1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/jail.h> 36 #include <sys/poll.h> /* POLLIN, POLLOUT */ 37 #include <sys/kernel.h> /* types used in module initialization */ 38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 39 #include <sys/endian.h> 40 #include <sys/syscallsubr.h> /* kern_ioctl() */ 41 42 #include <sys/rwlock.h> 43 44 #include <vm/vm.h> /* vtophys */ 45 #include <vm/pmap.h> /* vtophys */ 46 #include <vm/vm_param.h> 47 #include <vm/vm_object.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_pager.h> 50 #include <vm/uma.h> 51 52 53 #include <sys/malloc.h> 54 #include <sys/socket.h> /* sockaddrs */ 55 #include <sys/selinfo.h> 56 #include <sys/kthread.h> /* kthread_add() */ 57 #include <sys/proc.h> /* PROC_LOCK() */ 58 #include <sys/unistd.h> /* RFNOWAIT */ 59 #include <sys/sched.h> /* sched_bind() */ 60 #include <sys/smp.h> /* mp_maxid */ 61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 62 #include <net/if.h> 63 #include <net/if_var.h> 64 #include <net/if_types.h> /* IFT_ETHER */ 65 #include <net/ethernet.h> /* ether_ifdetach */ 66 #include <net/if_dl.h> /* LLADDR */ 67 #include <machine/bus.h> /* bus_dmamap_* */ 68 #include <netinet/in.h> /* in6_cksum_pseudo() */ 69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 70 71 #include <net/netmap.h> 72 #include <dev/netmap/netmap_kern.h> 73 #include <net/netmap_virt.h> 74 #include <dev/netmap/netmap_mem2.h> 75 76 77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 78 79 static void 80 nm_kqueue_notify(void *opaque, int pending) 81 { 82 struct nm_selinfo *si = opaque; 83 84 /* We use a non-zero hint to distinguish this notification call 85 * from the call done in kqueue_scan(), which uses hint=0. 86 */ 87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 88 } 89 90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 91 int err; 92 93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 94 si->ntfytq = taskqueue_create(name, M_NOWAIT, 95 taskqueue_thread_enqueue, &si->ntfytq); 96 if (si->ntfytq == NULL) 97 return -ENOMEM; 98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 99 if (err) { 100 taskqueue_free(si->ntfytq); 101 si->ntfytq = NULL; 102 return err; 103 } 104 105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 107 knlist_init_mtx(&si->si.si_note, &si->m); 108 si->kqueue_users = 0; 109 110 return (0); 111 } 112 113 void 114 nm_os_selinfo_uninit(NM_SELINFO_T *si) 115 { 116 if (si->ntfytq == NULL) { 117 return; /* si was not initialized */ 118 } 119 taskqueue_drain(si->ntfytq, &si->ntfytask); 120 taskqueue_free(si->ntfytq); 121 si->ntfytq = NULL; 122 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 123 knlist_destroy(&si->si.si_note); 124 /* now we don't need the mutex anymore */ 125 mtx_destroy(&si->m); 126 } 127 128 void * 129 nm_os_malloc(size_t size) 130 { 131 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 132 } 133 134 void * 135 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 136 { 137 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 138 } 139 140 void 141 nm_os_free(void *addr) 142 { 143 free(addr, M_DEVBUF); 144 } 145 146 void 147 nm_os_ifnet_lock(void) 148 { 149 IFNET_RLOCK(); 150 } 151 152 void 153 nm_os_ifnet_unlock(void) 154 { 155 IFNET_RUNLOCK(); 156 } 157 158 static int netmap_use_count = 0; 159 160 void 161 nm_os_get_module(void) 162 { 163 netmap_use_count++; 164 } 165 166 void 167 nm_os_put_module(void) 168 { 169 netmap_use_count--; 170 } 171 172 static void 173 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 174 { 175 netmap_undo_zombie(ifp); 176 } 177 178 static void 179 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 180 { 181 netmap_make_zombie(ifp); 182 } 183 184 static eventhandler_tag nm_ifnet_ah_tag; 185 static eventhandler_tag nm_ifnet_dh_tag; 186 187 int 188 nm_os_ifnet_init(void) 189 { 190 nm_ifnet_ah_tag = 191 EVENTHANDLER_REGISTER(ifnet_arrival_event, 192 netmap_ifnet_arrival_handler, 193 NULL, EVENTHANDLER_PRI_ANY); 194 nm_ifnet_dh_tag = 195 EVENTHANDLER_REGISTER(ifnet_departure_event, 196 netmap_ifnet_departure_handler, 197 NULL, EVENTHANDLER_PRI_ANY); 198 return 0; 199 } 200 201 void 202 nm_os_ifnet_fini(void) 203 { 204 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 205 nm_ifnet_ah_tag); 206 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 207 nm_ifnet_dh_tag); 208 } 209 210 unsigned 211 nm_os_ifnet_mtu(struct ifnet *ifp) 212 { 213 #if __FreeBSD_version < 1100030 214 return ifp->if_data.ifi_mtu; 215 #else /* __FreeBSD_version >= 1100030 */ 216 return ifp->if_mtu; 217 #endif 218 } 219 220 rawsum_t 221 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 222 { 223 /* TODO XXX please use the FreeBSD implementation for this. */ 224 uint16_t *words = (uint16_t *)data; 225 int nw = len / 2; 226 int i; 227 228 for (i = 0; i < nw; i++) 229 cur_sum += be16toh(words[i]); 230 231 if (len & 1) 232 cur_sum += (data[len-1] << 8); 233 234 return cur_sum; 235 } 236 237 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 238 * return value is in network byte order. 239 */ 240 uint16_t 241 nm_os_csum_fold(rawsum_t cur_sum) 242 { 243 /* TODO XXX please use the FreeBSD implementation for this. */ 244 while (cur_sum >> 16) 245 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 246 247 return htobe16((~cur_sum) & 0xFFFF); 248 } 249 250 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 251 { 252 #if 0 253 return in_cksum_hdr((void *)iph); 254 #else 255 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 256 #endif 257 } 258 259 void 260 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 261 size_t datalen, uint16_t *check) 262 { 263 #ifdef INET 264 uint16_t pseudolen = datalen + iph->protocol; 265 266 /* Compute and insert the pseudo-header cheksum. */ 267 *check = in_pseudo(iph->saddr, iph->daddr, 268 htobe16(pseudolen)); 269 /* Compute the checksum on TCP/UDP header + payload 270 * (includes the pseudo-header). 271 */ 272 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 273 #else 274 static int notsupported = 0; 275 if (!notsupported) { 276 notsupported = 1; 277 nm_prerr("inet4 segmentation not supported"); 278 } 279 #endif 280 } 281 282 void 283 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 284 size_t datalen, uint16_t *check) 285 { 286 #ifdef INET6 287 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 288 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 289 #else 290 static int notsupported = 0; 291 if (!notsupported) { 292 notsupported = 1; 293 nm_prerr("inet6 segmentation not supported"); 294 } 295 #endif 296 } 297 298 /* on FreeBSD we send up one packet at a time */ 299 void * 300 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 301 { 302 NA(ifp)->if_input(ifp, m); 303 return NULL; 304 } 305 306 int 307 nm_os_mbuf_has_csum_offld(struct mbuf *m) 308 { 309 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 310 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 311 CSUM_SCTP_IPV6); 312 } 313 314 int 315 nm_os_mbuf_has_seg_offld(struct mbuf *m) 316 { 317 return m->m_pkthdr.csum_flags & CSUM_TSO; 318 } 319 320 static void 321 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 322 { 323 int stolen; 324 325 if (unlikely(!NM_NA_VALID(ifp))) { 326 nm_prlim(1, "Warning: RX packet intercepted, but no" 327 " emulated adapter"); 328 return; 329 } 330 331 stolen = generic_rx_handler(ifp, m); 332 if (!stolen) { 333 struct netmap_generic_adapter *gna = 334 (struct netmap_generic_adapter *)NA(ifp); 335 gna->save_if_input(ifp, m); 336 } 337 } 338 339 /* 340 * Intercept the rx routine in the standard device driver. 341 * Second argument is non-zero to intercept, 0 to restore 342 */ 343 int 344 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 345 { 346 struct netmap_adapter *na = &gna->up.up; 347 struct ifnet *ifp = na->ifp; 348 int ret = 0; 349 350 nm_os_ifnet_lock(); 351 if (intercept) { 352 if (gna->save_if_input) { 353 nm_prerr("RX on %s already intercepted", na->name); 354 ret = EBUSY; /* already set */ 355 goto out; 356 } 357 gna->save_if_input = ifp->if_input; 358 ifp->if_input = freebsd_generic_rx_handler; 359 } else { 360 if (!gna->save_if_input) { 361 nm_prerr("Failed to undo RX intercept on %s", 362 na->name); 363 ret = EINVAL; /* not saved */ 364 goto out; 365 } 366 ifp->if_input = gna->save_if_input; 367 gna->save_if_input = NULL; 368 } 369 out: 370 nm_os_ifnet_unlock(); 371 372 return ret; 373 } 374 375 376 /* 377 * Intercept the packet steering routine in the tx path, 378 * so that we can decide which queue is used for an mbuf. 379 * Second argument is non-zero to intercept, 0 to restore. 380 * On freebsd we just intercept if_transmit. 381 */ 382 int 383 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 384 { 385 struct netmap_adapter *na = &gna->up.up; 386 struct ifnet *ifp = netmap_generic_getifp(gna); 387 388 nm_os_ifnet_lock(); 389 if (intercept) { 390 na->if_transmit = ifp->if_transmit; 391 ifp->if_transmit = netmap_transmit; 392 } else { 393 ifp->if_transmit = na->if_transmit; 394 } 395 nm_os_ifnet_unlock(); 396 397 return 0; 398 } 399 400 401 /* 402 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 403 * and non-zero on error (which may be packet drops or other errors). 404 * addr and len identify the netmap buffer, m is the (preallocated) 405 * mbuf to use for transmissions. 406 * 407 * We should add a reference to the mbuf so the m_freem() at the end 408 * of the transmission does not consume resources. 409 * 410 * On FreeBSD, and on multiqueue cards, we can force the queue using 411 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 412 * i = m->m_pkthdr.flowid % adapter->num_queues; 413 * else 414 * i = curcpu % adapter->num_queues; 415 * 416 */ 417 int 418 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 419 { 420 int ret; 421 u_int len = a->len; 422 struct ifnet *ifp = a->ifp; 423 struct mbuf *m = a->m; 424 425 #if __FreeBSD_version < 1100000 426 /* 427 * Old FreeBSD versions. The mbuf has a cluster attached, 428 * we need to copy from the cluster to the netmap buffer. 429 */ 430 if (MBUF_REFCNT(m) != 1) { 431 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 432 panic("in generic_xmit_frame"); 433 } 434 if (m->m_ext.ext_size < len) { 435 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 436 len = m->m_ext.ext_size; 437 } 438 bcopy(a->addr, m->m_data, len); 439 #else /* __FreeBSD_version >= 1100000 */ 440 /* New FreeBSD versions. Link the external storage to 441 * the netmap buffer, so that no copy is necessary. */ 442 m->m_ext.ext_buf = m->m_data = a->addr; 443 m->m_ext.ext_size = len; 444 #endif /* __FreeBSD_version >= 1100000 */ 445 446 m->m_flags |= M_PKTHDR; 447 m->m_len = m->m_pkthdr.len = len; 448 449 /* mbuf refcnt is not contended, no need to use atomic 450 * (a memory barrier is enough). */ 451 SET_MBUF_REFCNT(m, 2); 452 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 453 m->m_pkthdr.flowid = a->ring_nr; 454 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 455 CURVNET_SET(ifp->if_vnet); 456 ret = NA(ifp)->if_transmit(ifp, m); 457 CURVNET_RESTORE(); 458 return ret ? -1 : 0; 459 } 460 461 462 #if __FreeBSD_version >= 1100005 463 struct netmap_adapter * 464 netmap_getna(if_t ifp) 465 { 466 return (NA((struct ifnet *)ifp)); 467 } 468 #endif /* __FreeBSD_version >= 1100005 */ 469 470 /* 471 * The following two functions are empty until we have a generic 472 * way to extract the info from the ifp 473 */ 474 int 475 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 476 { 477 return 0; 478 } 479 480 481 void 482 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 483 { 484 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 485 486 *txq = num_rings; 487 *rxq = num_rings; 488 } 489 490 void 491 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 492 { 493 494 gna->rxsg = 1; /* Supported through m_copydata. */ 495 gna->txqdisc = 0; /* Not supported. */ 496 } 497 498 void 499 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 500 { 501 mit->mit_pending = 0; 502 mit->mit_ring_idx = idx; 503 mit->mit_na = na; 504 } 505 506 507 void 508 nm_os_mitigation_start(struct nm_generic_mit *mit) 509 { 510 } 511 512 513 void 514 nm_os_mitigation_restart(struct nm_generic_mit *mit) 515 { 516 } 517 518 519 int 520 nm_os_mitigation_active(struct nm_generic_mit *mit) 521 { 522 523 return 0; 524 } 525 526 527 void 528 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 529 { 530 } 531 532 static int 533 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 534 { 535 536 return EINVAL; 537 } 538 539 static void 540 nm_vi_start(struct ifnet *ifp) 541 { 542 panic("nm_vi_start() must not be called"); 543 } 544 545 /* 546 * Index manager of persistent virtual interfaces. 547 * It is used to decide the lowest byte of the MAC address. 548 * We use the same algorithm with management of bridge port index. 549 */ 550 #define NM_VI_MAX 255 551 static struct { 552 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 553 uint8_t active; 554 struct mtx lock; 555 } nm_vi_indices; 556 557 void 558 nm_os_vi_init_index(void) 559 { 560 int i; 561 for (i = 0; i < NM_VI_MAX; i++) 562 nm_vi_indices.index[i] = i; 563 nm_vi_indices.active = 0; 564 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 565 } 566 567 /* return -1 if no index available */ 568 static int 569 nm_vi_get_index(void) 570 { 571 int ret; 572 573 mtx_lock(&nm_vi_indices.lock); 574 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 575 nm_vi_indices.index[nm_vi_indices.active++]; 576 mtx_unlock(&nm_vi_indices.lock); 577 return ret; 578 } 579 580 static void 581 nm_vi_free_index(uint8_t val) 582 { 583 int i, lim; 584 585 mtx_lock(&nm_vi_indices.lock); 586 lim = nm_vi_indices.active; 587 for (i = 0; i < lim; i++) { 588 if (nm_vi_indices.index[i] == val) { 589 /* swap index[lim-1] and j */ 590 int tmp = nm_vi_indices.index[lim-1]; 591 nm_vi_indices.index[lim-1] = val; 592 nm_vi_indices.index[i] = tmp; 593 nm_vi_indices.active--; 594 break; 595 } 596 } 597 if (lim == nm_vi_indices.active) 598 nm_prerr("Index %u not found", val); 599 mtx_unlock(&nm_vi_indices.lock); 600 } 601 #undef NM_VI_MAX 602 603 /* 604 * Implementation of a netmap-capable virtual interface that 605 * registered to the system. 606 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 607 * 608 * Note: Linux sets refcount to 0 on allocation of net_device, 609 * then increments it on registration to the system. 610 * FreeBSD sets refcount to 1 on if_alloc(), and does not 611 * increment this refcount on if_attach(). 612 */ 613 int 614 nm_os_vi_persist(const char *name, struct ifnet **ret) 615 { 616 struct ifnet *ifp; 617 u_short macaddr_hi; 618 uint32_t macaddr_mid; 619 u_char eaddr[6]; 620 int unit = nm_vi_get_index(); /* just to decide MAC address */ 621 622 if (unit < 0) 623 return EBUSY; 624 /* 625 * We use the same MAC address generation method with tap 626 * except for the highest octet is 00:be instead of 00:bd 627 */ 628 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 629 macaddr_mid = (uint32_t) ticks; 630 bcopy(&macaddr_hi, eaddr, sizeof(short)); 631 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 632 eaddr[5] = (uint8_t)unit; 633 634 ifp = if_alloc(IFT_ETHER); 635 if (ifp == NULL) { 636 nm_prerr("if_alloc failed"); 637 return ENOMEM; 638 } 639 if_initname(ifp, name, IF_DUNIT_NONE); 640 ifp->if_mtu = 65536; 641 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 642 ifp->if_init = (void *)nm_vi_dummy; 643 ifp->if_ioctl = nm_vi_dummy; 644 ifp->if_start = nm_vi_start; 645 ifp->if_mtu = ETHERMTU; 646 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 647 ifp->if_capabilities |= IFCAP_LINKSTATE; 648 ifp->if_capenable |= IFCAP_LINKSTATE; 649 650 ether_ifattach(ifp, eaddr); 651 *ret = ifp; 652 return 0; 653 } 654 655 /* unregister from the system and drop the final refcount */ 656 void 657 nm_os_vi_detach(struct ifnet *ifp) 658 { 659 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 660 ether_ifdetach(ifp); 661 if_free(ifp); 662 } 663 664 #ifdef WITH_EXTMEM 665 #include <vm/vm_map.h> 666 #include <vm/vm_kern.h> 667 struct nm_os_extmem { 668 vm_object_t obj; 669 vm_offset_t kva; 670 vm_offset_t size; 671 uintptr_t scan; 672 }; 673 674 void 675 nm_os_extmem_delete(struct nm_os_extmem *e) 676 { 677 nm_prinf("freeing %zx bytes", (size_t)e->size); 678 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 679 nm_os_free(e); 680 } 681 682 char * 683 nm_os_extmem_nextpage(struct nm_os_extmem *e) 684 { 685 char *rv = NULL; 686 if (e->scan < e->kva + e->size) { 687 rv = (char *)e->scan; 688 e->scan += PAGE_SIZE; 689 } 690 return rv; 691 } 692 693 int 694 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 695 { 696 return (e1->obj == e2->obj); 697 } 698 699 int 700 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 701 { 702 return e->size >> PAGE_SHIFT; 703 } 704 705 struct nm_os_extmem * 706 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 707 { 708 vm_map_t map; 709 vm_map_entry_t entry; 710 vm_object_t obj; 711 vm_prot_t prot; 712 vm_pindex_t index; 713 boolean_t wired; 714 struct nm_os_extmem *e = NULL; 715 int rv, error = 0; 716 717 e = nm_os_malloc(sizeof(*e)); 718 if (e == NULL) { 719 error = ENOMEM; 720 goto out; 721 } 722 723 map = &curthread->td_proc->p_vmspace->vm_map; 724 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 725 &obj, &index, &prot, &wired); 726 if (rv != KERN_SUCCESS) { 727 nm_prerr("address %lx not found", p); 728 goto out_free; 729 } 730 /* check that we are given the whole vm_object ? */ 731 vm_map_lookup_done(map, entry); 732 733 // XXX can we really use obj after releasing the map lock? 734 e->obj = obj; 735 vm_object_reference(obj); 736 /* wire the memory and add the vm_object to the kernel map, 737 * to make sure that it is not fred even if the processes that 738 * are mmap()ing it all exit 739 */ 740 e->kva = vm_map_min(kernel_map); 741 e->size = obj->size << PAGE_SHIFT; 742 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 743 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 744 VM_PROT_READ | VM_PROT_WRITE, 0); 745 if (rv != KERN_SUCCESS) { 746 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 747 goto out_rel; 748 } 749 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 750 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 751 if (rv != KERN_SUCCESS) { 752 nm_prerr("vm_map_wire failed"); 753 goto out_rem; 754 } 755 756 e->scan = e->kva; 757 758 return e; 759 760 out_rem: 761 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 762 e->obj = NULL; 763 out_rel: 764 vm_object_deallocate(e->obj); 765 out_free: 766 nm_os_free(e); 767 out: 768 if (perror) 769 *perror = error; 770 return NULL; 771 } 772 #endif /* WITH_EXTMEM */ 773 774 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 775 776 #ifdef WITH_PTNETMAP 777 #include <sys/bus.h> 778 #include <sys/rman.h> 779 #include <machine/bus.h> /* bus_dmamap_* */ 780 #include <machine/resource.h> 781 #include <dev/pci/pcivar.h> 782 #include <dev/pci/pcireg.h> 783 /* 784 * ptnetmap memory device (memdev) for freebsd guest, 785 * ssed to expose host netmap memory to the guest through a PCI BAR. 786 */ 787 788 /* 789 * ptnetmap memdev private data structure 790 */ 791 struct ptnetmap_memdev { 792 device_t dev; 793 struct resource *pci_io; 794 struct resource *pci_mem; 795 struct netmap_mem_d *nm_mem; 796 }; 797 798 static int ptn_memdev_probe(device_t); 799 static int ptn_memdev_attach(device_t); 800 static int ptn_memdev_detach(device_t); 801 static int ptn_memdev_shutdown(device_t); 802 803 static device_method_t ptn_memdev_methods[] = { 804 DEVMETHOD(device_probe, ptn_memdev_probe), 805 DEVMETHOD(device_attach, ptn_memdev_attach), 806 DEVMETHOD(device_detach, ptn_memdev_detach), 807 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 808 DEVMETHOD_END 809 }; 810 811 static driver_t ptn_memdev_driver = { 812 PTNETMAP_MEMDEV_NAME, 813 ptn_memdev_methods, 814 sizeof(struct ptnetmap_memdev), 815 }; 816 817 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 818 * below. */ 819 static devclass_t ptnetmap_devclass; 820 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 821 NULL, NULL, SI_ORDER_MIDDLE + 1); 822 823 /* 824 * Map host netmap memory through PCI-BAR in the guest OS, 825 * returning physical (nm_paddr) and virtual (nm_addr) addresses 826 * of the netmap memory mapped in the guest. 827 */ 828 int 829 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 830 void **nm_addr, uint64_t *mem_size) 831 { 832 int rid; 833 834 nm_prinf("ptn_memdev_driver iomap"); 835 836 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 837 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 838 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 839 (*mem_size << 32); 840 841 /* map memory allocator */ 842 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 843 &rid, 0, ~0, *mem_size, RF_ACTIVE); 844 if (ptn_dev->pci_mem == NULL) { 845 *nm_paddr = 0; 846 *nm_addr = NULL; 847 return ENOMEM; 848 } 849 850 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 851 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 852 853 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 854 PTNETMAP_MEM_PCI_BAR, 855 (unsigned long)(*nm_paddr), 856 (unsigned long)rman_get_size(ptn_dev->pci_mem), 857 (unsigned long)*mem_size); 858 return (0); 859 } 860 861 uint32_t 862 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 863 { 864 return bus_read_4(ptn_dev->pci_io, reg); 865 } 866 867 /* Unmap host netmap memory. */ 868 void 869 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 870 { 871 nm_prinf("ptn_memdev_driver iounmap"); 872 873 if (ptn_dev->pci_mem) { 874 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 875 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 876 ptn_dev->pci_mem = NULL; 877 } 878 } 879 880 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 881 * positive on failure */ 882 static int 883 ptn_memdev_probe(device_t dev) 884 { 885 char desc[256]; 886 887 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 888 return (ENXIO); 889 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 890 return (ENXIO); 891 892 snprintf(desc, sizeof(desc), "%s PCI adapter", 893 PTNETMAP_MEMDEV_NAME); 894 device_set_desc_copy(dev, desc); 895 896 return (BUS_PROBE_DEFAULT); 897 } 898 899 /* Device initialization routine. */ 900 static int 901 ptn_memdev_attach(device_t dev) 902 { 903 struct ptnetmap_memdev *ptn_dev; 904 int rid; 905 uint16_t mem_id; 906 907 ptn_dev = device_get_softc(dev); 908 ptn_dev->dev = dev; 909 910 pci_enable_busmaster(dev); 911 912 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 913 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 914 RF_ACTIVE); 915 if (ptn_dev->pci_io == NULL) { 916 device_printf(dev, "cannot map I/O space\n"); 917 return (ENXIO); 918 } 919 920 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 921 922 /* create guest allocator */ 923 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 924 if (ptn_dev->nm_mem == NULL) { 925 ptn_memdev_detach(dev); 926 return (ENOMEM); 927 } 928 netmap_mem_get(ptn_dev->nm_mem); 929 930 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 931 932 return (0); 933 } 934 935 /* Device removal routine. */ 936 static int 937 ptn_memdev_detach(device_t dev) 938 { 939 struct ptnetmap_memdev *ptn_dev; 940 941 ptn_dev = device_get_softc(dev); 942 943 if (ptn_dev->nm_mem) { 944 nm_prinf("ptnetmap memdev detached, host memid %u", 945 netmap_mem_get_id(ptn_dev->nm_mem)); 946 netmap_mem_put(ptn_dev->nm_mem); 947 ptn_dev->nm_mem = NULL; 948 } 949 if (ptn_dev->pci_mem) { 950 bus_release_resource(dev, SYS_RES_MEMORY, 951 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 952 ptn_dev->pci_mem = NULL; 953 } 954 if (ptn_dev->pci_io) { 955 bus_release_resource(dev, SYS_RES_IOPORT, 956 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 957 ptn_dev->pci_io = NULL; 958 } 959 960 return (0); 961 } 962 963 static int 964 ptn_memdev_shutdown(device_t dev) 965 { 966 return bus_generic_shutdown(dev); 967 } 968 969 #endif /* WITH_PTNETMAP */ 970 971 /* 972 * In order to track whether pages are still mapped, we hook into 973 * the standard cdev_pager and intercept the constructor and 974 * destructor. 975 */ 976 977 struct netmap_vm_handle_t { 978 struct cdev *dev; 979 struct netmap_priv_d *priv; 980 }; 981 982 983 static int 984 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 985 vm_ooffset_t foff, struct ucred *cred, u_short *color) 986 { 987 struct netmap_vm_handle_t *vmh = handle; 988 989 if (netmap_verbose) 990 nm_prinf("handle %p size %jd prot %d foff %jd", 991 handle, (intmax_t)size, prot, (intmax_t)foff); 992 if (color) 993 *color = 0; 994 dev_ref(vmh->dev); 995 return 0; 996 } 997 998 999 static void 1000 netmap_dev_pager_dtor(void *handle) 1001 { 1002 struct netmap_vm_handle_t *vmh = handle; 1003 struct cdev *dev = vmh->dev; 1004 struct netmap_priv_d *priv = vmh->priv; 1005 1006 if (netmap_verbose) 1007 nm_prinf("handle %p", handle); 1008 netmap_dtor(priv); 1009 free(vmh, M_DEVBUF); 1010 dev_rel(dev); 1011 } 1012 1013 1014 static int 1015 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 1016 int prot, vm_page_t *mres) 1017 { 1018 struct netmap_vm_handle_t *vmh = object->handle; 1019 struct netmap_priv_d *priv = vmh->priv; 1020 struct netmap_adapter *na = priv->np_na; 1021 vm_paddr_t paddr; 1022 vm_page_t page; 1023 vm_memattr_t memattr; 1024 vm_pindex_t pidx; 1025 1026 nm_prdis("object %p offset %jd prot %d mres %p", 1027 object, (intmax_t)offset, prot, mres); 1028 memattr = object->memattr; 1029 pidx = OFF_TO_IDX(offset); 1030 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1031 if (paddr == 0) 1032 return VM_PAGER_FAIL; 1033 1034 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1035 /* 1036 * If the passed in result page is a fake page, update it with 1037 * the new physical address. 1038 */ 1039 page = *mres; 1040 vm_page_updatefake(page, paddr, memattr); 1041 } else { 1042 /* 1043 * Replace the passed in reqpage page with our own fake page and 1044 * free up the all of the original pages. 1045 */ 1046 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 1047 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 1048 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 1049 #endif /* VM_OBJECT_WUNLOCK */ 1050 1051 VM_OBJECT_WUNLOCK(object); 1052 page = vm_page_getfake(paddr, memattr); 1053 VM_OBJECT_WLOCK(object); 1054 vm_page_lock(*mres); 1055 vm_page_free(*mres); 1056 vm_page_unlock(*mres); 1057 *mres = page; 1058 vm_page_insert(page, object, pidx); 1059 } 1060 page->valid = VM_PAGE_BITS_ALL; 1061 return (VM_PAGER_OK); 1062 } 1063 1064 1065 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1066 .cdev_pg_ctor = netmap_dev_pager_ctor, 1067 .cdev_pg_dtor = netmap_dev_pager_dtor, 1068 .cdev_pg_fault = netmap_dev_pager_fault, 1069 }; 1070 1071 1072 static int 1073 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1074 vm_size_t objsize, vm_object_t *objp, int prot) 1075 { 1076 int error; 1077 struct netmap_vm_handle_t *vmh; 1078 struct netmap_priv_d *priv; 1079 vm_object_t obj; 1080 1081 if (netmap_verbose) 1082 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1083 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1084 1085 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1086 M_NOWAIT | M_ZERO); 1087 if (vmh == NULL) 1088 return ENOMEM; 1089 vmh->dev = cdev; 1090 1091 NMG_LOCK(); 1092 error = devfs_get_cdevpriv((void**)&priv); 1093 if (error) 1094 goto err_unlock; 1095 if (priv->np_nifp == NULL) { 1096 error = EINVAL; 1097 goto err_unlock; 1098 } 1099 vmh->priv = priv; 1100 priv->np_refs++; 1101 NMG_UNLOCK(); 1102 1103 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1104 &netmap_cdev_pager_ops, objsize, prot, 1105 *foff, NULL); 1106 if (obj == NULL) { 1107 nm_prerr("cdev_pager_allocate failed"); 1108 error = EINVAL; 1109 goto err_deref; 1110 } 1111 1112 *objp = obj; 1113 return 0; 1114 1115 err_deref: 1116 NMG_LOCK(); 1117 priv->np_refs--; 1118 err_unlock: 1119 NMG_UNLOCK(); 1120 // err: 1121 free(vmh, M_DEVBUF); 1122 return error; 1123 } 1124 1125 /* 1126 * On FreeBSD the close routine is only called on the last close on 1127 * the device (/dev/netmap) so we cannot do anything useful. 1128 * To track close() on individual file descriptors we pass netmap_dtor() to 1129 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1130 * when the last fd pointing to the device is closed. 1131 * 1132 * Note that FreeBSD does not even munmap() on close() so we also have 1133 * to track mmap() ourselves, and postpone the call to 1134 * netmap_dtor() is called when the process has no open fds and no active 1135 * memory maps on /dev/netmap, as in linux. 1136 */ 1137 static int 1138 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1139 { 1140 if (netmap_verbose) 1141 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1142 dev, fflag, devtype, td); 1143 return 0; 1144 } 1145 1146 1147 static int 1148 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1149 { 1150 struct netmap_priv_d *priv; 1151 int error; 1152 1153 (void)dev; 1154 (void)oflags; 1155 (void)devtype; 1156 (void)td; 1157 1158 NMG_LOCK(); 1159 priv = netmap_priv_new(); 1160 if (priv == NULL) { 1161 error = ENOMEM; 1162 goto out; 1163 } 1164 error = devfs_set_cdevpriv(priv, netmap_dtor); 1165 if (error) { 1166 netmap_priv_delete(priv); 1167 } 1168 out: 1169 NMG_UNLOCK(); 1170 return error; 1171 } 1172 1173 /******************** kthread wrapper ****************/ 1174 #include <sys/sysproto.h> 1175 u_int 1176 nm_os_ncpus(void) 1177 { 1178 return mp_maxid + 1; 1179 } 1180 1181 struct nm_kctx_ctx { 1182 /* Userspace thread (kthread creator). */ 1183 struct thread *user_td; 1184 1185 /* worker function and parameter */ 1186 nm_kctx_worker_fn_t worker_fn; 1187 void *worker_private; 1188 1189 struct nm_kctx *nmk; 1190 1191 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1192 long type; 1193 }; 1194 1195 struct nm_kctx { 1196 struct thread *worker; 1197 struct mtx worker_lock; 1198 struct nm_kctx_ctx worker_ctx; 1199 int run; /* used to stop kthread */ 1200 int attach_user; /* kthread attached to user_process */ 1201 int affinity; 1202 }; 1203 1204 static void 1205 nm_kctx_worker(void *data) 1206 { 1207 struct nm_kctx *nmk = data; 1208 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1209 1210 if (nmk->affinity >= 0) { 1211 thread_lock(curthread); 1212 sched_bind(curthread, nmk->affinity); 1213 thread_unlock(curthread); 1214 } 1215 1216 while (nmk->run) { 1217 /* 1218 * check if the parent process dies 1219 * (when kthread is attached to user process) 1220 */ 1221 if (ctx->user_td) { 1222 PROC_LOCK(curproc); 1223 thread_suspend_check(0); 1224 PROC_UNLOCK(curproc); 1225 } else { 1226 kthread_suspend_check(); 1227 } 1228 1229 /* Continuously execute worker process. */ 1230 ctx->worker_fn(ctx->worker_private); /* worker body */ 1231 } 1232 1233 kthread_exit(); 1234 } 1235 1236 void 1237 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1238 { 1239 nmk->affinity = affinity; 1240 } 1241 1242 struct nm_kctx * 1243 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1244 { 1245 struct nm_kctx *nmk = NULL; 1246 1247 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1248 if (!nmk) 1249 return NULL; 1250 1251 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1252 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1253 nmk->worker_ctx.worker_private = cfg->worker_private; 1254 nmk->worker_ctx.type = cfg->type; 1255 nmk->affinity = -1; 1256 1257 /* attach kthread to user process (ptnetmap) */ 1258 nmk->attach_user = cfg->attach_user; 1259 1260 return nmk; 1261 } 1262 1263 int 1264 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1265 { 1266 struct proc *p = NULL; 1267 int error = 0; 1268 1269 /* Temporarily disable this function as it is currently broken 1270 * and causes kernel crashes. The failure can be triggered by 1271 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1272 return EOPNOTSUPP; 1273 1274 if (nmk->worker) 1275 return EBUSY; 1276 1277 /* check if we want to attach kthread to user process */ 1278 if (nmk->attach_user) { 1279 nmk->worker_ctx.user_td = curthread; 1280 p = curthread->td_proc; 1281 } 1282 1283 /* enable kthread main loop */ 1284 nmk->run = 1; 1285 /* create kthread */ 1286 if((error = kthread_add(nm_kctx_worker, nmk, p, 1287 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1288 nmk->worker_ctx.type))) { 1289 goto err; 1290 } 1291 1292 nm_prinf("nm_kthread started td %p", nmk->worker); 1293 1294 return 0; 1295 err: 1296 nm_prerr("nm_kthread start failed err %d", error); 1297 nmk->worker = NULL; 1298 return error; 1299 } 1300 1301 void 1302 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1303 { 1304 if (!nmk->worker) 1305 return; 1306 1307 /* tell to kthread to exit from main loop */ 1308 nmk->run = 0; 1309 1310 /* wake up kthread if it sleeps */ 1311 kthread_resume(nmk->worker); 1312 1313 nmk->worker = NULL; 1314 } 1315 1316 void 1317 nm_os_kctx_destroy(struct nm_kctx *nmk) 1318 { 1319 if (!nmk) 1320 return; 1321 1322 if (nmk->worker) 1323 nm_os_kctx_worker_stop(nmk); 1324 1325 free(nmk, M_DEVBUF); 1326 } 1327 1328 /******************** kqueue support ****************/ 1329 1330 /* 1331 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1332 * needs to call knote() to wake up kqueue listeners. 1333 * This operation is deferred to a taskqueue in order to avoid possible 1334 * lock order reversals; these may happen because knote() grabs a 1335 * private lock associated to the 'si' (see struct selinfo, 1336 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1337 * can be called while holding the lock associated to a different 1338 * 'si'. 1339 * When calling knote() we use a non-zero 'hint' argument to inform 1340 * the netmap_knrw() function that it is being called from 1341 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1342 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1343 * call netmap_poll(). 1344 * 1345 * The netmap_kqfilter() function registers one or another f_event 1346 * depending on read or write mode. A pointer to the struct 1347 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1348 * be passed to netmap_poll(). We pass NULL as a third argument to 1349 * netmap_poll(), so that the latter only runs the txsync/rxsync 1350 * (if necessary), and skips the nm_os_selrecord() calls. 1351 */ 1352 1353 1354 void 1355 nm_os_selwakeup(struct nm_selinfo *si) 1356 { 1357 selwakeuppri(&si->si, PI_NET); 1358 if (si->kqueue_users > 0) { 1359 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1360 } 1361 } 1362 1363 void 1364 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1365 { 1366 selrecord(td, &si->si); 1367 } 1368 1369 static void 1370 netmap_knrdetach(struct knote *kn) 1371 { 1372 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1373 struct nm_selinfo *si = priv->np_si[NR_RX]; 1374 1375 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1376 NMG_LOCK(); 1377 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1378 si->mtxname)); 1379 si->kqueue_users--; 1380 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1381 NMG_UNLOCK(); 1382 } 1383 1384 static void 1385 netmap_knwdetach(struct knote *kn) 1386 { 1387 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1388 struct nm_selinfo *si = priv->np_si[NR_TX]; 1389 1390 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1391 NMG_LOCK(); 1392 si->kqueue_users--; 1393 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1394 NMG_UNLOCK(); 1395 } 1396 1397 /* 1398 * Callback triggered by netmap notifications (see netmap_notify()), 1399 * and by the application calling kevent(). In the former case we 1400 * just return 1 (events ready), since we are not able to do better. 1401 * In the latter case we use netmap_poll() to see which events are 1402 * ready. 1403 */ 1404 static int 1405 netmap_knrw(struct knote *kn, long hint, int events) 1406 { 1407 struct netmap_priv_d *priv; 1408 int revents; 1409 1410 if (hint != 0) { 1411 /* Called from netmap_notify(), typically from a 1412 * thread different from the one issuing kevent(). 1413 * Assume we are ready. */ 1414 return 1; 1415 } 1416 1417 /* Called from kevent(). */ 1418 priv = kn->kn_hook; 1419 revents = netmap_poll(priv, events, /*thread=*/NULL); 1420 1421 return (events & revents) ? 1 : 0; 1422 } 1423 1424 static int 1425 netmap_knread(struct knote *kn, long hint) 1426 { 1427 return netmap_knrw(kn, hint, POLLIN); 1428 } 1429 1430 static int 1431 netmap_knwrite(struct knote *kn, long hint) 1432 { 1433 return netmap_knrw(kn, hint, POLLOUT); 1434 } 1435 1436 static struct filterops netmap_rfiltops = { 1437 .f_isfd = 1, 1438 .f_detach = netmap_knrdetach, 1439 .f_event = netmap_knread, 1440 }; 1441 1442 static struct filterops netmap_wfiltops = { 1443 .f_isfd = 1, 1444 .f_detach = netmap_knwdetach, 1445 .f_event = netmap_knwrite, 1446 }; 1447 1448 1449 /* 1450 * This is called when a thread invokes kevent() to record 1451 * a change in the configuration of the kqueue(). 1452 * The 'priv' is the one associated to the open netmap device. 1453 */ 1454 static int 1455 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1456 { 1457 struct netmap_priv_d *priv; 1458 int error; 1459 struct netmap_adapter *na; 1460 struct nm_selinfo *si; 1461 int ev = kn->kn_filter; 1462 1463 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1464 nm_prerr("bad filter request %d", ev); 1465 return 1; 1466 } 1467 error = devfs_get_cdevpriv((void**)&priv); 1468 if (error) { 1469 nm_prerr("device not yet setup"); 1470 return 1; 1471 } 1472 na = priv->np_na; 1473 if (na == NULL) { 1474 nm_prerr("no netmap adapter for this file descriptor"); 1475 return 1; 1476 } 1477 /* the si is indicated in the priv */ 1478 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1479 kn->kn_fop = (ev == EVFILT_WRITE) ? 1480 &netmap_wfiltops : &netmap_rfiltops; 1481 kn->kn_hook = priv; 1482 NMG_LOCK(); 1483 si->kqueue_users++; 1484 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1485 NMG_UNLOCK(); 1486 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1487 1488 return 0; 1489 } 1490 1491 static int 1492 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1493 { 1494 struct netmap_priv_d *priv; 1495 if (devfs_get_cdevpriv((void **)&priv)) { 1496 return POLLERR; 1497 } 1498 return netmap_poll(priv, events, td); 1499 } 1500 1501 static int 1502 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1503 int ffla __unused, struct thread *td) 1504 { 1505 int error; 1506 struct netmap_priv_d *priv; 1507 1508 CURVNET_SET(TD_TO_VNET(td)); 1509 error = devfs_get_cdevpriv((void **)&priv); 1510 if (error) { 1511 /* XXX ENOENT should be impossible, since the priv 1512 * is now created in the open */ 1513 if (error == ENOENT) 1514 error = ENXIO; 1515 goto out; 1516 } 1517 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1518 out: 1519 CURVNET_RESTORE(); 1520 1521 return error; 1522 } 1523 1524 void 1525 nm_os_onattach(struct ifnet *ifp) 1526 { 1527 ifp->if_capabilities |= IFCAP_NETMAP; 1528 } 1529 1530 void 1531 nm_os_onenter(struct ifnet *ifp) 1532 { 1533 struct netmap_adapter *na = NA(ifp); 1534 1535 na->if_transmit = ifp->if_transmit; 1536 ifp->if_transmit = netmap_transmit; 1537 ifp->if_capenable |= IFCAP_NETMAP; 1538 } 1539 1540 void 1541 nm_os_onexit(struct ifnet *ifp) 1542 { 1543 struct netmap_adapter *na = NA(ifp); 1544 1545 ifp->if_transmit = na->if_transmit; 1546 ifp->if_capenable &= ~IFCAP_NETMAP; 1547 } 1548 1549 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1550 struct cdevsw netmap_cdevsw = { 1551 .d_version = D_VERSION, 1552 .d_name = "netmap", 1553 .d_open = netmap_open, 1554 .d_mmap_single = netmap_mmap_single, 1555 .d_ioctl = freebsd_netmap_ioctl, 1556 .d_poll = freebsd_netmap_poll, 1557 .d_kqfilter = netmap_kqfilter, 1558 .d_close = netmap_close, 1559 }; 1560 /*--- end of kqueue support ----*/ 1561 1562 /* 1563 * Kernel entry point. 1564 * 1565 * Initialize/finalize the module and return. 1566 * 1567 * Return 0 on success, errno on failure. 1568 */ 1569 static int 1570 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1571 { 1572 int error = 0; 1573 1574 switch (event) { 1575 case MOD_LOAD: 1576 error = netmap_init(); 1577 break; 1578 1579 case MOD_UNLOAD: 1580 /* 1581 * if some one is still using netmap, 1582 * then the module can not be unloaded. 1583 */ 1584 if (netmap_use_count) { 1585 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1586 netmap_use_count); 1587 error = EBUSY; 1588 break; 1589 } 1590 netmap_fini(); 1591 break; 1592 1593 default: 1594 error = EOPNOTSUPP; 1595 break; 1596 } 1597 1598 return (error); 1599 } 1600 1601 #ifdef DEV_MODULE_ORDERED 1602 /* 1603 * The netmap module contains three drivers: (i) the netmap character device 1604 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1605 * device driver. The attach() routines of both (ii) and (iii) need the 1606 * lock of the global allocator, and such lock is initialized in netmap_init(), 1607 * which is part of (i). 1608 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1609 * the 'order' parameter of driver declaration macros. For (i), we specify 1610 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1611 * macros for (ii) and (iii). 1612 */ 1613 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1614 #else /* !DEV_MODULE_ORDERED */ 1615 DEV_MODULE(netmap, netmap_loader, NULL); 1616 #endif /* DEV_MODULE_ORDERED */ 1617 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1618 MODULE_VERSION(netmap, 1); 1619 /* reduce conditional code */ 1620 // linux API, use for the knlist in FreeBSD 1621 /* use a private mutex for the knlist */ 1622