1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2011-2014 Matteo Landi
5 * Copyright (C) 2011-2016 Luigi Rizzo
6 * Copyright (C) 2011-2016 Giuseppe Lettieri
7 * Copyright (C) 2011-2016 Vincenzo Maffione
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32
33 /*
34 * $FreeBSD$
35 *
36 * This module supports memory mapped access to network devices,
37 * see netmap(4).
38 *
39 * The module uses a large, memory pool allocated by the kernel
40 * and accessible as mmapped memory by multiple userspace threads/processes.
41 * The memory pool contains packet buffers and "netmap rings",
42 * i.e. user-accessible copies of the interface's queues.
43 *
44 * Access to the network card works like this:
45 * 1. a process/thread issues one or more open() on /dev/netmap, to create
46 * select()able file descriptor on which events are reported.
47 * 2. on each descriptor, the process issues an ioctl() to identify
48 * the interface that should report events to the file descriptor.
49 * 3. on each descriptor, the process issues an mmap() request to
50 * map the shared memory region within the process' address space.
51 * The list of interesting queues is indicated by a location in
52 * the shared memory region.
53 * 4. using the functions in the netmap(4) userspace API, a process
54 * can look up the occupation state of a queue, access memory buffers,
55 * and retrieve received packets or enqueue packets to transmit.
56 * 5. using some ioctl()s the process can synchronize the userspace view
57 * of the queue with the actual status in the kernel. This includes both
58 * receiving the notification of new packets, and transmitting new
59 * packets on the output interface.
60 * 6. select() or poll() can be used to wait for events on individual
61 * transmit or receive queues (or all queues for a given interface).
62 *
63
64 SYNCHRONIZATION (USER)
65
66 The netmap rings and data structures may be shared among multiple
67 user threads or even independent processes.
68 Any synchronization among those threads/processes is delegated
69 to the threads themselves. Only one thread at a time can be in
70 a system call on the same netmap ring. The OS does not enforce
71 this and only guarantees against system crashes in case of
72 invalid usage.
73
74 LOCKING (INTERNAL)
75
76 Within the kernel, access to the netmap rings is protected as follows:
77
78 - a spinlock on each ring, to handle producer/consumer races on
79 RX rings attached to the host stack (against multiple host
80 threads writing from the host stack to the same ring),
81 and on 'destination' rings attached to a VALE switch
82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
83 protecting multiple active senders for the same destination)
84
85 - an atomic variable to guarantee that there is at most one
86 instance of *_*xsync() on the ring at any time.
87 For rings connected to user file
88 descriptors, an atomic_test_and_set() protects this, and the
89 lock on the ring is not actually used.
90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
91 is also used to prevent multiple executions (the driver might indeed
92 already guarantee this).
93 For NIC TX rings connected to a VALE switch, the lock arbitrates
94 access to the queue (both when allocating buffers and when pushing
95 them out).
96
97 - *xsync() should be protected against initializations of the card.
98 On FreeBSD most devices have the reset routine protected by
99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
100 the RING protection on rx_reset(), this should be added.
101
102 On linux there is an external lock on the tx path, which probably
103 also arbitrates access to the reset routine. XXX to be revised
104
105 - a per-interface core_lock protecting access from the host stack
106 while interfaces may be detached from netmap mode.
107 XXX there should be no need for this lock if we detach the interfaces
108 only while they are down.
109
110
111 --- VALE SWITCH ---
112
113 NMG_LOCK() serializes all modifications to switches and ports.
114 A switch cannot be deleted until all ports are gone.
115
116 For each switch, an SX lock (RWlock on linux) protects
117 deletion of ports. When configuring or deleting a new port, the
118 lock is acquired in exclusive mode (after holding NMG_LOCK).
119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
120 The lock is held throughout the entire forwarding cycle,
121 during which the thread may incur in a page fault.
122 Hence it is important that sleepable shared locks are used.
123
124 On the rx ring, the per-port lock is grabbed initially to reserve
125 a number of slot in the ring, then the lock is released,
126 packets are copied from source to destination, and then
127 the lock is acquired again and the receive ring is updated.
128 (A similar thing is done on the tx ring for NIC and host stack
129 ports attached to the switch)
130
131 */
132
133
134 /* --- internals ----
135 *
136 * Roadmap to the code that implements the above.
137 *
138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create
139 * > select()able file descriptor on which events are reported.
140 *
141 * Internally, we allocate a netmap_priv_d structure, that will be
142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
143 * structure for each open().
144 *
145 * os-specific:
146 * FreeBSD: see netmap_open() (netmap_freebsd.c)
147 * linux: see linux_netmap_open() (netmap_linux.c)
148 *
149 * > 2. on each descriptor, the process issues an ioctl() to identify
150 * > the interface that should report events to the file descriptor.
151 *
152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
153 * Most important things happen in netmap_get_na() and
154 * netmap_do_regif(), called from there. Additional details can be
155 * found in the comments above those functions.
156 *
157 * In all cases, this action creates/takes-a-reference-to a
158 * netmap_*_adapter describing the port, and allocates a netmap_if
159 * and all necessary netmap rings, filling them with netmap buffers.
160 *
161 * In this phase, the sync callbacks for each ring are set (these are used
162 * in steps 5 and 6 below). The callbacks depend on the type of adapter.
163 * The adapter creation/initialization code puts them in the
164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they
165 * are copied from there to the netmap_kring's during netmap_do_regif(), by
166 * the nm_krings_create() callback. All the nm_krings_create callbacks
167 * actually call netmap_krings_create() to perform this and the other
168 * common stuff. netmap_krings_create() also takes care of the host rings,
169 * if needed, by setting their sync callbacks appropriately.
170 *
171 * Additional actions depend on the kind of netmap_adapter that has been
172 * registered:
173 *
174 * - netmap_hw_adapter: [netmap.c]
175 * This is a system netdev/ifp with native netmap support.
176 * The ifp is detached from the host stack by redirecting:
177 * - transmissions (from the network stack) to netmap_transmit()
178 * - receive notifications to the nm_notify() callback for
179 * this adapter. The callback is normally netmap_notify(), unless
180 * the ifp is attached to a bridge using bwrap, in which case it
181 * is netmap_bwrap_intr_notify().
182 *
183 * - netmap_generic_adapter: [netmap_generic.c]
184 * A system netdev/ifp without native netmap support.
185 *
186 * (the decision about native/non native support is taken in
187 * netmap_get_hw_na(), called by netmap_get_na())
188 *
189 * - netmap_vp_adapter [netmap_vale.c]
190 * Returned by netmap_get_bdg_na().
191 * This is a persistent or ephemeral VALE port. Ephemeral ports
192 * are created on the fly if they don't already exist, and are
193 * always attached to a bridge.
194 * Persistent VALE ports must must be created separately, and i
195 * then attached like normal NICs. The NIOCREGIF we are examining
196 * will find them only if they had previosly been created and
197 * attached (see VALE_CTL below).
198 *
199 * - netmap_pipe_adapter [netmap_pipe.c]
200 * Returned by netmap_get_pipe_na().
201 * Both pipe ends are created, if they didn't already exist.
202 *
203 * - netmap_monitor_adapter [netmap_monitor.c]
204 * Returned by netmap_get_monitor_na().
205 * If successful, the nm_sync callbacks of the monitored adapter
206 * will be intercepted by the returned monitor.
207 *
208 * - netmap_bwrap_adapter [netmap_vale.c]
209 * Cannot be obtained in this way, see VALE_CTL below
210 *
211 *
212 * os-specific:
213 * linux: we first go through linux_netmap_ioctl() to
214 * adapt the FreeBSD interface to the linux one.
215 *
216 *
217 * > 3. on each descriptor, the process issues an mmap() request to
218 * > map the shared memory region within the process' address space.
219 * > The list of interesting queues is indicated by a location in
220 * > the shared memory region.
221 *
222 * os-specific:
223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c).
224 * linux: linux_netmap_mmap (netmap_linux.c).
225 *
226 * > 4. using the functions in the netmap(4) userspace API, a process
227 * > can look up the occupation state of a queue, access memory buffers,
228 * > and retrieve received packets or enqueue packets to transmit.
229 *
230 * these actions do not involve the kernel.
231 *
232 * > 5. using some ioctl()s the process can synchronize the userspace view
233 * > of the queue with the actual status in the kernel. This includes both
234 * > receiving the notification of new packets, and transmitting new
235 * > packets on the output interface.
236 *
237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
238 * cases. They invoke the nm_sync callbacks on the netmap_kring
239 * structures, as initialized in step 2 and maybe later modified
240 * by a monitor. Monitors, however, will always call the original
241 * callback before doing anything else.
242 *
243 *
244 * > 6. select() or poll() can be used to wait for events on individual
245 * > transmit or receive queues (or all queues for a given interface).
246 *
247 * Implemented in netmap_poll(). This will call the same nm_sync()
248 * callbacks as in step 5 above.
249 *
250 * os-specific:
251 * linux: we first go through linux_netmap_poll() to adapt
252 * the FreeBSD interface to the linux one.
253 *
254 *
255 * ---- VALE_CTL -----
256 *
257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null
258 * nr_cmd in the nmreq structure. These subcommands are handled by
259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
261 * subcommands, respectively.
262 *
263 * Any network interface known to the system (including a persistent VALE
264 * port) can be attached to a VALE switch by issuing the
265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
266 * look exactly like ephemeral VALE ports (as created in step 2 above). The
267 * attachment of other interfaces, instead, requires the creation of a
268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in
269 * netmap mode. This may require the creation of a netmap_generic_adapter if
270 * we have no native support for the interface, or if generic adapters have
271 * been forced by sysctl.
272 *
273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
275 * callback. In the case of the bwrap, the callback creates the
276 * netmap_bwrap_adapter. The initialization of the bwrap is then
277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
279 * A generic adapter for the wrapped ifp will be created if needed, when
280 * netmap_get_bdg_na() calls netmap_get_hw_na().
281 *
282 *
283 * ---- DATAPATHS -----
284 *
285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
286 *
287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
288 *
289 * - tx from netmap userspace:
290 * concurrently:
291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
292 * kring->nm_sync() == DEVICE_netmap_txsync()
293 * 2) device interrupt handler
294 * na->nm_notify() == netmap_notify()
295 * - rx from netmap userspace:
296 * concurrently:
297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
298 * kring->nm_sync() == DEVICE_netmap_rxsync()
299 * 2) device interrupt handler
300 * na->nm_notify() == netmap_notify()
301 * - rx from host stack
302 * concurrently:
303 * 1) host stack
304 * netmap_transmit()
305 * na->nm_notify == netmap_notify()
306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
307 * kring->nm_sync() == netmap_rxsync_from_host
308 * netmap_rxsync_from_host(na, NULL, NULL)
309 * - tx to host stack
310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
311 * kring->nm_sync() == netmap_txsync_to_host
312 * netmap_txsync_to_host(na)
313 * nm_os_send_up()
314 * FreeBSD: na->if_input() == ether_input()
315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX
316 *
317 *
318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
319 *
320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
321 *
322 * - tx from netmap userspace:
323 * concurrently:
324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
325 * kring->nm_sync() == generic_netmap_txsync()
326 * nm_os_generic_xmit_frame()
327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
328 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
329 * gna->save_start_xmit == orig. dev. start_xmit
330 * FreeBSD: na->if_transmit() == orig. dev if_transmit
331 * 2) generic_mbuf_destructor()
332 * na->nm_notify() == netmap_notify()
333 * - rx from netmap userspace:
334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
335 * kring->nm_sync() == generic_netmap_rxsync()
336 * mbq_safe_dequeue()
337 * 2) device driver
338 * generic_rx_handler()
339 * mbq_safe_enqueue()
340 * na->nm_notify() == netmap_notify()
341 * - rx from host stack
342 * FreeBSD: same as native
343 * Linux: same as native except:
344 * 1) host stack
345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
346 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
347 * netmap_transmit()
348 * na->nm_notify() == netmap_notify()
349 * - tx to host stack (same as native):
350 *
351 *
352 * -= VALE =-
353 *
354 * INCOMING:
355 *
356 * - VALE ports:
357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
358 * kring->nm_sync() == netmap_vp_txsync()
359 *
360 * - system device with native support:
361 * from cable:
362 * interrupt
363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
364 * kring->nm_sync() == DEVICE_netmap_rxsync()
365 * netmap_vp_txsync()
366 * kring->nm_sync() == DEVICE_netmap_rxsync()
367 * from host stack:
368 * netmap_transmit()
369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
370 * kring->nm_sync() == netmap_rxsync_from_host()
371 * netmap_vp_txsync()
372 *
373 * - system device with generic support:
374 * from device driver:
375 * generic_rx_handler()
376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
377 * kring->nm_sync() == generic_netmap_rxsync()
378 * netmap_vp_txsync()
379 * kring->nm_sync() == generic_netmap_rxsync()
380 * from host stack:
381 * netmap_transmit()
382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
383 * kring->nm_sync() == netmap_rxsync_from_host()
384 * netmap_vp_txsync()
385 *
386 * (all cases) --> nm_bdg_flush()
387 * dest_na->nm_notify() == (see below)
388 *
389 * OUTGOING:
390 *
391 * - VALE ports:
392 * concurrently:
393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
394 * kring->nm_sync() == netmap_vp_rxsync()
395 * 2) from nm_bdg_flush()
396 * na->nm_notify() == netmap_notify()
397 *
398 * - system device with native support:
399 * to cable:
400 * na->nm_notify() == netmap_bwrap_notify()
401 * netmap_vp_rxsync()
402 * kring->nm_sync() == DEVICE_netmap_txsync()
403 * netmap_vp_rxsync()
404 * to host stack:
405 * netmap_vp_rxsync()
406 * kring->nm_sync() == netmap_txsync_to_host
407 * netmap_vp_rxsync_locked()
408 *
409 * - system device with generic adapter:
410 * to device driver:
411 * na->nm_notify() == netmap_bwrap_notify()
412 * netmap_vp_rxsync()
413 * kring->nm_sync() == generic_netmap_txsync()
414 * netmap_vp_rxsync()
415 * to host stack:
416 * netmap_vp_rxsync()
417 * kring->nm_sync() == netmap_txsync_to_host
418 * netmap_vp_rxsync()
419 *
420 */
421
422 /*
423 * OS-specific code that is used only within this file.
424 * Other OS-specific code that must be accessed by drivers
425 * is present in netmap_kern.h
426 */
427
428 #if defined(__FreeBSD__)
429 #include <sys/cdefs.h> /* prerequisite */
430 #include <sys/types.h>
431 #include <sys/errno.h>
432 #include <sys/param.h> /* defines used in kernel.h */
433 #include <sys/kernel.h> /* types used in module initialization */
434 #include <sys/conf.h> /* cdevsw struct, UID, GID */
435 #include <sys/filio.h> /* FIONBIO */
436 #include <sys/sockio.h>
437 #include <sys/socketvar.h> /* struct socket */
438 #include <sys/malloc.h>
439 #include <sys/poll.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <net/vnet.h>
446 #include <net/if.h>
447 #include <net/if_var.h>
448 #include <net/bpf.h> /* BIOCIMMEDIATE */
449 #include <machine/bus.h> /* bus_dmamap_* */
450 #include <sys/endian.h>
451 #include <sys/refcount.h>
452 #include <net/ethernet.h> /* ETHER_BPF_MTAP */
453
454
455 #elif defined(linux)
456
457 #include "bsd_glue.h"
458
459 #elif defined(__APPLE__)
460
461 #warning OSX support is only partial
462 #include "osx_glue.h"
463
464 #elif defined (_WIN32)
465
466 #include "win_glue.h"
467
468 #else
469
470 #error Unsupported platform
471
472 #endif /* unsupported */
473
474 /*
475 * common headers
476 */
477 #include <net/netmap.h>
478 #include <dev/netmap/netmap_kern.h>
479 #include <dev/netmap/netmap_mem2.h>
480
481
482 /* user-controlled variables */
483 int netmap_verbose;
484 #ifdef CONFIG_NETMAP_DEBUG
485 int netmap_debug;
486 #endif /* CONFIG_NETMAP_DEBUG */
487
488 static int netmap_no_timestamp; /* don't timestamp on rxsync */
489 int netmap_no_pendintr = 1;
490 int netmap_txsync_retry = 2;
491 static int netmap_fwd = 0; /* force transparent forwarding */
492
493 /*
494 * netmap_admode selects the netmap mode to use.
495 * Invalid values are reset to NETMAP_ADMODE_BEST
496 */
497 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */
498 NETMAP_ADMODE_NATIVE, /* either native or none */
499 NETMAP_ADMODE_GENERIC, /* force generic */
500 NETMAP_ADMODE_LAST };
501 static int netmap_admode = NETMAP_ADMODE_BEST;
502
503 /* netmap_generic_mit controls mitigation of RX notifications for
504 * the generic netmap adapter. The value is a time interval in
505 * nanoseconds. */
506 int netmap_generic_mit = 100*1000;
507
508 /* We use by default netmap-aware qdiscs with generic netmap adapters,
509 * even if there can be a little performance hit with hardware NICs.
510 * However, using the qdisc is the safer approach, for two reasons:
511 * 1) it prevents non-fifo qdiscs to break the TX notification
512 * scheme, which is based on mbuf destructors when txqdisc is
513 * not used.
514 * 2) it makes it possible to transmit over software devices that
515 * change skb->dev, like bridge, veth, ...
516 *
517 * Anyway users looking for the best performance should
518 * use native adapters.
519 */
520 #ifdef linux
521 int netmap_generic_txqdisc = 1;
522 #endif
523
524 /* Default number of slots and queues for generic adapters. */
525 int netmap_generic_ringsize = 1024;
526 int netmap_generic_rings = 1;
527
528 /* Non-zero to enable checksum offloading in NIC drivers */
529 int netmap_generic_hwcsum = 0;
530
531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
532 int ptnet_vnet_hdr = 1;
533
534 /*
535 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
536 * in some other operating systems
537 */
538 SYSBEGIN(main_init);
539
540 SYSCTL_DECL(_dev_netmap);
541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
543 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
544 #ifdef CONFIG_NETMAP_DEBUG
545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
546 CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
547 #endif /* CONFIG_NETMAP_DEBUG */
548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
549 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
551 0, "Always look for new received packets.");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
553 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
554
555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
556 "Force NR_FORWARD mode");
557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
558 "Adapter mode. 0 selects the best option available,"
559 "1 forces native adapter, 2 forces emulated adapter");
560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
561 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
562 "1 to enable checksum generation by the NIC");
563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
564 0, "RX notification interval in nanoseconds");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
566 &netmap_generic_ringsize, 0,
567 "Number of per-ring slots for emulated netmap mode");
568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
569 &netmap_generic_rings, 0,
570 "Number of TX/RX queues for emulated netmap adapters");
571 #ifdef linux
572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
573 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
574 #endif
575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
576 0, "Allow ptnet devices to use virtio-net headers");
577
578 SYSEND;
579
580 NMG_LOCK_T netmap_global_lock;
581
582 /*
583 * mark the ring as stopped, and run through the locks
584 * to make sure other users get to see it.
585 * stopped must be either NR_KR_STOPPED (for unbounded stop)
586 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
587 */
588 static void
netmap_disable_ring(struct netmap_kring * kr,int stopped)589 netmap_disable_ring(struct netmap_kring *kr, int stopped)
590 {
591 nm_kr_stop(kr, stopped);
592 // XXX check if nm_kr_stop is sufficient
593 mtx_lock(&kr->q_lock);
594 mtx_unlock(&kr->q_lock);
595 nm_kr_put(kr);
596 }
597
598 /* stop or enable a single ring */
599 void
netmap_set_ring(struct netmap_adapter * na,u_int ring_id,enum txrx t,int stopped)600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
601 {
602 if (stopped)
603 netmap_disable_ring(NMR(na, t)[ring_id], stopped);
604 else
605 NMR(na, t)[ring_id]->nkr_stopped = 0;
606 }
607
608
609 /* stop or enable all the rings of na */
610 void
netmap_set_all_rings(struct netmap_adapter * na,int stopped)611 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
612 {
613 int i;
614 enum txrx t;
615
616 if (!nm_netmap_on(na))
617 return;
618
619 for_rx_tx(t) {
620 for (i = 0; i < netmap_real_rings(na, t); i++) {
621 netmap_set_ring(na, i, t, stopped);
622 }
623 }
624 }
625
626 /*
627 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s
628 * to finish and prevents any new one from starting. Call this before turning
629 * netmap mode off, or before removing the hardware rings (e.g., on module
630 * onload).
631 */
632 void
netmap_disable_all_rings(struct ifnet * ifp)633 netmap_disable_all_rings(struct ifnet *ifp)
634 {
635 if (NM_NA_VALID(ifp)) {
636 netmap_set_all_rings(NA(ifp), NM_KR_STOPPED);
637 }
638 }
639
640 /*
641 * Convenience function used in drivers. Re-enables rxsync and txsync on the
642 * adapter's rings In linux drivers, this should be placed near each
643 * napi_enable().
644 */
645 void
netmap_enable_all_rings(struct ifnet * ifp)646 netmap_enable_all_rings(struct ifnet *ifp)
647 {
648 if (NM_NA_VALID(ifp)) {
649 netmap_set_all_rings(NA(ifp), 0 /* enabled */);
650 }
651 }
652
653 void
netmap_make_zombie(struct ifnet * ifp)654 netmap_make_zombie(struct ifnet *ifp)
655 {
656 if (NM_NA_VALID(ifp)) {
657 struct netmap_adapter *na = NA(ifp);
658 netmap_set_all_rings(na, NM_KR_LOCKED);
659 na->na_flags |= NAF_ZOMBIE;
660 netmap_set_all_rings(na, 0);
661 }
662 }
663
664 void
netmap_undo_zombie(struct ifnet * ifp)665 netmap_undo_zombie(struct ifnet *ifp)
666 {
667 if (NM_NA_VALID(ifp)) {
668 struct netmap_adapter *na = NA(ifp);
669 if (na->na_flags & NAF_ZOMBIE) {
670 netmap_set_all_rings(na, NM_KR_LOCKED);
671 na->na_flags &= ~NAF_ZOMBIE;
672 netmap_set_all_rings(na, 0);
673 }
674 }
675 }
676
677 /*
678 * generic bound_checking function
679 */
680 u_int
nm_bound_var(u_int * v,u_int dflt,u_int lo,u_int hi,const char * msg)681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
682 {
683 u_int oldv = *v;
684 const char *op = NULL;
685
686 if (dflt < lo)
687 dflt = lo;
688 if (dflt > hi)
689 dflt = hi;
690 if (oldv < lo) {
691 *v = dflt;
692 op = "Bump";
693 } else if (oldv > hi) {
694 *v = hi;
695 op = "Clamp";
696 }
697 if (op && msg)
698 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
699 return *v;
700 }
701
702
703 /*
704 * packet-dump function, user-supplied or static buffer.
705 * The destination buffer must be at least 30+4*len
706 */
707 const char *
nm_dump_buf(char * p,int len,int lim,char * dst)708 nm_dump_buf(char *p, int len, int lim, char *dst)
709 {
710 static char _dst[8192];
711 int i, j, i0;
712 static char hex[] ="0123456789abcdef";
713 char *o; /* output position */
714
715 #define P_HI(x) hex[((x) & 0xf0)>>4]
716 #define P_LO(x) hex[((x) & 0xf)]
717 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
718 if (!dst)
719 dst = _dst;
720 if (lim <= 0 || lim > len)
721 lim = len;
722 o = dst;
723 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
724 o += strlen(o);
725 /* hexdump routine */
726 for (i = 0; i < lim; ) {
727 sprintf(o, "%5d: ", i);
728 o += strlen(o);
729 memset(o, ' ', 48);
730 i0 = i;
731 for (j=0; j < 16 && i < lim; i++, j++) {
732 o[j*3] = P_HI(p[i]);
733 o[j*3+1] = P_LO(p[i]);
734 }
735 i = i0;
736 for (j=0; j < 16 && i < lim; i++, j++)
737 o[j + 48] = P_C(p[i]);
738 o[j+48] = '\n';
739 o += j+49;
740 }
741 *o = '\0';
742 #undef P_HI
743 #undef P_LO
744 #undef P_C
745 return dst;
746 }
747
748
749 /*
750 * Fetch configuration from the device, to cope with dynamic
751 * reconfigurations after loading the module.
752 */
753 /* call with NMG_LOCK held */
754 int
netmap_update_config(struct netmap_adapter * na)755 netmap_update_config(struct netmap_adapter *na)
756 {
757 struct nm_config_info info;
758
759 bzero(&info, sizeof(info));
760 if (na->nm_config == NULL ||
761 na->nm_config(na, &info)) {
762 /* take whatever we had at init time */
763 info.num_tx_rings = na->num_tx_rings;
764 info.num_tx_descs = na->num_tx_desc;
765 info.num_rx_rings = na->num_rx_rings;
766 info.num_rx_descs = na->num_rx_desc;
767 info.rx_buf_maxsize = na->rx_buf_maxsize;
768 }
769
770 if (na->num_tx_rings == info.num_tx_rings &&
771 na->num_tx_desc == info.num_tx_descs &&
772 na->num_rx_rings == info.num_rx_rings &&
773 na->num_rx_desc == info.num_rx_descs &&
774 na->rx_buf_maxsize == info.rx_buf_maxsize)
775 return 0; /* nothing changed */
776 if (na->active_fds == 0) {
777 na->num_tx_rings = info.num_tx_rings;
778 na->num_tx_desc = info.num_tx_descs;
779 na->num_rx_rings = info.num_rx_rings;
780 na->num_rx_desc = info.num_rx_descs;
781 na->rx_buf_maxsize = info.rx_buf_maxsize;
782 if (netmap_verbose)
783 nm_prinf("configuration changed for %s: txring %d x %d, "
784 "rxring %d x %d, rxbufsz %d",
785 na->name, na->num_tx_rings, na->num_tx_desc,
786 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
787 return 0;
788 }
789 nm_prerr("WARNING: configuration changed for %s while active: "
790 "txring %d x %d, rxring %d x %d, rxbufsz %d",
791 na->name, info.num_tx_rings, info.num_tx_descs,
792 info.num_rx_rings, info.num_rx_descs,
793 info.rx_buf_maxsize);
794 return 1;
795 }
796
797 /* nm_sync callbacks for the host rings */
798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
800
801 /* create the krings array and initialize the fields common to all adapters.
802 * The array layout is this:
803 *
804 * +----------+
805 * na->tx_rings ----->| | \
806 * | | } na->num_tx_ring
807 * | | /
808 * +----------+
809 * | | host tx kring
810 * na->rx_rings ----> +----------+
811 * | | \
812 * | | } na->num_rx_rings
813 * | | /
814 * +----------+
815 * | | host rx kring
816 * +----------+
817 * na->tailroom ----->| | \
818 * | | } tailroom bytes
819 * | | /
820 * +----------+
821 *
822 * Note: for compatibility, host krings are created even when not needed.
823 * The tailroom space is currently used by vale ports for allocating leases.
824 */
825 /* call with NMG_LOCK held */
826 int
netmap_krings_create(struct netmap_adapter * na,u_int tailroom)827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
828 {
829 u_int i, len, ndesc;
830 struct netmap_kring *kring;
831 u_int n[NR_TXRX];
832 enum txrx t;
833 int err = 0;
834
835 if (na->tx_rings != NULL) {
836 if (netmap_debug & NM_DEBUG_ON)
837 nm_prerr("warning: krings were already created");
838 return 0;
839 }
840
841 /* account for the (possibly fake) host rings */
842 n[NR_TX] = netmap_all_rings(na, NR_TX);
843 n[NR_RX] = netmap_all_rings(na, NR_RX);
844
845 len = (n[NR_TX] + n[NR_RX]) *
846 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
847 + tailroom;
848
849 na->tx_rings = nm_os_malloc((size_t)len);
850 if (na->tx_rings == NULL) {
851 nm_prerr("Cannot allocate krings");
852 return ENOMEM;
853 }
854 na->rx_rings = na->tx_rings + n[NR_TX];
855 na->tailroom = na->rx_rings + n[NR_RX];
856
857 /* link the krings in the krings array */
858 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
859 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
860 na->tx_rings[i] = kring;
861 kring++;
862 }
863
864 /*
865 * All fields in krings are 0 except the one initialized below.
866 * but better be explicit on important kring fields.
867 */
868 for_rx_tx(t) {
869 ndesc = nma_get_ndesc(na, t);
870 for (i = 0; i < n[t]; i++) {
871 kring = NMR(na, t)[i];
872 bzero(kring, sizeof(*kring));
873 kring->notify_na = na;
874 kring->ring_id = i;
875 kring->tx = t;
876 kring->nkr_num_slots = ndesc;
877 kring->nr_mode = NKR_NETMAP_OFF;
878 kring->nr_pending_mode = NKR_NETMAP_OFF;
879 if (i < nma_get_nrings(na, t)) {
880 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
881 } else {
882 if (!(na->na_flags & NAF_HOST_RINGS))
883 kring->nr_kflags |= NKR_FAKERING;
884 kring->nm_sync = (t == NR_TX ?
885 netmap_txsync_to_host:
886 netmap_rxsync_from_host);
887 }
888 kring->nm_notify = na->nm_notify;
889 kring->rhead = kring->rcur = kring->nr_hwcur = 0;
890 /*
891 * IMPORTANT: Always keep one slot empty.
892 */
893 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
894 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
895 nm_txrx2str(t), i);
896 nm_prdis("ktx %s h %d c %d t %d",
897 kring->name, kring->rhead, kring->rcur, kring->rtail);
898 err = nm_os_selinfo_init(&kring->si, kring->name);
899 if (err) {
900 netmap_krings_delete(na);
901 return err;
902 }
903 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
904 kring->na = na; /* setting this field marks the mutex as initialized */
905 }
906 err = nm_os_selinfo_init(&na->si[t], na->name);
907 if (err) {
908 netmap_krings_delete(na);
909 return err;
910 }
911 }
912
913 return 0;
914 }
915
916
917 /* undo the actions performed by netmap_krings_create */
918 /* call with NMG_LOCK held */
919 void
netmap_krings_delete(struct netmap_adapter * na)920 netmap_krings_delete(struct netmap_adapter *na)
921 {
922 struct netmap_kring **kring = na->tx_rings;
923 enum txrx t;
924
925 if (na->tx_rings == NULL) {
926 if (netmap_debug & NM_DEBUG_ON)
927 nm_prerr("warning: krings were already deleted");
928 return;
929 }
930
931 for_rx_tx(t)
932 nm_os_selinfo_uninit(&na->si[t]);
933
934 /* we rely on the krings layout described above */
935 for ( ; kring != na->tailroom; kring++) {
936 if ((*kring)->na != NULL)
937 mtx_destroy(&(*kring)->q_lock);
938 nm_os_selinfo_uninit(&(*kring)->si);
939 }
940 nm_os_free(na->tx_rings);
941 na->tx_rings = na->rx_rings = na->tailroom = NULL;
942 }
943
944
945 /*
946 * Destructor for NIC ports. They also have an mbuf queue
947 * on the rings connected to the host so we need to purge
948 * them first.
949 */
950 /* call with NMG_LOCK held */
951 void
netmap_hw_krings_delete(struct netmap_adapter * na)952 netmap_hw_krings_delete(struct netmap_adapter *na)
953 {
954 u_int lim = netmap_real_rings(na, NR_RX), i;
955
956 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
957 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
958 nm_prdis("destroy sw mbq with len %d", mbq_len(q));
959 mbq_purge(q);
960 mbq_safe_fini(q);
961 }
962 netmap_krings_delete(na);
963 }
964
965 static void
netmap_mem_drop(struct netmap_adapter * na)966 netmap_mem_drop(struct netmap_adapter *na)
967 {
968 int last = netmap_mem_deref(na->nm_mem, na);
969 /* if the native allocator had been overrided on regif,
970 * restore it now and drop the temporary one
971 */
972 if (last && na->nm_mem_prev) {
973 netmap_mem_put(na->nm_mem);
974 na->nm_mem = na->nm_mem_prev;
975 na->nm_mem_prev = NULL;
976 }
977 }
978
979 /*
980 * Undo everything that was done in netmap_do_regif(). In particular,
981 * call nm_register(ifp,0) to stop netmap mode on the interface and
982 * revert to normal operation.
983 */
984 /* call with NMG_LOCK held */
985 static void netmap_unset_ringid(struct netmap_priv_d *);
986 static void netmap_krings_put(struct netmap_priv_d *);
987 void
netmap_do_unregif(struct netmap_priv_d * priv)988 netmap_do_unregif(struct netmap_priv_d *priv)
989 {
990 struct netmap_adapter *na = priv->np_na;
991
992 NMG_LOCK_ASSERT();
993 na->active_fds--;
994 /* unset nr_pending_mode and possibly release exclusive mode */
995 netmap_krings_put(priv);
996
997 #ifdef WITH_MONITOR
998 /* XXX check whether we have to do something with monitor
999 * when rings change nr_mode. */
1000 if (na->active_fds <= 0) {
1001 /* walk through all the rings and tell any monitor
1002 * that the port is going to exit netmap mode
1003 */
1004 netmap_monitor_stop(na);
1005 }
1006 #endif
1007
1008 if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1009 na->nm_register(na, 0);
1010 }
1011
1012 /* delete rings and buffers that are no longer needed */
1013 netmap_mem_rings_delete(na);
1014
1015 if (na->active_fds <= 0) { /* last instance */
1016 /*
1017 * (TO CHECK) We enter here
1018 * when the last reference to this file descriptor goes
1019 * away. This means we cannot have any pending poll()
1020 * or interrupt routine operating on the structure.
1021 * XXX The file may be closed in a thread while
1022 * another thread is using it.
1023 * Linux keeps the file opened until the last reference
1024 * by any outstanding ioctl/poll or mmap is gone.
1025 * FreeBSD does not track mmap()s (but we do) and
1026 * wakes up any sleeping poll(). Need to check what
1027 * happens if the close() occurs while a concurrent
1028 * syscall is running.
1029 */
1030 if (netmap_debug & NM_DEBUG_ON)
1031 nm_prinf("deleting last instance for %s", na->name);
1032
1033 if (nm_netmap_on(na)) {
1034 nm_prerr("BUG: netmap on while going to delete the krings");
1035 }
1036
1037 na->nm_krings_delete(na);
1038
1039 /* restore the default number of host tx and rx rings */
1040 if (na->na_flags & NAF_HOST_RINGS) {
1041 na->num_host_tx_rings = 1;
1042 na->num_host_rx_rings = 1;
1043 } else {
1044 na->num_host_tx_rings = 0;
1045 na->num_host_rx_rings = 0;
1046 }
1047 }
1048
1049 /* possibily decrement counter of tx_si/rx_si users */
1050 netmap_unset_ringid(priv);
1051 /* delete the nifp */
1052 netmap_mem_if_delete(na, priv->np_nifp);
1053 /* drop the allocator */
1054 netmap_mem_drop(na);
1055 /* mark the priv as unregistered */
1056 priv->np_na = NULL;
1057 priv->np_nifp = NULL;
1058 }
1059
1060 struct netmap_priv_d*
netmap_priv_new(void)1061 netmap_priv_new(void)
1062 {
1063 struct netmap_priv_d *priv;
1064
1065 priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1066 if (priv == NULL)
1067 return NULL;
1068 priv->np_refs = 1;
1069 nm_os_get_module();
1070 return priv;
1071 }
1072
1073 /*
1074 * Destructor of the netmap_priv_d, called when the fd is closed
1075 * Action: undo all the things done by NIOCREGIF,
1076 * On FreeBSD we need to track whether there are active mmap()s,
1077 * and we use np_active_mmaps for that. On linux, the field is always 0.
1078 * Return: 1 if we can free priv, 0 otherwise.
1079 *
1080 */
1081 /* call with NMG_LOCK held */
1082 void
netmap_priv_delete(struct netmap_priv_d * priv)1083 netmap_priv_delete(struct netmap_priv_d *priv)
1084 {
1085 struct netmap_adapter *na = priv->np_na;
1086
1087 /* number of active references to this fd */
1088 if (--priv->np_refs > 0) {
1089 return;
1090 }
1091 nm_os_put_module();
1092 if (na) {
1093 netmap_do_unregif(priv);
1094 }
1095 netmap_unget_na(na, priv->np_ifp);
1096 bzero(priv, sizeof(*priv)); /* for safety */
1097 nm_os_free(priv);
1098 }
1099
1100
1101 /* call with NMG_LOCK *not* held */
1102 void
netmap_dtor(void * data)1103 netmap_dtor(void *data)
1104 {
1105 struct netmap_priv_d *priv = data;
1106
1107 NMG_LOCK();
1108 netmap_priv_delete(priv);
1109 NMG_UNLOCK();
1110 }
1111
1112
1113 /*
1114 * Handlers for synchronization of the rings from/to the host stack.
1115 * These are associated to a network interface and are just another
1116 * ring pair managed by userspace.
1117 *
1118 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1119 * flags):
1120 *
1121 * - Before releasing buffers on hw RX rings, the application can mark
1122 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1123 * will be forwarded to the host stack, similarly to what happened if
1124 * the application moved them to the host TX ring.
1125 *
1126 * - Before releasing buffers on the host RX ring, the application can
1127 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1128 * they will be forwarded to the hw TX rings, saving the application
1129 * from doing the same task in user-space.
1130 *
1131 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD
1132 * flag, or globally with the netmap_fwd sysctl.
1133 *
1134 * The transfer NIC --> host is relatively easy, just encapsulate
1135 * into mbufs and we are done. The host --> NIC side is slightly
1136 * harder because there might not be room in the tx ring so it
1137 * might take a while before releasing the buffer.
1138 */
1139
1140
1141 /*
1142 * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1143 * We do not need to lock because the queue is private.
1144 * After this call the queue is empty.
1145 */
1146 static void
netmap_send_up(struct ifnet * dst,struct mbq * q)1147 netmap_send_up(struct ifnet *dst, struct mbq *q)
1148 {
1149 struct mbuf *m;
1150 struct mbuf *head = NULL, *prev = NULL;
1151
1152 /* Send packets up, outside the lock; head/prev machinery
1153 * is only useful for Windows. */
1154 while ((m = mbq_dequeue(q)) != NULL) {
1155 if (netmap_debug & NM_DEBUG_HOST)
1156 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1157 prev = nm_os_send_up(dst, m, prev);
1158 if (head == NULL)
1159 head = prev;
1160 }
1161 if (head)
1162 nm_os_send_up(dst, NULL, head);
1163 mbq_fini(q);
1164 }
1165
1166
1167 /*
1168 * Scan the buffers from hwcur to ring->head, and put a copy of those
1169 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1170 * Drop remaining packets in the unlikely event
1171 * of an mbuf shortage.
1172 */
1173 static void
netmap_grab_packets(struct netmap_kring * kring,struct mbq * q,int force)1174 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1175 {
1176 u_int const lim = kring->nkr_num_slots - 1;
1177 u_int const head = kring->rhead;
1178 u_int n;
1179 struct netmap_adapter *na = kring->na;
1180
1181 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1182 struct mbuf *m;
1183 struct netmap_slot *slot = &kring->ring->slot[n];
1184
1185 if ((slot->flags & NS_FORWARD) == 0 && !force)
1186 continue;
1187 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1188 nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1189 continue;
1190 }
1191 slot->flags &= ~NS_FORWARD; // XXX needed ?
1192 /* XXX TODO: adapt to the case of a multisegment packet */
1193 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1194
1195 if (m == NULL)
1196 break;
1197 mbq_enqueue(q, m);
1198 }
1199 }
1200
1201 static inline int
_nm_may_forward(struct netmap_kring * kring)1202 _nm_may_forward(struct netmap_kring *kring)
1203 {
1204 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1205 kring->na->na_flags & NAF_HOST_RINGS &&
1206 kring->tx == NR_RX);
1207 }
1208
1209 static inline int
nm_may_forward_up(struct netmap_kring * kring)1210 nm_may_forward_up(struct netmap_kring *kring)
1211 {
1212 return _nm_may_forward(kring) &&
1213 kring->ring_id != kring->na->num_rx_rings;
1214 }
1215
1216 static inline int
nm_may_forward_down(struct netmap_kring * kring,int sync_flags)1217 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1218 {
1219 return _nm_may_forward(kring) &&
1220 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1221 kring->ring_id == kring->na->num_rx_rings;
1222 }
1223
1224 /*
1225 * Send to the NIC rings packets marked NS_FORWARD between
1226 * kring->nr_hwcur and kring->rhead.
1227 * Called under kring->rx_queue.lock on the sw rx ring.
1228 *
1229 * It can only be called if the user opened all the TX hw rings,
1230 * see NAF_CAN_FORWARD_DOWN flag.
1231 * We can touch the TX netmap rings (slots, head and cur) since
1232 * we are in poll/ioctl system call context, and the application
1233 * is not supposed to touch the ring (using a different thread)
1234 * during the execution of the system call.
1235 */
1236 static u_int
netmap_sw_to_nic(struct netmap_adapter * na)1237 netmap_sw_to_nic(struct netmap_adapter *na)
1238 {
1239 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1240 struct netmap_slot *rxslot = kring->ring->slot;
1241 u_int i, rxcur = kring->nr_hwcur;
1242 u_int const head = kring->rhead;
1243 u_int const src_lim = kring->nkr_num_slots - 1;
1244 u_int sent = 0;
1245
1246 /* scan rings to find space, then fill as much as possible */
1247 for (i = 0; i < na->num_tx_rings; i++) {
1248 struct netmap_kring *kdst = na->tx_rings[i];
1249 struct netmap_ring *rdst = kdst->ring;
1250 u_int const dst_lim = kdst->nkr_num_slots - 1;
1251
1252 /* XXX do we trust ring or kring->rcur,rtail ? */
1253 for (; rxcur != head && !nm_ring_empty(rdst);
1254 rxcur = nm_next(rxcur, src_lim) ) {
1255 struct netmap_slot *src, *dst, tmp;
1256 u_int dst_head = rdst->head;
1257
1258 src = &rxslot[rxcur];
1259 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1260 continue;
1261
1262 sent++;
1263
1264 dst = &rdst->slot[dst_head];
1265
1266 tmp = *src;
1267
1268 src->buf_idx = dst->buf_idx;
1269 src->flags = NS_BUF_CHANGED;
1270
1271 dst->buf_idx = tmp.buf_idx;
1272 dst->len = tmp.len;
1273 dst->flags = NS_BUF_CHANGED;
1274
1275 rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1276 }
1277 /* if (sent) XXX txsync ? it would be just an optimization */
1278 }
1279 return sent;
1280 }
1281
1282
1283 /*
1284 * netmap_txsync_to_host() passes packets up. We are called from a
1285 * system call in user process context, and the only contention
1286 * can be among multiple user threads erroneously calling
1287 * this routine concurrently.
1288 */
1289 static int
netmap_txsync_to_host(struct netmap_kring * kring,int flags)1290 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1291 {
1292 struct netmap_adapter *na = kring->na;
1293 u_int const lim = kring->nkr_num_slots - 1;
1294 u_int const head = kring->rhead;
1295 struct mbq q;
1296
1297 /* Take packets from hwcur to head and pass them up.
1298 * Force hwcur = head since netmap_grab_packets() stops at head
1299 */
1300 mbq_init(&q);
1301 netmap_grab_packets(kring, &q, 1 /* force */);
1302 nm_prdis("have %d pkts in queue", mbq_len(&q));
1303 kring->nr_hwcur = head;
1304 kring->nr_hwtail = head + lim;
1305 if (kring->nr_hwtail > lim)
1306 kring->nr_hwtail -= lim + 1;
1307
1308 netmap_send_up(na->ifp, &q);
1309 return 0;
1310 }
1311
1312
1313 /*
1314 * rxsync backend for packets coming from the host stack.
1315 * They have been put in kring->rx_queue by netmap_transmit().
1316 * We protect access to the kring using kring->rx_queue.lock
1317 *
1318 * also moves to the nic hw rings any packet the user has marked
1319 * for transparent-mode forwarding, then sets the NR_FORWARD
1320 * flag in the kring to let the caller push them out
1321 */
1322 static int
netmap_rxsync_from_host(struct netmap_kring * kring,int flags)1323 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1324 {
1325 struct netmap_adapter *na = kring->na;
1326 struct netmap_ring *ring = kring->ring;
1327 u_int nm_i, n;
1328 u_int const lim = kring->nkr_num_slots - 1;
1329 u_int const head = kring->rhead;
1330 int ret = 0;
1331 struct mbq *q = &kring->rx_queue, fq;
1332
1333 mbq_init(&fq); /* fq holds packets to be freed */
1334
1335 mbq_lock(q);
1336
1337 /* First part: import newly received packets */
1338 n = mbq_len(q);
1339 if (n) { /* grab packets from the queue */
1340 struct mbuf *m;
1341 uint32_t stop_i;
1342
1343 nm_i = kring->nr_hwtail;
1344 stop_i = nm_prev(kring->nr_hwcur, lim);
1345 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1346 int len = MBUF_LEN(m);
1347 struct netmap_slot *slot = &ring->slot[nm_i];
1348
1349 m_copydata(m, 0, len, NMB(na, slot));
1350 nm_prdis("nm %d len %d", nm_i, len);
1351 if (netmap_debug & NM_DEBUG_HOST)
1352 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1353
1354 slot->len = len;
1355 slot->flags = 0;
1356 nm_i = nm_next(nm_i, lim);
1357 mbq_enqueue(&fq, m);
1358 }
1359 kring->nr_hwtail = nm_i;
1360 }
1361
1362 /*
1363 * Second part: skip past packets that userspace has released.
1364 */
1365 nm_i = kring->nr_hwcur;
1366 if (nm_i != head) { /* something was released */
1367 if (nm_may_forward_down(kring, flags)) {
1368 ret = netmap_sw_to_nic(na);
1369 if (ret > 0) {
1370 kring->nr_kflags |= NR_FORWARD;
1371 ret = 0;
1372 }
1373 }
1374 kring->nr_hwcur = head;
1375 }
1376
1377 mbq_unlock(q);
1378
1379 mbq_purge(&fq);
1380 mbq_fini(&fq);
1381
1382 return ret;
1383 }
1384
1385
1386 /* Get a netmap adapter for the port.
1387 *
1388 * If it is possible to satisfy the request, return 0
1389 * with *na containing the netmap adapter found.
1390 * Otherwise return an error code, with *na containing NULL.
1391 *
1392 * When the port is attached to a bridge, we always return
1393 * EBUSY.
1394 * Otherwise, if the port is already bound to a file descriptor,
1395 * then we unconditionally return the existing adapter into *na.
1396 * In all the other cases, we return (into *na) either native,
1397 * generic or NULL, according to the following table:
1398 *
1399 * native_support
1400 * active_fds dev.netmap.admode YES NO
1401 * -------------------------------------------------------
1402 * >0 * NA(ifp) NA(ifp)
1403 *
1404 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC
1405 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL
1406 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC
1407 *
1408 */
1409 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1410 int
netmap_get_hw_na(struct ifnet * ifp,struct netmap_mem_d * nmd,struct netmap_adapter ** na)1411 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1412 {
1413 /* generic support */
1414 int i = netmap_admode; /* Take a snapshot. */
1415 struct netmap_adapter *prev_na;
1416 int error = 0;
1417
1418 *na = NULL; /* default */
1419
1420 /* reset in case of invalid value */
1421 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1422 i = netmap_admode = NETMAP_ADMODE_BEST;
1423
1424 if (NM_NA_VALID(ifp)) {
1425 prev_na = NA(ifp);
1426 /* If an adapter already exists, return it if
1427 * there are active file descriptors or if
1428 * netmap is not forced to use generic
1429 * adapters.
1430 */
1431 if (NETMAP_OWNED_BY_ANY(prev_na)
1432 || i != NETMAP_ADMODE_GENERIC
1433 || prev_na->na_flags & NAF_FORCE_NATIVE
1434 #ifdef WITH_PIPES
1435 /* ugly, but we cannot allow an adapter switch
1436 * if some pipe is referring to this one
1437 */
1438 || prev_na->na_next_pipe > 0
1439 #endif
1440 ) {
1441 *na = prev_na;
1442 goto assign_mem;
1443 }
1444 }
1445
1446 /* If there isn't native support and netmap is not allowed
1447 * to use generic adapters, we cannot satisfy the request.
1448 */
1449 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1450 return EOPNOTSUPP;
1451
1452 /* Otherwise, create a generic adapter and return it,
1453 * saving the previously used netmap adapter, if any.
1454 *
1455 * Note that here 'prev_na', if not NULL, MUST be a
1456 * native adapter, and CANNOT be a generic one. This is
1457 * true because generic adapters are created on demand, and
1458 * destroyed when not used anymore. Therefore, if the adapter
1459 * currently attached to an interface 'ifp' is generic, it
1460 * must be that
1461 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1462 * Consequently, if NA(ifp) is generic, we will enter one of
1463 * the branches above. This ensures that we never override
1464 * a generic adapter with another generic adapter.
1465 */
1466 error = generic_netmap_attach(ifp);
1467 if (error)
1468 return error;
1469
1470 *na = NA(ifp);
1471
1472 assign_mem:
1473 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1474 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1475 (*na)->nm_mem_prev = (*na)->nm_mem;
1476 (*na)->nm_mem = netmap_mem_get(nmd);
1477 }
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * MUST BE CALLED UNDER NMG_LOCK()
1484 *
1485 * Get a refcounted reference to a netmap adapter attached
1486 * to the interface specified by req.
1487 * This is always called in the execution of an ioctl().
1488 *
1489 * Return ENXIO if the interface specified by the request does
1490 * not exist, ENOTSUP if netmap is not supported by the interface,
1491 * EBUSY if the interface is already attached to a bridge,
1492 * EINVAL if parameters are invalid, ENOMEM if needed resources
1493 * could not be allocated.
1494 * If successful, hold a reference to the netmap adapter.
1495 *
1496 * If the interface specified by req is a system one, also keep
1497 * a reference to it and return a valid *ifp.
1498 */
1499 int
netmap_get_na(struct nmreq_header * hdr,struct netmap_adapter ** na,struct ifnet ** ifp,struct netmap_mem_d * nmd,int create)1500 netmap_get_na(struct nmreq_header *hdr,
1501 struct netmap_adapter **na, struct ifnet **ifp,
1502 struct netmap_mem_d *nmd, int create)
1503 {
1504 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1505 int error = 0;
1506 struct netmap_adapter *ret = NULL;
1507 int nmd_ref = 0;
1508
1509 *na = NULL; /* default return value */
1510 *ifp = NULL;
1511
1512 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1513 return EINVAL;
1514 }
1515
1516 if (req->nr_mode == NR_REG_PIPE_MASTER ||
1517 req->nr_mode == NR_REG_PIPE_SLAVE) {
1518 /* Do not accept deprecated pipe modes. */
1519 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1520 return EINVAL;
1521 }
1522
1523 NMG_LOCK_ASSERT();
1524
1525 /* if the request contain a memid, try to find the
1526 * corresponding memory region
1527 */
1528 if (nmd == NULL && req->nr_mem_id) {
1529 nmd = netmap_mem_find(req->nr_mem_id);
1530 if (nmd == NULL)
1531 return EINVAL;
1532 /* keep the rereference */
1533 nmd_ref = 1;
1534 }
1535
1536 /* We cascade through all possible types of netmap adapter.
1537 * All netmap_get_*_na() functions return an error and an na,
1538 * with the following combinations:
1539 *
1540 * error na
1541 * 0 NULL type doesn't match
1542 * !0 NULL type matches, but na creation/lookup failed
1543 * 0 !NULL type matches and na created/found
1544 * !0 !NULL impossible
1545 */
1546 error = netmap_get_null_na(hdr, na, nmd, create);
1547 if (error || *na != NULL)
1548 goto out;
1549
1550 /* try to see if this is a monitor port */
1551 error = netmap_get_monitor_na(hdr, na, nmd, create);
1552 if (error || *na != NULL)
1553 goto out;
1554
1555 /* try to see if this is a pipe port */
1556 error = netmap_get_pipe_na(hdr, na, nmd, create);
1557 if (error || *na != NULL)
1558 goto out;
1559
1560 /* try to see if this is a bridge port */
1561 error = netmap_get_vale_na(hdr, na, nmd, create);
1562 if (error)
1563 goto out;
1564
1565 if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1566 goto out;
1567
1568 /*
1569 * This must be a hardware na, lookup the name in the system.
1570 * Note that by hardware we actually mean "it shows up in ifconfig".
1571 * This may still be a tap, a veth/epair, or even a
1572 * persistent VALE port.
1573 */
1574 *ifp = ifunit_ref(hdr->nr_name);
1575 if (*ifp == NULL) {
1576 error = ENXIO;
1577 goto out;
1578 }
1579
1580 error = netmap_get_hw_na(*ifp, nmd, &ret);
1581 if (error)
1582 goto out;
1583
1584 *na = ret;
1585 netmap_adapter_get(ret);
1586
1587 /*
1588 * if the adapter supports the host rings and it is not alread open,
1589 * try to set the number of host rings as requested by the user
1590 */
1591 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1592 if (req->nr_host_tx_rings)
1593 (*na)->num_host_tx_rings = req->nr_host_tx_rings;
1594 if (req->nr_host_rx_rings)
1595 (*na)->num_host_rx_rings = req->nr_host_rx_rings;
1596 }
1597 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1598 (*na)->num_host_rx_rings);
1599
1600 out:
1601 if (error) {
1602 if (ret)
1603 netmap_adapter_put(ret);
1604 if (*ifp) {
1605 if_rele(*ifp);
1606 *ifp = NULL;
1607 }
1608 }
1609 if (nmd_ref)
1610 netmap_mem_put(nmd);
1611
1612 return error;
1613 }
1614
1615 /* undo netmap_get_na() */
1616 void
netmap_unget_na(struct netmap_adapter * na,struct ifnet * ifp)1617 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp)
1618 {
1619 if (ifp)
1620 if_rele(ifp);
1621 if (na)
1622 netmap_adapter_put(na);
1623 }
1624
1625
1626 #define NM_FAIL_ON(t) do { \
1627 if (unlikely(t)) { \
1628 nm_prlim(5, "%s: fail '" #t "' " \
1629 "h %d c %d t %d " \
1630 "rh %d rc %d rt %d " \
1631 "hc %d ht %d", \
1632 kring->name, \
1633 head, cur, ring->tail, \
1634 kring->rhead, kring->rcur, kring->rtail, \
1635 kring->nr_hwcur, kring->nr_hwtail); \
1636 return kring->nkr_num_slots; \
1637 } \
1638 } while (0)
1639
1640 /*
1641 * validate parameters on entry for *_txsync()
1642 * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1643 * in case of error.
1644 *
1645 * rhead, rcur and rtail=hwtail are stored from previous round.
1646 * hwcur is the next packet to send to the ring.
1647 *
1648 * We want
1649 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1650 *
1651 * hwcur, rhead, rtail and hwtail are reliable
1652 */
1653 u_int
nm_txsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1654 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1655 {
1656 u_int head = ring->head; /* read only once */
1657 u_int cur = ring->cur; /* read only once */
1658 u_int n = kring->nkr_num_slots;
1659
1660 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1661 kring->name,
1662 kring->nr_hwcur, kring->nr_hwtail,
1663 ring->head, ring->cur, ring->tail);
1664 #if 1 /* kernel sanity checks; but we can trust the kring. */
1665 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1666 kring->rtail >= n || kring->nr_hwtail >= n);
1667 #endif /* kernel sanity checks */
1668 /*
1669 * user sanity checks. We only use head,
1670 * A, B, ... are possible positions for head:
1671 *
1672 * 0 A rhead B rtail C n-1
1673 * 0 D rtail E rhead F n-1
1674 *
1675 * B, F, D are valid. A, C, E are wrong
1676 */
1677 if (kring->rtail >= kring->rhead) {
1678 /* want rhead <= head <= rtail */
1679 NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1680 /* and also head <= cur <= rtail */
1681 NM_FAIL_ON(cur < head || cur > kring->rtail);
1682 } else { /* here rtail < rhead */
1683 /* we need head outside rtail .. rhead */
1684 NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1685
1686 /* two cases now: head <= rtail or head >= rhead */
1687 if (head <= kring->rtail) {
1688 /* want head <= cur <= rtail */
1689 NM_FAIL_ON(cur < head || cur > kring->rtail);
1690 } else { /* head >= rhead */
1691 /* cur must be outside rtail..head */
1692 NM_FAIL_ON(cur > kring->rtail && cur < head);
1693 }
1694 }
1695 if (ring->tail != kring->rtail) {
1696 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1697 ring->tail, kring->rtail);
1698 ring->tail = kring->rtail;
1699 }
1700 kring->rhead = head;
1701 kring->rcur = cur;
1702 return head;
1703 }
1704
1705
1706 /*
1707 * validate parameters on entry for *_rxsync()
1708 * Returns ring->head if ok, kring->nkr_num_slots on error.
1709 *
1710 * For a valid configuration,
1711 * hwcur <= head <= cur <= tail <= hwtail
1712 *
1713 * We only consider head and cur.
1714 * hwcur and hwtail are reliable.
1715 *
1716 */
1717 u_int
nm_rxsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1718 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1719 {
1720 uint32_t const n = kring->nkr_num_slots;
1721 uint32_t head, cur;
1722
1723 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1724 kring->name,
1725 kring->nr_hwcur, kring->nr_hwtail,
1726 ring->head, ring->cur, ring->tail);
1727 /*
1728 * Before storing the new values, we should check they do not
1729 * move backwards. However:
1730 * - head is not an issue because the previous value is hwcur;
1731 * - cur could in principle go back, however it does not matter
1732 * because we are processing a brand new rxsync()
1733 */
1734 cur = kring->rcur = ring->cur; /* read only once */
1735 head = kring->rhead = ring->head; /* read only once */
1736 #if 1 /* kernel sanity checks */
1737 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1738 #endif /* kernel sanity checks */
1739 /* user sanity checks */
1740 if (kring->nr_hwtail >= kring->nr_hwcur) {
1741 /* want hwcur <= rhead <= hwtail */
1742 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1743 /* and also rhead <= rcur <= hwtail */
1744 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1745 } else {
1746 /* we need rhead outside hwtail..hwcur */
1747 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1748 /* two cases now: head <= hwtail or head >= hwcur */
1749 if (head <= kring->nr_hwtail) {
1750 /* want head <= cur <= hwtail */
1751 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1752 } else {
1753 /* cur must be outside hwtail..head */
1754 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1755 }
1756 }
1757 if (ring->tail != kring->rtail) {
1758 nm_prlim(5, "%s tail overwritten was %d need %d",
1759 kring->name,
1760 ring->tail, kring->rtail);
1761 ring->tail = kring->rtail;
1762 }
1763 return head;
1764 }
1765
1766
1767 /*
1768 * Error routine called when txsync/rxsync detects an error.
1769 * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1770 * Return 1 on reinit.
1771 *
1772 * This routine is only called by the upper half of the kernel.
1773 * It only reads hwcur (which is changed only by the upper half, too)
1774 * and hwtail (which may be changed by the lower half, but only on
1775 * a tx ring and only to increase it, so any error will be recovered
1776 * on the next call). For the above, we don't strictly need to call
1777 * it under lock.
1778 */
1779 int
netmap_ring_reinit(struct netmap_kring * kring)1780 netmap_ring_reinit(struct netmap_kring *kring)
1781 {
1782 struct netmap_ring *ring = kring->ring;
1783 u_int i, lim = kring->nkr_num_slots - 1;
1784 int errors = 0;
1785
1786 // XXX KASSERT nm_kr_tryget
1787 nm_prlim(10, "called for %s", kring->name);
1788 // XXX probably wrong to trust userspace
1789 kring->rhead = ring->head;
1790 kring->rcur = ring->cur;
1791 kring->rtail = ring->tail;
1792
1793 if (ring->cur > lim)
1794 errors++;
1795 if (ring->head > lim)
1796 errors++;
1797 if (ring->tail > lim)
1798 errors++;
1799 for (i = 0; i <= lim; i++) {
1800 u_int idx = ring->slot[i].buf_idx;
1801 u_int len = ring->slot[i].len;
1802 if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1803 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1804 ring->slot[i].buf_idx = 0;
1805 ring->slot[i].len = 0;
1806 } else if (len > NETMAP_BUF_SIZE(kring->na)) {
1807 ring->slot[i].len = 0;
1808 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1809 }
1810 }
1811 if (errors) {
1812 nm_prlim(10, "total %d errors", errors);
1813 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1814 kring->name,
1815 ring->cur, kring->nr_hwcur,
1816 ring->tail, kring->nr_hwtail);
1817 ring->head = kring->rhead = kring->nr_hwcur;
1818 ring->cur = kring->rcur = kring->nr_hwcur;
1819 ring->tail = kring->rtail = kring->nr_hwtail;
1820 }
1821 return (errors ? 1 : 0);
1822 }
1823
1824 /* interpret the ringid and flags fields of an nmreq, by translating them
1825 * into a pair of intervals of ring indices:
1826 *
1827 * [priv->np_txqfirst, priv->np_txqlast) and
1828 * [priv->np_rxqfirst, priv->np_rxqlast)
1829 *
1830 */
1831 int
netmap_interp_ringid(struct netmap_priv_d * priv,uint32_t nr_mode,uint16_t nr_ringid,uint64_t nr_flags)1832 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1833 uint16_t nr_ringid, uint64_t nr_flags)
1834 {
1835 struct netmap_adapter *na = priv->np_na;
1836 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1837 enum txrx t;
1838 u_int j;
1839
1840 for_rx_tx(t) {
1841 if (nr_flags & excluded_direction[t]) {
1842 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1843 continue;
1844 }
1845 switch (nr_mode) {
1846 case NR_REG_ALL_NIC:
1847 case NR_REG_NULL:
1848 priv->np_qfirst[t] = 0;
1849 priv->np_qlast[t] = nma_get_nrings(na, t);
1850 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1851 priv->np_qfirst[t], priv->np_qlast[t]);
1852 break;
1853 case NR_REG_SW:
1854 case NR_REG_NIC_SW:
1855 if (!(na->na_flags & NAF_HOST_RINGS)) {
1856 nm_prerr("host rings not supported");
1857 return EINVAL;
1858 }
1859 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1860 nma_get_nrings(na, t) : 0);
1861 priv->np_qlast[t] = netmap_all_rings(na, t);
1862 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1863 nm_txrx2str(t),
1864 priv->np_qfirst[t], priv->np_qlast[t]);
1865 break;
1866 case NR_REG_ONE_NIC:
1867 if (nr_ringid >= na->num_tx_rings &&
1868 nr_ringid >= na->num_rx_rings) {
1869 nm_prerr("invalid ring id %d", nr_ringid);
1870 return EINVAL;
1871 }
1872 /* if not enough rings, use the first one */
1873 j = nr_ringid;
1874 if (j >= nma_get_nrings(na, t))
1875 j = 0;
1876 priv->np_qfirst[t] = j;
1877 priv->np_qlast[t] = j + 1;
1878 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1879 priv->np_qfirst[t], priv->np_qlast[t]);
1880 break;
1881 case NR_REG_ONE_SW:
1882 if (!(na->na_flags & NAF_HOST_RINGS)) {
1883 nm_prerr("host rings not supported");
1884 return EINVAL;
1885 }
1886 if (nr_ringid >= na->num_host_tx_rings &&
1887 nr_ringid >= na->num_host_rx_rings) {
1888 nm_prerr("invalid ring id %d", nr_ringid);
1889 return EINVAL;
1890 }
1891 /* if not enough rings, use the first one */
1892 j = nr_ringid;
1893 if (j >= nma_get_host_nrings(na, t))
1894 j = 0;
1895 priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1896 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1897 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1898 priv->np_qfirst[t], priv->np_qlast[t]);
1899 break;
1900 default:
1901 nm_prerr("invalid regif type %d", nr_mode);
1902 return EINVAL;
1903 }
1904 }
1905 priv->np_flags = nr_flags;
1906
1907 /* Allow transparent forwarding mode in the host --> nic
1908 * direction only if all the TX hw rings have been opened. */
1909 if (priv->np_qfirst[NR_TX] == 0 &&
1910 priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1911 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1912 }
1913
1914 if (netmap_verbose) {
1915 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1916 na->name,
1917 priv->np_qfirst[NR_TX],
1918 priv->np_qlast[NR_TX],
1919 priv->np_qfirst[NR_RX],
1920 priv->np_qlast[NR_RX],
1921 nr_ringid);
1922 }
1923 return 0;
1924 }
1925
1926
1927 /*
1928 * Set the ring ID. For devices with a single queue, a request
1929 * for all rings is the same as a single ring.
1930 */
1931 static int
netmap_set_ringid(struct netmap_priv_d * priv,uint32_t nr_mode,uint16_t nr_ringid,uint64_t nr_flags)1932 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1933 uint16_t nr_ringid, uint64_t nr_flags)
1934 {
1935 struct netmap_adapter *na = priv->np_na;
1936 int error;
1937 enum txrx t;
1938
1939 error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags);
1940 if (error) {
1941 return error;
1942 }
1943
1944 priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1;
1945
1946 /* optimization: count the users registered for more than
1947 * one ring, which are the ones sleeping on the global queue.
1948 * The default netmap_notify() callback will then
1949 * avoid signaling the global queue if nobody is using it
1950 */
1951 for_rx_tx(t) {
1952 if (nm_si_user(priv, t))
1953 na->si_users[t]++;
1954 }
1955 return 0;
1956 }
1957
1958 static void
netmap_unset_ringid(struct netmap_priv_d * priv)1959 netmap_unset_ringid(struct netmap_priv_d *priv)
1960 {
1961 struct netmap_adapter *na = priv->np_na;
1962 enum txrx t;
1963
1964 for_rx_tx(t) {
1965 if (nm_si_user(priv, t))
1966 na->si_users[t]--;
1967 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1968 }
1969 priv->np_flags = 0;
1970 priv->np_txpoll = 0;
1971 priv->np_kloop_state = 0;
1972 }
1973
1974
1975 /* Set the nr_pending_mode for the requested rings.
1976 * If requested, also try to get exclusive access to the rings, provided
1977 * the rings we want to bind are not exclusively owned by a previous bind.
1978 */
1979 static int
netmap_krings_get(struct netmap_priv_d * priv)1980 netmap_krings_get(struct netmap_priv_d *priv)
1981 {
1982 struct netmap_adapter *na = priv->np_na;
1983 u_int i;
1984 struct netmap_kring *kring;
1985 int excl = (priv->np_flags & NR_EXCLUSIVE);
1986 enum txrx t;
1987
1988 if (netmap_debug & NM_DEBUG_ON)
1989 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
1990 na->name,
1991 priv->np_qfirst[NR_TX],
1992 priv->np_qlast[NR_TX],
1993 priv->np_qfirst[NR_RX],
1994 priv->np_qlast[NR_RX]);
1995
1996 /* first round: check that all the requested rings
1997 * are neither alread exclusively owned, nor we
1998 * want exclusive ownership when they are already in use
1999 */
2000 for_rx_tx(t) {
2001 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2002 kring = NMR(na, t)[i];
2003 if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2004 (kring->users && excl))
2005 {
2006 nm_prdis("ring %s busy", kring->name);
2007 return EBUSY;
2008 }
2009 }
2010 }
2011
2012 /* second round: increment usage count (possibly marking them
2013 * as exclusive) and set the nr_pending_mode
2014 */
2015 for_rx_tx(t) {
2016 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2017 kring = NMR(na, t)[i];
2018 kring->users++;
2019 if (excl)
2020 kring->nr_kflags |= NKR_EXCLUSIVE;
2021 kring->nr_pending_mode = NKR_NETMAP_ON;
2022 }
2023 }
2024
2025 return 0;
2026
2027 }
2028
2029 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2030 * if was asked on regif, and unset the nr_pending_mode if we are the
2031 * last users of the involved rings. */
2032 static void
netmap_krings_put(struct netmap_priv_d * priv)2033 netmap_krings_put(struct netmap_priv_d *priv)
2034 {
2035 struct netmap_adapter *na = priv->np_na;
2036 u_int i;
2037 struct netmap_kring *kring;
2038 int excl = (priv->np_flags & NR_EXCLUSIVE);
2039 enum txrx t;
2040
2041 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2042 na->name,
2043 priv->np_qfirst[NR_TX],
2044 priv->np_qlast[NR_TX],
2045 priv->np_qfirst[NR_RX],
2046 priv->np_qlast[MR_RX]);
2047
2048 for_rx_tx(t) {
2049 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
2050 kring = NMR(na, t)[i];
2051 if (excl)
2052 kring->nr_kflags &= ~NKR_EXCLUSIVE;
2053 kring->users--;
2054 if (kring->users == 0)
2055 kring->nr_pending_mode = NKR_NETMAP_OFF;
2056 }
2057 }
2058 }
2059
2060 static int
nm_priv_rx_enabled(struct netmap_priv_d * priv)2061 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2062 {
2063 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2064 }
2065
2066 /* Validate the CSB entries for both directions (atok and ktoa).
2067 * To be called under NMG_LOCK(). */
2068 static int
netmap_csb_validate(struct netmap_priv_d * priv,struct nmreq_opt_csb * csbo)2069 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2070 {
2071 struct nm_csb_atok *csb_atok_base =
2072 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2073 struct nm_csb_ktoa *csb_ktoa_base =
2074 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2075 enum txrx t;
2076 int num_rings[NR_TXRX], tot_rings;
2077 size_t entry_size[2];
2078 void *csb_start[2];
2079 int i;
2080
2081 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2082 nm_prerr("Cannot update CSB while kloop is running");
2083 return EBUSY;
2084 }
2085
2086 tot_rings = 0;
2087 for_rx_tx(t) {
2088 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2089 tot_rings += num_rings[t];
2090 }
2091 if (tot_rings <= 0)
2092 return 0;
2093
2094 if (!(priv->np_flags & NR_EXCLUSIVE)) {
2095 nm_prerr("CSB mode requires NR_EXCLUSIVE");
2096 return EINVAL;
2097 }
2098
2099 entry_size[0] = sizeof(*csb_atok_base);
2100 entry_size[1] = sizeof(*csb_ktoa_base);
2101 csb_start[0] = (void *)csb_atok_base;
2102 csb_start[1] = (void *)csb_ktoa_base;
2103
2104 for (i = 0; i < 2; i++) {
2105 /* On Linux we could use access_ok() to simplify
2106 * the validation. However, the advantage of
2107 * this approach is that it works also on
2108 * FreeBSD. */
2109 size_t csb_size = tot_rings * entry_size[i];
2110 void *tmp;
2111 int err;
2112
2113 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2114 nm_prerr("Unaligned CSB address");
2115 return EINVAL;
2116 }
2117
2118 tmp = nm_os_malloc(csb_size);
2119 if (!tmp)
2120 return ENOMEM;
2121 if (i == 0) {
2122 /* Application --> kernel direction. */
2123 err = copyin(csb_start[i], tmp, csb_size);
2124 } else {
2125 /* Kernel --> application direction. */
2126 memset(tmp, 0, csb_size);
2127 err = copyout(tmp, csb_start[i], csb_size);
2128 }
2129 nm_os_free(tmp);
2130 if (err) {
2131 nm_prerr("Invalid CSB address");
2132 return err;
2133 }
2134 }
2135
2136 priv->np_csb_atok_base = csb_atok_base;
2137 priv->np_csb_ktoa_base = csb_ktoa_base;
2138
2139 /* Initialize the CSB. */
2140 for_rx_tx(t) {
2141 for (i = 0; i < num_rings[t]; i++) {
2142 struct netmap_kring *kring =
2143 NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2144 struct nm_csb_atok *csb_atok = csb_atok_base + i;
2145 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2146
2147 if (t == NR_RX) {
2148 csb_atok += num_rings[NR_TX];
2149 csb_ktoa += num_rings[NR_TX];
2150 }
2151
2152 CSB_WRITE(csb_atok, head, kring->rhead);
2153 CSB_WRITE(csb_atok, cur, kring->rcur);
2154 CSB_WRITE(csb_atok, appl_need_kick, 1);
2155 CSB_WRITE(csb_atok, sync_flags, 1);
2156 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2157 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2158 CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2159
2160 nm_prinf("csb_init for kring %s: head %u, cur %u, "
2161 "hwcur %u, hwtail %u", kring->name,
2162 kring->rhead, kring->rcur, kring->nr_hwcur,
2163 kring->nr_hwtail);
2164 }
2165 }
2166
2167 return 0;
2168 }
2169
2170 /* Ensure that the netmap adapter can support the given MTU.
2171 * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2172 */
2173 int
netmap_buf_size_validate(const struct netmap_adapter * na,unsigned mtu)2174 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2175 unsigned nbs = NETMAP_BUF_SIZE(na);
2176
2177 if (mtu <= na->rx_buf_maxsize) {
2178 /* The MTU fits a single NIC slot. We only
2179 * Need to check that netmap buffers are
2180 * large enough to hold an MTU. NS_MOREFRAG
2181 * cannot be used in this case. */
2182 if (nbs < mtu) {
2183 nm_prerr("error: netmap buf size (%u) "
2184 "< device MTU (%u)", nbs, mtu);
2185 return EINVAL;
2186 }
2187 } else {
2188 /* More NIC slots may be needed to receive
2189 * or transmit a single packet. Check that
2190 * the adapter supports NS_MOREFRAG and that
2191 * netmap buffers are large enough to hold
2192 * the maximum per-slot size. */
2193 if (!(na->na_flags & NAF_MOREFRAG)) {
2194 nm_prerr("error: large MTU (%d) needed "
2195 "but %s does not support "
2196 "NS_MOREFRAG", mtu,
2197 na->ifp->if_xname);
2198 return EINVAL;
2199 } else if (nbs < na->rx_buf_maxsize) {
2200 nm_prerr("error: using NS_MOREFRAG on "
2201 "%s requires netmap buf size "
2202 ">= %u", na->ifp->if_xname,
2203 na->rx_buf_maxsize);
2204 return EINVAL;
2205 } else {
2206 nm_prinf("info: netmap application on "
2207 "%s needs to support "
2208 "NS_MOREFRAG "
2209 "(MTU=%u,netmap_buf_size=%u)",
2210 na->ifp->if_xname, mtu, nbs);
2211 }
2212 }
2213 return 0;
2214 }
2215
2216
2217 /*
2218 * possibly move the interface to netmap-mode.
2219 * If success it returns a pointer to netmap_if, otherwise NULL.
2220 * This must be called with NMG_LOCK held.
2221 *
2222 * The following na callbacks are called in the process:
2223 *
2224 * na->nm_config() [by netmap_update_config]
2225 * (get current number and size of rings)
2226 *
2227 * We have a generic one for linux (netmap_linux_config).
2228 * The bwrap has to override this, since it has to forward
2229 * the request to the wrapped adapter (netmap_bwrap_config).
2230 *
2231 *
2232 * na->nm_krings_create()
2233 * (create and init the krings array)
2234 *
2235 * One of the following:
2236 *
2237 * * netmap_hw_krings_create, (hw ports)
2238 * creates the standard layout for the krings
2239 * and adds the mbq (used for the host rings).
2240 *
2241 * * netmap_vp_krings_create (VALE ports)
2242 * add leases and scratchpads
2243 *
2244 * * netmap_pipe_krings_create (pipes)
2245 * create the krings and rings of both ends and
2246 * cross-link them
2247 *
2248 * * netmap_monitor_krings_create (monitors)
2249 * avoid allocating the mbq
2250 *
2251 * * netmap_bwrap_krings_create (bwraps)
2252 * create both the brap krings array,
2253 * the krings array of the wrapped adapter, and
2254 * (if needed) the fake array for the host adapter
2255 *
2256 * na->nm_register(, 1)
2257 * (put the adapter in netmap mode)
2258 *
2259 * This may be one of the following:
2260 *
2261 * * netmap_hw_reg (hw ports)
2262 * checks that the ifp is still there, then calls
2263 * the hardware specific callback;
2264 *
2265 * * netmap_vp_reg (VALE ports)
2266 * If the port is connected to a bridge,
2267 * set the NAF_NETMAP_ON flag under the
2268 * bridge write lock.
2269 *
2270 * * netmap_pipe_reg (pipes)
2271 * inform the other pipe end that it is no
2272 * longer responsible for the lifetime of this
2273 * pipe end
2274 *
2275 * * netmap_monitor_reg (monitors)
2276 * intercept the sync callbacks of the monitored
2277 * rings
2278 *
2279 * * netmap_bwrap_reg (bwraps)
2280 * cross-link the bwrap and hwna rings,
2281 * forward the request to the hwna, override
2282 * the hwna notify callback (to get the frames
2283 * coming from outside go through the bridge).
2284 *
2285 *
2286 */
2287 int
netmap_do_regif(struct netmap_priv_d * priv,struct netmap_adapter * na,uint32_t nr_mode,uint16_t nr_ringid,uint64_t nr_flags)2288 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2289 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags)
2290 {
2291 struct netmap_if *nifp = NULL;
2292 int error;
2293
2294 NMG_LOCK_ASSERT();
2295 priv->np_na = na; /* store the reference */
2296 error = netmap_mem_finalize(na->nm_mem, na);
2297 if (error)
2298 goto err;
2299
2300 if (na->active_fds == 0) {
2301
2302 /* cache the allocator info in the na */
2303 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2304 if (error)
2305 goto err_drop_mem;
2306 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2307 na->na_lut.objsize);
2308
2309 /* ring configuration may have changed, fetch from the card */
2310 netmap_update_config(na);
2311 }
2312
2313 /* compute the range of tx and rx rings to monitor */
2314 error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags);
2315 if (error)
2316 goto err_put_lut;
2317
2318 if (na->active_fds == 0) {
2319 /*
2320 * If this is the first registration of the adapter,
2321 * perform sanity checks and create the in-kernel view
2322 * of the netmap rings (the netmap krings).
2323 */
2324 if (na->ifp && nm_priv_rx_enabled(priv)) {
2325 /* This netmap adapter is attached to an ifnet. */
2326 unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2327
2328 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2329 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2330
2331 if (na->rx_buf_maxsize == 0) {
2332 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2333 error = EIO;
2334 goto err_drop_mem;
2335 }
2336
2337 error = netmap_buf_size_validate(na, mtu);
2338 if (error)
2339 goto err_drop_mem;
2340 }
2341
2342 /*
2343 * Depending on the adapter, this may also create
2344 * the netmap rings themselves
2345 */
2346 error = na->nm_krings_create(na);
2347 if (error)
2348 goto err_put_lut;
2349
2350 }
2351
2352 /* now the krings must exist and we can check whether some
2353 * previous bind has exclusive ownership on them, and set
2354 * nr_pending_mode
2355 */
2356 error = netmap_krings_get(priv);
2357 if (error)
2358 goto err_del_krings;
2359
2360 /* create all needed missing netmap rings */
2361 error = netmap_mem_rings_create(na);
2362 if (error)
2363 goto err_rel_excl;
2364
2365 /* in all cases, create a new netmap if */
2366 nifp = netmap_mem_if_new(na, priv);
2367 if (nifp == NULL) {
2368 error = ENOMEM;
2369 goto err_rel_excl;
2370 }
2371
2372 if (nm_kring_pending(priv)) {
2373 /* Some kring is switching mode, tell the adapter to
2374 * react on this. */
2375 error = na->nm_register(na, 1);
2376 if (error)
2377 goto err_del_if;
2378 }
2379
2380 /* Commit the reference. */
2381 na->active_fds++;
2382
2383 /*
2384 * advertise that the interface is ready by setting np_nifp.
2385 * The barrier is needed because readers (poll, *SYNC and mmap)
2386 * check for priv->np_nifp != NULL without locking
2387 */
2388 mb(); /* make sure previous writes are visible to all CPUs */
2389 priv->np_nifp = nifp;
2390
2391 return 0;
2392
2393 err_del_if:
2394 netmap_mem_if_delete(na, nifp);
2395 err_rel_excl:
2396 netmap_krings_put(priv);
2397 netmap_mem_rings_delete(na);
2398 err_del_krings:
2399 if (na->active_fds == 0)
2400 na->nm_krings_delete(na);
2401 err_put_lut:
2402 if (na->active_fds == 0)
2403 memset(&na->na_lut, 0, sizeof(na->na_lut));
2404 err_drop_mem:
2405 netmap_mem_drop(na);
2406 err:
2407 priv->np_na = NULL;
2408 return error;
2409 }
2410
2411
2412 /*
2413 * update kring and ring at the end of rxsync/txsync.
2414 */
2415 static inline void
nm_sync_finalize(struct netmap_kring * kring)2416 nm_sync_finalize(struct netmap_kring *kring)
2417 {
2418 /*
2419 * Update ring tail to what the kernel knows
2420 * After txsync: head/rhead/hwcur might be behind cur/rcur
2421 * if no carrier.
2422 */
2423 kring->ring->tail = kring->rtail = kring->nr_hwtail;
2424
2425 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2426 kring->name, kring->nr_hwcur, kring->nr_hwtail,
2427 kring->rhead, kring->rcur, kring->rtail);
2428 }
2429
2430 /* set ring timestamp */
2431 static inline void
ring_timestamp_set(struct netmap_ring * ring)2432 ring_timestamp_set(struct netmap_ring *ring)
2433 {
2434 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2435 microtime(&ring->ts);
2436 }
2437 }
2438
2439 static int nmreq_copyin(struct nmreq_header *, int);
2440 static int nmreq_copyout(struct nmreq_header *, int);
2441 static int nmreq_checkoptions(struct nmreq_header *);
2442
2443 /*
2444 * ioctl(2) support for the "netmap" device.
2445 *
2446 * Following a list of accepted commands:
2447 * - NIOCCTRL device control API
2448 * - NIOCTXSYNC sync TX rings
2449 * - NIOCRXSYNC sync RX rings
2450 * - SIOCGIFADDR just for convenience
2451 * - NIOCGINFO deprecated (legacy API)
2452 * - NIOCREGIF deprecated (legacy API)
2453 *
2454 * Return 0 on success, errno otherwise.
2455 */
2456 int
netmap_ioctl(struct netmap_priv_d * priv,u_long cmd,caddr_t data,struct thread * td,int nr_body_is_user)2457 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2458 struct thread *td, int nr_body_is_user)
2459 {
2460 struct mbq q; /* packets from RX hw queues to host stack */
2461 struct netmap_adapter *na = NULL;
2462 struct netmap_mem_d *nmd = NULL;
2463 struct ifnet *ifp = NULL;
2464 int error = 0;
2465 u_int i, qfirst, qlast;
2466 struct netmap_kring **krings;
2467 int sync_flags;
2468 enum txrx t;
2469
2470 switch (cmd) {
2471 case NIOCCTRL: {
2472 struct nmreq_header *hdr = (struct nmreq_header *)data;
2473
2474 if (hdr->nr_version < NETMAP_MIN_API ||
2475 hdr->nr_version > NETMAP_MAX_API) {
2476 nm_prerr("API mismatch: got %d need %d",
2477 hdr->nr_version, NETMAP_API);
2478 return EINVAL;
2479 }
2480
2481 /* Make a kernel-space copy of the user-space nr_body.
2482 * For convenince, the nr_body pointer and the pointers
2483 * in the options list will be replaced with their
2484 * kernel-space counterparts. The original pointers are
2485 * saved internally and later restored by nmreq_copyout
2486 */
2487 error = nmreq_copyin(hdr, nr_body_is_user);
2488 if (error) {
2489 return error;
2490 }
2491
2492 /* Sanitize hdr->nr_name. */
2493 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2494
2495 switch (hdr->nr_reqtype) {
2496 case NETMAP_REQ_REGISTER: {
2497 struct nmreq_register *req =
2498 (struct nmreq_register *)(uintptr_t)hdr->nr_body;
2499 struct netmap_if *nifp;
2500
2501 /* Protect access to priv from concurrent requests. */
2502 NMG_LOCK();
2503 do {
2504 struct nmreq_option *opt;
2505 u_int memflags;
2506
2507 if (priv->np_nifp != NULL) { /* thread already registered */
2508 error = EBUSY;
2509 break;
2510 }
2511
2512 #ifdef WITH_EXTMEM
2513 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2514 if (opt != NULL) {
2515 struct nmreq_opt_extmem *e =
2516 (struct nmreq_opt_extmem *)opt;
2517
2518 nmd = netmap_mem_ext_create(e->nro_usrptr,
2519 &e->nro_info, &error);
2520 opt->nro_status = error;
2521 if (nmd == NULL)
2522 break;
2523 }
2524 #endif /* WITH_EXTMEM */
2525
2526 if (nmd == NULL && req->nr_mem_id) {
2527 /* find the allocator and get a reference */
2528 nmd = netmap_mem_find(req->nr_mem_id);
2529 if (nmd == NULL) {
2530 if (netmap_verbose) {
2531 nm_prerr("%s: failed to find mem_id %u",
2532 hdr->nr_name, req->nr_mem_id);
2533 }
2534 error = EINVAL;
2535 break;
2536 }
2537 }
2538 /* find the interface and a reference */
2539 error = netmap_get_na(hdr, &na, &ifp, nmd,
2540 1 /* create */); /* keep reference */
2541 if (error)
2542 break;
2543 if (NETMAP_OWNED_BY_KERN(na)) {
2544 error = EBUSY;
2545 break;
2546 }
2547
2548 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2549 nm_prerr("virt_hdr_len=%d, but application does "
2550 "not accept it", na->virt_hdr_len);
2551 error = EIO;
2552 break;
2553 }
2554
2555 error = netmap_do_regif(priv, na, req->nr_mode,
2556 req->nr_ringid, req->nr_flags);
2557 if (error) { /* reg. failed, release priv and ref */
2558 break;
2559 }
2560
2561 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2562 if (opt != NULL) {
2563 struct nmreq_opt_csb *csbo =
2564 (struct nmreq_opt_csb *)opt;
2565 error = netmap_csb_validate(priv, csbo);
2566 opt->nro_status = error;
2567 if (error) {
2568 netmap_do_unregif(priv);
2569 break;
2570 }
2571 }
2572
2573 nifp = priv->np_nifp;
2574
2575 /* return the offset of the netmap_if object */
2576 req->nr_rx_rings = na->num_rx_rings;
2577 req->nr_tx_rings = na->num_tx_rings;
2578 req->nr_rx_slots = na->num_rx_desc;
2579 req->nr_tx_slots = na->num_tx_desc;
2580 req->nr_host_tx_rings = na->num_host_tx_rings;
2581 req->nr_host_rx_rings = na->num_host_rx_rings;
2582 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2583 &req->nr_mem_id);
2584 if (error) {
2585 netmap_do_unregif(priv);
2586 break;
2587 }
2588 if (memflags & NETMAP_MEM_PRIVATE) {
2589 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2590 }
2591 for_rx_tx(t) {
2592 priv->np_si[t] = nm_si_user(priv, t) ?
2593 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2594 }
2595
2596 if (req->nr_extra_bufs) {
2597 if (netmap_verbose)
2598 nm_prinf("requested %d extra buffers",
2599 req->nr_extra_bufs);
2600 req->nr_extra_bufs = netmap_extra_alloc(na,
2601 &nifp->ni_bufs_head, req->nr_extra_bufs);
2602 if (netmap_verbose)
2603 nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2604 }
2605 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2606
2607 error = nmreq_checkoptions(hdr);
2608 if (error) {
2609 netmap_do_unregif(priv);
2610 break;
2611 }
2612
2613 /* store ifp reference so that priv destructor may release it */
2614 priv->np_ifp = ifp;
2615 } while (0);
2616 if (error) {
2617 netmap_unget_na(na, ifp);
2618 }
2619 /* release the reference from netmap_mem_find() or
2620 * netmap_mem_ext_create()
2621 */
2622 if (nmd)
2623 netmap_mem_put(nmd);
2624 NMG_UNLOCK();
2625 break;
2626 }
2627
2628 case NETMAP_REQ_PORT_INFO_GET: {
2629 struct nmreq_port_info_get *req =
2630 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2631
2632 NMG_LOCK();
2633 do {
2634 u_int memflags;
2635
2636 if (hdr->nr_name[0] != '\0') {
2637 /* Build a nmreq_register out of the nmreq_port_info_get,
2638 * so that we can call netmap_get_na(). */
2639 struct nmreq_register regreq;
2640 bzero(®req, sizeof(regreq));
2641 regreq.nr_mode = NR_REG_ALL_NIC;
2642 regreq.nr_tx_slots = req->nr_tx_slots;
2643 regreq.nr_rx_slots = req->nr_rx_slots;
2644 regreq.nr_tx_rings = req->nr_tx_rings;
2645 regreq.nr_rx_rings = req->nr_rx_rings;
2646 regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2647 regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2648 regreq.nr_mem_id = req->nr_mem_id;
2649
2650 /* get a refcount */
2651 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2652 hdr->nr_body = (uintptr_t)®req;
2653 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2654 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2655 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2656 if (error) {
2657 na = NULL;
2658 ifp = NULL;
2659 break;
2660 }
2661 nmd = na->nm_mem; /* get memory allocator */
2662 } else {
2663 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2664 if (nmd == NULL) {
2665 if (netmap_verbose)
2666 nm_prerr("%s: failed to find mem_id %u",
2667 hdr->nr_name,
2668 req->nr_mem_id ? req->nr_mem_id : 1);
2669 error = EINVAL;
2670 break;
2671 }
2672 }
2673
2674 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2675 &req->nr_mem_id);
2676 if (error)
2677 break;
2678 if (na == NULL) /* only memory info */
2679 break;
2680 netmap_update_config(na);
2681 req->nr_rx_rings = na->num_rx_rings;
2682 req->nr_tx_rings = na->num_tx_rings;
2683 req->nr_rx_slots = na->num_rx_desc;
2684 req->nr_tx_slots = na->num_tx_desc;
2685 req->nr_host_tx_rings = na->num_host_tx_rings;
2686 req->nr_host_rx_rings = na->num_host_rx_rings;
2687 } while (0);
2688 netmap_unget_na(na, ifp);
2689 NMG_UNLOCK();
2690 break;
2691 }
2692 #ifdef WITH_VALE
2693 case NETMAP_REQ_VALE_ATTACH: {
2694 error = netmap_vale_attach(hdr, NULL /* userspace request */);
2695 break;
2696 }
2697
2698 case NETMAP_REQ_VALE_DETACH: {
2699 error = netmap_vale_detach(hdr, NULL /* userspace request */);
2700 break;
2701 }
2702
2703 case NETMAP_REQ_VALE_LIST: {
2704 error = netmap_vale_list(hdr);
2705 break;
2706 }
2707
2708 case NETMAP_REQ_PORT_HDR_SET: {
2709 struct nmreq_port_hdr *req =
2710 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2711 /* Build a nmreq_register out of the nmreq_port_hdr,
2712 * so that we can call netmap_get_bdg_na(). */
2713 struct nmreq_register regreq;
2714 bzero(®req, sizeof(regreq));
2715 regreq.nr_mode = NR_REG_ALL_NIC;
2716
2717 /* For now we only support virtio-net headers, and only for
2718 * VALE ports, but this may change in future. Valid lengths
2719 * for the virtio-net header are 0 (no header), 10 and 12. */
2720 if (req->nr_hdr_len != 0 &&
2721 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
2722 req->nr_hdr_len != 12) {
2723 if (netmap_verbose)
2724 nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
2725 error = EINVAL;
2726 break;
2727 }
2728 NMG_LOCK();
2729 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2730 hdr->nr_body = (uintptr_t)®req;
2731 error = netmap_get_vale_na(hdr, &na, NULL, 0);
2732 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
2733 hdr->nr_body = (uintptr_t)req;
2734 if (na && !error) {
2735 struct netmap_vp_adapter *vpna =
2736 (struct netmap_vp_adapter *)na;
2737 na->virt_hdr_len = req->nr_hdr_len;
2738 if (na->virt_hdr_len) {
2739 vpna->mfs = NETMAP_BUF_SIZE(na);
2740 }
2741 if (netmap_verbose)
2742 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
2743 netmap_adapter_put(na);
2744 } else if (!na) {
2745 error = ENXIO;
2746 }
2747 NMG_UNLOCK();
2748 break;
2749 }
2750
2751 case NETMAP_REQ_PORT_HDR_GET: {
2752 /* Get vnet-header length for this netmap port */
2753 struct nmreq_port_hdr *req =
2754 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2755 /* Build a nmreq_register out of the nmreq_port_hdr,
2756 * so that we can call netmap_get_bdg_na(). */
2757 struct nmreq_register regreq;
2758 struct ifnet *ifp;
2759
2760 bzero(®req, sizeof(regreq));
2761 regreq.nr_mode = NR_REG_ALL_NIC;
2762 NMG_LOCK();
2763 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2764 hdr->nr_body = (uintptr_t)®req;
2765 error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
2766 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
2767 hdr->nr_body = (uintptr_t)req;
2768 if (na && !error) {
2769 req->nr_hdr_len = na->virt_hdr_len;
2770 }
2771 netmap_unget_na(na, ifp);
2772 NMG_UNLOCK();
2773 break;
2774 }
2775
2776 case NETMAP_REQ_VALE_NEWIF: {
2777 error = nm_vi_create(hdr);
2778 break;
2779 }
2780
2781 case NETMAP_REQ_VALE_DELIF: {
2782 error = nm_vi_destroy(hdr->nr_name);
2783 break;
2784 }
2785
2786 case NETMAP_REQ_VALE_POLLING_ENABLE:
2787 case NETMAP_REQ_VALE_POLLING_DISABLE: {
2788 error = nm_bdg_polling(hdr);
2789 break;
2790 }
2791 #endif /* WITH_VALE */
2792 case NETMAP_REQ_POOLS_INFO_GET: {
2793 /* Get information from the memory allocator used for
2794 * hdr->nr_name. */
2795 struct nmreq_pools_info *req =
2796 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
2797 NMG_LOCK();
2798 do {
2799 /* Build a nmreq_register out of the nmreq_pools_info,
2800 * so that we can call netmap_get_na(). */
2801 struct nmreq_register regreq;
2802 bzero(®req, sizeof(regreq));
2803 regreq.nr_mem_id = req->nr_mem_id;
2804 regreq.nr_mode = NR_REG_ALL_NIC;
2805
2806 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2807 hdr->nr_body = (uintptr_t)®req;
2808 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2809 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
2810 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2811 if (error) {
2812 na = NULL;
2813 ifp = NULL;
2814 break;
2815 }
2816 nmd = na->nm_mem; /* grab the memory allocator */
2817 if (nmd == NULL) {
2818 error = EINVAL;
2819 break;
2820 }
2821
2822 /* Finalize the memory allocator, get the pools
2823 * information and release the allocator. */
2824 error = netmap_mem_finalize(nmd, na);
2825 if (error) {
2826 break;
2827 }
2828 error = netmap_mem_pools_info_get(req, nmd);
2829 netmap_mem_drop(na);
2830 } while (0);
2831 netmap_unget_na(na, ifp);
2832 NMG_UNLOCK();
2833 break;
2834 }
2835
2836 case NETMAP_REQ_CSB_ENABLE: {
2837 struct nmreq_option *opt;
2838
2839 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2840 if (opt == NULL) {
2841 error = EINVAL;
2842 } else {
2843 struct nmreq_opt_csb *csbo =
2844 (struct nmreq_opt_csb *)opt;
2845 NMG_LOCK();
2846 error = netmap_csb_validate(priv, csbo);
2847 NMG_UNLOCK();
2848 opt->nro_status = error;
2849 }
2850 break;
2851 }
2852
2853 case NETMAP_REQ_SYNC_KLOOP_START: {
2854 error = netmap_sync_kloop(priv, hdr);
2855 break;
2856 }
2857
2858 case NETMAP_REQ_SYNC_KLOOP_STOP: {
2859 error = netmap_sync_kloop_stop(priv);
2860 break;
2861 }
2862
2863 default: {
2864 error = EINVAL;
2865 break;
2866 }
2867 }
2868 /* Write back request body to userspace and reset the
2869 * user-space pointer. */
2870 error = nmreq_copyout(hdr, error);
2871 break;
2872 }
2873
2874 case NIOCTXSYNC:
2875 case NIOCRXSYNC: {
2876 if (unlikely(priv->np_nifp == NULL)) {
2877 error = ENXIO;
2878 break;
2879 }
2880 mb(); /* make sure following reads are not from cache */
2881
2882 if (unlikely(priv->np_csb_atok_base)) {
2883 nm_prerr("Invalid sync in CSB mode");
2884 error = EBUSY;
2885 break;
2886 }
2887
2888 na = priv->np_na; /* we have a reference */
2889
2890 mbq_init(&q);
2891 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
2892 krings = NMR(na, t);
2893 qfirst = priv->np_qfirst[t];
2894 qlast = priv->np_qlast[t];
2895 sync_flags = priv->np_sync_flags;
2896
2897 for (i = qfirst; i < qlast; i++) {
2898 struct netmap_kring *kring = krings[i];
2899 struct netmap_ring *ring = kring->ring;
2900
2901 if (unlikely(nm_kr_tryget(kring, 1, &error))) {
2902 error = (error ? EIO : 0);
2903 continue;
2904 }
2905
2906 if (cmd == NIOCTXSYNC) {
2907 if (netmap_debug & NM_DEBUG_TXSYNC)
2908 nm_prinf("pre txsync ring %d cur %d hwcur %d",
2909 i, ring->cur,
2910 kring->nr_hwcur);
2911 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2912 netmap_ring_reinit(kring);
2913 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
2914 nm_sync_finalize(kring);
2915 }
2916 if (netmap_debug & NM_DEBUG_TXSYNC)
2917 nm_prinf("post txsync ring %d cur %d hwcur %d",
2918 i, ring->cur,
2919 kring->nr_hwcur);
2920 } else {
2921 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
2922 netmap_ring_reinit(kring);
2923 }
2924 if (nm_may_forward_up(kring)) {
2925 /* transparent forwarding, see netmap_poll() */
2926 netmap_grab_packets(kring, &q, netmap_fwd);
2927 }
2928 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
2929 nm_sync_finalize(kring);
2930 }
2931 ring_timestamp_set(ring);
2932 }
2933 nm_kr_put(kring);
2934 }
2935
2936 if (mbq_peek(&q)) {
2937 netmap_send_up(na->ifp, &q);
2938 }
2939
2940 break;
2941 }
2942
2943 default: {
2944 return netmap_ioctl_legacy(priv, cmd, data, td);
2945 break;
2946 }
2947 }
2948
2949 return (error);
2950 }
2951
2952 size_t
nmreq_size_by_type(uint16_t nr_reqtype)2953 nmreq_size_by_type(uint16_t nr_reqtype)
2954 {
2955 switch (nr_reqtype) {
2956 case NETMAP_REQ_REGISTER:
2957 return sizeof(struct nmreq_register);
2958 case NETMAP_REQ_PORT_INFO_GET:
2959 return sizeof(struct nmreq_port_info_get);
2960 case NETMAP_REQ_VALE_ATTACH:
2961 return sizeof(struct nmreq_vale_attach);
2962 case NETMAP_REQ_VALE_DETACH:
2963 return sizeof(struct nmreq_vale_detach);
2964 case NETMAP_REQ_VALE_LIST:
2965 return sizeof(struct nmreq_vale_list);
2966 case NETMAP_REQ_PORT_HDR_SET:
2967 case NETMAP_REQ_PORT_HDR_GET:
2968 return sizeof(struct nmreq_port_hdr);
2969 case NETMAP_REQ_VALE_NEWIF:
2970 return sizeof(struct nmreq_vale_newif);
2971 case NETMAP_REQ_VALE_DELIF:
2972 case NETMAP_REQ_SYNC_KLOOP_STOP:
2973 case NETMAP_REQ_CSB_ENABLE:
2974 return 0;
2975 case NETMAP_REQ_VALE_POLLING_ENABLE:
2976 case NETMAP_REQ_VALE_POLLING_DISABLE:
2977 return sizeof(struct nmreq_vale_polling);
2978 case NETMAP_REQ_POOLS_INFO_GET:
2979 return sizeof(struct nmreq_pools_info);
2980 case NETMAP_REQ_SYNC_KLOOP_START:
2981 return sizeof(struct nmreq_sync_kloop_start);
2982 }
2983 return 0;
2984 }
2985
2986 static size_t
nmreq_opt_size_by_type(uint32_t nro_reqtype,uint64_t nro_size)2987 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
2988 {
2989 size_t rv = sizeof(struct nmreq_option);
2990 #ifdef NETMAP_REQ_OPT_DEBUG
2991 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
2992 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
2993 #endif /* NETMAP_REQ_OPT_DEBUG */
2994 switch (nro_reqtype) {
2995 #ifdef WITH_EXTMEM
2996 case NETMAP_REQ_OPT_EXTMEM:
2997 rv = sizeof(struct nmreq_opt_extmem);
2998 break;
2999 #endif /* WITH_EXTMEM */
3000 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3001 if (nro_size >= rv)
3002 rv = nro_size;
3003 break;
3004 case NETMAP_REQ_OPT_CSB:
3005 rv = sizeof(struct nmreq_opt_csb);
3006 break;
3007 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3008 rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3009 break;
3010 }
3011 /* subtract the common header */
3012 return rv - sizeof(struct nmreq_option);
3013 }
3014
3015 /*
3016 * nmreq_copyin: create an in-kernel version of the request.
3017 *
3018 * We build the following data structure:
3019 *
3020 * hdr -> +-------+ buf
3021 * | | +---------------+
3022 * +-------+ |usr body ptr |
3023 * |options|-. +---------------+
3024 * +-------+ | |usr options ptr|
3025 * |body |--------->+---------------+
3026 * +-------+ | | |
3027 * | | copy of body |
3028 * | | |
3029 * | +---------------+
3030 * | | NULL |
3031 * | +---------------+
3032 * | .---| |\
3033 * | | +---------------+ |
3034 * | .------| | |
3035 * | | | +---------------+ \ option table
3036 * | | | | ... | / indexed by option
3037 * | | | +---------------+ | type
3038 * | | | | | |
3039 * | | | +---------------+/
3040 * | | | |usr next ptr 1 |
3041 * `-|----->+---------------+
3042 * | | | copy of opt 1 |
3043 * | | | |
3044 * | | .-| nro_next |
3045 * | | | +---------------+
3046 * | | | |usr next ptr 2 |
3047 * | `-`>+---------------+
3048 * | | copy of opt 2 |
3049 * | | |
3050 * | .-| nro_next |
3051 * | | +---------------+
3052 * | | | |
3053 * ~ ~ ~ ... ~
3054 * | .-| |
3055 * `----->+---------------+
3056 * | |usr next ptr n |
3057 * `>+---------------+
3058 * | copy of opt n |
3059 * | |
3060 * | nro_next(NULL)|
3061 * +---------------+
3062 *
3063 * The options and body fields of the hdr structure are overwritten
3064 * with in-kernel valid pointers inside the buf. The original user
3065 * pointers are saved in the buf and restored on copyout.
3066 * The list of options is copied and the pointers adjusted. The
3067 * original pointers are saved before the option they belonged.
3068 *
3069 * The option table has an entry for every availabe option. Entries
3070 * for options that have not been passed contain NULL.
3071 *
3072 */
3073
3074 int
nmreq_copyin(struct nmreq_header * hdr,int nr_body_is_user)3075 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3076 {
3077 size_t rqsz, optsz, bufsz;
3078 int error = 0;
3079 char *ker = NULL, *p;
3080 struct nmreq_option **next, *src, **opt_tab;
3081 struct nmreq_option buf;
3082 uint64_t *ptrs;
3083
3084 if (hdr->nr_reserved) {
3085 if (netmap_verbose)
3086 nm_prerr("nr_reserved must be zero");
3087 return EINVAL;
3088 }
3089
3090 if (!nr_body_is_user)
3091 return 0;
3092
3093 hdr->nr_reserved = nr_body_is_user;
3094
3095 /* compute the total size of the buffer */
3096 rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3097 if (rqsz > NETMAP_REQ_MAXSIZE) {
3098 error = EMSGSIZE;
3099 goto out_err;
3100 }
3101 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3102 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3103 /* Request body expected, but not found; or
3104 * request body found but unexpected. */
3105 if (netmap_verbose)
3106 nm_prerr("nr_body expected but not found, or vice versa");
3107 error = EINVAL;
3108 goto out_err;
3109 }
3110
3111 bufsz = 2 * sizeof(void *) + rqsz +
3112 NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3113 /* compute the size of the buf below the option table.
3114 * It must contain a copy of every received option structure.
3115 * For every option we also need to store a copy of the user
3116 * list pointer.
3117 */
3118 optsz = 0;
3119 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src;
3120 src = (struct nmreq_option *)(uintptr_t)buf.nro_next)
3121 {
3122 error = copyin(src, &buf, sizeof(*src));
3123 if (error)
3124 goto out_err;
3125 optsz += sizeof(*src);
3126 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size);
3127 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) {
3128 error = EMSGSIZE;
3129 goto out_err;
3130 }
3131 bufsz += sizeof(void *);
3132 }
3133 bufsz += optsz;
3134
3135 ker = nm_os_malloc(bufsz);
3136 if (ker == NULL) {
3137 error = ENOMEM;
3138 goto out_err;
3139 }
3140 p = ker; /* write pointer into the buffer */
3141
3142 /* make a copy of the user pointers */
3143 ptrs = (uint64_t*)p;
3144 *ptrs++ = hdr->nr_body;
3145 *ptrs++ = hdr->nr_options;
3146 p = (char *)ptrs;
3147
3148 /* copy the body */
3149 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz);
3150 if (error)
3151 goto out_restore;
3152 /* overwrite the user pointer with the in-kernel one */
3153 hdr->nr_body = (uintptr_t)p;
3154 p += rqsz;
3155 /* start of the options table */
3156 opt_tab = (struct nmreq_option **)p;
3157 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3158
3159 /* copy the options */
3160 next = (struct nmreq_option **)&hdr->nr_options;
3161 src = *next;
3162 while (src) {
3163 struct nmreq_option *opt;
3164
3165 /* copy the option header */
3166 ptrs = (uint64_t *)p;
3167 opt = (struct nmreq_option *)(ptrs + 1);
3168 error = copyin(src, opt, sizeof(*src));
3169 if (error)
3170 goto out_restore;
3171 /* make a copy of the user next pointer */
3172 *ptrs = opt->nro_next;
3173 /* overwrite the user pointer with the in-kernel one */
3174 *next = opt;
3175
3176 /* initialize the option as not supported.
3177 * Recognized options will update this field.
3178 */
3179 opt->nro_status = EOPNOTSUPP;
3180
3181 /* check for invalid types */
3182 if (opt->nro_reqtype < 1) {
3183 if (netmap_verbose)
3184 nm_prinf("invalid option type: %u", opt->nro_reqtype);
3185 opt->nro_status = EINVAL;
3186 error = EINVAL;
3187 goto next;
3188 }
3189
3190 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3191 /* opt->nro_status is already EOPNOTSUPP */
3192 error = EOPNOTSUPP;
3193 goto next;
3194 }
3195
3196 /* if the type is valid, index the option in the table
3197 * unless it is a duplicate.
3198 */
3199 if (opt_tab[opt->nro_reqtype] != NULL) {
3200 if (netmap_verbose)
3201 nm_prinf("duplicate option: %u", opt->nro_reqtype);
3202 opt->nro_status = EINVAL;
3203 opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3204 error = EINVAL;
3205 goto next;
3206 }
3207 opt_tab[opt->nro_reqtype] = opt;
3208
3209 p = (char *)(opt + 1);
3210
3211 /* copy the option body */
3212 optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3213 opt->nro_size);
3214 if (optsz) {
3215 /* the option body follows the option header */
3216 error = copyin(src + 1, p, optsz);
3217 if (error)
3218 goto out_restore;
3219 p += optsz;
3220 }
3221
3222 next:
3223 /* move to next option */
3224 next = (struct nmreq_option **)&opt->nro_next;
3225 src = *next;
3226 }
3227 if (error)
3228 nmreq_copyout(hdr, error);
3229 return error;
3230
3231 out_restore:
3232 ptrs = (uint64_t *)ker;
3233 hdr->nr_body = *ptrs++;
3234 hdr->nr_options = *ptrs++;
3235 hdr->nr_reserved = 0;
3236 nm_os_free(ker);
3237 out_err:
3238 return error;
3239 }
3240
3241 static int
nmreq_copyout(struct nmreq_header * hdr,int rerror)3242 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3243 {
3244 struct nmreq_option *src, *dst;
3245 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3246 uint64_t *ptrs;
3247 size_t bodysz;
3248 int error;
3249
3250 if (!hdr->nr_reserved)
3251 return rerror;
3252
3253 /* restore the user pointers in the header */
3254 ptrs = (uint64_t *)ker - 2;
3255 bufstart = ptrs;
3256 hdr->nr_body = *ptrs++;
3257 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3258 hdr->nr_options = *ptrs;
3259
3260 if (!rerror) {
3261 /* copy the body */
3262 bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3263 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3264 if (error) {
3265 rerror = error;
3266 goto out;
3267 }
3268 }
3269
3270 /* copy the options */
3271 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3272 while (src) {
3273 size_t optsz;
3274 uint64_t next;
3275
3276 /* restore the user pointer */
3277 next = src->nro_next;
3278 ptrs = (uint64_t *)src - 1;
3279 src->nro_next = *ptrs;
3280
3281 /* always copy the option header */
3282 error = copyout(src, dst, sizeof(*src));
3283 if (error) {
3284 rerror = error;
3285 goto out;
3286 }
3287
3288 /* copy the option body only if there was no error */
3289 if (!rerror && !src->nro_status) {
3290 optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3291 src->nro_size);
3292 if (optsz) {
3293 error = copyout(src + 1, dst + 1, optsz);
3294 if (error) {
3295 rerror = error;
3296 goto out;
3297 }
3298 }
3299 }
3300 src = (struct nmreq_option *)(uintptr_t)next;
3301 dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3302 }
3303
3304
3305 out:
3306 hdr->nr_reserved = 0;
3307 nm_os_free(bufstart);
3308 return rerror;
3309 }
3310
3311 struct nmreq_option *
nmreq_getoption(struct nmreq_header * hdr,uint16_t reqtype)3312 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3313 {
3314 struct nmreq_option **opt_tab;
3315
3316 if (!hdr->nr_options)
3317 return NULL;
3318
3319 opt_tab = (struct nmreq_option **)(hdr->nr_options) - (NETMAP_REQ_OPT_MAX + 1);
3320 return opt_tab[reqtype];
3321 }
3322
3323 static int
nmreq_checkoptions(struct nmreq_header * hdr)3324 nmreq_checkoptions(struct nmreq_header *hdr)
3325 {
3326 struct nmreq_option *opt;
3327 /* return error if there is still any option
3328 * marked as not supported
3329 */
3330
3331 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3332 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3333 if (opt->nro_status == EOPNOTSUPP)
3334 return EOPNOTSUPP;
3335
3336 return 0;
3337 }
3338
3339 /*
3340 * select(2) and poll(2) handlers for the "netmap" device.
3341 *
3342 * Can be called for one or more queues.
3343 * Return true the event mask corresponding to ready events.
3344 * If there are no ready events (and 'sr' is not NULL), do a
3345 * selrecord on either individual selinfo or on the global one.
3346 * Device-dependent parts (locking and sync of tx/rx rings)
3347 * are done through callbacks.
3348 *
3349 * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3350 * The first one is remapped to pwait as selrecord() uses the name as an
3351 * hidden argument.
3352 */
3353 int
netmap_poll(struct netmap_priv_d * priv,int events,NM_SELRECORD_T * sr)3354 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3355 {
3356 struct netmap_adapter *na;
3357 struct netmap_kring *kring;
3358 struct netmap_ring *ring;
3359 u_int i, want[NR_TXRX], revents = 0;
3360 NM_SELINFO_T *si[NR_TXRX];
3361 #define want_tx want[NR_TX]
3362 #define want_rx want[NR_RX]
3363 struct mbq q; /* packets from RX hw queues to host stack */
3364
3365 /*
3366 * In order to avoid nested locks, we need to "double check"
3367 * txsync and rxsync if we decide to do a selrecord().
3368 * retry_tx (and retry_rx, later) prevent looping forever.
3369 */
3370 int retry_tx = 1, retry_rx = 1;
3371
3372 /* Transparent mode: send_down is 1 if we have found some
3373 * packets to forward (host RX ring --> NIC) during the rx
3374 * scan and we have not sent them down to the NIC yet.
3375 * Transparent mode requires to bind all rings to a single
3376 * file descriptor.
3377 */
3378 int send_down = 0;
3379 int sync_flags = priv->np_sync_flags;
3380
3381 mbq_init(&q);
3382
3383 if (unlikely(priv->np_nifp == NULL)) {
3384 return POLLERR;
3385 }
3386 mb(); /* make sure following reads are not from cache */
3387
3388 na = priv->np_na;
3389
3390 if (unlikely(!nm_netmap_on(na)))
3391 return POLLERR;
3392
3393 if (unlikely(priv->np_csb_atok_base)) {
3394 nm_prerr("Invalid poll in CSB mode");
3395 return POLLERR;
3396 }
3397
3398 if (netmap_debug & NM_DEBUG_ON)
3399 nm_prinf("device %s events 0x%x", na->name, events);
3400 want_tx = events & (POLLOUT | POLLWRNORM);
3401 want_rx = events & (POLLIN | POLLRDNORM);
3402
3403 /*
3404 * If the card has more than one queue AND the file descriptor is
3405 * bound to all of them, we sleep on the "global" selinfo, otherwise
3406 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3407 * per file descriptor).
3408 * The interrupt routine in the driver wake one or the other
3409 * (or both) depending on which clients are active.
3410 *
3411 * rxsync() is only called if we run out of buffers on a POLLIN.
3412 * txsync() is called if we run out of buffers on POLLOUT, or
3413 * there are pending packets to send. The latter can be disabled
3414 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3415 */
3416 si[NR_RX] = priv->np_si[NR_RX];
3417 si[NR_TX] = priv->np_si[NR_TX];
3418
3419 #ifdef __FreeBSD__
3420 /*
3421 * We start with a lock free round which is cheap if we have
3422 * slots available. If this fails, then lock and call the sync
3423 * routines. We can't do this on Linux, as the contract says
3424 * that we must call nm_os_selrecord() unconditionally.
3425 */
3426 if (want_tx) {
3427 const enum txrx t = NR_TX;
3428 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3429 kring = NMR(na, t)[i];
3430 if (kring->ring->cur != kring->ring->tail) {
3431 /* Some unseen TX space is available, so what
3432 * we don't need to run txsync. */
3433 revents |= want[t];
3434 want[t] = 0;
3435 break;
3436 }
3437 }
3438 }
3439 if (want_rx) {
3440 const enum txrx t = NR_RX;
3441 int rxsync_needed = 0;
3442
3443 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3444 kring = NMR(na, t)[i];
3445 if (kring->ring->cur == kring->ring->tail
3446 || kring->rhead != kring->ring->head) {
3447 /* There are no unseen packets on this ring,
3448 * or there are some buffers to be returned
3449 * to the netmap port. We therefore go ahead
3450 * and run rxsync. */
3451 rxsync_needed = 1;
3452 break;
3453 }
3454 }
3455 if (!rxsync_needed) {
3456 revents |= want_rx;
3457 want_rx = 0;
3458 }
3459 }
3460 #endif
3461
3462 #ifdef linux
3463 /* The selrecord must be unconditional on linux. */
3464 nm_os_selrecord(sr, si[NR_RX]);
3465 nm_os_selrecord(sr, si[NR_TX]);
3466 #endif /* linux */
3467
3468 /*
3469 * If we want to push packets out (priv->np_txpoll) or
3470 * want_tx is still set, we must issue txsync calls
3471 * (on all rings, to avoid that the tx rings stall).
3472 * Fortunately, normal tx mode has np_txpoll set.
3473 */
3474 if (priv->np_txpoll || want_tx) {
3475 /*
3476 * The first round checks if anyone is ready, if not
3477 * do a selrecord and another round to handle races.
3478 * want_tx goes to 0 if any space is found, and is
3479 * used to skip rings with no pending transmissions.
3480 */
3481 flush_tx:
3482 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3483 int found = 0;
3484
3485 kring = na->tx_rings[i];
3486 ring = kring->ring;
3487
3488 /*
3489 * Don't try to txsync this TX ring if we already found some
3490 * space in some of the TX rings (want_tx == 0) and there are no
3491 * TX slots in this ring that need to be flushed to the NIC
3492 * (head == hwcur).
3493 */
3494 if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3495 continue;
3496
3497 if (nm_kr_tryget(kring, 1, &revents))
3498 continue;
3499
3500 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3501 netmap_ring_reinit(kring);
3502 revents |= POLLERR;
3503 } else {
3504 if (kring->nm_sync(kring, sync_flags))
3505 revents |= POLLERR;
3506 else
3507 nm_sync_finalize(kring);
3508 }
3509
3510 /*
3511 * If we found new slots, notify potential
3512 * listeners on the same ring.
3513 * Since we just did a txsync, look at the copies
3514 * of cur,tail in the kring.
3515 */
3516 found = kring->rcur != kring->rtail;
3517 nm_kr_put(kring);
3518 if (found) { /* notify other listeners */
3519 revents |= want_tx;
3520 want_tx = 0;
3521 #ifndef linux
3522 kring->nm_notify(kring, 0);
3523 #endif /* linux */
3524 }
3525 }
3526 /* if there were any packet to forward we must have handled them by now */
3527 send_down = 0;
3528 if (want_tx && retry_tx && sr) {
3529 #ifndef linux
3530 nm_os_selrecord(sr, si[NR_TX]);
3531 #endif /* !linux */
3532 retry_tx = 0;
3533 goto flush_tx;
3534 }
3535 }
3536
3537 /*
3538 * If want_rx is still set scan receive rings.
3539 * Do it on all rings because otherwise we starve.
3540 */
3541 if (want_rx) {
3542 /* two rounds here for race avoidance */
3543 do_retry_rx:
3544 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3545 int found = 0;
3546
3547 kring = na->rx_rings[i];
3548 ring = kring->ring;
3549
3550 if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3551 continue;
3552
3553 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3554 netmap_ring_reinit(kring);
3555 revents |= POLLERR;
3556 }
3557 /* now we can use kring->rcur, rtail */
3558
3559 /*
3560 * transparent mode support: collect packets from
3561 * hw rxring(s) that have been released by the user
3562 */
3563 if (nm_may_forward_up(kring)) {
3564 netmap_grab_packets(kring, &q, netmap_fwd);
3565 }
3566
3567 /* Clear the NR_FORWARD flag anyway, it may be set by
3568 * the nm_sync() below only on for the host RX ring (see
3569 * netmap_rxsync_from_host()). */
3570 kring->nr_kflags &= ~NR_FORWARD;
3571 if (kring->nm_sync(kring, sync_flags))
3572 revents |= POLLERR;
3573 else
3574 nm_sync_finalize(kring);
3575 send_down |= (kring->nr_kflags & NR_FORWARD);
3576 ring_timestamp_set(ring);
3577 found = kring->rcur != kring->rtail;
3578 nm_kr_put(kring);
3579 if (found) {
3580 revents |= want_rx;
3581 retry_rx = 0;
3582 #ifndef linux
3583 kring->nm_notify(kring, 0);
3584 #endif /* linux */
3585 }
3586 }
3587
3588 #ifndef linux
3589 if (retry_rx && sr) {
3590 nm_os_selrecord(sr, si[NR_RX]);
3591 }
3592 #endif /* !linux */
3593 if (send_down || retry_rx) {
3594 retry_rx = 0;
3595 if (send_down)
3596 goto flush_tx; /* and retry_rx */
3597 else
3598 goto do_retry_rx;
3599 }
3600 }
3601
3602 /*
3603 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3604 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3605 * to the host stack.
3606 */
3607
3608 if (mbq_peek(&q)) {
3609 netmap_send_up(na->ifp, &q);
3610 }
3611
3612 return (revents);
3613 #undef want_tx
3614 #undef want_rx
3615 }
3616
3617 int
nma_intr_enable(struct netmap_adapter * na,int onoff)3618 nma_intr_enable(struct netmap_adapter *na, int onoff)
3619 {
3620 bool changed = false;
3621 enum txrx t;
3622 int i;
3623
3624 for_rx_tx(t) {
3625 for (i = 0; i < nma_get_nrings(na, t); i++) {
3626 struct netmap_kring *kring = NMR(na, t)[i];
3627 int on = !(kring->nr_kflags & NKR_NOINTR);
3628
3629 if (!!onoff != !!on) {
3630 changed = true;
3631 }
3632 if (onoff) {
3633 kring->nr_kflags &= ~NKR_NOINTR;
3634 } else {
3635 kring->nr_kflags |= NKR_NOINTR;
3636 }
3637 }
3638 }
3639
3640 if (!changed) {
3641 return 0; /* nothing to do */
3642 }
3643
3644 if (!na->nm_intr) {
3645 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3646 na->name);
3647 return -1;
3648 }
3649
3650 na->nm_intr(na, onoff);
3651
3652 return 0;
3653 }
3654
3655
3656 /*-------------------- driver support routines -------------------*/
3657
3658 /* default notify callback */
3659 static int
netmap_notify(struct netmap_kring * kring,int flags)3660 netmap_notify(struct netmap_kring *kring, int flags)
3661 {
3662 struct netmap_adapter *na = kring->notify_na;
3663 enum txrx t = kring->tx;
3664
3665 nm_os_selwakeup(&kring->si);
3666 /* optimization: avoid a wake up on the global
3667 * queue if nobody has registered for more
3668 * than one ring
3669 */
3670 if (na->si_users[t] > 0)
3671 nm_os_selwakeup(&na->si[t]);
3672
3673 return NM_IRQ_COMPLETED;
3674 }
3675
3676 /* called by all routines that create netmap_adapters.
3677 * provide some defaults and get a reference to the
3678 * memory allocator
3679 */
3680 int
netmap_attach_common(struct netmap_adapter * na)3681 netmap_attach_common(struct netmap_adapter *na)
3682 {
3683 if (!na->rx_buf_maxsize) {
3684 /* Set a conservative default (larger is safer). */
3685 na->rx_buf_maxsize = PAGE_SIZE;
3686 }
3687
3688 #ifdef __FreeBSD__
3689 if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3690 na->if_input = na->ifp->if_input; /* for netmap_send_up */
3691 }
3692 na->pdev = na; /* make sure netmap_mem_map() is called */
3693 #endif /* __FreeBSD__ */
3694 if (na->na_flags & NAF_HOST_RINGS) {
3695 if (na->num_host_rx_rings == 0)
3696 na->num_host_rx_rings = 1;
3697 if (na->num_host_tx_rings == 0)
3698 na->num_host_tx_rings = 1;
3699 }
3700 if (na->nm_krings_create == NULL) {
3701 /* we assume that we have been called by a driver,
3702 * since other port types all provide their own
3703 * nm_krings_create
3704 */
3705 na->nm_krings_create = netmap_hw_krings_create;
3706 na->nm_krings_delete = netmap_hw_krings_delete;
3707 }
3708 if (na->nm_notify == NULL)
3709 na->nm_notify = netmap_notify;
3710 na->active_fds = 0;
3711
3712 if (na->nm_mem == NULL) {
3713 /* use the global allocator */
3714 na->nm_mem = netmap_mem_get(&nm_mem);
3715 }
3716 #ifdef WITH_VALE
3717 if (na->nm_bdg_attach == NULL)
3718 /* no special nm_bdg_attach callback. On VALE
3719 * attach, we need to interpose a bwrap
3720 */
3721 na->nm_bdg_attach = netmap_default_bdg_attach;
3722 #endif
3723
3724 return 0;
3725 }
3726
3727 /* Wrapper for the register callback provided netmap-enabled
3728 * hardware drivers.
3729 * nm_iszombie(na) means that the driver module has been
3730 * unloaded, so we cannot call into it.
3731 * nm_os_ifnet_lock() must guarantee mutual exclusion with
3732 * module unloading.
3733 */
3734 static int
netmap_hw_reg(struct netmap_adapter * na,int onoff)3735 netmap_hw_reg(struct netmap_adapter *na, int onoff)
3736 {
3737 struct netmap_hw_adapter *hwna =
3738 (struct netmap_hw_adapter*)na;
3739 int error = 0;
3740
3741 nm_os_ifnet_lock();
3742
3743 if (nm_iszombie(na)) {
3744 if (onoff) {
3745 error = ENXIO;
3746 } else if (na != NULL) {
3747 na->na_flags &= ~NAF_NETMAP_ON;
3748 }
3749 goto out;
3750 }
3751
3752 error = hwna->nm_hw_register(na, onoff);
3753
3754 out:
3755 nm_os_ifnet_unlock();
3756
3757 return error;
3758 }
3759
3760 static void
netmap_hw_dtor(struct netmap_adapter * na)3761 netmap_hw_dtor(struct netmap_adapter *na)
3762 {
3763 if (na->ifp == NULL)
3764 return;
3765
3766 NM_DETACH_NA(na->ifp);
3767 }
3768
3769
3770 /*
3771 * Allocate a netmap_adapter object, and initialize it from the
3772 * 'arg' passed by the driver on attach.
3773 * We allocate a block of memory of 'size' bytes, which has room
3774 * for struct netmap_adapter plus additional room private to
3775 * the caller.
3776 * Return 0 on success, ENOMEM otherwise.
3777 */
3778 int
netmap_attach_ext(struct netmap_adapter * arg,size_t size,int override_reg)3779 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
3780 {
3781 struct netmap_hw_adapter *hwna = NULL;
3782 struct ifnet *ifp = NULL;
3783
3784 if (size < sizeof(struct netmap_hw_adapter)) {
3785 if (netmap_debug & NM_DEBUG_ON)
3786 nm_prerr("Invalid netmap adapter size %d", (int)size);
3787 return EINVAL;
3788 }
3789
3790 if (arg == NULL || arg->ifp == NULL) {
3791 if (netmap_debug & NM_DEBUG_ON)
3792 nm_prerr("either arg or arg->ifp is NULL");
3793 return EINVAL;
3794 }
3795
3796 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
3797 if (netmap_debug & NM_DEBUG_ON)
3798 nm_prerr("%s: invalid rings tx %d rx %d",
3799 arg->name, arg->num_tx_rings, arg->num_rx_rings);
3800 return EINVAL;
3801 }
3802
3803 ifp = arg->ifp;
3804 if (NM_NA_CLASH(ifp)) {
3805 /* If NA(ifp) is not null but there is no valid netmap
3806 * adapter it means that someone else is using the same
3807 * pointer (e.g. ax25_ptr on linux). This happens for
3808 * instance when also PF_RING is in use. */
3809 nm_prerr("Error: netmap adapter hook is busy");
3810 return EBUSY;
3811 }
3812
3813 hwna = nm_os_malloc(size);
3814 if (hwna == NULL)
3815 goto fail;
3816 hwna->up = *arg;
3817 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
3818 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name));
3819 if (override_reg) {
3820 hwna->nm_hw_register = hwna->up.nm_register;
3821 hwna->up.nm_register = netmap_hw_reg;
3822 }
3823 if (netmap_attach_common(&hwna->up)) {
3824 nm_os_free(hwna);
3825 goto fail;
3826 }
3827 netmap_adapter_get(&hwna->up);
3828
3829 NM_ATTACH_NA(ifp, &hwna->up);
3830
3831 nm_os_onattach(ifp);
3832
3833 if (arg->nm_dtor == NULL) {
3834 hwna->up.nm_dtor = netmap_hw_dtor;
3835 }
3836
3837 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
3838 hwna->up.num_tx_rings, hwna->up.num_tx_desc,
3839 hwna->up.num_rx_rings, hwna->up.num_rx_desc);
3840 return 0;
3841
3842 fail:
3843 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
3844 return (hwna ? EINVAL : ENOMEM);
3845 }
3846
3847
3848 int
netmap_attach(struct netmap_adapter * arg)3849 netmap_attach(struct netmap_adapter *arg)
3850 {
3851 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
3852 1 /* override nm_reg */);
3853 }
3854
3855
3856 void
NM_DBG(netmap_adapter_get)3857 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
3858 {
3859 if (!na) {
3860 return;
3861 }
3862
3863 refcount_acquire(&na->na_refcount);
3864 }
3865
3866
3867 /* returns 1 iff the netmap_adapter is destroyed */
3868 int
NM_DBG(netmap_adapter_put)3869 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
3870 {
3871 if (!na)
3872 return 1;
3873
3874 if (!refcount_release(&na->na_refcount))
3875 return 0;
3876
3877 if (na->nm_dtor)
3878 na->nm_dtor(na);
3879
3880 if (na->tx_rings) { /* XXX should not happen */
3881 if (netmap_debug & NM_DEBUG_ON)
3882 nm_prerr("freeing leftover tx_rings");
3883 na->nm_krings_delete(na);
3884 }
3885 netmap_pipe_dealloc(na);
3886 if (na->nm_mem)
3887 netmap_mem_put(na->nm_mem);
3888 bzero(na, sizeof(*na));
3889 nm_os_free(na);
3890
3891 return 1;
3892 }
3893
3894 /* nm_krings_create callback for all hardware native adapters */
3895 int
netmap_hw_krings_create(struct netmap_adapter * na)3896 netmap_hw_krings_create(struct netmap_adapter *na)
3897 {
3898 int ret = netmap_krings_create(na, 0);
3899 if (ret == 0) {
3900 /* initialize the mbq for the sw rx ring */
3901 u_int lim = netmap_real_rings(na, NR_RX), i;
3902 for (i = na->num_rx_rings; i < lim; i++) {
3903 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
3904 }
3905 nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
3906 }
3907 return ret;
3908 }
3909
3910
3911
3912 /*
3913 * Called on module unload by the netmap-enabled drivers
3914 */
3915 void
netmap_detach(struct ifnet * ifp)3916 netmap_detach(struct ifnet *ifp)
3917 {
3918 struct netmap_adapter *na = NA(ifp);
3919
3920 if (!na)
3921 return;
3922
3923 NMG_LOCK();
3924 netmap_set_all_rings(na, NM_KR_LOCKED);
3925 /*
3926 * if the netmap adapter is not native, somebody
3927 * changed it, so we can not release it here.
3928 * The NAF_ZOMBIE flag will notify the new owner that
3929 * the driver is gone.
3930 */
3931 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
3932 na->na_flags |= NAF_ZOMBIE;
3933 }
3934 /* give active users a chance to notice that NAF_ZOMBIE has been
3935 * turned on, so that they can stop and return an error to userspace.
3936 * Note that this becomes a NOP if there are no active users and,
3937 * therefore, the put() above has deleted the na, since now NA(ifp) is
3938 * NULL.
3939 */
3940 netmap_enable_all_rings(ifp);
3941 NMG_UNLOCK();
3942 }
3943
3944
3945 /*
3946 * Intercept packets from the network stack and pass them
3947 * to netmap as incoming packets on the 'software' ring.
3948 *
3949 * We only store packets in a bounded mbq and then copy them
3950 * in the relevant rxsync routine.
3951 *
3952 * We rely on the OS to make sure that the ifp and na do not go
3953 * away (typically the caller checks for IFF_DRV_RUNNING or the like).
3954 * In nm_register() or whenever there is a reinitialization,
3955 * we make sure to make the mode change visible here.
3956 */
3957 int
netmap_transmit(struct ifnet * ifp,struct mbuf * m)3958 netmap_transmit(struct ifnet *ifp, struct mbuf *m)
3959 {
3960 struct netmap_adapter *na = NA(ifp);
3961 struct netmap_kring *kring, *tx_kring;
3962 u_int len = MBUF_LEN(m);
3963 u_int error = ENOBUFS;
3964 unsigned int txr;
3965 struct mbq *q;
3966 int busy;
3967 u_int i;
3968
3969 i = MBUF_TXQ(m);
3970 if (i >= na->num_host_rx_rings) {
3971 i = i % na->num_host_rx_rings;
3972 }
3973 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
3974
3975 // XXX [Linux] we do not need this lock
3976 // if we follow the down/configure/up protocol -gl
3977 // mtx_lock(&na->core_lock);
3978
3979 if (!nm_netmap_on(na)) {
3980 nm_prerr("%s not in netmap mode anymore", na->name);
3981 error = ENXIO;
3982 goto done;
3983 }
3984
3985 txr = MBUF_TXQ(m);
3986 if (txr >= na->num_tx_rings) {
3987 txr %= na->num_tx_rings;
3988 }
3989 tx_kring = NMR(na, NR_TX)[txr];
3990
3991 if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
3992 return MBUF_TRANSMIT(na, ifp, m);
3993 }
3994
3995 q = &kring->rx_queue;
3996
3997 // XXX reconsider long packets if we handle fragments
3998 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
3999 nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4000 len, NETMAP_BUF_SIZE(na));
4001 goto done;
4002 }
4003
4004 if (!netmap_generic_hwcsum) {
4005 if (nm_os_mbuf_has_csum_offld(m)) {
4006 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4007 goto done;
4008 }
4009 }
4010
4011 if (nm_os_mbuf_has_seg_offld(m)) {
4012 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4013 goto done;
4014 }
4015
4016 #ifdef __FreeBSD__
4017 ETHER_BPF_MTAP(ifp, m);
4018 #endif /* __FreeBSD__ */
4019
4020 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4021 * and maybe other instances of netmap_transmit (the latter
4022 * not possible on Linux).
4023 * We enqueue the mbuf only if we are sure there is going to be
4024 * enough room in the host RX ring, otherwise we drop it.
4025 */
4026 mbq_lock(q);
4027
4028 busy = kring->nr_hwtail - kring->nr_hwcur;
4029 if (busy < 0)
4030 busy += kring->nkr_num_slots;
4031 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4032 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4033 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4034 } else {
4035 mbq_enqueue(q, m);
4036 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4037 /* notify outside the lock */
4038 m = NULL;
4039 error = 0;
4040 }
4041 mbq_unlock(q);
4042
4043 done:
4044 if (m)
4045 m_freem(m);
4046 /* unconditionally wake up listeners */
4047 kring->nm_notify(kring, 0);
4048 /* this is normally netmap_notify(), but for nics
4049 * connected to a bridge it is netmap_bwrap_intr_notify(),
4050 * that possibly forwards the frames through the switch
4051 */
4052
4053 return (error);
4054 }
4055
4056
4057 /*
4058 * netmap_reset() is called by the driver routines when reinitializing
4059 * a ring. The driver is in charge of locking to protect the kring.
4060 * If native netmap mode is not set just return NULL.
4061 * If native netmap mode is set, in particular, we have to set nr_mode to
4062 * NKR_NETMAP_ON.
4063 */
4064 struct netmap_slot *
netmap_reset(struct netmap_adapter * na,enum txrx tx,u_int n,u_int new_cur)4065 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4066 u_int new_cur)
4067 {
4068 struct netmap_kring *kring;
4069 int new_hwofs, lim;
4070
4071 if (!nm_native_on(na)) {
4072 nm_prdis("interface not in native netmap mode");
4073 return NULL; /* nothing to reinitialize */
4074 }
4075
4076 /* XXX note- in the new scheme, we are not guaranteed to be
4077 * under lock (e.g. when called on a device reset).
4078 * In this case, we should set a flag and do not trust too
4079 * much the values. In practice: TODO
4080 * - set a RESET flag somewhere in the kring
4081 * - do the processing in a conservative way
4082 * - let the *sync() fixup at the end.
4083 */
4084 if (tx == NR_TX) {
4085 if (n >= na->num_tx_rings)
4086 return NULL;
4087
4088 kring = na->tx_rings[n];
4089
4090 if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4091 kring->nr_mode = NKR_NETMAP_OFF;
4092 return NULL;
4093 }
4094
4095 // XXX check whether we should use hwcur or rcur
4096 new_hwofs = kring->nr_hwcur - new_cur;
4097 } else {
4098 if (n >= na->num_rx_rings)
4099 return NULL;
4100 kring = na->rx_rings[n];
4101
4102 if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4103 kring->nr_mode = NKR_NETMAP_OFF;
4104 return NULL;
4105 }
4106
4107 new_hwofs = kring->nr_hwtail - new_cur;
4108 }
4109 lim = kring->nkr_num_slots - 1;
4110 if (new_hwofs > lim)
4111 new_hwofs -= lim + 1;
4112
4113 /* Always set the new offset value and realign the ring. */
4114 if (netmap_debug & NM_DEBUG_ON)
4115 nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d",
4116 na->name,
4117 tx == NR_TX ? "TX" : "RX", n,
4118 kring->nkr_hwofs, new_hwofs,
4119 kring->nr_hwtail,
4120 tx == NR_TX ? lim : kring->nr_hwtail);
4121 kring->nkr_hwofs = new_hwofs;
4122 if (tx == NR_TX) {
4123 kring->nr_hwtail = kring->nr_hwcur + lim;
4124 if (kring->nr_hwtail > lim)
4125 kring->nr_hwtail -= lim + 1;
4126 }
4127
4128 /*
4129 * Wakeup on the individual and global selwait
4130 * We do the wakeup here, but the ring is not yet reconfigured.
4131 * However, we are under lock so there are no races.
4132 */
4133 kring->nr_mode = NKR_NETMAP_ON;
4134 kring->nm_notify(kring, 0);
4135 return kring->ring->slot;
4136 }
4137
4138
4139 /*
4140 * Dispatch rx/tx interrupts to the netmap rings.
4141 *
4142 * "work_done" is non-null on the RX path, NULL for the TX path.
4143 * We rely on the OS to make sure that there is only one active
4144 * instance per queue, and that there is appropriate locking.
4145 *
4146 * The 'notify' routine depends on what the ring is attached to.
4147 * - for a netmap file descriptor, do a selwakeup on the individual
4148 * waitqueue, plus one on the global one if needed
4149 * (see netmap_notify)
4150 * - for a nic connected to a switch, call the proper forwarding routine
4151 * (see netmap_bwrap_intr_notify)
4152 */
4153 int
netmap_common_irq(struct netmap_adapter * na,u_int q,u_int * work_done)4154 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4155 {
4156 struct netmap_kring *kring;
4157 enum txrx t = (work_done ? NR_RX : NR_TX);
4158
4159 q &= NETMAP_RING_MASK;
4160
4161 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4162 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4163 }
4164
4165 if (q >= nma_get_nrings(na, t))
4166 return NM_IRQ_PASS; // not a physical queue
4167
4168 kring = NMR(na, t)[q];
4169
4170 if (kring->nr_mode == NKR_NETMAP_OFF) {
4171 return NM_IRQ_PASS;
4172 }
4173
4174 if (t == NR_RX) {
4175 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ?
4176 *work_done = 1; /* do not fire napi again */
4177 }
4178
4179 return kring->nm_notify(kring, 0);
4180 }
4181
4182
4183 /*
4184 * Default functions to handle rx/tx interrupts from a physical device.
4185 * "work_done" is non-null on the RX path, NULL for the TX path.
4186 *
4187 * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4188 * so that the caller proceeds with regular processing.
4189 * Otherwise call netmap_common_irq().
4190 *
4191 * If the card is connected to a netmap file descriptor,
4192 * do a selwakeup on the individual queue, plus one on the global one
4193 * if needed (multiqueue card _and_ there are multiqueue listeners),
4194 * and return NR_IRQ_COMPLETED.
4195 *
4196 * Finally, if called on rx from an interface connected to a switch,
4197 * calls the proper forwarding routine.
4198 */
4199 int
netmap_rx_irq(struct ifnet * ifp,u_int q,u_int * work_done)4200 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done)
4201 {
4202 struct netmap_adapter *na = NA(ifp);
4203
4204 /*
4205 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4206 * we still use the regular driver even though the previous
4207 * check fails. It is unclear whether we should use
4208 * nm_native_on() here.
4209 */
4210 if (!nm_netmap_on(na))
4211 return NM_IRQ_PASS;
4212
4213 if (na->na_flags & NAF_SKIP_INTR) {
4214 nm_prdis("use regular interrupt");
4215 return NM_IRQ_PASS;
4216 }
4217
4218 return netmap_common_irq(na, q, work_done);
4219 }
4220
4221 /* set/clear native flags and if_transmit/netdev_ops */
4222 void
nm_set_native_flags(struct netmap_adapter * na)4223 nm_set_native_flags(struct netmap_adapter *na)
4224 {
4225 struct ifnet *ifp = na->ifp;
4226
4227 /* We do the setup for intercepting packets only if we are the
4228 * first user of this adapapter. */
4229 if (na->active_fds > 0) {
4230 return;
4231 }
4232
4233 na->na_flags |= NAF_NETMAP_ON;
4234 nm_os_onenter(ifp);
4235 nm_update_hostrings_mode(na);
4236 }
4237
4238 void
nm_clear_native_flags(struct netmap_adapter * na)4239 nm_clear_native_flags(struct netmap_adapter *na)
4240 {
4241 struct ifnet *ifp = na->ifp;
4242
4243 /* We undo the setup for intercepting packets only if we are the
4244 * last user of this adapter. */
4245 if (na->active_fds > 0) {
4246 return;
4247 }
4248
4249 nm_update_hostrings_mode(na);
4250 nm_os_onexit(ifp);
4251
4252 na->na_flags &= ~NAF_NETMAP_ON;
4253 }
4254
4255 void
netmap_krings_mode_commit(struct netmap_adapter * na,int onoff)4256 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4257 {
4258 enum txrx t;
4259
4260 for_rx_tx(t) {
4261 int i;
4262
4263 for (i = 0; i < netmap_real_rings(na, t); i++) {
4264 struct netmap_kring *kring = NMR(na, t)[i];
4265
4266 if (onoff && nm_kring_pending_on(kring))
4267 kring->nr_mode = NKR_NETMAP_ON;
4268 else if (!onoff && nm_kring_pending_off(kring))
4269 kring->nr_mode = NKR_NETMAP_OFF;
4270 }
4271 }
4272 }
4273
4274 /*
4275 * Module loader and unloader
4276 *
4277 * netmap_init() creates the /dev/netmap device and initializes
4278 * all global variables. Returns 0 on success, errno on failure
4279 * (but there is no chance)
4280 *
4281 * netmap_fini() destroys everything.
4282 */
4283
4284 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4285 extern struct cdevsw netmap_cdevsw;
4286
4287
4288 void
netmap_fini(void)4289 netmap_fini(void)
4290 {
4291 if (netmap_dev)
4292 destroy_dev(netmap_dev);
4293 /* we assume that there are no longer netmap users */
4294 nm_os_ifnet_fini();
4295 netmap_uninit_bridges();
4296 netmap_mem_fini();
4297 NMG_LOCK_DESTROY();
4298 nm_prinf("netmap: unloaded module.");
4299 }
4300
4301
4302 int
netmap_init(void)4303 netmap_init(void)
4304 {
4305 int error;
4306
4307 NMG_LOCK_INIT();
4308
4309 error = netmap_mem_init();
4310 if (error != 0)
4311 goto fail;
4312 /*
4313 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4314 * when the module is compiled in.
4315 * XXX could use make_dev_credv() to get error number
4316 */
4317 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4318 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4319 "netmap");
4320 if (!netmap_dev)
4321 goto fail;
4322
4323 error = netmap_init_bridges();
4324 if (error)
4325 goto fail;
4326
4327 #ifdef __FreeBSD__
4328 nm_os_vi_init_index();
4329 #endif
4330
4331 error = nm_os_ifnet_init();
4332 if (error)
4333 goto fail;
4334
4335 nm_prinf("netmap: loaded module");
4336 return (0);
4337 fail:
4338 netmap_fini();
4339 return (EINVAL); /* may be incorrect */
4340 }
4341