1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/jail.h>
36 #include <sys/poll.h> /* POLLIN, POLLOUT */
37 #include <sys/kernel.h> /* types used in module initialization */
38 #include <sys/conf.h> /* DEV_MODULE_ORDERED */
39 #include <sys/endian.h>
40 #include <sys/syscallsubr.h> /* kern_ioctl() */
41
42 #include <sys/rwlock.h>
43
44 #include <vm/vm.h> /* vtophys */
45 #include <vm/pmap.h> /* vtophys */
46 #include <vm/vm_param.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/vm_pager.h>
50 #include <vm/uma.h>
51
52
53 #include <sys/malloc.h>
54 #include <sys/socket.h> /* sockaddrs */
55 #include <sys/selinfo.h>
56 #include <sys/kthread.h> /* kthread_add() */
57 #include <sys/proc.h> /* PROC_LOCK() */
58 #include <sys/unistd.h> /* RFNOWAIT */
59 #include <sys/sched.h> /* sched_bind() */
60 #include <sys/smp.h> /* mp_maxid */
61 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_types.h> /* IFT_ETHER */
65 #include <net/ethernet.h> /* ether_ifdetach */
66 #include <net/if_dl.h> /* LLADDR */
67 #include <machine/bus.h> /* bus_dmamap_* */
68 #include <netinet/in.h> /* in6_cksum_pseudo() */
69 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */
70
71 #include <net/netmap.h>
72 #include <dev/netmap/netmap_kern.h>
73 #include <net/netmap_virt.h>
74 #include <dev/netmap/netmap_mem2.h>
75
76
77 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
78
79 static void
nm_kqueue_notify(void * opaque,int pending)80 nm_kqueue_notify(void *opaque, int pending)
81 {
82 struct nm_selinfo *si = opaque;
83
84 /* We use a non-zero hint to distinguish this notification call
85 * from the call done in kqueue_scan(), which uses hint=0.
86 */
87 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
88 }
89
nm_os_selinfo_init(NM_SELINFO_T * si,const char * name)90 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
91 int err;
92
93 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
94 si->ntfytq = taskqueue_create(name, M_NOWAIT,
95 taskqueue_thread_enqueue, &si->ntfytq);
96 if (si->ntfytq == NULL)
97 return -ENOMEM;
98 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
99 if (err) {
100 taskqueue_free(si->ntfytq);
101 si->ntfytq = NULL;
102 return err;
103 }
104
105 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
106 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
107 knlist_init_mtx(&si->si.si_note, &si->m);
108 si->kqueue_users = 0;
109
110 return (0);
111 }
112
113 void
nm_os_selinfo_uninit(NM_SELINFO_T * si)114 nm_os_selinfo_uninit(NM_SELINFO_T *si)
115 {
116 if (si->ntfytq == NULL) {
117 return; /* si was not initialized */
118 }
119 taskqueue_drain(si->ntfytq, &si->ntfytask);
120 taskqueue_free(si->ntfytq);
121 si->ntfytq = NULL;
122 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
123 knlist_destroy(&si->si.si_note);
124 /* now we don't need the mutex anymore */
125 mtx_destroy(&si->m);
126 }
127
128 void *
nm_os_malloc(size_t size)129 nm_os_malloc(size_t size)
130 {
131 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
132 }
133
134 void *
nm_os_realloc(void * addr,size_t new_size,size_t old_size __unused)135 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
136 {
137 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
138 }
139
140 void
nm_os_free(void * addr)141 nm_os_free(void *addr)
142 {
143 free(addr, M_DEVBUF);
144 }
145
146 void
nm_os_ifnet_lock(void)147 nm_os_ifnet_lock(void)
148 {
149 IFNET_RLOCK();
150 }
151
152 void
nm_os_ifnet_unlock(void)153 nm_os_ifnet_unlock(void)
154 {
155 IFNET_RUNLOCK();
156 }
157
158 static int netmap_use_count = 0;
159
160 void
nm_os_get_module(void)161 nm_os_get_module(void)
162 {
163 netmap_use_count++;
164 }
165
166 void
nm_os_put_module(void)167 nm_os_put_module(void)
168 {
169 netmap_use_count--;
170 }
171
172 static void
netmap_ifnet_arrival_handler(void * arg __unused,struct ifnet * ifp)173 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
174 {
175 netmap_undo_zombie(ifp);
176 }
177
178 static void
netmap_ifnet_departure_handler(void * arg __unused,struct ifnet * ifp)179 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
180 {
181 netmap_make_zombie(ifp);
182 }
183
184 static eventhandler_tag nm_ifnet_ah_tag;
185 static eventhandler_tag nm_ifnet_dh_tag;
186
187 int
nm_os_ifnet_init(void)188 nm_os_ifnet_init(void)
189 {
190 nm_ifnet_ah_tag =
191 EVENTHANDLER_REGISTER(ifnet_arrival_event,
192 netmap_ifnet_arrival_handler,
193 NULL, EVENTHANDLER_PRI_ANY);
194 nm_ifnet_dh_tag =
195 EVENTHANDLER_REGISTER(ifnet_departure_event,
196 netmap_ifnet_departure_handler,
197 NULL, EVENTHANDLER_PRI_ANY);
198 return 0;
199 }
200
201 void
nm_os_ifnet_fini(void)202 nm_os_ifnet_fini(void)
203 {
204 EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
205 nm_ifnet_ah_tag);
206 EVENTHANDLER_DEREGISTER(ifnet_departure_event,
207 nm_ifnet_dh_tag);
208 }
209
210 unsigned
nm_os_ifnet_mtu(struct ifnet * ifp)211 nm_os_ifnet_mtu(struct ifnet *ifp)
212 {
213 #if __FreeBSD_version < 1100030
214 return ifp->if_data.ifi_mtu;
215 #else /* __FreeBSD_version >= 1100030 */
216 return ifp->if_mtu;
217 #endif
218 }
219
220 rawsum_t
nm_os_csum_raw(uint8_t * data,size_t len,rawsum_t cur_sum)221 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
222 {
223 /* TODO XXX please use the FreeBSD implementation for this. */
224 uint16_t *words = (uint16_t *)data;
225 int nw = len / 2;
226 int i;
227
228 for (i = 0; i < nw; i++)
229 cur_sum += be16toh(words[i]);
230
231 if (len & 1)
232 cur_sum += (data[len-1] << 8);
233
234 return cur_sum;
235 }
236
237 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
238 * return value is in network byte order.
239 */
240 uint16_t
nm_os_csum_fold(rawsum_t cur_sum)241 nm_os_csum_fold(rawsum_t cur_sum)
242 {
243 /* TODO XXX please use the FreeBSD implementation for this. */
244 while (cur_sum >> 16)
245 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
246
247 return htobe16((~cur_sum) & 0xFFFF);
248 }
249
nm_os_csum_ipv4(struct nm_iphdr * iph)250 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
251 {
252 #if 0
253 return in_cksum_hdr((void *)iph);
254 #else
255 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
256 #endif
257 }
258
259 void
nm_os_csum_tcpudp_ipv4(struct nm_iphdr * iph,void * data,size_t datalen,uint16_t * check)260 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
261 size_t datalen, uint16_t *check)
262 {
263 #ifdef INET
264 uint16_t pseudolen = datalen + iph->protocol;
265
266 /* Compute and insert the pseudo-header cheksum. */
267 *check = in_pseudo(iph->saddr, iph->daddr,
268 htobe16(pseudolen));
269 /* Compute the checksum on TCP/UDP header + payload
270 * (includes the pseudo-header).
271 */
272 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
273 #else
274 static int notsupported = 0;
275 if (!notsupported) {
276 notsupported = 1;
277 nm_prerr("inet4 segmentation not supported");
278 }
279 #endif
280 }
281
282 void
nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr * ip6h,void * data,size_t datalen,uint16_t * check)283 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
284 size_t datalen, uint16_t *check)
285 {
286 #ifdef INET6
287 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
288 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
289 #else
290 static int notsupported = 0;
291 if (!notsupported) {
292 notsupported = 1;
293 nm_prerr("inet6 segmentation not supported");
294 }
295 #endif
296 }
297
298 /* on FreeBSD we send up one packet at a time */
299 void *
nm_os_send_up(struct ifnet * ifp,struct mbuf * m,struct mbuf * prev)300 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
301 {
302 NA(ifp)->if_input(ifp, m);
303 return NULL;
304 }
305
306 int
nm_os_mbuf_has_csum_offld(struct mbuf * m)307 nm_os_mbuf_has_csum_offld(struct mbuf *m)
308 {
309 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
310 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
311 CSUM_SCTP_IPV6);
312 }
313
314 int
nm_os_mbuf_has_seg_offld(struct mbuf * m)315 nm_os_mbuf_has_seg_offld(struct mbuf *m)
316 {
317 return m->m_pkthdr.csum_flags & CSUM_TSO;
318 }
319
320 static void
freebsd_generic_rx_handler(struct ifnet * ifp,struct mbuf * m)321 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
322 {
323 int stolen;
324
325 if (unlikely(!NM_NA_VALID(ifp))) {
326 nm_prlim(1, "Warning: RX packet intercepted, but no"
327 " emulated adapter");
328 return;
329 }
330
331 stolen = generic_rx_handler(ifp, m);
332 if (!stolen) {
333 struct netmap_generic_adapter *gna =
334 (struct netmap_generic_adapter *)NA(ifp);
335 gna->save_if_input(ifp, m);
336 }
337 }
338
339 /*
340 * Intercept the rx routine in the standard device driver.
341 * Second argument is non-zero to intercept, 0 to restore
342 */
343 int
nm_os_catch_rx(struct netmap_generic_adapter * gna,int intercept)344 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
345 {
346 struct netmap_adapter *na = &gna->up.up;
347 struct ifnet *ifp = na->ifp;
348 int ret = 0;
349
350 nm_os_ifnet_lock();
351 if (intercept) {
352 if (gna->save_if_input) {
353 nm_prerr("RX on %s already intercepted", na->name);
354 ret = EBUSY; /* already set */
355 goto out;
356 }
357 gna->save_if_input = ifp->if_input;
358 ifp->if_input = freebsd_generic_rx_handler;
359 } else {
360 if (!gna->save_if_input) {
361 nm_prerr("Failed to undo RX intercept on %s",
362 na->name);
363 ret = EINVAL; /* not saved */
364 goto out;
365 }
366 ifp->if_input = gna->save_if_input;
367 gna->save_if_input = NULL;
368 }
369 out:
370 nm_os_ifnet_unlock();
371
372 return ret;
373 }
374
375
376 /*
377 * Intercept the packet steering routine in the tx path,
378 * so that we can decide which queue is used for an mbuf.
379 * Second argument is non-zero to intercept, 0 to restore.
380 * On freebsd we just intercept if_transmit.
381 */
382 int
nm_os_catch_tx(struct netmap_generic_adapter * gna,int intercept)383 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
384 {
385 struct netmap_adapter *na = &gna->up.up;
386 struct ifnet *ifp = netmap_generic_getifp(gna);
387
388 nm_os_ifnet_lock();
389 if (intercept) {
390 na->if_transmit = ifp->if_transmit;
391 ifp->if_transmit = netmap_transmit;
392 } else {
393 ifp->if_transmit = na->if_transmit;
394 }
395 nm_os_ifnet_unlock();
396
397 return 0;
398 }
399
400
401 /*
402 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
403 * and non-zero on error (which may be packet drops or other errors).
404 * addr and len identify the netmap buffer, m is the (preallocated)
405 * mbuf to use for transmissions.
406 *
407 * We should add a reference to the mbuf so the m_freem() at the end
408 * of the transmission does not consume resources.
409 *
410 * On FreeBSD, and on multiqueue cards, we can force the queue using
411 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
412 * i = m->m_pkthdr.flowid % adapter->num_queues;
413 * else
414 * i = curcpu % adapter->num_queues;
415 *
416 */
417 int
nm_os_generic_xmit_frame(struct nm_os_gen_arg * a)418 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
419 {
420 int ret;
421 u_int len = a->len;
422 struct ifnet *ifp = a->ifp;
423 struct mbuf *m = a->m;
424
425 #if __FreeBSD_version < 1100000
426 /*
427 * Old FreeBSD versions. The mbuf has a cluster attached,
428 * we need to copy from the cluster to the netmap buffer.
429 */
430 if (MBUF_REFCNT(m) != 1) {
431 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
432 panic("in generic_xmit_frame");
433 }
434 if (m->m_ext.ext_size < len) {
435 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
436 len = m->m_ext.ext_size;
437 }
438 bcopy(a->addr, m->m_data, len);
439 #else /* __FreeBSD_version >= 1100000 */
440 /* New FreeBSD versions. Link the external storage to
441 * the netmap buffer, so that no copy is necessary. */
442 m->m_ext.ext_buf = m->m_data = a->addr;
443 m->m_ext.ext_size = len;
444 #endif /* __FreeBSD_version >= 1100000 */
445
446 m->m_flags |= M_PKTHDR;
447 m->m_len = m->m_pkthdr.len = len;
448
449 /* mbuf refcnt is not contended, no need to use atomic
450 * (a memory barrier is enough). */
451 SET_MBUF_REFCNT(m, 2);
452 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
453 m->m_pkthdr.flowid = a->ring_nr;
454 m->m_pkthdr.rcvif = ifp; /* used for tx notification */
455 CURVNET_SET(ifp->if_vnet);
456 ret = NA(ifp)->if_transmit(ifp, m);
457 CURVNET_RESTORE();
458 return ret ? -1 : 0;
459 }
460
461
462 #if __FreeBSD_version >= 1100005
463 struct netmap_adapter *
netmap_getna(if_t ifp)464 netmap_getna(if_t ifp)
465 {
466 return (NA((struct ifnet *)ifp));
467 }
468 #endif /* __FreeBSD_version >= 1100005 */
469
470 /*
471 * The following two functions are empty until we have a generic
472 * way to extract the info from the ifp
473 */
474 int
nm_os_generic_find_num_desc(struct ifnet * ifp,unsigned int * tx,unsigned int * rx)475 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
476 {
477 return 0;
478 }
479
480
481 void
nm_os_generic_find_num_queues(struct ifnet * ifp,u_int * txq,u_int * rxq)482 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
483 {
484 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
485
486 *txq = num_rings;
487 *rxq = num_rings;
488 }
489
490 void
nm_os_generic_set_features(struct netmap_generic_adapter * gna)491 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
492 {
493
494 gna->rxsg = 1; /* Supported through m_copydata. */
495 gna->txqdisc = 0; /* Not supported. */
496 }
497
498 void
nm_os_mitigation_init(struct nm_generic_mit * mit,int idx,struct netmap_adapter * na)499 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
500 {
501 mit->mit_pending = 0;
502 mit->mit_ring_idx = idx;
503 mit->mit_na = na;
504 }
505
506
507 void
nm_os_mitigation_start(struct nm_generic_mit * mit)508 nm_os_mitigation_start(struct nm_generic_mit *mit)
509 {
510 }
511
512
513 void
nm_os_mitigation_restart(struct nm_generic_mit * mit)514 nm_os_mitigation_restart(struct nm_generic_mit *mit)
515 {
516 }
517
518
519 int
nm_os_mitigation_active(struct nm_generic_mit * mit)520 nm_os_mitigation_active(struct nm_generic_mit *mit)
521 {
522
523 return 0;
524 }
525
526
527 void
nm_os_mitigation_cleanup(struct nm_generic_mit * mit)528 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
529 {
530 }
531
532 static int
nm_vi_dummy(struct ifnet * ifp,u_long cmd,caddr_t addr)533 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
534 {
535
536 return EINVAL;
537 }
538
539 static void
nm_vi_start(struct ifnet * ifp)540 nm_vi_start(struct ifnet *ifp)
541 {
542 panic("nm_vi_start() must not be called");
543 }
544
545 /*
546 * Index manager of persistent virtual interfaces.
547 * It is used to decide the lowest byte of the MAC address.
548 * We use the same algorithm with management of bridge port index.
549 */
550 #define NM_VI_MAX 255
551 static struct {
552 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
553 uint8_t active;
554 struct mtx lock;
555 } nm_vi_indices;
556
557 void
nm_os_vi_init_index(void)558 nm_os_vi_init_index(void)
559 {
560 int i;
561 for (i = 0; i < NM_VI_MAX; i++)
562 nm_vi_indices.index[i] = i;
563 nm_vi_indices.active = 0;
564 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
565 }
566
567 /* return -1 if no index available */
568 static int
nm_vi_get_index(void)569 nm_vi_get_index(void)
570 {
571 int ret;
572
573 mtx_lock(&nm_vi_indices.lock);
574 ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
575 nm_vi_indices.index[nm_vi_indices.active++];
576 mtx_unlock(&nm_vi_indices.lock);
577 return ret;
578 }
579
580 static void
nm_vi_free_index(uint8_t val)581 nm_vi_free_index(uint8_t val)
582 {
583 int i, lim;
584
585 mtx_lock(&nm_vi_indices.lock);
586 lim = nm_vi_indices.active;
587 for (i = 0; i < lim; i++) {
588 if (nm_vi_indices.index[i] == val) {
589 /* swap index[lim-1] and j */
590 int tmp = nm_vi_indices.index[lim-1];
591 nm_vi_indices.index[lim-1] = val;
592 nm_vi_indices.index[i] = tmp;
593 nm_vi_indices.active--;
594 break;
595 }
596 }
597 if (lim == nm_vi_indices.active)
598 nm_prerr("Index %u not found", val);
599 mtx_unlock(&nm_vi_indices.lock);
600 }
601 #undef NM_VI_MAX
602
603 /*
604 * Implementation of a netmap-capable virtual interface that
605 * registered to the system.
606 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
607 *
608 * Note: Linux sets refcount to 0 on allocation of net_device,
609 * then increments it on registration to the system.
610 * FreeBSD sets refcount to 1 on if_alloc(), and does not
611 * increment this refcount on if_attach().
612 */
613 int
nm_os_vi_persist(const char * name,struct ifnet ** ret)614 nm_os_vi_persist(const char *name, struct ifnet **ret)
615 {
616 struct ifnet *ifp;
617 u_short macaddr_hi;
618 uint32_t macaddr_mid;
619 u_char eaddr[6];
620 int unit = nm_vi_get_index(); /* just to decide MAC address */
621
622 if (unit < 0)
623 return EBUSY;
624 /*
625 * We use the same MAC address generation method with tap
626 * except for the highest octet is 00:be instead of 00:bd
627 */
628 macaddr_hi = htons(0x00be); /* XXX tap + 1 */
629 macaddr_mid = (uint32_t) ticks;
630 bcopy(&macaddr_hi, eaddr, sizeof(short));
631 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
632 eaddr[5] = (uint8_t)unit;
633
634 ifp = if_alloc(IFT_ETHER);
635 if (ifp == NULL) {
636 nm_prerr("if_alloc failed");
637 return ENOMEM;
638 }
639 if_initname(ifp, name, IF_DUNIT_NONE);
640 ifp->if_mtu = 65536;
641 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
642 ifp->if_init = (void *)nm_vi_dummy;
643 ifp->if_ioctl = nm_vi_dummy;
644 ifp->if_start = nm_vi_start;
645 ifp->if_mtu = ETHERMTU;
646 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
647 ifp->if_capabilities |= IFCAP_LINKSTATE;
648 ifp->if_capenable |= IFCAP_LINKSTATE;
649
650 ether_ifattach(ifp, eaddr);
651 *ret = ifp;
652 return 0;
653 }
654
655 /* unregister from the system and drop the final refcount */
656 void
nm_os_vi_detach(struct ifnet * ifp)657 nm_os_vi_detach(struct ifnet *ifp)
658 {
659 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
660 ether_ifdetach(ifp);
661 if_free(ifp);
662 }
663
664 #ifdef WITH_EXTMEM
665 #include <vm/vm_map.h>
666 #include <vm/vm_kern.h>
667 struct nm_os_extmem {
668 vm_object_t obj;
669 vm_offset_t kva;
670 vm_offset_t size;
671 uintptr_t scan;
672 };
673
674 void
nm_os_extmem_delete(struct nm_os_extmem * e)675 nm_os_extmem_delete(struct nm_os_extmem *e)
676 {
677 nm_prinf("freeing %zx bytes", (size_t)e->size);
678 vm_map_remove(kernel_map, e->kva, e->kva + e->size);
679 nm_os_free(e);
680 }
681
682 char *
nm_os_extmem_nextpage(struct nm_os_extmem * e)683 nm_os_extmem_nextpage(struct nm_os_extmem *e)
684 {
685 char *rv = NULL;
686 if (e->scan < e->kva + e->size) {
687 rv = (char *)e->scan;
688 e->scan += PAGE_SIZE;
689 }
690 return rv;
691 }
692
693 int
nm_os_extmem_isequal(struct nm_os_extmem * e1,struct nm_os_extmem * e2)694 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
695 {
696 return (e1->obj == e2->obj);
697 }
698
699 int
nm_os_extmem_nr_pages(struct nm_os_extmem * e)700 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
701 {
702 return e->size >> PAGE_SHIFT;
703 }
704
705 struct nm_os_extmem *
nm_os_extmem_create(unsigned long p,struct nmreq_pools_info * pi,int * perror)706 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
707 {
708 vm_map_t map;
709 vm_map_entry_t entry;
710 vm_object_t obj;
711 vm_prot_t prot;
712 vm_pindex_t index;
713 boolean_t wired;
714 struct nm_os_extmem *e = NULL;
715 int rv, error = 0;
716
717 e = nm_os_malloc(sizeof(*e));
718 if (e == NULL) {
719 error = ENOMEM;
720 goto out;
721 }
722
723 map = &curthread->td_proc->p_vmspace->vm_map;
724 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
725 &obj, &index, &prot, &wired);
726 if (rv != KERN_SUCCESS) {
727 nm_prerr("address %lx not found", p);
728 goto out_free;
729 }
730 /* check that we are given the whole vm_object ? */
731 vm_map_lookup_done(map, entry);
732
733 // XXX can we really use obj after releasing the map lock?
734 e->obj = obj;
735 vm_object_reference(obj);
736 /* wire the memory and add the vm_object to the kernel map,
737 * to make sure that it is not fred even if the processes that
738 * are mmap()ing it all exit
739 */
740 e->kva = vm_map_min(kernel_map);
741 e->size = obj->size << PAGE_SHIFT;
742 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
743 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
744 VM_PROT_READ | VM_PROT_WRITE, 0);
745 if (rv != KERN_SUCCESS) {
746 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
747 goto out_rel;
748 }
749 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
750 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
751 if (rv != KERN_SUCCESS) {
752 nm_prerr("vm_map_wire failed");
753 goto out_rem;
754 }
755
756 e->scan = e->kva;
757
758 return e;
759
760 out_rem:
761 vm_map_remove(kernel_map, e->kva, e->kva + e->size);
762 e->obj = NULL;
763 out_rel:
764 vm_object_deallocate(e->obj);
765 out_free:
766 nm_os_free(e);
767 out:
768 if (perror)
769 *perror = error;
770 return NULL;
771 }
772 #endif /* WITH_EXTMEM */
773
774 /* ================== PTNETMAP GUEST SUPPORT ==================== */
775
776 #ifdef WITH_PTNETMAP
777 #include <sys/bus.h>
778 #include <sys/rman.h>
779 #include <machine/bus.h> /* bus_dmamap_* */
780 #include <machine/resource.h>
781 #include <dev/pci/pcivar.h>
782 #include <dev/pci/pcireg.h>
783 /*
784 * ptnetmap memory device (memdev) for freebsd guest,
785 * ssed to expose host netmap memory to the guest through a PCI BAR.
786 */
787
788 /*
789 * ptnetmap memdev private data structure
790 */
791 struct ptnetmap_memdev {
792 device_t dev;
793 struct resource *pci_io;
794 struct resource *pci_mem;
795 struct netmap_mem_d *nm_mem;
796 };
797
798 static int ptn_memdev_probe(device_t);
799 static int ptn_memdev_attach(device_t);
800 static int ptn_memdev_detach(device_t);
801 static int ptn_memdev_shutdown(device_t);
802
803 static device_method_t ptn_memdev_methods[] = {
804 DEVMETHOD(device_probe, ptn_memdev_probe),
805 DEVMETHOD(device_attach, ptn_memdev_attach),
806 DEVMETHOD(device_detach, ptn_memdev_detach),
807 DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
808 DEVMETHOD_END
809 };
810
811 static driver_t ptn_memdev_driver = {
812 PTNETMAP_MEMDEV_NAME,
813 ptn_memdev_methods,
814 sizeof(struct ptnetmap_memdev),
815 };
816
817 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
818 * below. */
819 static devclass_t ptnetmap_devclass;
820 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
821 NULL, NULL, SI_ORDER_MIDDLE + 1);
822
823 /*
824 * Map host netmap memory through PCI-BAR in the guest OS,
825 * returning physical (nm_paddr) and virtual (nm_addr) addresses
826 * of the netmap memory mapped in the guest.
827 */
828 int
nm_os_pt_memdev_iomap(struct ptnetmap_memdev * ptn_dev,vm_paddr_t * nm_paddr,void ** nm_addr,uint64_t * mem_size)829 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
830 void **nm_addr, uint64_t *mem_size)
831 {
832 int rid;
833
834 nm_prinf("ptn_memdev_driver iomap");
835
836 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
837 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
838 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
839 (*mem_size << 32);
840
841 /* map memory allocator */
842 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
843 &rid, 0, ~0, *mem_size, RF_ACTIVE);
844 if (ptn_dev->pci_mem == NULL) {
845 *nm_paddr = 0;
846 *nm_addr = NULL;
847 return ENOMEM;
848 }
849
850 *nm_paddr = rman_get_start(ptn_dev->pci_mem);
851 *nm_addr = rman_get_virtual(ptn_dev->pci_mem);
852
853 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
854 PTNETMAP_MEM_PCI_BAR,
855 (unsigned long)(*nm_paddr),
856 (unsigned long)rman_get_size(ptn_dev->pci_mem),
857 (unsigned long)*mem_size);
858 return (0);
859 }
860
861 uint32_t
nm_os_pt_memdev_ioread(struct ptnetmap_memdev * ptn_dev,unsigned int reg)862 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
863 {
864 return bus_read_4(ptn_dev->pci_io, reg);
865 }
866
867 /* Unmap host netmap memory. */
868 void
nm_os_pt_memdev_iounmap(struct ptnetmap_memdev * ptn_dev)869 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
870 {
871 nm_prinf("ptn_memdev_driver iounmap");
872
873 if (ptn_dev->pci_mem) {
874 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
875 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
876 ptn_dev->pci_mem = NULL;
877 }
878 }
879
880 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
881 * positive on failure */
882 static int
ptn_memdev_probe(device_t dev)883 ptn_memdev_probe(device_t dev)
884 {
885 char desc[256];
886
887 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
888 return (ENXIO);
889 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
890 return (ENXIO);
891
892 snprintf(desc, sizeof(desc), "%s PCI adapter",
893 PTNETMAP_MEMDEV_NAME);
894 device_set_desc_copy(dev, desc);
895
896 return (BUS_PROBE_DEFAULT);
897 }
898
899 /* Device initialization routine. */
900 static int
ptn_memdev_attach(device_t dev)901 ptn_memdev_attach(device_t dev)
902 {
903 struct ptnetmap_memdev *ptn_dev;
904 int rid;
905 uint16_t mem_id;
906
907 ptn_dev = device_get_softc(dev);
908 ptn_dev->dev = dev;
909
910 pci_enable_busmaster(dev);
911
912 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
913 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
914 RF_ACTIVE);
915 if (ptn_dev->pci_io == NULL) {
916 device_printf(dev, "cannot map I/O space\n");
917 return (ENXIO);
918 }
919
920 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
921
922 /* create guest allocator */
923 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
924 if (ptn_dev->nm_mem == NULL) {
925 ptn_memdev_detach(dev);
926 return (ENOMEM);
927 }
928 netmap_mem_get(ptn_dev->nm_mem);
929
930 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
931
932 return (0);
933 }
934
935 /* Device removal routine. */
936 static int
ptn_memdev_detach(device_t dev)937 ptn_memdev_detach(device_t dev)
938 {
939 struct ptnetmap_memdev *ptn_dev;
940
941 ptn_dev = device_get_softc(dev);
942
943 if (ptn_dev->nm_mem) {
944 nm_prinf("ptnetmap memdev detached, host memid %u",
945 netmap_mem_get_id(ptn_dev->nm_mem));
946 netmap_mem_put(ptn_dev->nm_mem);
947 ptn_dev->nm_mem = NULL;
948 }
949 if (ptn_dev->pci_mem) {
950 bus_release_resource(dev, SYS_RES_MEMORY,
951 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
952 ptn_dev->pci_mem = NULL;
953 }
954 if (ptn_dev->pci_io) {
955 bus_release_resource(dev, SYS_RES_IOPORT,
956 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
957 ptn_dev->pci_io = NULL;
958 }
959
960 return (0);
961 }
962
963 static int
ptn_memdev_shutdown(device_t dev)964 ptn_memdev_shutdown(device_t dev)
965 {
966 return bus_generic_shutdown(dev);
967 }
968
969 #endif /* WITH_PTNETMAP */
970
971 /*
972 * In order to track whether pages are still mapped, we hook into
973 * the standard cdev_pager and intercept the constructor and
974 * destructor.
975 */
976
977 struct netmap_vm_handle_t {
978 struct cdev *dev;
979 struct netmap_priv_d *priv;
980 };
981
982
983 static int
netmap_dev_pager_ctor(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t foff,struct ucred * cred,u_short * color)984 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
985 vm_ooffset_t foff, struct ucred *cred, u_short *color)
986 {
987 struct netmap_vm_handle_t *vmh = handle;
988
989 if (netmap_verbose)
990 nm_prinf("handle %p size %jd prot %d foff %jd",
991 handle, (intmax_t)size, prot, (intmax_t)foff);
992 if (color)
993 *color = 0;
994 dev_ref(vmh->dev);
995 return 0;
996 }
997
998
999 static void
netmap_dev_pager_dtor(void * handle)1000 netmap_dev_pager_dtor(void *handle)
1001 {
1002 struct netmap_vm_handle_t *vmh = handle;
1003 struct cdev *dev = vmh->dev;
1004 struct netmap_priv_d *priv = vmh->priv;
1005
1006 if (netmap_verbose)
1007 nm_prinf("handle %p", handle);
1008 netmap_dtor(priv);
1009 free(vmh, M_DEVBUF);
1010 dev_rel(dev);
1011 }
1012
1013
1014 static int
netmap_dev_pager_fault(vm_object_t object,vm_ooffset_t offset,int prot,vm_page_t * mres)1015 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1016 int prot, vm_page_t *mres)
1017 {
1018 struct netmap_vm_handle_t *vmh = object->handle;
1019 struct netmap_priv_d *priv = vmh->priv;
1020 struct netmap_adapter *na = priv->np_na;
1021 vm_paddr_t paddr;
1022 vm_page_t page;
1023 vm_memattr_t memattr;
1024 vm_pindex_t pidx;
1025
1026 nm_prdis("object %p offset %jd prot %d mres %p",
1027 object, (intmax_t)offset, prot, mres);
1028 memattr = object->memattr;
1029 pidx = OFF_TO_IDX(offset);
1030 paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1031 if (paddr == 0)
1032 return VM_PAGER_FAIL;
1033
1034 if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1035 /*
1036 * If the passed in result page is a fake page, update it with
1037 * the new physical address.
1038 */
1039 page = *mres;
1040 vm_page_updatefake(page, paddr, memattr);
1041 } else {
1042 /*
1043 * Replace the passed in reqpage page with our own fake page and
1044 * free up the all of the original pages.
1045 */
1046 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */
1047 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1048 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK
1049 #endif /* VM_OBJECT_WUNLOCK */
1050
1051 VM_OBJECT_WUNLOCK(object);
1052 page = vm_page_getfake(paddr, memattr);
1053 VM_OBJECT_WLOCK(object);
1054 vm_page_lock(*mres);
1055 vm_page_free(*mres);
1056 vm_page_unlock(*mres);
1057 *mres = page;
1058 vm_page_insert(page, object, pidx);
1059 }
1060 page->valid = VM_PAGE_BITS_ALL;
1061 return (VM_PAGER_OK);
1062 }
1063
1064
1065 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1066 .cdev_pg_ctor = netmap_dev_pager_ctor,
1067 .cdev_pg_dtor = netmap_dev_pager_dtor,
1068 .cdev_pg_fault = netmap_dev_pager_fault,
1069 };
1070
1071
1072 static int
netmap_mmap_single(struct cdev * cdev,vm_ooffset_t * foff,vm_size_t objsize,vm_object_t * objp,int prot)1073 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1074 vm_size_t objsize, vm_object_t *objp, int prot)
1075 {
1076 int error;
1077 struct netmap_vm_handle_t *vmh;
1078 struct netmap_priv_d *priv;
1079 vm_object_t obj;
1080
1081 if (netmap_verbose)
1082 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1083 (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1084
1085 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1086 M_NOWAIT | M_ZERO);
1087 if (vmh == NULL)
1088 return ENOMEM;
1089 vmh->dev = cdev;
1090
1091 NMG_LOCK();
1092 error = devfs_get_cdevpriv((void**)&priv);
1093 if (error)
1094 goto err_unlock;
1095 if (priv->np_nifp == NULL) {
1096 error = EINVAL;
1097 goto err_unlock;
1098 }
1099 vmh->priv = priv;
1100 priv->np_refs++;
1101 NMG_UNLOCK();
1102
1103 obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1104 &netmap_cdev_pager_ops, objsize, prot,
1105 *foff, NULL);
1106 if (obj == NULL) {
1107 nm_prerr("cdev_pager_allocate failed");
1108 error = EINVAL;
1109 goto err_deref;
1110 }
1111
1112 *objp = obj;
1113 return 0;
1114
1115 err_deref:
1116 NMG_LOCK();
1117 priv->np_refs--;
1118 err_unlock:
1119 NMG_UNLOCK();
1120 // err:
1121 free(vmh, M_DEVBUF);
1122 return error;
1123 }
1124
1125 /*
1126 * On FreeBSD the close routine is only called on the last close on
1127 * the device (/dev/netmap) so we cannot do anything useful.
1128 * To track close() on individual file descriptors we pass netmap_dtor() to
1129 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1130 * when the last fd pointing to the device is closed.
1131 *
1132 * Note that FreeBSD does not even munmap() on close() so we also have
1133 * to track mmap() ourselves, and postpone the call to
1134 * netmap_dtor() is called when the process has no open fds and no active
1135 * memory maps on /dev/netmap, as in linux.
1136 */
1137 static int
netmap_close(struct cdev * dev,int fflag,int devtype,struct thread * td)1138 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1139 {
1140 if (netmap_verbose)
1141 nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1142 dev, fflag, devtype, td);
1143 return 0;
1144 }
1145
1146
1147 static int
netmap_open(struct cdev * dev,int oflags,int devtype,struct thread * td)1148 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1149 {
1150 struct netmap_priv_d *priv;
1151 int error;
1152
1153 (void)dev;
1154 (void)oflags;
1155 (void)devtype;
1156 (void)td;
1157
1158 NMG_LOCK();
1159 priv = netmap_priv_new();
1160 if (priv == NULL) {
1161 error = ENOMEM;
1162 goto out;
1163 }
1164 error = devfs_set_cdevpriv(priv, netmap_dtor);
1165 if (error) {
1166 netmap_priv_delete(priv);
1167 }
1168 out:
1169 NMG_UNLOCK();
1170 return error;
1171 }
1172
1173 /******************** kthread wrapper ****************/
1174 #include <sys/sysproto.h>
1175 u_int
nm_os_ncpus(void)1176 nm_os_ncpus(void)
1177 {
1178 return mp_maxid + 1;
1179 }
1180
1181 struct nm_kctx_ctx {
1182 /* Userspace thread (kthread creator). */
1183 struct thread *user_td;
1184
1185 /* worker function and parameter */
1186 nm_kctx_worker_fn_t worker_fn;
1187 void *worker_private;
1188
1189 struct nm_kctx *nmk;
1190
1191 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1192 long type;
1193 };
1194
1195 struct nm_kctx {
1196 struct thread *worker;
1197 struct mtx worker_lock;
1198 struct nm_kctx_ctx worker_ctx;
1199 int run; /* used to stop kthread */
1200 int attach_user; /* kthread attached to user_process */
1201 int affinity;
1202 };
1203
1204 static void
nm_kctx_worker(void * data)1205 nm_kctx_worker(void *data)
1206 {
1207 struct nm_kctx *nmk = data;
1208 struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1209
1210 if (nmk->affinity >= 0) {
1211 thread_lock(curthread);
1212 sched_bind(curthread, nmk->affinity);
1213 thread_unlock(curthread);
1214 }
1215
1216 while (nmk->run) {
1217 /*
1218 * check if the parent process dies
1219 * (when kthread is attached to user process)
1220 */
1221 if (ctx->user_td) {
1222 PROC_LOCK(curproc);
1223 thread_suspend_check(0);
1224 PROC_UNLOCK(curproc);
1225 } else {
1226 kthread_suspend_check();
1227 }
1228
1229 /* Continuously execute worker process. */
1230 ctx->worker_fn(ctx->worker_private); /* worker body */
1231 }
1232
1233 kthread_exit();
1234 }
1235
1236 void
nm_os_kctx_worker_setaff(struct nm_kctx * nmk,int affinity)1237 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1238 {
1239 nmk->affinity = affinity;
1240 }
1241
1242 struct nm_kctx *
nm_os_kctx_create(struct nm_kctx_cfg * cfg,void * opaque)1243 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1244 {
1245 struct nm_kctx *nmk = NULL;
1246
1247 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO);
1248 if (!nmk)
1249 return NULL;
1250
1251 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1252 nmk->worker_ctx.worker_fn = cfg->worker_fn;
1253 nmk->worker_ctx.worker_private = cfg->worker_private;
1254 nmk->worker_ctx.type = cfg->type;
1255 nmk->affinity = -1;
1256
1257 /* attach kthread to user process (ptnetmap) */
1258 nmk->attach_user = cfg->attach_user;
1259
1260 return nmk;
1261 }
1262
1263 int
nm_os_kctx_worker_start(struct nm_kctx * nmk)1264 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1265 {
1266 struct proc *p = NULL;
1267 int error = 0;
1268
1269 /* Temporarily disable this function as it is currently broken
1270 * and causes kernel crashes. The failure can be triggered by
1271 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1272 return EOPNOTSUPP;
1273
1274 if (nmk->worker)
1275 return EBUSY;
1276
1277 /* check if we want to attach kthread to user process */
1278 if (nmk->attach_user) {
1279 nmk->worker_ctx.user_td = curthread;
1280 p = curthread->td_proc;
1281 }
1282
1283 /* enable kthread main loop */
1284 nmk->run = 1;
1285 /* create kthread */
1286 if((error = kthread_add(nm_kctx_worker, nmk, p,
1287 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1288 nmk->worker_ctx.type))) {
1289 goto err;
1290 }
1291
1292 nm_prinf("nm_kthread started td %p", nmk->worker);
1293
1294 return 0;
1295 err:
1296 nm_prerr("nm_kthread start failed err %d", error);
1297 nmk->worker = NULL;
1298 return error;
1299 }
1300
1301 void
nm_os_kctx_worker_stop(struct nm_kctx * nmk)1302 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1303 {
1304 if (!nmk->worker)
1305 return;
1306
1307 /* tell to kthread to exit from main loop */
1308 nmk->run = 0;
1309
1310 /* wake up kthread if it sleeps */
1311 kthread_resume(nmk->worker);
1312
1313 nmk->worker = NULL;
1314 }
1315
1316 void
nm_os_kctx_destroy(struct nm_kctx * nmk)1317 nm_os_kctx_destroy(struct nm_kctx *nmk)
1318 {
1319 if (!nmk)
1320 return;
1321
1322 if (nmk->worker)
1323 nm_os_kctx_worker_stop(nmk);
1324
1325 free(nmk, M_DEVBUF);
1326 }
1327
1328 /******************** kqueue support ****************/
1329
1330 /*
1331 * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1332 * needs to call knote() to wake up kqueue listeners.
1333 * This operation is deferred to a taskqueue in order to avoid possible
1334 * lock order reversals; these may happen because knote() grabs a
1335 * private lock associated to the 'si' (see struct selinfo,
1336 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1337 * can be called while holding the lock associated to a different
1338 * 'si'.
1339 * When calling knote() we use a non-zero 'hint' argument to inform
1340 * the netmap_knrw() function that it is being called from
1341 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1342 * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1343 * call netmap_poll().
1344 *
1345 * The netmap_kqfilter() function registers one or another f_event
1346 * depending on read or write mode. A pointer to the struct
1347 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1348 * be passed to netmap_poll(). We pass NULL as a third argument to
1349 * netmap_poll(), so that the latter only runs the txsync/rxsync
1350 * (if necessary), and skips the nm_os_selrecord() calls.
1351 */
1352
1353
1354 void
nm_os_selwakeup(struct nm_selinfo * si)1355 nm_os_selwakeup(struct nm_selinfo *si)
1356 {
1357 selwakeuppri(&si->si, PI_NET);
1358 if (si->kqueue_users > 0) {
1359 taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1360 }
1361 }
1362
1363 void
nm_os_selrecord(struct thread * td,struct nm_selinfo * si)1364 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1365 {
1366 selrecord(td, &si->si);
1367 }
1368
1369 static void
netmap_knrdetach(struct knote * kn)1370 netmap_knrdetach(struct knote *kn)
1371 {
1372 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1373 struct nm_selinfo *si = priv->np_si[NR_RX];
1374
1375 knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1376 NMG_LOCK();
1377 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1378 si->mtxname));
1379 si->kqueue_users--;
1380 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1381 NMG_UNLOCK();
1382 }
1383
1384 static void
netmap_knwdetach(struct knote * kn)1385 netmap_knwdetach(struct knote *kn)
1386 {
1387 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1388 struct nm_selinfo *si = priv->np_si[NR_TX];
1389
1390 knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1391 NMG_LOCK();
1392 si->kqueue_users--;
1393 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1394 NMG_UNLOCK();
1395 }
1396
1397 /*
1398 * Callback triggered by netmap notifications (see netmap_notify()),
1399 * and by the application calling kevent(). In the former case we
1400 * just return 1 (events ready), since we are not able to do better.
1401 * In the latter case we use netmap_poll() to see which events are
1402 * ready.
1403 */
1404 static int
netmap_knrw(struct knote * kn,long hint,int events)1405 netmap_knrw(struct knote *kn, long hint, int events)
1406 {
1407 struct netmap_priv_d *priv;
1408 int revents;
1409
1410 if (hint != 0) {
1411 /* Called from netmap_notify(), typically from a
1412 * thread different from the one issuing kevent().
1413 * Assume we are ready. */
1414 return 1;
1415 }
1416
1417 /* Called from kevent(). */
1418 priv = kn->kn_hook;
1419 revents = netmap_poll(priv, events, /*thread=*/NULL);
1420
1421 return (events & revents) ? 1 : 0;
1422 }
1423
1424 static int
netmap_knread(struct knote * kn,long hint)1425 netmap_knread(struct knote *kn, long hint)
1426 {
1427 return netmap_knrw(kn, hint, POLLIN);
1428 }
1429
1430 static int
netmap_knwrite(struct knote * kn,long hint)1431 netmap_knwrite(struct knote *kn, long hint)
1432 {
1433 return netmap_knrw(kn, hint, POLLOUT);
1434 }
1435
1436 static struct filterops netmap_rfiltops = {
1437 .f_isfd = 1,
1438 .f_detach = netmap_knrdetach,
1439 .f_event = netmap_knread,
1440 };
1441
1442 static struct filterops netmap_wfiltops = {
1443 .f_isfd = 1,
1444 .f_detach = netmap_knwdetach,
1445 .f_event = netmap_knwrite,
1446 };
1447
1448
1449 /*
1450 * This is called when a thread invokes kevent() to record
1451 * a change in the configuration of the kqueue().
1452 * The 'priv' is the one associated to the open netmap device.
1453 */
1454 static int
netmap_kqfilter(struct cdev * dev,struct knote * kn)1455 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1456 {
1457 struct netmap_priv_d *priv;
1458 int error;
1459 struct netmap_adapter *na;
1460 struct nm_selinfo *si;
1461 int ev = kn->kn_filter;
1462
1463 if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1464 nm_prerr("bad filter request %d", ev);
1465 return 1;
1466 }
1467 error = devfs_get_cdevpriv((void**)&priv);
1468 if (error) {
1469 nm_prerr("device not yet setup");
1470 return 1;
1471 }
1472 na = priv->np_na;
1473 if (na == NULL) {
1474 nm_prerr("no netmap adapter for this file descriptor");
1475 return 1;
1476 }
1477 /* the si is indicated in the priv */
1478 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1479 kn->kn_fop = (ev == EVFILT_WRITE) ?
1480 &netmap_wfiltops : &netmap_rfiltops;
1481 kn->kn_hook = priv;
1482 NMG_LOCK();
1483 si->kqueue_users++;
1484 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1485 NMG_UNLOCK();
1486 knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1487
1488 return 0;
1489 }
1490
1491 static int
freebsd_netmap_poll(struct cdev * cdevi __unused,int events,struct thread * td)1492 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1493 {
1494 struct netmap_priv_d *priv;
1495 if (devfs_get_cdevpriv((void **)&priv)) {
1496 return POLLERR;
1497 }
1498 return netmap_poll(priv, events, td);
1499 }
1500
1501 static int
freebsd_netmap_ioctl(struct cdev * dev __unused,u_long cmd,caddr_t data,int ffla __unused,struct thread * td)1502 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1503 int ffla __unused, struct thread *td)
1504 {
1505 int error;
1506 struct netmap_priv_d *priv;
1507
1508 CURVNET_SET(TD_TO_VNET(td));
1509 error = devfs_get_cdevpriv((void **)&priv);
1510 if (error) {
1511 /* XXX ENOENT should be impossible, since the priv
1512 * is now created in the open */
1513 if (error == ENOENT)
1514 error = ENXIO;
1515 goto out;
1516 }
1517 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1518 out:
1519 CURVNET_RESTORE();
1520
1521 return error;
1522 }
1523
1524 void
nm_os_onattach(struct ifnet * ifp)1525 nm_os_onattach(struct ifnet *ifp)
1526 {
1527 ifp->if_capabilities |= IFCAP_NETMAP;
1528 }
1529
1530 void
nm_os_onenter(struct ifnet * ifp)1531 nm_os_onenter(struct ifnet *ifp)
1532 {
1533 struct netmap_adapter *na = NA(ifp);
1534
1535 na->if_transmit = ifp->if_transmit;
1536 ifp->if_transmit = netmap_transmit;
1537 ifp->if_capenable |= IFCAP_NETMAP;
1538 }
1539
1540 void
nm_os_onexit(struct ifnet * ifp)1541 nm_os_onexit(struct ifnet *ifp)
1542 {
1543 struct netmap_adapter *na = NA(ifp);
1544
1545 ifp->if_transmit = na->if_transmit;
1546 ifp->if_capenable &= ~IFCAP_NETMAP;
1547 }
1548
1549 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1550 struct cdevsw netmap_cdevsw = {
1551 .d_version = D_VERSION,
1552 .d_name = "netmap",
1553 .d_open = netmap_open,
1554 .d_mmap_single = netmap_mmap_single,
1555 .d_ioctl = freebsd_netmap_ioctl,
1556 .d_poll = freebsd_netmap_poll,
1557 .d_kqfilter = netmap_kqfilter,
1558 .d_close = netmap_close,
1559 };
1560 /*--- end of kqueue support ----*/
1561
1562 /*
1563 * Kernel entry point.
1564 *
1565 * Initialize/finalize the module and return.
1566 *
1567 * Return 0 on success, errno on failure.
1568 */
1569 static int
netmap_loader(__unused struct module * module,int event,__unused void * arg)1570 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1571 {
1572 int error = 0;
1573
1574 switch (event) {
1575 case MOD_LOAD:
1576 error = netmap_init();
1577 break;
1578
1579 case MOD_UNLOAD:
1580 /*
1581 * if some one is still using netmap,
1582 * then the module can not be unloaded.
1583 */
1584 if (netmap_use_count) {
1585 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1586 netmap_use_count);
1587 error = EBUSY;
1588 break;
1589 }
1590 netmap_fini();
1591 break;
1592
1593 default:
1594 error = EOPNOTSUPP;
1595 break;
1596 }
1597
1598 return (error);
1599 }
1600
1601 #ifdef DEV_MODULE_ORDERED
1602 /*
1603 * The netmap module contains three drivers: (i) the netmap character device
1604 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1605 * device driver. The attach() routines of both (ii) and (iii) need the
1606 * lock of the global allocator, and such lock is initialized in netmap_init(),
1607 * which is part of (i).
1608 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1609 * the 'order' parameter of driver declaration macros. For (i), we specify
1610 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1611 * macros for (ii) and (iii).
1612 */
1613 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1614 #else /* !DEV_MODULE_ORDERED */
1615 DEV_MODULE(netmap, netmap_loader, NULL);
1616 #endif /* DEV_MODULE_ORDERED */
1617 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1618 MODULE_VERSION(netmap, 1);
1619 /* reduce conditional code */
1620 // linux API, use for the knlist in FreeBSD
1621 /* use a private mutex for the knlist */
1622