4880 *p_resc_start = dflt_resc_start;
4881 }
4882 }
4883 out:
4884 /* PQs have to divide by 8 [that's the HW granularity].
4885 * Reduce number so it would fit.
4886 */
4887 if ((res_id == ECORE_PQ) &&
4888 ((*p_resc_num % 8) || (*p_resc_start % 8))) {
4889 DP_INFO(p_hwfn,
4890 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
4891 *p_resc_num, (*p_resc_num) & ~0x7,
4892 *p_resc_start, (*p_resc_start) & ~0x7);
4893 *p_resc_num &= ~0x7;
4894 *p_resc_start &= ~0x7;
4895 }
4896
4897 return ECORE_SUCCESS;
4898 }
4899
ecore_hw_set_resc_info(struct ecore_hwfn * p_hwfn,bool drv_resc_alloc)4900 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
4901 bool drv_resc_alloc)
4902 {
4903 enum _ecore_status_t rc;
4904 u8 res_id;
4905
4906 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
4907 rc = __ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
4908 if (rc != ECORE_SUCCESS)
4909 return rc;
4910 }
4911
4912 return ECORE_SUCCESS;
4913 }
4914
ecore_hw_get_ppfid_bitmap(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)4915 static enum _ecore_status_t ecore_hw_get_ppfid_bitmap(struct ecore_hwfn *p_hwfn,
4916 struct ecore_ptt *p_ptt)
4917 {
4918 u8 native_ppfid_idx = ECORE_PPFID_BY_PFID(p_hwfn);
4919 struct ecore_dev *p_dev = p_hwfn->p_dev;
4920 enum _ecore_status_t rc;
4921
4922 rc = ecore_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
4923 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL)
4924 return rc;
4925 else if (rc == ECORE_NOTIMPL)
4926 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4927
4928 if (!(p_dev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
4929 DP_INFO(p_hwfn,
4930 "Fix the PPFID bitmap to inculde the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
4931 native_ppfid_idx, p_dev->ppfid_bitmap);
4932 p_dev->ppfid_bitmap = 0x1 << native_ppfid_idx;
4933 }
4934
4935 return ECORE_SUCCESS;
4936 }
4937
ecore_hw_get_resc(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool drv_resc_alloc)4938 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
4939 struct ecore_ptt *p_ptt,
4940 bool drv_resc_alloc)
4941 {
4942 struct ecore_resc_unlock_params resc_unlock_params;
4943 struct ecore_resc_lock_params resc_lock_params;
4944 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
4945 u8 res_id;
4946 enum _ecore_status_t rc;
4947 #ifndef ASIC_ONLY
4948 u32 *resc_start = p_hwfn->hw_info.resc_start;
4949 u32 *resc_num = p_hwfn->hw_info.resc_num;
4950 /* For AH, an equal share of the ILT lines between the maximal number of
4951 * PFs is not enough for RoCE. This would be solved by the future
4952 * resource allocation scheme, but isn't currently present for
4953 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
4954 * to work - the BB number of ILT lines divided by its max PFs number.
4955 */
4956 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
4957 #endif
4958
4959 /* Setting the max values of the soft resources and the following
4960 * resources allocation queries should be atomic. Since several PFs can
4961 * run in parallel - a resource lock is needed.
4962 * If either the resource lock or resource set value commands are not
4963 * supported - skip the the max values setting, release the lock if
4964 * needed, and proceed to the queries. Other failures, including a
4965 * failure to acquire the lock, will cause this function to fail.
4966 * Old drivers that don't acquire the lock can run in parallel, and
4967 * their allocation values won't be affected by the updated max values.
4968 */
4969
4970 ecore_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
4971 ECORE_RESC_LOCK_RESC_ALLOC, false);
4972
4973 /* Changes on top of the default values to accommodate parallel attempts
4974 * of several PFs.
4975 * [10 x 10 msec by default ==> 20 x 50 msec]
4976 */
4977 resc_lock_params.retry_num *= 2;
4978 resc_lock_params.retry_interval *= 5;
4979
4980 rc = ecore_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
4981 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4982 return rc;
4983 } else if (rc == ECORE_NOTIMPL) {
4984 DP_INFO(p_hwfn,
4985 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
4986 } else if (rc == ECORE_SUCCESS && !resc_lock_params.b_granted) {
4987 DP_NOTICE(p_hwfn, false,
4988 "Failed to acquire the resource lock for the resource allocation commands\n");
4989 return ECORE_BUSY;
4990 } else {
4991 rc = ecore_hw_set_soft_resc_size(p_hwfn, p_ptt);
4992 if (rc != ECORE_SUCCESS && rc != ECORE_NOTIMPL) {
4993 DP_NOTICE(p_hwfn, false,
4994 "Failed to set the max values of the soft resources\n");
4995 goto unlock_and_exit;
4996 } else if (rc == ECORE_NOTIMPL) {
4997 DP_INFO(p_hwfn,
4998 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
4999 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5000 &resc_unlock_params);
5001 if (rc != ECORE_SUCCESS)
5002 DP_INFO(p_hwfn,
5003 "Failed to release the resource lock for the resource allocation commands\n");
5004 }
5005 }
5006
5007 rc = ecore_hw_set_resc_info(p_hwfn, drv_resc_alloc);
5008 if (rc != ECORE_SUCCESS)
5009 goto unlock_and_exit;
5010
5011 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
5012 rc = ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5013 &resc_unlock_params);
5014 if (rc != ECORE_SUCCESS)
5015 DP_INFO(p_hwfn,
5016 "Failed to release the resource lock for the resource allocation commands\n");
5017 }
5018
5019 /* PPFID bitmap */
5020 if (IS_LEAD_HWFN(p_hwfn)) {
5021 rc = ecore_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
5022 if (rc != ECORE_SUCCESS)
5023 return rc;
5024 }
5025
5026 #ifndef ASIC_ONLY
5027 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
5028 /* Reduced build contains less PQs */
5029 if (!(p_hwfn->p_dev->b_is_emul_full)) {
5030 resc_num[ECORE_PQ] = 32;
5031 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
5032 p_hwfn->enabled_func_idx;
5033 }
5034
5035 /* For AH emulation, since we have a possible maximal number of
5036 * 16 enabled PFs, in case there are not enough ILT lines -
5037 * allocate only first PF as RoCE and have all the other ETH
5038 * only with less ILT lines.
5039 */
5040 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
5041 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
5042 resc_num[ECORE_ILT],
5043 roce_min_ilt_lines);
5044 }
5045
5046 /* Correct the common ILT calculation if PF0 has more */
5047 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
5048 p_hwfn->p_dev->b_is_emul_full &&
5049 p_hwfn->rel_pf_id &&
5050 resc_num[ECORE_ILT] < roce_min_ilt_lines)
5051 resc_start[ECORE_ILT] += roce_min_ilt_lines -
5052 resc_num[ECORE_ILT];
5053 #endif
5054
5055 /* Sanity for ILT */
5056 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
5057 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
5058 DP_NOTICE(p_hwfn, true, "Can't assign ILT pages [%08x,...,%08x]\n",
5059 RESC_START(p_hwfn, ECORE_ILT),
5060 RESC_END(p_hwfn, ECORE_ILT) - 1);
5061 return ECORE_INVAL;
5062 }
5063
5064 /* This will also learn the number of SBs from MFW */
5065 if (ecore_int_igu_reset_cam(p_hwfn, p_ptt))
5066 return ECORE_INVAL;
5067
5068 ecore_hw_set_feat(p_hwfn);
5069
5070 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5071 "The numbers for each resource are:\n");
5072 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
5073 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
5074 ecore_hw_get_resc_name(res_id),
5075 RESC_NUM(p_hwfn, res_id),
5076 RESC_START(p_hwfn, res_id));
5077
5078 return ECORE_SUCCESS;
5079
5080 unlock_and_exit:
5081 if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
5082 ecore_mcp_resc_unlock(p_hwfn, p_ptt,
5083 &resc_unlock_params);
5084 return rc;
5085 }
5086
5087 static enum _ecore_status_t
ecore_hw_get_nvm_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_hw_prepare_params * p_params)5088 ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
5089 struct ecore_ptt *p_ptt,
5090 struct ecore_hw_prepare_params *p_params)
5091 {
5092 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
5093 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
5094 struct ecore_mcp_link_capabilities *p_caps;
5095 struct ecore_mcp_link_params *link;
5096 enum _ecore_status_t rc;
5097 u32 dcbx_mode; /* __LINUX__THROW__ */
5098
5099 /* Read global nvm_cfg address */
5100 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
5101
5102 /* Verify MCP has initialized it */
5103 if (!nvm_cfg_addr) {
5104 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
5105 if (p_params->b_relaxed_probe)
5106 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_NVM;
5107 return ECORE_INVAL;
5108 }
5109
5110 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
5111 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
5112
5113 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5114 OFFSETOF(struct nvm_cfg1, glob) +
5115 OFFSETOF(struct nvm_cfg1_glob, core_cfg);
5116
5117 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
5118
5119 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
5120 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
5121 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
5122 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
5123 break;
5124 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
5125 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
5126 break;
5127 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
5128 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
5129 break;
5130 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
5131 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
5132 break;
5133 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
5134 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
5135 break;
5136 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
5137 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
5138 break;
5139 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
5140 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
5141 break;
5142 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
5143 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
5144 break;
5145 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
5146 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
5147 break;
5148 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
5149 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
5150 break;
5151 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
5152 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
5153 break;
5154 default:
5155 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
5156 core_cfg);
5157 break;
5158 }
5159
5160 #ifndef __EXTRACT__LINUX__THROW__
5161 /* Read DCBX configuration */
5162 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5163 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5164 dcbx_mode = ecore_rd(p_hwfn, p_ptt,
5165 port_cfg_addr +
5166 OFFSETOF(struct nvm_cfg1_port, generic_cont0));
5167 dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
5168 >> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
5169 switch (dcbx_mode) {
5170 case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
5171 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
5172 break;
5173 case NVM_CFG1_PORT_DCBX_MODE_CEE:
5174 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
5175 break;
5176 case NVM_CFG1_PORT_DCBX_MODE_IEEE:
5177 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
5178 break;
5179 default:
5180 p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
5181 }
5182 #endif
5183
5184 /* Read default link configuration */
5185 link = &p_hwfn->mcp_info->link_input;
5186 p_caps = &p_hwfn->mcp_info->link_capabilities;
5187 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5188 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
5189 link_temp = ecore_rd(p_hwfn, p_ptt,
5190 port_cfg_addr +
5191 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
5192 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
5193 link->speed.advertised_speeds = link_temp;
5194 p_caps->speed_capabilities = link->speed.advertised_speeds;
5195
5196 link_temp = ecore_rd(p_hwfn, p_ptt,
5197 port_cfg_addr +
5198 OFFSETOF(struct nvm_cfg1_port, link_settings));
5199 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
5200 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
5201 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
5202 link->speed.autoneg = true;
5203 break;
5204 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
5205 link->speed.forced_speed = 1000;
5206 break;
5207 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
5208 link->speed.forced_speed = 10000;
5209 break;
5210 case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
5211 link->speed.forced_speed = 20000;
5212 break;
5213 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
5214 link->speed.forced_speed = 25000;
5215 break;
5216 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
5217 link->speed.forced_speed = 40000;
5218 break;
5219 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
5220 link->speed.forced_speed = 50000;
5221 break;
5222 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
5223 link->speed.forced_speed = 100000;
5224 break;
5225 default:
5226 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n",
5227 link_temp);
5228 }
5229
5230 p_caps->default_speed = link->speed.forced_speed; /* __LINUX__THROW__ */
5231 p_caps->default_speed_autoneg = link->speed.autoneg;
5232
5233 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
5234 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
5235 link->pause.autoneg = !!(link_temp &
5236 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
5237 link->pause.forced_rx = !!(link_temp &
5238 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
5239 link->pause.forced_tx = !!(link_temp &
5240 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
5241 link->loopback_mode = 0;
5242
5243 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
5244 link_temp = ecore_rd(p_hwfn, p_ptt, port_cfg_addr +
5245 OFFSETOF(struct nvm_cfg1_port, ext_phy));
5246 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
5247 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
5248 p_caps->default_eee = ECORE_MCP_EEE_ENABLED;
5249 link->eee.enable = true;
5250 switch (link_temp) {
5251 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
5252 p_caps->default_eee = ECORE_MCP_EEE_DISABLED;
5253 link->eee.enable = false;
5254 break;
5255 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
5256 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
5257 break;
5258 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
5259 p_caps->eee_lpi_timer =
5260 EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
5261 break;
5262 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
5263 p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
5264 break;
5265 }
5266
5267 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
5268 link->eee.tx_lpi_enable = link->eee.enable;
5269 link->eee.adv_caps = ECORE_EEE_1G_ADV | ECORE_EEE_10G_ADV;
5270 } else {
5271 p_caps->default_eee = ECORE_MCP_EEE_UNSUPPORTED;
5272 }
5273
5274 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
5275 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
5276 link->speed.forced_speed, link->speed.advertised_speeds,
5277 link->speed.autoneg, link->pause.autoneg,
5278 p_caps->default_eee, p_caps->eee_lpi_timer);
5279
5280 /* Read Multi-function information from shmem */
5281 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5282 OFFSETOF(struct nvm_cfg1, glob) +
5283 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
5284
5285 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
5286
5287 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
5288 NVM_CFG1_GLOB_MF_MODE_OFFSET;
5289
5290 switch (mf_mode) {
5291 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5292 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS;
5293 break;
5294 case NVM_CFG1_GLOB_MF_MODE_UFP:
5295 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5296 1 << ECORE_MF_LLH_PROTO_CLSS |
5297 1 << ECORE_MF_UFP_SPECIFIC |
5298 1 << ECORE_MF_8021Q_TAGGING;
5299 break;
5300 case NVM_CFG1_GLOB_MF_MODE_BD:
5301 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_OVLAN_CLSS |
5302 1 << ECORE_MF_LLH_PROTO_CLSS |
5303 1 << ECORE_MF_8021AD_TAGGING;
5304 break;
5305 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5306 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5307 1 << ECORE_MF_LLH_PROTO_CLSS |
5308 1 << ECORE_MF_LL2_NON_UNICAST |
5309 1 << ECORE_MF_INTER_PF_SWITCH |
5310 1 << ECORE_MF_DISABLE_ARFS;
5311 break;
5312 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5313 p_hwfn->p_dev->mf_bits = 1 << ECORE_MF_LLH_MAC_CLSS |
5314 1 << ECORE_MF_LLH_PROTO_CLSS |
5315 1 << ECORE_MF_LL2_NON_UNICAST;
5316 if (ECORE_IS_BB(p_hwfn->p_dev))
5317 p_hwfn->p_dev->mf_bits |= 1 << ECORE_MF_NEED_DEF_PF;
5318 break;
5319 }
5320 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
5321 p_hwfn->p_dev->mf_bits);
5322
5323 if (ECORE_IS_CMT(p_hwfn->p_dev))
5324 p_hwfn->p_dev->mf_bits |= (1 << ECORE_MF_DISABLE_ARFS);
5325
5326 #ifndef __EXTRACT__LINUX__THROW__
5327 /* It's funny since we have another switch, but it's easier
5328 * to throw this away in linux this way. Long term, it might be
5329 * better to have have getters for needed ECORE_MF_* fields,
5330 * convert client code and eliminate this.
5331 */
5332 switch (mf_mode) {
5333 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
5334 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
5335 break;
5336 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
5337 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
5338 break;
5339 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
5340 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
5341 break;
5342 case NVM_CFG1_GLOB_MF_MODE_UFP:
5343 p_hwfn->p_dev->mf_mode = ECORE_MF_UFP;
5344 break;
5345 }
5346 #endif
5347
5348 /* Read Multi-function information from shmem */
5349 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
5350 OFFSETOF(struct nvm_cfg1, glob) +
5351 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
5352
5353 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
5354 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
5355 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
5356 &p_hwfn->hw_info.device_capabilities);
5357 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
5358 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
5359 &p_hwfn->hw_info.device_capabilities);
5360 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
5361 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
5362 &p_hwfn->hw_info.device_capabilities);
5363 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
5364 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
5365 &p_hwfn->hw_info.device_capabilities);
5366 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
5367 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
5368 &p_hwfn->hw_info.device_capabilities);
5369
5370 rc = ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
5371 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5372 rc = ECORE_SUCCESS;
5373 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5374 }
5375
5376 return rc;
5377 }
5378
ecore_get_num_funcs(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5379 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
5380 struct ecore_ptt *p_ptt)
5381 {
5382 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
5383 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
5384 struct ecore_dev *p_dev = p_hwfn->p_dev;
5385
5386 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
5387
5388 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
5389 * in the other bits are selected.
5390 * Bits 1-15 are for functions 1-15, respectively, and their value is
5391 * '0' only for enabled functions (function 0 always exists and
5392 * enabled).
5393 * In case of CMT in BB, only the "even" functions are enabled, and thus
5394 * the number of functions for both hwfns is learnt from the same bits.
5395 */
5396 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
5397
5398 if (reg_function_hide & 0x1) {
5399 if (ECORE_IS_BB(p_dev)) {
5400 if (ECORE_PATH_ID(p_hwfn) && !ECORE_IS_CMT(p_dev)) {
5401 num_funcs = 0;
5402 eng_mask = 0xaaaa;
5403 } else {
5404 num_funcs = 1;
5405 eng_mask = 0x5554;
5406 }
5407 } else {
5408 num_funcs = 1;
5409 eng_mask = 0xfffe;
5410 }
5411
5412 /* Get the number of the enabled functions on the engine */
5413 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
5414 while (tmp) {
5415 if (tmp & 0x1)
5416 num_funcs++;
5417 tmp >>= 0x1;
5418 }
5419
5420 /* Get the PF index within the enabled functions */
5421 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
5422 tmp = reg_function_hide & eng_mask & low_pfs_mask;
5423 while (tmp) {
5424 if (tmp & 0x1)
5425 enabled_func_idx--;
5426 tmp >>= 0x1;
5427 }
5428 }
5429
5430 p_hwfn->num_funcs_on_engine = num_funcs;
5431 p_hwfn->enabled_func_idx = enabled_func_idx;
5432
5433 #ifndef ASIC_ONLY
5434 if (CHIP_REV_IS_FPGA(p_dev)) {
5435 DP_NOTICE(p_hwfn, false,
5436 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
5437 p_hwfn->num_funcs_on_engine = 4;
5438 }
5439 #endif
5440
5441 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
5442 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
5443 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
5444 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
5445 }
5446
ecore_hw_info_port_num_bb(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5447 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
5448 struct ecore_ptt *p_ptt)
5449 {
5450 struct ecore_dev *p_dev = p_hwfn->p_dev;
5451 u32 port_mode;
5452
5453 #ifndef ASIC_ONLY
5454 /* Read the port mode */
5455 if (CHIP_REV_IS_FPGA(p_dev))
5456 port_mode = 4;
5457 else if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_CMT(p_dev))
5458 /* In CMT on emulation, assume 1 port */
5459 port_mode = 1;
5460 else
5461 #endif
5462 port_mode = ecore_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB);
5463
5464 if (port_mode < 3) {
5465 p_dev->num_ports_in_engine = 1;
5466 } else if (port_mode <= 5) {
5467 p_dev->num_ports_in_engine = 2;
5468 } else {
5469 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
5470 p_dev->num_ports_in_engine);
5471
5472 /* Default num_ports_in_engine to something */
5473 p_dev->num_ports_in_engine = 1;
5474 }
5475 }
5476
ecore_hw_info_port_num_ah_e5(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5477 static void ecore_hw_info_port_num_ah_e5(struct ecore_hwfn *p_hwfn,
5478 struct ecore_ptt *p_ptt)
5479 {
5480 struct ecore_dev *p_dev = p_hwfn->p_dev;
5481 u32 port;
5482 int i;
5483
5484 p_dev->num_ports_in_engine = 0;
5485
5486 #ifndef ASIC_ONLY
5487 if (CHIP_REV_IS_EMUL(p_dev)) {
5488 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5489 switch ((port & 0xf000) >> 12) {
5490 case 1:
5491 p_dev->num_ports_in_engine = 1;
5492 break;
5493 case 3:
5494 p_dev->num_ports_in_engine = 2;
5495 break;
5496 case 0xf:
5497 p_dev->num_ports_in_engine = 4;
5498 break;
5499 default:
5500 DP_NOTICE(p_hwfn, false,
5501 "Unknown port mode in ECO_RESERVED %08x\n",
5502 port);
5503 }
5504 } else
5505 #endif
5506 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
5507 port = ecore_rd(p_hwfn, p_ptt,
5508 CNIG_REG_NIG_PORT0_CONF_K2_E5 + (i * 4));
5509 if (port & 1)
5510 p_dev->num_ports_in_engine++;
5511 }
5512
5513 if (!p_dev->num_ports_in_engine) {
5514 DP_NOTICE(p_hwfn, true, "All NIG ports are inactive\n");
5515
5516 /* Default num_ports_in_engine to something */
5517 p_dev->num_ports_in_engine = 1;
5518 }
5519 }
5520
ecore_hw_info_port_num(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5521 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
5522 struct ecore_ptt *p_ptt)
5523 {
5524 struct ecore_dev *p_dev = p_hwfn->p_dev;
5525
5526 /* Determine the number of ports per engine */
5527 if (ECORE_IS_BB(p_dev))
5528 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
5529 else
5530 ecore_hw_info_port_num_ah_e5(p_hwfn, p_ptt);
5531
5532 /* Get the total number of ports of the device */
5533 if (ECORE_IS_CMT(p_dev)) {
5534 /* In CMT there is always only one port */
5535 p_dev->num_ports = 1;
5536 #ifndef ASIC_ONLY
5537 } else if (CHIP_REV_IS_EMUL(p_dev) || CHIP_REV_IS_TEDIBEAR(p_dev)) {
5538 p_dev->num_ports = p_dev->num_ports_in_engine *
5539 ecore_device_num_engines(p_dev);
5540 #endif
5541 } else {
5542 u32 addr, global_offsize, global_addr;
5543
5544 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
5545 PUBLIC_GLOBAL);
5546 global_offsize = ecore_rd(p_hwfn, p_ptt, addr);
5547 global_addr = SECTION_ADDR(global_offsize, 0);
5548 addr = global_addr + OFFSETOF(struct public_global, max_ports);
5549 p_dev->num_ports = (u8)ecore_rd(p_hwfn, p_ptt, addr);
5550 }
5551 }
5552
ecore_mcp_get_eee_caps(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5553 static void ecore_mcp_get_eee_caps(struct ecore_hwfn *p_hwfn,
5554 struct ecore_ptt *p_ptt)
5555 {
5556 struct ecore_mcp_link_capabilities *p_caps;
5557 u32 eee_status;
5558
5559 p_caps = &p_hwfn->mcp_info->link_capabilities;
5560 if (p_caps->default_eee == ECORE_MCP_EEE_UNSUPPORTED)
5561 return;
5562
5563 p_caps->eee_speed_caps = 0;
5564 eee_status = ecore_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
5565 OFFSETOF(struct public_port, eee_status));
5566 eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
5567 EEE_SUPPORTED_SPEED_OFFSET;
5568 if (eee_status & EEE_1G_SUPPORTED)
5569 p_caps->eee_speed_caps |= ECORE_EEE_1G_ADV;
5570 if (eee_status & EEE_10G_ADV)
5571 p_caps->eee_speed_caps |= ECORE_EEE_10G_ADV;
5572 }
5573
5574 static enum _ecore_status_t
ecore_get_hw_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,enum ecore_pci_personality personality,struct ecore_hw_prepare_params * p_params)5575 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
5576 enum ecore_pci_personality personality,
5577 struct ecore_hw_prepare_params *p_params)
5578 {
5579 bool drv_resc_alloc = p_params->drv_resc_alloc;
5580 enum _ecore_status_t rc;
5581
5582 /* Since all information is common, only first hwfns should do this */
5583 if (IS_LEAD_HWFN(p_hwfn)) {
5584 rc = ecore_iov_hw_info(p_hwfn);
5585 if (rc != ECORE_SUCCESS) {
5586 if (p_params->b_relaxed_probe)
5587 p_params->p_relaxed_res =
5588 ECORE_HW_PREPARE_BAD_IOV;
5589 else
5590 return rc;
5591 }
5592 }
5593
5594 if (IS_LEAD_HWFN(p_hwfn))
5595 ecore_hw_info_port_num(p_hwfn, p_ptt);
5596
5597 ecore_mcp_get_capabilities(p_hwfn, p_ptt);
5598
5599 #ifndef ASIC_ONLY
5600 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
5601 #endif
5602 rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt, p_params);
5603 if (rc != ECORE_SUCCESS)
5604 return rc;
5605 #ifndef ASIC_ONLY
5606 }
5607 #endif
5608
5609 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
5610 if (rc != ECORE_SUCCESS) {
5611 if (p_params->b_relaxed_probe)
5612 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_IGU;
5613 else
5614 return rc;
5615 }
5616
5617 #ifndef ASIC_ONLY
5618 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
5619 #endif
5620 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
5621 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
5622 #ifndef ASIC_ONLY
5623 } else {
5624 static u8 mcp_hw_mac[6] = {0, 2, 3, 4, 5, 6};
5625
5626 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
5627 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
5628 }
5629 #endif
5630
5631 if (ecore_mcp_is_init(p_hwfn)) {
5632 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
5633 p_hwfn->hw_info.ovlan =
5634 p_hwfn->mcp_info->func_info.ovlan;
5635
5636 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
5637
5638 ecore_mcp_get_eee_caps(p_hwfn, p_ptt);
5639
5640 ecore_mcp_read_ufp_config(p_hwfn, p_ptt);
5641 }
5642
5643 if (personality != ECORE_PCI_DEFAULT) {
5644 p_hwfn->hw_info.personality = personality;
5645 } else if (ecore_mcp_is_init(p_hwfn)) {
5646 enum ecore_pci_personality protocol;
5647
5648 protocol = p_hwfn->mcp_info->func_info.protocol;
5649 p_hwfn->hw_info.personality = protocol;
5650 }
5651
5652 #ifndef ASIC_ONLY
5653 /* To overcome ILT lack for emulation, until at least until we'll have
5654 * a definite answer from system about it, allow only PF0 to be RoCE.
5655 */
5656 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
5657 if (!p_hwfn->rel_pf_id)
5658 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
5659 else
5660 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
5661 }
5662 #endif
5663
5664 /* although in BB some constellations may support more than 4 tcs,
5665 * that can result in performance penalty in some cases. 4
5666 * represents a good tradeoff between performance and flexibility.
5667 */
5668 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
5669
5670 /* start out with a single active tc. This can be increased either
5671 * by dcbx negotiation or by upper layer driver
5672 */
5673 p_hwfn->hw_info.num_active_tc = 1;
5674
5675 ecore_get_num_funcs(p_hwfn, p_ptt);
5676
5677 if (ecore_mcp_is_init(p_hwfn))
5678 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
5679
5680 /* In case of forcing the driver's default resource allocation, calling
5681 * ecore_hw_get_resc() should come after initializing the personality
5682 * and after getting the number of functions, since the calculation of
5683 * the resources/features depends on them.
5684 * This order is not harmful if not forcing.
5685 */
5686 rc = ecore_hw_get_resc(p_hwfn, p_ptt, drv_resc_alloc);
5687 if (rc != ECORE_SUCCESS && p_params->b_relaxed_probe) {
5688 rc = ECORE_SUCCESS;
5689 p_params->p_relaxed_res = ECORE_HW_PREPARE_BAD_MCP;
5690 }
5691
5692 return rc;
5693 }
5694
5695 #define ECORE_MAX_DEVICE_NAME_LEN (8)
5696
ecore_get_dev_name(struct ecore_dev * p_dev,u8 * name,u8 max_chars)5697 void ecore_get_dev_name(struct ecore_dev *p_dev, u8 *name, u8 max_chars)
5698 {
5699 u8 n;
5700
5701 n = OSAL_MIN_T(u8, max_chars, ECORE_MAX_DEVICE_NAME_LEN);
5702 OSAL_SNPRINTF(name, n, "%s %c%d", ECORE_IS_BB(p_dev) ? "BB" : "AH",
5703 'A' + p_dev->chip_rev, (int)p_dev->chip_metal);
5704 }
5705
ecore_get_dev_info(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)5706 static enum _ecore_status_t ecore_get_dev_info(struct ecore_hwfn *p_hwfn,
5707 struct ecore_ptt *p_ptt)
5708 {
5709 struct ecore_dev *p_dev = p_hwfn->p_dev;
5710 u16 device_id_mask;
5711 u32 tmp;
5712
5713 /* Read Vendor Id / Device Id */
5714 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
5715 &p_dev->vendor_id);
5716 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
5717 &p_dev->device_id);
5718
5719 /* Determine type */
5720 device_id_mask = p_dev->device_id & ECORE_DEV_ID_MASK;
5721 switch (device_id_mask) {
5722 case ECORE_DEV_ID_MASK_BB:
5723 p_dev->type = ECORE_DEV_TYPE_BB;
5724 break;
5725 case ECORE_DEV_ID_MASK_AH:
5726 p_dev->type = ECORE_DEV_TYPE_AH;
5727 break;
5728 case ECORE_DEV_ID_MASK_E5:
5729 p_dev->type = ECORE_DEV_TYPE_E5;
5730 break;
5731 default:
5732 DP_NOTICE(p_hwfn, true, "Unknown device id 0x%x\n",
5733 p_dev->device_id);
5734 return ECORE_ABORTED;
5735 }
5736
5737 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
5738 p_dev->chip_num = (u16)GET_FIELD(tmp, CHIP_NUM);
5739 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
5740 p_dev->chip_rev = (u8)GET_FIELD(tmp, CHIP_REV);
5741
5742 /* Learn number of HW-functions */
5743 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
5744
5745 if (tmp & (1 << p_hwfn->rel_pf_id)) {
5746 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
5747 p_dev->num_hwfns = 2;
5748 } else {
5749 p_dev->num_hwfns = 1;
5750 }
5751
5752 #ifndef ASIC_ONLY
5753 if (CHIP_REV_IS_EMUL(p_dev)) {
5754 /* For some reason we have problems with this register
5755 * in B0 emulation; Simply assume no CMT
5756 */
5757 DP_NOTICE(p_dev->hwfns, false, "device on emul - assume no CMT\n");
5758 p_dev->num_hwfns = 1;
5759 }
5760 #endif
5761
5762 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG);
5763 p_dev->chip_bond_id = (u8)GET_FIELD(tmp, CHIP_BOND_ID);
5764 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
5765 p_dev->chip_metal = (u8)GET_FIELD(tmp, CHIP_METAL);
5766
5767 DP_INFO(p_dev->hwfns,
5768 "Chip details - %s %c%d, Num: %04x Rev: %02x Bond id: %02x Metal: %02x\n",
5769 ECORE_IS_BB(p_dev) ? "BB" : "AH",
5770 'A' + p_dev->chip_rev, (int)p_dev->chip_metal,
5771 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
5772 p_dev->chip_metal);
5773
5774 if (ECORE_IS_BB_A0(p_dev)) {
5775 DP_NOTICE(p_dev->hwfns, false,
5776 "The chip type/rev (BB A0) is not supported!\n");
5777 return ECORE_ABORTED;
5778 }
5779
5780 #ifndef ASIC_ONLY
5781 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
5782 ecore_wr(p_hwfn, p_ptt, MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
5783
5784 if (CHIP_REV_IS_EMUL(p_dev)) {
5785 tmp = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
5786 if (tmp & (1 << 29)) {
5787 DP_NOTICE(p_hwfn, false, "Emulation: Running on a FULL build\n");
5788 p_dev->b_is_emul_full = true;
5789 } else {
5790 DP_NOTICE(p_hwfn, false, "Emulation: Running on a REDUCED build\n");
5791 }
5792 }
5793 #endif
5794
5795 return ECORE_SUCCESS;
5796 }
5797
5798 #ifndef LINUX_REMOVE
ecore_hw_hibernate_prepare(struct ecore_dev * p_dev)5799 void ecore_hw_hibernate_prepare(struct ecore_dev *p_dev)
5800 {
5801 int j;
5802
5803 if (IS_VF(p_dev))
5804 return;
5805
5806 for_each_hwfn(p_dev, j) {
5807 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5808
5809 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Mark hw/fw uninitialized\n");
5810
5811 p_hwfn->hw_init_done = false;
5812
5813 ecore_ptt_invalidate(p_hwfn);
5814 }
5815 }
5816
ecore_hw_hibernate_resume(struct ecore_dev * p_dev)5817 void ecore_hw_hibernate_resume(struct ecore_dev *p_dev)
5818 {
5819 int j = 0;
5820
5821 if (IS_VF(p_dev))
5822 return;
5823
5824 for_each_hwfn(p_dev, j) {
5825 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
5826 struct ecore_ptt *p_ptt = ecore_ptt_acquire(p_hwfn);
5827
5828 ecore_hw_hwfn_prepare(p_hwfn);
5829
5830 if (!p_ptt)
5831 DP_NOTICE(p_hwfn, false, "ptt acquire failed\n");
5832 else {
5833 ecore_load_mcp_offsets(p_hwfn, p_ptt);
5834 ecore_ptt_release(p_hwfn, p_ptt);
5835 }
5836 DP_VERBOSE(p_hwfn, ECORE_MSG_IFUP, "Reinitialized hw after low power state\n");
5837 }
5838 }
5839
5840 #endif
5841
5842 static enum _ecore_status_t
ecore_hw_prepare_single(struct ecore_hwfn * p_hwfn,void OSAL_IOMEM * p_regview,void OSAL_IOMEM * p_doorbells,u64 db_phys_addr,struct ecore_hw_prepare_params * p_params)5843 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
5844 void OSAL_IOMEM *p_doorbells, u64 db_phys_addr,
5845 struct ecore_hw_prepare_params *p_params)
5846 {
5847 struct ecore_mdump_retain_data mdump_retain;
5848 struct ecore_dev *p_dev = p_hwfn->p_dev;
5849 struct ecore_mdump_info mdump_info;
5850 enum _ecore_status_t rc = ECORE_SUCCESS;
5851
5852 /* Split PCI bars evenly between hwfns */
5853 p_hwfn->regview = p_regview;
5854 p_hwfn->doorbells = p_doorbells;
5855 p_hwfn->db_phys_addr = db_phys_addr;
5856
5857 #ifndef LINUX_REMOVE
5858 p_hwfn->reg_offset = (u8 *)p_hwfn->regview - (u8 *)p_hwfn->p_dev->regview;
5859 p_hwfn->db_offset = (u8 *)p_hwfn->doorbells - (u8 *)p_hwfn->p_dev->doorbells;
5860 #endif
5861
5862 if (IS_VF(p_dev))
5863 return ecore_vf_hw_prepare(p_hwfn);
5864
5865 /* Validate that chip access is feasible */
5866 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
5867 DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n");
5868 if (p_params->b_relaxed_probe)
5869 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_ME;
5870 return ECORE_INVAL;
5871 }
5872
5873 get_function_id(p_hwfn);
5874
5875 /* Allocate PTT pool */
5876 rc = ecore_ptt_pool_alloc(p_hwfn);
5877 if (rc) {
5878 DP_NOTICE(p_hwfn, false, "Failed to prepare hwfn's hw\n");
5879 if (p_params->b_relaxed_probe)
5880 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5881 goto err0;
5882 }
5883
5884 /* Allocate the main PTT */
5885 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
5886
5887 /* First hwfn learns basic information, e.g., number of hwfns */
5888 if (!p_hwfn->my_id) {
5889 rc = ecore_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
5890 if (rc != ECORE_SUCCESS) {
5891 if (p_params->b_relaxed_probe)
5892 p_params->p_relaxed_res =
5893 ECORE_HW_PREPARE_FAILED_DEV;
5894 goto err1;
5895 }
5896 }
5897
5898 ecore_hw_hwfn_prepare(p_hwfn);
5899
5900 /* Initialize MCP structure */
5901 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
5902 if (rc) {
5903 DP_NOTICE(p_hwfn, false, "Failed initializing mcp command\n");
5904 if (p_params->b_relaxed_probe)
5905 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5906 goto err1;
5907 }
5908
5909 /* Read the device configuration information from the HW and SHMEM */
5910 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
5911 p_params->personality, p_params);
5912 if (rc) {
5913 DP_NOTICE(p_hwfn, false, "Failed to get HW information\n");
5914 goto err2;
5915 }
5916
5917 /* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
5918 * called, since among others it sets the ports number in an engine.
5919 */
5920 if (p_params->initiate_pf_flr && IS_LEAD_HWFN(p_hwfn) &&
5921 !p_dev->recov_in_prog) {
5922 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
5923 if (rc != ECORE_SUCCESS)
5924 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
5925 }
5926
5927 /* Check if mdump logs/data are present and update the epoch value */
5928 if (IS_LEAD_HWFN(p_hwfn)) {
5929 #ifndef ASIC_ONLY
5930 if (!CHIP_REV_IS_EMUL(p_dev)) {
5931 #endif
5932 rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
5933 &mdump_info);
5934 if (rc == ECORE_SUCCESS && mdump_info.num_of_logs)
5935 DP_NOTICE(p_hwfn, false,
5936 "* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
5937
5938 rc = ecore_mcp_mdump_get_retain(p_hwfn, p_hwfn->p_main_ptt,
5939 &mdump_retain);
5940 if (rc == ECORE_SUCCESS && mdump_retain.valid)
5941 DP_NOTICE(p_hwfn, false,
5942 "mdump retained data: epoch 0x%08x, pf 0x%x, status 0x%08x\n",
5943 mdump_retain.epoch, mdump_retain.pf,
5944 mdump_retain.status);
5945
5946 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
5947 p_params->epoch);
5948 #ifndef ASIC_ONLY
5949 }
5950 #endif
5951 }
5952
5953 /* Allocate the init RT array and initialize the init-ops engine */
5954 rc = ecore_init_alloc(p_hwfn);
5955 if (rc) {
5956 DP_NOTICE(p_hwfn, false, "Failed to allocate the init array\n");
5957 if (p_params->b_relaxed_probe)
5958 p_params->p_relaxed_res = ECORE_HW_PREPARE_FAILED_MEM;
5959 goto err2;
5960 }
5961
5962 #ifndef ASIC_ONLY
5963 if (CHIP_REV_IS_FPGA(p_dev)) {
5964 DP_NOTICE(p_hwfn, false,
5965 "FPGA: workaround; Prevent DMAE parities\n");
5966 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK_K2_E5,
5967 7);
5968
5969 DP_NOTICE(p_hwfn, false,
5970 "FPGA: workaround: Set VF bar0 size\n");
5971 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
5972 PGLUE_B_REG_VF_BAR0_SIZE_K2_E5, 4);
5973 }
5974 #endif
5975
5976 return rc;
5977 err2:
5978 if (IS_LEAD_HWFN(p_hwfn))
5979 ecore_iov_free_hw_info(p_dev);
5980 ecore_mcp_free(p_hwfn);
5981 err1:
5982 ecore_hw_hwfn_free(p_hwfn);
5983 err0:
5984 return rc;
5985 }
5986
ecore_hw_prepare(struct ecore_dev * p_dev,struct ecore_hw_prepare_params * p_params)5987 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
5988 struct ecore_hw_prepare_params *p_params)
5989 {
5990 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
5991 enum _ecore_status_t rc;
5992
5993 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
5994 p_dev->allow_mdump = p_params->allow_mdump;
5995
5996 if (p_params->b_relaxed_probe)
5997 p_params->p_relaxed_res = ECORE_HW_PREPARE_SUCCESS;
5998
5999 /* Store the precompiled init data ptrs */
6000 if (IS_PF(p_dev))
6001 ecore_init_iro_array(p_dev);
6002
6003 /* Initialize the first hwfn - will learn number of hwfns */
6004 rc = ecore_hw_prepare_single(p_hwfn, p_dev->regview,
6005 p_dev->doorbells, p_dev->db_phys_addr,
6006 p_params);
6007 if (rc != ECORE_SUCCESS)
6008 return rc;
6009
6010 p_params->personality = p_hwfn->hw_info.personality;
6011
6012 /* initilalize 2nd hwfn if necessary */
6013 if (ECORE_IS_CMT(p_dev)) {
6014 void OSAL_IOMEM *p_regview, *p_doorbell;
6015 u8 OSAL_IOMEM *addr;
6016 u64 db_phys_addr;
6017 u32 offset;
6018
6019 /* adjust bar offset for second engine */
6020 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6021 BAR_ID_0) / 2;
6022 addr = (u8 OSAL_IOMEM *)p_dev->regview + offset;
6023 p_regview = (void OSAL_IOMEM *)addr;
6024
6025 offset = ecore_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
6026 BAR_ID_1) / 2;
6027 addr = (u8 OSAL_IOMEM *)p_dev->doorbells + offset;
6028 p_doorbell = (void OSAL_IOMEM *)addr;
6029 db_phys_addr = p_dev->db_phys_addr + offset;
6030
6031 /* prepare second hw function */
6032 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
6033 p_doorbell, db_phys_addr,
6034 p_params);
6035
6036 /* in case of error, need to free the previously
6037 * initiliazed hwfn 0.
6038 */
6039 if (rc != ECORE_SUCCESS) {
6040 if (p_params->b_relaxed_probe)
6041 p_params->p_relaxed_res =
6042 ECORE_HW_PREPARE_FAILED_ENG2;
6043
6044 if (IS_PF(p_dev)) {
6045 ecore_init_free(p_hwfn);
6046 ecore_mcp_free(p_hwfn);
6047 ecore_hw_hwfn_free(p_hwfn);
6048 } else {
6049 DP_NOTICE(p_dev, false, "What do we need to free when VF hwfn1 init fails\n");
6050 }
6051 return rc;
6052 }
6053 }
6054
6055 return rc;
6056 }
6057
ecore_hw_remove(struct ecore_dev * p_dev)6058 void ecore_hw_remove(struct ecore_dev *p_dev)
6059 {
6060 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
6061 int i;
6062
6063 if (IS_PF(p_dev))
6064 ecore_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
6065 ECORE_OV_DRIVER_STATE_NOT_LOADED);
6066
6067 for_each_hwfn(p_dev, i) {
6068 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6069
6070 if (IS_VF(p_dev)) {
6071 ecore_vf_pf_release(p_hwfn);
6072 continue;
6073 }
6074
6075 ecore_init_free(p_hwfn);
6076 ecore_hw_hwfn_free(p_hwfn);
6077 ecore_mcp_free(p_hwfn);
6078
6079 #ifdef CONFIG_ECORE_LOCK_ALLOC
6080 OSAL_SPIN_LOCK_DEALLOC(&p_hwfn->dmae_info.lock);
6081 #endif
6082 }
6083
6084 ecore_iov_free_hw_info(p_dev);
6085 }
6086
ecore_chain_free_next_ptr(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6087 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
6088 struct ecore_chain *p_chain)
6089 {
6090 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
6091 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
6092 struct ecore_chain_next *p_next;
6093 u32 size, i;
6094
6095 if (!p_virt)
6096 return;
6097
6098 size = p_chain->elem_size * p_chain->usable_per_page;
6099
6100 for (i = 0; i < p_chain->page_cnt; i++) {
6101 if (!p_virt)
6102 break;
6103
6104 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
6105 p_virt_next = p_next->next_virt;
6106 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
6107
6108 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
6109 ECORE_CHAIN_PAGE_SIZE);
6110
6111 p_virt = p_virt_next;
6112 p_phys = p_phys_next;
6113 }
6114 }
6115
ecore_chain_free_single(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6116 static void ecore_chain_free_single(struct ecore_dev *p_dev,
6117 struct ecore_chain *p_chain)
6118 {
6119 if (!p_chain->p_virt_addr)
6120 return;
6121
6122 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
6123 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
6124 }
6125
ecore_chain_free_pbl(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6126 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
6127 struct ecore_chain *p_chain)
6128 {
6129 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
6130 u8 *p_pbl_virt = (u8 *)p_chain->pbl_sp.p_virt_table;
6131 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
6132
6133 if (!pp_virt_addr_tbl)
6134 return;
6135
6136 if (!p_pbl_virt)
6137 goto out;
6138
6139 for (i = 0; i < page_cnt; i++) {
6140 if (!pp_virt_addr_tbl[i])
6141 break;
6142
6143 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
6144 *(dma_addr_t *)p_pbl_virt,
6145 ECORE_CHAIN_PAGE_SIZE);
6146
6147 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6148 }
6149
6150 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6151
6152 if (!p_chain->b_external_pbl) {
6153 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl_sp.p_virt_table,
6154 p_chain->pbl_sp.p_phys_table, pbl_size);
6155 }
6156 out:
6157 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
6158 p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
6159 }
6160
ecore_chain_free(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6161 void ecore_chain_free(struct ecore_dev *p_dev,
6162 struct ecore_chain *p_chain)
6163 {
6164 switch (p_chain->mode) {
6165 case ECORE_CHAIN_MODE_NEXT_PTR:
6166 ecore_chain_free_next_ptr(p_dev, p_chain);
6167 break;
6168 case ECORE_CHAIN_MODE_SINGLE:
6169 ecore_chain_free_single(p_dev, p_chain);
6170 break;
6171 case ECORE_CHAIN_MODE_PBL:
6172 ecore_chain_free_pbl(p_dev, p_chain);
6173 break;
6174 }
6175 }
6176
6177 static enum _ecore_status_t
ecore_chain_alloc_sanity_check(struct ecore_dev * p_dev,enum ecore_chain_cnt_type cnt_type,osal_size_t elem_size,u32 page_cnt)6178 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
6179 enum ecore_chain_cnt_type cnt_type,
6180 osal_size_t elem_size, u32 page_cnt)
6181 {
6182 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
6183
6184 /* The actual chain size can be larger than the maximal possible value
6185 * after rounding up the requested elements number to pages, and after
6186 * taking into acount the unusuable elements (next-ptr elements).
6187 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
6188 * size/capacity fields are of a u32 type.
6189 */
6190 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
6191 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
6192 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
6193 chain_size > ECORE_U32_MAX)) {
6194 DP_NOTICE(p_dev, true,
6195 "The actual chain size (0x%llx) is larger than the maximal possible value\n",
6196 (unsigned long long)chain_size);
6197 return ECORE_INVAL;
6198 }
6199
6200 return ECORE_SUCCESS;
6201 }
6202
6203 static enum _ecore_status_t
ecore_chain_alloc_next_ptr(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6204 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6205 {
6206 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
6207 dma_addr_t p_phys = 0;
6208 u32 i;
6209
6210 for (i = 0; i < p_chain->page_cnt; i++) {
6211 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6212 ECORE_CHAIN_PAGE_SIZE);
6213 if (!p_virt) {
6214 DP_NOTICE(p_dev, false,
6215 "Failed to allocate chain memory\n");
6216 return ECORE_NOMEM;
6217 }
6218
6219 if (i == 0) {
6220 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6221 ecore_chain_reset(p_chain);
6222 } else {
6223 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6224 p_virt, p_phys);
6225 }
6226
6227 p_virt_prev = p_virt;
6228 }
6229 /* Last page's next element should point to the beginning of the
6230 * chain.
6231 */
6232 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
6233 p_chain->p_virt_addr,
6234 p_chain->p_phys_addr);
6235
6236 return ECORE_SUCCESS;
6237 }
6238
6239 static enum _ecore_status_t
ecore_chain_alloc_single(struct ecore_dev * p_dev,struct ecore_chain * p_chain)6240 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
6241 {
6242 dma_addr_t p_phys = 0;
6243 void *p_virt = OSAL_NULL;
6244
6245 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
6246 if (!p_virt) {
6247 DP_NOTICE(p_dev, false, "Failed to allocate chain memory\n");
6248 return ECORE_NOMEM;
6249 }
6250
6251 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6252 ecore_chain_reset(p_chain);
6253
6254 return ECORE_SUCCESS;
6255 }
6256
6257 static enum _ecore_status_t
ecore_chain_alloc_pbl(struct ecore_dev * p_dev,struct ecore_chain * p_chain,struct ecore_chain_ext_pbl * ext_pbl)6258 ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
6259 struct ecore_chain *p_chain,
6260 struct ecore_chain_ext_pbl *ext_pbl)
6261 {
6262 u32 page_cnt = p_chain->page_cnt, size, i;
6263 dma_addr_t p_phys = 0, p_pbl_phys = 0;
6264 void **pp_virt_addr_tbl = OSAL_NULL;
6265 u8 *p_pbl_virt = OSAL_NULL;
6266 void *p_virt = OSAL_NULL;
6267
6268 size = page_cnt * sizeof(*pp_virt_addr_tbl);
6269 pp_virt_addr_tbl = (void **)OSAL_VZALLOC(p_dev, size);
6270 if (!pp_virt_addr_tbl) {
6271 DP_NOTICE(p_dev, false,
6272 "Failed to allocate memory for the chain virtual addresses table\n");
6273 return ECORE_NOMEM;
6274 }
6275
6276 /* The allocation of the PBL table is done with its full size, since it
6277 * is expected to be successive.
6278 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
6279 * failure, since pp_virt_addr_tbl was previously allocated, and it
6280 * should be saved to allow its freeing during the error flow.
6281 */
6282 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
6283
6284 if (ext_pbl == OSAL_NULL) {
6285 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
6286 } else {
6287 p_pbl_virt = ext_pbl->p_pbl_virt;
6288 p_pbl_phys = ext_pbl->p_pbl_phys;
6289 p_chain->b_external_pbl = true;
6290 }
6291
6292 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
6293 pp_virt_addr_tbl);
6294 if (!p_pbl_virt) {
6295 DP_NOTICE(p_dev, false, "Failed to allocate chain pbl memory\n");
6296 return ECORE_NOMEM;
6297 }
6298
6299 for (i = 0; i < page_cnt; i++) {
6300 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
6301 ECORE_CHAIN_PAGE_SIZE);
6302 if (!p_virt) {
6303 DP_NOTICE(p_dev, false,
6304 "Failed to allocate chain memory\n");
6305 return ECORE_NOMEM;
6306 }
6307
6308 if (i == 0) {
6309 ecore_chain_init_mem(p_chain, p_virt, p_phys);
6310 ecore_chain_reset(p_chain);
6311 }
6312
6313 /* Fill the PBL table with the physical address of the page */
6314 *(dma_addr_t *)p_pbl_virt = p_phys;
6315 /* Keep the virtual address of the page */
6316 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
6317
6318 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
6319 }
6320
6321 return ECORE_SUCCESS;
6322 }
6323
ecore_chain_alloc(struct ecore_dev * p_dev,enum ecore_chain_use_mode intended_use,enum ecore_chain_mode mode,enum ecore_chain_cnt_type cnt_type,u32 num_elems,osal_size_t elem_size,struct ecore_chain * p_chain,struct ecore_chain_ext_pbl * ext_pbl)6324 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
6325 enum ecore_chain_use_mode intended_use,
6326 enum ecore_chain_mode mode,
6327 enum ecore_chain_cnt_type cnt_type,
6328 u32 num_elems, osal_size_t elem_size,
6329 struct ecore_chain *p_chain,
6330 struct ecore_chain_ext_pbl *ext_pbl)
6331 {
6332 u32 page_cnt;
6333 enum _ecore_status_t rc = ECORE_SUCCESS;
6334
6335 if (mode == ECORE_CHAIN_MODE_SINGLE)
6336 page_cnt = 1;
6337 else
6338 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
6339
6340 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
6341 page_cnt);
6342 if (rc) {
6343 DP_NOTICE(p_dev, false,
6344 "Cannot allocate a chain with the given arguments:\n"
6345 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
6346 intended_use, mode, cnt_type, num_elems, elem_size);
6347 return rc;
6348 }
6349
6350 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
6351 mode, cnt_type, p_dev->dp_ctx);
6352
6353 switch (mode) {
6354 case ECORE_CHAIN_MODE_NEXT_PTR:
6355 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
6356 break;
6357 case ECORE_CHAIN_MODE_SINGLE:
6358 rc = ecore_chain_alloc_single(p_dev, p_chain);
6359 break;
6360 case ECORE_CHAIN_MODE_PBL:
6361 rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
6362 break;
6363 }
6364 if (rc)
6365 goto nomem;
6366
6367 return ECORE_SUCCESS;
6368
6369 nomem:
6370 ecore_chain_free(p_dev, p_chain);
6371 return rc;
6372 }
6373
ecore_fw_l2_queue(struct ecore_hwfn * p_hwfn,u16 src_id,u16 * dst_id)6374 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
6375 u16 src_id, u16 *dst_id)
6376 {
6377 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
6378 u16 min, max;
6379
6380 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
6381 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
6382 DP_NOTICE(p_hwfn, true, "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
6383 src_id, min, max);
6384
6385 return ECORE_INVAL;
6386 }
6387
6388 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
6389
6390 return ECORE_SUCCESS;
6391 }
6392
ecore_fw_vport(struct ecore_hwfn * p_hwfn,u8 src_id,u8 * dst_id)6393 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
6394 u8 src_id, u8 *dst_id)
6395 {
6396 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
6397 u8 min, max;
6398
6399 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
6400 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
6401 DP_NOTICE(p_hwfn, true, "vport id [%d] is not valid, available indices [%d - %d]\n",
6402 src_id, min, max);
6403
6404 return ECORE_INVAL;
6405 }
6406
6407 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
6408
6409 return ECORE_SUCCESS;
6410 }
6411
ecore_fw_rss_eng(struct ecore_hwfn * p_hwfn,u8 src_id,u8 * dst_id)6412 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
6413 u8 src_id, u8 *dst_id)
6414 {
6415 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
6416 u8 min, max;
6417
6418 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
6419 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
6420 DP_NOTICE(p_hwfn, true, "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
6421 src_id, min, max);
6422
6423 return ECORE_INVAL;
6424 }
6425
6426 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
6427
6428 return ECORE_SUCCESS;
6429 }
6430
6431 enum _ecore_status_t
ecore_llh_set_function_as_default(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6432 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
6433 struct ecore_ptt *p_ptt)
6434 {
6435 if (OSAL_TEST_BIT(ECORE_MF_NEED_DEF_PF, &p_hwfn->p_dev->mf_bits)) {
6436 ecore_wr(p_hwfn, p_ptt,
6437 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
6438 1 << p_hwfn->abs_pf_id / 2);
6439 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
6440 return ECORE_SUCCESS;
6441 } else {
6442 DP_NOTICE(p_hwfn, false,
6443 "This function can't be set as default\n");
6444 return ECORE_INVAL;
6445 }
6446 }
6447
ecore_set_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 hw_addr,void * p_eth_qzone,osal_size_t eth_qzone_size,u8 timeset)6448 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
6449 struct ecore_ptt *p_ptt,
6450 u32 hw_addr, void *p_eth_qzone,
6451 osal_size_t eth_qzone_size,
6452 u8 timeset)
6453 {
6454 struct coalescing_timeset *p_coal_timeset;
6455
6456 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
6457 DP_NOTICE(p_hwfn, true,
6458 "Coalescing configuration not enabled\n");
6459 return ECORE_INVAL;
6460 }
6461
6462 p_coal_timeset = p_eth_qzone;
6463 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
6464 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
6465 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
6466 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
6467
6468 return ECORE_SUCCESS;
6469 }
6470
ecore_set_queue_coalesce(struct ecore_hwfn * p_hwfn,u16 rx_coal,u16 tx_coal,void * p_handle)6471 enum _ecore_status_t ecore_set_queue_coalesce(struct ecore_hwfn *p_hwfn,
6472 u16 rx_coal, u16 tx_coal,
6473 void *p_handle)
6474 {
6475 struct ecore_queue_cid *p_cid = (struct ecore_queue_cid *)p_handle;
6476 enum _ecore_status_t rc = ECORE_SUCCESS;
6477 struct ecore_ptt *p_ptt;
6478
6479 /* TODO - Configuring a single queue's coalescing but
6480 * claiming all queues are abiding same configuration
6481 * for PF and VF both.
6482 */
6483
6484 #ifdef CONFIG_ECORE_SRIOV
6485 if (IS_VF(p_hwfn->p_dev))
6486 return ecore_vf_pf_set_coalesce(p_hwfn, rx_coal,
6487 tx_coal, p_cid);
6488 #endif /* #ifdef CONFIG_ECORE_SRIOV */
6489
6490 p_ptt = ecore_ptt_acquire(p_hwfn);
6491 if (!p_ptt)
6492 return ECORE_AGAIN;
6493
6494 if (rx_coal) {
6495 rc = ecore_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
6496 if (rc)
6497 goto out;
6498 p_hwfn->p_dev->rx_coalesce_usecs = rx_coal;
6499 }
6500
6501 if (tx_coal) {
6502 rc = ecore_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
6503 if (rc)
6504 goto out;
6505 p_hwfn->p_dev->tx_coalesce_usecs = tx_coal;
6506 }
6507 out:
6508 ecore_ptt_release(p_hwfn, p_ptt);
6509
6510 return rc;
6511 }
6512
ecore_set_rxq_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 coalesce,struct ecore_queue_cid * p_cid)6513 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
6514 struct ecore_ptt *p_ptt,
6515 u16 coalesce,
6516 struct ecore_queue_cid *p_cid)
6517 {
6518 struct ustorm_eth_queue_zone eth_qzone;
6519 u8 timeset, timer_res;
6520 u32 address;
6521 enum _ecore_status_t rc;
6522
6523 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6524 if (coalesce <= 0x7F)
6525 timer_res = 0;
6526 else if (coalesce <= 0xFF)
6527 timer_res = 1;
6528 else if (coalesce <= 0x1FF)
6529 timer_res = 2;
6530 else {
6531 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6532 return ECORE_INVAL;
6533 }
6534 timeset = (u8)(coalesce >> timer_res);
6535
6536 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6537 p_cid->sb_igu_id, false);
6538 if (rc != ECORE_SUCCESS)
6539 goto out;
6540
6541 address = BAR0_MAP_REG_USDM_RAM +
6542 USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6543
6544 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6545 sizeof(struct ustorm_eth_queue_zone), timeset);
6546 if (rc != ECORE_SUCCESS)
6547 goto out;
6548
6549 out:
6550 return rc;
6551 }
6552
ecore_set_txq_coalesce(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 coalesce,struct ecore_queue_cid * p_cid)6553 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
6554 struct ecore_ptt *p_ptt,
6555 u16 coalesce,
6556 struct ecore_queue_cid *p_cid)
6557 {
6558 struct xstorm_eth_queue_zone eth_qzone;
6559 u8 timeset, timer_res;
6560 u32 address;
6561 enum _ecore_status_t rc;
6562
6563 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
6564 if (coalesce <= 0x7F)
6565 timer_res = 0;
6566 else if (coalesce <= 0xFF)
6567 timer_res = 1;
6568 else if (coalesce <= 0x1FF)
6569 timer_res = 2;
6570 else {
6571 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
6572 return ECORE_INVAL;
6573 }
6574 timeset = (u8)(coalesce >> timer_res);
6575
6576 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res,
6577 p_cid->sb_igu_id, true);
6578 if (rc != ECORE_SUCCESS)
6579 goto out;
6580
6581 address = BAR0_MAP_REG_XSDM_RAM +
6582 XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
6583
6584 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, ð_qzone,
6585 sizeof(struct xstorm_eth_queue_zone), timeset);
6586 out:
6587 return rc;
6588 }
6589
6590 /* Calculate final WFQ values for all vports and configure it.
6591 * After this configuration each vport must have
6592 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
6593 */
ecore_configure_wfq_for_all_vports(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 min_pf_rate)6594 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6595 struct ecore_ptt *p_ptt,
6596 u32 min_pf_rate)
6597 {
6598 struct init_qm_vport_params *vport_params;
6599 int i;
6600
6601 vport_params = p_hwfn->qm_info.qm_vport_params;
6602
6603 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6604 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6605
6606 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
6607 min_pf_rate;
6608 ecore_init_vport_wfq(p_hwfn, p_ptt,
6609 vport_params[i].first_tx_pq_id,
6610 vport_params[i].vport_wfq);
6611 }
6612 }
6613
ecore_init_wfq_default_param(struct ecore_hwfn * p_hwfn)6614 static void ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn)
6615
6616 {
6617 int i;
6618
6619 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
6620 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
6621 }
6622
ecore_disable_wfq_for_all_vports(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6623 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
6624 struct ecore_ptt *p_ptt)
6625 {
6626 struct init_qm_vport_params *vport_params;
6627 int i;
6628
6629 vport_params = p_hwfn->qm_info.qm_vport_params;
6630
6631 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6632 ecore_init_wfq_default_param(p_hwfn);
6633 ecore_init_vport_wfq(p_hwfn, p_ptt,
6634 vport_params[i].first_tx_pq_id,
6635 vport_params[i].vport_wfq);
6636 }
6637 }
6638
6639 /* This function performs several validations for WFQ
6640 * configuration and required min rate for a given vport
6641 * 1. req_rate must be greater than one percent of min_pf_rate.
6642 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
6643 * rates to get less than one percent of min_pf_rate.
6644 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
6645 */
ecore_init_wfq_param(struct ecore_hwfn * p_hwfn,u16 vport_id,u32 req_rate,u32 min_pf_rate)6646 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
6647 u16 vport_id, u32 req_rate,
6648 u32 min_pf_rate)
6649 {
6650 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
6651 int non_requested_count = 0, req_count = 0, i, num_vports;
6652
6653 num_vports = p_hwfn->qm_info.num_vports;
6654
6655 /* Accounting for the vports which are configured for WFQ explicitly */
6656 for (i = 0; i < num_vports; i++) {
6657 u32 tmp_speed;
6658
6659 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
6660 req_count++;
6661 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
6662 total_req_min_rate += tmp_speed;
6663 }
6664 }
6665
6666 /* Include current vport data as well */
6667 req_count++;
6668 total_req_min_rate += req_rate;
6669 non_requested_count = num_vports - req_count;
6670
6671 /* validate possible error cases */
6672 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
6673 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6674 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6675 vport_id, req_rate, min_pf_rate);
6676 return ECORE_INVAL;
6677 }
6678
6679 /* TBD - for number of vports greater than 100 */
6680 if (num_vports > ECORE_WFQ_UNIT) {
6681 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6682 "Number of vports is greater than %d\n",
6683 ECORE_WFQ_UNIT);
6684 return ECORE_INVAL;
6685 }
6686
6687 if (total_req_min_rate > min_pf_rate) {
6688 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6689 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
6690 total_req_min_rate, min_pf_rate);
6691 return ECORE_INVAL;
6692 }
6693
6694 /* Data left for non requested vports */
6695 total_left_rate = min_pf_rate - total_req_min_rate;
6696 left_rate_per_vp = total_left_rate / non_requested_count;
6697
6698 /* validate if non requested get < 1% of min bw */
6699 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
6700 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6701 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
6702 left_rate_per_vp, min_pf_rate);
6703 return ECORE_INVAL;
6704 }
6705
6706 /* now req_rate for given vport passes all scenarios.
6707 * assign final wfq rates to all vports.
6708 */
6709 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
6710 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
6711
6712 for (i = 0; i < num_vports; i++) {
6713 if (p_hwfn->qm_info.wfq_data[i].configured)
6714 continue;
6715
6716 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
6717 }
6718
6719 return ECORE_SUCCESS;
6720 }
6721
__ecore_configure_vport_wfq(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u16 vp_id,u32 rate)6722 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
6723 struct ecore_ptt *p_ptt,
6724 u16 vp_id, u32 rate)
6725 {
6726 struct ecore_mcp_link_state *p_link;
6727 int rc = ECORE_SUCCESS;
6728
6729 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
6730
6731 if (!p_link->min_pf_rate) {
6732 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
6733 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
6734 return rc;
6735 }
6736
6737 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
6738
6739 if (rc == ECORE_SUCCESS)
6740 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
6741 p_link->min_pf_rate);
6742 else
6743 DP_NOTICE(p_hwfn, false,
6744 "Validation failed while configuring min rate\n");
6745
6746 return rc;
6747 }
6748
__ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,u32 min_pf_rate)6749 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
6750 struct ecore_ptt *p_ptt,
6751 u32 min_pf_rate)
6752 {
6753 bool use_wfq = false;
6754 int rc = ECORE_SUCCESS;
6755 u16 i;
6756
6757 /* Validate all pre configured vports for wfq */
6758 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
6759 u32 rate;
6760
6761 if (!p_hwfn->qm_info.wfq_data[i].configured)
6762 continue;
6763
6764 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
6765 use_wfq = true;
6766
6767 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
6768 if (rc != ECORE_SUCCESS) {
6769 DP_NOTICE(p_hwfn, false,
6770 "WFQ validation failed while configuring min rate\n");
6771 break;
6772 }
6773 }
6774
6775 if (rc == ECORE_SUCCESS && use_wfq)
6776 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
6777 else
6778 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6779
6780 return rc;
6781 }
6782
6783 /* Main API for ecore clients to configure vport min rate.
6784 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
6785 * rate - Speed in Mbps needs to be assigned to a given vport.
6786 */
ecore_configure_vport_wfq(struct ecore_dev * p_dev,u16 vp_id,u32 rate)6787 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
6788 {
6789 int i, rc = ECORE_INVAL;
6790
6791 /* TBD - for multiple hardware functions - that is 100 gig */
6792 if (ECORE_IS_CMT(p_dev)) {
6793 DP_NOTICE(p_dev, false,
6794 "WFQ configuration is not supported for this device\n");
6795 return rc;
6796 }
6797
6798 for_each_hwfn(p_dev, i) {
6799 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6800 struct ecore_ptt *p_ptt;
6801
6802 p_ptt = ecore_ptt_acquire(p_hwfn);
6803 if (!p_ptt)
6804 return ECORE_TIMEOUT;
6805
6806 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
6807
6808 if (rc != ECORE_SUCCESS) {
6809 ecore_ptt_release(p_hwfn, p_ptt);
6810 return rc;
6811 }
6812
6813 ecore_ptt_release(p_hwfn, p_ptt);
6814 }
6815
6816 return rc;
6817 }
6818
6819 /* API to configure WFQ from mcp link change */
ecore_configure_vp_wfq_on_link_change(struct ecore_dev * p_dev,struct ecore_ptt * p_ptt,u32 min_pf_rate)6820 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
6821 struct ecore_ptt *p_ptt,
6822 u32 min_pf_rate)
6823 {
6824 int i;
6825
6826 /* TBD - for multiple hardware functions - that is 100 gig */
6827 if (ECORE_IS_CMT(p_dev)) {
6828 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
6829 "WFQ configuration is not supported for this device\n");
6830 return;
6831 }
6832
6833 for_each_hwfn(p_dev, i) {
6834 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6835
6836 __ecore_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
6837 min_pf_rate);
6838 }
6839 }
6840
__ecore_configure_pf_max_bandwidth(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_mcp_link_state * p_link,u8 max_bw)6841 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
6842 struct ecore_ptt *p_ptt,
6843 struct ecore_mcp_link_state *p_link,
6844 u8 max_bw)
6845 {
6846 int rc = ECORE_SUCCESS;
6847
6848 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
6849
6850 if (!p_link->line_speed && (max_bw != 100))
6851 return rc;
6852
6853 p_link->speed = (p_link->line_speed * max_bw) / 100;
6854 p_hwfn->qm_info.pf_rl = p_link->speed;
6855
6856 /* Since the limiter also affects Tx-switched traffic, we don't want it
6857 * to limit such traffic in case there's no actual limit.
6858 * In that case, set limit to imaginary high boundary.
6859 */
6860 if (max_bw == 100)
6861 p_hwfn->qm_info.pf_rl = 100000;
6862
6863 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
6864 p_hwfn->qm_info.pf_rl);
6865
6866 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6867 "Configured MAX bandwidth to be %08x Mb/sec\n",
6868 p_link->speed);
6869
6870 return rc;
6871 }
6872
6873 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
ecore_configure_pf_max_bandwidth(struct ecore_dev * p_dev,u8 max_bw)6874 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
6875 {
6876 int i, rc = ECORE_INVAL;
6877
6878 if (max_bw < 1 || max_bw > 100) {
6879 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
6880 return rc;
6881 }
6882
6883 for_each_hwfn(p_dev, i) {
6884 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6885 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6886 struct ecore_mcp_link_state *p_link;
6887 struct ecore_ptt *p_ptt;
6888
6889 p_link = &p_lead->mcp_info->link_output;
6890
6891 p_ptt = ecore_ptt_acquire(p_hwfn);
6892 if (!p_ptt)
6893 return ECORE_TIMEOUT;
6894
6895 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
6896 p_link, max_bw);
6897
6898 ecore_ptt_release(p_hwfn, p_ptt);
6899
6900 if (rc != ECORE_SUCCESS)
6901 break;
6902 }
6903
6904 return rc;
6905 }
6906
__ecore_configure_pf_min_bandwidth(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,struct ecore_mcp_link_state * p_link,u8 min_bw)6907 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
6908 struct ecore_ptt *p_ptt,
6909 struct ecore_mcp_link_state *p_link,
6910 u8 min_bw)
6911 {
6912 int rc = ECORE_SUCCESS;
6913
6914 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
6915 p_hwfn->qm_info.pf_wfq = min_bw;
6916
6917 if (!p_link->line_speed)
6918 return rc;
6919
6920 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
6921
6922 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
6923
6924 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
6925 "Configured MIN bandwidth to be %d Mb/sec\n",
6926 p_link->min_pf_rate);
6927
6928 return rc;
6929 }
6930
6931 /* Main API to configure PF min bandwidth where bw range is [1-100] */
ecore_configure_pf_min_bandwidth(struct ecore_dev * p_dev,u8 min_bw)6932 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
6933 {
6934 int i, rc = ECORE_INVAL;
6935
6936 if (min_bw < 1 || min_bw > 100) {
6937 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
6938 return rc;
6939 }
6940
6941 for_each_hwfn(p_dev, i) {
6942 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
6943 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
6944 struct ecore_mcp_link_state *p_link;
6945 struct ecore_ptt *p_ptt;
6946
6947 p_link = &p_lead->mcp_info->link_output;
6948
6949 p_ptt = ecore_ptt_acquire(p_hwfn);
6950 if (!p_ptt)
6951 return ECORE_TIMEOUT;
6952
6953 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
6954 p_link, min_bw);
6955 if (rc != ECORE_SUCCESS) {
6956 ecore_ptt_release(p_hwfn, p_ptt);
6957 return rc;
6958 }
6959
6960 if (p_link->min_pf_rate) {
6961 u32 min_rate = p_link->min_pf_rate;
6962
6963 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
6964 p_ptt,
6965 min_rate);
6966 }
6967
6968 ecore_ptt_release(p_hwfn, p_ptt);
6969 }
6970
6971 return rc;
6972 }
6973
ecore_clean_wfq_db(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)6974 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
6975 {
6976 struct ecore_mcp_link_state *p_link;
6977
6978 p_link = &p_hwfn->mcp_info->link_output;
6979
6980 if (p_link->min_pf_rate)
6981 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt);
6982
6983 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
6984 sizeof(*p_hwfn->qm_info.wfq_data) *
6985 p_hwfn->qm_info.num_vports);
6986 }
6987
ecore_device_num_engines(struct ecore_dev * p_dev)6988 int ecore_device_num_engines(struct ecore_dev *p_dev)
6989 {
6990 return ECORE_IS_BB(p_dev) ? 2 : 1;
6991 }
6992
ecore_device_num_ports(struct ecore_dev * p_dev)6993 int ecore_device_num_ports(struct ecore_dev *p_dev)
6994 {
6995 return p_dev->num_ports;
6996 }
6997
ecore_set_fw_mac_addr(__le16 * fw_msb,__le16 * fw_mid,__le16 * fw_lsb,u8 * mac)6998 void ecore_set_fw_mac_addr(__le16 *fw_msb,
6999 __le16 *fw_mid,
7000 __le16 *fw_lsb,
7001 u8 *mac)
7002 {
7003 ((u8 *)fw_msb)[0] = mac[1];
7004 ((u8 *)fw_msb)[1] = mac[0];
7005 ((u8 *)fw_mid)[0] = mac[3];
7006 ((u8 *)fw_mid)[1] = mac[2];
7007 ((u8 *)fw_lsb)[0] = mac[5];
7008 ((u8 *)fw_lsb)[1] = mac[4];
7009 }
7010
ecore_set_dev_access_enable(struct ecore_dev * p_dev,bool b_enable)7011 void ecore_set_dev_access_enable(struct ecore_dev *p_dev, bool b_enable)
7012 {
7013 if (p_dev->recov_in_prog != !b_enable) {
7014 DP_INFO(p_dev, "%s access to the device\n",
7015 b_enable ? "Enable" : "Disable");
7016 p_dev->recov_in_prog = !b_enable;
7017 }
7018 }
7019
7020 #ifdef _NTDDK_
7021 #pragma warning(pop)
7022 #endif
7023